Science.gov

Sample records for polarization-based balanced heterodyne

  1. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy

    PubMed Central

    Middleton, Chris T.; Strasfeld, David B.; Zanni, Martin T.

    2010-01-01

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy. PMID:19687931

  2. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector.

    PubMed

    Buttler, William T; Lamoreaux, Steven K

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces. PMID:20697446

  3. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector.

    PubMed

    Buttler, William T; Lamoreaux, Steven K

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  4. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

    SciTech Connect

    Buttler, William T.; Lamoreaux, Steven K.

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  5. Quantum-limited operation of balanced mixer homodyne and heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Machida, Susumu; Yamamoto, Yoshihisa

    1986-05-01

    In the GaAs semiconductor laser balanced mixer heterodyne receiver of Abbas and Chan (1983), the photocurrent fluctuation due to local oscillator wave intensity noise was suppressed, but the absolute quantum noise level calibration was not clarified. In this paper, the results of experimental calibration of the quantum noise level were obtained using two different methods: photocurrent spectral density measurement and photoelectron counting. The noise of a balanced mixer operation was confirmed to be truly quantum limited; the photocurrent fluctuation spectral density measured with a spectrum analyzer agreed with the quantum noise spectral density. The deviations from the absolute quantum noise level were within + or -0.02 dB. Complete suppression of local oscillator excess noise was demonstrated in the 0-1.5 GHz frequency region. Uses of balanced mixers for observing the squeezing phenomenon and quantum nondemolition measurement is mentioned.

  6. Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration.

    PubMed

    Lin, Chu-En; Yu, Chih-Jen; Chen, Chii-Chang

    2013-04-22

    In this article, we propose an optical heterodyne common-path gyroscope which has common-path configuration and full-dynamic range. Different from traditional non-common-path optical heterodyne technique such as Mach-Zehnder or Michelson interferometers, we use a two-frequency laser light source (TFLS) which can generate two orthogonally polarized light with a beat frequency has a common-path configuration. By use of phase measurement, this optical heterodyne gyroscope not only has the capability to overcome the drawback of the traditional interferometric fiber optic gyro: lack for full-dynamic range, but also eliminate the total polarization rotation caused by SMFs. Moreover, we also demonstrate the potential of miniaturizing this gyroscope as a chip device. Theoretically, if we assume that the wavelength of the laser light is 1550nm, the SMFs are 250m in length, and the radius of the fiber ring is 3.5cm, the bias stability is 0.872 deg/hr.

  7. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  8. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  9. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  10. Submillimeter wave heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)

    2011-01-01

    In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.

  11. Heterodyne laser diagnostic system

    DOEpatents

    Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.

    1990-01-01

    The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.

  12. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  13. Spatiotemporal heterodyne detection.

    PubMed

    Atlan, Michael; Gross, Michel

    2007-09-01

    We describe a scheme in which a camera is turned into an efficient tunable frequency filter of a few-Hertz bandwidth in an off-axis, heterodyne optical mixing configuration, enabling one to perform parallel, high-resolution coherent spectral imaging. This approach is made possible through the combination of a spatial and temporal modulation of the signal to reject noise contributions. Experimental data obtained with dynamically scattered light by a suspension of particles in Brownian motion is interpreted. PMID:17767239

  14. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  15. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark; Wanke, Michael C.

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  16. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C.; Lee, Mark; Nordquist, Christopher D.; Cich, Michael J.

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  17. Velocimetry Using Heterodyne Techniques

    SciTech Connect

    Strand, O T; Berzins, L V; Goosman, D R; Kuhlow, W W; Sargis, P D; Whitworth, T L

    2004-08-10

    At LLNL, we have been using heterodyne techniques for the past year and a half to measure velocities up to several kilometers-per-second on different types of experiments. We assembled this diagnostic, which we call the Heterodyne Velocimeter (HetV), using commercially available products developed for the communications industry. We use a 1550 nm fiber laser and single mode fibers to deliver light to and from the target. The return Doppler-shifted light is mixed with the original laser light to generate a beat frequency proportional to the velocity. At a velocity of 1000 m/s, the beat signal has a frequency of 1.29 GHz. We record the beat signals directly onto fast digitizers. The maximum velocity is limited by the bandwidth of the electronics and the sampling rate of the digitizers. The record length is limited by the amount of memory contained in the digitizers. This paper describes our approach to measuring velocities with this technique and presents recent data obtained with the HetV.

