Science.gov

Sample records for polarization resolved measurements

  1. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  2. Spectrally- and polarization-resolved hyper-Rayleigh scattering measurements with polarization-insensitive detection

    NASA Astrophysics Data System (ADS)

    Němec, P.; Pásztor, F.; Brajer, M.; Němec, I.

    2017-04-01

    Determination of the molecular first hyperpolarizability by hyper-Rayleigh scattering (HRS) is usually significantly complicated by a presence of the multiphoton excited fluorescence which has to be separated from HRS to obtain a meaningful values of the hyperpolarizability. We show, by performing a spectrally-resolved measurement, that the intensity and spectral shape of the fluorescence can depend strongly on the fundamental laser wavelength. Consequently, a properly selected excitation wavelength can significantly simplify the process of separation of HRS from the detected signal. We tested the developed experimental setup with a polarization-insensitive detection by measuring HRS generated in water and in aqueous solutions of 2-aminopyrimidine (AMP) and its monocation (HAMP). The effective hyperpolarizability of AMP and HAMP was measured experimentally and compared with that obtained by quantum chemical calculations. The polarization-resolved HRS measurement was performed for AMP and the experimentally obtained depolarization ratio agrees well with that predicted theoretically, which confirms that routine density functional theory computations of static hyperpolarizability tensor components can be considered as a sufficient approach suitable for non-interacting molecules dissolved in water.

  3. Spectrally resolved fluorescence lifetime imaging of Nile red for measurements of intracellular polarity

    NASA Astrophysics Data System (ADS)

    Levitt, James A.; Chung, Pei-Hua; Suhling, Klaus

    2015-09-01

    Spectrally resolved confocal microscopy and fluorescence lifetime imaging have been used to measure the polarity of lipid-rich regions in living HeLa cells stained with Nile red. The emission peak from the solvatochromic dye in lipid droplets is at a shorter wavelength than other, more polar, stained internal membranes, and this is indicative of a low polarity environment. We estimate that the dielectric constant, ɛ, is around 5 in lipid droplets and 25<ɛ<40 in other lipid-rich regions. Our spectrally resolved fluorescence lifetime imaging microscopy (FLIM) data show that intracellular Nile red exhibits complex, multiexponential fluorescence decays due to emission from a short lifetime locally excited state and a longer lifetime intramolecular charge transfer state. We measure an increase in the average fluorescence lifetime of the dye with increasing emission wavelength, as shown using phasor plots of the FLIM data. We also show using these phasor plots that the shortest lifetime decay components arise from lipid droplets. Thus, fluorescence lifetime is a viable contrast parameter for distinguishing lipid droplets from other stained lipid-rich regions. Finally, we discuss the FLIM of Nile red as a method for simultaneously mapping both polarity and relative viscosity based on fluorescence lifetime measurements.

  4. An imaging spectro-polarimeter for measuring hemispherical spectrally resolved down-welling sky polarization

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. L.; Roche, Michael; Hyatt, Brian

    2016-05-01

    A full sky imaging spectro-polarimeter has been developed that measures spectrally resolved (~2.5 nm resolution) radiance and polarization (𝑠0, 𝑠1, 𝑠2 Stokes Elements) of natural sky down-welling over approximately 2π sr between 400nm and 1000nm. The sensor is based on a scanning push broom hyperspectral imager configured with a continuously rotating polarizer (sequential measurement in time polarimeter). Sensor control and processing software (based on Polaris Sensor Technologies Grave' camera control software) has a straight-forward and intuitive user interface that provides real-time updated sky down-welling spectral radiance/polarization maps and statistical analysis tools.

  5. Wavelength resolved polarized elastic scatter measurements from micron-sized single particles

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Czege, Jozsef; Eversole, Jay D.

    2013-05-01

    The goal of this project is to investigate correlations of polarimetric angular scattering patterns from individual aerosol particles with the particles' physical structure and composition. Such signature patterns may be able to provide particle classification capability, such as, for example, discrimination between man-made and naturally occurring aerosols. If successful, this effort could improve current detection methods for biological warfare (BW) agent aerosols. So far, we have demonstrated an experimental arrangement to measure polarization-state resolved, multi-angle, scattering intensities from single aerosol particles on-the-fly. Our novel approach is a radical departure from conventional polarimetric measurement methods, and a key factor is the use of a multiple-order retarder to prepare different polarization states, depending on the wavelength of the incident light. This novel experimental technique uses a supercontinuum light source, an array of optical fibers, an imaging spectrometer and an EMCCD camera to simultaneously acquire wavelength and angle dependent particle light scattering data as a two-dimensional snapshot. Mueller matrix elements were initially measured from individual particles held in an optical trap (at 405 nm). Since particles can be stably trapped for long periods (hours), we were able to change the optical configuration to acquire multiple Mueller matrix element measurements on a single particle. We have computationally modeled these measurements at specific angles, and the comparison with experimental measurements shows good agreement. Similar measurements have also been made on slowly falling particles, and our current efforts are focused on improving experimental technique sufficiently to make such measurements on flowing particles.

  6. Development of a polarization-modulation spectroscopy system for the temporally resolved measurement of linear polarization in plasma emission

    NASA Astrophysics Data System (ADS)

    Yasui, Kenji; Shikama, Taiichi; Higashi, Takanori; Hasuo, Masahiro

    2016-10-01

    A system to measure linear polarization in the HeI 21P-31D emission line (667.8 nm) was developed for application to plasma polarization spectroscopy. To verify the system performance, the normalized Stokes parameters were evaluated. A measurement error of less than 1% with a time resolution of 1 ms was achieved for monochromatic light in the state of complete linear polarization.

  7. Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-12-01

    We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.

  8. Polarization resolved electric field measurements on plasma bullets in N2 using four-wave mixing

    NASA Astrophysics Data System (ADS)

    van der Schans, Marc; Boehm, Patrick; Nijdam, Sander; Ijzerman, Wilbert; Czarnetzki, Uwe

    2016-09-01

    Atmospheric pressure plasma jets generated by kHz AC or pulsed DC voltages typically consist of discrete guided ionization waves called plasma bullets. In this work, the electric field of plasma bullets generated in a pulsed DC jet with N2 as feed gas is investigated using the four-wave mixing method. In this diagnostic two laser beams, where one is Stokes shifted from the other, non-linearly interact with the N2 molecules and the bullet's electric field. As a result of the interaction a coherent anti-Stokes Raman scattered (CARS) beam and an infrared beam are generated from which the electric field can be determined. Compared to emission-based methods, this technique has the advantage of being able to also probe the electric field in regions around the plasma bullet where no photons are emitted. The four-wave mixing method and its analysis have been adapted to work with the non-uniform electric field of plasma bullets. In addition, an ex-situ calibration procedure using an electrode geometry different from the discharge geometry has been developed. An experimentally obtained radial profile of the axial electric field component of a plasma bullet in N2 is presented. The position of this profile is related to the location of the propagating bullet from temporally resolved images.

  9. Polarization measurement through combination polarizers

    NASA Astrophysics Data System (ADS)

    Bai, Yunfeng; Li, Linjun; He, Zhelong; Liu, Yanwei; Ma, Cheng; Shi, Guang; Liu, Lu

    2014-02-01

    Polarization measurement approaches only using polarizer and grating is present. The combination polarizers consists of two polarizers: one is γ degree with the X axis; the other is along the Y axis. Binary grating is covered by the combination polarizers, and based on Fraunhofer diffraction, the diffraction intensity formula is deduced. The polarization state of incident light can be gotten by fitting the diffraction pattern with the deduced formula. Compared with the traditional polarization measurement method, this measurement only uses polarizer and grating, therefore, it can be applied to measure a wide wavelength range without replacing device in theory.

  10. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Astrophysics Data System (ADS)

    Barrett, Paul

    2005-09-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  11. Time Resolved Spectroscopy of Eclipsing Polars

    NASA Technical Reports Server (NTRS)

    Barrett, Paul

    2005-01-01

    No changes have been made since the last annual progress report was submitted in conjunction with a unilateral NCX. Dr. Barrett was affected by an STScI Reduction in Force (RIF). He is now employed by the Johns Hopkins University and plans to continue his research there. No expenses have been charged to this grant, however the FUSE data for the eclipsing polar V1432 Aql has been received and processed using CALFWSE v3.0.6. The resulting summed spectrum has been used for a preliminary analysis of the interstellar absorption towards V1432 Aql. We find a hydrogen column density of less than 1.5e21 cm^-2. We have used this result in the paper "X-Ray Emission and Optical Polarization of V1432 Aquilae: An Asynchronous Polar" to fix the hydrogen column density in the soft (<0.5 keV) X-ray band when analyzing the XMM-Newton spectra of this polar. This has enabled us to find an accurate temperature for the blackbody component of 88+/-2 eV, which is significantly higher than that of other polars (20 - 40 eV). We hope to complete our analysis of the phase-resolved emission line spectra of V1432 Aql and to prepare the results for publication in a refereed journal. We hope to begin work on this star within the next few months.

  12. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  13. Development of a polarization resolved spectroscopic diagnostic for measurements of the magnetic field in the Caltech coaxial magnetized plasma jet experiment

    NASA Astrophysics Data System (ADS)

    Shikama, Taiichi; Bellan, Paul M.

    2011-11-01

    Measurements of the magnetic field strength in current-carrying magnetically confined plasmas are necessary for understanding the underlying physics governing the dynamical behavior. Such a measurement would be particularly useful in the Caltech coaxial magnetized plasma gun, an experiment used for fundamental studies relevant to spheromak formation, astrophysical jet formation/propagation, solar coronal physics, and the general behavior of twisted magnetic flux tubes that intercept a boundary. In order to measure the field strength in the Caltech experiment, a non-perturbing spectroscopic method is being implemented to observe the Zeeman splitting in the emission spectra. The method is based on polarization-resolving spectroscopy of the Zeeman-split σ components, a technique previously used in both solar and laboratory plasmas. We have designed and constructed an optical system that can simultaneously detect left- and right-circularly polarized emission with both high throughput and small extinction ratio. The system will be used on the 489.5 nm NII line, chosen because of its simple Zeeman structure and minimal Stark broadening.

  14. A novel model on time-resolved photoluminescence measurements of polar InGaN/GaN multi-quantum-well structures

    PubMed Central

    Xing, Yuchen; Wang, Lai; Yang, Di; Wang, Zilan; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao

    2017-01-01

    Based on carrier rate equation, a new model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves in the polar InGaN/GaN multi-quantum-well structures. From the study of TRPL curves at different temperatures, it is found that both radiative and non-radiative recombination coefficients vary from low temperature to room temperature. The variation of the coefficients is compatible with the carrier density of states distribution as well as the carrier localization process. These results suggest that there is a novel method to calculate the internal quantum efficiency, which is a complement to the traditional one based on temperature dependent photoluminescence measurement. PMID:28327629

  15. A novel model on time-resolved photoluminescence measurements of polar InGaN/GaN multi-quantum-well structures

    NASA Astrophysics Data System (ADS)

    Xing, Yuchen; Wang, Lai; Yang, Di; Wang, Zilan; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao

    2017-03-01

    Based on carrier rate equation, a new model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves in the polar InGaN/GaN multi-quantum-well structures. From the study of TRPL curves at different temperatures, it is found that both radiative and non-radiative recombination coefficients vary from low temperature to room temperature. The variation of the coefficients is compatible with the carrier density of states distribution as well as the carrier localization process. These results suggest that there is a novel method to calculate the internal quantum efficiency, which is a complement to the traditional one based on temperature dependent photoluminescence measurement.

  16. A novel model on time-resolved photoluminescence measurements of polar InGaN/GaN multi-quantum-well structures.

    PubMed

    Xing, Yuchen; Wang, Lai; Yang, Di; Wang, Zilan; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao

    2017-03-22

    Based on carrier rate equation, a new model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves in the polar InGaN/GaN multi-quantum-well structures. From the study of TRPL curves at different temperatures, it is found that both radiative and non-radiative recombination coefficients vary from low temperature to room temperature. The variation of the coefficients is compatible with the carrier density of states distribution as well as the carrier localization process. These results suggest that there is a novel method to calculate the internal quantum efficiency, which is a complement to the traditional one based on temperature dependent photoluminescence measurement.

  17. Improved quantification of collagen anisotropy with polarization-resolved second harmonic generation microscopy.

    PubMed

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Stanciu, George A

    2016-10-24

    Imaging tissue samples by polarization-resolved second harmonic generation microscopy provides both qualitative and quantitative insights into collagen organization in a label-free manner. Polarization-resolved second harmonic generation microscopy goes beyond simple intensity-based imaging by adding the laser beam polarization component and applying different quantitative metrics such as the anisotropy factor. It thus provides valuable information on collagen arrangement not available with intensity measurements alone. Current established approaches are limited to calculating the anisotropy factor for only a particular laser beam polarization and no general guidelines on how to select the best laser beam polarization have yet been defined. Here, we introduce a novel methodology for selecting the optimal laser beam polarization for characterizing tissues using the anisotropy in the purpose of identifying cancer signatures. We show that the anisotropy factor exhibits a similar laser beam polarization dependence to the second harmonic intensity and we combine it with the collagen orientation index computed by Fast Fourier Transform analysis of the recorded images to establish a framework for choosing the laser beam polarization that is optimal for an accurate interpretation of polarization-resolved second harmonic generation microscopy images and anisotropy maps, and hence a better differentiation between healthy and dysplastic areas. SHG image of skin tissue (a) and a selected area of interest for which we compute the SHG intensity (b) and anisotropy factor (c) dependence on the laser beam polarization and also the FFT spectrum (d) to evaluate the collagen orientation index.

  18. Recoil polarization measurements

    NASA Astrophysics Data System (ADS)

    Brinkmann, Kai-Thomas

    2017-01-01

    Polarization observables in photon-induced meson production off nucleons have long been recognized to hold the promise of a detailed understanding of the excited states in the excitation spectrum of the nucleon. Photon beam and proton target polarization are routinely used at the ELSA facility in the Crystal Barrel/TAPS experiment and have yielded a wealth of data on contributing partial waves and nucleon resonances. A detector study on how to complement these ongoing studies by recoil polarization measurements that offer an orthogonal approach with otherwise unmeasurable observables in the field of non-strange meson photoproduction has been performed. Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  19. Information Content Analysis for the Multi-Viewing, Multi-Channel, Multi-Polarization Imaging (3MI) Instrument : Toward Retrieval of Vertically Resolved Cloud Properties from Passive Only Measurements.

    NASA Astrophysics Data System (ADS)

    Riedi, J.; Merlin, G.; Labonnote, L.; Cornet, C.; Ferlay, N.; Desmons, M.; Dubuisson, P.; Parol, F.; Davis, A. B.; Marbach, T.

    2014-12-01

    efforts to obtain vertically resolved information on cloud properties from 3MI passive measurements only. In particular the synergy of multiangle polarization measurements at 443 and 865 nm with Oxygen A-band differential absorption information to retrieve cloud geometrical thickness will be discussed.

  20. Imaging dental sections with polarization-resolved SHG and time-resolved autofluorescence

    NASA Astrophysics Data System (ADS)

    Chen, Jun Huang; Lin, Po-Yen; Hsu, Stephen C. Y.; Kao, Fu-Jen

    2009-02-01

    In this study, we are using two-photon (2-p) excited autofluorescence and second harmonic (SH) as imaging modalities to investigate dental sections that contains the enamel and the dentin. The use of near-infrared wavelengths for multiphoton excitation greatly facilitates the observation of these sections due to the hard tissue's larger index of refraction and highly scattering nature. Clear imaging can be achieved without feature altering preparation procedures of the samples. Specifically, we perform polarization resolving on SH and lifetime analysis on autofluorescence. Polarization resolved SH reflects the preferred orientation of collagen while very different autofluorescence lifetimes are observed from the dentin and the enamel. The origin of 2-p autofluorescence and SH signals are attributed to hydroxyapatite crystals and collagen fibrils, respectively. Hydroxyapatite is found to be present throughout the sections while collagen fibrils exist only in the dentin and dentinoenamel junctions.

  1. Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system.

    PubMed

    Ko, Alex C-T; Hewko, Mark; Sowa, Michael G; Dong, Cecilia C S; Cleghorn, Blaine; Choo-Smith, Lin-P'ing

    2008-04-28

    A new fibre-optic coupled polarization-resolved Raman spectroscopic system was developed for simultaneous collection of orthogonally polarized Raman spectra in a single measurement. An application of detecting incipient dental caries based on changes observed in Raman polarization anisotropy was also demonstrated using the developed fibre-optic Raman spectroscopic system. The predicted reduction of polarization anisotropy in the Raman spectra of caries lesions was observed and the results were consistent with those reported previously with Raman microspectroscopy. The capability of simultaneous collection of parallel- and cross-polarized Raman spectra of tooth enamel in a single measurement and the improved laser excitation delivery through fibre-optics demonstrated in this new design illustrates its future clinical potential.

  2. Early dental caries detection using a fibre-optic coupled polarization-resolved Raman spectroscopic system

    PubMed Central

    Ko, Alex C.-T.; Hewko, Mark; Sowa, Michael G.; Dong, Cecilia C.S.; Cleghorn, Blaine; Choo-Smith, Lin-P’ing

    2008-01-01

    A new fibre-optic coupled polarization-resolved Raman spectroscopic system was developed for simultaneous collection of orthogonally polarized Raman spectra in a single measurement. An application of detecting incipient dental caries based on changes observed in Raman polarization anisotropy was also demonstrated using the developed fibre-optic Raman spectroscopic system. The predicted reduction of polarization anisotropy in the Raman spectra of caries lesions was observed and the results were consistent with those reported previously with Raman microspectroscopy. The capability of simultaneous collection of parallel-and cross-polarized Raman spectra of tooth enamel in a single measurement and the improved laser excitation delivery through fibre-optics demonstrated in this new design illustrates its future clinical potential. PMID:18545331

  3. Sensitivity of VIIRS Polarization Measurements

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    2010-01-01

    The design of an optical system typically involves a sensitivity analysis where the various lens parameters, such as lens spacing and curvatures, to name two parameters, are (slightly) varied to see what, if any, effect this has on the performance and to establish manufacturing tolerances. A sinular analysis was performed for the VIIRS instruments polarization measurements to see how real world departures from perfectly linearly polarized light entering VIIRS effects the polarization measurement. The methodology and a few of the results of this polarization sensitivity analysis are presented and applied to the construction of a single polarizer which will cover the VIIRS VIS/NIR spectral range. Keywords: VIIRS, polarization, ray, trace; polarizers, Bolder Vision, MOXTEK

  4. Nonselective and polarization effects in time-resolved optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhechev, D.; Steflekova, V.

    2016-02-01

    Three interfering effects in optogalvanic (OG) spectroscopy are identified in a hollow cathode discharge (HCD) - OG detector. The laser beam is found to generate two nonselective processes, namely photoelectron emission (PE) from the cathode surface with a sub-breakdown bias applied, and nonresonant space ionization. The convolution of these galvanic contributions was determined experimentally as an instrumental function and a deconvolution procedure to determine the actual OG signal was developed. Specific plasma conductance is detected dependent on the polarization of the laser beam irradiating. Linearly/circularly polarized light beam is found to induce OG signals differ in amplitude (and their shape parameters in the time-resolved OG signals (TROGS)). The phenomena coherence and specific conductance are found to be in causal relationship. The additional conductance due to coherent states of atoms manifests itself as an intrinsic instrumental property of OG detector.

  5. In vivo multiphoton imaging of the cornea: polarization-resolved second harmonic generation from stromal collagen

    NASA Astrophysics Data System (ADS)

    Latour, G.; Gusachenko, I.; Kowalczuk, L.; Lamarre, I.; Schanne-Klein, M.-C.

    2012-03-01

    Multiphoton microscopy provides specific and contrasted images of unstained collagenous tissues such as tendons or corneas. Polarization-resolved second harmonic generation (SHG) measurements have been implemented in a laserscanning multiphoton microscope. Distortion of the polarimetric response due to birefringence and diattenuation during propagation of the laser excitation has been shown in rat-tail tendons. A model has been developed to account for these effects and correct polarization-resolved SHG images in thick tissues. This new modality is then used in unstained human corneas to access two quantitative parameters: the fibrils orientation within the collagen lamellae and the ratio of the main second-order nonlinear tensorial components. Orientation maps obtained from polarization resolution of the trans-detected SHG images are in good agreement with the striated features observed in the raw images. Most importantly, polarization analysis of the epi-detected SHG images also enables to map the fibrils orientation within the collagen lamellae while epi-detected SHG images of corneal stroma are spatially homogenous and do not enable direct visualization of the fibrils orientation. Depth profiles of the polarimetric SHG response are also measured and compared to models accounting for orientation changes of the collagen lamellae within the focal volume. Finally, in vivo polarization-resolved SHG is performed in rat corneas and structural organization of corneal stroma is determined using epi-detected signals.

  6. Polar plot representation of time-resolved fluorescence.

    PubMed

    Eichorst, John Paul; Wen Teng, Kai; Clegg, Robert M

    2014-01-01

    Measuring changes in a molecule's fluorescence emission is a common technique to study complex biological systems such as cells and tissues. Although the steady-state fluorescence intensity is frequently used, measuring the average amount of time that a molecule spends in the excited state (the fluorescence lifetime) reveals more detailed information about its local environment. The lifetime is measured in the time domain by detecting directly the decay of fluorescence following excitation by short pulse of light. The lifetime can also be measured in the frequency domain by recording the phase and amplitude of oscillation in the emitted fluorescence of the sample in response to repetitively modulated excitation light. In either the time or frequency domain, the analysis of data to extract lifetimes can be computationally intensive. For example, a variety of iterative fitting algorithms already exist to determine lifetimes from samples that contain multiple fluorescing species. However, recently a method of analysis referred to as the polar plot (or phasor plot) is a graphical tool that projects the time-dependent features of the sample's fluorescence in either the time or frequency domain into the Cartesian plane to characterize the sample's lifetime. The coordinate transformations of the polar plot require only the raw data, and hence, there are no uncertainties from extensive corrections or time-consuming fitting in this analysis. In this chapter, the history and mathematical background of the polar plot will be presented along with examples that highlight how it can be used in both cuvette-based and imaging applications.

  7. Polarization Lidar for Shallow Water Depth Measurement

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Thayer, J. P.

    2011-12-01

    A bathymetric, polarization lidar system transmitting at 532 nanometers is developed for applications of shallow water depth measurement. The technique exploits polarization attributes of the probed water body to isolate surface and floor returns, enabling constant fraction detection schemes to determine depth. The minimum resolvable water depth is no longer dictated by the system's laser or detector pulse width and can achieve better than an order of magnitude improvement over current water depth determination techniques. In laboratory tests, a Nd:YAG microchip laser coupled with polarization optics, a single photomultiplier tube, a constant fraction discriminator and a time to digital converter are used to target various water depths. Measurement of 1 centimeter water depths with an uncertainty of ±3 millimeters are demonstrated using the technique. Additionally, a dual detection channel version of the lidar system is in development, permitting simultaneous measurement of co- and cross-polarized signals scattered from the target water body. This novel approach enables new approaches to designing laser bathymetry systems for shallow depth determination from remote platforms while not compromising deep water depth measurement, supporting comprehensive hydrodynamic studies.

  8. Linear Polarization Measurements of Chromospheric Emission Lines

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Keller, C. U.

    2003-01-01

    We have used the Zurich Imaging Stokes Polarimeter (ZIMPOL I) with the McMath-Pierce 1.5 m main telescope on Kitt Peak to obtain linear polarization measurements of the off-limb chromosphere with a sensitivity better than 1 x 10(exp -5). We found that the off-disk observations require a combination of good seeing (to show the emission lines) and a clean heliostat (to avoid contamination by scattered light from the Sun's disk). When these conditions were met, we obtained the following principal results: 1. Sometimes self-reversed emission lines of neutral and singly ionized metals showed linear polarization caused by the transverse Zeeman effect or by instrumental cross talk from the longitudinal Zeeman effect in chromospheric magnetic fields. Otherwise, these lines tended to depolarize the scattered continuum radiation by amounts that ranged up to 0.2%. 2. Lines previously known to show scattering polarization just inside the limb (such as the Na I lambda5889 D2 and the He I lambda5876 D3 lines) showed even more polarization above the Sun's limb, with values approaching 0.7%. 3. The O I triplet at lambda7772, lambda7774, and lambda7775 showed a range of polarizations. The lambda7775 line, whose maximum intrinsic polarizability, P(sub max), is less than 1%, revealed mainly Zeeman contributions from chromospheric magnetic fields. However, the more sensitive lambda7772 (P(sub max) = 19%) and lambda7774 (P(sub max) = 29%) lines had relatively strong scattering polarizations of approximately 0.3% in addition to their Zeeman polarizations. At times of good seeing, the polarization spectra resolve into fine structures that seem to be chromospheric spicules.

  9. Numerical simulation of polarization-resolved second-harmonic microscopy in birefringent media

    NASA Astrophysics Data System (ADS)

    Gusachenko, Ivan; Schanne-Klein, Marie-Claire

    2013-11-01

    Polarization-resolved second-harmonic microscopy has recently emerged as a valuable technique for in situ imaging of collagen structure in tissues. Nevertheless, collagen-rich tissues such as tendon, ligament, skin dermis, bone, cornea, or artery exhibit a heterogeneous and anisotropic architecture that results in complex optical properties. While experimental evidence of polarization distortions has been reported in various tissues, the physics of second-harmonic imaging within such tissues is not fully understood yet. In this work, we performed numerical simulations of polarization-resolved second-harmonic generation in a strongly focused regime within a birefringent tissue. We show that vectorial components due to strong focusing have a rather small effect on the measurement of the second-harmonic tensorial response, while birefringence and optical dispersion may affect these measurements dramatically. We show indeed that a difference in the focal field distribution for ordinary and extraordinary waves results in different phase-matching conditions, which strongly affects the relative efficacy of second-harmonic generation for different polarizations. These results are of great interest for extracting reliable quantitative parameters from second-harmonic images.

  10. Measuring polarization in microlensing events

    NASA Astrophysics Data System (ADS)

    Ingrosso, G.; Calchi Novati, S.; De Paolis, F.; Jetzer, Ph.; Nucita, A. A.; Strafella, F.

    2015-01-01

    We reconsider the polarization of the star light that may arise during microlensing events due to the high gradient of magnification across the atmosphere of the source star, by exploring the full range of microlensing and stellar physical parameters. Since it is already known that only cool evolved giant stars give rise to the highest polarization signals, we follow the model by Simmons et al. to compute the polarization as due to the photon scattering on dust grains in the stellar wind. Motivated by the possibility to perform a polarization measurement during an ongoing microlensing event, we consider the recently reported event catalogue by the Optical Gravitational Lensing Experiment (OGLE) collaboration covering the 2001-2009 campaigns (OGLE-III events), that makes available the largest and more comprehensive set of single-lens microlensing events towards the Galactic bulge. The study of these events, integrated by a Monte Carlo analysis, allows us to estimate the expected polarization profiles and to predict for which source stars and at which time is most convenient to perform a polarization measurement in an ongoing event. We find that about two dozens of OGLE-III events (about 1 per cent of the total) have maximum polarization degree in the range 0.1 < Pmax < 1 per cent, corresponding to source stars with apparent magnitude I ≲ 14.5, being very cool red giants. This signal is measurable by using the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at Very Large Telescope (VLT) telescope with about 1 h integration time.

  11. Time-Resolved Measurements in Optoelectronic Microbioanalysis

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Kossakovski, Dmitri

    2003-01-01

    A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.

  12. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  13. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  14. A LACK OF RESOLVED NEAR-INFRARED POLARIZATION ACROSS THE FACE OF M51

    SciTech Connect

    Pavel, Michael D.; Clemens, Dan P. E-mail: clemens@bu.edu

    2012-12-20

    The galaxy M51 was observed using the Mimir instrument on the Perkins Telescope to constrain the resolved H-band (1.6 {mu}m) polarization across the galaxy. These observations place an upper limit of P{sub H} < 0.05% on the H-band polarization across the face of M51, at 0.6 arcsec pixel sampling. Even with smoothing to coarser angular resolutions, to reduce polarization uncertainty, the H-band polarization remains undetected. The polarization upper limit at H band, when combined with previous resolved optical polarimetry, rules out a Serkowski-like polarization dependence on wavelength. Other polarization mechanisms cannot account for the observed polarization ratio (P{sub H}/P{sub VRI} {approx}< 0.05) across the face of M51.

  15. Polarization-resolved SHG microscopy of rat-tail tendon with controlled mechanical strain

    NASA Astrophysics Data System (ADS)

    Gusachenko, I.; Goulam Houssen, Y.; Tran, V.; Allain, J.-M.; Schanne-Klein, M.-C.

    2013-06-01

    We combined polarization-resolved SHG microscopy with mechanical assays in rat-tail-tendon and measured collagen remodeling upon controlled stretching. This approach aimed to analyze the relationship between macroscopic response and sub-micrometer scale organization of collagen fibrils. We observed a straightening of the crimps followed by a sliding of the fibrils with increasing stretching of the tendon fascicles. Polarization resolution of the SHG images provided complementary information about the orientation dispersion of collagen fibrils within the focal volume and enabled monitoring of collagen remodeling at the sub-micrometer scale. Our approach can be readily generalized to other tissues and should bring new valuable information about biomechanics of microstructured tissues.

  16. Orientation-resolved domain mapping in tetragonal SrTiO3 using polarized Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gray, Dodd J.; Merz, Tyler A.; Hikita, Yasuyuki; Hwang, Harold Y.; Mabuchi, Hideo

    2016-12-01

    We present microscopically resolved, polarized spectroscopy of Raman scattering collected from tetragonal SrTiO3. The anisotropic response of first-order Raman peaks within a single tetragonal domain has been measured. From these data, we assign symmetries to the phonons seen in the first-order Raman spectrum which is normally complicated by uncontrolled domain structure. Using a translation stage, we map the local domain orientation of a 3 -μ m3 crystal volume near the laser focus and compare it to wide-field polarized images. This technique can be performed with readily available instruments and is relevant to the study of a wide range of related materials, interfaces, and devices.

  17. Time Resolved Deposition Measurements in NSTX

    SciTech Connect

    C.H. Skinner; H. Kugel; A.L. Roquemore; J. Hogan; W.R. Wampler; the NSTX team

    2004-08-03

    Time-resolved measurements of deposition in current tokamaks are crucial to gain a predictive understanding of deposition with a view to mitigating tritium retention and deposition on diagnostic mirrors expected in next-step devices. Two quartz crystal microbalances have been installed on NSTX at a location 0.77m outside the last closed flux surface. This configuration mimics a typical diagnostic window or mirror. The deposits were analyzed ex-situ and found to be dominantly carbon, oxygen, and deuterium. A rear facing quartz crystal recorded deposition of lower sticking probability molecules at 10% of the rate of the front facing one. Time resolved measurements over a 4-week period with 497 discharges, recorded 29.2 {micro}g/cm{sup 2} of deposition, however surprisingly, 15.9 {micro}g/cm{sup 2} of material loss occurred at 7 discharges. The net deposited mass of 13.3 {micro}g/cm{sup 2} matched the mass of 13.5 {micro}g/cm{sup 2} measured independently by ion beam analysis. Monte Carlo modeling suggests that transient processes are likely to dominate the deposition.

  18. Polar Dunes Resolved by the Mars Orbiter Laser Altimeter Gridded Topography and Pulse Widths

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.

    2003-01-01

    The Mars Orbiter Laser Altimeter (MOLA) polar data have been refined to the extent that many features poorly imaged by Viking Orbiters are now resolved in densely gridded altimetry. Individual linear polar dunes with spacings of 0.5 km or more can be seen as well as sparsely distributed and partially mantled dunes. The refined altimetry will enable measurements of the extent and possibly volume of the north polar ergs. MOLA pulse widths have been recalibrated using inflight data, and a robust algorithm applied to solve for the surface optical impulse response. It shows the surface root-mean-square (RMS) roughness at the 75-m-diameter MOLA footprint scale, together with a geological map. While the roughness is of vital interest for landing site safety studies, a variety of geomorphological studies may also be performed. Pulse widths corrected for regional slope clearly delineate the extent of the polar dunes. The MOLA PEDR profile data have now been re-released in their entirety (Version L). The final Mission Experiment Gridded Data Records (MEGDR's) are now provided at up to 128 pixels per degree globally. Densities as high as 512 pixels per degree are available in a polar stereographic projection. A large computational effort has been expended in improving the accuracy of the MOLA altimetry themselves, both in improved orbital modeling and in after-the-fact adjustment of tracks to improve their registration at crossovers. The current release adopts the IAU2000 rotation model and cartographic frame recommended by the Mars Cartography Working Group. Adoption of the current standard will allow registration of images and profiles globally with an uncertainty of less than 100 m. The MOLA detector is still operational and is currently collecting radiometric data at 1064 nm. Seasonal images of the reflectivity of the polar caps can be generated with a resolution of about 300 m per pixel.

  19. Conversion of sunflower multiband radiometer polarization measurements to polarization parameters

    NASA Technical Reports Server (NTRS)

    Biehl, Larry L.

    1995-01-01

    The data processing analysis and conversion of polarization measurements to polarization parameters from the Sunflower multiband radiometer is presented in this final report. Included is: (1) the actual data analysis; (2) the comparison of the averaging techniques and the percent polarization derived from the original and averaged I, Q, U parameters; (3) the polarizer angles used in conversion; (4) the Matlab files; (5) the relative ground size, field of view location, and view zenith angles, and (6) the summary of all the sky data for all dates.

  20. Spectrally resolved motional Stark effect measurements on ASDEX Upgrade

    SciTech Connect

    Reimer, R.; Dinklage, A.; Wolf, R.; Fischer, R.; Hobirk, J.; Löbhard, T.; Mlynek, A.; Reich, M.; Sawyer, L.; Collaboration: ASDEX Upgrade

    2013-11-15

    A spectrally resolved Motional Stark Effect (MSE) diagnostic has been installed at ASDEX Upgrade. The MSE data have been fitted by a forward model providing access to information about the magnetic field in the plasma interior [R. Reimer, A. Dinklage, J. Geiger et al., Contrib. Plasma Phys. 50, 731–735 (2010)]. The forward model for the beam emission spectra comprises also the fast ion D{sub α} signal [W. W. Heidbrink and G. J. Sadler, Nucl. Fusion 34, 535–615 (1994)] and the smearing on the CCD-chip. The calculated magnetic field data as well as the revealed (dia)magnetic effects are consistent with the results from equilibrium reconstruction solver. Measurements of the direction of the magnetic field are affected by unknown and varying polarization effects in the observation.

  1. Time-resolved Temperature Measurements in SSPX

    SciTech Connect

    Ludington, A R; Hill, D N; McLean, H S; Moller, J; Wood, R D

    2006-08-14

    We seek to measure time-resolved electron temperatures in the SSPX plasma using soft X-rays from free-free Bremsstrahlung radiation. To increase sensitivity to changes in temperature over the range 100-300 eV, we use two photodiode detectors sensitive to different soft X-ray energies. The detectors, one with a Zr/C coating and the other with a Ti/Pd coating, view the plasma along a common line of sight tangential to the magnetic axis of the spheromak, where the electron temperature is a maximum. The comparison of the signals, over a similar volume of plasma, should be a stronger function of temperature than a single detector in the range of Te< 300 eV. The success of using photodiodes to detect changing temperatures along a chord will make the case for designing an array of the detectors, which could provide a time changing temperature profile over a larger portion of the plasma.

  2. RESOLVE for Lunar Polar Ice/Volatile Characterization Mission

    NASA Technical Reports Server (NTRS)

    Sanders, G. B.; Larson, W. E.; Quinn, J. W.; Colaprete, A.; Picard, M.; Boucher, D.

    2011-01-01

    Ever since data from the neutron spectrometer instrument on the Lunar Prospector mission indicated the possibility of significant concentrations of hydrogen at the lunar poles, speculation on the form and concentration of the hydrogen has been debated. The recent impact of the Lunar Crater Observation and Sensing Satellite (LCROSS) along with thermal, topographic, neutron spectrometry, and radar frequency data obtained from the Lunar Reconnaissance Orbiter (LRO) have provided more information suggesting significant amounts of water/ice and other volatiles may be available in the top 1 to 2 meters of regolith at the lunar poles. The next step in understanding what resources are available at the lunar poles is to perform a mission to obtain ground truth. data. To meet this need, the US National Aeronautics and Space Administration (NASA) along with the Canadian Space Agency (CSA) have been working on a prototype payload known as the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction experiment, or RESOLVE.

  3. Real-time inversion of polarization gate frequency-resolved optical gating spectrograms.

    PubMed

    Kane, Daniel J; Weston, Jeremy; Chu, Kai-Chien J

    2003-02-20

    Frequency-resolved optical gating (FROG) is a technique used to measure the intensity and phase of ultrashort laser pulses through the optical construction of a spectrogram of the pulse. To obtain quantitative information about the pulse from its spectrogram, an iterative two-dimensional phase retrieval algorithm must be used. Current algorithms are quite robust but retrieval of all the pulse information can be slow. Previous real-time FROG trace inversion work focused on second-harmonic-generation FROG, which has an ambiguity in the direction of time, and required digital signal processors (DSPs). We develop a simplified real-time FROG device based on a single-shot geometry that no longer requires DSPs. We use it and apply the principal component generalized projections algorithm to invert polarization gate FROG traces at rates as high as 20 Hz.

  4. Prospecting for Polar Volatiles: Results from the Resolve Field

    NASA Technical Reports Server (NTRS)

    Elphic, Richard C.; Colarprete, Anthony; Deans, Matthew C.; Heldman, Jennifer; Sanders, Gerald B.; Larson, William E.

    2013-01-01

    Both the Moon and Mercury evidently host ice and other volatile compounds in cold traps at the planets poles. Determining the form, spatial distribution, and abundance of these volatiles at the lunar poles can help us understand how and when they were delivered and emplaced. This bears directly on the delivery of water and prebiotic compounds to the inner planets over the solar system s history, and also informs plans for utilizing the volatiles as resources for sustained human exploration as well as the commercial development of space. Temperature models and orbital data suggest near-surface volatile concentrations may exist at polar locations not strictly in permanent shadow. Remote operation of a robotic lunar rover mission for the 7-10 days of available sunlight would permit key questions to be answered. But such a short, quick-tempo mission has unique challenges and requires a new concept of operations. Both science and rover operations decisionmaking must be done in real time, requiring immediate situational awareness, data analysis, and decision support tools.

  5. Hierarchical model of fibrillar collagen distribution for polarization-resolved SHG microscopy

    NASA Astrophysics Data System (ADS)

    Tuer, Adam E.; Akens, Margarete K.; Krouglov, Serguei; Sandkuijl, Daaf; Wilson, Brian C.; Whyne, Cari M.; Barzda, Virginijus

    2013-02-01

    A hierarchical model of the organization of fibrillar collagen is developed and its implications on polarization-resolved second harmonic generation (SHG) microscopy are investigated. A "ground-up" approach is employed to develop the theory for understanding of the origin of SHG from fibrillar collagen. The effects of fibril ultrastructure and fibril macroscopic organization on the second-order polarization properties of fibrillar collagen are presented in conjunction with recent ab initio results performed on a collagen triple-helix model (-GLY-PRO-HYP-)n. Various tissues containing fibrillar collagen are quantified using a polarization-resolved SHG technique, termed polarization-in, polarization-out (PIPO) and interpreted in light of the aforementioned theory. The method involves varying the incident laser polarization, while monitoring the SHG intensity through an analyzer. From the SHG polarization data the orientation of the fibers, in biological tissue, can be deduced. Unique PIPO signatures are observed for different rat tissues and interpreted in terms of the collagen composition, fibril ultrastructure, and macroscopic organization. Similarities and discrepancies in the second-order polarization properties of different collagen types and ultrastructures will be presented. PIPO SHG microscopy shows promise in its ability to quantify the organization of collagen in various tissues. The ability to characterize the structure of collagen in various tissue microenvironments will aid in the study of numerous collagen related biological process, including tissue diseases, wound repair, and tumor development and progression.

  6. Motionless polarization-resolved second harmonic generation imaging of corneal collagen

    NASA Astrophysics Data System (ADS)

    Breunig, Hans G.; Batista, Ana; Uchugonova, Aisada; König, Karsten

    2015-03-01

    Polarization-resolved second harmonic generation microscopy was used to investigate the collagenous structures of cornea samples in vitro in forward and backward direction. Although structural features appear different in both directions, following an approach by Latour et al. the collagen domain orientation is determined in forward as well as in backward direction, the latter being the only accessible direction for in vivo imaging. The experimental setup enables fast and completely motionless rotation of the polarization direction of 100 fs pulses by a polarization rotation based on a liquid crystal retarder.

  7. Angle resolved scatter measurement of bulk scattering in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Miller, J. Keith; Shori, Ramesh K.; Goorsky, Mark S.

    2015-02-01

    Bulk scattering in polycrystalline laser materials (PLM), due to non-uniform refractive index across the bulk, is regarded as the primary loss mechanism leading to degradation of laser performance with higher threshold and lower output power. The need for characterization techniques towards identifying bulk scatter and assessing the quality. Assessment of optical quality and the identification of bulk scatter have been by simple visual inspection of thin samples of PLMs, thus making the measurements highly subjective and inaccurate. Angle Resolved Scatter (ARS) measurement allows for the spatial mapping of scattered light at all possible angles about a sample, mapping the intensity for both forward scatter and back-scatter regions. The cumulative scattered light intensity, in the forward scatter direction, away from the specular beam is used for the comparison of bulk scattering between samples. This technique employ the detection of scattered light at all angles away from the specular beam directions and represented as a 2-D polar map. The high sensitivity of the ARS technique allows us to compare bulk scattering in different PLM samples which otherwise had similar transmitted beam wavefront distortions.

  8. Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials.

    PubMed

    Liu, Xuan; Yang, Yang; Han, Lu; Guo, Cheng-Shan

    2017-04-03

    We report a fiber-based lensless holographic imaging system to realize a single-shot measurement of two dimensional (2-D) Jones matrix parameters of polarization-sensitive materials. In this system, a multi-source lensless off-axis Fresnel holographic recording geometry is adopted, and two optical fiber splitters are used to generate the multiple reference and illumination beams required for recording a four-channel angular-multiplexing polarization hologram (AMPH). Using this system and the method described in this paper, spatially resolved Jones matrix parameters of a polarization-sensitive material can be retrieved from one single-shot AMPH. We demonstrate the feasibility of the method by extracting a 2-D Jones matrix of a composite polarizer. Applications of the method to measure the Jones matrix maps of a stressed polymethyl methacrylate sample and a mica fragment are also presented. Benefit from the fiber-based and lensless off-axis holographic design, the system possesses a quite compact configuration, which provides a feasible approach for development of an integrated and portable system to measure Jones matrix parameters of polarization-sensitive materials.

  9. Spectroscopic approaches to resolving ambiguities of hyper-polarized NMR signals from different reaction cascades.

    PubMed

    Jensen, Pernille Rose; Meier, Sebastian

    2016-02-07

    The influx of exogenous substrates into cellular reaction cascades on the seconds time scale is directly observable by NMR spectroscopy when using nuclear spin polarization enhancement. Conventional NMR assignment spectra for the identification of reaction intermediates are not applicable in these experiments due to the non-equilibrium nature of the nuclear spin polarization enhancement. We show that ambiguities in the intracellular identification of transient reaction intermediates can be resolved by experimental schemes using site-specific isotope labelling, optimised referencing and response to external perturbations.

  10. Polarization resolved near-IR imaging of sound and carious dental enamel

    NASA Astrophysics Data System (ADS)

    Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    A thorough understanding of how polarized near-IR light is reflected from and transmitted through sound and carious dental hard tissues is important for the development of optical imaging devices. New optical imaging tools employing non-ionizing radiation are needed for the detection and assessment of dental caries. In this investigation, an automated system was developed to collect images for the full 16-element Mueller Matrix. The polarized light was controlled by linear polarizers and liquid crystal retarders and the 36 images were acquired as the polarized near-IR light is reflected from the occlusal surface or transmitted through thin sections of extracted human whole teeth. Previous near-IR imaging studies suggest that polarization imaging can be exploited to obtain higher contrast images of early dental caries due to the rapid depolarization of incident polarized light by the highly scattering areas of decay. In this study, the reflectance from tooth occlusal surfaces with demineralization and transmitted light through tooth thin sections with caries lesions were investigated. Major differences in the Mueller matrix elements were observed in both sound and demineralized enamel. This study suggests that polarization resolved optical imaging can be exploited to obtain higher contrast images of dental decay.

  11. Infrared polarization measurements of Io in 1986

    SciTech Connect

    Sinton, W.M.; Goguen, J.D.; Nagata, T.; Ellis, H.B. Jr.; Werner, M.

    1988-09-01

    New polarization measurements of Io were made with two different polarimeters at 3.8 and 4.8 microns. The measurements, at phase angles of about 2 deg, detect the polarization of reflected sunlight at both wavelengths. Only upper limits can be determined for the volcanic activity in 1986, but these limits show that there has been a remarkable decrease in activity, particularly of the Loki volcano, at these short wavelengths. The 1984 data (Goguen and Sinton (1985) are reanalyzed with the new model, which includes polarization of reflected sunlight. The large amount of thermal emission from the Loki volcano in 1984 produced a polarization that was dominant over that of reflected sunlight. 29 references.

  12. Polarization Measurements on SUMI's TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Kobayashi, K.; West, E. A.; Davis, J. M.; Gary, G. A.

    2007-01-01

    We present measurements of toroidal variable-line-space (TVLS) gratings for the Solar Ultraviolet Magnetograph Investigation (SUMI), currently being developed at the National Space Science and Technology Center (NSSTC). SUMI is a spectro-polarimeter designed to measure magnetic fields in the solar chromosphere by observing two UV emission lines sensitive to magnetic fields, the CIY line at 155nm and the MgII line at 280nm. The instrument uses a pair of TVLS gratings, to observe both linear polarizations simultaneously. Efficiency measurements were done on bare aluminum gratings and aluminum/MgF2 coated gratings, at both linear polarizations.

  13. Polarization Sensitive Coherent Raman Measurements of DCVJ

    NASA Astrophysics Data System (ADS)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  14. Polarization Measurements in Neutral Pion Photoproduction

    SciTech Connect

    C. Jones; Krishni Wijesooriya; B. Fox; Andrei Afanasev; Moscov Amaryan; Konrad Aniol; Stephen Becher; Kamal Benslama; Louis Bimbot; Peter Bosted; Edward Brash; John Calarco; Zhengwei Chai; C. Chang; Ting Chang; Jian-Ping Chen; Seonho Choi; Eugene Chudakov; Steve Churchwell; Domenick Crovelli; Sonja Dieterich; Scott Dumalski; Dipangkar Dutta; Martin Epstein; Kevin Fissum; Salvatore Frullani; Haiyan Gao; Juncai Gao; Franco Garibaldi; Olivier Gayou; Ronald Gilman; Oleksandr Glamazdin; Charles Glashausser; Javier Gomez; Viktor Gorbenko; Ole Hansen; Roy Holt; Jordan Hovdebo; Garth Huber; Kees de Jager; Xiaodong Jiang; Mark Jones; Jim Kelly; Edward Kinney; Edgar Kooijman; Gerfried Kumbartzki; Michael Kuss; John LeRose; Meme Liang; Richard Lindgren; Nilanga Liyanage; Sergey Malov; Demetrius Margaziotis; Pete Markowitz; Kathy McCormick; Dave Meekins; Zein-Eddine Meziani; Robert Michaels; Joe Mitchell; Ludyvine Morand; Charles Perdrisat

    2002-09-26

    We present measurements of the recoil proton polarization for the {sup 1}H(gamma-vector,p-vector)pi{sup 0} reaction for theta{sub c.m.}{sup pi} = 60{sup o}-135{sup o} and for photon energies up to 4.1 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. Various theoretical models are compared with the results. No evidence for hadron helicity conservation is observed. Models that employ factorization are not favored. It appears from the strong angular dependence of the induced polarization at photon energies of 2.5 and 3.1 GeV that a relatively high spin resonance or background amplitude might exist in this energy region.

  15. Remote Measurement of Shallow Media Depth Using Polarization Lidar

    NASA Astrophysics Data System (ADS)

    Mitchell, Steven E.

    Active noncontact range measurement sensors transmit electromagnetic radiation onto a remote target and process the received scattered signals to resolve the separation distance, or range, between the sensor and target. For lidar sensors, range is resolved by halving the roundtrip transit time multiplied by the speed of light, accounting for the refractive indices of the transit media. The ranging technique enables remote measurement of depth by resolving the range to sequential surfaces. Depth measurement in the shallow regime has conventionally been limited by the presence of ambiguous, overlapping optical pulses scattered from sequential surfaces. Enhanced performance in the shallow regime has conventionally come at the expense of the increased cost and complexity associated with high performance componentry. The issue of remote shallow depth measurement presents an opportunity for a novel approach to lidar sensor development. In this work, I discuss how the issue of ambiguity in the shallow depth measurement may be addressed by exploiting the polarization orientation of the transmitted and received optical signals, the components of which are modified during the range observation by naturally-occurring phenomena. Conventional pulsed time of flight laser ranging sensors are unable to resolve the shallow depth between overlapping pulses received from sequential surfaces due to operation in the scalar lidar regime, where the intensity of the received scattered signal is measured with no regard for polarization information. Enhanced performance by scalar lidar sensors in the shallow media regime has been conventionally enabled through incorporation of picosecond pulse width lasers and fast photodetectors, along with their associated increase in cost and complexity. The polarization lidar approach to shallow depth measurement developed in the dissertation facilitates the use of common lasers, optics, and detection componentry, making it comparatively less complex

  16. Polarization measurement of laser-accelerated protons

    SciTech Connect

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf; Büscher, Markus; Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald; Gibbon, Paul; Karmakar, Anupam

    2014-02-15

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  17. When measured spin polarization is not spin polarization

    NASA Astrophysics Data System (ADS)

    Dowben, P. A.; Wu, Ning; Binek, Christian

    2011-05-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO2 and Cr2O3 illustrate some of the complications which hinders comparisons of spin polarization values.

  18. When measured spin polarization is not spin polarization.

    PubMed

    Dowben, P A; Wu, Ning; Binek, Christian

    2011-05-04

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO(2) and Cr(2)O(3) illustrate some of the complications which hinders comparisons of spin polarization values.

  19. Concept of proton radiography using energy resolved dose measurement.

    PubMed

    Bentefour, El H; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-21

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams 'proton imaging field' are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  20. Concept of proton radiography using energy resolved dose measurement

    NASA Astrophysics Data System (ADS)

    Bentefour, El H.; Schnuerer, Roland; Lu, Hsiao-Ming

    2016-08-01

    Energy resolved dosimetry offers a potential path to single detector based proton imaging using scanned proton beams. This is because energy resolved dose functions encrypt the radiological depth at which the measurements are made. When a set of predetermined proton beams ‘proton imaging field’ are used to deliver a well determined dose distribution in a specific volume, then, at any given depth x of this volume, the behavior of the dose against the energies of the proton imaging field is unique and characterizes the depth x. This concept applies directly to proton therapy scanning delivery methods (pencil beam scanning and uniform scanning) and it can be extended to the proton therapy passive delivery methods (single and double scattering) if the delivery of the irradiation is time-controlled with a known time-energy relationship. To derive the water equivalent path length (WEPL) from the energy resolved dose measurement, one may proceed in two different ways. A first method is by matching the measured energy resolved dose function to a pre-established calibration database of the behavior of the energy resolved dose in water, measured over the entire range of radiological depths with at least 1 mm spatial resolution. This calibration database can also be made specific to the patient if computed using the patient x-CT data. A second method to determine the WEPL is by using the empirical relationships between the WEPL and the integral dose or the depth at 80% of the proximal fall off of the energy resolved dose functions in water. In this note, we establish the evidence of the fundamental relationship between the energy resolved dose and the WEPL at the depth of the measurement. Then, we illustrate this relationship with experimental data and discuss its imaging dynamic range for 230 MeV protons.

  1. POLRADS: polarization radiance distribution measurement system.

    PubMed

    Voss, Kenneth J; Souaidia, Nordine

    2010-09-13

    While the upwelling radiance distribution in the ocean can be highly polarized, there are few measurements of this parameter in the open ocean. To obtain the polarized in-water upwelling spectral radiance distribution data we have developed the POLRADS instrument. This instrument is based on the NuRADS radiance distribution camera systems in which linear polarizer's have been installed. By combining simultaneous images from three NuRADS instruments, three Stokes parameters (I, Q, U) for the water leaving radiance can be obtained for all upwelling angles simultaneously. This system measures the Stokes parameters Q/I and U/I with a 0.05-0.06 uncertainty and I with a 7-10% uncertainty.