  18. Digitally Enhanced Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge

    2010-01-01

    Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.

  19. Few-photon heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Amaral, G. C.; Ferreira da Silva, T.; Temporão, G. P.; von der Weid, J. P.

    2016-04-01

    We perform a high resolution Fourier Transform Spectroscopy of optical sources in the few-photon regime based on the phenomenon of two-photon interference in a beam splitter. From the heterodyne interferogram between test and reference sources it is possible to obtain the spectrum of the test source relative to that of the reference. The method proves to be a useful asset for spectral characterization of faint optical sources below the range covered by classical heterodyne beating techniques.

  20. Heterodyne systems and technology, part 1. [conferences

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various aspects of optical heterodyning are considered. Topics covered heterodyning throughout the electromagnetic spectrum including detectors, local oscillators, tunable diode lasers, astronomical systems, and environmental sensors, with both active and passive systems represented.

  1. IR detectors - Heterodyne and direct

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1983-01-01

    Recent developments in the area of wide-bandwidth infrared detectors, both for direct and heterodyne detection, are reviewed with emphasis on the differences and tradeoffs between photodiodes and photoconductors. In the direct-detection mode, where amplifier noise is an important consideration, the state-of-the-art detection noise equivalent power is approximated by 500 (B/10 MHz) pW. At short wavelengths (less than 1.7 micron), avalanche photodiodes offer superior performance, with a detection noise equivalent power of about 50 (B/10 MHz) pW. In heterodyne operation, near-ideal sensitivities of about 0.3 (B/10 MHz) pW have been achieved with 77K photodiodes. At 10 microns, HgCdTe photoconductors offer very good heterodyne performance at elevated temperatures: 2 (B/10 MHz) pW at 195 K and potentially 3 (B/10 MHz) pW at 250 K.

  2. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  3. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  4. Concerning the Spatial Heterodyne Spectrometer

    DOE PAGES

    Lenzner, Matthias; Diels, Jean -Claude

    2016-01-22

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order ofmore » the effective aperture of the device. In conclusion, the limits of usability are shown here together with some measurements of known spectral lines.« less

  5. Concerning the Spatial Heterodyne Spectrometer.

    PubMed

    Lenzner, Matthias; Diels, Jean-Claude

    2016-01-25

    A modified Spatial Heterodyne Spectrometer (SHS) is used for measuring atomic emission spectra with high resolution. This device is basically a Fourier Transform Spectrometer, but the Fourier transform is taken in the directions perpendicular to the optical propagation and heterodyned around one preset wavelength. In recent descriptions of this device, one specific phenomenon - the tilt of the energy front of wave packets when diffracted from a grating - was neglected. This led to an overestimate of the resolving power of this spectrograph, especially in situations when the coherence length of the radiation under test is in the order of the effective aperture of the device. The limits of usability are shown here together with some measurements of known spectral lines. PMID:26832561

  6. Modified Phasemeter for a Heterodyne Laser Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank M.

    2010-01-01

    Modifications have been made in the design of instruments of the type described in "Digital Averaging Phasemeter for Heterodyne Interferometry". A phasemeter of this type measures the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. The phasemeter design lacked immunity to drift of the heterodyne frequency, was bandwidth-limited by computer bus architectures then in use, and was resolution-limited by the nature of field-programmable gate arrays (FPGAs) then available. The modifications have overcome these limitations and have afforded additional improvements in accuracy, speed, and modularity. The modifications are summarized.