  2. New Measurements of CMB Polarization with SPTpol

    NASA Astrophysics Data System (ADS)

    Henning, Jason; SPTpol Collaboration

    2016-06-01

    All-sky surveys of the primary temperature anisotropies of the Cosmic Microwave Background (CMB) are now cosmic variance limited on large to intermediate scales. To place tighter constraints on cosmology from CMB primary anisotropies we turn to measurements of CMB polarization. Not only is polarization another probe of ΛCDM cosmology, but secondary anisotropies are expected to have low polarized emission, which opens more of the so-called CMB damping tail to cosmological study. In this talk, we present new 150 GHz measurements of the CMB E-mode polarization auto-power and temperature-E-mode cross-power spectra from a 500 deg2 patch of sky observed with the SPTpol instrument, the second-generation receiver installed on the South Pole Telescope. Over a range of spherical harmonic multipoles 50 ≤ l < 10000 we detect 9 acoustic peaks in the E-mode spectrum. With these spectra we constrain ΛCDM cosmology independently from temperature-only measurements, and present new joint constraints with the Planck temperature auto-power spectrum. The CMB is also gravitationally lensed by large-scale structure. We use our high-fidelity map of E-mode polarization, in conjunction with SPTpol maps of B-mode polarization and temperature, to map the lensing potential of the CMB and measure its corresponding power spectrum. Finally, the CMB lensing potential can be combined with our E-mode map to estimate lensing B modes present in our field, which can be delensed to improve constraints on primordial B modes and the energy scale of inflation through the tensor-to-scalar ratio, r.

  3. Polarization measurement analysis. III. Analysis of the polarization angle dispersion function with high precision polarization data

    NASA Astrophysics Data System (ADS)

    Alina, D.; Montier, L.; Ristorcelli, I.; Bernard, J.-P.; Levrier, F.; Abdikamalov, E.

    2016-10-01

    High precision polarization measurements, such as those from the Planck satellite, open new opportunities for the study of the magnetic field structure as traced by polarimetric measurements of the interstellar dust emission. The polarization parameters suffer from bias in the presence of measurement noise. It is critical to take into account all the information available in the data in order to accurately derive these parameters. In our previous work, we studied the bias on polarization fraction and angle, various estimators of these quantities, and their associated uncertainties. The goal of this paper is to characterize the bias on the polarization angle dispersion function that is used to study the spatial coherence of the polarization angle. We characterize for the first time the bias on the conventional estimator of the polarization angle dispersion function and show that it can be positive or negative depending on the true value. Monte Carlo simulations were performed to explore the impact of the noise properties of the polarization data, as well as the impact of the distribution of the true polarization angles on the bias. We show that in the case where the ellipticity of the noise in (Q,U) varies by less than 10%, one can use simplified, diagonal approximation of the noise covariance matrix. In other cases, the shape of the noise covariance matrix should be taken into account in the estimation of the polarization angle dispersion function. We also study new estimators such as the dichotomic and the polynomial estimators. Though the dichotomic estimator cannot be directly used to estimate the polarization angle dispersion function, we show that, on the one hand, it can serve as an indicator of the accuracy of the conventional estimator and, on the other hand, it can be used for deriving the polynomial estimator. We propose a method for determining the upper limit of the bias on the conventional estimator of the polarization angle dispersion function. The

  4. Polarization-resolved sensing with tilted fiber Bragg gratings: theory and limits of detection

    NASA Astrophysics Data System (ADS)

    Bialiayeu, Aliaksandr; Ianoul, Anatoli; Albert, Jacques

    2015-08-01

    Polarization based sensing with tilted fiber Bragg grating (TFBG) sensors is analysed theoretically by two alternative approaches. The first method is based on tracking the grating transmission for two orthogonal states of linear polarized light that are extracted from the measured Jones matrix or Stokes vectors of the TFBG transmission spectra. The second method is based on the measurements along the system principle axes and polarization dependent loss (PDL) parameter, also calculated from measured data. It is shown that the frequent crossing of the Jones matrix eigenvalues as a function of wavelength leads to a non-physical interchange of the calculated principal axes; a method to remove this unwanted mathematical artefact and to restore the order of the system eigenvalues and the corresponding principal axes is provided. A comparison of the two approaches reveals that the PDL method provides a smaller standard deviation and therefore lower limit of detection in refractometric sensing. Furthermore, the polarization analysis of the measured spectra allows for the identification of the principal states of polarization of the sensor system and consequentially for the calculation of the transmission spectrum for any incident polarization state. The stability of the orientation of the system principal axes is also investigated as a function of wavelength.

  5. Spin-orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets.

    PubMed

    Heinzmann, Ulrich; Dil, J Hugo

    2012-05-02

    The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein.The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission.

  6. Data Analysis And Polarization Measurements With GEMS

    NASA Technical Reports Server (NTRS)

    Stohmayer, Tod

    2011-01-01

    The Gravity and Extreme Magnetism SMEX (GEMS) mission was selected by NASA for flight in 2014. GEMS will make the first sensitive survey of X-ray polarization across a wide range of source classes including black hole and neutron star binaries, AGN of different types, rotation and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect. The GEMS detectors image the charge tracks of photoelectrons produced by 2 - 10 keV X-rays. The initial direction of the photoelectron is determined by the linear polarization of the photon. We present an overview of the data analysis challenges and methods for GEMS, including procedures for producing optimally filtered images of the charge tracks and estimating their initial directions. We illustrate our methods using laboratory measurements of polarized and unpolarized X-rays with flight-like detectors as well as from simulated tracks. We also present detailed simulations exploring the statistics of polarization measurements appropriate for GEMS, and make comparisons with previous work.

  7. GRB Polarization Measurements with CGRO/COMPTEL

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Collmar, Werner

    2016-04-01

    We have embarked on a program to analyze CGRO/COMPTEL data in search for evidence of polarization in both transient sources and in brighter steady sources. We are pursuing this work because of the heightened interest in high energy polarimetry, the recognition that some high energy sources may be highly polarized (thus improving our chances of a making useful measurements), and the ready availability of modern computing resources that provide the ability to carry out more comprehensive simulations in support of the analysis. The only significant work done to date with regards to COMPTEL polarimetry was published almost 20 years ago and used a simplified mass model of COMPTEL for simulating the instrument response. Estimates of the minimum detectable polarization (MDP) near 1 MeV included 30% for a two-week observation of the Crab, as low as 10% for bright GRBs, and as low as 10% for bright solar flares. The data analysis performed at the time led to inconclusive results and suggested some unknown systematic error. We contend that a self-consistent analysis will be feasible with high fidelity simulations, simulations that were not easily generated 20 years ago. Our analysis utilizes the latest GEANT4 simulation tools in conjunction with a high-fidelity mass model of the COMPTEL instrument, and incorporate updated analysis tools originally developed by the COMPTEL collaboration. Given the nine years of COMPTEL data, we expect that this work will likely add to our understanding of the polarization properties of transient sources, such as GRBs and solar flares, as well as brighter steady sources, such as the Crab and Cyg X-1. Here we present results from simulations of the COMPTEL polarization response and examine prospects for studying GRB polarization.

  8. Two-Dimensional Subpicosecond Time-Resolved Fluorescence Anisotropy: Optical Kerr-Gating with a Dynamic Polarization Excitation.

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Romano, Natalie C.; Modarelli, David A.; Lim, Edward C.

    2013-06-01

    With an advent of ultrafast lasers, a number of applications are widely adopted to probe photophysical and photochemical properties of a molecule that occurs in an ultrafast (femtosecond to picosecond) time scale. Intramolecular charge transfer (ICT) or proton transfer in photoexcited electron donor-acceptor (EDA) molecules, for instance, has been a topic of very extensive time-resolved studies for several decades. Time-evolution of an anisotropic property can track dipole orientations or conformational changes in their photoexcited molecular systems, which is of extreme importance to examine its structure and excited-state dynamics rather than probing an isotropic "population change".With this respect, we recently developed a subpicosecond time-resolved 2-D fluorescence anisotropy (TRFA) in which method implements a dynamic alternation of laser polarizations to excite a sample using a photoelastic modulator (PEM). In the combination of an ultrafast optical shutter (Kerr-gating) and a spectrograph that is coupled with a CCD, two signal phases so-obtained dynamically, I_{∥}( t, λ) and I_{⊥}( t, λ), provide a 2-D mapped information on both a wide range for spectra and time-resolved kinetics of photoexcited molecules of interest. From the definition of an anisotropy 2-D TRFA, r (t, λ), is given instantly and even more reliably at a single measurement. In this paper we will present benchmark tests of some target samples to establish performance of TRFA.

  9. Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy

    PubMed Central

    Wang, Zi; Zheng, Wei; Hsu, Stephen Chin-Ying; Huang, Zhiwei

    2016-01-01

    We report the utility of a rapid polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique developed for optical diagnosis and characterization of dental caries in the tooth. Hyperspectral SRS images (512 × 512 pixels) of the tooth covering both the fingerprint (800-1800 cm−1) and high-wavenumber (2800-3600 cm−1) regions can be acquired within 15 minutes, which is at least 103 faster in imaging speed than confocal Raman mapping. Hyperspectral SRS imaging uncovers the biochemical distributions and variations across the carious enamel in the tooth. SRS imaging shows that compared to the sound enamel, the mineral content in the body of lesion decreases by 55%; while increasing up to 110% in the surface zone, indicating the formation of a hyper-mineralized layer due to the remineralization process. Further polarized SRS imaging shows that the depolarization ratios of hydroxyapatite crystals (ν1-PO43- of SRS at 959 cm−1) of the tooth in the sound enamel, translucent zone, body of lesion and the surface zone are 0.035 ± 0.01, 0.052 ± 0.02, 0.314 ± 0.1, 0.038 ± 0.02, respectively, providing a new diagnostic criterion for discriminating carious lesions from sound enamel in the teeth. This work demonstrates for the first time that the polarization-resolved hyperspectral SRS imaging technique can be used for quantitatively determining tooth mineralization levels and discriminating carious lesions from sound enamel in a rapid fashion, proving its promising potential of early detection and diagnosis of dental caries without labeling. PMID:27446654

  10. Vectorial spin polarization detection in multichannel spin-resolved photoemission spectroscopy using an Ir(001) imaging spin filter

    NASA Astrophysics Data System (ADS)

    Schaefer, Erik D.; Borek, Stephan; Braun, Jürgen; Minár, Ján; Ebert, Hubert; Medjanik, Katerina; Kutnyakhov, Dmytro; Schönhense, Gerd; Elmers, Hans-Joachim

    2017-03-01

    We report on spin- and angular-resolved photoemission spectroscopy using a high-resolution imaging spin filter based on a large Ir(001) crystal enhancing the effective figure of merit for spin detection by a factor of over 103 compared to standard single-channel detectors. Furthermore, we review the spin filter preparation and its lifetime. The spin filter efficiency is mapped on a broad range of scattering energies and azimuthal angles. Large spin filter efficiencies are observed for the spin component perpendicular as well as parallel to the scattering plane depending on the azimuthal orientation of the spin filter crystal. A spin rotator capable of manipulating the spin direction prior to detection complements the measurement of three observables, thus allowing for a derivation of all three components of the spin polarization vector in multichannel spin polarimetry. The experimental results nicely agree with spin-polarized low-energy electron diffraction calculations based on a fully relativistic multiple scattering method in the framework of spin-polarized density functional theory.

  11. Phase effects due to previous pulses in time-resolved Faraday rotation measurements

    SciTech Connect

    Trowbridge, Christopher J.; Sih, Vanessa

    2015-02-14

    Time-resolved Faraday rotation measurements have proved transformative in the investigation of spin dynamics in semiconductors. In materials with spin lifetimes which are on the order of, or greater than, the laser repetition time, the collective effect of spin polarization due to the whole pump pulse train becomes important. Here, we discuss a relative phase shift which results from these spins. We derive and experimentally validate a closed-form expression which describes this phase shift and characterize it throughout parameter space. A spin lifetime measurement based on this phase shift is described, and we discuss situations in which the model used must be augmented to be applicable.

  12. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  13. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  14. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  15. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin.

    PubMed

    Tanaka, Yuji; Hase, Eiji; Fukushima, Shuichiro; Ogura, Yuki; Yamashita, Toyonobu; Hirao, Tetsuji; Araki, Tsutomu; Yasui, Takeshi

    2014-04-01

    Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one. The constructed PC-based PR-SHG microscope enabled us to visualize orientation mapping of dermal collagen fiber in human facial skin in vivo without the influence of motion artifacts. Furthermore, it implied the location and/or age dependence of the collagen fiber orientation in human facial skin. The robustness to motion artifacts in the collagen orientation measurement will expand the application scope of SHG microscopy in dermatology and collagen-related fields.

  16. Polarization-resolved second-harmonic generation imaging for liver fibrosis assessment without labeling

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Pan, Shiying; Zheng, Wei; Huang, Zhiwei

    2013-10-01

    We apply the polarization-resolved second-harmonic generation (PR-SHG) microscopy to investigate the changes of collagen typings (type I vs type III) and collagen fibril orientations of liver tissue in bile-duct-ligation (BDL) rat models. The PR-SHG results show that the second-order susceptibility tensor ratios (χ31/χ15 and χ33/χ15) of collagen fibers increase with liver fibrotic progression after BDL surgery, reflecting an increase of the type III collagen component with the severity of liver fibrosis; and the square root of the collagen type III to type I ratio linearly correlates (R2 = 0.98) with histopathological scores. Furthermore, the collagen fibril orientations become more random with liver fibrosis transformation as compared to normal liver tissue. This work demonstrates that PR-SHG microscopy has the potential for label-free diagnosis and characterization of liver fibrosis based on quantitative analysis of collagen typings and fibril orientations.

  17. Resolving and measuring diffusion in complex interfaces: Exploring new capabilities

    SciTech Connect

    Alam, Todd M.

    2015-09-01

    This exploratory LDRD targeted the use of a new high resolution spectroscopic diffusion capabilities developed at Sandia to resolve transport processes at interfaces in heterogeneous polymer materials. In particular, the combination of high resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy with pulsed field gradient (PFG) diffusion experiments were used to directly explore interface diffusion within heterogeneous polymer composites, including measuring diffusion for individual chemical species in multi-component mixtures. Several different types of heterogeneous polymer systems were studied using these HRMAS NMR diffusion capabilities to probe the resolution limitations, determine the spatial length scales involved, and explore the general applicability to specific heterogeneous systems. The investigations pursued included a) the direct measurement of the diffusion for poly(dimethyl siloxane) polymer (PDMS) on nano-porous materials, b) measurement of penetrant diffusion in additive manufactures (3D printed) processed PDMS composites, and c) the measurement of diffusion in swollen polymers/penetrant mixtures within nano-confined aluminum oxide membranes. The NMR diffusion results obtained were encouraging and allowed for an improved understanding of diffusion and transport processes at the molecular level, while at the same time demonstrating that the spatial heterogeneity that can be resolved using HRMAS NMR PFG diffusion experiment must be larger than ~μm length scales, expect for polymer transport within nanoporous carbons where additional chemical resolution improves the resolvable heterogeneous length scale to hundreds of nm.

  18. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    NASA Astrophysics Data System (ADS)

    Melendy, Robert F.

    2015-12-01

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.

  19. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    SciTech Connect

    Melendy, Robert F.

    2015-12-28

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.

  20. Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies.

    PubMed

    Lawrence, David J; Elphic, Richard C; Feldman, William C; Funsten, Herbert O; Prettyman, Thomas H

    2010-03-01

    Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecraft's altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution.

  1. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  2. Study of Microheterogeneity in Acetonitrile-Water Binary Mixtures by using Polarity-Resolved Solvation Dynamics.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2015-11-16

    The solvation dynamics of three coumarin dyes with widely varying polarities were studied in acetonitrile-water (ACN-H2O) mixtures across the entire composition range. At low ACN concentrations [ACN mole fractions (X(ACN))≤0.1], the solvation dynamics are fast (<40 ps), indicating a nearly homogeneous environment. This fast region is followed by a sudden retardation of the average solvation time (230-1120 ps) at higher ACN concentrations (X(ACN)≈0.2), thus indicating the onset of nonideality within the mixture that continues until X(ACN)≈0.8. This nonideality regime (X(ACN)≈0.2-0.8) comprises of multiple dye-dependent anomalous regions. At very high ACN concentrations (X(ACN)≈0.8-1), the ACN-H2O mixtures regain homogeneity, with faster solvation times. The source of the inherent nonideality of the ACN-H2O mixtures is a subject of debate. However, a careful examination of the widths of time-resolved emission spectra shows that the origin of the slow dynamics may be due to the diffusion of polar solvent molecules into the first solvation shell of the excited coumarin dipole.

  3. Moisture-insensitive optical fingerprint scanner based on polarization resolved in-finger scattered light.

    PubMed

    Back, Seon-Woo; Lee, Yong-Geon; Lee, Sang-Shin; Son, Geun-Sik

    2016-08-22

    A moisture-insensitive optical fingerprint scanner (FPS) that is based on polarization resolved in-finger light is proposed and realized. Incident visible light, which is selectively fed to a fingerprint sample via a polarization beam splitter (PBS), is deemed to be partially scattered backward by tissues associated with the skin of the finger. The backscattered light is mostly index-guided in the ridge comprising the fingerprint, which has a higher refractive index, and is drastically dispersed in the valley, which is typically filled with water or air and so has a lower index. However, when light reflects directly off the surface of the finger skin, it fundamentally prevents the scanned image from being determined. The proposed FPS produces bright and dark intensity patterns that are alternately created on the surface of the PBS and correspond to the ridges and valleys, respectively. Thus, this method can especially distinguish between a fake synthetic fingerprint and a genuine fingerprint due to its use of in-finger scattered light. The scanner has been rigorously designed by carrying out ray-optic simulations depending on the wavelength, with tissue-induced scattering taken into account. The device was constructed by incorporating a wire-grid type PBS in conjunction with visible LED sources, including blue, green and red. The scanner adopting a blue LED, which exhibits the strongest light scattering, resulted in the best fingerprint image, enabling enhanced fidelity under the wet and dry situations. Finally, a fake synthetic fingerprint could be successfully discriminated.

  4. Measuring receptor recycling in polarized MDCK cells.

    PubMed

    Gallo, Luciana; Apodaca, Gerard

    2015-01-01

    Recycling of proteins such as channels, pumps, and receptors is critical for epithelial cell function. In this chapter we present a method to measure receptor recycling in polarized Madin-Darby canine kidney cells using an iodinated ligand. We describe a technique to iodinate transferrin (Tf), we discuss how (125)I-Tf can be used to label a cohort of endocytosed Tf receptor, and then we provide methods to measure the rate of recycling of the (125)I-Tf-receptor complex. We also show how this approach, which is easily adaptable to other proteins, can be used to simultaneously measure the normally small amount of (125)I-Tf transcytosis and degradation.

  5. Photonic polarization gears for ultra-sensitive angular measurements.

    PubMed

    D'Ambrosio, Vincenzo; Spagnolo, Nicolò; Del Re, Lorenzo; Slussarenko, Sergei; Li, Ying; Kwek, Leong Chuan; Marrucci, Lorenzo; Walborn, Stephen P; Aolita, Leandro; Sciarrino, Fabio

    2013-01-01

    Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a 'photonic gear', converting, for each photon, a mechanical rotation of an angle θ into an amplified rotation of the optical polarization by mθ, corresponding to a 'super-resolving' Malus' law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high 'gear ratio' m boosts the current state of the art of optical non-contact angular measurements by almost two orders of magnitude.

  6. A new approach to highly resolved measurements of turbulent flow

    NASA Astrophysics Data System (ADS)

    Puczylowski, J.; Hölling, A.; Peinke, J.; Bhiladvala, R.; Hölling, M.

    2015-05-01

    In this paper we present the design and principle of a new anemometer, namely the 2d-Laser Cantilever Anemometer (2d-LCA), which has been developed for highly resolved flow speed measurements of two components (2d) under laboratory conditions. We will explain the working principle and demonstrate the sensor’s performance by means of comparison measurements of wake turbulence with a commercial X-wire. In the past we have shown that the 2d-LCA is capable of being applied in liquid and particle-laden domains, but we also believe that other challenging areas of operation such as near-wall flows can become accessible.

  7. A compton backscattering polarimeter for measuring longitudinal electron polarization

    SciTech Connect

    I. Passchier; Douglas W. Higinbotham; N. Vodinas; N. Papadakis; Kees de Jager; Ricardo Alarcon; T. Bauer; J.F.J. van den Brand; D. Boersma; T. Botto; M. Bouwhuis; H.J. Bulten; L. van Buuren; Rolf Ent; D. Geurts; M. Ferro-Luzzi; M. Harvey; Peter Heimberg; Blaine Norum; H.R. Poolman; M. van der Putte; E. Six; J.J.M. Steijger; D. Szczerba; H. de Vries

    1997-08-01

    Compton backscattering polarimetry provides a fast measurement of the polarization of an electron beam in a storage ring. Since the method is non-destructive, the polarization of the electrons can be monitored during internal target experiments. At NIKHEF a Compton polarimeter has been constructed to measure the polarization of the longitudinally polarized electrons stored in the AmPS ring. First results obtained with the polarimeter, the first Compton polarimeter to measure the polarization of a stored longitudinally polarized electron beam, are presented in this paper.

  8. Nanosecond-resolved temperature measurements using magnetic nanoparticles.

    PubMed

    Xu, Wenbiao; Liu, Wenzhong; Zhang, Pu

    2016-05-01

    Instantaneous and noninvasive temperature measurements are important when laser thermotherapy or welding is performed. A noninvasive nanosecond-resolved magnetic nanoparticle (MNP) temperature measurement system is described in which a transient change in temperature causes an instantaneous change in the magnetic susceptibilities of the MNPs. These transient changes in the magnetic susceptibilities are rapidly recorded using a wideband magnetic measurement system with an upper frequency limit of 0.5 GHz. The Langevin function (the thermodynamic model characterizing the MNP magnetization process) is used to obtain the temperature information. Experiments showed that the MNP DC magnetization temperature-measurement system can detect a 14.4 ns laser pulse at least. This method of measuring temperature is likely to be useful for acquiring the internal temperatures of materials irradiated with lasers, as well as in other areas of research.

  9. Super-resolving interference without intensity-correlation measurement

    NASA Astrophysics Data System (ADS)

    Cao, De-Zhong; Xu, Bao-Long; Zhang, Su-Heng; Wang, Kaige

    2015-05-01

    The high-order intensity correlation function of N -photon interference with thermal light observed in a recent experiment [S. Oppel, T. Büttner, P. Kok, and J. von Zanthier, Phys. Rev. Lett. 109, 233603 (2012), 10.1103/PhysRevLett.109.233603] is analyzed. The terms in the expansion of the N th -order correlation function are put into three groups. One group contributes a homogeneous background. Both of the other two contribute (N -1 ) -fold super-resolving fringes. In principle they correspond to coherent and incoherent superpositions of classical optical fields, respectively. Therefore similar super-resolving fringes can be obtained without intensity-correlation measurements. We report the experimental results of the coherent and incoherent super-resolving diffraction fringes, which are observed directly in the intensity distribution. The N -1 sources in both the coherent and incoherent cases are set in certain definite positions. In the coherent case, moreover, the phase difference between two adjacent source fields is π . The fringe visibility is unity in the incoherent case, while it decreases as N increases in the incoherent case.

  10. Time-resolved measurements of equilibrium profiles in MST

    NASA Astrophysics Data System (ADS)

    Deng, B. H.; Brower, D. L.; Ding, W. X.; Yates, T. F.; Anderson, J. K.; Caspary, K.; McCollam, K. J.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Craig, D.

    2007-11-01

    Based on the high-speed, three-wave, far-infrared polarimeter-interferometer measurement of Bpol profiles and external coil measurements of Btave and Btw, a new method is developed to derive Btor and other equilibrium profiles (J// and q) with high time resolution. Using Faraday's law, the inductive electric field (E//) profile is also deduced from the temporal derivatives of the time-resolved magnetic field profiles. The derived B(0) values have excellent agreement with direct measurements using a Motional Stark Effect (MSE) diagnostic. Evolution of equilibrium profiles during single sawtooth events in MST, both the slow linear ramp and crash phases, are presented. Profile scaling with plasma current Ip and reversal parameter F is also explored. MHD stability is tested from the spatial gradients of the J// and q profiles, and correlation with fluctuation mode amplitude is investigated. Future improvements to equilibrium reconstruction are expected by measuring Btor(r,t) directly via Cotton-Mouton interferometry.

  11. Polarization Transfer Measurements in the Fluorino

    NASA Astrophysics Data System (ADS)

    Huang, Weidong

    The charge exchange (p,n) reaction at intermediate bombarding energies (100-200 MeV) is a powerful tool to study both the effective nucleon-nucleus interaction and nuclear structure. The (p,n) reaction can induce both Garnow-Teller (GT) transitions (transitions that involve the change of the nucleon spin and isospin) and Fermi (F) transitions (that involve only the change of the isospin projection). These transitions are directly related to natural beta-decay, a process already well understood. The ratio of GT to Fermi transition strength in the (p,n) reaction plays a very important role in extracting nuclear structure information from the (p,n) spectra, especially for odd-mass nuclei where the Fermi transition is mixed with the GT transition. Standard DWIA theory predicts that this ratio is "universal" to all nuclei, i.e., it is characteristic of the reaction and not of the structure. Early cross section measurement studies have revealed that some odd-mass nuclei have anomalously "larger" unit cross sections, sigma(GT)/B(GT), based on the GT/F strength ratio empirically determined from even-mass nuclei. The problem, however, can not be solved from cross section measurements alone. Direct light can be shed on these issues with the measurement of the spin transfer coefficient D_{NN} of (p,n) reactions using a polarized proton beam. The measured value of D_{NN} provides an independent measure of the GT/F strength ratio. Measurements were made for ^{19}F and ^{39}K targets at 120 MeV and 160 MeV at Indiana University Cyclotron Facility. The neutron energy was measured by the time-of-flight technique with a 75 meter neutron flight path. The neutron polarization was measured by a two plane neutron polarimeter. The experimental results, along with other data, suggest that the GT/F strength ratio for these odd-mass nuclei are larger than the systematic values found for even-mass nuclei. The larger ratio also implies bigger unit cross sections for these nuclei, and

  12. Range-resolved gas concentration measurements using tunable semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lytkine, A.; Lau, B.; Lim, A.; Jäger, W.; Tulip, J.

    2008-02-01

    A method for range-resolved gas sensing using path-integrated optical systems is presented. The method involves dividing an absorption path into several measurement segments and extracting the gas concentration in each segment from two path-integrated measurements. We implemented the method with tunable lasers (a 1389-nm VCSEL and a 10.9-μm pulsed quantum cascade laser) and a group of retro reflectors (RRs) distributed along absorption paths. Using a rotating mirror with the VCSEL configuration, we could scan a group of seven tape RRs spaced by 10 cm in ˜ 9 ms to extract an H2O concentration profile. Reduced H2O concentrations were recorded in the segments purged with dry air. Hollow corner cube RRs were used in the quantum cascade laser configuration at distances up to 1.1 km from the laser. Two RRs placed at 66 m and 125 m from the laser allowed us to determine H2O concentrations in both segments. The RRs returns were separated due to the different round trip travel time of the 200-ns laser pulse. Novel instruments for range-resolved remote sensing in the atmosphere can be developed for a variety of applications, including monitoring the fluxes of atmospheric pollutants and controlling air quality in populated areas.

  13. Experimental Time Resolved Electron Beam Temperature Measurements Using Bremsstrahlung Diagnostics

    SciTech Connect

    Menge, P.R.; Maenchen, J.E.; Mazarakis, M.G.; Rosenthal, S.E.

    1999-06-25

    Electron beam temperature, {beta}{perpendicular} (= v{perpendicular}/v), is important to control for the development of high dose flash radiographic bremsstrahlung sources. At high voltage (> 5 MV) increasing electron beam temperature has a serious deleterious effect on dose production. The average and time resolved behavior of beam temperature was measured during radiographic experiments on the HERMES III accelerator (10 MV, 50 kA, 70 ns). A linear array of thermoluminescent dosimeters (TLDs) were used to estimate the time integrated average of beam temperature. On and off-axis photoconducting diamond (PCD) detectors were used to measure the time resolved bremsstrahlung dose rate, which is dependent on beam energy and temperature. The beam temperature can be determined by correlating PCD response with accelerator voltage and current and also by analyzing the ratio of PCD amplitudes on and off axis. This ratio is insensitive to voltage and current and thus, is more reliable than utilizing absolute dose rate. The data is unfolded using comparisons with Monte Carlo simulations to obtain absolute beam temperatures. The data taken on HERMES III show abrupt increases in {beta}{perpendicular} midway through the pulse indicating rapid onset of beam instability.

  14. Time-resolved x-ray magnetic circular dichroism study of ultrafast demagnetization in a CoPd ferromagnetic film excited by circularly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    López-Flores, Víctor; Arabski, Jacek; Stamm, Christian; Halté, Valérie; Pontius, Niko; Beaurepaire, Eric; Boeglin, Christine

    2012-07-01

    The magnetization dynamics of CoPd films excited by circularly polarized ultrashort laser pulses is studied by time-resolved x-ray magnetic circular dichroism. In those films the ultrafast dynamics measured at the Co-L3 edge is strongly sensitive to the orbital magnetic moment Lz. The amount of angular momentum transferred by the circularly polarized ultrashort laser pulses to the ferromagnetic films is evaluated to ±0.1 ℏ/atom, which is above the detection limit of the experiment. Despite this, no polarization-dependent difference on the magnetization dynamics could be evidenced. These results are explained by ultrafast electronic relaxation mechanisms of the transferred angular momentum, faster than ˜100 fs. This experiment sets the methodology as well as an upper time limit for determination of angular momentum relaxation processes.

  15. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  16. Measurements of Hygroscopicity- and Size-Resolved Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    Phillips, B.; Dawson, K. W.; Royalty, T. M.; Reed, R. E.; Petters, M.; Meskhidze, N.

    2015-12-01

    Atmospheric aerosols play a central role in many environmental processes by influencing the Earth's radiative balance, tropospheric chemistry, clouds, biogeochemical cycles, and visibility as well as adversely impacting human health. Based on their origin, atmospheric aerosols can be defined as anthropogenic or natural. Recent studies have shown that a large fraction of uncertainty in the radiative effects of anthropogenic aerosols is related to uncertainty in natural—background—aerosols. Marine aerosols are of particular interest due to the abundance of oceans covering the Earth's surface. Despite their importance, limited information is currently available for size- and composition-resolved marine aerosol emission fluxes. Our group has designed and built an instrument for measuring the size- and hygroscopicity-resolved sea spray aerosol fluxes. The instrument was first deployed during spring 2015 at the end of the 560 m pier of the US Army Corps of Engineers' Field Research Facility in Duck, NC. Measurements include 200 nm-sized diameter growth factor (hygroscopicity) distributions, sea spray particle flux measurements, and total sub-micron sized aerosol concentration. Ancillary ocean data includes salinity, pH, sea surface temperature, dissolved oxygen content, and relative fluorescence (proxy for [Chl-a]). Hygroscopicity distribution measurements show two broad peaks, one indicative of organics and sulfates and another suggestive of sea salt. The fraction of 200 nm-sized salt particles having hygroscopicity similar to that of sea-spray aerosol contributes up to ~24% of the distribution on days with high-speed onshore winds and up to ~3% on calm days with winds blowing from the continent. However, the total concentration of sea-spray-like particles originating from offshore versus onshore winds was relatively similar. Changes in the relative contribution of sea-salt to number concentration were caused by a concomitant changes in total aerosol concentration

  17. Seasonal and solar-cycle variations of DP-type polar magnetic fields resolved via EOF analysis

    NASA Astrophysics Data System (ADS)

    Shore, Robert; Freeman, Mervyn; Wild, James; Dorrian, Gareth; Gjerloev, Jesper

    2016-04-01

    We describe our application of the Empirical Orthogonal Function (EOF) method to characterise and separate contributions to the variability of the Earth's external magnetic field (EMF) in the northern polar region, using ground magnetometer measurements. The EOF method analyses the spatio-temporal co-variance of the data to decompose it into dynamically distinct modes (each mode is a pair of spatial and temporal basis vectors). Briefly, the benefits of this analysis method are firstly that a small number of the modes can cumulatively represent most of the variance of the original data, and secondly that the basis vectors are defined by the data. Hence, the structure of the EMF is resolved compactly without a priori assumptions, in contrast to other decomposition methods such as Fourier and spherical harmonic expansions. We present the modes from 11 years (1997 - 2008) of magnetic vector data at 5 minutes resolution, recently collated by the SuperMAG archive of observatory and variometer data. Despite the sparse and irregular station distribution, a complete spatial morphology of the EMF is achieved using a self-consistent iterative infill method. Using a comparison of the temporal behaviour of the modes alongside independent measures of solar-terrestrial coupling, we demonstrate that the leading three modes describe the well-known Disturbance-Polar currents types 2 and 1 (DP2, DP1) and the system of cusp currents (DPY). These three modes account for the majority of the variance of the data - other modes describe the spatial motions of these current systems. The variation in the DP2, DP1 and DPY currents throughout the last solar cycle is presented, and the utility of this database of magnetic perturbations (to which further analysis methods can be applied) is highlighted.

  18. High resolved velocity measurements using Laser Cantilever Anemometry

    NASA Astrophysics Data System (ADS)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2016-11-01

    We have developed a new anemometer, namely the 2d-LCA (2d-Laser-Cantilever-Anemometer), that is capable of performing high resolved velocity measurements in fluids. The anemometer uses a micostructured cantilever made of silicon as a sensing element. The specific shape and the small dimensions (about 150µm) of the cantilever allow for precise measurements of two velocity component at a temporal resolution of about 150kHz. The angular acceptance range is 180° in total. The 2d-LCA is a simple to use alternative to x-wires and can be used in many areas of operation including measurements in liquids or in particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high-speed flows. In the recent past new cantilever designs were implemented with the goal to further improve the angular resolution and increase the stability. In addition, we have designed more robust cantilevers for measurements in rough environments such as offshore areas. Successful comparative measurements with hot-wires have been carried out in order to assess the performance of the 2d-LCA.

  19. Polarization-resolved hyperspectral stimulated Raman scattering microscopy for label-free biomolecular imaging of the tooth

    NASA Astrophysics Data System (ADS)

    Wang, Zi; Zheng, Wei; Hsu, Chin-Ying Stephen; Huang, Zhiwei

    2016-01-01

    We report the development and implementation of a rapid polarization-resolved hyperspectral stimulated Raman scattering (SRS) microscopy technique for label-free biomolecular imaging of the tooth. The hyperspectral SRS imaging technique developed covers both fingerprint (800-1800 cm-1) and high-wavenumber (2800-3600 cm-1) regions for tooth Raman imaging without fluorescence background interference with an imaging speed of <0.3 s per frame of 512 × 512 pixels (˜1 μs per pixel), that is, >106 faster than confocal Raman imaging. Significant differences of hyperspectral SRS spectra among different tooth locations (e.g., dentin, enamel, and dentin-enamel junction) are observed, revealing the biochemical distribution differences across the tooth. Further polarization-resolved SRS imaging shows different polarization dependences related to the molecular orientation differences of various tooth locations. This work demonstrates the potential of polarization-resolved hyperspectral SRS imaging technique developed in rapidly characterizing biochemical structures and compositions as well as biomolecule organizations/orientations of the tooth without labeling.

  20. Measuring the continuum polarization with ESPaDOnS

    NASA Astrophysics Data System (ADS)

    Pereyra, A.; Rodrigues, C. V.; Martioli, E.

    2015-01-01

    Aims: Our goal is to test the feasibility of obtaining accurate measurements of the continuum polarization from high-resolution spectra using the spectropolarimetric mode of ESPaDOnS. Methods: We used the new pipeline OPERA to reduce recent and archived ESPaDOnS data. Several polarization standard stars and science objects were tested for the linear mode. In addition, the circular mode was tested using several objects from the archive with expected null polarization. Synthetic broad-band polarization was computed from the ESPaDOnS continuum polarization spectra and compared with published values (when available) to quantify the accuracy of the instrument. Results: The continuum linear polarization measured by ESPaDOnS is consistent with broad-band polarimetry measurements available in the literature. The accuracy in the degree of linear polarization is around 0.2-0.3% considering the full sample. The accuracy in polarization position angle using the most polarized objects is better than 5°. Consistent with this, the instrumental polarization computed for the circular continuum polarization is also between 0.2-0.3%. Our results suggest that measurements of the continuum polarization using ESPaDOnS are viable and can be used to study many astrophysical objects. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  1. Generation of an axially super-resolved quasi-spherical focal spot using an amplitude-modulated radially polarized beam.

    PubMed

    Lin, Han; Jia, Baohua; Gu, Min

    2011-07-01

    An axially super-resolved quasi-spherical focal spot can be generated by focusing an amplitude-modulated radially polarized beam through a high numerical aperture objective. A method based on the unique depolarization properties of a circular focus is proposed to design the amplitude modulation. The generated focal spot shows a ratio of x:y:z=1:1:1.48 for the normalized FWHM in three dimensions, compared to that of x:y:z=1:0.74:1.72 under linear polarization (in the x direction) illumination. Moreover, the focusable light efficiency of the designed amplitude-modulated beam is 65%, which is more than 3 times higher than the optimized case under linear polarization and thus make the amplitude-modulated radial polarization beam more suitable for a wide range of applications.

  2. Highly polarized emission in spin resolved photoelectron spectroscopy of alpha-Fe(001)/GaAs(001)

    SciTech Connect

    Tobin, James; Yu, Sung Woo; Morton, Simon; Waddill, George; Thompson, Jamie; Neal, James; Spangenberg, Matthais; Shen, T.H.

    2009-05-19

    Highly spin-polarized sources of electrons, Integrated into device design, remain of great interest to the spintronic and magneto-electronic device community Here, the growth of Fe upon GaAs(001) has been studied with photoelectron spectroscopy (PES), including Spin Resolved PES. Despite evidence of atomic level disorder such as intermixing, an over-layer with the spectroscopic signature of alpha-Fe(001), with a bcc real space ordering, Is obtained The results will be discussed in light of the possibility of using such films as a spin-polarized source in device applications.

  3. Polarization Measurements in High-Energy Deuteron Photodisintegration

    SciTech Connect

    Adam Sarty; Andrei Afanasev; Arunava Saha; Bogdan Wojtsekhowski; Brendan Fox; C. Chang; Cathleen Jones; Charles Glashausser; Charles Perdrisat; Cornelis De Jager; Cornelis de Jager; D. Crovelli; Daniel Simon; David Meekins; Demetrius Margaziotis; Dipangkar Dutta; Edgar Kooijman; Edward Brash; Edward Kinney; Elaine Schulte; Eugene Chudakov; Feng Xiong; Franco Garibaldi; Garth Huber; Gerfried Kumbartzki; Guido Urciuoli; Haiyan Gao; James Kelly; Javier Gomez; Jens-Ole Hansen; Jian-Ping Chen; John Calarco; John LeRose; Jordan Hovdebo; Joseph Mitchell; Juncai Gao; Kamal Benslama; Kathy McCormick; Kevin Fissum; Konrad Aniol; Krishni Wijesooriya; Louis Bimbot; Ludyvine Morand; Luminita Todor; Marat Rvachev; Mark Jones; Martin Epstein; Meihua Liang; Michael Kuss; Moskov Amarian; Nilanga Liyanage; Oleksandr Glamazdin; Olivier Gayou; Paul Ulmer; Pete Markowitz; Peter Bosted; R. Holt; Riad Suleiman; Richard Lindgren; Rikki Roche; Robert Michaels; Roman Pomatsalyuk; Ronald Gilman; Ronald Ransome; Salvatore Frullani; Scott Dumalski; Seonho Choi; Sergey Malov; Sonja Dieterich; Steffen Strauch; Stephen Becher; Steve Churchwell; Ting Chang; Viktor Gorbenko; Vina Punjabi; Xiaodong Jiang; Zein-Eddine Meziani; Zhengwei Chai; Wang Xu

    2001-04-01

    We present measurements of the recoil proton polarization for the d(polarized y, polarized p)n reaction at thetac.m. = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization py vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(y,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime.

  4. Space-time resolved measurements of spontaneous magnetic fields in laser-produced plasma

    SciTech Connect

    Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Borodziuk, S.; Gus'kov, S. Yu.; Dudzak, R.; Dostal, J.; Krousky, E.; Ullschmied, J.; Hrebicek, J.; Medrik, T.; Golasowski, J.; Pfeifer, M.; Skala, J.; Demchenko, N. N.; Korneev, Ph.; Kalal, M.; Renner, O.; Smid, M.; Pisarczyk, P.

    2015-10-15

    The first space-time resolved spontaneous magnetic field (SMF) measurements realized on Prague Asterix Laser System are presented. The SMF was generated as a result of single laser beam (1.315 μm) interaction with massive planar targets made of materials with various atomic numbers (plastic and Cu). Measured SMF confirmed azimuthal geometry and their maximum amplitude reached the value of 10 MG at the laser energy of 250 J for both target materials. It was demonstrated that spatial distributions of these fields are associated with the character of the ablative plasma expansion which clearly depends on the target material. To measure the SMF, the Faraday effect was employed causing rotation of the vector of polarization of the linearly polarized diagnostic beam. The rotation angle was determined together with the phase shift using a novel design of a two-channel polaro-interferometer. To obtain sufficiently high temporal resolution, the polaro-interferometer was irradiated by Ti:Sa laser pulse with the wavelength of 808 nm and the pulse duration of 40 fs. The results of measurements were compared with theoretical analysis.

  5. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    PubMed

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  6. Measurement of complex ultrashort laser pulses using frequency-resolved optical gating

    NASA Astrophysics Data System (ADS)

    Xu, Lina

    This thesis contains three components of research: a detailed study of the performance of Frequency-Resolved Optical Gating (FROG) for measuring complex ultrashort laser pulses, a new method for measuring the arbitrary polarization state of an ultrashort laser pulse using Tomographic Ultrafast Retrieval of Transverse Light E-fields (TURTLE) technique, and new approach for measuring two complex pulses simultaneously using PG blind FROG. In recent decades, many techniques for measuring the full intensity and phase of ultrashort laser pulses have been proposed. These techniques include: Spectral Interferometry (SI)[1], Temporal Analysis by Dispersing a Pair of Light E-Field (TADPOLE)[2], Spectral Phase Interferometry for direct electric-field reconstruction (SPIDER)[3], and Frequency-Resolved Optical Gating (FROG)[4]. Each technique is actually a class of techniques that includes different variations on the original idea, such as SEA-SPIDER[5], ZAP SPIDER[6] are two variations of SPIDER. But most of these techniques for measuring ultrashort laser pulses either do not yield the complete time-dependent intensity and phase (e.g., autocorrelation), can at best only measure simple pulses (e.g., SPIDER), or need well characterized reference pulse. In this thesis, we compare the performance of three versions of FROG: second-harmonic-generation (SHG) FROG, polarization-gate (PG) FROG, and cross-correlation FROG (XFROG), the last of which requires a well-characterized reference pulse. We found that the XFROG algorithm converged in all cases and required only one initial guess. The PG FROG algorithm converged for 99% of the moderately complex pulses that we tried, and for over 95% of the most complex pulses (TBP ˜ 100). And the SHG FROG algorithm converged for 95% of the pulses that we tried and for over 80% of the most complex pulses. After some analysis, we found that noise filtering and adding more sampling points to the FROG trace solved the non-converging problems and we

  7. Annually resolved seawater temperature variability of the Sub-polar North Atlantic over the last 1000 years

    NASA Astrophysics Data System (ADS)

    Reynolds, David; Scourse, James; Hall, Ian; Nederbragt, Alexandra; Wanamaker, Alan; Halloran, Paul; Butler, Paul; Richardson, Chris; Eiríksson, Jon; Heinemeier, Jan; Luise Knudsen, Karen

    2015-04-01

    The lack of annually-resolved marine climate records spanning the last millennium constrains our understanding of the natural variability of the global climate system. We present a continuous annually-resolved reconstruction of sub-polar (N Iceland) sea water temperatures (SWT) derived from the 18O analyses of carbonate material drilled from the annually resolved growth increments contained in an absolutely dated master Arctica islandica sclerochronology spanning the period 953-2000. The calibrated SWT reconstruction contains a significant cooling trend over the period 953-1891 (0.1oC per century) and a marked warming trend over the period 1891-2000 (2.3oC per century). The underlying natural variability is controlled by solar irradiance changes modulated by volcanic forcing and internal variability. The modern SWT warming is demonstrated to lie outside the range of natural variability of the last 1000 years consistent with an anthropogenic influence.

  8. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  9. Novel polarization-sensitive micropulse lidar measurement technique.

    PubMed

    Flynn, Connor J; Mendoza, Albert; Zheng, Yunhui; Mathur, Savyasachee

    2007-03-19

    Polarization-sensitive detection of elastic backscattered light is useful for detection of cloud phase and depolarizing aerosols. The U.S. Department of Energy's Atmospheric Radiation Measurement Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques, which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio delta(linear), the circular depolarization ratio delta(circ), and this MPL depolarization ratio delta(MPL).

  10. Time- and polarization-resolved cellular autofluorescence towards quantitative biochemistry on living cells

    NASA Astrophysics Data System (ADS)

    Alfveby, John; TImerman, Randi; Soto Velasquez, Monica P.; Wickramasinghe, Dhanushka W. P. M.; Bartusek, Jillian; Heikal, Ahmed A.

    2014-09-01

    Native coenzymes such as the reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide play pivotal roles in energy metabolism and a myriad of biochemical reactions in living cells/tissues. These coenzymes are naturally fluorescent and, therefore, have the potential to serve as intrinsic biomarkers for mitochondrial activities, programmed cell death (apoptosis), oxidative stress, aging, and neurodegenerative disease. In this contribution, we employ two-photon fluorescence lifetime imaging microscopy (FLIM) and time-resolved anisotropy imaging of intracellular NADH for quantitative, non-invasive biochemistry on living cells in response to hydrogenperoxide- induced oxidative stress. In contrast with steady-state one-photon, UV-excited autofluorescence, two-photon FLIM is sensitive to both molecular conformation and stimuli-induced changes in the local environment in living cells with minimum photodamage and inherently enhanced spatial resolution. On the other hand, time-resolved, two-photon anisotropy imaging of cellular autofluorescence allows for quantitative assessment of binding state and environmental restrictions on the tumbling mobility of intrinsic NADH. Our measurements reveal that free and enzyme-bound NADH exist at equilibrium, with a dominant autofluorescence contribution of the bound fraction in living cells. Parallel studies on NADH-enzyme binding in controlled environments serve as a point of reference in analyzing autofluorescence in living cells. These autofluorescence-based approaches complement the conventional analytical biochemistry methods that require the destruction of cells/tissues, while serving as an important step towards establishing intracellular NADH as a natural biomarker for monitoring changes in energy metabolism and redox state of living cells in response to environmental hazards.

  11. Measuring the Polar Mesosphere With Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Martin, C. L.; Burrows, S. M.

    2004-12-01

    The 1957 IGY launched a program of upper atmosphere observations that continues to this day. However in 1957, observations of the upper atmosphere were limited to the tools available at the time. As we head toward the 2007 IPY we can take advantage of the tools developed in the past 50 years to continue and expand upon this extensive dataset, as well as consider novel uses for the tools already available on the continent. Over the past ten years, the polar plateau has been established as one of the preeminent sites on Earth from which to perform radio astronomy observations at frequencies ranging from 100 to 2000 GHz. As a by-product of their astronomical observations, these telescopes often collect high quality aeronomy data that is frequently overlooked. By using data from a radio telescope located at the Amundsen-Scott South Pole Station, we have measured the J=2 -> 1 (230 GHz), J=4-> 3 (461 GHz), and J=7 -> 6 (807 GHz) rotational transitions of carbon monoxide (CO) at altitudes from 50 to 90 km above the Earth's surface. These high frequency data provide a surprisingly high resolution window into the dynamics and structure of the mesosphere. With a time series extending over multiple years, these data allow us to study the dynamics of an altitude range difficult to access with other methods. The IPY provides us with an opportunity to expand these interdisciplinary collaborations and use the resources invested in the Antarctic continent to further the scientific aims of a broad range of researchers.

  12. Spatially resolved Hall effect measurement in a single semiconductor nanowire.

    PubMed

    Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M; Monemar, Bo; Samuelson, Lars

    2012-11-01

    Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.

  13. Spatially resolved contrast measurement of diffractive micromirror arrays

    NASA Astrophysics Data System (ADS)

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk; Rückerl, Florian; Tinevez, Jean-Yves; Shorte, Spencer; Wagner, Michael; Schenk, Harald

    2015-02-01

    Diffractive micromirror arrays (MMA) are a special class of optical MEMS, serving as spatial light modulators (SLM) that control the phase of reflected light. Since the surface profile is the determining factor for an accurate phase modulation, high-precision topographic characterization techniques are essential to reach highest optical performance. While optical profiling techniques such as white-light interferometry are still considered to be most suitable to this task, the practical limits of interferometric techniques start to become apparent with the current state of optical MEMS technology. Light scatter from structured surfaces carries information about their topography, making scatter techniques a promising alternative. Therefore, a spatially resolved scatter measurement technique, which takes advantage of the MMA's diffractive principle, has been implemented experimentally. Spectral measurements show very high contrast ratios (up to 10 000 in selected samples), which are consistent with calculations from micromirror roughness parameters obtained by white-light interferometry, and demonstrate a high sensitivity to changes in the surface topography. The technique thus seems promising for the fast and highly sensitive characterization of diffractive MMAs.

  14. Effect of 3D Polarization profiles on polarization measurements and colliding beam experiments

    SciTech Connect

    Fischer, W.; Bazilevsky, A.

    2011-08-18

    The development of polarization profiles are the primary reason for the loss of average polarization. Polarization profiles have been parametrized with a Gaussian distribution. We derive the effect of 3-dimensional polarization profiles on the measured polarization in polarimeters, as well as the observed polarization and the figure of merit in single and double spin experiments. Examples from RHIC are provided. The Relativistic Heavy Ion Collider (RHIC) is the only collider of spin polarized protons. During beam acceleration and storage profiles of the polarization P develop, which affect the polarization measured in a polarimeter, and the polarization and figure of merit (FOM) in colliding beam experiments. We calculate these for profiles in all dimensions, and give examples for RHIC. Like in RHIC we call the two colliding beams Blue and Yellow. We use the overbar to designate intensity-weighted averages in polarimeters (e.g. {bar P}), and angle brackets to designate luminosity-weighted averages in colliding beam experiments (e.g.

    ).

  15. Cell growth characteristics from angle- and polarization-resolved light scattering: Prospects for two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Herran Cuspinera, Roxana M.; Hore, Dennis K.

    2016-11-01

    We highlight the potential of generalized two-dimensional correlation analysis for the fingerprinting of cell growth in solution monitored by light scattering, where the synchronous and asynchronous responses serve as a sensitive marker for the effect of growth conditions on the distribution of cell morphologies. The polarization of the scattered light varies according to the cell size distribution, and so the changes in the polarization over time are an excellent indicator of the dynamic growth conditions. However, direct comparison of the polarization-, time-, and angle-resolved signals between different experiments is hindered by the subtle changes in the data, and the inability to easily adapt models to account for these differences. Using Mie scattering simulations of different growth conditions, and some preliminary experimental data for a single set of conditions, we illustrate that correlation analysis provides rapid and sensitive qualitative markers of growth characteristics.

  16. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi2Sr2CaCu2O8+δ superconductor

    DOE PAGES

    He, Junfeng; Mion, Thomas R.; Gao, Shang; ...

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circularmore » dichroism.« less

  17. Time-Resolved Measurements of Carbon Nanotube and Nanohorn Growth

    NASA Astrophysics Data System (ADS)

    Geohegan, David

    2005-11-01

    Mechanisms for carbon nanotube growth have been investigated for both laser vaporization (LV) and chemical vapor deposition (CVD) synthesis techniques through the use of time-resolved, in situ laser-based diagnostics for the measurement of absolute growth rates. Optimization of both the production of loose single-wall carbon nanotubes (SWNTs) by LV and the sustained growth of mm-long, vertically-aligned carbon nanotube arrays (VANTAs) by CVD are described. For SWNT growth by laser co-vaporization of carbon and trace metal catalysts at high (1200 C) temperatures, nanotubes are found to grow at ˜ 1--5 microns/second to lengths of only several microns, as determined by gated-ICCD imaging and laser spectroscopy of the plume of ejected material. Efforts to scale the LV production of SWNTs utilizing an industrial Nd:YAG laser (600 W average power, 1-500 Hz repetition rate, 0.5-10ms pulse width) are described. In addition to vaporizing material at much higher rates, the high-power laser irradiation provides sufficient plasma plume density and temperature to enable the growth of novel single-wall carbon nanohorn (SWNH) structures without the need for metal catalysts in the target. Applications of these SWNH structures as metal catalyst supports will be discussed. Through the application of time-resolved reflectivity and direct imaging, CVD growth of VANTAs from hydrocarbon gases at sustained rates of 0.2 -- 0.5 microns/second have been directly measured over millimeters of length at lower (˜ 700 C) temperatures. Now, through a new laser-CVD setup at the ALPS (Advanced Laser Processing and Synthesis) facility at ORNL, high-power laser heating is being employed for the fast and position-controlled growth of carbon nanotubes on substrates. In situ fast optical pyrometry is employed to record the rapid thermal processing of metal-catalyst-prepared substrates to investigate the nucleation and early growth behavior of CVD-grown nanotubes. New nanotube growth and tunable Raman

  18. Resolving spectral information from time domain induced polarization data through 2-D inversion

    NASA Astrophysics Data System (ADS)

    Fiandaca, Gianluca; Ramm, James; Binley, Andrew; Gazoty, Aurélie; Christiansen, Anders Vest; Auken, Esben

    2013-02-01

    analysis of the model parameters. With this new algorithm, in situ TD IP measurements give access to the spectral content of the polarization processes, opening up new applications in environmental and hydrogeophysical investigations.

  19. Measurement of ocular counterrolling /OCR/ by polarized light

    NASA Technical Reports Server (NTRS)

    Kenyon, R. V.; Lichtenberg, B. K.

    1982-01-01

    The assessment of the activation of the otolith gravitoinertial sensors in the vestibular system of the inner ear may be accomplished by observing the occular counterrolling (OCR) movements which rotate the eyes about the line of sight. A method is presented for the continuous measurement of OCR by means of polarized light, a system of polarizers, and a contact lens. A polarized hard contact lens is placed between two soft lenses before application to the eye, and the measured phase difference between the incident rotating polarized light and the reflected light from this lens provides readings uncontaminated by other eye movement modes.

  20. Proton Form Factor Measurements Using Polarization Method: Beyond Born Approximation

    SciTech Connect

    Pentchev, Lubomir

    2008-10-13

    Significant theoretical and experimental efforts have been made over the past 7 years aiming to explain the discrepancy between the proton form factor ratio data obtained at JLab using the polarization method and the previous Rosenbluth measurements. Preliminary results from the first high precision polarization experiment dedicated to study effects beyond Born approximation will be presented. The ratio of the transferred polarization components and, separately, the longitudinal polarization in ep elastic scattering have been measured at a fixed Q{sup 2} of 2.5 GeV{sup 2} over a wide kinematic range. The two quantities impose constraints on the real part of the ep elastic amplitudes.

  1. Temporally and spatially resolved photoluminescence investigation of (112{sup ¯}2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

    SciTech Connect

    Liu, B.; Smith, R.; Athanasiou, M.; Yu, X.; Bai, J.; Wang, T.

    2014-12-29

    By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In{sub x}Ga{sub 1−x}N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on (112{sup ¯}2) semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process.

  2. Time-resolved optical spectroscopy measurements of shocked liquid deuterium

    NASA Astrophysics Data System (ADS)

    Bailey, J. E.; Knudson, M. D.; Carlson, A. L.; Dunham, G. S.; Desjarlais, M. P.; Hanson, D. L.; Asay, J. R.

    2008-10-01

    Time-resolved optical spectroscopy has been used to measure the shock pressure steadiness, emissivity, and temperature of liquid deuterium shocked to 22-90 GPa. The shock was produced using magnetically accelerated flyer plate impact, and spectra were acquired with a suite of four fiber-optic-coupled spectrometers with streak camera detectors. The shock pressure changes by an average of -1.2% over the 10-30 ns cell transit time, determined from the relative changes in the shock front self-emission with time. The shock front reflectivity was measured from 5140Å and 5320Å laser light reflected from the D2 shock. The emissivity inferred from the reflectivity measurements was in reasonably good agreement with quantum molecular dynamics simulation predictions. The spectral radiance wavelength dependence was found to agree well (average normalized χ2=1.6 ) with a Planckian multiplied by the emissivity. The shock front temperature was determined from the emissivity and the wavelength-dependent shock self-emission. Thirty-seven temperature measurements spanning the 22-90 GPa range were accumulated. The large number of temperature measurements enables a comparison of the scatter in the data with expectations for a Gaussian distribution. This facilitates determination of uncertainties that incorporate both apparatus contributions and otherwise unquantified systematic effects that cause self-emission variations from one experiment to another. Agreement between temperatures determined from the absolute spectral radiance and from the relative shape of the spectrum further substantiates the absence of systematic biases. The weighted mean temperature uncertainties were as low as ±3-4% , enabling the discrimination between competing models for the D2 equation of state (EOS). The temperature results agree well with models that predict a maximum compression of ˜4.4 . Softer models that predict approximately sixfold compression are inconsistent with the data to a very high

  3. Design of a device for sky light polarization measurements.

    PubMed

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  4. Design of a Device for Sky Light Polarization Measurements

    PubMed Central

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-01-01

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky. PMID:25196003

  5. SAMRAI: A novel variably polarized angle-resolved photoemission beamline in the VUV region at UVSOR-II

    SciTech Connect

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito; Katoh, Masahiro; Sakai, Masahiro; Nakamura, Eiken; Kondo, Naonori; Horigome, Toshio; Hayashi, Kenji; Goto, Tomohiro; Ejima, Takeo; Soda, Kazuo

    2010-05-15

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directly led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.

  6. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution.

    PubMed

    Cahill, James A; Green, Richard E; Fulton, Tara L; Stiller, Mathias; Jay, Flora; Ovsyanikov, Nikita; Salamzade, Rauf; St John, John; Stirling, Ian; Slatkin, Montgomery; Shapiro, Beth

    2013-01-01

    Despite extensive genetic analysis, the evolutionary relationship between polar bears (Ursus maritimus) and brown bears (U. arctos) remains unclear. The two most recent comprehensive reports indicate a recent divergence with little subsequent admixture or a much more ancient divergence followed by extensive admixture. At the center of this controversy are the Alaskan ABC Islands brown bears that show evidence of shared ancestry with polar bears. We present an analysis of genome-wide sequence data for seven polar bears, one ABC Islands brown bear, one mainland Alaskan brown bear, and a black bear (U. americanus), plus recently published datasets from other bears. Surprisingly, we find clear evidence for gene flow from polar bears into ABC Islands brown bears but no evidence of gene flow from brown bears into polar bears. Importantly, while polar bears contributed <1% of the autosomal genome of the ABC Islands brown bear, they contributed 6.5% of the X chromosome. The magnitude of sex-biased polar bear ancestry and the clear direction of gene flow suggest a model wherein the enigmatic ABC Island brown bears are the descendants of a polar bear population that was gradually converted into brown bears via male-dominated brown bear admixture. We present a model that reconciles heretofore conflicting genetic observations. We posit that the enigmatic ABC Islands brown bears derive from a population of polar bears likely stranded by the receding ice at the end of the last glacial period. Since then, male brown bear migration onto the island has gradually converted these bears into an admixed population whose phenotype and genotype are principally brown bear, except at mtDNA and X-linked loci. This process of genome erosion and conversion may be a common outcome when climate change or other forces cause a population to become isolated and then overrun by species with which it can hybridize.

  7. Polarization-ratio reflectance measurements in the extreme ultraviolet.

    PubMed

    Brimhall, N; Heilmann, N; Ware, M; Peatross, J

    2009-05-01

    We demonstrate a technique for determining optical constants of materials in the extreme UV from the ratio of p-polarized to s-polarized reflectance. The measurements are based on laser-generated high-order harmonics, which have easily rotatable linear polarization but that are prone to brightness fluctuations and systematic drifts during measurement. Rather than measure the absolute reflectance, we extract the optical constants of a material from the ratio of p-polarized to s-polarized reflectance at multiple incident angles. This has the advantage of dividing out long-term fluctuations and possible systematic errors. We show that the reflectance ratio is as sensitive as the absolute reflectance to material optical properties.

  8. Polar Wind Measurements with TIDE/PSI and HYDRA on the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Su, Y. J.; Horwitz, J. L.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    The Thermal Ion Dynamics Experiment (TIDE) on the POLAR spacecraft has allowed sampling of the three-dimensional ion distributions with excellent energy, angular, and mass resolution. The companion Plasma Source Instrument, when operated, allows sufficient diminution of the electric potential to observe the polar wind at very high altitudes. In this presentation, we will describe the results of polar wind characteristics H+, He+, and 0+ as observed by TIDE at 5000 km and 8 RE altitudes. The relationship of the polar wind parameters with the solar zenith angle and with the day-night distance in the Solar Magnetic coordinate system will also be presented. We will compare these measurements with recent simulations of the photoelectron-driven polar wind using a couple fluid-semikinetic model. In addition, we will compare these polar wind observations with low-energy electrons sampled by the HYDRA experiment on POLAR to examine possible effects of the polar rain and photoelectrons and hopefully explain the large ion outflow velocity variations at POLAR apogee.

  9. McDONALD OBSERVATORY ARCHIVE OF OPTICAL LINEAR POLARIZATION MEASUREMENTS

    SciTech Connect

    Wills, Beverley J.; Wills, D.; Breger, M.

    2011-06-01

    We present 990 previously unpublished optical linear polarization measurements of quasars, active galactic nuclei, and some stars observed for interstellar polarization. The observations, covering the period 1981-2000, were made with McDonald Observatory's 2.1 m Struve reflector and the Breger photopolarimeter.

  10. NASA's Lunar Polar Ice Prospector, RESOLVE: Mission Rehearsal in Apollo Valley

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Picard, Martin; Quinn, Jacqueline; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.

    2012-01-01

    After the completion of the Apollo Program, space agencies didn't visit the moon for many years. But then in the 90's, the Clementine and Lunar Prospector missions returned and showed evidence of water ice at the poles. Then in 2009 the Lunar Crater Observation and Sensing Satellite indisputably showed that the Cabeus crater contained water ice and other useful volatiles. Furthermore, instruments aboard the Lunar Reconnaissance Orbiter (LRO) show evidence that the water ice may also be present in areas that receive several days of continuous sunlight each month. However, before we can factor this resource into our mission designs, we must understand the distribution and quantity of ice or other volatiles at the poles and whether it can be reasonably harvested for use as propellant or mission consumables. NASA, in partnership with the Canadian Space Agency (CSA), has been developing a payload to answer these questions. The payload is named RESOLVE. RESOLVE is on a development path that will deliver a tested flight design by the end of 2014. The team has developed a Design Reference Mission using LRO data that has RESOLVE landing near Cabeus Crater in May of2016. One of the toughest obstacles for RESOLVE's solar powered mission is its tight timeline. RESOLVE must be able to complete its objectives in the 5-7 days of available sunlight. The RESOLVE team must be able to work around obstacles to the mission timeline in real time. They can't afford to take a day off to replan as other planetary missions have done. To insure that this mission can be executed as planned, a prototype version of RESOLVE was developed this year and tested at a lunar analog site on Hawaii, known as Apollo Valley, which was once used to train the Apollo astronauts. The RESOLVE team planned the mission with the same type of orbital imagery that would be available from LRO. The simulation team prepositioned a Lander in Apollo Valley with RESOLVE on top mounted on its CSA rover. Then the mission

  11. Polarization measurements in high-energy deuteron photodisintegration.

    PubMed

    Wijesooriya, K; Afanasev, A; Amarian, M; Aniol, K; Becher, S; Benslama, K; Bimbot, L; Bosted, P; Brash, E; Calarco, J; Chai, Z; Chang, C C; Chang, T; Chen, J P; Choi, S; Chudakov, E; Churchwell, S; Crovelli, D; Dieterich, S; Dumalski, S; Dutta, D; Epstein, M; Fissum, K; Fox, B; Frullani, S; Gao, H; Gao, J; Garibaldi, F; Gayou, O; Gilman, R; Glamazdin, S; Glashausser, C; Gomez, J; Gorbenko, V; Hansen, O; Holt, R J; Hovdebo, J; Huber, G M; de Jager, C W; Jiang, X; Jones, C; Jones, M K; Kelly, J; Kinney, E; Kooijman, E; Kumbartzki, G; Kuss, M; LeRose, J; Liang, M; Lindgren, R; Liyanage, N; Malov, S; Margaziotis, D J; Markowitz, P; McCormick, K; Meekins, D; Meziani, Z E; Michaels, R; Mitchell, J; Morand, L; Perdrisat, C F; Pomatsalyuk, R; Punjabi, V; Ransome, R D; Roche, R; Rvachev, M; Saha, A; Sarty, A; Schulte, E C; Simon, D; Strauch, S; Suleiman, R; Todor, L; Ulmer, P E; Urciuoli, G M; Wojtsekhowski, B; Xiong, F; Xu, W

    2001-04-02

    We present measurements of the recoil proton polarization for the d(gamma-->,p-->)n reaction at straight theta(c.m.) = 90 degrees for photon energies up to 2.4 GeV. These are the first data in this reaction for polarization transfer with circularly polarized photons. The induced polarization p(y) vanishes above 1 GeV, contrary to meson-baryon model expectations, in which resonances lead to large polarizations. However, the polarization transfer Cx does not vanish above 1 GeV, inconsistent with hadron helicity conservation. Thus, we show that the scaling behavior observed in the d(gamma,p)n cross sections is not a result of perturbative QCD. These data should provide important tests of new nonperturbative calculations in the intermediate energy regime.

  12. Measurements of optical polarization properties in dental tissues and biomaterials

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María M.

    2011-05-01

    Since biological tissues can have the intrinsic property of altering the polarization of incident light, optical polarization studies are important for a complete characterization. We have measured the polarized light scattered off of different dental tissues and biomaterials for a comparative study of their optical polarization property. The experimental setup was composed by a He-Ne laser, two linear polarizers and a detection system based on a photodiode. The laser beam was passed through one linear polarizer placed in front of the sample, beyond which the second linear polarizer (analyzer) and the photodiode detector were placed. First, the maximum laser-light intensity (reference condition) was attained without the sample in the laser path. Then, the sample was placed between the two polarizers and the polarization shift of the scattered laser light was determined by rotating the analyzer until the reference condition was reached. Two dental-resin composites (nanocomposite and hybrid) and two human dental tissues (enamel and dentine) were analyzed under repeatability conditions at three different locations on the sample: 20 measurements of the shift were taken and the average value and the uncertainty associated were calculated. For the human dentine the average value of the polarization shift found was 7 degrees, with an associated uncertainty of 2 degrees. For the human enamel and both dental-resin composites the average shift values were found to be similar to their corresponding uncertainties (2 degrees). The results suggest that although human dentine has notable polarization properties, dental-resin composites and human enamel do not show significant polarization shifts.

  13. Novel polarization-sensitive micropulse lidar measurement technique

    SciTech Connect

    Flynn, Connor J.; Mendoza, Albert; Zheng, Yunhui; Mathur, Savyasachee

    2007-03-19

    Polarization-sensitive detection of elastic backscatter is useful for detection of cloud phase and depolarizing aerosols. The U.S. DOE Atmospheric Radiation Measurements (ARM) Program has deployed micropulse lidar (MPL) for over a decade, but without polarized detection. Adding an actively-controlled liquid crystal retarder provides the capability to identify depolarizing particles by alternately transmitting linearly and circularly polarized light. This represents a departure from established techniques which transmit exclusively linear polarization or exclusively circular polarization. Mueller matrix calculations yield simple relationships between the well-known linear depolarization ratio δlinear, the circular depolarization ratio δcirc, and the hybrid MPL depolarization ratio δMPL. This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program.

  14. Field-resolved measurement of reaction-induced spectral densities by polarizability response spectroscopy

    NASA Astrophysics Data System (ADS)

    Moran, Andrew M.; Nome, Rene A.; Scherer, Norbert F.

    2007-11-01

    The experimental design and theoretical description of a novel five-pulse laser spectroscopy is presented with an application to a pyridinium charge transfer complex in acetonitrile and methanol. In field-resolved polarizability response spectroscopy (PORS), an electronically resonant laser pulse first excites a solvated chromophore (reactant) and off-resonant Raman spectra of the resulting nuclear motions are measured as a function of the reaction time. The present apparatus differs from our earlier design by performing the Raman probe measurement (with fixed pulse delays) in the frequency domain. In addition, the full electric fields of the signals are measured by spectral interferometry to separate nonresonant and Raman responses. Our theoretical model shows how the PORS signal arises from nuclear motions that are displaced/driven by the photoinduced reaction. The field-resolved off-resonant (of the solute's electronic transitions) probing favors detection of solvent (as opposed to solute) dynamics coupled to the reaction. The sign of the signal represents the relative strengths of polarization responses associated with the ground and photoexcited solutions. Signatures of nonresonant and PORS signal contributions to the experimental results are analyzed with numerical calculations based on a theoretical model we have developed for reaction-induced PORS. Our model identifies two mechanisms of PORS signal generation: (i) structural relaxation induced resonance; (ii) dephasing induced resonance. In the charge transfer reaction investigated, the solvent-dependent and time-evolving (solvent) polarizability spectral density (PSD) is readily obtained. The general trend of an initial broadband inertial nuclear response followed by a decrease in the linewidth of the PSD establishes that the measured PSD is inconsistent with the approximation of a linear response. Furthermore, the explicit time evolution of the PSD is important for properly describing solvent control of

  15. Polarization lidar measurements of honeybees for locating buried landmines

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph A.; Seldomridge, Nathan L.; Dunkle, Dustin L.; Nugent, Paul W.; Spangler, Lee H.; Churnside, James H.; Wilson, James W.; Bromenshenk, Jerry J.; Henderson, Colin B.

    2005-08-01

    A polarization-sensitive lidar was used to detect honeybees trained to locate buried landmines by smell. Lidar measurements of bee location agree reasonably well with maps of chemical plume strength and bee density determined by visual and video counts, indicating that the bees are preferentially located near the explosives and that the lidar identifies the locations of higher bee concentration. The co-polarized lidar backscatter signal is more effective than the cross-polarized signal for bee detection. Laboratory measurements show that the depolarization ratio of scattered light is near zero for bee wings and up to approximately thirty percent for bee bodies.

  16. Polarized Reflectance Measurement of Burned Skin Tissues

    NASA Astrophysics Data System (ADS)

    de Pedro, Hector Michael; Chang, Chuan-I.; Zarnani, Faranak; Glosser, Robert; Maas, D.; Idris, A.

    2011-10-01

    In the US, there are over 400,000 burn victims with 3,500 deaths in 2010. Recent evidence suggests that early removal of burn tissues can significantly increase the success of their recovery, since burns continue to spread and damage surrounding tissues after hours of injury. The rationale behind this procedure is that burns trigger the body's immune system to overreact, causing additional damage. Therefore, it is important to distinguish burn areas so that it can be removed. The problem with this is that it is difficult to recognize the margins of the burn area. In our project, we use polarized reflectance as a tool to identify the burned tissues from unburned ones.

  17. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    SciTech Connect

    Kortright, J.B.; Rice, M.; Hussain, Z.

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  18. Characterizing the kinetics of suspended cylindrical particles by polarization measurements

    NASA Astrophysics Data System (ADS)

    Liao, Ran; Ou, Xueheng; Ma, Hui

    2015-09-01

    Polarization has promising potential to retrieve the information of the steady samples, such as tissues. However, for the fast changing sample such as the suspended algae in the water, the kinetics of the particles also influence the scattered polarization. The present paper will show our recent results to extract the information about the kinetics of the suspended cylindrical particles by polarization measurements. The sample is the aqueous suspension of the glass fibers stirred by a magnetic stirrer. We measure the scattered polarization of the fibers by use of a simultaneous polarization measurement system and obtain the time series of two orthogonal polarization components. By use of correlation analysis, we obtain the time parameters from the auto-correlation functions of the polarization components, and observe the changes with the stirring speeds. Results show that these time parameters indicate the immigration of the fibers. After discussion, we find that they may further characterize the kinetics, including the translation and rotation, of the glass fibers in the fluid field.

  19. The laboratory methods of induced polarization measurement of manganese sample

    NASA Astrophysics Data System (ADS)

    Adhiguna, D.; Handayani, G.

    2015-09-01

    Metallic minerals are polarizable. The polarizable property can be used as the basis for metallic minerals exploration process. By use of induced polarization method, we observed polarization phenomenon that occur in metallic material. In this study, physical events were observed that occur in rocks containing manganese minerals using induced polarization method. Induced polarization method is a geophysical method that is based on the principle of electrical charging and discharging of a capacitor which is applied to the rock. By using the method of induced polarization, chargeability values can be determined for the rock. Chargeability is one of the important properties of metal material. Measurement on this research will be done in two different ways to determine the induced events that occurred in both methods.

  20. Time Resolved Measurements and Reactive Pathways of Hypergolic Bipropellant Combustion

    DTIC Science & Technology

    2006-03-31

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...0704-0188,) Washington, DC 20503. 1 . AGENCY USE ONLY ( Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE 5...Standard Form 298 (Rev.2-89) Prescribed by ANSI Std. 239-18 298-102 Enclosure 1 03/31/06 Final Report 01 Aug 02 - 31 Dec 05 TIME RESOLVED

  1. Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schlager, John B.; Sanford, Norman A.; Bertness, Kris A.; Barker, Joy M.; Roshko, Alexana; Blanchard, Paul T.

    2006-05-01

    Polarization- and temperature-dependent photoluminescence (PL) measurements were performed on individual GaN nanowires. These were grown by catalyst-free molecular beam epitaxy on Si(111) substrates, ultrasonically removed, and subsequently dispersed on sapphire substrates. The wires were typically 5-10μm in length, c-axis oriented, and 30-100nm in diameter. Single wires produced sufficient emission intensity to enable high signal-to-noise PL data. Polarized PL spectra differed for the σ and π polarization cases, illustrating the polarization anisotropy of the exciton emission associated with high-quality wurtzite GaN. This anisotropy in PL emission persisted even up to room temperature (4-296K). Additionally, the nanowire PL varied with excitation intensity and with (325nm) pump exposure time.

  2. Intrinsic spin polarized electronic structure of CrO{sub 2} epitaxial film revealed by bulk-sensitive spin-resolved photoemission spectroscopy

    SciTech Connect

    Fujiwara, Hirokazu; Sunagawa, Masanori; Kittaka, Tomoko; Terashima, Kensei; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2015-05-18

    We have performed bulk-sensitive spin-resolved photoemission spectroscopy in order to clarify the intrinsic spin-resolved electronic states of half-metallic ferromagnet CrO{sub 2}. We used CrO{sub 2} epitaxial films on TiO{sub 2}(100), which shows a peak at 1 eV with a clear Fermi edge, consistent with the bulk-sensitive PES spectrum for CrO{sub 2}. In spin-resolved spectra at 40 K, while the Fermi edge was observed in the spin up (majority spin) state, no states at the Fermi level (E{sub F}) with an energy gap of 0.5 eV below E{sub F} were observed in the spin down (minority spin) state. At 300 K, the gap in the spin down state closes. These results are consistent with resistivity measurements and magnetic hysteresis curves of the fabricated CrO{sub 2} film, constituting spectroscopic evidence for the half-metallicity of CrO{sub 2} at low temperature and reducing the spin polarization at room temperature. We also discuss the electron correlation effects of Cr 3d.

  3. Radiation measurements from polar and geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.

    1973-01-01

    During the 1960's, radiation budget measurements from satellites have allowed quantitative study of the global energetics of our atmosphere-ocean system. A continuing program is planned, including independent measurement of the solar constant. Thus far, the measurements returned from two basically different types of satellite experiments are in agreement on the long term global scales where they are most comparable. This fact, together with independent estimates of the accuracy of measurement from each system, shows that the energy exchange between earth and space is now measured better than it can be calculated. Examples of application of the radiation budget data were shown. They can be related to the age-old problem of climate change, to the basic question of the thermal forcing of our circulation systems, and to the contemporary problems of local area energetics and computer modeling of the atmosphere.

  4. Preferential alignment of birefringent tissue measured with polarization sensitive techniques

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, J. C.; Ruiz, T.; Ghassemi, P.; Travis, T. E.; Shupp, J. W.; Chue-Sang, J.; Bai, Y.

    2015-02-01

    Assessing collagen alignment is of interest when evaluating a therapeutic strategy and evaluating its outcome in scar management. In this work we introduce a theoretical and experimental methodology for the quantification of collagen and birefringent media alignment based on polarized light transport. The technique relies on the fact that these materials exhibit directional anisotropy. A polarized Monte Carlo model and a spectro-polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging polarized light beam. Experiments conducted on birefringent phantoms, and biological samples consisting of highly packed parallel birefringent fibers, showed a good agreement with the analytical results.

  5. Measuring the influence of aerosols and albedo on sky polarization.

    PubMed

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  6. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    SciTech Connect

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  7. Horizontally resolved structures of polar mesospheric echoes obtained with the Middle Atmosphere Alomar Radar System

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner

    2012-07-01

    Polar Mesosphere Summer Echoes have been observed in Andenes/Norway (69°N, 16°E) for more than 18 years using the Alomar SOUSY and the ALWIN VHF radars. In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}). The new radar is designed for atmospheric studies from the troposphere up to the lower thermosphere, especially for the investigation of horizontal structures of polar mesospheric echoes. The system is composed of an active phased antenna consisting of 433 array elements and an identical number of transceiver modules individually controllable in frequency, phase, and output power on a pulse-to-pulse basis. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric 3.6° small radar beam and arbitrary beam pointing directions down to 30° off-zenith. The monitoring of polar mesosphere echoes using a vertical pointed radar beam has been continued already during the construction period of MAARSY in order to complete the long term data base available for Andenes. Additionally first multi-beam scanning experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during several campaigns starting in summer 2010. Sophisticated wind analysis methods such as an extended velocity azimuth display have been applied to retrieve additional parameters from the wind field, e.g. horizontal divergence, vertical velocity, stretching and shearing deformation. The results provide a first insight into the strong horizontal variability of scattering structures occurring in the polar mesosphere over Andenes during summer and winter time. The implementation of interferometric radar imaging methods offers further improvement of the horizontal and the vertical resolution.

  8. POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols.

    PubMed

    Chami, Malik; Thirouard, Alexandre; Harmel, Tristan

    2014-10-20

    An innovative instrument dedicated to the multispectral measurements of the directional and polarized scattering properties of the hydrosols, so-called POLVSM, is described. The instrument could be used onboard a ship, as a benchtop instrument, or at laboratory. The originality of the POLVSM concept relies on the use of a double periscopic optical system whose role is (i) to separate the plane containing the light source from the scattering plane containing the sample and the receiver and (ii) to prevent from any specularly reflected light within the sample chamber. As a result, a wide range of scattering angle, namely from 1° to 179°, is covered by the detector. Another originality of the instrument is to measure the Mueller scattering matrix elements, including the degree of polarization. A relevant calibration procedure, which could be of great interest as well for other instruments, is proposed to convert the raw data into physical units. The relative uncertainty in POLVSM data was determined at ± 4.3%. The analysis of measurements of the volume scattering function and degree of polarization performed under controlled conditions for samples dominated either by inorganic hydrosols or phytoplankton monospecific species showed a good consistency with literature, thus confirming the good performance of the POLVSM device. Comparisons of POLVSM data with theoretical calculations showed that Mie theory could reproduce efficiently the measurements of the VSF and degree of polarization for the case of inorganic hydrosols sample, despite the likely non sphericity of these particles as revealed by one of the element of the Mueller matrix. Our results suggested as well that a sophisticated modeling of the heterogeneous internal structure of living cells, or at least, the use of layered sphere models, is needed to correctly predict the directional and polarized effects of phytoplankton on the oceanic radiation. The relevance of performing angularly resolved measurements

  9. A new measurement of electron transverse polarization in polarized nuclear β-decay

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Akiyama, T.; Hata, M.; Hirayama, Y.; Ikeda, M.; Ikeda, Y.; Ishii, T.; Kameda, D.; Mitsuoka, S.; Miyatake, H.; Nagae, D.; Nakaya, Y.; Ninomiya, K.; Nitta, M.; Ogawa, N.; Onishi, J.; Seitaibashi, E.; Tanaka, S.; Tanuma, R.; Totsuka, Y.; Toyoda, T.; Watanabe, Y. X.; Murata, J.

    2017-03-01

    The Mott polarimetry for T-violation (MTV) experiment tests time-reversal symmetry in polarized nuclear β-decay by measuring an electron’s transverse polarization as a form of angular asymmetry in Mott scattering using a thin metal foil. A Mott scattering analyzer system developed using a tracking detector to measure scattering angles offers better event selectivity than conventional counter experiments. In this paper, we describe a pilot experiment conducted at KEK-TRIAC using a prototype system with a polarized 8Li beam. The experiment confirmed the sound performance of our Mott analyzer system to measure T-violating triple correlation (R correlation), and therefore recommends its use in higher-precision experiments at the TRIUMF-ISAC.

  10. Radiation measurements from polar and geosynchronous satellites

    NASA Technical Reports Server (NTRS)

    Vonderhaar, T. H.; Kidder, S. Q.; Hillger, D. W.; Ellis, J. S.

    1978-01-01

    The following topics are discussed: (1) cloud effects in climate determination; (2) annual variation in the global heat balance of the earth; (3) the accuracy of precipitation estimates made from passive microwave measurements from satellites; (4) seasonal oceanic precipitation frequencies; (5) determination of mesoscale temperature and moisture fields over land from satellite radiance measurements; and (6) Nimbus 6 scanning microwave spectrometer data evaluation for surface wind and pressure components in tropical storms.

  11. Effect of noise on Frequency-Resolved Optical Gating measurements of ultrashort pulses

    SciTech Connect

    Fittinghoff, D.N.; DeLong, K.W.; Ladera, C.L.; Trebino, R.

    1995-02-01

    We study the effects of noise in Frequency-Resolved Optical Gating measurements of ultrashort pulses. We quantify the measurement accuracy in the presence of additive, muliplicative, and quantization noise, and discuss filtering and pre-processing of the data.

  12. Apparatus and method for measuring electrostatic polarization

    DOEpatents

    Hahn, Erwin L.; Clarke, John; Sloater, Tycho; Hilbert, Claude; Heaney, Michael B.

    1989-01-01

    An apparatus and method for measuring the electric properties of solid matter which provides data for determining the polarizability of the electron distributions contained therein is disclosed. A sample of the solid to be studied is placed between the plates of a capacitor where it acts as a dielectric. The sample is excited by the interaction of electromagnetic radiation with an atomic species contained in the sample. The voltage induced across the capacitor is then measured as a function of time with the aid of a high Q circuit tuned to a frequency related to the frequency of the applied electromagnetic energy.

  13. SIMULTANEOUS MEASUREMENT OF CIRCULAR DICHROISM AND FLUORESCENCE POLARIZATION ANISOTROPY.

    SciTech Connect

    SUTHERLAND,J.C.

    2002-01-19

    Circular dichroism and fluorescence polarization anisotropy are important tools for characterizing biomolecular systems. Both are used extensively in kinetic experiments involving stopped- or continuous flow systems as well as titrations and steady-state spectroscopy. This paper presents the theory for determining circular dichroism and fluorescence polarization anisotropy simultaneously, thus insuring the two parameters are recorded under exactly the same conditions and at exactly the same time in kinetic experiments. The approach to measuring circular dichroism is that used in almost all conventional dichrographs. Two arrangements for measuring fluorescence polarization anisotropy are described. One uses a single fluorescence detector and signal processing with a lock-in amplifier that is similar to the measurement of circular dichroism. The second approach uses classic ''T'' format detection optics, and thus can be used with conventional photon-counting detection electronics. Simple extensions permit the simultaneous measurement of the absorption and excitation intensity corrected fluorescence intensity.

  14. CIV Polarization Measurements Using a Vacuum Ultraviolet Fabry Perot

    NASA Technical Reports Server (NTRS)

    West, Edward A.

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry Perot that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry Perot.

  15. Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light

    DOEpatents

    Decker, Derek E.; Toeppen, John S.

    1994-01-01

    Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.

  16. Polarization and position measurements of Type III bursts

    NASA Technical Reports Server (NTRS)

    Suzuki, S.; Sheridan, K. V.; Dulk, G. A.

    1980-01-01

    The positional and polarization characteristics of Type III bursts in the range 24-220 MHz as measured by the Culgoora radioheliograph, spectrograph and spectropolarimeter are reported. The study includes 997 bursts which are of two classes: fundamental-harmonic (F-H) pairs and 'structureless' bursts with no visible F-H structure, and concentrates on the polarization of the bursts and the variation of polarization from centre to limb. The observed centre-to-limb decrease in polarization approximately follows a cosine law. This decrease is not as predicted by simple theory but is consistent with other observations which imply that open field lines from an active region diverge strongly. The observed o-mode polarization of harmonic radiation implies that the wave vectors of Langmuir waves are always parallel, within about 20 deg, to the magnetic field, while the constancy of H polarization with frequency implies that the ratio of gyromagnetic to plasma frequency, the Alfven speed and the plasma beta are constant with height on the open field lines above an active region. Finally, it is inferred that some factor, in addition to the magnetic field strength, controls the polarization of F radiation.

  17. Measurement of Small Optical Polarization Rotations

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…

  18. Traceability study of optical fiber degree of polarization (DOP) measurement

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Li, Jianwei; Li, Jian; Zhang, Zhixin

    2013-09-01

    Degree of polarization (DOP) is an important physical quantity for describing the optical polarization effect and is widely applied in optical fiber communication, optical fiber gyro and the related technologies. Currently, the optical polarization degree tester for the purpose of communication uses mainly two kinds of measurement methods: Stokes vector method and extremum method. At present, there isn't a standard to measure the accuracy and consistency of DOP parameter measurement by the devices listed above, affecting seriously the application of DOP parameter measurement in the fields of optical fiber gyro and optical fiber communication. So, it is urgent to table the accurate guarantees to trace the source of quantitative values of the DOP measuring devices and testers. In this paper, the polarization beam combination method is raised to research and manufacture the standard optical fiber light source device with the variable DOP, and an indicated error measurement has been conducted for a DOP meter. A kind of standard optical fiber light source device that uses a single light source to realize the variable DOP is put forward. It is used to provide the accurate and variable optical fiber polarization degree light with a scope of 0~100%. It is used to calibrate the DOP meters and widely applied in the field of national defense and optical communication fields. By using the standard optical power meter, DOP value by which the optical power meter calculates the optical signal can be measured, which will be used ultimately for calibration of the DOP meter. A measurement uncertainty of 0.5% is obtained using the polarization beam combination method.

  19. Hubble Space Telescope NICMOS Polarization Measurements of OMC-1

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Burton, Michael G.; Schultz, A. S. B.

    2006-01-01

    We present 2 micrometer polarization measurements of positions in the BN region of the Orion Molecular Cloud (OMC-1) made with NICMOS Camera 2 (0.2" resolution) on Hubble Space Telescope. Our goals are to seek the sources of heating for IRc2, 3, 4, and 7, identify possible young stellar objects (YSOs), and characterize the grain alignment in the dust clouds along the lines-of-sight to the stars. Our results are as follows: BN is approximately 29% polarized by dichroic absorption and appears to be the illuminating source for most of the nebulosity to its north and up to approximately 5" to its south. Although the stars are probably all polarized by dichroic absorption, there are a number of compact, but non-point-source, objects that could be polarized by a combination of both dichroic absorption and local scattering of star light. We identify several candidate YSOs, including an approximately edge-on bipolar YSO 8.7" east of BN, and a deeply-embedded IRc7, all of which are obviously self-luminous at mid-infrared wavelengths and may be YSOs. None of these is a reflection nebula illuminated by a star located near radio source I, as was previously suggested. Other IRc sources are clearly reflection nebulae: IRc3 appears to be illuminated by IRc2-B or a combination of the IRc2 sources, and IRc4 and IRc5 appear to be illuminated by an unseen star in the vicinity of radio source I, or by Star n or IRc2-A. Trends in the magnetic field direction are inferred from the polarization of the 26 stars that are bright enough to be seen as NICMOS point sources. Their polarization ranges from N less than or equal to 1% (all stars with this low polarization are optically visible) to greater than 40%. The most polarized star has a polarization position angle different from its neighbors by approximately 40 degrees, but in agreement with the grain alignment inferred from millimeter polarization measurements of the cold dust cloud in the southern part of OMC-1. The polarization

  20. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-02-28

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.

  1. X-ray Polarization Measurements at Relativistic Laser Intensities

    SciTech Connect

    Beiersdorfer, P; Shepherd, R; Mancini, R C; Chen, H; Dunn, J; Keenan, R; Kuba, J; Patel, P K; Ping, Y; Price, D F; Widmann, K

    2004-03-20

    An effort has been started to measure the short pulse laser absorption and energy partition at relativistic laser intensities up to 10{sup 21} W/cm{sup 2}. Plasma polarization spectroscopy is expected to play an important role in determining fast electron generation and measuring the electron distribution function.

  2. First Steps in Tensor Polarization Measurement using the DMR Lineshape

    NASA Astrophysics Data System (ADS)

    Keller, Dustin

    2016-02-01

    The first steps to investigate the tensor polarization measurement with uncertainty is outlined. The objective is to look into possible measurements of the deuteron alignment given an arbitrary lineshape that was distorted by a modulated RF field of know frequency range with respect to each absorption line.

  3. Spectroscopic ellipsometer based on direct measurement of polarization ellipticity

    SciTech Connect

    Watkins, Lionel R.

    2011-06-20

    A polarizer-sample-Wollaston prism analyzer ellipsometer is described in which the ellipsometric angles {psi} and {Delta} are determined by direct measurement of the elliptically polarized light reflected from the sample. With the Wollaston prism initially set to transmit p- and s-polarized light, the azimuthal angle P of the polarizer is adjusted until the two beams have equal intensity. This condition yields {psi}={+-}P and ensures that the reflected elliptically polarized light has an azimuthal angle of {+-}45 deg. and maximum ellipticity. Rotating the Wollaston prism through 45 deg. and adjusting the analyzer azimuth until the two beams again have equal intensity yields the ellipticity that allows {Delta} to be determined via a simple linear relationship. The errors produced by nonideal components are analyzed. We show that the polarizer dominates these errors but that for most practical purposes, the error in {psi} is negligible and the error in {Delta} may be corrected exactly. A native oxide layer on a silicon substrate was measured at a single wavelength and multiple angles of incidence and spectroscopically at a single angle of incidence. The best fit film thicknesses obtained were in excellent agreement with those determined using a traditional null ellipsometer.

  4. Measuring political polarization: Twitter shows the two sides of Venezuela

    NASA Astrophysics Data System (ADS)

    Morales, A. J.; Borondo, J.; Losada, J. C.; Benito, R. M.

    2015-03-01

    We say that a population is perfectly polarized when divided in two groups of the same size and opposite opinions. In this paper, we propose a methodology to study and measure the emergence of polarization from social interactions. We begin by proposing a model to estimate opinions in which a minority of influential individuals propagate their opinions through a social network. The result of the model is an opinion probability density function. Next, we propose an index to quantify the extent to which the resulting distribution is polarized. Finally, we apply the proposed methodology to a Twitter conversation about the late Venezuelan president, Hugo Chávez, finding a good agreement between our results and offline data. Hence, we show that our methodology can detect different degrees of polarization, depending on the structure of the network.

  5. Polarization-resolved simulations of multiple-order rainbows using realistic raindrop shapes

    NASA Astrophysics Data System (ADS)

    Haußmann, Alexander

    2016-05-01

    This paper presents selected results of a simulation study of the first five (primary-quinary) rainbow orders based on a realistic, size-dependent shape model for falling raindrops, taking into account that the drops' bottom part is flattened to higher degree than the dome-like top part. Moreover, broad drop size distributions are included in the simulations, as it is one goal of this paper to analyze, whether the predicted amplification and attenuation patterns for higher-order rainbows, as derived from previous simulations with monodisperse drop sizes, will still be pronounced under the conditions of natural rainfall. Secondly, deviations of the multiple rainbow orders' polarization state from the reference case of spherical drops are discussed. It is shown that each rainbow order may contain a small amount of circularly polarized light due to total internal reflections. Thirdly, it is investigated, how the conditions that generate twinned primary rainbows will affect the higher orders. For the simulations, geometric-optic ray tracing of the full Stokes vector as well as an approximate approach using appropriately shifted Debye series data is applied.

  6. Measurement of polarization with the Degree Angular Scale Interferometer

    NASA Astrophysics Data System (ADS)

    Leitch, E. M.; Kovac, J. M.; Pryke, C.; Carlstrom, J. E.; Halverson, N. W.; Holzapfel, W. L.; Dragovan, M.; Reddall, B.; Sandberg, E. S.

    2002-12-01

    Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was ~400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station.

  7. Measurement of polarization with the Degree Angular Scale Interferometer.

    PubMed

    Leitch, E M; Kovac, J M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L; Dragovan, M; Reddall, B; Sandberg, E S

    Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station.

  8. A high accuracy broadband measurement system for time resolved complex bioimpedance measurements.

    PubMed

    Kaufmann, S; Malhotra, A; Ardelt, G; Ryschka, M

    2014-06-01

    Bioimpedance measurements are useful tools in biomedical engineering and life science. Bioimpedance is the electrical impedance of living tissue and can be used in the analysis of various physiological parameters. Bioimpedance is commonly measured by injecting a small well known alternating current via surface electrodes into an object under test and measuring the resultant surface voltages. It is non-invasive, painless and has no known hazards. This work presents a field programmable gate array based high accuracy broadband bioimpedance measurement system for time resolved bioimpedance measurements. The system is able to measure magnitude and phase of complex impedances under test in a frequency range of about 10-500 kHz with excitation currents from 10 µA to 5 mA. The overall measurement uncertainties stay below 1% for the impedance magnitude and below 0.5° for the phase in most measurement ranges. Furthermore, the described system has a sample rate of up to 3840 impedance spectra per second. The performance of the bioimpedance measurement system is demonstrated with a resistor based system calibration and with measurements on biological samples.

  9. Monochromatic Measurements of the JPSS-1 VIIRS Polarization Sensitivity

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Moyer, David; Brown, Steven W.; Lykke, Keith R.; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2016-01-01

    Polarization sensitivity is a critical property that must be characterized for spaceborne remote sensing instruments designed to measure reflected solar radiation. Broadband testing of the first Joint Polar-orbiting Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) showed unexpectedly large polarization sensitivities for the bluest bands on VIIRS (centered between 400 and 600 nm). Subsequent ray trace modeling indicated that large diattenuation on the edges of the bandpass for these spectral bands was the driver behind these large sensitivities. Additional testing using the National Institute of Standards and Technologies Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources was added to the test program to verify and enhance the model. The testing was limited in scope to two spectral bands at two scan angles; nonetheless, this additional testing provided valuable insight into the polarization sensitivity. Analysis has shown that the derived diattenuation agreed with the broadband measurements to within an absolute difference of about0.4 and that the ray trace model reproduced the general features of the measured data. Additionally, by deriving the spectral responsivity, the linear diattenuation is shown to be explicitly dependent on the changes in bandwidth with polarization state.

  10. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    SciTech Connect

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.

  11. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    DOE PAGES

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; ...

    2014-12-22

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solutionmore » using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. In order to validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. Furthermore, these observations are consistent with the model.« less

  12. Magnetoelectroluminescence of organic heterostructures: Analytical theory and spectrally resolved measurements

    NASA Astrophysics Data System (ADS)

    Liu, Feilong; Kelley, Megan R.; Crooker, Scott A.; Nie, Wanyi; Mohite, Aditya D.; Ruden, P. Paul; Smith, Darryl L.

    2014-12-01

    The effect of a magnetic field on the electroluminescence of organic light emitting devices originates from the hyperfine interaction between the electron/hole polarons and the hydrogen nuclei of the host molecules. In this paper, we present an analytical theory of magnetoelectroluminescence for organic semiconductors. To be specific, we focus on bilayer heterostructure devices. In the case we are considering, light generation at the interface of the donor and acceptor layers results from the formation and recombination of exciplexes. The spin physics is described by a stochastic Liouville equation for the electron/hole spin density matrix. By finding the steady-state analytical solution using Bloch-Wangsness-Redfield theory, we explore how the singlet/triplet exciplex ratio is affected by the hyperfine interaction strength and by the external magnetic field. To validate the theory, spectrally resolved electroluminescence experiments on BPhen/m-MTDATA devices are analyzed. With increasing emission wavelength, the width of the magnetic field modulation curve of the electroluminescence increases while its depth decreases. These observations are consistent with the model.

  13. Dual polarized receiving steering antenna array for measurement of ultrawideband pulse polarization structure

    NASA Astrophysics Data System (ADS)

    Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I.; Nekrasov, E. S.

    2016-03-01

    To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximum position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from -40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.

  14. Polar Second-Harmonic Imaging to Resolve Pure and Mixed Crystal Phases along GaAs Nanowires.

    PubMed

    Timofeeva, Maria; Bouravleuv, Alexei; Cirlin, George; Shtrom, Igor; Soshnikov, Ilya; Reig Escalé, Marc; Sergeyev, Anton; Grange, Rachel

    2016-10-12

    In this work, we report an optical method for characterizing crystal phases along single-semiconductor III-V nanowires based on the measurement of polarization-dependent second-harmonic generation. This powerful imaging method is based on a per-pixel analysis of the second-harmonic-generated signal on the incoming excitation polarization. The dependence of the second-harmonic generation responses on the nonlinear second-order susceptibility tensor allows the distinguishing of areas of pure wurtzite, zinc blende, and mixed and rotational twins crystal structures in individual nanowires. With a far-field nonlinear optical microscope, we recorded the second-harmonic generation in GaAs nanowires and precisely determined their various crystal structures by analyzing the polar response for each pixel of the images. The predicted crystal phases in GaAs nanowire are confirmed with scanning transmission electron and high-resolution transmission electron measurements. The developed method of analyzing the nonlinear polar response of each pixel can be used for an investigation of nanowire crystal structure that is quick, sensitive to structural transitions, nondestructive, and on-the-spot. It can be applied for the crystal phase characterization of nanowires built into optoelectronic devices in which electron microscopy cannot be performed (for example, in lab-on-a-chip devices). Moreover, this method is not limited to GaAs nanowires but can be used for other nonlinear optical nanostructures.

  15. Polar bear Ursus maritimus hearing measured with auditory evoked potentials.

    PubMed

    Nachtigall, Paul E; Supin, Alexander Y; Amundin, Mats; Röken, Bengt; Møller, Thorsten; Mooney, T Aran; Taylor, Kristen A; Yuen, Michelle

    2007-04-01

    While there has been recent concern about the effects of sound on marine mammals, including polar bears, there are no data available measuring the hearing of any bear. The in-air hearing of three polar bears was measured using evoked auditory potentials obtained while tone pips were played to three individually anaesthetized bears at the Kolmården Djurpark. Hearing was tested in half-octave steps from 1 to 22.5 kHz. Measurements were not obtainable at 1 kHz and best sensitivity was found in the range from 11.2-22.5 kHz. Considering the tone pips were short and background noise measurements were available, absolute measurements were estimated based on an assumed mammalian integration time of 300 ms. These data show sensitive hearing in the polar bear over a wide frequency range and should cause those concerned with the introduction of anthropogenic noise into the polar bear's environment to operate with caution.

  16. Resolving stress tensor components in space from polarized Raman spectra: polycrystalline alumina.

    PubMed

    Pezzotti, Giuseppe; Zhu, Wenliang

    2015-01-28

    A method of Raman spectroscopic analysis has been proposed for evaluating tensorial stress fields stored in alumina polycrystals with a corundum structure (α-Al2O3). Raman selection rules for all the vibrational modes of the structure were expanded into explicit functions of both 3 Euler angles in space and 4 Raman tensor elements (RTE) of corundum. A theoretical treatment was then worked out according to the phonon deformation potential (PDP) formalism, which explicitly expressed the changes in force constants under stress in matricial form. Close-form solutions could be obtained for the matrix eigenvalues as a function of 9 unknown variables, namely 6 independent stress tensor components and 3 Euler angles in space, the latter parameters being representatives of local crystal orientation. Successively, two separate sets of Raman calibration experiments were performed for the determination of both RTE and PDP constants of the corundum structure of alumina. Calibration experiments provided a quantitative frame to the newly developed Raman formalism. Polarized Raman spectra were systematically recorded in both single-crystalline and polycrystalline samples, with both A1g and Eg vibrational bands being characterized. Regarding polycrystalline samples, a validation of the proposed Raman method could be done through a comparison between Raman and fluorescence data collected at the same locations across an alumina/metal interface embedded in a steeply graded residual stress field.

  17. Some problems in the measurement of the frequency-resolving ability of hearing.

    PubMed

    Supin, A Ya

    2005-10-01

    Despite the detailed development of masking methods for measurement of the frequency selectivity of hearing, these measurements are hardly used for diagnostic purposes because they are time-consuming and because of the uncertain extrapolation of the results to the perception of complex spectral patterns. A method for the direct measurement of the spectral resolving ability of hearing using test signals with rippled spectra is proposed. These measurements showed 1) that the resolving ability of the auditory system in terms of discriminating complex spectra is greater than that suggested by the acuity of auditory frequency filters; 2) that changes in the acuity of frequency auditory filters associated with sound intensity hardly affect the ability to resolve complex spectra; 3) that the effects of interference on frequency-resolving ability do not lead to decreases in the spectral contrast of signals due to superimposition of noise.

  18. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  19. Measuring ultrashort pulses using frequency-resolved optical gating

    SciTech Connect

    Trebino, R.

    1993-12-01

    The purpose of this program is the development of techniques for the measurement of ultrafast events important in gas-phase combustion chemistry. Specifically, goals of this program include the development of fundamental concepts and spectroscopic techniques that will augment the information currently available with ultrafast laser techniques. Of equal importance is the development of technology for ultrafast spectroscopy. For example, methods for the production and measurement of ultrashort pulses at wavelengths important for these studies is an important goal. Because the specific vibrational motion excited in a molecule depends sensitively on the intensity, I(t), and the phase, {psi}(t), of the ultrashort pulse used to excite the motion, it is critical to measure both of these quantities for an individual pulse. Unfortunately, this has remained an unsolved problem for many years. Fortunately, this year, the authors present a technique that achieves this goal.

  20. Spatially-Resolved System for Polarimetric Measurements at Subwavelength Scales

    DTIC Science & Technology

    2009-09-24

    8217 Cj>a:: .. nao .-. ic lie "•eepe no.eve-t ippei :can-«i see be c.-. \\ stepoe: TOIO- :Uje j-" rr-lri-je. Elecii ca conntctor: seep 32’ \\ ::eppe...involve performing near-field tomographic reconstruction, measuring low refractive index contrast materials , measuring the polarimetric response of...field tomography: The fields from an NSOM scan penetrate a finite depth into the material , giving one the ability to see structures below the surface of

  1. A One Billion Year Martian Climate Model: The Importance of Seasonally Resolved Polar Caps and the Role of Wind

    NASA Technical Reports Server (NTRS)

    Armstrong, J. C.; Leovy, C. B.; Quinn, T. R.; Haberle, R. M.; Schaeffer, J.