  7. Remote sensing by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Kostiuk, T.; Mumma, M. J.

    1983-01-01

    The use of infrared heterodyne spectrocopy for the study of planetary atmospheres is discussed. Infrared heterodyne spectroscopy provides a convenient and sensitive method for measuring the true intensity profiles of atmospheric spectral lines. Application of radiative transfer theory to measured lineshapes can then permit the study of molecular abundances, temperatures, total pressures, excitation conditions, and dynamics of the regions of line formation. The theory of formation of atmospheric spectral lines and the retrieval of the information contained in these molecular lines is illustrated. Notable successes of such retrievals from infrared heterodyne measurements on Venus, Mars, Jupiter and the Earth are given. A discussion of developments in infrared heterodyne technology is also presented.

  8. Heterodyne arrays for terahertz astronomy

    NASA Astrophysics Data System (ADS)

    Kloosterman, Jenna Lynn

    The clouds of gas and dust that constitute the Interstellar Medium (ISM) within the Milky Way and other galaxies can be studied through the spectral lines of the atoms and molecules. The ISM follows a lifecycle in which each of its phases can be traced through spectral lines in the Terahertz (THz) portion of the electromagnetic spectrum, loosely defined as 0.3--3 THz. Using the high spectral resolution afforded by heterodyne instruments, astronomers can potentially disentangle the large-scale structure and kinematics within these clouds. In order to study the ISM over large size scales, large format THz heterodyne arrays are needed. The research presented in this dissertation focuses on the development of two heterodyne array receiver systems for ISM studies, SuperCam and a Super-THz (>3 THz) receiver. SuperCam is a 64-pixel heterodyne imaging array designed for use on ground-based submillimeter telescopes to observe the astrophysically important CO J=3-2 emission line at 345 GHz. The SuperCam focal plane stacks eight, 1x8 mixer subarrays. Each pixel in the array has its own integrated superconductor-insulator-superconductor (SIS) mixer and Low Noise Amplifier (LNA). In spring 2012, SuperCam was installed on the University of Arizona Submillimeter Telescope (SMT) for its first engineering run with 32 active pixels. A second observing run in May 2013 had 52 active pixels. With the outliers removed, the median double sideband receiver temperature was 104 K. The Super-THz receiver is designed to observe the astrophysically important neutral atomic oxygen line at 4.7448 THz. The local oscillator is a third-order distributed feedback Quantum Cascade Laser operating in continuous wave mode at 4.741 THz. A quasi-optical hot electron bolometer is used as the mixer. We record a double sideband receiver noise temperature of 815 K, which is ˜7 times the quantum noise limit and an Allan variance time of 15 seconds at an effective noise fluctuation bandwidth of 18 MHz

  9. Two-wavelength spatial-heterodyne holography

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  10. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  11. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  12. Signal competition in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    de La Rochefoucauld, Ombeline; Khanna, Shyam M.; Olson, Elizabeth S.

    2006-06-01

    The Organ of Corti is a complex structure with many reflecting surfaces characterized by a wide range of reflectivities. Heterodyne interferometry has been the primary technique for measuring motion of the cochlear sensory tissue for some time. We would like to know under what conditions reflections from out-of-focus surfaces affect the measured velocity of the in-focus surface. Heterodyne interferometry uses interference between two laser beams (object and reference). The velocity of the test object shifts the frequency of the object beam due to the Doppler effect. The heterodyne signal (a frequency modulated (FM) wave) is decoded using a frequency demodulator. By reviewing the theory of FM demodulation and showing tests with our Revox FM demodulator, we demonstrate that the influence of a secondary signal on a measurement depends on the modulation index (ratio of the frequency deviation (Δf=2V °/λ) to the modulation frequency, f m where V ° is the velocity amplitude and λ is the laser wavelength). For high-modulation-index signals, the fundamental component of the FM demodulator output is not affected by a secondary signal unless the secondary signal's power is nearly as large as that of the primary signal. However, the output waveform can be distorted. For a low-modulation-index signal, a secondary competing signal can have a relatively large effect on the fundamental component of the output signal, but the output signal waveform is not distorted. The results underscore the benefit of steep optical sectioning to reduce contamination by out-of-focus signals.