    2003-01-01

    Wind deflation and deposition are powerful agents of surface change in the present Mars climate regime. Recent studies indicate that, while the distribution of regions of potential deflation (or erosion) and deposition is remarkably insensitive to changes in orbital parameters (obliquity, timing of perihelion passage, etc.), rates of aeolian surface modification may be highly sensitive to these parameters even if the atmospheric mass remains constant. But previous work suggested the atmospheric mass is likely to be sensitive to obliquity, especially if a significant mass of carbon dioxide can be stored in the regolith or deposited in the form of massive polar caps. Deflation and erosion are highly sensitive to surface pressure, so feedback between orbit variations and surface pressure can greatly enhance the sensitivity of aeolian modification rates to orbital parameters. We used statistics derived from a 1 Gyr orbital integration of the spin axis of Mars, coupled with 3D general circulation models (GCMs) at a variety of orbital conditions and pressures, to explore this feedback. We also employed a seasonally resolved 1D energy balance model to illuminate the gross characteristics of the longterm atmospheric evolution, wind erosion and deposition over one billion years. We find that seasonal polar cycles have a critical influence on the ability for the regolith to release CO2 at high obliquities, and find that the atmospheric CO2 actually decreases at high obliquities due to the cooling effect of polar deposits at latitudes where seasonal caps form. At low obliquity, the formation of massive, permanent polar caps depends critically on the values of the frost albedo, A(sub frost), and frost emissivity, E(sub frost). Using our 1D model with values of A(sub frost) = 0.67 and E(sub frost) = 0.55, matched to the NASA Ames GCM results, we find that permanent caps only form at low obliquities (< 10 degrees). Thus, contrary to expectations, the Martian atmospheric pressure

  2. Precise polarization measurements via detection of compton scattered electrons

    SciTech Connect

    Tvaskis, Vladas; Dutta, Dipangkar; Gaskell, David J.; Narayan, Amrendra

    2014-01-01

    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q{sup 2} of a longitudinally polarized electron beam off a proton target. One of the dominant experimental systematic uncertainties in Qweak will result from determining the beam polarization. A new Compton polarimeter was installed in the fall of 2010 to provide a non-invasive and continuous monitoring of the electron beam polarization in Hall C at Jefferson Lab. The Compton-scattered electrons are detected in four planes of diamond micro-strip detectors. We have achieved the design goals of <1% statistical uncertainty per hour and expect to achieve <1% systematic uncertainty.

  3. Highly Resolved Aerosol Measurements from High Altitude Platforms

    NASA Technical Reports Server (NTRS)

    Wilson, James Charles

    1999-01-01

    The University of Denver agreed to develop and fabricate two instruments for the characterization of submicron aerosol. The instruments were to be light weight for use on remotely-piloted aircraft or balloons. The instruments were to provide accurate size measurements of size distributions in the size range from 0.07 to 2 micrometers in diameter and concentration measurements in the size range approximately 0.01 to 2 micrometers in diameter. The instruments constructed under this cooperative agreement respond quite nearly as expected and meet the objective of being light and compact. One has been used for ground based and low altitude studies and the other will be deployed in high altitude studies this winter.

  4. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  5. Response Surface Methods for Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatial ly-re solved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/-30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-light, inflatable space antenna at NASA Langley Research Center.

  6. On the Statistical Analysis of X-ray Polarization Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T. E.; Kallman, T. R.

    2013-01-01

    In many polarimetry applications, including observations in the X-ray band, the measurement of a polarization signal can be reduced to the detection and quantification of a deviation from uniformity of a distribution of measured angles of the form alpha plus beta cosine (exp 2)(phi - phi(sub 0) (0 (is) less than phi is less than pi). We explore the statistics of such polarization measurements using both Monte Carlo simulations as well as analytic calculations based on the appropriate probability distributions. We derive relations for the number of counts required to reach a given detection level (parameterized by beta the "number of sigma's" of the measurement) appropriate for measuring the modulation amplitude alpha by itself (single interesting parameter case) or jointly with the position angle phi (two interesting parameters case). We show that for the former case when the intrinsic amplitude is equal to the well known minimum detectable polarization (MDP) it is, on average, detected at the 3sigma level. For the latter case, when one requires a joint measurement at the same confidence level, then more counts are needed, by a factor of approximately equal to 2.2, than that required to achieve the MDP level. We find that the position angle uncertainty at 1sigma confidence is well described by the relation sigma(sub pi) equals 28.5(degrees) divided by beta.

  7. On the Statistical Analysis of X-Ray Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Strohmayer, T. E.; Kallman, T. R.

    2013-08-01

    In many polarimetry applications, including observations in the X-ray band, the measurement of a polarization signal can be reduced to the detection and quantification of a deviation from uniformity of a distribution of measured angles of the form A + Bcos 2(phi - phi0) (0 < phi < π). We explore the statistics of such polarization measurements using Monte Carlo simulations and χ2 fitting methods. We compare our results to those derived using the traditional probability density used to characterize polarization measurements and quantify how they deviate as the intrinsic modulation amplitude grows. We derive relations for the number of counts required to reach a given detection level (parameterized by β the "number of σ's" of the measurement) appropriate for measuring the modulation amplitude a by itself (single interesting parameter case) or jointly with the position angle phi (two interesting parameters case). We show that for the former case, when the intrinsic amplitude is equal to the well-known minimum detectable polarization, (MDP) it is, on average, detected at the 3σ level. For the latter case, when one requires a joint measurement at the same confidence level, then more counts are needed than what was required to achieve the MDP level. This additional factor is amplitude-dependent, but is ≈2.2 for intrinsic amplitudes less than about 20%. It decreases slowly with amplitude and is ≈1.8 when the amplitude is 50%. We find that the position angle uncertainty at 1σ confidence is well described by the relation σphi = 28.°5/β.

  8. Arbitrarily high super-resolving phase measurements at telecommunication wavelengths

    SciTech Connect

    Kothe, Christian; Bjoerk, Gunnar; Bourennane, Mohamed

    2010-06-15

    We present two experiments that achieve phase super-resolution at telecommunication wavelengths. One of the experiments is realized in the space domain and the other is realized in the time domain. Both experiments show high visibility and are performed with standard lasers and single-photon detectors. The first experiment uses six-photon coincidences, whereas the latter experiment needs no coincidence measurements, is easy to perform, and achieves, in principle, arbitrarily high phase super-resolution. Here, we demonstrate a 30-fold increase of the resolution. We stress that neither entanglement nor joint detection is needed in these experiments, which demonstrates that neither is necessary to achieve phase super-resolution.

  9. Time-resolved fluorescence measurements of actin-phalloidin interactions

    NASA Astrophysics Data System (ADS)

    Helms, Michael K.; French, Todd E.

    2000-03-01

    Compounds that interact with the cytoskeleton affect mobility and division, making them useful for treatment of certain types of cancer. Actin binding drugs such as the phallotoxins (small, bicyclic peptides) bind to and stabilize actin polymers (F-actin) without binding to actin monomers (G-actin). It has been shown that the intensity of fluorescently labeled phallotoxins such as fluorescein- phalloidin and rhodamine-phalloidin increases upon bind F- actin. We used LJL BioSystems' new FLAReTM technology to measure excited state lifetime changes of fluorescein- phalloidin and rhodamine-phalloidin upon binding to F- actin.

  10. [A method for time-resolved laser-induced breakdown spectroscopy measurement].

    PubMed

    Pan, Cong-Yuan; Han, Zhen-Yu; Li, Chao-Yang; Yu, Yun-Si; Wang, Sheng-Bo; Wang, Qiu-Ping

    2014-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) is strongly time related. Time-resolved LIBS measurement is an important technique for the research on laser induced plasma evolution and self-absorption of the emission lines. Concerning the temporal characteristics of LIBS spectrum, a method is proposed in the present paper which can achieve micros-scale time-resolved LIBS measurement by using general ms-scale detector. By setting different integration delay time of the ms-scale spectrum detector, a series of spectrum are recorded. And the integration delay time interval should be longer than the worst temporal precision. After baseline correction and spectrum fitting, the intensity of the character line was obtained. Calculating this intensity with differential method at a certain time interval and then the difference value is the time-resolved line intensity. Setting the plasma duration time as X-axis and the time-resolved line intensity as Y-axis, the evolution curve of the character line intensity can be plotted. Character line with overlap-free and smooth background should be a priority to be chosen for analysis. Using spectrometer with ms-scale integration time and a control system with temporal accuracy is 0.021 micros, experiments carried out. The results validate that this method can be used to characterize the evolution of LIBS characteristic lines and can reduce the cost of the time-resolved LIBS measurement system. This method makes high time-resolved LIBS spectrum measurement possible with cheaper system.

  11. Effects of spin diffusion on electron spin relaxation time measured with a time-resolved microscopic photoluminescence technique

    SciTech Connect

    Ikeda, Kazuhiro Kawaguchi, Hitoshi

    2015-02-07

    We performed measurements at room temperature for a GaAs/AlGaAs multiple quantum well grown on GaAs(110) using a time-resolved microscopic photoluminescence (micro-PL) technique to find what effects spin diffusion had on the measured electron spin relaxation time, τ{sub s}, and developed a method of estimating the spin diffusion coefficient, D{sub s}, using the measured data and the coupled drift-diffusion equations for spin polarized electrons. The spatial nonuniformities of τ{sub s} and the initial degree of electron spin polarization caused by the pump intensity distribution inside the focal spot were taken into account to explain the dependence of τ{sub s} on the measured spot size, i.e., a longer τ{sub s} for a smaller spot size. We estimated D{sub s} as ∼100 cm{sup 2}/s, which is similar to a value reported in the literature. We also provided a qualitative understanding on how spin diffusion lengthens τ{sub s} in micro-PL measurements.

  12. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  13. Transmission grating based extreme ultraviolet imaging spectrometer for time and space resolved impurity measurements.

    PubMed

    Kumar, Deepak; Stutman, Dan; Tritz, Kevin; Finkenthal, Michael; Tarrio, Charles; Grantham, Steven

    2010-10-01

    A free standing transmission grating based imaging spectrometer in the extreme ultraviolet range has been developed for the National Spherical Torus Experiment (NSTX). The spectrometer operates in a survey mode covering the approximate spectral range from 30 to 700 Å and has a resolving capability of δλ/λ on the order of 3%. Initial results from space resolved impurity measurements from NSTX are described in this paper.

  14. Marine fluorescence from high spectrally resolved satellite measurements

    NASA Astrophysics Data System (ADS)

    Wolanin, Aleksandra; Dinter, Tilman; Rozanov, Vladimir; Noël, Stefan; Vountas, Marco; Burrows, John P.; Bracher, Astrid

    2014-05-01

    When chlorophyll molecules absorb light, most of this energy is transformed into chemical energy in a process of photosynthesis. However, a fraction of the energy absorbed is reemitted as fluorescence. As a result of its relationship to photosynthetic e?ciency, information about chlorophyll fluorescence can be used to assess the physiological state of phytoplankton (Falkowski and Kolber,1995). In-situ measurements of chlorophyll fluorescence are widespread in physiological and ecophysiological studies. When retrieved from space, chlorophyll fluorescence can improve our knowledge of global biogeochemical cycles and phytoplankton productivity (Behrenfeld et al., 2009; Huot et al., 2013) by providing high coverage and periodicity. So far, the only satellite retrieval of sun-induced marine fluorescence, Fluorescence Line Height (FLH), was designed for MODIS (Abbott and Letelier, 1999), and later also applied to the similar sensor MERIS (Gower et al., 2004). However, it could so far not be evaluated on global scale. Here, we present a different approach to observe marine chlorophyll fluorescence, based on the Differential Optical Absorption Spectroscopy (DOAS) technique (Perner and Platt, 1979) applied to the hyperspectral data from Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and Global Ozone Monitoring Experiment-2 (GOME-2). Since fluorescence, as a trans-spectral process, leads to the shift of the wavelength of the radiation, it can be observed in the filling-in of Fraunhofer lines. In our retrieval, we evaluate the filling-in of the Zeeman triplet Fraunhofer line FeI at 684.3 nm, which is located very close to the emission peak of marine fluorescence (~685 nm). In order to conduct the chlorophyll fluorescence retrieval with the DOAS method, we calculated the reference spectra for chlorophyll fluorescence, based on simulations performed with the coupled ocean-atmosphere radiative transfer model SCIATRAN (Rozanov et al., 2014

  15. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  16. Dynamic phase measurements based on a polarization Michelson interferometer employing a pixelated polarization camera

    NASA Astrophysics Data System (ADS)

    Serrano-Garcia, David I.; Otani, Yukitoshi

    2017-02-01

    We implemented an interferometric configuration capable of following a phase variation in time. By using a pixelated polarization camera, the system is able to retrieve the phase information instantaneously avoiding the usage of moving components and the necessity of an extra replication method attached at the output of the interferometer. Taking into account the temporal stability obtained from the system, a spatial-temporal phase demodulation algorithm can be implemented on frequency domain for the dynamic phase measurement. Spatial resolution is analyzed experimentally using a USAF pattern, and dynamic phase measurements were done on air and water medium variations due to a jet flame and a living fish as a biological sample, respectively.

  17. Distributed measurement of birefringence dispersion in polarization-maintaining fibers.

    PubMed

    Tang, Feng; Wang, Xiang-Zhao; Zhang, Yimo; Jing, Wencai

    2006-12-01

    A new method to measure the birefringence dispersion in high-birefringence polarization-maintaining fibers is presented using white-light interferometry. By analyzing broadening of low-coherence interferograms obtained in a scanning Michelson interferometer, the birefringence dispersion and its variation along different fiber sections are acquired with high sensitivity and accuracy. Birefringence dispersions of two PANDA fibers at their operation wavelength are measured to be 0.011 ps/(km nm) and 0.018 ps/(km nm), respectively. Distributed measurement capability of the method is also verified experimentally.

  18. Influence of vibration disturbance during polarization coupling measurement of polarization-maintaining fiber.

    PubMed

    Guo, Zhenwu; Zhang, Hongxia; Chen, Xinwei; Jia, Dagong; Liu, Tiegen

    2011-07-10

    The principle of the mode cross coupling in polarization-maintaining fiber based on white-light interferometry was analyzed. The method of measuring the polarization mode coupling with a spatial Michelson interferometer was presented. Analysis and emulation were carried out for the vibration disturbance signal caused by the mechanical scanning and the influence the vibration imposed on the judgment of coupling intensity. The interference signal envelope is extracted by a Hilbert transform and fitted by a Gaussian least-squares method under the different scanning speed. It is indicated that the detection accuracy varies with the vibration amplitude, which varies with scanning speed. The best scanning speed of the system should be from 0.7 mm/s to 0.9 mm/s to achieve the minimum detection error.

  19. POLARBEAR-2: an instrument for CMB polarization measurements

    NASA Astrophysics Data System (ADS)

    Inoue, Y.; Ade, P.; Akiba, Y.; Aleman, C.; Arnold, K.; Baccigalupi, C.; Barch, B.; Barron, D.; Bender, A.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; de Haan, T.; Dobbs, M. A.; Ducout, A.; Dünner, R.; Elleflot, T.; Errard, J.; Fabbian, G.; Feeney, S.; Feng, C.; Fuller, G.; Gilbert, A. J.; Goeckner-Wald, N.; Groh, J.; Hall, G.; Halverson, N.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Howe, L.; Irie, F.; Jaehnig, G.; Jaffe, A.; Jeong, O.; Katayama, N.; Kaufman, J. P.; Kazemzadeh, K.; Keating, B. G.; Kermish, Z.; Keskitalo, R.; Kisner, T. S.; Kusaka, A.; Le Jeune, M.; Lee, A. T.; Leon, D.; Linder, E. V.; Lowry, L.; Matsuda, F.; Matsumura, T.; Miller, N.; Mizukami, K.; Montgomery, J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Raum, C. R.; Rebeiz, G. M.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Segawa, Y.; Sherwin, B. D.; Shirley, I.; Siritanasak, P.; Stebor, N.; Stompor, R.; Suzuki, J.; Suzuki, A.; Tajima, O.; Takada, S.; Takatori, S.; Teply, G. P.; Tikhomirov, A.; Tomaru, T.; Whitehorn, N.; Zahn, A.; Zahn, O.

    2016-07-01

    POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both primordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision σ(r) > 0:01, and the sum of neutrino masses, Σmz, with σ(Σmv) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.

  20. Polarization-Resolved Raman Study of Bulk-like and Davydov-Induced Vibrational Modes of Exfoliated Black Phosphorus.

    PubMed

    Phaneuf-L'Heureux, Anne-Laurence; Favron, Alexandre; Germain, Jean-Francis; Lavoie, Patrick; Desjardins, Patrick; Leonelli, Richard; Martel, Richard; Francoeur, Sebastien

    2016-12-14

    Owing to its crystallographic structure, black phosphorus is one of the few 2D materials expressing strongly anisotropic optical, transport, and mechanical properties. We report on the anisotropy of electron-phonon interactions through a polarization-resolved Raman study of the four vibrational modes of atomically thin black phosphorus (2D phosphane): the three bulk-like modes Ag(1), B2g, and Ag(2) and the Davydov-induced mode labeled Ag(B2u). The complex Raman tensor elements reveal that the relative variation in permittivity of all Ag modes is irrespective of the atomic motion involved lowest along the zigzag direction, the basal anisotropy of these variations is most pronounced for Ag(2) and Ag(B2u), and interlayer interactions in multilayer samples lead to reduced anisotropy. The bulk-forbidden Ag(B2u) mode appears for n ≥ 2 and quickly subsides in thicker layers. It is assigned to a Davydov-induced IR to Raman conversion of the bulk IR mode B2u and exhibits characteristics similar to Ag(2). Although this mode is expected to be weak, an electronic resonance significantly enhances its Raman efficiency such that it becomes a dominant mode in the spectrum of bilayer 2D phosphane.

  1. Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain.

    PubMed

    Dong, H; Shum, P; Yan, M; Zhou, J Q; Ning, G X; Gong, Y D; Wu, C Q

    2006-06-12

    A generalized Mueller matrix method (GMMM) is proposed to measure the polarization mode dispersion (PMD) in an optical fiber system with polarization-dependent loss or gain (PDL/G). This algorithm is based on the polar decomposition of a 4X4 matrix which corresponds to a Lorentz transformation. Compared to the generalized Poincaré sphere method, the GMMM can measure PMD accurately with a relatively larger frequency step, and the obtained PMD data has very low noise level.

  2. The Sky Polarization Observatory (SPOrt): a project to measure the diffused sky polarization from the International Space Station Alpha (ISSA)

    NASA Astrophysics Data System (ADS)

    Cortiglioni, S.

    1999-07-01

    The Sky Polarization Observatory (SPOrt), a project to measure the diffused sky polarization in the frequency range of 22-90 GHz from the International Space Station, is described in its current configuration. Some preliminary considerations about the general topic of polarization in radiometric observations are made, in order to introduce the importance of polarimetric measurements in the more general context of Cosmic Microwave Background observations. The International Space Station is also introduced as a quite good opportunity to address such problematics.

  3. Cluster mass fraction and size distribution determined by fs-time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Gao, Xiaohui; Wang, Xiaoming; Shim, Bonggu; Arefiev, Alexey; Tushentsov, Mikhail; Breizman, Boris; Downer, Mike

    2009-11-01

    Characterization of supersonic gas jets is important for accurate interpretation and control of laser-cluster experiments. While average size and total atomic density can be found by standard Rayleigh scatter and interferometry, cluster mass fraction and size distribution are usually difficult to measure. Here we determine the cluster fraction and the size distribution with fs-time-resolved refractive index and absorption measurements in cluster gas jets after ionization and heating by an intense pump pulse. The fs-time-resolved refractive index measured with frequency domain interferometer (FDI) shows different contributions from monomer plasma and cluster plasma in the time domain, enabling us to determine the cluster fraction. The fs-time-resolved absorption measured by a delayed probe shows the contribution from clusters of various sizes, allowing us to find the size distribution.

  4. Time-resolved measurement of Landau-Zener tunneling in periodic potentials.

    PubMed

    Zenesini, A; Lignier, H; Tayebirad, G; Radogostowicz, J; Ciampini, D; Mannella, R; Wimberger, S; Morsch, O; Arimondo, E

    2009-08-28

    We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. Using different experimental protocols we were able to measure the tunneling probability both in the adiabatic and in the diabatic bases of the system. We also experimentally determine the contribution of the momentum width of the Bose condensates to the temporal width of the tunneling steps and discuss the implications for measuring the jump time in the Landau-Zener problem.

  5. Time-Resolved Measurement of Landau-Zener Tunneling in Periodic Potentials

    SciTech Connect

    Zenesini, A.; Radogostowicz, J.; Ciampini, D.; Mannella, R.; Arimondo, E.; Lignier, H.; Morsch, O.; Tayebirad, G.; Wimberger, S.

    2009-08-28

    We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. Using different experimental protocols we were able to measure the tunneling probability both in the adiabatic and in the diabatic bases of the system. We also experimentally determine the contribution of the momentum width of the Bose condensates to the temporal width of the tunneling steps and discuss the implications for measuring the jump time in the Landau-Zener problem.

  6. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating.

    PubMed

    Delong, K W; Ladera, C L; Trebino, R; Kohler, B; Wilson, K R

    1995-03-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms.

  7. Ultrashort-pulse measurement using noninstantaneous nonlinearities: Raman effects in frequency-resolved optical gating

    SciTech Connect

    DeLong, K.W.; Ladera, C.L.; Trebino, R.; Kohler, B.; Wilson, K.R.

    1995-03-01

    Ultrashort-pulse-characterization techniques generally require instantaneously responding media. We show that this is not the case for frequency-resolved optical gating (FROG). We include, as an example, the noninstantaneous Raman response of fused silica, which can cause errors in the retrieved pulse width of as much as 8% for a 25-fs pulse in polarization-gate FROG. We present a modified pulse-retrieval algorithm that deconvolves such slow effects and use it to retrieve pulses of any width. In experiments with 45-fs pulses this algorithm achieved better convergence and yielded a shorter pulse than previous FROG algorithms.

  8. Two-dimensional time resolved measurements of toroidal velocity correlated with density blobs in magnetized plasmas

    SciTech Connect

    Labit, B.; Furno, I.; Fasoli, A.; Podesta, M.

    2008-08-15

    A new method for toroidal velocity measurements with Mach probes is presented. This technique is based on the conditional sampling technique, the triggering events being density blobs. A reconstruction of the time resolved two-dimensional profile of electron density, electron temperature, plasma potential, and toroidal velocity is possible with a single point measurement on a shot-to-shot basis.

  9. Superthermal electron distribution measurements from polarized electron cyclotron emission

    SciTech Connect

    Luce, T.C.; Efthimion, P.C.; Fisch, N.J.

    1988-06-01

    Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.

  10. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    PubMed

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  11. USGS Polar Temperature Logging System, Description and Measurement Uncertainties

    USGS Publications Warehouse

    Clow, Gary D.

    2008-01-01

    This paper provides an updated technical description of the USGS Polar Temperature Logging System (PTLS) and a complete assessment of the measurement uncertainties. This measurement system is used to acquire subsurface temperature data for climate-change detection in the polar regions and for reconstructing past climate changes using the 'borehole paleothermometry' inverse method. Specifically designed for polar conditions, the PTLS can measure temperatures as low as -60 degrees Celsius with a sensitivity ranging from 0.02 to 0.19 millikelvin (mK). A modular design allows the PTLS to reach depths as great as 4.5 kilometers with a skid-mounted winch unit or 650 meters with a small helicopter-transportable unit. The standard uncertainty (uT) of the ITS-90 temperature measurements obtained with the current PTLS range from 3.0 mK at -60 degrees Celsius to 3.3 mK at 0 degrees Celsius. Relative temperature measurements used for borehole paleothermometry have a standard uncertainty (urT) whose upper limit ranges from 1.6 mK at -60 degrees Celsius to 2.0 mK at 0 degrees Celsius. The uncertainty of a temperature sensor's depth during a log depends on specific borehole conditions and the temperature near the winch and thus must be treated on a case-by-case basis. However, recent experience indicates that when logging conditions are favorable, the 4.5-kilometer system is capable of producing depths with a standard uncertainty (uZ) on the order of 200-250 parts per million.

  12. 3D measurements in the polar mesosphere using coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Zecha, M.; Sommer, S.; Rapp, M.; Stober, G.; Latteck, R.

    2012-12-01

    Radars provide the opportunity of continuous measurements in the interesting area of the polar mesosphere. Usually the spatial resolution of measurements by pulsed VHF radars is limited by the radar beam width, transmitting pulse length, and sampling time. Due to these technical restrictions the typical small-scale structures in the mesosphere often cannot be resolved. Furthermore the quality of the estimation of dynamic atmosphere parameters is reduced if the position and direction of scatter returns cannot determined exactly. Radar interferometry methods have been developed to reduce these limitations. The coherent radar imaging method gives a high resolving image of the scatter structure insight the radar beam volume. In recent years the VHF radar MAARSY was installed in Andenes/Norway (69°N). This new radar was designed to allow improved three-dimensional observations in the atmosphere. It consists of 433 Yagis and allows a minimum beam width of about 4 degree. The beam direction can be changed pulse-by-pulse freely in azimuth angle and practicable up to 40 degree in zenith angle. The pulse length can be varied from a couple of km down to 50 m. Up to 16 receiving channels of spaced antennas can be used. In this presentation we show the detection of the angles-of-arrival of radar echoes and the correction of the wind measurements. We demonstrate the improvement of measurement results by using coherent radar imaging. The differences to the results of conventional methods depend on the beam width, range resolution, antenna distances, and beam tilting. We show that the application of interferometry is necessary to improve considerably the quality of 3D-measurement results. Furthermore we demonstrate the synthesis of high resolved images to get a real 3D image of the mesosphere.

  13. FIRST DIRECT MEASUREMENTS OF TRANSVERSE WAVES IN SOLAR POLAR PLUMES USING SDO/AIA

    SciTech Connect

    Thurgood, J. O.; Morton, R. J.; McLaughlin, J. A.

    2014-07-20

    There is intense interest in determining the precise contribution of Alfvénic waves propagating along solar structures to the problems of coronal heating and solar wind acceleration. Since the launch of SDO/AIA, it has been possible to resolve transverse oscillations in off-limb solar polar plumes and recently McIntosh et al. concluded that such waves are energetic enough to play a role in heating the corona and accelerating the fast solar wind. However, this result is based on comparisons to Monte Carlo simulations and confirmation via direct measurements is still outstanding. Thus, this Letter reports on the first direct measurements of transverse wave motions in solar polar plumes. Over a four hour period, we measure the transverse displacements, periods, and velocity amplitudes of 596 distinct oscillations observed in the 171 Å channel of SDO/AIA. We find a broad range of non-uniformly distributed parameter values which are well described by log-normal distributions with peaks at 234 km, 121 s, and 8 km s{sup –1}, and mean and standard deviations of 407 ± 297 km, 173 ± 118 s, and 14 ± 10 km s{sup –1}. Within standard deviations, our direct measurements are broadly consistent with previous results. However, accounting for the whole of our observed non-uniform parameter distribution we calculate an energy flux of 9-24 W m{sup –2}, which is 4-10 times below the energy requirement for solar wind acceleration. Hence, our results indicate that transverse magnetohydrodynamic waves as resolved by SDO/AIA cannot be the dominant energy source for fast solar wind acceleration in the open-field corona.

  14. Direct measurement of the dielectric polarization properties of DNA

    PubMed Central

    Cuervo, Ana; Dans, Pablo D.; Carrascosa, José L.; Orozco, Modesto; Gomila, Gabriel; Fumagalli, Laura

    2014-01-01

    The electric polarizability of DNA, represented by the dielectric constant, is a key intrinsic property that modulates DNA interaction with effector proteins. Surprisingly, it has so far remained unknown owing to the lack of experimental tools able to access it. Here, we experimentally resolved it by detecting the ultraweak polarization forces of DNA inside single T7 bacteriophages particles using electrostatic force microscopy. In contrast to the common assumption of low-polarizable behavior like proteins (εr ∼ 2–4), we found that the DNA dielectric constant is ∼8, considerably higher than the value of ∼3 found for capsid proteins. State-of-the-art molecular dynamic simulations confirm the experimental findings, which result in sensibly decreased DNA interaction free energy than normally predicted by Poisson–Boltzmann methods. Our findings reveal a property at the basis of DNA structure and functions that is needed for realistic theoretical descriptions, and illustrate the synergetic power of scanning probe microscopy and theoretical computation techniques. PMID:25136104

  15. Supercontiuum laser-based instrument to measure hyperspectral polarized BRDF

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Rivière, Nicolas; Hespel, Laurent; Biscans, Beatrice

    2011-11-01

    Recent developments of active imaging and remote sensing systems in security and defence community require comprehensive optical characterizations of man-made targets. Optical signature analysis of various targets implies a better and comprehensive understanding of reflectance properties such as Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR). Measurements and modeling of optical signatures are valuable for target classification and identification. Onera, the French Aerospace Lab, has developed an original optical instrument to measure hyperspectral polarized BRDF. Measurements are carried out on various targets to provide relevant data to simulate actual and future active imaging devices. This paper reviews the design of the instrument and its hyperspectral calibration procedure in details. A new specific tensorial hyperspectral reflectance framework is introduced. Experimental results for reference Lambertian targets and airport targets are presented to illustrate the instrument capacities. A large optical properties database is build from these measurements for defence, security and industrial needs.

  16. Coronal magnetic fields from the inversion of linear polarization measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Lin, Haosheng; Kuhn, Jeff

    2010-02-01

    Real 3-D coronal magnetic field reconstruction is expected to be made based on the technologies of IR spectrometry and tomography, in which the data from other wavelengths can be used as critical reference. Our recent studies focused on this issue are briefly reviewed in this paper. Liu & Lin (2008) first evaluated the validity of potential field source surface model applied to one of five limb regions in the corona by comparing the theoretical polarization maps with SOLARC observations in the IR Fe XIII 10747 Å forbidden coronal emission line (CEL). The five limb coronal regions were then studied together in order to study the spatial relation between the bright EUV features on the solar disk and the inferred IR emission sources, which were obtained from the inversion of the SOLARC linear polarization (LP) measurements (Liu 2009). The inversion for each fiber data in the field of view was made by finding the best location where the difference between the synthesized and the observed polarizations reaches the minimum in the integration path along the line of sight. We found a close relationship between the inferred IR emission source locations and the EUV strong emission positions.

  17. Measurement of W Boson Polarization in Top Quark Decay

    SciTech Connect

    Vickey, Trevor Neil

    2004-01-01

    A measurement of the polarization of the W boson from top quark decay is an excellent test of the V-A form of the charged-current weak interaction in the standard model. Since the longitudinal W boson is intimately related to the electroweak symmetry breaking mechanism, and the standard model gives a specific prediction for the fraction of longitudinal W bosons from top decays, it is of particular interest for study. This thesis presents a measurement of W boson polarization in top quark decays through an analysis of the cosθ* distribution in the lepton-plus-jets channel of t$\\bar{t}$ candidate events from p$\\bar{p}$ collisions at √s = 1.96 TeV. This measurement uses an integrated luminosity of ~ 162 pb-1 of data collected with the CDF Run II detector, resulting in 31 t$\\bar{t}$ candidate events with at least one identified b jet. Using a binned likelihood fit to the cosθ* distribution from the t$\\bar{t}$ candidate events found in this sample, the fraction of W bosons with longitudinal polarization is determined to be F0 = 0.99$+0.29\\atop{-0.35}$stat.) ± 0.19(syst.), F0 > 0.33 @ 95% CL. This result is consistent with the standard model prediction, given a top quark mass of 174.3 GeV/c2, of F0 = 0.701 ± 0.012.

  18. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  19. Absolute Spatially- and Temporally-Resolved Optical Emission Measurements of rf Glow Discharges in Argon

    PubMed Central

    Djurović, S.; Roberts, J. R.; Sobolewski, M. A.; Olthoff, J. K.

    1993-01-01

    Spatially- and temporally-resolved measurements of optical emission intensities are presented from rf discharges in argon over a wide range of pressures (6.7 to 133 Pa) and applied rf voltages (75 to 200 V). Results of measurements of emission intensities are presented for both an atomic transition (Ar I, 750.4 nm) and an ionic transition (Ar II, 434.8 nm). The absolute scale of these optical emissions has been determined by comparison with the optical emission from a calibrated standard lamp. All measurements were made in a well-defined rf reactor. They provide detailed characterization of local time-resolved plasma conditions suitable for the comparison with results from other experiments and theoretical models. These measurements represent a new level of detail in diagnostic measurements of rf plasmas, and provide insight into the electron transport properties of rf discharges. PMID:28053464

  20. Spatially-resolved spectroscopic technique for measuring optical properties of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of optical properties is important to understand light interaction with biological materials, and to develop effective optical sensing techniques for property characterization and quality measurement of food products. This chapter reviews spatially-resolved method, with the focus on f...

  1. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  2. Using Polar Coronal Hole Area Measurements to Determine the Solar Polar Magnetic Field Reversal in Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Karna, N.; Webber, S.A. Hess; Pesnell, W.D.

    2014-01-01

    An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.

  3. Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited

    SciTech Connect

    Horng, M.L.; Gardecki, J.A.; Papazyan, A.; Maroncelli, M.

    1995-11-30

    Time-resolved emission measurements of the solute coumarin 153 (C153) are used to probe the time dependence of solvation in 24 common solvents at room temperature. Significant improvements in experimental time resolution ({approx}100 fs instrument response) as well as corresponding improvements in analysis methods provide confidence that all of the spectral evolution (including both the inertial and the diffusive parts of the response) are observed in these measurements. Extensive data concerning the steady-state solvatochromism of C153, coupled to an examination of the effects of vibrational relaxation, further demonstrate that the spectral dynamics being observed accurately monitor the dynamics of nonspecific solvation. Comparisons to theoretical predictions show that models based on the dielectric response of the pure solvent provide a semiquantitative understanding of the dynamics observed. 156 refs., 26 figs., 5 tabs.

  4. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    NASA Astrophysics Data System (ADS)

    Clerc, F.; Njiki-Menga, G.-H.; Witschger, O.

    2013-04-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  5. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    SciTech Connect

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  6. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  7. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals.

    PubMed

    Haugh, M J; Wu, M; Jacoby, K D; Loisel, G P

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  8. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  9. [Some problems in measuring the frequency-resolving power of hearing].

    PubMed

    Supin, A Ia

    2004-08-01

    In spite of detailed elaboration of masking methods of measuring the frequency selectivity of hearing, such measurements actually are not in use for diagnostics purpose because of their time-consumption and ambiguity of extrapolation of the results to perception of complex sound spectrum patterns. A method of direct measuring of spectrum resolving power using rippled-noise test, is suggested. Results of measurements have shown that the actual ability of hearing to discriminate complex sound spectra is higher than that predicted by acuteness of auditory frequency filters: dependence of acuteness of auditory frequency filters on sound level does not influence the ability to discriminate complex spectra; and the influence on interfering noise on the frequency resolving power can not be explained by a decrease of the spectral contrast by the spread of excitation.

  10. Passive measurement and interpretation of polarized microwave brightness temperatures

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Kunkee, D. B.; Piepmeier, J. R.

    1995-01-01

    The goal of this project is to develop satellite-based observational techniques for measuring both oceanic and atmospheric variables using passive polarimetric radiometry. Polarimetric radiometry offers a potential alternative to radar scatterometry in observing global ocean surface wind direction from satellites. Polarimetric radiometry might also provide a means of detecting cell-top ice in convective storms by virtue of the polarizing properties of oriented ice particles, and thus facilitate estimation of the phase of the storm. The project focuses on the development of polarimetric microwave radiometers using digital cross-correlators for obtaining precise measurements of all four Stokes' parameters. As part of the project a unique four-band polarimetric imaging radiometer, the Polar Scanning Radiometer (PSR), is being designed for use on the NASA DC-8 aircraft. In addition to providing an aircraft-based demonstration of digital correlation technology the PSR will significantly enhance the microwave imaging capability of the existing suite of DC-8 instruments. During the first grant year excellent progress has been made in the following areas: (1) demonstrating digital correlation radiometry, (2) fabricating aircraft-qualified correlators for use in the PSR, and (3) modeling observed SSM/I brightness signatures of ocean wind direction.

  11. Measurement of parameters of polarization in the living human eye using imaging polarimetry.

    PubMed

    Bueno, J M

    2000-01-01

    An imaging polarimeter using liquid-crystal variable retarders (Bueno, J. M., Artal, P. (1999). Double-pass imaging polarimetry in the human eye. Optics Letters, 24, 64-66) has been used to study the parameters of polarization in the living human eye. Retardation introduced by birefringent structures of the eye has been calculated by using a spatially resolved collection of Mueller matrices obtained from series of 16 double-pass retinal images. Results for images with a 2-mm pupil diameter show that although the retardation introduced by the eye in a double-pass varies among individuals, at the central cornea the slow axis is directed along the upper-temporal to lower-nasal line and the ellipticity is close to zero, which indicates the presence of linear birefringence. As pupil size increased, the measured retardation also increased, while ocular birefringence remained linear and azimuthal angle changed without a clear tendency.

  12. Frequency-resolved noise figure measurements of phase (in)sensitive fiber optical parametric amplifiers.

    PubMed

    Malik, R; Kumpera, A; Lorences-Riesgo, A; Andrekson, P A; Karlsson, M

    2014-11-17

    We measure the frequency-resolved noise figure of fiber optical parametric amplifiers both in phase-insensitive and phase-sensitive modes in the frequency range from 0.03 to 3 GHz. We also measure the variation in noise figure due to the degradation in pump optical signal to noise ratio and also as a function of the input signal powers. Noise figure degradation due to stimulated Brillouin scattering is observed.

  13. Neutron Polarization Measurements with a 3He Spin Filter for the NPDGamma Experiment

    NASA Astrophysics Data System (ADS)

    Musgrave, Matthew

    2012-10-01

    The Fundamental Neutron Physics Beamline (FNPB) at the Spallation Neutron Source (SNS) provides a pulsed beam of polarized cold neutrons for the NPDGamma experiment which intends to measure the parity violating asymmetry in the emitted gamma rays from the capture of polarized neutrons on protons in a para-hydrogen target. The neutrons are polarized by a multi-channel super mirror polarizer, and the polarization of each neutron pulse can be flipped with an RF spin rotator. The accuracy of the NPDGamma experiment and various commissioning experiments is dependent on the polarization of the neutron beam and the efficiency of the RF spin rotator. These parameters are measured with a polarized 3He spin filter at multiple points in the beam cross section and with multiple 3He polarizations. The measured neutron polarization is compared to a McStas model to validate our results and our beam averaging technique. The analysis methods, background effects, and results will be discussed.

  14. Phase-resolved surface pressure and heat-transfer measurements on the blade of a two-stage turbine

    SciTech Connect

    Dunn, M.G.; Haldeman, C.W. Jr.

    1995-12-01

    Phase-resolved surface pressure, and unsteady pressure measurements are reported for the first-stage blade row of the Space Shuttle Main Engine two-stage fuel-side turbine. Measurements were made at 10, 50, and 90 percent span on both the pressure and suction surfaces of the blade. Phase-resolved and unsteady heat-flux measurements are also reported.

  15. Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    PubMed Central

    Gorfman, S.; Simons, H.; Iamsasri, T.; Prasertpalichat, S.; Cann, D. P.; Choe, H.; Pietsch, U.; Watier, Y.; Jones, J. L.

    2016-01-01

    Structure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal and strain in ferroelectrics is an ongoing challenge that so far has obscured its fundamental behaviour. By utilizing small intensity differences between Friedel pairs due to resonant scattering, we demonstrate a time-resolved X-ray diffraction technique for directly and simultaneously measuring both lattice strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviour. PMID:26864859

  16. Microlensed dual-fiber probe for depth-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Choi, Hae Young; Ryu, Seon Young; Kim, Jae Young; Kim, Geon Hee; Park, Seong Jun; Lee, Byeong Ha; Chang, Ki Soo

    2011-07-01

    We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.

  17. Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics

    NASA Technical Reports Server (NTRS)

    Puchalla, Jason; Adamek, Daniel; Austin, Robert

    2004-01-01

    We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.

  18. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE PAGES

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; ...

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  19. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    SciTech Connect

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-$\\alpha$ emission. Density profiles were measured from K-$\\alpha$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$\\alpha$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  20. Spectrum Resolving Power of Hearing: Measurements, Baselines, and Influence of Maskers

    PubMed Central

    Supin, Alexander Ya.

    2011-01-01

    Contemporary methods of measurement of frequency resolving power in the auditory system are reviewed. Majority of classical methods are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate). Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP). To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers. PMID:26557320

  1. Spectrum Resolving Power of Hearing: Measurements, Baselines, and Influence of Maskers.

    PubMed

    Supin, Alexander Ya

    2011-07-01

    Contemporary methods of measurement of frequency resolving power in the auditory system are reviewed. Majority of classical methods are based on the frequency-selective masking paradigm and require multi-point measurements (a number of masked thresholds should be measured to obtain a single frequency-tuning estimate). Therefore, they are rarely used for practical needs. As an alternative approach, frequency-selective properties of the auditory system may be investigated using probes with complex frequency spectrum patterns, in particular, rippled noise that is characterized by a spectrum with periodically alternating maxima and minima. The maximal ripple density discriminated by the auditory system is a convenient measure of the spectrum resolving power (SRP). To find the highest resolvable ripple density, a phase-reversal test has been suggested. Using this technique, normal SRP, its dependence on probe center frequency, spectrum contrast, and probe level were measured. The results were not entirely predictable by frequency-tuning data obtained by masking methods. SRP is influenced by maskers, with on- and off-frequency maskers influencing SRP very differently. Dichotic separation of the probe and masker results in almost complete release of SRP from influence of maskers.

  2. Angular Scattering Reflectance and Polarization Measurements of Candidate Regolith Materials Measured in the Laboratory

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Shkuratov, Yuriy; Vandervoort, Kurt; Vides, Christina L.

    2016-10-01

    The reflectance and polarization of light reflected from a solar system object indicates the chemical and textural state of the regolith. Remote sensing data are compared to laboratory angular scattering measurements and surface properties are determined.We use a Goniometric Photopolarimeter (GPP) to make angular reflectance and polarization measurements of particulate materials that simulate planetary regoliths. The GPP employs the Helmholtz Reciprocity Principle ( 2, 1) - the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces improving signal to noise. The lab data are physically equivalent to the astronomical data.Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our lab data exhibit polarization phase curves that are very similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials agree with the same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al.(3) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data indicating Europa's regolith is fine-grained, high porous with void space exceeding 90%.1. Hapke, B. W. (2012). ISBN 978-0-521-88349-82. Minnaert, M. (1941).Asrophys. J., 93, 403-410.3. Nelson, R. M. et al. (1998). Icarus, 131, 223-230.4. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359.5. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.

  3. High-accuracy absolute distance measurement with a mode-resolved optical frequency comb

    NASA Astrophysics Data System (ADS)

    Voigt, Dirk; van den Berg, Steven A.; Lešundák, Adam; van Eldik, Sjoerd; Bhattacharya, Nandini

    2016-04-01

    Optical interferometry enables highly accurate non-contact displacement measurement. The optical phase ambiguity needs to be resolved for absolute distance ranging. In controlled laboratory conditions and for short distances it is possible to track a non-interrupted displacement from a reference position to a remote target. With large distances covered in field applications this may not be feasible, e.g. in structure monitoring, large scale industrial manufacturing or aerospace navigation and attitude control. We use an optical frequency comb source to explore absolute distance measurement by means of a combined spectral and multi-wavelength homodyne interferometry. This relaxes the absolute distance ambiguity to a few tens of centimeters, covered by simpler electronic distance meters, while maintaining highly accurate optical phase measuring capability. A virtually imaged phased array spectrometer records a spatially dispersed interferogram in a single exposure and allows for resolving the modes of our near infrared comb source with 1 GHz mode separation. This enables measurements with direct traceability of the atomic clock referenced comb source. We observed agreement within 500 nm in comparison with a commercial displacement interferometer for target distances up to 50 m. Furthermore, we report on current work toward applicability in less controlled conditions. A filter cavity decimates the comb source to an increased mode separation larger than 20 GHz. A simple grating spectrometer then allows to record mode-resolved interferograms.

  4. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  5. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  6. High-accuracy time- and space-resolved Stark shift measurements

    SciTech Connect

    Bailey, J.E.; Adams, R.; Carlson, A.L.; Ching, C.H.; Filuk, A.B.; Lake, P.

    1996-07-01

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shift and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.

  7. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  8. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    SciTech Connect

    Walsh, D. A. Snedden, E. W.; Jamison, S. P.

    2015-05-04

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  9. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement

    PubMed Central

    van den Berg, Steven. A.; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-01-01

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10−8 for a distance of 50 m. PMID:26419282

  10. Mode-resolved frequency comb interferometry for high-accuracy long distance measurement.

    PubMed

    van den Berg, Steven A; van Eldik, Sjoerd; Bhattacharya, Nandini

    2015-09-30

    Optical frequency combs have developed into powerful tools for distance metrology. In this paper we demonstrate absolute long distance measurement using a single femtosecond frequency comb laser as a multi-wavelength source. By applying a high-resolution spectrometer based on a virtually imaged phased array, the frequency comb modes are resolved spectrally to the level of an individual mode. Having the frequency comb stabilized against an atomic clock, thousands of accurately known wavelengths are available for interferometry. From the spectrally resolved output of a Michelson interferometer a distance is derived. The presented measurement method combines spectral interferometry, white light interferometry and multi-wavelength interferometry in a single scheme. Comparison with a fringe counting laser interferometer shows an agreement within <10(-8) for a distance of 50 m.

  11. Time-resolved measurements of the laser burn-through of thin foils

    SciTech Connect

    Murdoch, J.W.; Kilkenny, J.D.; Gray, D.R.; Toner, W.T.

    1981-11-01

    New time-and-space-resolved measurements of the burn-through of 0.05--0.34 ..mu..m thick plastic foils irradiated with 100 psec, 1.06 ..mu..m laser pulses at approximately 10/sup 16/ Wcm/sup -1/ are presented. Comparison of the time history of the transparency of the foils with analytic and computational models suggests that the targets do not transmit until the density is well below the critical density. Comparison of the space-resolved burn-through measurements with an analytic model suggests that lateral thermal conduction is negligible. It is proposed that ion turbulence may be responsible for the high absorption and low thermal conductivity.

  12. The time resolved measurement of ultrashort terahertz-band electric fields without an ultrashort probe

    NASA Astrophysics Data System (ADS)

    Walsh, D. A.; Snedden, E. W.; Jamison, S. P.

    2015-05-01

    The time-resolved detection of ultrashort pulsed THz-band electric field temporal profiles without an ultrashort laser probe is demonstrated. A non-linear interaction between a narrow-bandwidth optical probe and the THz pulse transposes the THz spectral intensity and phase information to the optical region, thereby generating an optical pulse whose temporal electric field envelope replicates the temporal profile of the real THz electric field. This optical envelope is characterised via an autocorrelation based FROG (frequency resolved optical gating) measurement, hence revealing the THz temporal profile. The combination of a narrow-bandwidth, long duration, optical probe, and self-referenced FROG makes the technique inherently immune to timing jitter between the optical probe and THz pulse and may find particular application where the THz field is not initially generated via ultrashort laser methods, such as the measurement of longitudinal electron bunch profiles in particle accelerators.

  13. Time-resolved measurements of Cooper-pair radiative recombination in InAs quantum dots

    SciTech Connect

    Mou, S. S.; Nakajima, H.; Kumano, H.; Suemune, I.; Irie, H.; Asano, Y.; Akahane, K.; Sasaki, M.; Murayama, A.

    2015-08-21

    We studied InAs quantum dots (QDs) where electron Cooper pairs penetrate from an adjacent niobium (Nb) superconductor with the proximity effect. With time-resolved luminescence measurements at the wavelength around 1550 nm, we observed luminescence enhancement and reduction of luminescence decay time constants at temperature below the superconducting critical temperature (T{sub C}) of Nb. On the basis of these measurements, we propose a method to determine the contribution of Cooper-pair recombination in InAs QDs. We show that the luminescence enhancement measured below T{sub C} is well explained with our theory including Cooper-pair recombination.

  14. Time-resolved phase measurement of a self-amplified free-electron laser.

    PubMed

    Li, Yuelin; Lewellen, John; Huang, Zhirong; Sajaev, Vadim; Milton, Stephen V

    2002-12-02

    We report on the first time-resolved phase measurement on self-amplified spontaneous emission (SASE) free-electron laser (FEL) pulses. We observed that the spikes in the output of such free-electron laser pulses have an intrinsic positive chirp. We also observed that the energy chirp in the electron bunch mapped directly into the FEL output. Under certain conditions, the two chirps cancel each other. The experimental result was compared with simulations and interpreted with SASE theory.

  15. Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation

    SciTech Connect

    Tsang, T.; Krumbuegel, M.A.; DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1996-09-01

    We demonstrate what is to our knowledge the first frequency-resolved optical gating (FROG) technique to measure ultrashort pulses from an unamplified Ti:sapphire laser oscillator without direction-of-time ambiguity. This technique utilizes surface third-harmonic generation as the nonlinear-optical effect and, surprisingly, is the most sensitive third-order FROG geometry yet. {copyright} {ital 1996 Optical Society of America.}

  16. Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching

    NASA Astrophysics Data System (ADS)

    Lunt, Richard R.; Giebink, Noel C.; Belak, Anna A.; Benziger, Jay B.; Forrest, Stephen R.

    2009-03-01

    We demonstrate spectrally resolved photoluminescence quenching as a means to determine the exciton diffusion length of several archetype organic semiconductors used in thin film devices. We show that aggregation and crystal orientation influence the anisotropy of the diffusion length for vacuum-deposited polycrystalline films. The measurement of the singlet diffusion lengths is found to be in agreement with diffusion by Förster transfer, whereas triplet diffusion occurs primarily via Dexter transfer.

  17. Calibrating 100 Years of Polar Faculae Measurements: Implications for the Evolution of the Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Muñoz-Jaramillo, Andrés; Sheeley, Neil R.; Zhang, Jie; DeLuca, Edward E.

    2012-07-01

    Although the Sun's polar magnetic fields are thought to provide important clues for understanding the 11 year sunspot cycle, including the observed variations of its amplitude and period, the current database of high-quality polar field measurements spans relatively few sunspot cycles. In this paper, we address this deficiency by consolidating Mount Wilson Observatory polar faculae data from four data reduction campaigns, validating it through a comparison with facular data counted automatically from Michelson Doppler Imager (MDI) intensitygrams, and calibrating it against polar field measurements taken by the Wilcox Solar Observatory and average polar field and total polar flux calculated using MDI line-of-sight magnetograms. Our results show that the consolidated polar facular measurements are in excellent agreement with both polar field and polar flux estimates, making them an ideal proxy to study the evolution of the polar magnetic field. Additionally, we combine this database with sunspot area measurements to study the role of the polar magnetic flux in the evolution of the heliospheric magnetic field (HMF). We find that there is a strong correlation between HMF and polar flux at solar minimum and that, taken together, polar flux and sunspot area are better at explaining the evolution of the HMF during the last century than sunspot area alone.

  18. CALIBRATING 100 YEARS OF POLAR FACULAE MEASUREMENTS: IMPLICATIONS FOR THE EVOLUTION OF THE HELIOSPHERIC MAGNETIC FIELD

    SciTech Connect

    Munoz-Jaramillo, Andres; DeLuca, Edward E.; Sheeley, Neil R.; Zhang, Jie E-mail: edeluca@cfa.harvard.edu E-mail: jzhang7@gmu.edu

    2012-07-10

    Although the Sun's polar magnetic fields are thought to provide important clues for understanding the 11 year sunspot cycle, including the observed variations of its amplitude and period, the current database of high-quality polar field measurements spans relatively few sunspot cycles. In this paper, we address this deficiency by consolidating Mount Wilson Observatory polar faculae data from four data reduction campaigns, validating it through a comparison with facular data counted automatically from Michelson Doppler Imager (MDI) intensitygrams, and calibrating it against polar field measurements taken by the Wilcox Solar Observatory and average polar field and total polar flux calculated using MDI line-of-sight magnetograms. Our results show that the consolidated polar facular measurements are in excellent agreement with both polar field and polar flux estimates, making them an ideal proxy to study the evolution of the polar magnetic field. Additionally, we combine this database with sunspot area measurements to study the role of the polar magnetic flux in the evolution of the heliospheric magnetic field (HMF). We find that there is a strong correlation between HMF and polar flux at solar minimum and that, taken together, polar flux and sunspot area are better at explaining the evolution of the HMF during the last century than sunspot area alone.

  19. Polarization-Sensitive Measurements Of Magnetic Fields In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    NASA Astrophysics Data System (ADS)

    Haque, Showera; Wallace, Matthew S.; Neill, Paul; Presura, Radu

    2016-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. The measurements are difficult in this regime because the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. Using an idea proposed by Tessarin et al. (2011), we have measured the field in magnetized laser plasmas and in the current-driven exploding wire plasmas. Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator, and for wire array plasmas driven by the 1 MA configuration of the Zebra generator. We explore the response of the Al III 4s 2S1/2- 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma in two orthogonal polarizations. In these measurements the Zeeman splitting was not resolved, but the magnetic field strength was measured from the difference between the widths of the line profiles. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  20. Velocity and Temperature Measurement in Supersonic Free Jets Using Spectrally Resolved Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2004-01-01

    The flow fields of unheated, supersonic free jets from convergent and convergent-divergent nozzles operating at M = 0.99, 1.4, and 1.6 were measured using spectrally resolved Rayleigh scattering technique. The axial component of velocity and temperature data as well as density data obtained from a previous experiment are presented in a systematic way with the goal of producing a database useful for validating computational fluid dynamics codes. The Rayleigh scattering process from air molecules provides a fundamental means of measuring flow properties in a non-intrusive, particle free manner. In the spectrally resolved application, laser light scattered by the air molecules is collected and analyzed using a Fabry-Perot interferometer (FPI). The difference between the incident laser frequency and the peak of the Rayleigh spectrum provides a measure of gas velocity. The temperature is measured from the spectral broadening caused by the random thermal motion and density is measured from the total light intensity. The present point measurement technique uses a CW laser, a scanning FPI and photon counting electronics. The 1 mm long probe volume is moved from point to point to survey the flow fields. Additional arrangements were made to remove particles from the main as well as the entrained flow and to isolate FPI from the high sound and vibration levels produced by the supersonic jets. In general, velocity is measured within +/- 10 m/s accuracy and temperature within +/- 10 K accuracy.

  1. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    NASA Astrophysics Data System (ADS)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  2. ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land

    NASA Technical Reports Server (NTRS)

    Zwally, H. J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The Ice, Cloud and Land Elevation Satellite (ICESat) mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA's Earth Observing System (EOS) of satellites. Time-series of elevation changes will enable determination of the present-day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to global sea level rise. Other scientific objectives of ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurements of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols. The accuracy of surface ranging is 10 cm, averaged over 60 m diameter laser footprints spaced at 172 m along-track. The orbital altitude will be around 600 km at an inclination of 94 deg with a 183-day repeat pattern. The onboard GPS receiver will enable radial orbit determinations to better than 5 cm, and star-trackers will enable footprints to be located to 6 m horizontally. The spacecraft attitude will be controlled to point the laser beam to within +/- 35 m of reference surface tracks at high latitudes. ICESat is designed to operate for 3 to 5 years and should be followed by successive missions to measure ice changes for at least 15 years.

  3. Method for using polarization gating to measure a scattering sample

    DOEpatents

    Baba, Justin S.

    2015-08-04

    Described herein are systems, devices, and methods facilitating optical characterization of scattering samples. A polarized optical beam can be directed to pass through a sample to be tested. The optical beam exiting the sample can then be analyzed to determine its degree of polarization, from which other properties of the sample can be determined. In some cases, an apparatus can include a source of an optical beam, an input polarizer, a sample, an output polarizer, and a photodetector. In some cases, a signal from a photodetector can be processed through attenuation, variable offset, and variable gain.

  4. A split beam method for measuring time-resolved circular dichroism

    NASA Astrophysics Data System (ADS)

    Wenzel, Stephan; Buss, Volker

    1997-04-01

    An improvement to the Lewis-Kliger method for measuring transient circular dichroism on the nanosecond time scale is described. The method uses a single-probe beam that is split into two different beams of plane polarized light entering the sample and a retarder from opposite directions in different succession. Rochon polarizers are used as high-quality polarizing beam splitters to select the slow axis component of the emerging elliptical polarized light beams. The intensities of the light beams are determined by an imaging spectrograph coupled to an intensified charge coupled device detector. The split beam method reduces the need for very precise calibration of the central strain plate acting as a retarder and controlling the ellipticity of the probe light. The necessary calculations are simple and can be shown to be equivalent to the formulas derived by Lewis and Kliger. The static CD spectrum of vitamin B12 is presented and compared to a spectrum obtained with a commercial instrument and standard technique. The time resolution of the instrument is demonstrated by observation of photobleaching of carbon monoxy myoglobin from horse heart muscle.

  5. Measuring X-Ray Polarization in the Presence of Systematic Effects: Known Background

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Weisskopf, Martin C.

    2012-01-01

    The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncertainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.

  6. Measuring x-ray polarization in the presence of systematic effects: known background

    NASA Astrophysics Data System (ADS)

    Elsner, Ronald F.; O'Dell, Stephen L.; Weisskopf, Martin C.

    2012-09-01

    The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncertainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics—including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.

  7. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  8. Time-resolved wave profile measurements in copper to Megabar pressures

    SciTech Connect

    Chhabildas, L C; Asay, J R

    1981-01-01

    Many time-resolved techniques have been developed which have greatly aided in the understanding of dynamic material behavior such as the high pressure-dynamic strength of materials. In the paper, time-resolved measurements of copper (at shock-induced high pressures and temperatures) are used to illustrate the capability of using such techniques to investigate high pressure strength. Continuous shock loading and release wave profiles have been made in copper to 93 GPa using velocity interferometric techniques. Fine structure in the release wave profiles from the shocked state indicates an increase in shear strength of copper to 1.5 GPa at 93 GPa from its ambient value of 0.08 GPa.

  9. Number-resolved master equation approach to quantum measurement and quantum transport

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qi

    2016-08-01

    In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.

  10. Mathematical Relationships Between Two Sets of Laser Anemometer Measurements for Resolving the Total Velocity Vector

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1993-01-01

    The mathematical relations between the measured velocity fields for the same compressor rotor flow field resolved by two fringe type laser anemometers at different observational locations are developed in this report. The relations allow the two sets of velocity measurements to be combined to produce a total velocity vector field for the compressor rotor. This report presents the derivation of the mathematical relations, beginning with the specification of the coordinate systems and the velocity projections in those coordinate systems. The vector projections are then transformed into a common coordinate system. The transformed vector coordinates are then combined to determine the total velocity vector. A numerical example showing the solution procedure is included.

  11. Phase-resolved measurements of ion velocity in a radio-frequency sheath.

    PubMed

    Jacobs, Brett; Gekelman, Walter; Pribyl, Pat; Barnes, Michael

    2010-08-13

    The time-dependent argon-ion velocity distribution function above and within the plasma sheath of an rf-biased substrate has been measured using laser-induced fluorescence in a commercial plasma processing tool. Discharge parameters were such that the 2.2 MHz rf-bias period was on the order of the ion transit time through the sheath (τ{ion}/τ{rf}=0.3). This work embodies the first time-resolved measurement of ion velocity distribution functions within an rf-biased sheath over a large area (30 cm diameter) silicon wafer substrate.

  12. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    PubMed Central

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  13. Spatially resolving variations in giant magnetoresistance, undetectable with four-point probe measurements, using infrared microspectroscopy

    SciTech Connect

    Kelley, C. S.; Thompson, S. M.; Illman, M. D.; LeFrancois, S.; Dumas, P.

    2012-10-15

    Magnetorefractive infrared (IR) microspectroscopy is demonstrated to resolve spatial variations in giant magnetoresistance (GMR) and, by modelling, provide an insight into the origin of the variations. Spatial variations are shown to be masked in conventional four-point probe electrical or IR spectral measurements. IR microspectroscopy was performed at the SMIS beamline at the SOLEIL synchrotron, modified to enable measurements in magnetic fields. A GMR gradient was induced in a CoFe/Cu multilayer sample by annealing in a temperature gradient. Modelling revealed that variations in GMR at 900 Oe could be attributed to local variations in interlayer coupling locally changing the switching field.

  14. Subkelvin spin polarized STM: measuring magnetization curves of individual adatoms

    NASA Astrophysics Data System (ADS)

    Wiebe, Jens

    2008-03-01

    Magnetic nanostructures consisting of a few atoms on non-magnetic substrates are explored as model systems for miniaturized data storage devices and for the implementation of novel spin-based computation techniques. Since these nanostructures are well defined and controllable on the atomic scale, they are ideally suited to study the fundamentals of magnetic interactions. We used spin polarized scanning tunneling spectroscopy at subkelvin temperatures to image the magnetization of individual adatoms as a function of an external magnetic field. This allows to directly measure their magnetic interactions at very low energy scale. We will present the design of the 300mK STM [1] and then focus on the results. Interestingly, Co atoms on Pt(111) behave paramagnetic even at very low temperatures, 300 times smaller than the previously reported giant barrier between up and down spin [2]. A peculiar variation in the saturation flux density, which is measured for each atom, is found. This is attributed to their mutual indirect exchange via the substrate electrons. Indeed, we observe an interaction between the adatom and a Co monolayer stripe oscillating with distance between ferromagnetic and antiferromagnetic coupling on the scale of the Fermi wavelength. [1] J. Wiebe et al., Rev. Sci. Instrum. 75, 4871 (2004). [2] P. Gambardella et al., Science 300, 1130 (2003).

  15. Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance.

    PubMed

    Barnes, Michael P; Greer, Peter B

    2016-03-01

    In volumetric-modulated arc therapy (VMAT) treatment delivery perfect beam symmetry is assumed by the planning system. This study aims to test this assumption and present a method of measuring time-resolved beam symmetry measurement during a VMAT delivery that includes extreme variations of dose rate and gantry speed. The Sun Nuclear IC Profiler in gantry mount was used to measure time-resolved in-plane and cross-plane profiles during plan delivery from which symmetry could be determined. Time-resolved symmetry measurements were performed throughout static field exposures at cardinal gantry angles, conformal arcs with constant dose rate and gantry speed, and during a VMAT test plan with gantry speed and dose rate modulation. Measurements were performed for both clockwise and counterclockwise gantry rotation and across four Varian 21iX linacs. The symmetry was found to be generally constant throughout the static field exposures to within 0.3% with an exception on one linac of up to 0.7%. Agreement in symmetry between cardinal angles was always within 1.0% and typically within 0.6%. During conformal arcs the results for clockwise and counterclockwise rotation were in agreement to within 0.3%. Both clockwise and counterclockwise tended to vary in similar manner by up to 0.5% during arc consistent with the cardinal gantry angle static field results. During the VMAT test plan the symmetry generally was in agreement with the conformal arc results. Greater variation in symmetry was observed in the low-dose-rate regions by up to 1.75%. All results were within clinically acceptable levels using the tolerances of NCS Report 24 (2015). PACS number(s): 87.55.Qr.

  16. Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance.

    PubMed

    Barnes, Michael P; Greer, Peter B

    2016-03-08

    In volumetric-modulated arc therapy (VMAT) treatment delivery perfect beam symmetry is assumed by the planning system. This study aims to test this assumption and present a method of measuring time-resolved beam symmetry measurement during a VMAT delivery that includes extreme variations of dose rate and gantry speed. The Sun Nuclear IC Profiler in gantry mount was used to measure time-resolved in-plane and cross-plane profiles during plan delivery from which symmetry could be determined. Time-resolved symmetry measurements were performed throughout static field exposures at cardinal gantry angles, conformal arcs with constant dose rate and gantry speed, and during a VMAT test plan with gantry speed and dose rate modulation. Measurements were performed for both clockwise and counterclockwise gantry rotation and across four Varian 21iX lin-acs. The symmetry was found to be generally constant throughout the static field exposures to within 0.3% with an exception on one linac of up to 0.7%. Agreement in symmetry between cardinal angles was always within 1.0% and typically within 0.6%. During conformal arcs the results for clockwise and counterclockwise rotation were in agreement to within 0.3%. Both clockwise and counterclockwise tended to vary in similar manner by up to 0.5% during arc consistent with the cardinal gantry angle static field results. During the VMAT test plan the symmetry generally was in agreement with the conformal arc results. Greater variation in symmetry was observed in the low-dose-rate regions by up to 1.75%. All results were within clinically acceptable levels using the tolerances of NCS Report 24 (2015).

  17. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    SciTech Connect

    Spethmann, A. Trottenberg, T. Kersten, H.

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  18. A technique for measurement of vector and tensor polarization in solid spin one polarized targets

    SciTech Connect

    Kielhorn, W.F.

    1991-06-01

    Vector and tensor polarizations are explicitly defined and used to characterize the polarization states of spin one polarized targets, and a technique for extracting these polarizations from nuclear magnetic resonance (NMR) data is developed. This technique is independent of assumptions about spin temperature, but assumes the target's crystal structure induces a quadrupole interaction with the spin one particles. Analysis of the NMR signals involves a computer curve fitting algorithm implemented with a fast Fourier transform method which speeds and simplifies curve fitting algorithms used previously. For accurate curve fitting, the NMR electronic circuit must be modeled by the fitting algorithm. Details of a circuit, its model, and data collected from this circuit are given for a solid deuterated ammonia target. 37 refs., 19 figs., 3 tabs.

  19. Measurements of the total cross section for the scattering of polarized neutrons from polarized {sup 3}He

    SciTech Connect

    Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L.; Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S.

    1996-08-01

    Measurements of polarized-neutron{endash}polarized-{sup 3}He scattering are reported. The target consisted of cryogenically polarized solid {sup 3}He, with thickness 0.04 atom/b and polarization {approximately}0.4. Polarized neutrons were produced via the {sup 3}H({ital p}{searrow},{ital n}{searrow}){sup 3}He or {sup 2}H({ital d}{searrow},{ital n}{searrow}){sup 3}He polarization-transfer reactions. The longitudinal and transverse total cross-section differences {Delta}{sigma}{sub {ital L}} and {Delta}{sigma}{sub {ital T}} were measured for incident neutron energies 2{endash}8 MeV. The results are compared to phase-shift predictions based on four different analyses of {ital n}-{sup 3}He scattering. The best agreement is obtained with a recent {ital R}-matrix analysis of {ital A}=4 scattering and reaction data, lending strong support to the {sup 4}He level scheme obtained in that analysis. Discrepancies with other phase-shift parametrizations of {ital n}-{sup 3}He scattering exist, attributable in most instances to one or two particular partial waves. {copyright} {ital 1996 The American Physical Society.}

  20. A comparison of magnetic resonance methods for spatially resolved T2 distribution measurements in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Marica, F.; Newling, B.; Balcom, B. J.

    2015-05-01

    Naturally occurring porous media are usually characterized by a distribution of pore sizes. If the material is fluid saturated, the 1H magnetic resonance (MR) signal depends on the pore size, the surface relaxivity and the fluid itself. Measurement of the transverse relaxation time T2 is a well-established technique to characterize material samples by means of MR. T2 distribution measurements, including T2 distribution mapping, are widely employed in clinical applications and in petroleum engineering. T2 distribution measurements are the most basic measurement employed to determine the fluid-matrix properties in MR core analysis. Three methods for T2 distribution mapping, namely spin-echo single point imaging (SE-SPI), DANTE-Z Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic inversion CPMG are compared in terms of spatial resolution, minimum observable T2 and sensitivity. Bulk CPMG measurement is considered to be the gold standard for T2 determination. Bulk measurement of uniform samples is compared to the three spatially resolved measurements. SE-SPI is an imaging method, which measures spatially resolved T2s in samples of interest. A variant is introduced in this work that employs pre-equalized magnetic field gradient waveforms and is therefore able to measure shorter T2s than previously reported. DANTE-Z CPMG and adiabatic inversion CPMG are faster, non-imaging, local T2 distribution measurements. The DANTE-Z pulse train and adiabatic inversion pulse are compared in terms of T1 or T2 relaxation time effects during the RF pulse application, minimum pulse duration, requisite RF pulse power, and inversion profile quality. In addition to experimental comparisons, simulation results are presented.

  1. Spectral induced polarization (SIP) measurement of NAPL contaminated soils

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2010-12-01

    The potential applicability of spectral induce polarization (SIP) as a tool to map NAPLs (non aqueous phase liquids) contaminants at the subsurface lead researchers to investigate the electric signature of those contaminant on the spectral response. However, and despite the cumulative efforts, the effect of NAPL on the electrical properties of soil, and the mechanisms that control this effect are largely unknown. In this work a novel experiment is designed to further examine the effect of NAPL on the electrical properties of partially saturated soil. The measurement system that used is the ZEL-SIP04 impedance meter developed at the Forschungszentrum Julich, Germany. The system accurately (nominal phase precision of 0.1 mrad below 1 kHz) measures the phase and the amplitude of a material possessing a very low polarization (such as soil). The sample holder has a dimension of 60 cm long and 4.6 cm in diameter. Current and potential electrodes were made of brass, and while the current electrodes were inserted in full into the soil, the contact between the potential electrode and the soil was made through an Agarose bridge. Two types of soils were used: clean quartz sand, and a mixture of sand with clean Bentonite. Each soil (sandy or clayey) was mixed with water to get saturation degree of 30%. Following the mixture with water, NAPL was added and the composite were mixed again. Packing was done by adding and compressing small portions of the soil to the column. A triplicate of each mixture was made with a good reproducible bulk density. Both for the sandy and clayey soils, the results indicate that additions of NAPL decrease the real part of the complex resistivity. Additionally, for the sandy soil this process is time depended, and that a further decrease in resistivity develops over time. The results are analyzed considering geometrical factors: while the NAPL is electrically insulator, addition of NAPL to the soil is expected to increase the connectivity of the

  2. On the limitations of geomagnetic measures of interplanetary magnetic polarity

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Rosenberg, R. L.

    1974-01-01

    The maximum attainable accuracy in inferring the interplanetary magnetic polarity from polar cap magnetograms is about 88%. This is achieved in practice, when high-latitude polar cap stations are used during local summer months, and the signature in the ground records is strong. An attempt by Svalgaard (1972) to use this effect to infer an index of interplanetary magnetic polarity back to 1926 has not been so successful. Furthermore, some of the properties of the index have changed with time. Prior to 1963, the inferred polarities are strongly dependent on geomagnetic activity, while after this time they are not. Thus, this index should not be used to separate solar-magnetic from solar-activity effects prior to 1963.

  3. Depth-resolved photothermal optical coherence tomography by local optical path length change measurement (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Makita, Shuichi; Hong, Young-Joo; Li, En; Yasuno, Yoshiaki

    2016-03-01

    Photothermal OCT has been emerged to contrast absorbers in biological tissues. The tissues response to photothermal excitation as change of thermal strain and refractive index. To resolve the depth of absorption agents, the measurements of the local thermal strain change and local refractive index change due to photothermal effect is required. In this study, we developed photothermal OCT for depth-resolved absorption contrast imaging. The phase-resolved OCT can measure the axial strain change and local refractive index change as local optical path length change. A swept-source OCT system is used with a wavelength swept laser at 1310 nm with a scanning rate of 50 kHz. The sensitivity of 110 dB is achieved. At the sample arm, the excitation beam from a fiber-coupled laser diode of 406 nm wavelength is combined with the OCT probe beam co-linearly. The slowly modulated excitation beam around 300 Hz illuminate biological tissues. M-mode scan is applied during one-period modulation duration. The local optical path length change is measured by temporal and axial phase difference. The theoretical prediction of the photothermal response is derived and in good agreement with experimental results. In the case of slow modulation, the delay of photothermal response can be neglected. The local path length changes are averaged over the half period of the excitation modulation, and then demodulated. This method exhibits 3-dB gain in the sensitivity of the local optical path length change measurement over the direct Fourier transform method. In vivo human skin imaging of endogenous absorption agent will be demonstrated.

  4. Rotation of plasma membrane proteins measured by polarized fluorescence depletion

    NASA Astrophysics Data System (ADS)

    Barisas, B. George; Rahman, Noorul A.; Yoshida, Thomas M.; Roess, Deborah A.

    1990-05-01

    We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.

  5. Measuring molecular reorientation at liquid surfaces with time-resolved sum-frequency spectroscopy: a theoretical framework.

    PubMed

    Nienhuys, Han-Kwang; Bonn, Mischa

    2009-05-28

    A theoretical framework is presented for the design and analysis of ultrafast time- and polarization-resolved surface vibrational spectroscopy, aimed at elucidating surface molecular reorientational motion in real time. Vibrational excitation with linearly polarized light lifts the azimuthal symmetry of the surface transition-dipole distribution, causing marked, time-dependent changes in the surface sum-frequency generation (SFG) intensity. The subsequent recovery of the SFG signal generally reflects both vibrational relaxation and reorientational motion of surface molecules. We present experimental schemes that allow direct quantification of the time scale of surface molecular reorientational diffusive motion.

  6. Polarized fluorescence measurements on ordered photosynthetic antenna complexes

    PubMed Central

    van Amerongen, H.; van Haeringen, B.; van Gurp, M.; van Grondelle, R.

    1991-01-01

    We have used a new and relatively easy approach to study the pigment-organization in chlorosomes from the photosynthetic bacterium Chloroflexus aurantiacus and in B800-850 antenna complexes of the photosynthetic purple bacterium Rhodobacter sphaeroides. These particles were embedded in compressed and uncompressed gels and the polarized fluorescence was determined in a 90° setup. Assuming both a rotational symmetric distribution of the particles in the gel and of the transition dipole moments in the particles, the order parameters and , describing the orientation of the symmetry axis of the particles with respect to the direction of gel expansion can be determined. Moreover, the direction parameters, describing the orientation of the absorption and emission dipole moments with respect to the symmetry axis of the particles can be obtained. The value of is essential for quantitative interpretation of linear dichroism measurements and usually it is estimated from theoretical approaches, which may lead to incorrect results. For the rod-like chlorosomes the value of appears to be the same as predicted by the theoretical approach of Ganago, A. O., M. V. Fok, I. A. Abdourakhmanov, A. A. Solov'ev, and Yu. E. Erokhin (1980. Mol. Biol. [Mosc.]. 14:381-389). The agreement with linear dichroism results, analyzed with this theoretical approach shows that the transition dipole moments are indeed in good approximation distributed in a rotationally symmetric way around the long axis of the chlorosomes. Moreover, it appears those BChl c molecules, which fluoresce, are oriented in the same way with respect to the symmetry axis as the rest of these pigments, with the dipole moments close to parallel to the long axis. The B800-850 complexes appear to orient like discs, whereas the transition dipoles of the BChl a 800- and 850-nm bands are oriented almost perpendicular to the symmetry axis. These findings are in agreement with the minimal model for these complexes

  7. The sensitivity to polarization in stratospheric aerosol retrievals from limb scattered sunlight measurements

    NASA Astrophysics Data System (ADS)

    Elash, B. J.; Bourassa, A. E.; Rieger, L. A.; Dueck, S. R.; Zawada, D. J.; Degenstein, D. A.

    2017-03-01

    Satellite measurements of limb scattered sunlight at visible and near infrared wavelengths have been used successfully for several years to retrieve the vertical profile of stratospheric aerosol extinction coefficient. The existing satellite measurements are of the total radiance, with very little knowledge or impact of the polarization state of the limb radiance. Recently proposed instrument concepts for stratospheric aerosol profiling have been designed to measure the linearly polarized radiance. Yet, to date, the impact of the polarized measurement on the retrievals has not been systematically studied. Here we use a fully spherical, multiple scattering radiative transfer model to perform a sensitivity study on the effects of the polarized measurement on stratospheric aerosol extinction retrievals through specific investigations of the aerosol signal fraction in polarized measurements, potential retrieval bias, and achievable precision. In this study,we simulate both total and linearly polarized measurements, for a wide range of limb viewing geometries that are encountered in typical low earth orbits and for various aerosol loading scenarios. The orientation of the linear polarization with respect to the horizon is also studied. Taking into account instrument signal to noise levels it is found that in general, the linear polarization can be used as effectively as the total radiance measurement, with consideration of instrument signal to noise capabilities; however the horizontal polarization is more promising in terms of signal magnitude.

  8. Time-resolved voltage measurements of Z-pinch radiation sources with a vacuum voltmeter

    SciTech Connect

    Murphy, D. P.; Allen, R. J.; Weber, B. V.; Commisso, R. J.; Apruzese, J. P.; Phipps, D. G.; Mosher, D.

    2008-10-15

    A vacuum-voltmeter (VVM) was fielded on the Saturn pulsed power generator during a series of argon gas-puff Z-pinch shots. Time-resolved voltage and separately measured load current are used to determine several dynamic properties as the load implodes, namely, the inductance, L(t), net energy coupled to the load, E{sub coupled}(t), and the load radius, r(t). The VVM is a two-stage voltage divider, designed to operate at voltages up to 2 MV. The VVM is presently being modified to operate at voltages up to 6 MV for eventual use on the Z generator.

  9. Radiative lifetime measurements of some Gd I levels by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Shang, Xue; Zhou, Chunxiao; Dai, Zhenwen

    2017-04-01

    Natural radiative lifetimes for 27 excited levels of Gd I in the energy range from 28215.140 to 43963.900 cm-1 were measured using time-resolved laser-induced fluorescence (TR-LIF) technique in an atom beam produced by laser-induced plasma. All the lifetimes obtained in this paper range from 8.4 to 833 ns with the uncertainties within ten percent. A comparison with a few previously reported values was performed and good agreement between them was achieved. To our best knowledge, 18 lifetimes of Gd I are reported for the first time.

  10. Hydrogen tracer diffusion in LiBH4 measured by spatially resolved Raman spectroscopy.

    PubMed

    Borgschulte, A; Gremaud, R; Łodziana, Z; Züttel, A

    2010-05-21

    The hydrogen tracer diffusion in LiBH(4) has been determined by spatially resolved Raman spectroscopy. The measurements give direct evidence of a macroscopic diffusion of BH ions as well as atomic exchange of hydrogen between the anions. An effective tracer diffusion coefficient of deuterium in LiBH(4) of D approximately 7 x 10(-14) m(2) s(-1) at 473 K is derived. The direct exchange rate of hydrogen between BH(4) units is 10 orders of magnitude slower, i.e. the relatively fast effective hydrogen diffusion has its origin in the fast diffusion of BH(4) units.

  11. Molecular diffusivity measurement through an alumina membrane using time-resolved fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Mason, Michael D.

    2010-11-01

    We present a simple fluorescence imaging method for measuring the time-resolved concentration of a fluorescent molecule diffusing through an anodic alumina membrane with a pore diameter of 20 nm. From the concentration breakthrough curve, the molecular diffusivity of the fluorophore was extracted. The experimentally determined diffusivity was three orders of magnitude lower than reported bulk values. Due to the relative simplicity and ease of use, this method can be applied to provide fundamental information for biomolecular separations applications. One feature of this method is the high sensitivity at intercellular volumes broadening its application to drug delivery and controlled cell growth.

  12. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  13. Time-Resolved Voltage Measurements of Imploding Radiation Sources at 6 MA with a Vacuum Voltmeter

    DTIC Science & Technology

    2007-06-01

    Communications/Titan Group, Reston, VA 20190 USA Abstract A vacuum -voltmeter[1] (VVM) was fielded on the Saturn pulsed -power generator during a series...electrons causing the VVM insulator stack to flashover . Metal Shield e 0 1 2 3 4 5 6 7 8 9 10 100 200 300 40 Figure 8. Saturn gas-puff shot 3565 data...TIME-RESOLVED VOLTAGE MEASUREMENTS OF IMPLODING RADIATION SOURCES AT 6 MA WITH A VACUUM VOLTMETER ∗ D. P. Murphyξ, B. V. Weber, R. J. Commisso, J

  14. Polarized Imaging Nephelometer for Field and Aircraft Measurements of Aerosol Phase Function

    NASA Astrophysics Data System (ADS)

    Dolgos, G.; Martins, J.

    2012-12-01

    Aerosols have a significant impact on the radiative balance and water cycle of our planet through influencing atmospheric radiation. Remote sensing of aerosols relies on scattering phase matrix information to retrieve aerosol properties with frequent global coverage. At the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland, Baltimore County we developed a new technique to directly measure the aerosol phase function and the degree of linear polarization of the scattered light (two elements of the phase matrix). We designed and built a portable instrument called the Polarized Imaging Nephelometer (PI-Neph). The PI-Neph successfully participated in dozens of flights of the NASA Development and Evaluation of satellite ValidatiOn Tools by Experimenters (DEVOTE) project and the Deep Convective Clouds and Chemistry (DC3) project. The ambient aerosol enters the PI-Neph through an inlet and the sample is illuminated by laser light (wavelength of 532 nm); the scattered light is imaged by a stationary wide field of view camera in the scattering angle range of 2° to 178°. (In some cases stray light limited the scattering angle range to 3° to 176°). The PI-Neph measurement of phase function and the AERONET (AErosol RObotic NETwork) retrievals have already been compared in some cases when the aircraft spiraled over AERONET sites, for example at NASA's Wallops Flight Facility, on October 18 2011, as shown in Figure 1. The differences between the PI-Neph and the AERONET retrievals can be attributed to differences between the ambient size distribution and the one sampled inside the aircraft. The data that is resolved with respect to scattering angle is used to compute the volume scattering coefficient. The above mentioned October 18 flight data showed good agreement between the PI-Neph measurements of volume scattering coefficient and the parallel TSI integrating nephelometer measurements. On average the TSI measurements were 1.02 times the PI

  15. Development of Multi-Field of view-Multiple-Scattering-Polarization Lidar : analysis of angular resolved backscattered signals

    NASA Astrophysics Data System (ADS)

    Makino, T.; Okamoto, H.; Sato, K.; Tanaka, K.; Nishizawa, T.; Sugimoto, N.; Matsui, I.; Jin, Y.; Uchiyama, A.; Kudo, R.

    2014-12-01

    We have developed a new type of ground-based lidar, Multi-Field of view-Multiple-Scattering-Polarization Lidar (MFMSPL), to analyze multiple scattering contribution due to low-level clouds. One issue of the ground based lidar is the limitation of optical thickness of about 3 due to the strong attenuation in the lidar signals so that only the cloud bottom part can be observed. In order to overcome the problem, we have proposed the MFMSPL that has been designed to observe similar degree of multiple scattering contribution expected from space-borne lidar CALIOP on CALIPSO satellite. The system consists of eight detectors; four telescopes for parallel channels and four for perpendicular channels. The four pairs of telescope have been mounted with four different off-beam angles, ranging from -5 to 35mrad, where the angle is defined as the one between the direction of laser beam and the direction of telescope. Consequently, similar large foot print (100m) as CALIOP can be achieved in the MFMSPL observations when the altitude of clouds is located at about 1km. The use of multi-field of views enables to measure depolarization ratio from optically thick clouds. The outer receivers attached with larger angles generally detect backscattered signals from clouds located at upper altitudes due to the enhanced multiple scattering compared with the inner receiver that detects signals only from cloud bottom portions. Therefore the information of cloud microphysics from optically thicker regions is expected by the MFMSPL observations compared with the conventional lidar with small FOV. The MFMSPL have been continuously operated in Tsukuba, Japan since June 2014.Initial analyses have indicated expected performances from the theoretical estimation by backward Monte-Carlo simulations. The depolarization ratio from deeper part of the clouds detected by the receiver with large off-beam angle showed much larger values than those from the one with small angle. The calibration procedures

  16. Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry

    PubMed Central

    Gohar, Ali Vaziri; Cao, Ruofan; Jenkins, Patrick; Li, Wenyan; Houston, Jessica P.; Houston, Kevin D.

    2013-01-01

    Intracellular protein transport and localization to subcellular regions are processes necessary for normal protein function. Fluorescent proteins can be fused to proteins of interest to track movement and determine localization within a cell. Currently, fluorescence microscopy combined with image processing is most often used to study protein movement and subcellular localization. In this contribution we evaluate a high-throughput time-resolved flow cytometry approach to correlate intracellular localization of human LC3 protein with the fluorescence lifetime of enhanced green fluorescent protein (EGFP). Subcellular LC3 localization to autophagosomes is a marker of the cellular process called autophagy. In breast cancer cells expressing native EGFP and EGFP-LC3 fusion proteins, we measured the fluorescence intensity and lifetime of (i) diffuse EGFP (ii) punctate EGFP-LC3 and (iii) diffuse EGFP-ΔLC3 after amino acid starvation to induce autophagy-dependent LC3 localization. We verify EGFP-LC3 localization with low-throughput confocal microscopy and compare to fluorescence intensity measured by standard flow cytometry. Our results demonstrate that time-resolved flow cytometry can be correlated to subcellular localization of EGFP fusion proteins by measuring changes in fluorescence lifetime. PMID:24010001

  17. Space-resolved fluorescence spectroscopic measurements with an optical fiber probe

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Qiu, Hialin

    2008-12-01

    By monitoring of the emitted signal from a sample while varying the excitation wavelength, emission wavelength or both of them, fluorescence spectroscopy has become a powerful diagnostic technology. Fluorescence spectrometers can be used to measure and record the fluorescence spectra of a given sample, and have been successfully applied in different areas including biology, biochemistry, chemistry, medicine, environmental science, material science, food industry, and pharmaceutical industry. In order to increase the flexibility and applicability of conventional fluorescence spectrometers, we design an optic fiber probe for conducting the UV/Vis excitation light to a sample under study, and for collecting the fluorescence produced by the sample. Different excitation/emission fiber bundle arrangements have been fabricated and their performances have been evaluated and compared. Fiber adaptors which can be used for different commercial fluorescence spectrometers are also developed. In order to achieve space-resolved fluorescence spectroscopic measurements, we connect the fiber probe to a microscope which is mounted on a 3D traverse stage. Experiments and measurement results using the space-resolved fiber optic fluorescence spectrometer are presented in this paper.

  18. Range Resolved CO2 Atmospheric Backscattering Measurements Using Fiber Lasers and RZPN Code Modulation

    NASA Technical Reports Server (NTRS)

    Burris, John

    2011-01-01

    We report the use of a return-to- zero (RZPN) pseudo noise modulation technique for making range resolved measurements of CO2 within the planetary boundary layer (PBL) using commercial, off-the-shelf, components. Conventional, range resolved, DIAL measurements require laser pulse widths that are significantly shorter than the desired spatial resolution and necessitate using pulses whose temporal spacing is such that scattered returns from only a single pulse are observed by the receiver at any one time (for the PBL pulse separations must be greater than approximately 20 microseconds). This imposes significant operational limitations when using currently available fiber lasers because of the resulting low duty cycle (less than approximately 0.0005) and consequent low average laser output power. The RZPN modulation technique enables a fiber laser to operate at much higher duty cycles (approaching 0.04) thereby more effectively utilizing the amplifier's output. This increases the counts received by approximately two orders of magnitude. Our approach involves employing two distributed feedback lasers (DFB), each modulated by a different RPZN code, whose outputs are then amplified by a CW fiber amplifier. One laser is tuned to a CO2 absorption line; the other operates offline thereby permitting the simultaneous acquisition of both on and offline signals using independent RZPN codes. This minimizes the impact of atmospheric turbulence on the measurement. The on and offline signals are retrieved by deconvolving the return signal using the appropriate kernels.

  19. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGES

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  20. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    SciTech Connect

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, and presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  1. SPOrt: an experiment aimed at measuring the large scale cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore; Cortiglioni, Stefano; Bernardi, Gianni; Cecchini, Stefano; Macculi, Claudio; Sbarra, Carla; Monari, Jader; Orfei, Alessandro; Poloni, Marco; Poppi, Sergio; Boella, Giuliano; Bonometto, Silvio; Gervasi, Massimo; Sironi, Giorgio; Zannoni, Mario; Tucci, Marco; Baralis, Massino; Peverini, Oscar A.; Tascone, Riccardo; Virone, Giuseppe; Fabbri, Roberto; Nicastro, Luciano; Ng, Kin-Wang; Razin, V. A.; Vinyajkin, Evgenij N.; Sazhin, Mikhail V.; Strukov, Igor A.

    2003-02-01

    SPOrt (Sky Polarization Observatory) is a space experiment to be flown on the International Space Station during Early Utilization Phase aimed at measuring the microwave polarized emission with FWHM = 7 deg, in the frequency range 22-90 GHz. The Galactic polarized emission can be observed at the lower frequencies and the polarization of Cosmic Microwave Background (CMB) at 90 GHz, where contaminants are expected to be less important. The extremely low level of the CMB Polarization signal calls for intrinsically stable radiometers. The SPOrt instrument is expressly devoted to CMB polarization measurements and the whole design has been optimized for minimizing instrumental polarization effects. In this contribution we present the receiver architecture based on correlation techniques, the analysis showing its intrinsic stability and the custom hardware development carried out to detect such a low signal.

  2. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment.

    PubMed

    Szubiakowski, Jacek P

    2014-06-14

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed.

  3. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    SciTech Connect

    Szubiakowski, Jacek P.

    2014-06-14

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed.

  4. Velocity Field Measurements of Human Coughing Using Time Resolved Particle Image Velocimetry

    NASA Astrophysics Data System (ADS)

    Khan, T.; Marr, D. R.; Higuchi, H.; Glauser, M. N.

    2003-11-01

    Quantitative fluid mechanics analysis of human coughing has been carried out using new Time Resolved Particle Image Velocimetry (TRPIV). The study involves measurement of velocity vector time-histories and velocity profiles. It is focused on the average normal human coughing. Some work in the past on cough mechanics has involved measurement of flow rates, tidal volumes and sub-glottis pressure. However, data of unsteady velocity vector field of the exiting highly time-dependent jets is not available. In this study, human cough waveform data are first acquired in vivo using conventional respiratory instrumentation for various volunteers of different gender/age groups. The representative waveform is then reproduced with a coughing/breathing simulator (with or without a manikin) for TRPIV measurements and analysis. The results of this study would be useful not only for designing of indoor air quality and heating, ventilation and air conditioning systems, but also for devising means of protection against infectious diseases.

  5. Protein analysis by time-resolved measurements with an electro-switchable DNA chip

    PubMed Central

    Langer, Andreas; Hampel, Paul A.; Kaiser, Wolfgang; Knezevic, Jelena; Welte, Thomas; Villa, Valentina; Maruyama, Makiko; Svejda, Matej; Jähner, Simone; Fischer, Frank; Strasser, Ralf; Rant, Ulrich

    2013-01-01

    Measurements in stationary or mobile phases are fundamental principles in protein analysis. Although the immobilization of molecules on solid supports allows for the parallel analysis of interactions, properties like size or shape are usually inferred from the molecular mobility under the influence of external forces. However, as these principles are mutually exclusive, a comprehensive characterization of proteins usually involves a multi-step workflow. Here we show how these measurement modalities can be reconciled by tethering proteins to a surface via dynamically actuated nanolevers. Short DNA strands, which are switched by alternating electric fields, are employed as capture probes to bind target proteins. By swaying the proteins over nanometre amplitudes and comparing their motional dynamics to a theoretical model, the protein diameter can be quantified with Angström accuracy. Alterations in the tertiary protein structure (folding) and conformational changes are readily detected, and even post-translational modifications are revealed by time-resolved molecular dynamics measurements. PMID:23839273

  6. Spatially Resolved Measurements of a Double Layer in an Argon Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Aguirre, Evan; Siddiqui, Umair; McKee, John; Scime, Earl

    2015-11-01

    We report 2-dimensional, spatially resolved observations of a double layer in an expanding helicon plasma. These new measurements investigate the origins of previously observed multiple ion beam populations in the downstream plasma. We use Laser Induced Fluorescence (LIF) to measure the ion velocity distribution functions (IVDFs) of argon ions and neutrals both parallel and perpendicular to the background magnetic field and an rf-compensated Langmuir probe to determine the local plasma potential. These are the first multi-dimensional LIF measurements of ion acceleration in a current-free double layer and were obtained with a recently installed, internal scanning probe system in the HELIX-LEIA experimental facility. This work is supported by US National Science Foundation grant number PHY-1360278.

  7. Comparison of physicochemical and gas chromatographic polarity measures for simple organic compounds.

    PubMed

    Héberger, Károly; Zenkevich, Igor G

    2010-04-23

    The comparison of different polarity measures (parameters, descriptors, variables, scales, etc.) indicates that evaluation of interrelations between these measures is important for better understanding and interpretation of chemical and/or analytical data, especially for chromatographic separation. The best linear correlation between gas chromatographic and non-chromatographic polarity descriptors is revealed for the first time: this pair of variables is the difference of gas chromatographic retention indices on standard polar and non-polar phases as well as the difference between non-dimensional indices of boiling points (known in chromatography since mid-1980s as dispersion indices) and indices of molar refractions. The correlation helps chromatographers to find preferable chemical variables (features) to understand better the separation phenomena and to find better correlations in QSRR models. Principal component analysis (PCA) of ten frequently applied polarity measures shows their similarity and, at the same time, it shows the absence of anomalies within the set of simple organic molecules. A novel ranking method for ten polarity parameters points out that the two most informative polarity measures are (i) the non-dimensional index for boiling point and (ii) the difference in chromatographic retention indices on standard polar and non-polar stationary phases. On the other hand, the hydrophobicity parameter, log P, sometimes considered as polarity parameter in HPLC seems to be the worst one in description of "polarity" in gas chromatography. Surprisingly, such polarity measures like dipole moment and permittivity used often in organic chemistry does not provide the best correlation with gas chromatographic polarity measures.

  8. Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    NASA Technical Reports Server (NTRS)

    Wells, Jeffrey M.; Jones, Thomas W.; Danehy, Paul M.

    2005-01-01

    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity.

  9. Characterizing the micro structure and kinetics of fast changing samples by simultaneous polarization measurements

    NASA Astrophysics Data System (ADS)

    Liao, Ran; He, Honghui; Zeng, Nan; Ma, Hui

    2015-03-01

    Taking accurate measurements of the state of polarization (SOP) is the key for the success of polarization sensitive techniques which can provide rich information on the microstructure of complex scattering media, such as biological tissues. For static or slow varying samples, SOP measurements can be achieved by time-sequential recoding of different polarization components controlled by rotating polarizers and wave plates or temporal modulation devices such as photoelastic modulators or liquid crystal variable retarders. When the sample is moving or changing its status quickly, polarization components recoded at different time may correspond to different SOPs, which can lead to significant errors in the final results. Simultaneous polarization measurements are necessary for probing such dynamic samples. In this paper, using the simultaneously recorded polarization components, we are able to mimic time sequential polarization schemes and evaluate the errors. The results show that the kinetics of the sample will affect the systematic error and an increase in the statistical errors of the measured degree of polarization (DOP). We change the kinetics of samples with different stirring speed, which is indicated by the characteristic time of the auto-correlation function. It is also demonstrated that the simultaneously recorded polarization components reveals additional information on the orientation of fibrous scatterers as well as their translation and rotation kinetics.

  10. Comparison of vertical resolved leaf area index measurements in an open canopy savannah-type forest

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Cuntz, Matthias; Dubbert, Maren; Werner, Christiane; Pereira, Joao S.

    2013-04-01

    Leaf area index (LAI) is a very important vegetation parameter in soil-vegetation-atmosphere exchange modeling. To represent the structure of ecosystems in vertically distributed modeling, vertical resolved LAI distributions as well as vertically and angular gap fraction (Pgap) distributions are needed, but rarely available. Additionally, former studies neglect woody plant components when using light interception or digital photography based methods for LAI or Pgap observations. This can lead to significantly biased results, particularly in semi-arid savannah-type ecosystems with low LAI values. The objective of this study is to compare three non-destructive LAI measurement techniques in a sparse savannah-type cork oak canopy in central Portugal in order to derive vertically resolved LAI as well as vertically and angular resolved Pgap. Since established canopy analyzers, such as the LAI-2000, rely on diffuse light conditions, which are rarely realized in semi-arid regions, we also employed fast, digital cover photography (DCP) working independently from diffuse light conditions. We used vertical and angular distributed DCP and applied object-based image analysis techniques to exclude woody plant components from Pgap estimation and LAI determination. We compared the results with vertically distributed LAI-2000 measurements, and additionally with vertical estimates based on easily measurable forest canopy parameters. We employed bootstrap resampling methods to determine the accuracy of all measurements depending on sample size. Leaf inclination measurements indicate planophile leaf orientation. Thus LAI was calculated with Pgap and the leaf inclination information. This led to a spatial averaged LAI of 0.52 +- 0.06 for DCP while LAI-2000 measurements resulted in 0.67 +- 0.07. Uncertainty bounds of LAI converge much faster with increasing sample size for the DCP than for the LAI-2000. This allows a more efficient sampling design, which is of great importance in

  11. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scatteringa)

    NASA Astrophysics Data System (ADS)

    Kraus, D.; Vorberger, J.; Helfrich, J.; Gericke, D. O.; Bachmann, B.; Bagnoud, V.; Barbrel, B.; Blažević, A.; Carroll, D. C.; Cayzac, W.; Döppner, T.; Fletcher, L. B.; Frank, A.; Frydrych, S.; Gamboa, E. J.; Gauthier, M.; Göde, S.; Granados, E.; Gregori, G.; Hartley, N. J.; Kettle, B.; Lee, H. J.; Nagler, B.; Neumayer, P.; Notley, M. M.; Ortner, A.; Otten, A.; Ravasio, A.; Riley, D.; Roth, F.; Schaumann, G.; Schumacher, D.; Schumaker, W.; Siegenthaler, K.; Spindloe, C.; Wagner, F.; Wünsch, K.; Glenzer, S. H.; Roth, M.; Falcone, R. W.

    2015-05-01

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  12. Time resolved, near wall PIV measurements in a high Reynolds number turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Willert, C.; Soria, J.; Stanislas, M.; Amili, O.; Bellani, G.; Cuvier, C.; Eisfelder, M.; Fiorini, T.; Graf, N.; Klinner, J.

    2016-11-01

    We report on near wall measurements of a turbulent pipe flow at shear Reynolds numbers up to Reτ = 40000 acquired in the CICLoPE facility near Bologna, Italy. With 900 mm diameter and 110 m length the facility offers a well-established turbulent flow with viscous length scales ranging from y+ = 85 μ m at Reτ = 5000 to y+ = 11 μ m at Reτ = 40000 . These length scales can be resolved with a high-speed PIV camera at image magnification near unity. For the measurement the light of a high-speed, double-pulse laser is focused into a 300 μ m thin light sheet that is introduced radially into the pipe. The light scattered by 1 μ m water-glycerol droplet seeding is observed from the side by the camera via a thin high-aspect ratio mirror with a field of view covering 20mm in wall-normal and 5mm in stream-wise direction. Statistically converged velocity profiles could be achieved using 70000 samples per sequence acquired at low laser repetition rates (100Hz). Higher sampling rates of 10 kHz provide temporally coherent data from which frequency spectra can be derived. Preliminary analysis of the data shows a well resolved inner peak that grows with increasing Reynolds number. (Project funding through EuHIT - www.euhit.org)

  13. Time-Resolved Single-State Measurements of the Electronic Structure of Isochoric Heated Copper

    SciTech Connect

    Nelson, A J; Dunn, J; Widmann, K; Ao, T; Ping, Y; Hunter, J; Ng, A

    2004-10-22

    Time-resolved x-ray photoelectron spectroscopy is used to probe the non-steady-state evolution of the valence band electronic structure of laser heated ultra-thin (50 nm) Cu. Single-shot x-ray laser induced time-of-flight photoelectron spectroscopy with picosecond time resolution is used in conjunction with optical measurements of the disassembly dynamics that have shown the existence of a metastable liquid phase in fs-laser heated Cu foils persisting 4-5 ps. This metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500 x 700 {micro}m{sup 2} spot to create heated conditions of 0.07-1.8 x 10{sup 12} W cm{sup -2} intensity. Valence band photoemission spectra showing the changing occupancy of the Cu 3d level with heating are presented. These are the first picosecond x-ray laser time-resolved photoemission spectra of laser-heated ultra-thin Cu foil showing changes in electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials.

  14. The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scattering

    SciTech Connect

    Kraus, D.; Barbrel, B.; Falcone, R. W.; Vorberger, J.; Helfrich, J.; Frydrych, S.; Ortner, A.; Otten, A.; Roth, F.; Schaumann, G.; Schumacher, D.; Siegenthaler, K.; Wagner, F.; Roth, M.; Gericke, D. O.; Wünsch, K.; Bachmann, B.; Döppner, T.; Bagnoud, V.; Blažević, A.; and others

    2015-05-15

    We present measurements of the complex ion structure of warm dense carbon close to the melting line at pressures around 100 GPa. High-pressure samples were created by laser-driven shock compression of graphite and probed by intense laser-generated x-ray sources with photon energies of 4.75 keV and 4.95 keV. High-efficiency crystal spectrometers allow for spectrally resolving the scattered radiation. Comparing the ratio of elastically and inelastically scattered radiation, we find evidence for a complex bonded liquid that is predicted by ab-initio quantum simulations showing the influence of chemical bonds under these conditions. Using graphite samples of different initial densities we demonstrate the capability of spectrally resolved x-ray scattering to monitor the carbon solid-liquid transition at relatively constant pressure of 150 GPa. Showing first single-pulse scattering spectra from cold graphite of unprecedented quality recorded at the Linac Coherent Light Source, we demonstrate the outstanding possibilities for future high-precision measurements at 4th Generation Light Sources.

  15. Time resolved measurements of rigid fiber dispersion in near homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Sabban, Lilach; Cohen, Asaf; van Hout, Rene; Empfl Environmental Multi-Phase Flow Laboratory Team

    2013-11-01

    Time resolved, planar particle image velocimetry (PIV, 3kHz) and two-orthogonal view, digital holographic cinematography (2kHz) was used to measure 3D fiber trajectories/orientation dynamics in near homogeneous isotropic air turbulence (HIT) with dilute suspended fibers. The PIV covered a field of view of 6 × 12 mm2 and the holography a volume of interest of 173 mm3, positioned at the center of the chamber. HIT (Reλ = 144) was generated in the center of a 403 cm3 cube by eight woofers mounted on each of its corners. Three different nylon fibers having a length of 0.5 mm and diameter of 10, 14 and 19 μm were released from the top of the chamber. Fibers had Stokes numbers of order one and are expected to accumulate in regions of low vorticity and settle along a path of local minimal drag. Fiber 3D trajectories/orientations have been obtained from the holography measurements and orientational/translational dispersion coefficients will be presented. In addition the flow field in the vicinity of tracked fibers has been resolved by the PIV, and results on fluid and fiber accelerations and position correlation with in-plane strain rate and out-of-plane vorticity will be presented.

  16. Time resolved measurements of particle lift off from the wall in a turbulent water channel flow

    NASA Astrophysics Data System (ADS)

    van Hout, Rene; Rabencov, Boris; Arca, Javier

    2011-11-01

    Time-Resolved Particle Image Velocimetry (TR-PIV) and digital holography measurements were carried out in a dilute particle-laden flow tracking both Polystyrene Spheres (PS, ~0.583 mm, d+ ~ 10) as well as resolving the instantaneous velocity field of the turbulent flow. Measurements were performed in a closed loop, transparent, square channel facility (50x50 mm2) at 127.5cm from the inlet with bulk water velocity 0.3 m/s (Reh = 7353) and friction velocity 0.0174 m/s. Data were captured at 1 kHz, corresponding to a time scale 5x smaller than the flow's viscous scale. Single view digital holographic cinematography was used to track the 3D PS motion inside the VOI (17x17x50 mm3) including the wall bottom. TR-PIV in a vertical plane (29.3x29.3 mm2) oriented along the channel's centerline imaged PS together with flow tracers. Discrimination was based on their size difference. Instantaneous sequences of PS plotted on the spatial velocity, vorticity and swirling strength maps showed the effect of turbulent flow structures and resulting particle movement. Results are presented for particles that lift off from the bottom wall as a result of complex interaction with ejection and sweep motions.

  17. Optical characterisation of gold films for time-resolved reflectance thermometry measurements

    NASA Astrophysics Data System (ADS)

    Music, Jasmina; White, Thomas G.; Chapman, David J.; Eakins, Daniel E.

    2015-06-01

    The measurement of temperature represents a long-standing challenge within the field of high-pressure science. Recently, a promising time-resolved reflectance thermometry technique employing embedded gold films has been demonstrated. As an active diagnostic, reflectance thermometry is well suited for dynamic experiments generating temperatures below 1000K, where passive diagnostics such as pyrometry become infeasible due to the transient states created. A critical component of the reflectance thermometry technique is a robust optical characterisation of the gold films, decoupling the thermal and pressure contributions. Additionally, the optical properties of gold vary with both sample preparation and thermal history. With a view towards the development of a spatially-resolved reflectance thermometry technique for temperature measurement, we report the optical characterisation of a range of commercially available or deposited thin film gold samples. Reflectance spectroscopy was performed on the gold films as a function of temperature from ambient conditions to 400K, and as a function of pressure using a diamond anvil cell. The experimental data are fitted to a simple phenomenological Drude model paving the way for the calibrated films to be used during future dynamic experiments.

  18. Time-resolved measurement technique for pulsed electron beam envelope basing on framing and streaking principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Yang, Zhi-Yong; Zhang, Huang; Wang, Yi

    2016-01-01

    The time-resolved electron beam envelope parameters, including cross sectional distribution and beam centroid position, are very important for the study of beam transmission characteristics in a magnetic field and for verifying the rationality of the magnetic field parameters employed. One kind of high time-resolved beam envelope measurement system has recently been developed, constituted of a high-speed framing camera and a streak camera. It can obtain three panoramic images of the beam and time continuous information along the given beam profile simultaneously. Recently obtained data has proved that several fast vibrations of the beam envelope along the diameter direction occur during the front and the tail parts of the electron beam. The vibration period is several nanoseconds. The effect of magnetic field on the electron beam is also observed and verified. Beam debugging experiments have proved that the existing beam transmission design is reasonable and viable. This beam envelope measurement system will establish a good foundation for beam physics research. Supported by National Natural Science Foundation of China (10675104, 11375162)

  19. Time and Space Resolved Wall Temperature Measurements during Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Yerramilli, Vamsee K.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work is to acquire time and space resolved temperature distributions under nucleate bubbles on a constant heat flux surface. This was performed using a microheater array with 100 micron resolution that allowed effectively simultaneous measurements of surface temperature while supplying a constant dissipative heat flux. This data is then correlated with high speed (> 1000Hz) visual recordings of the bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that a significant source of energy during bubble nucleation and initial growth is the superheated layer around the bubble. Bubble coalescence was not observed to decrease surface temperature as significantly as bubble departure from the surface. Since bubble departure is typically followed by a sharp increase in the heater surface temperature, it is surmised that the departing bubble effectively removes the superheated layer, allowing a high local heat transfer rate with the bulk fluid through transient conduction/micro-convection during rewetting.

  20. Stretch-rate relationships for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2010-07-15

    Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgrid strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be

  1. Vacuum-Based Time-Resolved Photoluminescence Measurement System Provides New Capability (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    New measurement capability measures semiconductor minority-carrier lifetimes in conditions that simulate thin-film photovoltaic manufacturing environments. National Renewable Energy Laboratory (NREL) scientists have developed a new capability for measuring time-resolved photoluminescence (TRPL) in controlled environments, including under high vacuum and at elevated temperatures. This system enables the simulation of conditions in a thin-film photovoltaic (PV) manufacturing line. NREL's work in recent years has demonstrated a clear correlation between minority-carrier lifetime and thin-film PV device performance. Hence, the thin-film PV industry-both CIGS and CdTe-has a high level of interest for in-line metrology using NREL's TRPL system. The system, shown below, couples femtosecond laser pulses with optical fibers while avoiding spectral or temporal broadening over a wide range of wavelengths. The optics are designed to collect and couple the TRPL signal into the same fiber used to deliver the laser pulses. The capability is coupled into a high-vacuum chamber that can heat samples to 500 C or higher and expose them to reactive ambients. This tool will allow NREL to partner with industry to evaluate TRPL as a diagnostic at multiple stages of the manufacturing process and determine correlations to final module efficiency. The TRPL system has the potential to significantly improve manufacturing yield and throughput of current thin-film PV manufacturers. NREL developed a time-resolved photoluminescence (TRPL) system that can operate under high vacuum and at high temperatures. Thin-film PV performance can be better assessed because of its clear correlation with minority-carrier lifetime, which can be measured by NREL's TRPL system. Photovoltaic thin-film makers will be able to measure in-line TRPL at various stages of the manufacturing process, potentially leading to improved yield and throughput.

  2. In Situ, Time-Resolved Accelerator Grid Erosion Measurements in the NSTAR 8000 Hour Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Sovey, J.

    1997-01-01

    Time-resolved, in situ measurements of the charge exchange ion erosion pattern on the downstream face of the accelerator grid have been made during an ongoin wear test of the NSTAR 30 cm ion thruster.

  3. Spirally polarized beams for polarimetry measurements of deterministic and homogeneous samples

    NASA Astrophysics Data System (ADS)

    de Sande, Juan Carlos González; Santarsiero, Massimo; Piquero, Gemma

    2017-04-01

    The use of spirally polarized beams (SPBs) in polarimetric measurements of homogeneous and deterministic samples is proposed. Since across any transverse plane such beams present all possible linearly polarized states at once, the complete Mueller matrix of deterministic samples can be recovered with a reduced number of measurements and small errors. Furthermore, SPBs present the same polarization pattern across any transverse plane during propagation, and the same happens for the field propagated after the sample, so that both the sample plane and the plane where the polarization of the field is measured can be chosen at will. Experimental results are presented for the particular case of an azimuthally polarized beam and samples consisting of rotated retardation plates and linear polarizers.

  4. Executive Summary of the Workshop on Polarization and Beam Energy Measurements at the ILC

    SciTech Connect

    Aurand, B.; Bailey, I.; Bartels, C.; Blair, G.; Brachmann, A.; Clarke, J.; Deacon, L.; Duginov, V.; Ghalumyan, A.; Hartin, A.; Hauptman, J.; Helebrant, C.; Hesselbach, S.; Kafer, D.; List, J.; Lorenzon, W.; Lyapin, A.; Marchesini, I.; Melikian, R.; Monig, K.; Moeit, K.C.; /Bonn U. /Cockcroft Inst. Accel. Sci. Tech. /DESY /DESY, Zeuthen /Royal Holloway, U. of London /SLAC /Daresbury /Dubna, JINR /Yerevan Phys. Inst /Oxford U., JAI /Iowa State U. /Durham U., IPPP /Michigan U. /University Coll. London /Novosibirsk, IYF /Minsk, Inst. Phys. /Oregon U.

    2008-07-25

    This note summarizes the results of the 'Workshop on Polarization and Beam Energy Measurements at the ILC', held at DESY (Zeuthen) April 9-11 2008. The topics for the workshop included (1) physics requirements, (2) polarized sources and low energy polarimetry, (3) BDS polarimeters, (4) BDS energy spectrometers, and (5) physics-based measurements of beam polarization and beam energy from collider data. Discussions focused on the current ILC baseline program as described in the Reference Design Report (RDR), which includes physics runs at beam energies between 100 and 250 GeV, as well as calibration runs on the Z-pole. Electron polarization of P{sub e{sup -}} {approx}> 80% and positron polarization of P{sub e{sup +}} {approx}> 30% are part of the baseline configuration of the machine. Energy and polarization measurements for ILC options beyond the baseline, including Z-pole running and the 1 TeV energy upgrade, were also discussed.

  5. Fundamental measurement by in-line typed high-precision polarization lidar

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo; Miyamoto, Masakazu; Umaki, Dai; Noguchi, Kazuo; Fukuchi, Tetsuo

    2008-12-01

    An in-line typed new concept lidar system for high precision polarization measurement was developed. A specially designed polarization-independent optical circulator, which was composed by Gran laser prisms and highly transparent Faraday rotators, was developed. Its isolation between the orthogonal polarizations was improved up to more than 30 dB. It is sufficient to detect small rotation of the polarization plane of the propagating beam caused by lightning discharges due to the Faraday effect. The rotation angle of the polarization plane is estimated by the differential detection between the orthogonal polarization components of the lidar echoes. The in-line optics enables near range measurement from the near range of >30 m with the narrow field of view of 0.17 mrad. The fundamental measurements of lidar echoes in near and far fields, and low cloud activities were examined.

  6. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  7. Measurement of the stress state of materials by reflection of polarization-modulated light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2017-02-01

    A method for measuring mechanical stresses of photoelastic materials from the difference between the reflection coefficients of orthogonally polarized light waves incident on the surface of the stressed medium is considered. Comparative results of measurements of the stress state of polymethylmethacrylate in the conventional transmission polarization optical scheme and by the proposed refraction method are presented. A case of normal light incidence is considered.

  8. Measurement of the tensor polarization in electron-deuteron elastic scattering

    SciTech Connect

    Schulze, M.E.; Beck, D.; Farkhondeh, M.; Gilad, S.; Goloskie, R.; Holt, R.J.; Kowalski, S.; Laszewski, R.M.; Leitch, M.J.; Moses, J.D.

    1984-02-20

    This paper reports the first measurement of the tensor polarization t/sub 20/ in e-d elastic scattering. The polarization of the recoil deuterons was measured for two values of momentum transfer, q = 1.74 and 2.03 fm/sup -1/, with a high-efficiency polarimeter. The results are in good agreement with reasonable models for the deuteron.

  9. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  10. Polarized Imaging Nephelometer Scattering Measurements from the Winter of 2013 Discover-AQ Field Mission

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Martins, J.; Dolgos, G.; Dubovik, O.; Ziemba, L. D.; Beyersdorf, A. J.

    2013-12-01

    After greenhouse gases, aerosols are thought to have the largest contribution to the total radiative forcing of the atmosphere, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows global measurements of aerosol properties, however validation of these measurements are crucial, and their retrieval algorithms require climatological assumptions that must be first measured in situ. In situ instruments are also needed to supplement remote sensing measurements, which frequently have a relatively low spatial resolution, particularly when assessing surface air quality. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed an instrument called the Polarized Imaging NEPHelometer (PI-Neph) to significantly aid in situ particle optical scattering measurements. The PI-Neph is based on a novel polar nephelometer design that uses a high-powered laser and wide field of view optical detection system (CCD camera) to measure the intensity of scattered laser light as a function of scattering angle. This allows for the measurement of scattering coefficient, phase function and polarized phase function over an angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. This simple layout also permits the construction of an instrument that is compact enough to be flown on a variety of airborne platforms. PI-Neph measurements have been validated by a variety of methods since its completion in the fall of 2011. Measurements of mono-disperse polystyrene spheres have yielded results that are in close agreement with Mie theory, while scattering coefficient measurements made in parallel with commercially available integrating nephelometers from TSI have agreed to within 5%. The PI-Neph has successfully participated in several field experiments, most recently completing the January/February portion of

  11. Spatially resolved bolometric measurement and electron temperature measurement using diode arrays

    SciTech Connect

    Koguchi, H.; Shimada, T.; Asai, T.; Yagi, Y.; Hirano, Y.; Sakakita, H.

    2004-10-01

    In this article, the measurement system for the total radiation and electron temperature profiles to be installed in a reversed-field pinch machine, toroidal pinch experiment, RX [TPE-RX, R/a=1.72/0.45 m, Ipmeasure the plasma radiation and electron temperature profiles using three sets of diode arrays. Each array can measure radiation along 20 lines of sight and the radial profile of the radiation. One set of the arrays is used for the bolometric measurement in the range from visible light to soft x-ray. Two sets of the arrays are used for the soft-x ray and electron temperature measurements employing a double-filter method. We will use this system to investigate the plasma-wall interaction, radiation loss, and confinement properties in the core plasma region. We will extend the use of this system for tomographic analysis of electron temperature, a concept of which is also presented.

  12. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  13. Super-resolving power and tunneling as cases of "weak measurement"

    NASA Astrophysics Data System (ADS)

    Cacciari, Ilaria; Mugnai, Daniela; Ranfagni, Anedio

    2017-01-01

    A way for transferring the results obtained with super-gain antennas to optical systems, in order to increase their resolving power, was proposed by Toraldo di Francia in 1952. Recent experimental work performed in the microwave range has confirmed the correctness of the theoretical predictions, which could even seem to be in contradiction with the uncertainty principle. Here we propose a simple way to overcome this contradiction based on the "weak measurement" theory. This theory was originally proposed for quantum-mechanical systems, and represents a powerful tool for interpreting even a variety of classical situations. We demonstrate that the results obtained by means of electromagnetic analysis are confirmed by a "weak measurement" interpretation. Moreover, even the case of tunneling in the microwave range has been considered in the light of such a theory.

  14. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Parsons, Maxwell F.; Mazurenko, Anton; Chiu, Christie S.; Ji, Geoffrey; Greif, Daniel; Greiner, Markus

    2016-09-01

    Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter.

  15. Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Chen, Conggui; Liu, Hongwei; Yang, Sihua; Xing, Da

    2016-11-01

    In this letter, we proposed a method for viscoelastic characterization of biological tissues based on time-resolved photoacoustic measurement. The theoretical and experimental study was performed on the influence of viscoelasticity effects on photoacoustic generation. Taking the time delay between the photoacoustic signal and the exciting laser, the viscoelasticity distribution of biological tissues can be mapped. To validate our method, gelatin phantoms with different densities were measured. We also applied this method in discrimination between fat and liver to confirm the usefulness of the viscoelastic evaluation. Furthermore, pilot experiments were performed on atherosclerosis artery from an apolipoprotein E-knockout mouse to show the viscoelastic characterization of atherosclerotic plaque. Our results demonstrate that this technique has the potential for visualizing the biomechanical properties and lesions of biological tissues.

  16. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    PubMed

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

  17. Unraveling gene regulatory networks from time-resolved gene expression data -- a measures comparison study

    PubMed Central

    2011-01-01

    Background Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study. Conclusions Our

  18. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  19. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.

    PubMed

    Zhu, Yizheng; Terry, Neil G; Woosley, John T; Shaheen, Nicholas J; Wax, Adam

    2011-01-01

    We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.3-m-long coherent fiber bundle and is compatible with the standard 2.8-mm-diam biopsy channel of a gastroscope. The probe allows for real-time data acquisition by collecting the scattering from multiple angles in parallel, enabled by the Fourier domain approach. The performance of the probe is characterized through measurement of critical parameters. The depth-resolved sizing capability of the system is demonstrated using single- and double-layer microsphere phantoms with subwavelength sizing precision and accuracy achieved. Initial results from a clinical feasibility test are also presented to show in vivo application in the human esophagus.

  20. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology

    NASA Astrophysics Data System (ADS)

    Zhu, Yizheng; Terry, Neil G.; Woosley, John T.; Shaheen, Nicholas J.; Wax, Adam

    2011-01-01

    We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.3-m-long coherent fiber bundle and is compatible with the standard 2.8-mm-diam biopsy channel of a gastroscope. The probe allows for real-time data acquisition by collecting the scattering from multiple angles in parallel, enabled by the Fourier domain approach. The performance of the probe is characterized through measurement of critical parameters. The depth-resolved sizing capability of the system is demonstrated using single- and double-layer microsphere phantoms with subwavelength sizing precision and accuracy achieved. Initial results from a clinical feasibility test are also presented to show in vivo application in the human esophagus.

  1. Polarization measurement of free electron laser pulses in the VUV generated by the variable polarization source FERMI

    NASA Astrophysics Data System (ADS)

    Finetti, P.; Allaria, E.; Diviacco, B.; Callegari, C.; Mahieu, B.; Viefhaus, J.; Zangrando, M.; De Ninno, G.; Lambert, G.; Ferrari, E.; Buck, J.; Ilchen, M.; Vodungbo, B.; Mahne, N.; Svetina, C.; Spezzani, C.; Di Mitri, S.; Penco, G.; Trovò, M.; Fawley, W. M.; Rebernik, P.; Gauthier, D.; Grazioli, C.; Coreno, M.; Ressel, B.; Kivimäki, A.; Mazza, T.; Glaser, L.; Scholz, F.; Seltmann, J.; Gessler, P.; Grünert, J.; De Fanis, A.; Meyer, M.; Knie, A.; Moeller, S. P.; Raimondi, L.; Capotondi, F.; Pedersoli, E.; Plekan, O.; Danailov, M.; Demidovich, A.; Nikolov, I.; Abrami, A.; Gautier, J.; Lüning, J.; Zeitoun, P.; Giannessi, L.

    2014-09-01

    FERMI, based at Elettra (Trieste, Italy) is the first free electron laser (FEL) facility operated for user experiments in seeded mode. Another unique property of FERMI, among other FEL sources, is to allow control of the polarization state of the radiation. Polarization dependence in the study of the interaction of coherent, high field, short-pulse ionizing radiation with matter, is a new frontier with potential in a wide range of research areas. The first measurement of the polarization-state of VUV light from a single-pass FEL was performed at FERMI FEL-1 operated in the 52 nm-26 nm range. Three different experimental techniques were used. The experiments were carried out at the end-station of two different beamlines to assess the impact of transport optics and provide polarization data for the end user. In this paper we summarize the results obtained from different setups. The results are consistent with each other and allow a general discussion about the viability of permanent diagnostics aimed at monitoring the polarization of FEL pulses.

  2. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter

    SciTech Connect

    Engels, Ralf Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Schieck, Hans Paetz gen.

    2014-10-15

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H{sub 2}{sup +} (or D{sub 2}{sup +}) ions into the Lamb-shift polarimeter.

  3. Measurement of polarization parameters of the targets in synthetic aperture imaging LADAR

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Sun, Jianfeng; Lu, Wei; Hou, Peipei; Ma, Xiaoping; Lu, Zhiyong; Sun, Zhiwei; Liu, Liren

    2015-09-01

    In Synthetic aperture imaging ladar (SAIL), the polarization state change of the backscattered light will affect the imaging. Polarization state of the reflected field is always determined by the interaction of the light and the materials on the target plane. The Stokes parameters, which can provide the information on both light intensity and polarization state, are the ideal quantities for characterizing the above features. In this paper, a measurement system of the polarization characteristic for the SAIL target materials is designed. The measurement results are expected to be useful in target identification and recognition.

  4. Measurement of the nuclear polarization of hydrogen and deuterium molecules using a Lamb-shift polarimeter.

    PubMed

    Engels, Ralf; Gorski, Robert; Grigoryev, Kiril; Mikirtychyants, Maxim; Rathmann, Frank; Seyfarth, Hellmut; Ströher, Hans; Weiss, Philipp; Kochenda, Leonid; Kravtsov, Peter; Trofimov, Viktor; Tschernov, Nikolay; Vasilyev, Alexander; Vznuzdaev, Marat; Paetz gen Schieck, Hans

    2014-10-01

    Lamb-shift polarimeters are used to measure the nuclear polarization of protons and deuterons at energies of a few keV. In combination with an ionizer, the polarization of hydrogen and deuterium atoms was determined after taking into account the loss of polarization during the ionization process. The present work shows that the nuclear polarization of hydrogen or deuterium molecules can be measured as well, by ionizing the molecules and injecting the H2(+) (or D2(+)) ions into the Lamb-shift polarimeter.

  5. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis.

    PubMed

    Horn, R; Korup, O; Geske, M; Zavyalova, U; Oprea, I; Schlögl, R

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 degrees C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with microm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated alpha-Al(2)O(3) foam supports.

  6. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  7. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    SciTech Connect

    Huffenberger, K. M.; Araujo, D.; Zwart, J. T. L.; Bischoff, C.; Buder, I.; Chinone, Y.; Hasegawa, M.; Cleary, K.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Eriksen, H. K.; Wehus, I. K.; Gaier, T.; Dickinson, C.; Gundersen, J. O.; Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  8. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    NASA Astrophysics Data System (ADS)

    Huffenberger, K. M.; Araujo, D.; Bischoff, C.; Buder, I.; Chinone, Y.; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R.; Ruud, T. M.; Wehus, I. K.; Zwart, J. T. L.; Dickinson, C.; Eriksen, H. K.; Gaier, T.; Gundersen, J. O.; Hasegawa, M.; Hazumi, M.; Miller, A. D.; Radford, S. J. E.; Readhead, A. C. S.; Staggs, S. T.; Tajima, O.; Thompson, K. L.; QUIET Collaboration

    2015-06-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ˜480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30-40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%-20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  9. Quantum state resolved molecular beam reflectivity measurements: CH4 dissociation on Pt(111)

    NASA Astrophysics Data System (ADS)

    Chadwick, Helen; Gutiérrez-González, Ana; Beck, Rainer D.

    2016-11-01

    The King and Wells molecular beam reflectivity method has been used for a quantum state resolved study of the dissociative chemisorption of CH4 on Pt(111) at several surface temperatures. Initial sticking coefficients S0 were measured for incident CH4 prepared both with a single quantum of ν3 antisymmetric stretch vibration by infrared laser pumping and without laser excitation. Vibrational excitation of the ν3 mode is observed to be less efficient than incident translational energy in promoting the dissociation reaction with a vibrational efficacy ην3 = 0.65. The initial state resolved sticking coefficient S0 ν 3 was found to be independent of the surface temperature over the 50 kJ/mol to 120 kJ/mol translational energy range studied here. However, the surface temperature dependence of the King and Wells data reveals the migration of adsorbed carbon formed by CH4 dissociation on the Pt(111) surface leading to the growth of carbon particles.

  10. Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements.

    PubMed

    Votava, Ondrej; Mašát, Milan; Parker, Alexander E; Jain, Chaithania; Fittschen, Christa

    2012-04-01

    We present in this work a new tracking servoloop electronics for continuous wave cavity-ringdown absorption spectroscopy (cw-CRDS) and its application to time resolved cw-CRDS measurements by coupling the system with a pulsed laser photolysis set-up. The tracking unit significantly increases the repetition rate of the CRDS events and thus improves effective time resolution (and/or the signal-to-noise ratio) in kinetics studies with cw-CRDS in given data acquisition time. The tracking servoloop uses novel strategy to track the cavity resonances that result in a fast relocking (few ms) after the loss of tracking due to an external disturbance. The microcontroller based design is highly flexible and thus advanced tracking strategies are easy to implement by the firmware modification without the need to modify the hardware. We believe that the performance of many existing cw-CRDS experiments, not only time-resolved, can be improved with such tracking unit without any additional modification to the experiment.

  11. Small roll angle measurement using lateral shearing cyclic path polarization interferometry.

    PubMed

    Pavan Kumar, Y; Chatterjee, Sanjib; Negi, Sarvendra Singh

    2016-02-10

    We present a technique for the measurement of roll angular displacement of a rotary stage using a lateral shearing cyclic path optical configuration (CPOC) setup and polarization phase shifting interferometry (PPSI). The CPOC setup, aligned on the rotary stage, laterally shears the input plane polarized spherical beam into a pair of orthogonally polarized beams, which when brought to the same state of polarization by a polarizer produce interference fringes similar to Young's fringes. Rotation of the CPOC setup in its plane introduces a phase change between the orthogonally polarized lateral sheared beams due to the change in angle of incidence of the input beam. The change in the phase results in spatial displacement of the interference fringes. Using PPSI, the phase, or the optical path difference change between the laterally sheared beams that is related to the rotation angle of the CPOC setup, is measured.

  12. Development of a Mid-Infrared Laser for Range-Resolved Methane DIAL Measurements

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Hannun, R. A.; Smith, J. B.; Dykema, J. A.; Witinski, M. F.; Anderson, J. G.

    2013-12-01

    Obtaining a global, homogenous observational record of atmospheric methane mixing ratio as a function of altitude constitutes a challenging experimental problem. The Total Carbon Column Observing Network (TCCON) as well as several climate satellites such as SCIAMACHY provide global data of ground-level concentrations and atmospheric column averages, mapping the global methane content as part of the carbon cycle. However, recent data from the HIAPER Pole-to-Pole Observations mission (HIPPO) reveals highly variable spatial structure within the vertical profile, that is not captured by satellite or ground-based in situ data. This underscores the need for new approaches for range-resolved methane detection. Differential Absorption LIDAR (DIAL) has proven to be a viable technique for range-resolved greenhouse gas measurements from both ground-based and airborne platforms. In order to achieve the necessary vertical resolution for long-range methane measurements, a high-power, pulsed laser system in the mid-IR has been developed. The optical set-up includes a single-frequency Nd:YAG laser, which pumps a non-linear crystal to generate broadly tunable, mid-IR pulses via Optical Parametric Generation (OPG). A detailed sensitivity analysis, including computational estimates of the requirements for laser linewidth, spectral purity, and frequency stability and an examination of different spectral regions in the mid-IR, will be presented. Depending on the deployment location of such a ground-based DIAL observing system, these measurements would make substantial contributions to a range of carbon cycle science questions, including monitoring of national emissions inventories and quantifying potential increases in methane emissions from natural reservoirs due to changing climate.

  13. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  14. Precision measurement of the nuclear polarization of laser-cooled, optically pumped 37K

    NASA Astrophysics Data System (ADS)

    Behr, J. A.; Craiciu, I.; Gorelov, A.; Smale, S.; Warner, C. L.; Lawrence, L.; Fenker, B.; Behling, R. S.; Mehlman, M.; Melconian, D.; Gwinner, G.; Anholm, M.; McNeil, J.; Ashery, D.; Cohen, I.

    2016-09-01

    We have spin-polarized laser cooled 37K by direct optical pumping and measured the polarization to < 0 . 1 % accuracy [B. Fenker arXiv:1602.04526]. Our polarization method naturally monitors the polarization of the nuclei as they decay. The atoms absorb circularly polarized light directed along the quantization axis near-resonant with the atomic S1 / 2 to P1 / 2 transition. Once the atoms are polarized, they stop absorbing light, so the ratio between the final P1 / 2 population and its initial maximum probes the degree of polarization. We monitor the P1 / 2 population using UV photons energetic enough to photoionize the P1 / 2 state but not the S1 / 2 state. Since the final P1 / 2 population nearly vanishes, 5% precision on the final/maximum ratio determines the polarization to 0.1%. We eliminate a nonclassical effect, coherent population trapping, which could produce poorly polarized unexcited atoms. We show planned upgrades. Our result for the nuclear vector polarization during our Aβ measurement [B. Fenker, this conference] was 99.13(9)%, not the dominant systematic. Supported by NSERC, D.O.E., Israel Science Foundation. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.

  15. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    NASA Astrophysics Data System (ADS)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 μm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement.

  16. Measurement of top quark polarization in t t ¯ lepton +jets final states

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shkola, O.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2017-01-01

    We present a measurement of top quark polarization in t t ¯ pair production in p p ¯ collisions at √{s }=1.96 TeV using data corresponding to 9.7 fb-1 of integrated luminosity recorded with the D0 detector at the Fermilab Tevatron Collider. We consider final states containing a lepton and at least three jets. The polarization is measured through the distribution of lepton angles along three axes: the beam axis, the helicity axis, and the transverse axis normal to the t t ¯ production plane. This is the first measurement of top quark polarization at the Tevatron using lepton +jet final states and the first measurement of the transverse polarization in t t ¯ production. The observed distributions are consistent with standard model predictions of nearly no polarization.

  17. Experimental measurement of effective refractive index difference for few mode polarization maintaining fibers using S2 method

    NASA Astrophysics Data System (ADS)

    Guo, Wenting; Li, Yan; Zeng, Xinglin; Mo, Qi; Li, Wei; Liu, Zhijian; Wu, Jian

    2016-10-01

    Polarization maintaining fibers (PMFs) can keep linear polarization state against external perturbations by inducing a high effective refractive index difference (Δneff) along one polarization axis. For few mode polarization maintaining fibers (FM-PMFs), Δneff is applicable between both orthogonal linear polarization modes (e.g. LP01x and LP01y) and orthogonal degenerated modes (e.g. LP11a and LP11b), which can enable advanced functionalities in multiple-input multiple- output-free spatial division multiplexing systems and optical fiber sensing systems. Therefore, the measurement of Δneff for polarization modes and degenerated modes is very important for determining the quality of a FM-PMF. However, measurement of the Δneff for FM-PMFs can be complicated due to the requirement for generating and demultiplexing of the higher order modes (HOMs). In this paper, we propose to measure the Δneff of FM-PMFs using Spatially and Spectrally resolved imaging (S2) method for the first time. The presented method is simply by employing a tunable laser and an IR CCD camera, can avoid any mode converter or mode multiplexer/demultiplexer, featuring a rapid testing speed. A proof-of-concept experiment is carried out to measure FM-PMFs with a length of 1.1m and 5m. The Δneff between the orthogonal polarization modes (i.e. LP11ax-11ay, LP11bx-11by, LP21ax-21ay, and LP21bx-21by) are characterized as 7.05×10-4, 6.91×10-4, 1.02×10-3 and 1.04×10-3 respectively. The Δneff of the orthogonal degenerated modes (i.e. LP11ax-11bx, LP11ay-11by, LP21ax-21bx and LP21ay-21by) are also characterized to be 1.39×10-4, 1.24×10-4, 5.61×10-5 and 6.53×10-5 respectively.

  18. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayahsi, Ken; Davis, John; Gary, Allen; Adams, Mitzi

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  19. Measurement of the linear polarization of channeling radiation in silicon and diamond

    SciTech Connect

    Rzepka, M.; Buschhorn, G.; Diedrich, E.; Kotthaus, R.; Kufner, W.; Roessl, W.; Schmidt, K.H.; Hoffmann-Stascheck, P.; Genz, H.; Nething, U.; Richter, A.; Sellschop, J.P.F.

    1995-07-01

    Utilizing 90{degree} Compton scattering the linear polarization of channeling radiation produced at the superconducting accelerator S-DALINAC with 62 MeV electrons in silicon and diamond has been measured in the energy range between 50 and 400 keV. Planar channeling radiation due to transitions involving transversal bound as well as unbound states is completely linearly polarized perpendicular to the channeling plane. Axial channeling radiation does not show linear polarization.

  20. MgII Linear Polarization Measurements Using the MSFC Solar Ultraviolet Magnetograph Sounding Rocket

    NASA Technical Reports Server (NTRS)

    West, Edward; Cirtain, Jonathan; Kobayashi, Ken; Davis, John; Gary, Allen

    2011-01-01

    This paper will describe the Marshall Space Flight Center's Solar Ultraviolet Magnetograph Investigation (SUMI) sounding rocket program, with emphasis on the polarization characteristics of the VUV optics and their spectral, spatial and polarization resolution. SUMI's first flight (7/30/2010) met all of its mission success criteria and this paper will describe the data that was acquired with emphasis on the MgII linear polarization measurements.

  1. Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties.

    PubMed

    Swartling, Johannes; Dam, Jan S; Andersson-Engels, Stefan

    2003-08-01

    Time-resolved and spatially resolved measurements of the diffuse reflectance from biological tissue are two well-established techniques for extracting the reduced scattering and absorption coefficients. We have performed a comparison study of the performance of a spatially resolved and a time-resolved instrument at wavelengths 660 and 786 nm and also of an integrating-sphere setup at 550-800 nm. The first system records the diffuse reflectance from a diode laser by means of a fiber bundle probe in contact with the sample. The time-resolved system utilizes picosecond laser pulses and a single-photon-counting detection scheme. We extracted the optical properties by calibration using known standards for the spatially resolved system, by fitting to the diffusion equation for the time-resolved system, and by using an inverse Monte Carlo model for the integrating sphere. The measurements were performed on a set of solid epoxy tissue phantoms. The results showed less than 10% difference in the evaluation of the reduced scattering coefficient among the systems for the phantoms in the range 9-20 cm(-1), and absolute differences of less than 0.05 cm(-1) for the absorption coefficient in the interval 0.05-0.30 cm(-1).

  2. Spatially resolved measurement of high doses in microbeam radiation therapy using samarium doped fluorophosphate glasses

    SciTech Connect

    Okada, Go; Morrell, Brian; Koughia, Cyril; Kasap, Safa; Edgar, Andy; Varoy, Chris; Belev, George; Wysokinski, Tomasz; Chapman, Dean

    2011-09-19

    The measurement of spatially resolved high doses in microbeam radiation therapy has always been a challenging task, where a combination of high dose response and high spatial resolution (microns) is required for synchrotron radiation peaked around 50 keV. The x-ray induced Sm{sup 3+}{yields} Sm{sup 2+} valence conversion in Sm{sup 3+} doped fluorophosphates glasses has been tested for use in x-ray dosimetry for microbeam radiation therapy. The conversion efficiency depends almost linearly on the dose of irradiation up to {approx}5 Gy and saturates at doses exceeding {approx}80 Gy. The conversion shows strong correlation with x-ray induced absorbance of the glass which is related to the formation of phosphorus-oxygen hole centers. When irradiated through a microslit collimator, a good spatial resolution and high ''peak-to-valley'' contrast have been observed by means of confocal photoluminescence microscopy.

  3. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement.

    PubMed

    Sawosz, P; Kacprzak, M; Weigl, W; Borowska-Solonynko, A; Krajewski, P; Zolek, N; Ciszek, B; Maniewski, R; Liebert, A

    2012-12-07

    A time-gated intensified CCD camera was applied for time-resolved imaging of light penetrating in an optically turbid medium. Spatial distributions of light penetration probability in the plane perpendicular to the axes of the source and the detector were determined at different source positions. Furthermore, visiting probability profiles of diffuse reflectance measurement were obtained by the convolution of the light penetration distributions recorded at different source positions. Experiments were carried out on homogeneous phantoms, more realistic two-layered tissue phantoms based on the human skull filled with Intralipid-ink solution and on cadavers. It was noted that the photons visiting probability profiles depend strongly on the source-detector separation, the delay between the laser pulse and the photons collection window and the complex tissue composition of the human head.

  4. Space- and time-resolved resistive measurements of liquid metal wall thickness

    NASA Astrophysics Data System (ADS)

    Mirhoseini, S. M. H.; Volpe, F. A.

    2016-11-01

    In a fusion reactor internally coated with liquid metal, it will be important to diagnose the thickness of the liquid at various locations in the vessel, as a function of time, and possibly respond to counteract undesired bulging or depletion. The electrical conductance between electrodes immersed in the liquid metal can be used as a simple proxy for the local thickness. Here a matrix of electrodes is shown to provide spatially and temporally resolved measurements of liquid metal thickness in the absence of plasma. First a theory is developed for m × n electrodes, and then it is experimentally demonstrated for 3 × 1 electrodes, as the liquid stands still or is agitated by means of a shaker. The experiments were carried out with Galinstan, but are easily extended to lithium or other liquid metals.

  5. Experimental estimation of the photons visiting probability profiles in time-resolved diffuse reflectance measurement

    NASA Astrophysics Data System (ADS)

    Sawosz, P.; Kacprzak, M.; Weigl, W.; Borowska-Solonynko, A.; Krajewski, P.; Zolek, N.; Ciszek, B.; Maniewski, R.; Liebert, A.

    2012-12-01

    A time-gated intensified CCD camera was applied for time-resolved imaging of light penetrating in an optically turbid medium. Spatial distributions of light penetration probability in the plane perpendicular to the axes of the source and the detector were determined at different source positions. Furthermore, visiting probability profiles of diffuse reflectance measurement were obtained by the convolution of the light penetration distributions recorded at different source positions. Experiments were carried out on homogeneous phantoms, more realistic two-layered tissue phantoms based on the human skull filled with Intralipid-ink solution and on cadavers. It was noted that the photons visiting probability profiles depend strongly on the source-detector separation, the delay between the laser pulse and the photons collection window and the complex tissue composition of the human head.

  6. A new approach for highly resolved air temperature measurements in urban areas

    NASA Astrophysics Data System (ADS)

    Buttstädt, M.; Sachsen, T.; Ketzler, G.; Merbitz, H.; Schneider, C.

    2011-02-01

    In different fields of applied local climate investigation, highly resolved data of air temperature are of great importance. As a part of the research programme entitled City2020+, which deals with future climate conditions in agglomerations, this study focuses on increasing the quantity of urban air temperature data intended for the analysis of their spatial distribution. A new measurement approach using local transport buses as "riding thermometers" is presented. By this means, temperature data with a very high temporal and spatial resolution could be collected during scheduled bus rides. The data obtained provide the basis for the identification of thermally affected areas and for the investigation of factors in urban structure which influence the thermal conditions. Initial results from the ongoing study, which show the temperature distribution along different traverses through the city of Aachen, are presented.

  7. Time-resolved temperature measurement and numerical simulation of millisecond laser irradiated silicon

    SciTech Connect

    Li Zewen; Zhang Hongchao; Shen Zhonghua; Ni Xiaowu

    2013-07-21

    Thermal process of 1064 nm millisecond pulsed Nd:YAG laser irradiated silicon was time-resolved temperature measured by an infrared radiation pyrometer, temperature evolutions of the spot center for wide range of laser energy densities were presented. The waveforms of temperature evolution curves contained much information about phase change, melting, solidification and vaporization. An axisymmetric numerical model was established for millisecond laser heating silicon. The transient temperature fields were obtained by using the finite element method. The numerical results of temperature evolutions of the spot center are in good agreement with the experimental results. Furthermore, the axial temperature distributions of the numerical results give a better understanding of the waveforms in the experimental results. The melting threshold, vaporizing threshold, melting duration, and melting depth were better identified by analyzing two kinds of results.

  8. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    NASA Astrophysics Data System (ADS)

    Qin, Feng; Zhao, Hua; Duan, Qianqian; Cai, Wei; Zhang, Zhiguo; Cao, Wenwu

    2013-11-01

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd3+ lasers were used as examples to present the method. Upconversion dynamic process of Ho3+ was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb3+ to Yb3+ was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar+ laser, Kr+ laser, Ti:sapphire laser, etc.

  9. Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging

    PubMed Central

    Zheng, Kaiyu; Jensen, Thomas P.; Savtchenko, Leonid P.; Levitt, James A.; Suhling, Klaus; Rusakov, Dmitri A.

    2017-01-01

    Neural activity relies on molecular diffusion within nanoscopic spaces outside and inside nerve cells, such as synaptic clefts or dendritic spines. Measuring diffusion on this small scale in situ has not hitherto been possible, yet this knowledge is critical for understanding the dynamics of molecular events and electric currents that shape physiological signals throughout the brain. Here we advance time-resolved fluorescence anisotropy imaging combined with two-photon excitation microscopy to map nanoscale diffusivity in ex vivo brain slices. We find that in the brain interstitial gaps small molecules move on average ~30% slower than in a free medium whereas inside neuronal dendrites this retardation is ~70%. In the synaptic cleft free nanodiffusion is decelerated by ~46%. These quantities provide previously unattainable basic constrains for the receptor actions of released neurotransmitters, the electrical conductance of the brain interstitial space and the limiting rate of molecular interactions or conformational changes in the synaptic microenvironment. PMID:28181535

  10. Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2013-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  11. Temporally resolved ion velocity distribution measurements in a radio-frequency plasma sheath

    SciTech Connect

    Jacobs, B.; Gekelman, W.; Pribyl, P.; Barnes, M.

    2011-05-15

    The ion velocity distribution function (IVDF) above and within a radio-frequency (RF) biased plasma sheath is studied experimentally with a pulsed laser-induced fluorescence diagnostic in an industrial plasma etch tool. Temporally resolved measurements taken at eight different phases of the 2.2 MHz bias waveform show that the ion dynamics vary dramatically throughout the RF cycle (the ratio of the average ion transit time through the sheath to the RF period is {tau}{sub ion}/{tau}{sub RF} = 0.3). The position of the presheath/sheath edge is constant throughout the RF cycle and the time-averaged ion flux is conserved within the sheath region. The characteristic bimodal structure of the time-averaged ion distributions found in previous experiments is observed to arise from the time-dependent ion dynamics, in accord with existing theory. The large temporal variation of the IVDF has implications for the plasma chemistry and etching quality.

  12. Few-femtosecond time-resolved measurements of X-ray free-electron lasers.

    PubMed

    Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J

    2014-04-30

    X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.

  13. Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2012-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  14. New method for measuring time-resolved spectra of lanthanide emission using square-wave excitation

    SciTech Connect

    Qin, Feng; Zhao, Hua; Cai, Wei; Duan, Qianqian; Zhang, Zhiguo; Cao, Wenwu

    2013-11-15

    A method using modulated continuous wave (CW) visible laser to measure time-resolved fluorescence spectra of trivalent rare-earth ions has been developed. Electro-optic modulator was used to modulate the CW pumping laser with a rise time of 2 μs. CW Nd{sup 3+} lasers were used as examples to present the method. Upconversion dynamic process of Ho{sup 3+} was studied utilizing a 532 nm CW laser. Quantum cutting dynamic process from Tb{sup 3+} to Yb{sup 3+} was analyzed by a 473 nm CW laser. This method can be applied to any CW laser such as He-Ne laser, Ar{sup +} laser, Kr{sup +} laser, Ti:sapphire laser, etc.

  15. Time-resolved measurement of Landau-Zener tunneling in different bases

    SciTech Connect

    Tayebirad, G.; Loerch, N.; Wimberger, S.; Zenesini, A.; Ciampini, D.; Arimondo, E.; Mannella, R.; Morsch, O.

    2010-07-15

    A comprehensive study of the tunneling dynamics of a Bose-Einstein condensate in a tilted periodic potential is presented. We report numerical and experimental results on time-resolved measurements of the Landau-Zener tunneling of ultracold atoms introduced by the tilt, which experimentally is realized by accelerating the lattice. The use of different protocols enables us to access the tunneling probability, numerically as well as experimentally, in two different bases, namely, the adiabatic basis and the diabatic basis. The adiabatic basis corresponds to the eigenstates of the lattice, and the diabatic one to the free-particle momentum eigenstates. Our numerical and experimental results are compared with existing two-state Landau-Zener models.

  16. Electron Temperature Measurement of Buried Layer Targets Using Time Resolved K-shell Spectroscopy

    NASA Astrophysics Data System (ADS)

    Marley, Edward; Foord, M. E.; Shepherd, R.; Beiersdorfer, P.; Brown, G.; Chen, H.; Emig, J.; Schneider, M.; Widmann, K.; Scott, H.; London, R.; Martin, M.; Wilson, B.; Iglesias, C.; Mauche, C.; Whitley, H.; Nilsen, J.; Hoarty, D.; James, S.; Brown, C. R. D.; Hill, M.; Allan, P.; Hobbs, L.

    2016-10-01

    Short pulse laser-heated buried layer experiments have been performed with the goal of creating plasmas with mass densities >= 1 g/cm3 and electron temperatures >= 500 eV. The buried layer geometry has the advantage of rapid energy deposition before significant hydrodynamic expansion occurs. For brief periods (< 40 ps) this provides a low gradient, high density platform for studying emission characteristics under extreme plasma conditions. A study of plasma conditions achievable using the Orion laser facility has been performed. Time resolved K-shell spectroscopy was used to determine the temperature evolution of buried layer aluminum foil targets. The measured evolution is compared to a 2-D PIC simulation done using LSP, which shows late time heating from the non-thermal electron population. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. An optical backscatter probe for time resolved droplet measurements in turbomachines

    NASA Astrophysics Data System (ADS)

    Bosdas, Ilias; Mansour, Michel; Kalfas, Anestis I.; Abhari, Reza S.

    2016-01-01

    The presence of particles in the flow path of turbomachines can result in undesirable engine operation. In order to improve the efficiency of turbomachines and guarantee their safe operation, the flow mechanisms that govern the particles’ need to be studied and associated with the main aerodynamic flow field. This paper describes a newly developed optical backscatter probe for droplet diameter and speed measurements in turbomachines. The miniature probe has a tip diameter of 5 mm and is capable of resolving droplets from 40 to 110 μm in diameter that travel up to 200 m s-1. The calibration of the novel probe is performed with a droplet generator capable of producing monodispersed water droplets. In addition, the probe is calibrated for droplet speed measurements in the same calibration facility. The paper conducts a detailed uncertainty analysis and describes the post processing code. In the final part of this paper the probe is used in an axial turbine with an installed spray generator to perform droplet measurements under two different operating conditions. Measurements have shown that the part load condition results in larger droplet diameters and higher relative droplet speeds. As a consequence higher erosion rates at the rotor leading edge suction side will occur when operating at part load condition.

  18. Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating

    SciTech Connect

    DeLong, K.W.; Fittinghoff, D.N.; Trebino, R.

    1996-07-01

    The authors explore several practical experimental issues in measuring ultrashort laser pulses using the technique of frequency-resolved optical gating (FROG). They present a simple method for checking the consistency of experimentally measured FROG data with the independently measured spectrum and autocorrelation of the pulse. This method is a powerful way of discovering systematic errors in FROG experiments. They show how to determine the optimum sampling rate for FROG and show that this satisfies the Nyquist criterion for the laser pulse. They explore the low- and high-power limits to FROG and determine that femtojoule operation should be possible, while the effects of self-phase modulation limit the highest signal efficiency in FROG to 1%. They also show quantitatively that the temporal blurring due to a finite-thickness medium in single-shot geometries does not strongly limit the FROG technique. They explore the limiting time-bandwidth values that can be represented on a FROG trace of a given size. Finally, they report on a new measure of the FROG error that improves convergence in the presence of noise.

  19. Depth-resolved birefringence imaging of the primate retinal nerve fiber layer using polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Kemp, Nathaniel J.; Park, Jesung; Marsack, Jason D.; Dave, Digant P.; Parekh, Sapun H.; Milner, Thomas E.; Rylander, Henry G., III

    2002-06-01

    Imaging the optical phase retardation per unit depth (OPR/UD) in the retinal nerve fiber layer (RNFL) may aid in glaucoma diagnosis. Polarization Sensitive Optical Coherence Tomography (PSOCT) was used to record in vivo high-resolution images of the RNFL in two cynomologous monkeys. The depth variation in the Stokes vector of reflected light was used to calculate the OPR/UD as a function of RNFL position. OPR/UD decreased from 35 degree(s)/100 micrometers near the optic nerve to 5 degree(s)/100 micrometers at a location 600 micrometers superior to the optic nerve. Variation of OPR/UD in the RNFL with retinal position demonstrates a change in birefringence for different densities of ganglion cell axons. PSOCT may be useful for noninvasive determination of RNFL thickness and fiber density.

  20. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  1. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    SciTech Connect

    McAleer, Simeon B.

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  2. Instrumentation for time-resolved dynamic and static dichroic measurements of polymers with a near-IR acoustooptic tunable filter

    NASA Astrophysics Data System (ADS)

    Sweat, Joseph Allen

    1999-11-01

    The optical measurement of the orientational response of chemical functional groups of a polymer as it is subjected to conventional dynamic mechanical analysis can give insight into the rheological behavior of the polymer while under repetitive strain based on the chemical structure. Instrumentation used in the mid infrared has included the use of grating monochromators and interferometers. The use of a multiply modulated optical signal has decreased the level of noise to observe the small amplitude changes (typically >10-3 absorbance units) associated with the repetitive oscillatory strain. The use of digital signal processing to replace phase sensitive detection for demodulation of the optical signal has greatly reduced the spectral collection time. In addition, multiplexing gained with the use of step-scan interferometry in making time resolved measurements has aided in making the procedure more practical. However, instrumental complexity and expense are drawbacks. By incorporating the high throughput, polarized tuned beam, and rapid wavelength switching capability of an acousto-optic tunable filter (AOTF), a dynamic instrument with integrated centralized control by a single microprocessor has been built. it operates in the near infrared with a rapid dynamic data collection time and requires the use of only a single modulation in the form of the sample oscillatory strain. The near infrared permits thicker samples to reduce sample preparation tune or allows polymers to be tested without pretreatment. The use of Fourier based digital filtering improves the signal to noise ratio of the dynamic differential spectra. The instrument is cost effective and rugged in comparison to step-scan interferometers yet has a rapid data collection rate allowing use in a routine industrial setting. Information from these measurements can aid in determining the rheological properties necessary for the end use functionality of a polymer. Additionally, AOTF instrumentation can be used

  3. Study of the mesosphere using wide-field twilight polarization measurements: Early results beyond the polar circle

    NASA Astrophysics Data System (ADS)

    Ugolnikov, O. S.; Kozelov, B. V.

    2016-07-01

    This paper discusses the results of early measurements of temperature and dust in the mesosphere on the basis of wide-field twilight sky polarimetry, which began in 2015 in Apatity (North of Russia, 67.6° N, 33.4° E) using the original entire-sky camera. These measurements have been performed for the first time beyond the Polar Circle in the winter and early spring period. The general polarization properties of the twilight sky and the procedure for identifying single scattering are described. The key results of the study include the Boltzmann temperature values at altitudes higher than 70 km and the conclusion on a weak effect of dust on scattering properties of the mesosphere during this period.

  4. Critical assessment of fluorescence polarization measurements with a FACS IV cell sorter

    NASA Astrophysics Data System (ADS)

    Muller, Claude P.; Krabichler, Gert

    1988-09-01

    The usefulness and limitations of the Becton-Dickinson fluorescence-activated cell sorter FACS IV for fluorescence polarization measurements were examined. A set of tests to determine the characteristics of the detection geometry, the optical properties of the beam splitter, and the capability to process fluorescence polarization data is presented. Recommendations are provided for correcting instrumental deficiencies.

  5. Measuring the Spin-Polarization Power of a Single Chiral Molecule.

    PubMed

    Aragonès, Albert C; Medina, Ernesto; Ferrer-Huerta, Miriam; Gimeno, Nuria; Teixidó, Meritxell; Palma, Julio L; Tao, Nongjian; Ugalde, Jesus M; Giralt, Ernest; Díez-Pérez, Ismael; Mujica, Vladimiro

    2017-01-01

    The electronic spin filtering capability of a single chiral helical peptide is measured. A ferromagnetic electrode source is employed to inject spin-polarized electrons in an asymmetric single-molecule junction bridging an α-helical peptide sequence of known chirality. The conductance comparison between both isomers allows the direct determination of the polarization power of an individual chiral molecule.

  6. Measurement of the ratio of the proton's electric to magnetic form factors by recoil polarization

    SciTech Connect

    Mark K. Jones; Hall A Collaboration

    1999-03-01

    The longitudinal and transverse polarizations of the outgoing proton were measured for the reaction {sup 1}H(e,e' p) at four-momentum transfer squared of 0.5 to 3.5 GeV{sup 2}. The ratio of the electric to magnetic form factors of the proton is proportional to the ratio of the transverse to longitudinal polarizations.

  7. Direct evaluation of anisotropic carrier mobility in uniaxially aligned polymer semiconductor film by time-resolved microscopic optical second-harmonic generation measurement

    NASA Astrophysics Data System (ADS)

    Abe, Kentaro; Manaka, Takaaki; Iwamoto, Mitsumasa

    2017-01-01

    Mobility anisotropy in uniaxially-aligned fluorene co-polymer thin film was directly observed by using time-resolved microscopic optical second-harmonic generation (TRM-SHG) imaging. Main-chain orientation of fluorene co-polymer was determined by polarized absorption measurement, and the mobilities in the direction parallel and perpendicular to the main-chain were respectively estimated as 4.8× {{10}-3} cm2 Vs-1 and 1.2× {{10}-3} cm2 Vs-1 from the visualized carrier motion starting from a round-shape electrode. These results indicate that the mobility anisotropy of this sample was 4.0. Activation energy for each direction was also evaluated by the temperature dependence measurement as 117 and 94 meV, respectively. The TRM-SHG method enables us to estimate mobility and activation energy of the oriented polymer film in all directions at once.

  8. Versatile attosecond beamline in a two-foci configuration for simultaneous time-resolved measurements

    SciTech Connect

    Locher, R.; Lucchini, M. Herrmann, J.; Sabbar, M.; Weger, M.; Ludwig, A.; Gallmann, L.; Keller, U.; Castiglioni, L.; Greif, M.; Hengsberger, M.

    2014-01-15

    We present our attoline which is a versatile attosecond beamline at the Ultrafast Laser Physics Group at ETH Zurich for attosecond spectroscopy in a variety of targets. High-harmonic generation (HHG) in noble gases with an infrared (IR) driving field is employed to generate pulses in the extreme ultraviolet (XUV) spectral regime for XUV-IR cross-correlation measurements. The IR pulse driving the HHG and the pulse involved in the measurements are used in a non-collinear set-up that gives independent access to the different beams. Single attosecond pulses are generated with the polarization gating technique and temporally characterized with attosecond streaking. This attoline contains two target chambers that can be operated simultaneously. A toroidal mirror relay-images the focus from the first chamber into the second one. In the first interaction region a dedicated double-target allows for a simple change between photoelectron/photoion measurements with a time-of-flight spectrometer and transient absorption experiments. Any end station can occupy the second interaction chamber. A surface analysis chamber containing a hemispherical electron analyzer was employed to demonstrate successful operation. Simultaneous RABBITT measurements in two argon jets were recorded for this purpose.

  9. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  10. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    SciTech Connect

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W.

    2014-01-27

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  11. Time-resolved measurement of plasma parameters by means of triple probe

    SciTech Connect

    Qayyum, A.; Ahmad, N.; Ahmad, S.; Deeba, Farah; Ali, Rafaqat; Hussain, S.

    2013-12-15

    Triple Langmuir probe (TLP) diagnostic system with its necessary driving circuit is developed and successfully applies for time-resolved measurement of plasma parameters in the negative glow region of pulsating-dc discharge. This technique allows the instantaneous measurement of electron temperature [T{sub −}], electron number density [n{sub −}] as well as plasma fluctuations without any voltage or frequency sweep. In TLP configuration two probes are differentially biased and serve as a floating symmetric double probe whereas the third probe is simply floating into plasma to measure floating potential as a function of time and thus incorporates the effect of plasma fluctuations. As an example of the application to time-dependent plasmas, basic plasma parameters such as floating potential, electron temperature, and electron number density in low pressure air discharge are determined as a function of time for different fill pressure. The results demonstrate temporal evolution of plasma parameters and thus plasma generation progression for different fill pressures.

  12. Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield

    SciTech Connect

    Marcham, M. K.; Keatley, P. S.; Neudert, A.; Hicken, R. J.; Cavill, S. A.; Shelford, L. R.; van der Laan, G.; Telling, N. D.; Childress, J. R.; Katine, J. A.; Shafer, P.; Arenholz, E.

    2010-10-14

    Phase-resolved x-ray ferromagnetic resonance (XFMR) has been measured in fluorescence yield, extending the application of XFMR to opaque samples on opaque substrates. Magnetization dynamics were excited in a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5) bilayer by means of a continuous wave microwave excitation, while x-ray magnetic circular dichroism (XMCD) spectra were measured stroboscopically at different points in the precession cycle. By tuning the x-ray energy to the L{sub 3} edges of Ni and Fe, the dependence of the real and imaginary components of the element specific magnetic susceptibility on the strength of an externally applied static bias field was determined. First results from measurements on a Co{sub 50}Fe{sub 50}(0.7)/Ni{sub 90}Fe{sub 10}(5)/Dy(1) sample confirm that enhanced damping results from the addition of the Dy cap.

  13. Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kaiser, U.; Jimenez de Aberasturi, D.; Malinowski, R.; Amin, F.; Parak, W. J.; Heimbrodt, W.

    2014-01-01

    Multiplexed measurements of analytes in parallel is a topical demand in bioanalysis and bioimaging. An interesting alternative to commonly performed spectral multiplexing is lifetime multiplexing. In this Letter, we present a proof of principle of single-color lifetime multiplexing by coupling the same fluorophore to different nanoparticles. The effective lifetime of the fluorophores can be tuned by more than one order of magnitude due to resonance energy transfer from donor states. Measurements have been done on a model systems consisting of ATTO-590 dye molecules linked to either gold particles or to CdSe/ZnS core shell quantum dots. Both systems show the same luminescence spectrum of ATTO-590 dye emission in continuous wave excitation, but can be distinguished by means of time resolved measurements. The dye molecules bound to gold particles exhibit a mono-exponential decay with a lifetime of 4.5 ns, whereas the dye molecules bound to CdSe/ZnS dots show a nonexponential decay with a slow component of about 135 ns due to the energy transfer from the quantum dots. We demonstrate the fundamental possibility to determine the mixing ratio for dyes with equal luminescence spectra but very different transients. This opens up a pathway independent of the standard optical multiplexing with many different fluorophores emitting from the near ultraviolet to the near infrared spectral region.

  14. ELM resolved measurement of fuel recycling on divertor targets in DIII-D

    NASA Astrophysics Data System (ADS)

    Bykov, I.; Hollmann, E. M.; Moyer, R. A.; Watkins, J. G.; Makowski, M.; Lasnier, C. S.; McLean, A.; Wang, H.

    2016-10-01

    Simultaneous measurements of different atomic and molecular contributions are important for determining D recycling from plasma-facing components (PFCs). A splitted filtered imaging of visible-range molecular and atomic emission was applied for the first time for synchronous measurements of Dα (656 nm), D2 Fulcher- α band (600 nm), and CD (430 nm) emissions in the strike point region of the lower divertor in DIII-D. Framing rate up to 1 kHz was sufficient to resolve intra- and inter-ELM phases of H-mode discharges. Radial profiles of atomic (molecular) fluxes of recycled D were deduced using respective S(D)/XB rate coefficients. We present the results of particle flux measurements for a series of shots with varying densities (n/nGW = 0.5-0.8), which affected the degree of the divertor detachment and the balance between individual channels of D recycling from PFCs. Supported by the US DOE under DE-FG02-07ER54917, DE-FG02-04ER54758, DE-FC02-04ER54698, DE-FG03-95ER54309, and DE-FG02-04ER54762.

  15. Measurement of Electron Beam Polarization from Unstrained Bulk GaAs via Two Photon Photoemission

    SciTech Connect

    J L McCarter, T J Gay, J Hansknecht, M Poelker, M L Stutzman

    2011-06-01

    This paper describes measurements of the beam polarization and quantum efficiency for photoemission using two-photon excitation from unstrained bulk GaAs illuminated with pulsed, high intensity 1560nm laser light. Quantum efficiency is linearly proportional to 1560nm peak laser intensity, which was varied in three independent ways, indicating that the emitted electrons are promoted from the valence to the conduction band via two-photon absorption. Beam polarization was measured using a microMott polarimeter, with a value of 16.8(4)% polarization at 1560nm, which is roughly half the measured value of 33.4(8)% using 778 nm light.

  16. Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies.

    PubMed

    Horváth, Gábor; Gál, József; Labhart, Thomas; Wehner, Rüdiger

    2002-11-01

    Using imaging polarimetry, we have measured some typical reflection-polarization patterns of plant surfaces (leaves and flowers) under different illuminations. Using a quantitative model to determine photon absorptions in the weakly polarization-sensitive (PS approximately 2) photoreceptors of Papilio butterflies, we have calculated the influence of reflection polarization on the colours of leaves and flowers perceived by PAPILIO: Compared with a retina containing polarization-blind colour receptors, the colour loci of specularly reflecting and, thus, strongly polarizing areas on a plant are slightly shifted, which could cause the perception of false colours. However, the colour of specularly reflecting surfaces is strongly masked by white glare, which may prevent the perception of polarization-induced hue shifts. Although the perception of polarizational false colours by Papilio butterflies was previously demonstrated with artificial, strongly colour-saturated and totally linearly polarized stimuli, we expect that the weak polarization sensitivity of Papilio photoreceptors hardly influences colour perception under natural conditions.

  17. High time-resolved measurements of organic air toxics in different source regimes

    NASA Astrophysics Data System (ADS)

    Logue, J. M.; Huff-Hartz, K. E.; Lambe, A. T.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.

  18. Time Resolved Measurement of Ecosystem-Atmosphere NH3 Exchange Using the Eddy Covariance Technique

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.; Littlejohn, D.

    2005-12-01

    Quantifying ammonia fluxes between the land surface and atmosphere is required for effective control of air quality, improving agricultural practices, and understanding natural ecosystem function. Ammonia (NH3) is emitted in large but uncertain amounts from animal agriculture, in lesser amounts from imperfect use of nitrogen fertilizers in crop agriculture, from catalytic converters used on automobiles and other energy related industrial processes, and exchanged between the ecosystem and atmosphere by natural ecosystem processes on vast spatial scales. To address the need for accurate, time-resolved NH3 flux measurements, we have developed an eddy covariance (EC) instrument for direct measurements of NH3 flux. EC flux measurements of NH3 were not previously possible because instruments were not sufficiently sensitive at high frequencies required to capture rapid variations in surface layer NH3 concentrations. To overcome this hurdle we combined a tunable-diode-laser (TDL) spectrometer with a fast-response NH3 sampling inlet and automated pulse-response calibration system. Laboratory tests of the inlet system demonstrate that the response to 10 ppb step in NH3 concentration is well described by a double exponential model with (1/e) times of 0.3 (85% response) and 1.5 (15% response) seconds. This response combined with a routinely measured instrument stability of ~ 0.1 ppb (on 30 minute timescales) indicates that the instrumental contribution to noise in NH3 flux measurements is ~ 0.2 umol NH3 m-2 hr-1, sufficient to stringently test models for NH3 exchange under most conditions. Recent results of field work to verify the instrument performance and observe examples of NH3 exchange will be presented.

  19. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  20. High-speed phase-shifting interferometry using triangular prism for time-resolved temperature measurement.

    PubMed

    Shoji, Eita; Komiya, Atsuki; Okajima, Junnosuke; Kawamura, Hiroshi; Maruyama, Shigenao

    2015-07-10

    This study proposes a high-speed phase-shifting interferometer with an original optical prism. This phase-shifting interferometer consists of a polarizing Mach-Zehnder interferometer, an original optical prism, a high-speed camera, and an image-processing unit for a three-step phase-shifting technique. The key aspect of the application of the phase-shifting technique to high-speed experiments is an original prism, which is designed and developed specifically for a high-speed phase-shifting technique. The arbaa prism splits an incident beam into four output beams with different information. The interferometer was applied for quantitative visualization of transient heat transfer. In order to test the optical system for measuring high-speed phenomena, the temperature during heat conduction was measured around a heated thin tungsten wire (diameter of 5 μm) in water. The visualization area is approximately 90  μm×210  μm, and the spatial resolution is 3.5 μm at 300,000 fps of the maximum temporal resolution with a high-speed camera. The temperature fields around the heated wire were determined by converting phase-shifted data using the inverse Abel transform. Finally, the measured temperature distribution was compared with numerical calculations to validate the proposed system; a good agreement was obtained.

  1. Measures of health sciences journal use: a comparison of vendor, link-resolver, and local citation statistics*

    PubMed Central

    De Groote, Sandra L.; Blecic, Deborah D.; Martin, Kristin

    2013-01-01

    Objective: Libraries require efficient and reliable methods to assess journal use. Vendors provide complete counts of articles retrieved from their platforms. However, if a journal is available on multiple platforms, several sets of statistics must be merged. Link-resolver reports merge data from all platforms into one report but only record partial use because users can access library subscriptions from other paths. Citation data are limited to publication use. Vendor, link-resolver, and local citation data were examined to determine correlation. Because link-resolver statistics are easy to obtain, the study library especially wanted to know if they correlate highly with the other measures. Methods: Vendor, link-resolver, and local citation statistics for the study institution were gathered for health sciences journals. Spearman rank-order correlation coefficients were calculated. Results: There was a high positive correlation between all three data sets, with vendor data commonly showing the highest use. However, a small percentage of titles showed anomalous results. Discussion and Conclusions: Link-resolver data correlate well with vendor and citation data, but due to anomalies, low link-resolver data would best be used to suggest titles for further evaluation using vendor data. Citation data may not be needed as it correlates highly with other measures. PMID:23646026

  2. A precise measurement of the polarization of a 200 GeV muon beam in a polarized deep inelastic scattering experiment at CERN

    NASA Astrophysics Data System (ADS)

    Eichblatt, Stephen Lynn

    1997-09-01

    The Spin Muon Collaboration (SMC) measures the spin dependent structure function g1 of the proton and nentron by measuring the scattering asymmetry of polarized 200 GeV muons off polarized protons and deuterons. The structure functions enable tests of theoretical sum rules, and a measurement of the spin contribution of the quarks to the nucleon. The uncertainty of the muon beam polarization was a major source of error in preliminary measurements of proton structure functions. A muon polarimeter measuring the shape of the Michel spectrum of positrons from muon decay was built. In this polarimeter muons enter and are allowed to decay (μ+ /to e+νe/barνμ) in a 35 meter length. The shape of the momentum spectrum of electrons is sensitive to the muon polarization. The decay positrons are momentum-analyzed and the measured spectrum is fit to the Michel formula to determine the polarization. A data sample with a μsp- beam was used to estimate the effects of background events in the spectrum. Careful analysis of the polarimeter data determined the polarization to within 3%. The muon polarization was found to be stable in time and to vary with muon momentum. This variation will be included in the structure function analysis. A second polarimeter measuring the scattering asymmetry of polarized muons off polarized electrons obtained consistent results. The two independent polarization measurements were combined to give a polarization of -0.778 ± 0.019 at 186.9 GeV. With the improved structure function measurements, the Bjorken sum rule was tested and confirmed. Assuming that the gluons are unpolarized, the contribution of the quarks to the nucleon spin was estimated to be 20%, and the strange quark sea negatively polarized.

  3. Polarization Effects in Optical Coherence Tomography of Various Biological Tissues

    PubMed Central

    de Boer, Johannes F.; Srinivas, Shyam M.; Park, B. Hyle; Pham, Tuan H.; Chen, Zhongping; Milner, Thomas E.; Nelson, J. Stuart

    2015-01-01

    Polarization sensitive optical coherence tomography (PS-OCT) was used to obtain spatially resolved ex vivo images of polarization changes in skeletal muscle, bone, skin and brain. Through coherent detection of two orthogonal polarization states of the signal formed by interference of light reflected from the biological sample and a mirror in the reference arm of a Michelson interferometer, the depth resolved change in polarization was measured. Inasmuch as any fibrous structure will influence the polarization of light, PS-OCT is a potentially powerful technique investigating tissue structural properties. In addition, the effects of single polarization state detection on OCT image formation is demonstrated. PMID:25774083

  4. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-01

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690 cm-1) the Cdbnd O stretching modes at unhydrated groups, (ii) (1655-1673 cm-1) the Cdbnd O stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640 cm-1) the Cdbnd O stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c < 50 μg ml-1) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c ⩾ 50 μg ml-1) collagen multilayers are formed. The amide I mode is blue-shifted by 18 cm-1, indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  5. Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy.

    PubMed

    Brand, Izabella; Habecker, Florian; Ahlers, Michael; Klüner, Thorsten

    2015-03-05

    The polarization modulation infrared reflection-absorption spectra of collagen adsorbed on a titania surface and quantum chemical calculations are used to describe components of the amide I mode to the protein structure at a sub-molecular level. In this study, imino acid rich and poor fragments, representing the entire collagen molecule, are taken into account. The amide I mode of the collagen triple helix is composed of three absorption bands which involve: (i) (∼1690cm(-1)) the CO stretching modes at unhydrated groups, (ii) (1655-1673cm(-1)) the CO stretching at carbonyl groups at imino acids and glycine forming intramolecular hydrogen bonds with H atoms at both NH2 and, unusual for proteins, CH2 groups at glycine at a neighbouring chain and (iii) (∼1640cm(-1)) the CO stretching at carbonyl groups forming hydrogen bonds between two, often charged, amino acids as well as hydrogen bonds to water along the entire helix. The IR spectrum of films prepared from diluted solutions (c<50μgml(-1)) corresponds to solution spectra indicating that native collagen molecules interact with water adsorbed on the titania surface. In films prepared from solutions (c⩾50μgml(-1)) collagen multilayers are formed. The amide I mode is blue-shifted by 18cm(-1), indicating that intramolecular hydrogen bonds at imino acid rich fragments are weakened. Simultaneous red-shift of the amide A mode implies that the strength of hydrogen bonds at the imino acid poor fragments increases. Theoretically predicted distortion of the collagen structure upon adsorption on the titania surface is experimentally confirmed.

  6. Thermal transport in thin films measured by time-resolved, grazing incidence x-ray diffraction.

    SciTech Connect

    Walko, D. A.; Sheu, Y.-M.; Trigo, M.; Reis, D. A.

    2011-01-01

    We use depth- and time-resolved x-ray diffraction to study thermal transport across single crystal Bi films grown on sapphire in order to determine the thermal conductivity of the film and the Kapitza conductance of the interface. Ultrafast Ti:sapphire laser pulses were used to heat the films; x-ray diffraction then measured the film's lattice expansion. Use of grazing incidence diffraction geometry provided depth sensitivity, as the x-ray angle of incidence was varied near the critical angle. The shift of the film's Bragg peak position with time was used to determine the film temperature averaged over an x-ray penetration depth that could be selected by choice of the angle of incidence. For films that were thick compared to the laser penetration depth, we observed a large temperature gradient at early times. In this case, measurements with the incident angle near or well above the critical angle were more sensitive to the film conductivity or Kapitza conductance, respectively. For thinner films, however, cooling was dominated by the Kapitza conductance at all accessible time scales.

  7. Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration.

    PubMed

    Brewer, Jonathan; Bloksgaard, Maria; Kubiak, Jakub; Sørensen, Jens Ahm; Bagatolli, Luis A

    2013-05-01

    A multiphoton excitation-based fluorescence fluctuation spectroscopy method, Raster image correlation spectroscopy (RICS), was used to measure the local diffusion coefficients of distinct model fluorescent substances in excised human skin. In combination with structural information obtained by multiphoton excitation fluorescence microscopy imaging, the acquired diffusion information was processed to construct spatially resolved diffusion maps at different depths of the stratum corneum (SC). Experiments using amphiphilic and hydrophilic fluorescently labeled molecules show that their diffusion in SC is very heterogeneous on a microscopic scale. This diffusion-based strategy was further exploited to investigate the integrity of liposomes during transdermal penetration. Specifically, the diffusion of dual-color fluorescently labeled liposomes--containing an amphiphilic fluorophore in the lipid bilayer and a hydrophilic fluorophore encapsulated in the liposome lumen--was measured using cross-correlation RICS. This type of experiment allows discrimination between separate (uncorrelated) and joint (correlated) diffusion of the two different fluorescent probes, giving information about liposome integrity. Independent of the liposome composition (phospholipids or transfersomes), our results show a clear lack of cross-correlation below the skin surface, indicating that the penetration of intact liposomes is highly compromised by the skin barrier.

  8. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    NASA Astrophysics Data System (ADS)

    Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.

    2014-12-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.

  9. Time-resolved subtraction method for measuring optical properties of turbid media.

    PubMed

    Milej, Daniel; Abdalmalak, Androu; Janusek, Dariusz; Diop, Mamadou; Liebert, Adam; St Lawrence, Keith

    2016-03-01

    Near-infrared spectroscopy is a noninvasive optical method used primarily to monitor tissue oxygenation due to the absorption properties of hemoglobin. Accurate estimation of hemoglobin concentrations and other light absorbers requires techniques that can separate the effect of absorption from the much greater effect of light scattering. One of the most advanced methods is time-resolved near-infrared spectroscopy (TR-NIRS), which measures the absorption and scattering coefficients of a turbid medium by modeling the recorded distribution time of flight of photons. A challenge with TR-NIRS is that it requires accurate characterization of the dispersion caused by the system. In this study, we present a method for circumventing this problem by applying statistical moment analysis to two time-of-flight distributions measured at separated source-detector distances. Simulations based on analytical models and Monte Carlo code, and tissue-mimicking phantoms, were used to demonstrate its accuracy for source-detector distances typically used in neuroimaging applications. The simplicity of the approach is well suited to real-time applications requiring accurate quantification of the optical properties of a turbid medium.

  10. Measurement of the optical properties of rat brain tissue using contact spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Gysbrechts, Barbara; Nguyen Do Trong, Nghia; Wang, Ling; Cabral, Henrique; Navratilova, Zaneta; Battaglia, Francesco P.; Saeys, Wouter; Bartic, Carmen

    2014-05-01

    Nowadays, biophotonics is widely used in neuroscience. The effectiveness of biophotonic techniques, such as fluorescence imaging and optogenetics, is affected by the optical properties of the examined tissue. Therefore, knowledge of these properties is essential to carefully plan experiments. Mice and rats are widely used in neuroscience studies. However, reports about optical properties of their brains are very rare. We measured optical absorption μa and reduced scattering μ's coefficients of native rat brain in the visible and near-infrared wavelength region, using contact spatially resolved spectroscopy (SRS). In this study, we estimate μa and μ's for the rat cortex and discuss their stability in time. Additionally, variations in optical properties within and between samples were characterized. The results extend the range of known optical properties for the rat cortex, especially in the visible range, relevant to optogenetics. μa and μ's are stable within a time span of four hours, and show low variation in and between brain samples. This indicates that a suitable protocol was used to estimate optical properties of rodent brain tissue. Since contact SRS is a non-destructive method, this technique could be used also to measure μa and μ's in living animals. Moreover, the probe has small dimensions, allowing the characterization of optical properties in different structures of the brain.

  11. Time-resolved measurement of bubble cavitation by using power Doppler ultrasound image

    NASA Astrophysics Data System (ADS)

    Koda, Ren; Izumi, Yosuke; Nagai, Hayato; Yamakoshi, Yoshiki

    2017-04-01

    In this study, a novel measurement method for a secondary ultrasound wave irradiated by microbubble cavitation is proposed. High-intensity ultrasound (h-US, 1.0–1.5 MPa), which produces bubble cavitation, is irradiated with a fixed time delay after introducing imaging US, whose frequency is different from that of the h-US. The bubble cavitation signal (BCS) is detected by the signal-processing unit of an ultrasound power Doppler imaging instrument. By this method, both a spatially resolved bubble image (S-image) and the temporal transition of the BCS (T-image) are monitored simultaneously. A feature of the method is that the BCS is observed in situ with sub-µs time resolution. The accuracy of the method is evaluated and it is found that the maximum deviation of the amplitude of the simulated BCS is 4.80%. This method is applied to measure the BCS of ultrasound contrast agent microbubbles. As a result, the dependence of the inherent temporal transition of the BCS on the sound pressure of the h-US (0.6–1.2 MPa) is observed.

  12. TNSA Heavy Ion Measurements using the Time-Resolved Tandem Faraday Cup

    NASA Astrophysics Data System (ADS)

    Ginnane, M. K.; Kousar, B.; Slish, J.; Palmisano, K.; Mandanas, S.; Padalino, S. J.; Sangster, T. C.; Regan, S.; Mileham, C.; Stoeckl, C.

    2016-10-01

    The MTW Laser at LLE utilizes an ultra-intense laser to produce high-energy heavy ion pulses through Target Normal Sheath Acceleration (TNSA). Using the Time-Resolved Tandem Faraday Cup (TRTF) the total number of heavy ions produced by TNSA can be determined, which is needed for stellar nuclear reaction cross section measurements. TNSA heavy ions stop within the thin walled front cup, while light ions pass through it and deposit their remaining charge in the back cup. A two channel storage scope measures voltages produced by the beam currents collected in the cups, respectively. The charge state fraction of plasma ions is modified by passing the heavy ions through a charge-exchange foil at the TRTF entrance. While passing through the foil, ions equilibrate to known charge states based on their velocities. Using time of flight, the total heavy ion current can be normalized to the correct charge state fraction. A pair of dipole magnets deflect relativistic TNSA electrons from the cup's entrance. They also prevent secondary electrons from escaping the front and back cups. Funded in part by a LLE contract through the DOE.

  13. Recalibration of the Viyager PRA antenna for polarization sense measurement

    NASA Technical Reports Server (NTRS)

    Wang, L.; Carr, T. D.

    1994-01-01

    The Voyager Planetary Radio Astronomy (PRA) antenna and receiver system provides an indication of the sense of elliptical or circular polarization of radiation that is not correct for all directions of incidence. The true sense could be determined for all directions if accurate calibration data were available. It was not feasible to make the calibration before the Voyagers were launched. Lecacheux & Ortega-Molina (1987), however, were able to derive such calibration data from planetary radio observations made in flight. They expressed their results in terms of the tilt of a plane (the E-plane) that divides the incident ray directions for which the indicated polarization sense is correct from those directions for which the indicated sense is reversed. We demonstrate that there are certain directions for which this calibration is itself in error, and that the surface dividing the two sets of incident rays is more complex than a tilted plane. We are able to make a crude approximation to the true surface from the limited data available.

  14. Supercontinuum based absorption spectrometer for cycle-resolved multiparameter measurements in a rapid compression machine.

    PubMed

    Werblinski, Thomas; Kleindienst, Stefan; Engelbrecht, Rainer; Zigan, Lars; Will, Stefan

    2016-06-10

    A broadband supercontinuum (SC) based absorption spectrometer capable of cycle-resolved multiparameter measurements at internal combustion (IC) engine conditions is presented. Three parameters, temperature, pressure and water mole fraction, were extracted from broadband near-infrared H2O absorption spectra, spanning the wavelength-range from 1340 to 1405.5 nm, which exhibits a large number of specific H2O transitions. The spectrometer is based on spatial domain detection and features a near-infrared line scan camera as a detector. Measurements were performed during a compression cycle of a rapid compression machine comprising a pressure and temperature range from 2.5 to 65 bar and 300 to 900 K, respectively. With the new spectrometer, we are for the first time, based on the authors' knowledge, able to perform measurements based on SC radiation over a complete compression and expansion stroke at measurement rates up to 50 kHz. A detailed overview is provided about the best match algorithm between theory and experiments, including parameters from two different spectral databases, namely the Barber-Tennyson database (BT2) and HITRAN2012. The results indicate that spectral broadening effects are not properly described by theory, especially at pressure levels exceeding 20 bar, which culminates in a clear underestimation of the derived pressure data by SC absorption spectroscopy. Nevertheless, temperature can be determined accurately by performing a three-parameter fit based on water mole fraction, temperature, and pressure. In contrast, making use of pressure transducer data as look-up values and varying only temperature and H2O mole fraction to find the best match leads to a clear overestimation of temperature at elevated pressures.

  15. Measurements of the Polarization Properties of Foam Materials Useful for mm-wave Polarimeters Windows

    NASA Astrophysics Data System (ADS)

    Coppi, G.; Marchetti, T.; de Bernardis, P.; Masi, S.

    2016-08-01

    We have measured in the W-band, using a custom setup, the absorption and polarization properties in transmission of foam materials (elyfoamⓇ, styrodurⓇ, plastazoteⓇ, and propozoteⓇ) useful for windows of mm-wave photometers and polarimeters. The levels of the induced polarization degree and of the absorption are very small, and difficult to measure accurately. We find induced polarization degrees lower than 0.6 %, and transmissions higher than 97 % for few centimeter thicknesses of our samples. We describe the instrumental setup, the measurements, and the impact of our findings in the design of precision polarimeters for Cosmic Microwave Background measurements. All these materials, with the exception of black plastazoteⓇ, feature transmissions higher than 99 %, and induced polarizations lower than ˜1 % for sample thicknesses around 2-3 cm.

  16. An update on polar aerosol optical properties using POLAR-AOD and other measurements performed during the International Polar Year

    NASA Astrophysics Data System (ADS)

    Tomasi, Claudio; Lupi, Angelo; Mazzola, Mauro; Stone, Robert S.; Dutton, Ellsworth G.; Herber, Andreas; Radionov, Vladimir F.; Holben, Brent N.; Sorokin, Mikhail G.; Sakerin, Sergey M.; Terpugova, Svetlana A.; Sobolewski, Piotr S.; Lanconelli, Christian; Petkov, Boyan H.; Busetto, Maurizio; Vitale, Vito

    2012-06-01

    An updated set of time series of derived aerosol optical depth (AOD) and Ångström's exponent α from a number of Arctic and Antarctic stations was analyzed to determine the long-term variations of these two parameters. The Arctic measurements were performed at Ny-Ålesund (1991-2010), Barrow (1977-2010) and some Siberian sites (1981-1991). The data were integrated with Level 2.0 AERONET sun-photometer measurements recorded at Hornsund, Svalbard, and Barrow for recent years, and at Tiksi for the summer 2010. The Antarctic data-set comprises sun-photometer measurements performed at Mirny (1982-2009), Neumayer (1991-2004), and Terra Nova Bay (1987-2005), and at South Pole (1977-2010). Analyses of daily mean AOD were made in the Arctic by (i) adjusting values to eliminate volcanic effects due to the El Chichón, Pinatubo, Kasatochi and Sarychev eruptions, and (ii) selecting the summer background aerosol data from those affected by forest fire smoke. Nearly null values of the long-term variation of summer background AOD were obtained at Ny-Ålesund (1991-2010) and at Barrow (1977-2010). No evidence of important variations in AOD was found when comparing the monthly mean values of AOD measured at Tiksi in summer 2010 with those derived from multi-filter actinometer measurements performed in the late 1980s at some Siberian sites. The long-term variations of seasonal mean AOD for Arctic Haze (AH) conditions and AH episode seasonal frequency were also evaluated, finding that these parameters underwent large fluctuations over the 35-year period at Ny-Ålesund and Barrow, without presenting well-defined long-term variations. A characterization of chemical composition, complex refractive index and single scattering albedo of ground-level aerosol polydispersions in summer and winter-spring is also presented, based on results mainly found in the literature. The long-term variation in Antarctic AOD was estimated to be stable, within ±0.10% per year, at the three coastal sites

  17. Use of Dual Polarization Radar in Validation of Satellite Precipitation Measurements: Rationale and Opportunities

    NASA Technical Reports Server (NTRS)

    Chandrasekar, V.; Hou, Arthur; Smith, Eric; Bringi, V. N.; Rutledge, S. A.; Gorgucci, E.; Petersen, W. A.; SkofronickJackson, Gail

    2008-01-01

    Dual-polarization weather radars have evolved significantly in the last three decades culminating in the operational deployment by the National Weather Service. In addition to operational applications in the weather service, dual-polarization radars have shown significant potential in contributing to the research fields of ground based remote sensing of rainfall microphysics, study of precipitation evolution and hydrometeor classification. Furthermore the dual-polarization radars have also raised the awareness of radar system aspects such as calibration. Microphysical characterization of precipitation and quantitative precipitation estimation are important applications that are critical in the validation of satellite borne precipitation measurements and also serves as a valuable tool in algorithm development. This paper presents the important role played by dual-polarization radar in validating space borne precipitation measurements. Starting from a historical evolution, the various configurations of dual-polarization radar are presented. Examples of raindrop size distribution retrievals and hydrometeor type classification are discussed. The quantitative precipitation estimation is a product of direct relevance to space borne observations. During the TRMM program substantial advancement was made with ground based polarization radars specially collecting unique observations in the tropics which are noted. The scientific accomplishments of relevance to space borne measurements of precipitation are summarized. The potential of dual-polarization radars and opportunities in the era of global precipitation measurement mission is also discussed.

  18. Measurement of the transport spin polarization of FeV using point-contact Andreev reflection

    SciTech Connect

    Bailey, William; Osofsky, Mike; Bussman, Konrad; Parker, David S; Cheng, L

    2013-01-01

    The Fe1 xVx alloy system exhibits the lowest known Gilbert relaxation rate of any ferromagnetic metal or binary alloy with G1 435MHz at x1 427% V. Low relaxation rates are of particular interest in modern spin electronic applications involving spin torque. The transport spin polarization of a series of sputtered epitaxial Fe1 xVx samples was measured using point contact Andreev reflection. Values of the transport spin polarization agree well with those measured for pure Fe and are independent of composition. The results indicate that the substitution of up to 50% of V for Fe does not reduce the spin polarization in the alloy.

  19. Measurement of top quark polarization in top-antitop lepton+jets final states at DØ

    SciTech Connect

    Augsten, Kamil

    2017-01-01

    This thesis presents a measurement of the top quark polarization in the $t\\overline{t}$ events produced in $p\\overline{p}$ collisions at $\\sqrt{s}=1.96$ TeV using data corresponding to 9.7 fb$^{-1}$ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. The final states used in the measurement contain one lepton and at least three jets. The polarization is measured using the angular distribution of leptons along three different axes: the beam axis, the helicity axis, and the transverse axis normal to the $t\\overline{t}$ production plane. This is the first measurement of top quark polarization at the Tevatron Collider in lepton+jets final states, and the first measurement of transverse polarization in $t\\overline{t}$ production. The polarization along the beam axis is combined with the previous result in the dilepton final states by the D0 experiment. The observed distributions are consistent with the Standard Model of nearly no polarization and no indication for beyond Standard Model physics is observed. The measurement offers legacy result from unique Tevatron Collider data and provides more information about the top quark production and decays, about the properties of the heaviest elementary particle.

  20. Measurement of vascular water transport in human subjects using time-resolved pulsed arterial spin labelling.

    PubMed

    Bibic, Adnan; Knutsson, Linda; Schmidt, Anders; Henningsson, Erik; Månsson, Sven; Abul-Kasim, Kasim; Åkeson, Jonas; Gunther, Matthias; Ståhlberg, Freddy; Wirestam, Ronnie

    2015-08-01

    Most approaches to arterial spin labelling (ASL) data analysis aim to provide a quantitative measure of the cerebral blood flow (CBF). This study, however, focuses on the measurement of the transfer time of blood water through the capillaries to the parenchyma (referred to as the capillary transfer time, CTT) as an alternative parameter to characterise the haemodynamics of the system. The method employed is based on a non-compartmental model, and no measurements need to be added to a common time-resolved ASL experiment. Brownian motion of labelled spins in a potential was described by a one-dimensional general Langevin equation as the starting point, and as a Fokker-Planck differential equation for the averaged distribution of labelled spins at the end point, which takes into account the effects of flow and dispersion of labelled water by the pseudorandom nature of the microvasculature and the transcapillary permeability. Multi-inversion time (multi-TI) ASL data were acquired in 14 healthy subjects on two occasions in a test-retest design, using a pulsed ASL sequence and three-dimensional gradient and spin echo (3D-GRASE) readout. Based on an error analysis to predict the size of a region of interest (ROI) required to obtain reasonably precise parameter estimates, data were analysed in two relatively large ROIs, i.e. the occipital lobe (OC) and the insular cortex (IC). The average values of CTT in OC were 260 ± 60 ms in the first experiment and 270 ± 60 ms in the second experiment. The corresponding IC values were 460 ± 130 ms and 420 ± 139 ms, respectively. Information related to the water transfer time may be important for diagnostics and follow-up of cerebral conditions or diseases characterised by a disrupted blood-brain barrier or disturbed capillary blood flow.

  1. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  2. Time-resolved temperature and O atom measurements in nanosecond pulse discharges in combustible mixtures

    NASA Astrophysics Data System (ADS)

    Lanier, Suzanne; Bowman, Sherrie; Burnette, David; Adamovich, Igor V.; Lempert, Walter R.

    2014-11-01

    The paper presents results of time-resolved rotational temperature measurements, by pure rotational coherent anti-Stokes Raman spectroscopy and absolute O atom number density measurements, by two-photon absorption laser induced fluorescence. The experiments were conducted in nanosecond pulse discharges in H2-O2-Ar and C2H4-O2-Ar mixtures, initially at room temperature, operated at a high pulse repetition rate of 40 kHz, in a plane-to-plane double dielectric barrier geometry at a pressure of 40 Torr. Intensified charge-coupled device images show that O2-Ar and H2-O2-Ar plasmas remain diffuse and volume-filling during the entire burst. Images taken in C2H4-O2-Ar plasma demonstrate significant discharge filamentation and constriction along the center plane and in the corners of the test section. The experimental results demonstrate high accuracy of pure rotational psec CARS for thermometry measurements at low partial pressures of oxygen in nonequilibrium plasmas. The results are compared with kinetic modeling calculations, using two different H2-O2 chemistry and C2H4-O2 chemistry mechanisms. In H2-O2-Ar mixtures, the kinetic modeling predictions are in fairly good agreement with the data, predicting temperature rise and O atom accumulation in long discharge bursts, up to 450 pulses. The results show that adding hydrogen to the mixture results in an additional temperature rise, due to its partial oxidation by radicals generated in the plasma, essentially without chain branching. In C2H4-O2-Ar mixtures, the model consistently underpredicts both temperature and O atom number density. The most likely reason for the difference between the experimental data and model predictions is discharge filamentation developing when ethylene is added to the O2-Ar mixture, at fairly low temperatures.

  3. Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers.

    PubMed

    Sergan, Tatiana; Lavrentovich, Marina; Kelly, Jack; Gardner, Eric; Hansen, Douglas

    2002-09-01

    We studied the optical performance of a reflective wire-grid polarizer designed for visible light. The polarizer reflects E polarization and transmits H polarization with low losses. The studies of transmission and reflectivity of nonpolarized and polarized light from single grids and stacked grids show that the optical performance of wire-grid polarizers can be adequately described by representing the polarizer as an effective uniaxial medium with anisotropic absorption. The description facilitates the incorporation of the polarizers in modeling procedures widely used in the design of liquid-crystal devices. We present the modeling and measurement results of twisted-nematic devices with wire-grid polarizers serving simultaneously as reflective polarizers, alignment layers, and back electrodes. The application of wire-grid polarizers for reflective liquid-crystal devices provides brightness enhancement, high contrast ratio at wide viewing angles, and elimination of viewing parallax.

  4. Time-Resolved Aluminum Monoxide Emission Measurements in Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Surmick, David; Parigger, Christian

    2014-03-01

    Laser-induced plasmas are useful for diagnostic applications in a wide variety of fields. One application is the creation of laser-induced plasmas on the surface of an aluminum sample to simulate an aluminized flame. In this study, aluminum monoxide emissions are measured to characterize the temperature along the laser-induced plasma as a function of time delay following laser-induced optical breakdown. The breakdown event is achieved by focusing 1064 nanometer laser radiation from an Nd:YAG laser onto the surface of an aluminum sample. Light from the plasma is dispersed with the use of a Czerny-Turner spectrograph, and time resolved emission spectra are recorded with an intensified, gated detector. Temperatures are inferred from the diatomic molecular emissions by fitting the experimentally collected to theoretically calculated spectra using a Nelder-Mead algorithm. For computation of synthetic spectra we utilize accurate line strengths for selected AlO molecular bands. Atomic emissions from aluminum are also investigated in our study of laser-induced plasma.

  5. Time Resolved Tomographic PIV Measurements of Rough-Wall Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Miorini, Rinaldo; Zhang, Cao; Katz, Joseph

    2013-11-01

    Time resolved tomographic PIV is used to study flow structures in the outer region of a rough-wall turbulent boundary layer, focusing on imprints of the roughness on the outer layer. Measurements are performed in a transparent channel installed in the JHU optically index matched facility. The roughness consists of pyramids with height, k = 0.46 mm, and wavelength, λ = 3.2 mm, satisfying h/k = 55 (h = 25.4 mm is the channel half-height), k + = 64 and Re = 40000. The TPIV setup consists of four high-speed cameras operating at 3 kHz, which view the sample volume through acrylic prisms. The flow field is illuminated by an Nd:YLF laser. Following enhancement, calibration, and reconstruction, 643 voxels interrogation volumes with 0.75 overlap provide 3D velocity fields with spacing of 0.5883 mm3. Formation and transport of near-wall 3D U-shaped vortex structures, with base in front of the pyramids, and quasi-streamwise legs extending between pyramid crest lines are evident from the data. Extended streamwise regions of high wall-normal vorticity appear ``latched'' to the roughness elements close to the wall, but are transported downstream at higher elevations. Also evident are traveling streamwise low velocity streaks, which cover many roughness elements. Sponsored by NSF CBET and ONR.

  6. Resolving meso-scale seabed variability using reflection measurements from an autonomous underwater vehicle.

    PubMed

    Holland, Charles W; Nielsen, Peter L; Dettmer, Jan; Dosso, Stan

    2012-02-01

    Seabed geoacoustic variability is driven by geological processes that occur over a wide spectrum of space-time scales. While the acoustics community has some understanding of horizontal fine-scale geoacoustic variability, less than O(10(0)) m, and large-scale variability, greater than O(10(3)) m, there is a paucity of data resolving the geoacoustic meso-scale O(10(0)-10(3)) m. Measurements of the meso-scale along an ostensibly "benign" portion of the outer shelf reveal three classes of variability. The first class was expected and is due to horizontal variability of layer thicknesses: this was the only class that could be directly tied to seismic reflection data. The second class is due to rapid changes in layer properties and/or boundaries, occurring over scales of meters to hundreds of meters. The third class was observed as rapid variations of the angle/frequency dependent reflection coefficient within a single observation and is suggestive of variability at scales of meter or less. Though generally assumed to be negligible in acoustic modeling, the second and third classes are indicative of strong horizontal geoacoustic variability within a given layer. The observations give early insight into possible effects of horizontal geoacoustic variability on long-range acoustic propagation and reverberation.

  7. Time-resolved transglottal pressure measurements in a scaled up vocal fold model

    NASA Astrophysics Data System (ADS)

    Ringenberg, Hunter; Krane, Michael; Rogers, Dylan; Misfeldt, Mitchel; Wei, Timothy

    2016-11-01

    Experimental measurements of flow through a scaled up dynamic human vocal fold model are presented. The simplified 10x scale vocal fold model from Krane, et al. (2007) was used to examine fundamental features of vocal fold oscillatory motion. Of particular interest was the temporal variation of transglottal pressure multiplied by the volume flow rate through the glottis throughout an oscillation cycle. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data have been presented in previous APS-DFD meetings. This talk will focus more on the relation between the flow and aeroacoustics associated with vocal fold oscillations. Supported by the NIH.

  8. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  9. Neutron measurements with Time-Resolved Event-Counting Optical Radiation (TRECOR) detector

    NASA Astrophysics Data System (ADS)

    Brandis, M.; Vartsky, D.; Dangendorf, V.; Bromberger, B.; Bar, D.; Goldberg, M. B.; Tittelmeier, K.; Friedman, E.; Czasch, A.; Mardor, I.; Mor, I.; Weierganz, M.

    2012-04-01

    Results are presented from the latest experiment with a new neutron/gamma detector, a Time-Resolved, Event-Counting Optical Radiation (TRECOR) detector. It is composed of a scintillating fiber-screen converter, bending mirror, lens and Event-Counting Image Intensifier (ECII), capable of specifying the position and time-of-flight of each event. TRECOR is designated for a multipurpose integrated system that will detect Special Nuclear Materials (SNM) and explosives in cargo. Explosives are detected by Fast-Neutron Resonance Radiography, and SNM by Dual Discrete-Energy gamma-Radiography. Neutrons and gamma-rays are both produced in the 11B(d,n+γ)12C reaction. The two detection modes can be implemented simultaneously in TRECOR, using two adjacent radiation converters that share a common optical readout. In the present experiment the neutron detection mode was studied, using a plastic scintillator converter. The measurements were performed at the PTB cyclotron, using the 9Be(d,n) neutron spectrum obtained from a thick Be-target at Ed ~ 13 MeV\\@. The basic characteristics of this detector were investigated, including the Contrast Transfer Function (CTF), Point Spread Function (PSF) and elemental discrimination capability.

  10. Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire

    NASA Astrophysics Data System (ADS)

    Yu, Jiaxin; Liao, Feng; Gu, Fuxing; Zeng, Heping

    2016-09-01

    The use of ultrashort pulses for fundamental studies and applications has been increasing rapidly in the past decades. Along with the development of ultrashort lasers, exploring new pulse diagnositic approaches with higher signal-to-noise ratio have attracted great scientific and technological interests. In this work, we demonstrate a simple technique of ultrashort pulses characterization with a single semiconductor nanowire. By performing a frequency-resolved optical gating method with a ZnO nanowire coupled to tapered optical microfibers, the phase and amplitude of a pulse series are extracted. The generated signals from the transverse frequency conversion process can be spatially distinguished from the input, so the signal-to-noise ratio is improved and permits lower energy pulses to be identified. Besides, since the nanometer scale of the nonlinear medium provides relaxed phase-matching constraints, a measurement of 300-nm-wide supercontinuum pulses is achieved. This system is highly compatible with standard optical fiber systems, and shows a great potential for applications such as on-chip optical communication.

  11. Microscopic dynamics of the glass transition investigated by time-resolved fluorescence measurements of doped chromophores

    NASA Astrophysics Data System (ADS)

    Ye, Jing Yong; Hattori, Toshiaki; Nakatsuka, Hiroki; Maruyama, Yoshihiro; Ishikawa, Mitsuru

    1997-09-01

    The microscopic dynamics of several monomeric and polymeric glass-forming materials has been investigated by time-resolved fluorescence measurements of doped malachite green molecules in a wide temperature region. For monomers, 1-propanol, propylene glycol, and glycerol, and a polymer without side chains, poly- butadiene, the temperature dependence of nonradiative decay time of doped malachite green molecules behaves in a similar way through the glass-transition region. Besides a kink around the calorimetric glass-transition temperature Tg, another crossover at a critical temperature Tc about 30-50 K above Tg has been clearly observed. This experimental finding is in agreement with the prediction of the mode-coupling theory that a dynamical transition exists well above Tg. On the other hand, for the complex polymers with side chains, poly(vinyl acetate), poly(methyl acrylate), and poly(ethyl methacrylate), the crossover at Tg is less pronounced than those for the monomers and the polymer without side chains. Moreover, although we could not distinguish any singularities above Tg for these complex polymers, we observed another kink below Tg, which may be attributed to the side-chain motions.

  12. Frequency-resolved optical gating measurement of ultrashort pulses by using single nanowire

    PubMed Central

    Yu, Jiaxin; Liao, Feng; Gu, Fuxing; Zeng, Heping

    2016-01-01

    The use of ultrashort pulses for fundamental studies and applications has been increasing rapidly in the past decades. Along with the development of ultrashort lasers, exploring new pulse diagnositic approaches with higher signal-to-noise ratio have attracted great scientific and technological interests. In this work, we demonstrate a simple technique of ultrashort pulses characterization with a single semiconductor nanowire. By performing a frequency-resolved optical gating method with a ZnO nanowire coupled to tapered optical microfibers, the phase and amplitude of a pulse series are extracted. The generated signals from the transverse frequency conversion process can be spatially distinguished from the input, so the signal-to-noise ratio is improved and permits lower energy pulses to be identified. Besides, since the nanometer scale of the nonlinear medium provides relaxed phase-matching constraints, a measurement of 300-nm-wide supercontinuum pulses is achieved. This system is highly compatible with standard optical fiber systems, and shows a great potential for applications such as on-chip optical communication. PMID:27609521

  13. Time-resolved measurements of short-wavelength fluorescence from x-ray-excited ions.

    PubMed

    Kapteyn, H C; Murnane, M M; Falcone, R W

    1987-09-01

    We demonstrate a novel technique for time-resolved spectroscopic studies of highly excited ions. The technique uses a laser-produced plasma as a short-pulse, soft-x-ray light source with a high repetition rate. A Nd:YAG laser with a pulse duration of 90 psec, a pulse energy of 70 microJ, and repetition rate of 10(4) pulses per second is focused onto a rotating metal target. Soft x rays from the resulting plasma photoionize a gas surrounding the target, and fluorescence from the gas is detected by using a spectrometer and a high-speed photodetector. Using the technique of time-correlated photon counting, we determined the radiative lifetime and collisional quenching rate of the Xe III 5s(0)5p(6)(1)S(0) state by observing its fluorescence at 108.9 nm. A time resolution of better than 400 psec was obtained. We also measured relative Auger decay yields of a core hole state in xenon using a higher-energy laser-produced plasma light source at a lower repetition rate.

  14. High-Speed Hopping: Time-Resolved Tomographic PIV Measurements of Water Flea Swimming

    NASA Astrophysics Data System (ADS)

    Murphy, D. W.; Webster, D. R.; Yen, J.

    2012-11-01

    Daphniids, also known as water fleas, are small, freshwater crustaceans that live in a low-to-intermediate Reynolds number regime. These plankters are equipped with a pair of branched, setae-bearing antennae that they beat to impulsively propel themselves, or ``hop,'' through the water. A typical hop carries the daphniid one body length forward and is followed by a period of sinking. We present time-resolved tomographic PIV measurements of swimming by Daphnia magna. The body kinematics and flow physics of the daphniid hop are quantified. It is shown that the flow generated by each stroking antenna resembles an asymmetric viscous vortex ring. It is proposed that the flow produced by the daphniid hop can be modeled as a double Stokeslet consisting of two impulsively applied point forces separated by the animal width. The flow physics are discussed in the context of other species operating in the same Reynolds number range of 10 to 100: sea butterfly swimming and flight by the smallest flying insects.

  15. A polarization measurement method for the quantification of retardation in optic nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko

    2008-02-01

    The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.

  16. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  17. The H and D Polarized Target for Spin-Filtering Measurements at COSY

    NASA Astrophysics Data System (ADS)

    Ciullo, Giuseppe; Statera, Marco; Lenisa, Paolo; Nass, Alexander; Tagliente, Giuseppe

    2016-04-01

    In the main frame of the PAX (Polarized Antiproton eXperiments) collaboration, which engaged the challenging purpose of polarizing antiproton beams, the possibility to have H or D polarized targets requires a daily switchable source and its diagnostics: mainly change is a dual cavity tunable for H and D. The commissioning of PAX has been fullfilled, for the transverse case, on the COSY (COoler SYnchrotron) proton ring, achieving milestones on spin-dependent cross-section measurements. Now the longitudinal case could provide sensitive polarization results. An H or D source allows the exploration of the spin-filtering process with a deuterium polarized target, and opens new chances for testing Time Reversal Invariance at COSY (TRIC).

  18. Rotational diffusion of receptors for epidermal growth factor measured by time-resolved phosphorescence depolarization

    NASA Astrophysics Data System (ADS)

    Zidovetzki, Raphael; Johnson, David A.; Arndt-Jovin, Donna J.; Jovin, Thomas M.

    1991-06-01

    The cell surface receptor for epidermal growth factor (EGFR) is one of the most studied integral membrane proteins. The receptor is widely distributed in cells and tissues of mammalian and avian tissues and plays an important role in growth control. Binding of the epidermal growth factor (EGF) to EGFR initiates a complex biological response, which includes self-phosphorylation of the receptor due to an intrinsic tyrosine kinase activity, phosphorylation of other membrane proteins, increased intake of metabolites, and increased proliferation. Complete amino acid sequence of EGFR revealed a high degree of homology with viral oncogenes and allowed tentative identification of an external hormone binding domain, a transmembrane domain, and a cytoplasmic domain that includes tyrosine kinase activity. EGF binding induces rapid aggregation of EGFR, a process which was also observed on other receptor systems. These and other observations led to a hypothesis that microaggregation of EGFR is a necessary prerequisite for the biological response of EGF. A direct approach to study the processes of oligomerization of cell membrane proteins is to measure their mobility under various conditions. The lateral mobility of the EGFR was studied on mouse 3T3 fibroblasts and on A431 cells. However, an examination of the equations for the lateral and rotational diffusion in membranes shows that only rotational diffusion is strongly dependent on the size of the diffusing entity. A method of measuring protein rotational diffusion by time-resolved phosphorescence has proved to be very useful in the analysis of both in vivo and in vitro systems. The authors apply this method to study the mobility of EGFR on living A431 cells and membrane preparations.

  19. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    PubMed

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  20. Overpressure wave interaction with droplets: time resolved measurements by laser shadowscopy

    NASA Astrophysics Data System (ADS)

    Slangen, Pierre; Aprin, Laurent; Heymes, Frédéric; Munier, Laurent; Lapébie, Emmanuel; Dusserre, Gilles

    2012-10-01

    Risk sciences involve increasingly optics applications to perform accurate analysis of critical behavior such as failures, explosions, fires. In this particular context, different area sizes are investigated under high temporal sampling rate up to 10000fps. With the improvement of light sources and optical sensors, it is now possible to cope with high spatial resolution even for time resolved measurement. The paper deals with the study of the interaction between overpressure waves, occurring in case of explosion for example, with a liquid droplet present in the vicinity of the overpressure wave. This is a typical scenario encountered in case of industrial breakdown including liquid leakage and explosions. We designed an experimental setup for the evaluation of the interaction between the overpressure wave and falling liquid droplets. A gas chamber is filled with nitrogen until breakage of the outlet rupture disk at about 4 bar. The droplets fall is controlled by an automatic syringe injector placed in the overpressure wave. The imaging system is based on laser shadowscopy. The laser source is a double cavity 15mJ- 1000Hz Nd YLF laser emitting double pulses of about 10ns at 527nm. To record the double pulse after crossing the falling droplets, the transmitted light is captured by a lasersynchronized double frame camera. Since these measurements are time-synchronized, it is then possible to know accurately the different parameters of the phenomenon, such as overpressure wave velocity, droplets diameter, and Reynolds number. Different experiments have been carried out at about 4000 doubleframe/s. The paper presents the whole experiment, the enhancements of the setup and the results for different liquid products from water to acetone.

  1. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE PAGES

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; ...

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  2. Analysis of polarization characteristics of plant canopies using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sid'ko, A. F.; Botvich, I. Yu.; Pisman, T. I.; Shevyrnogov, A. P.

    2014-09-01

    The paper presents results and analysis of a study on polarized characteristics of the reflectance factor of different plant canopies under field conditions, using optical remote sensing techniques. Polarization characteristics were recorded from the elevated work platform at heights of 10-18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820 nm. The viewing zenith angle was below 20 degree. Birch (Betila pubescens), pine (Pinus sylvestris L.), wheat (Triticum acstivum) [L.] crops, corn (Zea mays L. ssp. mays) crops, and various grass canopies were used in this study. The following polarization characteristics were studied: the reflectance factor of the canopy with the polarizer adjusted to transmit the maximum and minimum amounts of light (Rmax and Rmin), polarized component of the reflectance factor (Rq), and the degree of polarization (Р). Wheat, corn, and grass canopies have higher Rmax and Rmin values than forest plants. The Rq and P values are higher for the birch than for the pine within the wavelength range between 430 and 740 nm. The study shows that polarization characteristics of plant canopies may be used as an effective means of decoding remote sensing data.

  3. Measurement of PMD tolerance in 40-Gb/s polarization-multiplexed RZ-DQPSK.

    PubMed

    Boffi, Pierpaolo; Ferrario, Maddalena; Marazzi, Lucia; Martelli, Paolo; Parolari, Paola; Righetti, Aldo; Siano, Rocco; Martinelli, Mario

    2008-08-18

    We experimentally investigate the first-order polarization-mode dispersion (PMD) tolerance of two polarization-multiplexed (POLMUX) RZ-DQPSK signals at overall 40 Gb/s. The polarization demultiplexing is enabled by an automatic endless polarization stabilizer. Time-interleaving the two orthogonally polarized RZ-DQPSK signals minimizes the crosstalk due to the non-ideal polarization stabilization, while it represents the worstcase for the PMD-induced crosstalk. Bit-error rate measurements are performed both in back-to-back and after 25-km standard single-mode fiber. The PMD tolerance is evaluated as a function of the instantaneous differential group delay, introduced by a first-order PMD emulator. 40-Gb/s POLMUX RZ-DQPSK is more sensitive to PMD than single-polarization 20-Gb/s DQPSK, while it is more PMD-tolerant than 40-Gb/s NRZ-OOK. Besides, its chromatic dispersion robustness is similar to the single-polarization 20-Gb/s DQPSK. The combination of POLMUX and DQPSK is therefore very promising in view of transmission systems at high bit-rate.

  4. Circularly Polarized Measurements of Radar Backscatter from Terrain.

    DTIC Science & Technology

    1980-02-01

    Figure 2:. Entrance to Mark Twain National Forest in Southern Missouri ....... ...................... ... 14 Figure 3: Site 2--an area of shortleaf pine...conditions). The tree measurements were completed in Mark Twain National Forest in Southern Missouri (sites 1-6); the road-surface measurements were...measurements for this program were completed at six sites in the Mark Twain National Forest in Southern Missouri during August and again in November of

  5. Phase-locked 10 MHz reference signal for frequency domain time-resolved fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Smith, Trevor A.; Bird, Damian K.; Nuske, John W.

    2007-05-01

    A complete electronic system that is suitable for use in megahertz frequency domain time-resolved fluorescence instruments based on mode-locked lasers is described. The circuit produces a 10MHz signal, phase locked to the mode-locked laser pulse frequency, which is required by many commercial frequency synthesizers as the external reference signal. This device is particularly useful in conjunction with ultrafast gated intensified charge coupled device cameras capable of being frequency modulated for time-resolved fluorescence imaging.

  6. Calculation of smoke plume mass from passive UV satellite measurements by GOME-2 polarization measurement devices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Tuinder, O. N. E.; Wagner, T.; Fromm, M.

    2012-04-01

    The Wallow wildfire of 2011 was one of the most devastating fires ever in Arizona, burning over 2,000 km2 in the states of Arizona and New Mexico. The fire originated in the Bear Wallow Wilderness area in June, 2011, and raged for more than a month. The intense heat of the fire caused the formation of a pyro-convective cloud. The resulting smoke plume, partially located above low-lying clouds, was detected by several satellite instruments, including GOME-2 on June 2. The UV Aerosol Index, indicative of aerosol absorption, reached a maximum of 12 on that day, pointing to an elevated plume with moderately absorbing aerosols. We have performed extensive model calculations assuming different aerosol optical properties to determine the total aerosol optical depth of the plume. The plume altitude, needed to constrain the aerosol optical depth, was obtained from independent satellite measurements. The model results were compared with UV Aerosol Index and UV reflectances measured by the GOME-2 polarization measurement devices, which have a spatial resolution of roughly 10x40 km2. Although neither the exact aerosol optical properties nor optical depth can be obtained with this method, the range in aerosol optical depth values that we calculate, combined with the assumed specific extinction mass factor of 5 m2/kg lead us to a rough estimate of the smoke plume mass that cannot, at present, be assessed in another way.

  7. [Impact of Light Polarization on the Measurement of Water Particulate Backscattering Coefficient].

    PubMed

    Liu, Jia; Gong, Fang; He, Xian-qiang; Zhu, Qian-kun; Huang, Hai-qing

    2016-01-01

    Particulate backscattering coefficient is a main inherent optical properties (IOPs) of water, which is also a determining factor of ocean color and a basic parameter for inversion of satellite ocean color remote sensing. In-situ measurement with optical instruments is currently the main method for obtaining the particulate backscattering coefficient of water. Due to reflection and refraction by the mirrors in the instrument optical path, the emergent light source from the instrument may be partly polarized, thus to impact the measurement accuracy of water backscattering coefficient. At present, the light polarization of measuring instruments and its impact on the measurement accuracy of particulate backscattering coefficient are still poorly known. For this reason, taking a widely used backscattering coefficient measuring instrument HydroScat6 (HS-6) as an example in this paper, the polarization characteristic of the emergent light from the instrument was systematically measured, and further experimental study on the impact of the light polarization on the measurement accuracy of the particulate backscattering coefficient of water was carried out. The results show that the degree of polarization(DOP) of the central wavelength of emergent light ranges from 20% to 30% for all of the six channels of the HS-6, except the 590 nm channel from which the DOP of the emergent light is slightly low (-15%). Therefore, the emergent light from the HS-6 has significant polarization. Light polarization has non-neglectable impact on the measurement of particulate backscattering coefficient, and the impact degree varies with the wave band, linear polarization angle and suspended particulate matter (SPM) concentration. At different SPM concentrations, the mean difference caused by light polarization can reach 15.49%, 11.27%, 12.79%, 14.43%, 13.76%, and 12.46% in six bands, 420, 442, 470, 510, 590, and 670 nm, respectively. Consequently, the impact of light polarization on the

  8. Measurement of proton polarization in the d({gamma},p)n reaction

    SciTech Connect

    Geesaman, D.F.; Jackson, H.E.; Jones, C.E.

    1995-08-01

    A proposal was approved by CEBAF PAC7 to measure angular distributions of the proton polarization for the d({gamma},p)n reaction in the GeV region. This proposed measurement will test the validity of extensions of conventional nuclear-physics theories to the higher energy regime. The results of the experiment will further constrain the evidence from SLAC experiments NE8 and NE17 that asymptotic scaling was observed above a photon energy of 1.3 GeV. Photoproton polarization measurements at lower energy indicate that the magnitude of the polarization increases with energy. This is consistent with the observation that polarizations are large in high-energy processes, e.g. A{sub nn} in pp {yields} pp scattering or A{sub y} in pp {yields} {pi}{sup 0}X. However, the polarizations in hadron-hadron scattering are believed to arise from Landshoff mechanisms. The higher energy photoproton experiment will permit the first measurements of polarization for a reaction, {gamma}d {yields} pn, where there are no Landshoff terms. The experiment would make use of a polarimeter installed in either the High Resolution Spectrometer in Hall A or the Short Orbit Spectrometer in Hall C at CEBAF.

  9. Photoproduction of meson pairs: First measurement of the polarization observable Is

    NASA Astrophysics Data System (ADS)

    Gutz, E.; Sokhoyan, V.; van Pee, H.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Yu.; Castelijns, R.; Crede, V.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Fuchs, M.; Funke, Ch.; Gregor, R.; Gridnev, A.; Hillert, W.; Hoffmeister, Ph.; Horn, I.; Jägle, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Lang, M.; Löhner, H.; Lopatin, I.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Nanova, M.; Nikonov, V.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L.; Pfeiffer, M.; Piontek, D.; Roberts, W.; Roy, A.; Sarantsev, A.; Schadmand, S.; Schmidt, Ch.; Schmieden, H.; Schoch, B.; Shende, S.; Süle, A.; Sumachev, V.; Szczepanek, T.; Thiel, A.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.; Cbelsa/Taps Collaboration

    2010-04-01

    The polarization observable I, a feature exclusive to the acoplanar kinematics of multi-meson final states produced via linearly polarized photons, has been measured for the first time. Results for the reaction γ→p→pπη are presented for incoming photon energies between 970 MeV and 1650 MeV along with the beam asymmetry I. The comparably large asymmetries demonstrate a high sensitivity of I to the dynamics of the reaction. The sensitivity of these new polarization observables to the contributing partial waves is demonstrated by fits using the Bonn-Gatchina partial wave analysis.

  10. Xi0 and anti-Xi0 Polarization Measurements at 800-GeV/c

    SciTech Connect

    Abouzaid, E.; Alavi-Harati, A.; Alexopoulos, T.; Arenton, M.; Barker, A.R.; Bellantoni, L.; Bellavance, A.; Blucher, E.; Bock, G.J.; Bright, S.; Cheu, E.; /Arizona U. /UCLA /Campinas State U. /Chicago U., EFI /Colorado U. /Elmhurst Coll. /Fermilab /Osaka U. /Rice U. /Sao Paulo U. /Virginia U.

    2006-08-01

    The polarization of {Xi}{sup 0} and {bar {Xi}}{sup 0} hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. The result of 9.7% for {Xi}{sup 0} polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice the targeting angle. The polarization of the {Xi}{sup 0} is measured for the first time and found to be consistent with zero. They also examine the dependence of polarization on production p{sub t}.

  11. Measurement of the triplet lifetime and the quantum yield of triplet formation of phthalazine by the time-resolved thermal lens method

    NASA Astrophysics Data System (ADS)

    Terazima, Masahide; Azumi, Tohru

    1987-11-01

    The time-resolved thermal lens technique is used to determine the quantum yield of the triplet formation and the triplet lifetime of phthalazine in a polar and a non-polar solvent. The quantum yields of phthalazine in ethanol and benzene are 0.44 and 0.49, respectively. Very short triplet lifetimes of phthalazine (2.7 μ;s) in benzene at room temperature are reported.

  12. Fuzzy simultaneous measurement of two polarization vector components.

    PubMed

    Shepard, Scott

    2006-04-01

    The advent of quantum computers threatens the security of conventional encryption schemes (e.g., those based upon the excessive amount of computational time that might be required to guess your password). Quantum encryption is intended to restore the security by basing it instead upon the impossibility of the simultaneous measurement of two noncommuting operators. I derive a measurement associated with the angular momentum lowering operator, which describes a simultaneous (yet realizable) measurement of two noncommuting spin-vector components. Correlations between two such detectors are also discussed and compared with the conventional Stern-Gerlach results.

  13. Electronic transitions and heterogeneity of the bacteriophytochrome Pr absorption band: An angle balanced polarization resolved femtosecond VIS pump-IR probe study.

    PubMed

    Linke, Martin; Yang, Yang; Zienicke, Benjamin; Hammam, Mostafa A S; von Haimberger, Theodore; Zacarias, Angelica; Inomata, Katsuhiko; Lamparter, Tilman; Heyne, Karsten

    2013-10-15

    Photoisomerization of biliverdin (BV) chromophore triggers the photoresponse in native Agp1 bacteriophytochrome. We discuss heterogeneity in phytochrome Pr form to account for the shape of the absorption profile. We investigated different regions of the absorption profile by angle balanced polarization resolved femtosecond VIS pump-IR probe spectroscopy. We studied the Pr form of Agp1 with its natural chromophore and with a sterically locked 18Et-BV (locked Agp1). We followed the dynamics and orientations of the carbonyl stretching vibrations of ring D and ring A in their ground and electronically excited states. Photoisomerization of ring D is reflected by strong signals of the ring D carbonyl vibration. In contrast, orientational data on ring A show no rotation of ring A upon photoexcitation. Orientational data allow excluding a ZZZasa geometry and corroborates a nontwisted ZZZssa geometry of the chromophore. We found no proof for heterogeneity but identified a new, to our knowledge, electronic transition in the absorption profile at 644 nm (S0→S2). Excitation of the S0→S2 transition will introduce a more complex photodynamics compared with S0→S1 transition. Our approach provides fundamental information on disentanglement of absorption profiles, identification of chromophore structures, and determination of molecular groups involved in the photoisomerization process of photoreceptors.

  14. CTS attenuation and cross polarization measurements at 11.7 GHz

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.

    1979-01-01

    Attenuation and cross-polarization isolation at 11.7 GHz, measured at Austin, Texas by receiving the circularly polarized emissions from the CTS satellite are presented. A 12 month summary for Feb 78 to Jan 79 is presented. For .016 percent of the time the attenuation was greater than 10 dB, the isolation was less than 21 dB and the rainrate exceeded 55 mm/hr. Ice depolarization was observed frequently.

  15. COMPASS: an instrument for measuring the polarization of the CMB on intermediate angular scales

    NASA Astrophysics Data System (ADS)

    Farese, Philip C.; Dall'Oglio, Giorgio; Gundersen, Josh; Keating, Brian; Klawikowski, Slade; Knox, Lloyd; Levy, Alan; O'Dell, Chris; Peel, Alan; Piccirillo, Lucio; Ruhl, John; Timbie, Peter

    2003-12-01

    COMPASS is an on-axis 2.6-m telescope coupled to a correlation polarimeter. The entire instrument was built specifically for CMB polarization studies. Careful attention was given to receiver and optics design, stability of the pointing platform, avoidance of systematic offsets, and development of data analysis techniques. Here we describe the experiment, its strengths and weaknesses, and the various things we have learned that may benefit future efforts to measure the polarization of the CMB.

  16. Time-resolved X-ray measurements of energy relaxation in ultrafast laser excited semiconductors

    NASA Astrophysics Data System (ADS)

    Lee, Soo Heyong

    In semiconductors, the properties and dynamics of photoexcited carriers and subsequent energy relaxation through lattice vibrations are quite complex and occur on a variety of time scales. Typically the transient dynamics involving transitions of electrons from lower energy states to higher ones upon photoexcitation take place almost instantaneously. The electrons eventually recombine with holes while losing most of their kinetic energy to the lattice through various routes at different time scales. The lattice relaxation processes, especially at high photoexcitation levels, have been subjected to numerous experimental and theoretical investigations during past decades. Time-resolved X-ray diffraction (TRXD) method provides a novel tool for studying these dynamics because X-rays have short wavelength, long material penetration depth and relatively strong interaction with core electrons. In my work, femtosecond laser pulses excite electrons in opaque materials, and subsequent carrier relaxation process and coherent/incoherent lattice dynamics are investigated using TRXD. My thesis covers quantitative detail of the generation and propagation of ultrafast laser induces acoustic strain waves in bulk semiconductor materials as well as at the heterostructure interface. In particular propagation of strain waves, which are comprised of broadband low wave vector phonons, is studied in an AlGaAs/GaAs multilayer structure. The spatial and temporal profiles of the acoustic waves at varying photoexcitation density are characterized. We are able to distinguish thermal from carrier-induced strain and measure the free-carrier absorption cross-section. The approximation that impulsively generated acoustic waves are uniaxial is found to break down. The research also demonstrates a novel approach to explore laser induced acoustic phonon dynamics at high wavevector, near the Brillouin zone-boundary, the details of which are inaccessible to optical pump-probe methods. Throughout this

  17. Determination of intrinsic damping of perpendicularly magnetized ultrathin films from time-resolved precessional magnetization measurements

    NASA Astrophysics Data System (ADS)

    Capua, Amir; Yang, See-hun; Phung, Timothy; Parkin, Stuart S. P.

    2015-12-01

    Magnetization dynamics are strongly influenced by damping, namely, the loss of spin angular momentum from the magnetic system to the lattice. An "effective" damping constant αeff is often determined experimentally from the spectral linewidth of the free induction decay of the magnetization after the system is excited to its nonequilibrium state. Such an αeff, however, reflects both intrinsic damping as well as inhomogeneous broadening that arises, for example, from spatial variations of the anisotropy field. In this paper, we compare measurements of the magnetization dynamics in ultrathin nonepitaxial films having perpendicular magnetic anisotropy using two different techniques, time-resolved magneto-optical Kerr effect (TRMOKE) and hybrid optical-electrical ferromagnetic resonance (OFMR). By using an external magnetic field that is applied at very small angles to the film plane in the TRMOKE studies, we develop an explicit closed-form analytical expression for the TRMOKE spectral linewidth and show how this can be used to reliably extract the intrinsic Gilbert damping constant. The damping constant determined in this way is in excellent agreement with that determined from the OFMR method on the same samples. Our studies indicate that the asymptotic high-field approach that is often used in the TRMOKE method to distinguish the intrinsic damping from the effective damping may result in significant error, because such high external magnetic fields are required to make this approach valid that they are out of reach. The error becomes larger at lower intrinsic damping constants and thus may account for the anomalously high damping constants that are often reported in TRMOKE studies. In conventional ferromagnetic resonance (FMR) studies, inhomogeneous contributions can be readily distinguished from intrinsic damping contributions by studying the magnetic field dependence of the FMR linewidth. Using an analogous approach, we show how reliable values of the intrinsic

  18. Measuring Exciton Migration in Conjugated Polymer Films with Ultrafast Time Resolved Stimulated Emission Depletion Microscopy

    NASA Astrophysics Data System (ADS)

    Penwell, Samuel

    Conjugated polymers are highly tunable organic semiconductors, which can be solution processed to form thin films, making them prime candidates for organic photovoltaic devices. One of the most important parameters in a conjugated polymer solar cell is the exciton diffusion length, which depends on intermolecular couplings, and is typically on the order of 10 nm. This mean exciton migration can vary dramatically between films and within a single film due to heterogeneities in morphology on length scales of 10's to 100's nm. To study the variability of exciton diffusion and morphology within individual conjugated polymer films, we are adapting stimulated emission depletion (STED) microscopy. STED is typically used in biology with sparse well-engineered fluorescent labels or on NV-centers in diamond. I will, however, describe how we have demonstrated the extension of STED to conjugated polymer films and nanoparticles of MEH-PPV and CN-PPV, despite the presence of two photon absorption, by taking care to first understand the material's photophysical properties. We then further adapt this approach, by introducing a second ultrafast STED pulse at a variable delay. Excitons that migrate away from the initial subdiffraction excitation volume during the ps-ns time delay, are preferentially quenched by the second STED pulse, while those that remain in the initial volume survive. The resulting effect of the second STED pulse is modulated by the degree of migration over the ultrafast time delay, thus providing a new method to study exciton migration. Since this technique utilizes subdiffraction optical excitation and detection volumes with ultrafast time resolution, it provides a means of spatially and temporally resolving measurements of exciton migration on the native length and time scales. In this way, we will obtain a spatiotemporal map of exciton distributions and migration that will help to correlate the energetic landscape to film morphology at the nanoscale.

  19. Size Resolved Measurements of Springtime Aerosol Particles over the Northern South China Sea

    NASA Technical Reports Server (NTRS)

    Atwood, Samuel A.; Reid, Jeffrey S.; Kreidenweis, Sonia M.; Cliff, Stephen S.; Zhao, Yongjing; Lin, Neng-Huei; Tsay, Si-Chee; Chu, Yu-Chi; Westphal, Douglas L.

    2012-01-01

    Large sources of aerosol particles and their precursors are ubiquitous in East Asia. Such sources are known to impact the South China Sea (henceforth SCS), a sometimes heavily polluted region that has been suggested as particularly vulnerable to climate change. To help elucidate springtime aerosol transport into the SCS, an intensive study was performed on the remote Dongsha (aka Pratas) Islands Atoll in spring 2010. As part of this deployment, a Davis Rotating-drum Uniform size-cut Monitor (DRUM) cascade impactor was deployed to collect size-resolved aerosol samples at the surface that were analyzed by X-ray fluorescence for concentrations of selected elements. HYSPLIT backtrajectories indicated that the transport of aerosol observed at the surface at Dongsha was occurring primarily from regions generally to the north and east. This observation was consistent with the apparent persistence of pollution and dust aerosol, along with sea salt, in the ground-based dataset. In contrast to the sea-level observations, modeled aerosol transport suggested that the westerly flow aloft (w700 hPa) transported smoke-laden air toward the site from regions from the south and west. Measured aerosol optical depth at the site was highest during time periods of modeled heavy smoke loadings aloft. These periods did not coincide with elevated aerosol concentrations at the surface, although the model suggested sporadic mixing of this free-tropospheric aerosol to the surface over the SCS. A biomass burning signature was not clearly identified in the surface aerosol composition data, consistent with this aerosol type remaining primarily aloft and not mixing strongly to the surface during the study. Significant vertical wind shear in the region also supports the idea that different source regions lead to varying aerosol impacts in different vertical layers, and suggests the potential for considerable vertical inhomogeneity in the SCS aerosol environment.

  20. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    NASA Technical Reports Server (NTRS)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  1. Retinal nerve fiber layer retardation measurements using a polarization-sensitive fundus camera

    NASA Astrophysics Data System (ADS)

    Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Shirakashi, Motohiro; Yaoeda, Kiyoshi; Abe, Haruki; Ohnuma, Kazuhiko

    2011-07-01

    To measure the retardation distribution of the optic retinal nerve fiber layer (RNFL) from a single image, we have developed a new polarization analysis system that is able to detect the Stokes vector using a fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a microphase plate array, and a circularly polarized light illumination unit. In this system, the Stokes vector expressing the whole state of polarization is detected, and the influence of the background scattering in the retina and of the retardation caused by the cornea are numerically eliminated. The measurement method is based on the hypothesis that the retardation process of the eye optics can be quantified by a numerical equation that consists of a retardation matrix of all the polarization components. We show the method and the measurement results for normal eyes. Our results indicate that the present method may provide a useful means for the evaluation of retardation distribution of the RNFL.

  2. A new technique for measuring the polarization from celestial X-ray sources

    NASA Astrophysics Data System (ADS)

    Austin, Robert A.; Minamitani, Takahisa; Ramsey, Brian D.

    1993-09-01

    The detection of polarized X-rays from cosmic X-ray sources will give useful information about the magnetic fields and matter surrounding these sources. Up to now only one experiment, OSO-8, has measured the degree of polarization from a cosmic X-ray source. In the past we demonstrated a novel new technique using an intensified camera coupled to a gas-filled proportional counter which can be used to measure X-ray polarization by imaging the tracks of photoelectrons ejected when X-rays are absorbed in the detector volume. These tracks contain information about the location of the X-ray interaction point and its polarization. In the lab we have obtained modulation factors of about 30 percent for 60 keV polarized X-rays. Here we discuss preliminary work done towards building a large-area hard X-ray imaging polarimeter which will be able to measure X-ray polarization from bright cosmic X-ray sources at energies between 40 keV and 100 keV.

  3. CIV Polarization Measurements using a Vacuum Ultraviolet Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    West, Edward; Gary, G. Allen; Cirtain, Jonathan; David, John; Kobayashi, Ken; Pietraszewski, Chris

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry-P rot Interferometer that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry P rot.

  4. Measurement of displacement and distance with a polarization phase shifting folded Twyman Green interferometer.

    PubMed

    Chatterjee, Sanjib; Kumar, Y Pavan

    2015-11-20

    A Sagnac interferometer (SI), consisting of a polarization beam splitter (PBS), along with two equally spaced plane mirrors that are inclined at 45° to each other, is transformed into a folded Twyman Green interferometer (TGI) by placing a mirrored parallel plate (MPP) into the hypotenuse arm of the SI. The converging input beam produced by a telescope objective (TO) is split into reflected (s-polarized) and transmitted (p-polarized) components by the PBS. The p- and s-polarized focal spots are made to fall on the mirrored end surfaces of the parallel plate (PP). The retroreflected p- and s-polarized beams become collimated after passing through the TO. A linear shift of the PP in either (longitudinal) direction alters the positions of the p- and s-polarized focal spots and results in a set of converging and diverging spherical wavefronts that interfere to form concentric circular fringes. We applied polarization phase-shifting interferometry to obtain the optical path difference (OPD) variation of the interference field. The displacement is calculated from the OPD variation. A validation experiment has been carried out by introducing known shifts to the PP. The setup can be used for displacement as well as distance measurement.

  5. Measurement of electron beam polarization produced by photoemission from bulk GaAs using twisted light

    NASA Astrophysics Data System (ADS)

    Clayburn, Nathan; Dreiling, Joan; McCarter, James; Ryan, Dominic; Poelker, Matt; Gay, Timothy

    2012-06-01

    GaAs photocathodes produce spin polarized electron beams when illuminated with circularly polarized light with photon energy approximately equal to the bandgap energy [1, 2]. A typical polarization value obtained with bulk GaAs and conventional circularly polarized light is 35%. This study investigated the spin polarization of electron beams emitted from GaAs illuminated with ``twisted light,'' an expression that describes a beam of light having orbital angular momentum (OAM). In the experiment, 790nm laser light was focused to a near diffraction-limited spot size on the surface of the GaAs photocathode to determine if OAM might couple to valence band electron spin mediated by the GaAs lattice. Our polarization measurements using a compact retarding-field micro-Mott polarimeter [3] have established an upper bound on the polarization of the emitted electron beam of 2.5%. [4pt] [1] D.T. Pierce, F. Meier, P. Zurcher, Appl. Phys. Lett. 26 670 (1975).[0pt] [2] C.K. Sinclair, et al., PRSTAB 10 023501 (2007).[0pt] [3] J.L. McCarter, M.L. Stutzman, K.W. Trantham, T.G. Anderson, A.M. Cook, and T.J. Gay Nucl. Instrum. and Meth. A (2010).

  6. Linear Polarization Measurements of PNV J17355050-2934240

    NASA Astrophysics Data System (ADS)

    Muneer, S.; Anupama, G. C.

    2016-03-01

    We report linear polarimetric measurements of the Fe II-type classical nova PNV J17355050-2934240 (M. Yamamoto, CBAT TOCP site, http://www.cbat.eps.harvard.edu/unconf/followups/J17355050-2934240.html, ATel #8809, #8817) in the VRI bands.

  7. Development of algorithm for retrieving aerosols over land surfaces from NEMO-AM polarized measurements

    NASA Astrophysics Data System (ADS)

    Pandya, Mehul R.

    2016-04-01

    Atmospheric aerosols have a large effect on the Earth radiation budget through its direct and indirect effects. A systematic assessment of aerosol effects on Earth's climate requires global mapping of tropospheric aerosols through satellite remote sensing. However aerosol retrieval over land surface remains a challenging task due to bright background of the land surfaces. Polarized measurements can provide an improved aerosol sensing by providing a means of decoupling the surface and atmospheric contribution. The Indian Space Research Organisation has planned a Multi- Angle Dual-Polarization Instrument (MADPI) onboard a Nano satellite for Earth Monitoring & Observations for Aerosol Monitoring (NEMO-AM). MADPI has three spectral bands in blue, red and near infrared spectral regions with a nominal spatial resolution of 30 m from an altitude of 500 km polar orbit. A study has been taken up with the aim of development of an algorithm for retrieving aerosol optical thickness (AOT) over land surfaces from NEMO-AM polarized measurements. The study has three major components: (1) detailed theoretical modelling exercise for computing the atmospheric and surface polarized contributions, (2) modelling of total satellite-level polarized contribution, and (3) retrieval of aerosol optical thickness (AOT) by comparing the modelled and measured polarized signals. The algorithm has been developed for MADPI/NEMO-AM spectral bands and tested successfully on similar spectral bands of POLDER/PARASOL measurements to retrieve AOT over Indian landmass having diverse atmospheric conditions. POLDER-derived AOT fields were compared with MODIS-AOT products. Results showed a very good match (R2 0.69, RMSE 0.07). Initial results have provided encouraging results, however, comprehensive analysis and testing has to be carried out for establishing the proposed algorithm for retrieving AOT from NEMO-AM measurements.

  8. NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Fredrickson, Jim K.; Wind, Robert A.

    2005-11-01

    We are developing nuclear magnetic resonance (NMR) microscopy, spectroscopy and combined NMR/optical techniques to the study of biofilms. Objectives include: time and depth-resolved metabolite concentrations with isotropic spatial resolution on the order of 10 microns, metabolic pathways and flux rates, mass transport and ultimately their correlation with gene expression by optical microscopy in biofilms. These methods are being developed with Shewanella oneidensis MR-1 as a model system, but are equally applicable to other biofilm systems of interest. Thus, spatially resolved NMR of biofilms is expected to contribute significantly to the understanding of adherent cell metabolism.

  9. Ocean Surface Wave Optical Roughness: Innovative Polarization Measurement

    DTIC Science & Technology

    2007-09-30

    whitecap breaking waves. * Prof. Michael L . Banner, School of Mathematics, The University of NSW, Sydney, Australia Dr. Bertrand Chapron...of microsacle breaking waves from infrared imagery using a PIV algorithm. Meas. Sci. Technol. 16, 1961-1969. Phillips, O. M., Posner, F. L ., and... Hansen , J. P. 2001 High resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: surface impulse

  10. Measuring the Spin-Polarizabilities of the Proton in Polarized Compton scattering at MAMI-Mainz

    NASA Astrophysics Data System (ADS)

    Miskimen, Rory; A2 Collaboration

    2013-10-01

    At O (ω3) four new structure constants are present in the nucleon Compton scattering amplitude; these are the spin-polarizabilities γE 1 E 1, γM 1 M 1, γE 1 M 2, and γM 1 E 2. The most model independent way to determine the spin-polarizabilities is by measuring a double-polarized Compton scattering asymmetry with polarized target and circularly polarized photons, and by measuring an in-plane/transverse-plane Compton scattering asymmetry with linearly polarized photons (Σ3) . This talk will present new Compton scattering asymmetry data taken in the Δ region by the A2 Collaboration using the Crystal Ball at Mainz, with transverse polarized proton target and circularly polarized photons, the Σ2 x asymmetry (1). A dispersion model and an EFT calculation of Compton scattering are used to fit the four spin-polarizabilities to the new experimental data on Σ2 x, earlier results (2) on Σ3, and previous determinations of γ0 and γπ. The results of the fits are compared with theoretical calculations.

  11. Direct Measurement of Single CdSe Nanowire Extinction Polarization Anisotropies.

    PubMed

    McDonald, Matthew P; Vietmeyer, Felix; Kuno, Masaru

    2012-08-16

    The origin of sizable absorption polarization anisotropies (ρabs) in one-dimensional (1D) semiconductor nanowires (NWs) has been debated. Invoked explanations employ either classical or quantum mechanical origins, where the classical approach suggests dielectric constant mismatches between the NW and its surrounding environment as the predominant source of observed polarization sensitivities. At the same time, the confinement-influenced mixing of states suggests a sizable contribution from polarization-sensitive transition selection rules. Sufficient evidence exists in the literature to support either claim. However, in all cases, these observations stem from excitation polarization anisotropy (ρexc) studies, which only indirectly measure ρabs. In this manuscript, we directly measure the band edge extinction polarization anisotropies (ρext) of individual CdSe NWs using single NW extinction spectroscopy. Observed polarization anisotropies possess distinct spectral features and wavelength dependencies that correlate well with theoretical transition selection rules derived from a six-band k·p theory used to model the electronic structure of CdSe NWs.

  12. Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Koopman, Brian; Austermann, Jason; Cho, Hsiao-Mei; Coughlin, Kevin P.; Duff, Shannon M.; Gallardo, Patricio A.; Hasselfield, Matthew; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hubmayr, Johannes; Irwin, Kent D.; Li, Dale; McMahon, Jeff; Nati, Federico; Niemack, Michael D.; Newburgh, Laura; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Vavagiakis, Eve M.; Ward, Jonathan T.; Wollack, Edward J.

    2016-07-01

    The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope, located at an elevation of 5190 m on Cerro Toco in Chile. ACTPol uses transition edge sensor bolometers coupled to orthomode transducers to measure both the temperature and polarization of the Cosmic Microwave Background (CMB). Calibration of the detector angles is a critical step in producing polarization maps of the CMB. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We calibrate the ACTPol detector angles by ray tracing the designed detector angle through the entire optical chain to determine the projection of each detector angle on the sky. The distribution of calibrated detector polarization angles are consistent with a global offset angle from zero when compared to the EB-nulling offset angle, the angle required to null the EB cross-correlation power spectrum. We present the optical modeling process. The detector angles can be cross checked through observations of known polarized sources, whether this be a galactic source or a laboratory reference standard. To cross check the ACTPol detector angles, we use a thin film polarization grid placed in front of the receiver of the telescope, between the receiver and the secondary reflector. Making use of a rapidly rotating half-wave plate (HWP) mount we spin the polarizing grid at a constant speed, polarizing and rotating the incoming atmospheric signal. The resulting sinusoidal signal is used to determine the detector angles. The optical modeling calibration was shown to be consistent with a global offset angle of zero when compared to EB nulling in the first ACTPol results and will continue to be a part of our calibration implementation. The first

  13. Polarization measurement of dielectronic recombination transitions in highly charged krypton ions

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Jörg, Holger; Bernitt, Sven; Dobrodey, Stepan; Steinbrügge, René; Beilmann, Christian; Amaro, Pedro; Hu, Zhimin; Weber, Sebastian; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R.; Tashenov, Stanislav

    2015-10-01

    We report linear polarization measurements of x rays emitted due to dielectronic recombination into highly charged krypton ions. The ions in the He-like through O-like charge states were populated in an electron-beam ion trap with the electron-beam energy adjusted to recombination resonances in order to produce K α x rays. The x rays were detected with a newly developed Compton polarimeter using a beryllium scattering target and 12 silicon x-ray detector diodes sampling the azimuthal distribution of the scattered x rays. The extracted degrees of linear polarization of several dielectronic recombination transitions agree with results of relativistic distorted-wave calculations. We also demonstrate a high sensitivity of the polarization to the Breit interaction, which is remarkable for a medium-Z element like krypton. The experimental results can be used for polarization diagnostics of hot astrophysical and laboratory fusion plasmas.

  14. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  15. Transversity Measurement with Polarized Proton and Antiproton Interactions at Gsi:. the Pax Experiment

    NASA Astrophysics Data System (ADS)

    Dalpiaz, P. F.

    2006-02-01

    It has recently been suggested by the PAX collaboration that collisions of transversely polarized protons and antiprotons at the GSI-FAIR can be used to determine the nucleon's transversity densities from measurements of the double-spin asymmetry for the Drell-Yan process. The theoretical expectations for this observable are in the 0.3-0.4 range at the FAIR-HESR enrgies. PAX therefore proposes to build a polarized antiproton stored beam suitable for this measurament. Polarized antiprotons will be produced by spin filtering with an internal polarized gas target in a storage ring. The design and performance of the accelerator setup, and of the the detector will be briefly outlined.

  16. Proton radiography and proton computed tomography based on time-resolved dose measurements.

    PubMed

    Testa, Mauro; Verburg, Joost M; Rose, Mark; Min, Chul Hee; Tang, Shikui; Bentefour, El Hassane; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-21

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time–dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (~100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  17. Proton radiography and proton computed tomography based on time-resolved dose measurements

    NASA Astrophysics Data System (ADS)

    Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-01

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  18. Densification of polar snow: Measurements, modeling, and implications for altimetry

    NASA Astrophysics Data System (ADS)

    Morris, E. M.; Wingham, D. J.

    2014-02-01

    Density profiles in the upper 10-14 m of snow have been measured along a 500 km traverse across the Greenland ice sheet, using a neutron scattering technique. Repeat measurements, over periods ranging from a few days to 5 years, allow strain rates to be determined as a function of depth. Very large strain rates are observed in the surface layer of snow over summer periods. In the underlying multiyear snow, strain rate decreases with decreasing porosity. However, once this effect has been removed, the effect of increasing overburden pressure is counteracted by increasing strength of the material. There are fluctuations in strain rate associated with the annual layering, which indicate that winter and summer snow have different strengths. Based on these observations, we derive a new densification equation which includes the effect of snow density and snow type, and the effect of temperature, described by an Arrhenius expression with activation energy of the order of 110 kJ mol-1 and an exponential prefactor determined simply by the temperature history of the snow. For multiyear snow and meteorological conditions that do not vary from year to year, our equation reduces to a form similar to the Herron and Langway equation for first-stage densification. Using the new equation, we calculate the sensitivity of compaction rate to short-term fluctuations in temperature and accumulation as 0.11-0.20 m a-1 K-1 and 0.33-0.95 m a-1(meters water equivalent)-1, respectively, and discuss the consequent uncertainty in satellite measurements of the long-term elevation trend in this area of the Greenland ice sheet.

  19. BESS-Polar Measurements of Cosmic-Ray Antiprotons and Search for Antihelium

    NASA Astrophysics Data System (ADS)

    Mitchell, John; Yamamoto, Akira

    With its high-precision measurement of the cosmic-ray antiproton spectrum and sensitive search for cosmological antihelium using BESS-Polar II, the US-Japan BESS-Polar Collaboration (Balloon-borne Experiment with a Superconducting Spectrometer - Polar) has finalized its core study of the early Universe using elementary particle measurements. The antiproton spectrum probes possible exotic sources, such as dark-matter candidates. The search for antihelium or heavier antinuclei examines the possibility that antimatter domains remain in the cosmological neighborhood from symmetry breaking processes in the early Universe. Since1993, BESS has carried out eleven high-latitude balloon flights, including two long-duration Antarctic flights, that together have defined the study of antiprotons below 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive reported limits on the existence of antideuterons and antihelium. BESS-Polar II recorded over 4.7 billion cosmic-ray events in 24.5 days of flight over Antarctica during the 2007-2008 Austral Summer, identifying about 8000 antiprotons. These data more than doubled all earlier BESS flights combined and were obtained at very low, near minimum, Solar activity when the low-energy antiproton measurements are most sensitive to a primary source. Depending on energy range, the BESS-Polar II antiproton measurements have 10-20 times the statistics of BESS95+97 data from the previous Solar minimum. Here, we give an overview the results of the long-duration flights of BESS-Polar I (2004) and BESS-Polar II, including antiproton spectra, the energy-dependent ratios of antiprotons to protons, and the limits on the relative abundance of antihelium.

  20. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): time-resolved fluorescence measurements and all-atom molecular dynamics simulations.

    PubMed

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  1. Density relaxation and particle motion characteristics in a non-ionic deep eutectic solvent (acetamide + urea): Time-resolved fluorescence measurements and all-atom molecular dynamics simulations

    SciTech Connect

    Das, Anuradha; Das, Suman; Biswas, Ranjit

    2015-01-21

    Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.

  2. Measuring Link-Resolver Success: Comparing 360 Link with a Local Implementation of WebBridge

    ERIC Educational Resources Information Center

    Herrera, Gail

    2011-01-01

    This study reviewed link resolver success comparing 360 Link and a local implementation of WebBridge. Two methods were used: (1) comparing article-level access and (2) examining technical issues for 384 randomly sampled OpenURLs. Google Analytics was used to collect user-generated OpenURLs. For both methods, 360 Link out-performed the local…

  3. Non-invasive measurement of blood glucose level by time-resolved transmission spectroscopy: A feasibility study

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Chen, Nanguang

    2012-03-01

    An optical spectroscopic method is investigated theoretically for in vivo measurement of blood glucose concentration. This method is based on dynamic dual wavelength (610 nm and 810 nm) time-resolved measurements under a condition of artificial blood flow kinetics in a human finger. The influence of glucose concentration on absorption and reduced scattering coefficients of the whole blood is simulated using the T-matrix method. The scattering centers, RBC aggregation, under the artificial — kinetics condition are modeled as spheroid. The modified parametric slopes were derived from the Laplace transformed data of the time-resolved transmittance. The results show that an appropriate selection of the Laplace parameter can lead to enhanced sensitivity for glucose measurement.

  4. Arctic polar stratospheric cloud measurements by means of a four wavelength depolarization lidar

    NASA Technical Reports Server (NTRS)

    Stefanutti, L.; Castagnoli, F.; Delguasta, M.; Flesia, C.; Godin, S.; Kolenda, J.; Kneipp, H.; Kyro, Esko; Matthey, R.; Morandi, M.

    1994-01-01

    A four wavelength depolarization backscattering lidar has been operated during the European Arctic Stratospheric Ozone Experiment (EASOE) in Sodankyl, in the Finnish Arctic. The lidar performed measurements during the months of December 1991, January, February and March 1992. The Finnish Meteorological Institute during the same period launched regularly three Radiosondes per day, and three Ozone sondes per week. Both Mt. Pinatubo aerosols and Polar Stratospheric Clouds were measured. The use of four wavelengths, respectively at 355 nm, 532 nm , 750 nm, and 850 nm permits an inversion of the lidar data to determine aerosol particle size. The depolarization technique permits the identification of Polar Stratospheric Clouds. Frequent correlation between Ozone minima and peaks in the Mt. Pinatubo aerosol maxima were detected. Measurements were carried out both within and outside the Polar Vortex.

  5. Measurement of relative phase distribution of onion epidermal cells by using the polarization microscope

    NASA Astrophysics Data System (ADS)

    Shin, In Hee; Lee, Ji Yong; Lee, Seungrag; Lee, Dong Ju; Kim, Dug Young

    2007-02-01

    Bio-cells and tissues have intrinsic polarization characteristics, which are changed by external stimulus and internal metamorphosis in cells and tissues and some of the bio-cells and tissues have intrinsic birefringence characteristics, which are also changed by external stimulus and internal metamorphosis in cells and tissues. In this paper, we have developed the polarization microscope for measurement of relative phase which results from birefringence characteristics of materials with improved linear polarizing method and have measured relative phase distribution of onion epidermal cells. From the measurement of the relative phase distribution of onion epidermal cells, decrease of relative phase distribution of onion epidermal cells was investigated as the elapse of time. In decrease of relative phase distribution, relative phase of cell membrane in onion epidermal cells decreased radically as compared with that of cytoplasm because decline of function in cell membrane that takes charge of matter transfer in onion epidermal cells has occurred.

  6. Multiple reflections in a photoelastic modulator: errors in polarization measurement

    NASA Astrophysics Data System (ADS)

    Gemeiner, P.; Yang, D.; Canit, J. C.

    1996-09-01

    The use of a coherent light source (laser) can lead to significant errors when measurements of optical activity, magneto optical Kerr rotation, dichroism or ellipsometric parameters are down with a photoelastic modulator. In particular, a phenomenon of interferences occurs between beams arising from multiple reflections in the modulator. These interferences give rise to parasitic effects which depend on the one hand on the characteristics of the modulator and on the other hand on the wavelength of the light. A variation of temperature causes a modification of those artefacts. These have been noticed experimentally and their amplitude is in good agreement with theoretical predictions, based on a calculation of interferences. The amplitude of an artefact may reach one degree of angle in case of optical activity and is equal to five thousandth in case of measurement of a dichroism. We have shown experimentally that these effects can be cancelled by inclining the modulator with respect to the axis of the light beam or by using a new modulator with a trapezoidal section.

  7. VHF radar measurements in the summer polar mesosphere

    NASA Technical Reports Server (NTRS)

    Ruester, R.; Reid, I. M.; Czechowsky, P.; Schmidt, G.

    1989-01-01

    Measurements in the mesosphere over Andoya/Norway (69 N, 16 E) were carried out using the mobile SOUSY-VHF radar with an extended beam configuration during the MAC/SINE campaign in summer 1987. First results of a 48 h and a 3 h observational period for heights between about 83 and 91 km are presented. Zonal mean winds are characterized by a strong westward flow of up to 50/ms, whereas the equatorward directed meridional component is weaker. The dominating semidiurnal tide has amplitudes up to 30/ms and a vertical wavelength of about 55 km. The diurnal tide is less pronounced. The total upward flux of horizontal momentum takes values of -2 sq m/sq s near 84 km and increases with increasing height, reaching a maximum value of 22 sq m/sqs for both the zonal and meridional components. However, measurements of the horizontal isotropy of the wave field suggest significant anisotropy. The major contribution to the momentum flux is from the 10 min to 1 h period range below about 87 km, and from the 1 to 6 h period range above this height.

  8. Polarization Imager Technology. Phase I

    DTIC Science & Technology

    2007-11-02

    orientation axes (e.g., with a polarizing filter). Resolving image irradiance at three (3) unique orientations is sufficient for unique measurement. Using...an orientation reference and resolving the electric field at relative 0’, 450, 900, if the image irradiances obtained at each pixel are respectively...with the video rate of the camera. See Figure 2. The unpolarized component is not effected . Each TN liquid crystal is binary in the sense that it either

  9. Chlorophyll fluorescence and the polarized underwater light field: comparison of vector radiative transfer simulations and multi-angular hyperspectral polarization field measurements

    NASA Astrophysics Data System (ADS)

    El-habashi, Ahmed; Ahmed, Samir

    2016-05-01

    Previous partial simulations and field measurements by us, had demonstrated the impact of the un-polarized nature of algal chlorophyll fluorescence to reduce the observed degree of polarization of the underwater light field in the spectral vicinity of fluorescence. (Polarization otherwise existing as a result of non-algal particulate (NAP) and molecular elastic scattering). The magnitude of this fluorescence driven dip in the observed degree of polarization was also seen to be theoretically related to the fluorescence magnitude. The recent availability to us of the RayXP vector radiative transfer code (VRTE) for the coupled atmosphere ocean system now permits us to make complete simulations of the underwater polarized light field, using measured inherent optical properties (IOPs) as inputs. Based on these simulations, a much more comprehensive analysis of the fluorescence impact is now possible. Combining the results of these new simulations with underwater field measurements in eutrophic waters using our hyperspectral multi angle polarimeter, we verified the theoretical relationship. In addition, comparisons of VRTE simulations and hyperspectral polarized field measurements for various coastal water conditions permit retrieval of fluorescence magnitudes. Comparisons of these polarization based fluorescence retrievals with retrievals obtained using fluorescence height over baseline or Hydrolight scalar simulations, together with total unpolarized radiance measurements, show good agreement.

  10. Quantum teleportation of a polarization state with a complete bell state measurement.

    PubMed

    Kim, Y H; Kulik, S P; Shih, Y

    2001-02-12

    We report a quantum teleportation experiment in which nonlinear interactions are used for the Bell state measurements. The experimental results demonstrate the working principle of irreversibly teleporting an unknown arbitrary polarization state from one system to another distant system by disassembling into and then later reconstructing from purely classical information and nonclassical EPR correlations. The distinct feature of this experiment is that all four Bell states can be distinguished in the Bell state measurement. Teleportation of a polarization state can thus occur with certainty in principle.

  11. Radar measurement of ionospheric scintillation in the polar region

    NASA Astrophysics Data System (ADS)

    Knepp, Dennis L.

    2015-10-01

    This paper considers several estimators that use radar data to measure the S4 scintillation index that characterizes the severity of amplitude scintillation that may occur during RF propagation through ionospheric irregularities. S4 is defined to be the standard deviation of the fluctuations in received power normalized by division by the mean power. Estimates of S4 are based on radar returns obtained during track of targets which may themselves have intrinsic radar cross-section fluctuations. Key to this work is the consideration of thresholding, which is used in many radars to remove (from further processing) signals whose SNR is considered too low. We consider several estimators here. The "direct" estimator attempts to estimate S4 through the direct calculation of the mean and standard deviation of the SNR from a number of radar returns. The maximum likelihood (ML) estimator uses multiple hypothesis testing and the assumption of Nakagami-m statistics to estimate the scintillation index that best fits the radar returns from some number of pulses. The ML estimator has perfect knowledge of the number of radar returns that are below the threshold. The direct estimator is accurate for the case where there is no threshold and there are many returns or samples from which to estimate S4. However, the direct estimator is flawed (especially for strong scintillation) if deep fades that fall below the radar threshold are ignored. The modified ML estimator here is based on the ML technique but is useful if the count of missed returns is unavailable. We apply the modified ML estimator to several years of radar tracks of large calibration satellites to obtain the statistics of UHF scintillation as viewed from the early warning radar at Thule, Greenland. One-way S4 was measured from 5000 low Earth orbit tracks during the 3 year period after solar maximum in May 2000. The data are analyzed to quantify the exceedance or the level of scintillation experienced at various

  12. Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements

    NASA Astrophysics Data System (ADS)

    Reed Espinosa, W.; Remer, Lorraine A.; Dubovik, Oleg; Ziemba, Luke; Beyersdorf, Andreas; Orozco, Daniel; Schuster, Gregory; Lapyonok, Tatyana; Fuertes, David; Vanderlei Martins, J.

    2017-03-01

    A method for the retrieval of aerosol optical and microphysical properties from in situ light-scattering measurements is presented and the results are compared with existing measurement techniques. The Generalized Retrieval of Aerosol and Surface Properties (GRASP) is applied to airborne and laboratory measurements made by a novel polar nephelometer. This instrument, the Polarized Imaging Nephelometer (PI-Neph), is capable of making high-accuracy field measurements of phase function and degree of linear polarization, at three visible wavelengths, over a wide angular range of 3 to 177°. The resulting retrieval produces particle size distributions (PSDs) that agree, within experimental error, with measurements made by commercial optical particle counters (OPCs). Additionally, the retrieved real part of the refractive index is generally found to be within the predicted error of 0.02 from the expected values for three species of humidified salt particles, with a refractive index that is well established. The airborne measurements used in this work were made aboard the NASA DC-8 aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field campaign, and the inversion of this data represents the first aerosol retrievals of airborne polar nephelometer data. The results provide confidence in the real refractive index product, as well as in the retrieval's ability to accurately determine PSD, without assumptions about refractive index that are required by the majority of OPCs.

  13. Polarization Methods of Measuring the Roll Angle of an Object in Motion in Radio Beacon Navigation Systems

    NASA Astrophysics Data System (ADS)

    Gulko, V. L.; Mescheryakov, A. A.

    2016-06-01

    Polarization methods of measuring the roll angle of an object in motion with the help of radio beacon systems are considered. The polarization properties of the beacon signals received on board the object and amplitude-phase processing of their orthogonal polarized components are used to accomplish this goal.

  14. Erratum: The linear polarization of Southern bright stars measured at the parts-per-million level

    NASA Astrophysics Data System (ADS)

    Cotton, Daniel V.; Bailey, Jeremy; Kedziora-Chudczer, Lucyna; Bott, Kimberly; Lucas, P. W.; Hough, J. H.; Marshall, Jonathan P.

    2016-07-01

    Our recent article, The linear polarization of Southern bright stars measured at the parts-per-million level (Cotton et al. 2016a), contains two errors that we correct here. The first error is a formulaic error in the propagation of errors. Although the errors in q, u and p given throughout the paper are properly the 1σ error, the stated error in the polarization angle is the 2σ error. To correct this, the reader has simply to divide the given polarization angle error by 2. The correction of this error does not alter any of the conclusions drawn in the paper. We note here that this error also affects the polarization angle errors for the telescope polarization given in one of our earlier works (Bailey et al. 2015). The errors there are very small, and so this has little consequence. The second error is a transcription error resulting in an erroneous value for the measured polarization of α Phe (HIP 2081, BS 99) being reported in Table 5. The correct measurement for this object is as follows: q = -10.7 ± 7.2, u = 15.6 ± 6.1, or p = 18.9 ± 6.7, θ = 62.3 ± 10.5. α Phe is identified as an outlier in Figs 5 and 6 of the paper, and marked accordingly; its corrected (debiased) p/d value of 0.73 ppm/pc is unremarkable. Consequently, its identification in Section 4.101 as a late giant probably intrinsically polarized is recanted. This makes κ Lyr (BS 6872, K2III) the earliest late giant we can identify as probably intrinsically polarized. The incorrect polarization magnitude for α Phe was also used in Fig. 2, however the scale used there would render a correction largely invisible. The above errors were identified before the publication of three recent papers (Bott et al. 2016; Cotton et al. 2016b; Marshall et al. 2016) that reference the results, and none of them are affected. %K errata, addenda, polarization, techniques: polarimetric, binaries: close, stars: emission-line, Be, stars: late-type, ISM: magnetic fields

  15. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.

  16. Polarization of Light from Leaves Measured from 0.5 - 1.6 mm

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Ustin, S. L.; Daughtry, C. S. T.; Walthal, C. L.; Greenberg, J. A.

    2006-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves. Insights into these properties gained at the leaf scale are necessary ultimately to accomplish the region and global scale environmental goals of the EOS era. While this scattered light may be described by the four components of the Stokes vector, (intensity, magnitude of line= polarization, angle of plane of linear polarization, and magnitude of circular polarization), significant progress has been achieved toward understanding only the first component, the intensity of the scattered light. Recent research shows that the magnitude of the linearly polarized light may be a significant part of the light scattered by some canopies. Thus, consideration of the second component may be necessary to obtain an unambiguous understanding of the canopy processes. We measured the intensity and the linear polarization of the light scattered by single leaves, testing the hypothesis that the polarization of the light scattered by each leaf was attributable to properties of the surfaces of the leaf and specifically did not depend upon the propertie