  13. Heterodyne lidar for chemical sensing

    SciTech Connect

    Oldenborg, R. C.; Tiee, J. J.; Shimada, T.; Wilson, C. W.; Remelius, D. K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging

  14. Experimental demonstration of coherent OCDMA using heterodyne detection.

    PubMed

    Yang, Yi; Petrillo, Keith G; Ting, Hong-Fu; Khurgin, Jacob B; Cooper, A Brinton; Foster, Mark A

    2013-07-01

    We present the first experimental demonstration of a practical, fully coherent, optical code division multiple access (OCDMA) scheme that can fully suppress multiple access interference (MAI) and speckle noise without phase locking or thresholding and gating. The scheme is sourced from an optical comb generator and uses spectral phase encoding and a heterodyne receiver with balanced detection. Here we present results for a four-user configuration at 50% load. At 4.5 Gbits/s per user, the system achieves a signal to MAI ratio of 648 at a bit error rate of 10(-7).

  15. Mixing efficiency in heterodyne systems

    NASA Technical Reports Server (NTRS)

    Fink, D.

    1980-01-01

    How the spatial distributions of the signal and local oscillator fields affect the heterodyne signal to noise ratio is examined for both a single detector and an array of detectors. For an array, the distribution of gain among the intermediate frequency (i.f.) amplifiers is included. The emphasis is on understanding why the distributions are important and what is the key to maximizing the signal to noise ratio in any system. It is shown that for a single detector, the highest signal to noise ratio is obtained with a local oscillator (LO) distribution the same as that of the signal. For an array, the product of the i.f. gain times the LO field at each detector has the same distribution as that of the signal field.

  16. Heterodyne velocimetry and detonics experiments

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Contencin, G.; Veaux, J.; Lauriot-Basseuil, S.; Debruyne, M.

    2008-11-01

    Heterodyne Velocimetry (or Photonic Doppler Velocimetry) has been used in detonics experiments for a few years now, mainly thanks to the recent evolution of telecom components. In its principle it is nothing else but a displacement interferometer, delivering beats versus time. A sliding Fourier transform processing on the raw signal thus allows to derive velocity versus time. The device is made up of a 1.55 μm Erbium laser delivering 2 W (split into 4 channels), single-mode optical fibers, fast photodetectors and digitizers (8 GHz bandwidth, 20 GS/s sampling). To begin with, we present a new heterodyne velocimeter setup embedding a second low-power frequency-tunable laser (50 mW) acting as a local oscillator. Its frequency can be shifted, to make it higher than the main laser, up to the bandwidth of the digitizer (13 GHz soon). The Doppler wave coming from the first laser and reflected by the moving target interferes with this shifted reference, therefore doubling the overall bandwidth of the system. On top of enhancing the measurable velocity range, the existence of beats at static gives a convenient means to tune the power levels of the laser and match the electric signal to the dynamics of the detector. Finally, three applications are presented: the first one deals with the classical measurement of free surface velocity on metallic shock loaded plates, in the second part we present the velocity distribution of tin particles ejected under shock. The third application relates to direct measurement of the velocity of detonation wave into nitromethane, by using immersed optical fibers.

  17. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  18. Heterodyne detection with a weak local oscillator.

    PubMed

    Jiang, Leaf A; Luu, Jane X

    2008-04-01

    Heterodyne detection in the limit of weak (a few photons) local oscillator and signal power levels has been largely neglected in the past, as authors almost always assumed that the noise was dominated by the shot noise from a strong local oscillator. We present the theory for heterodyne detection of diffuse and specular targets at arbitrary power levels, including the case where the local oscillator power is only a few photons per coherent integration period. The theory was tested with experimental results, and was found to show good agreement. We show how to interpret the power spectral density of the heterodyne signal and how to determine the optimal number of signal and local oscillator photons per coherent integration.

  19. A comparison of electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry for flow measurements

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Stricker, J.

    1985-01-01

    Electronic heterodyne moire deflectometry and electronic heterodyne holographic interferometry are compared as methods for the accurate measurement of refractive index and density change distributions of phase objects. Experimental results are presented to show that the two methods have comparable accuracy for measuring the first derivative of the interferometric fringe shift. The phase object for the measurements is a large crystal of KD*P, whose refractive index distribution can be changed accurately and repeatably for the comparison. Although the refractive index change causes only about one interferometric fringe shift over the entire crystal, the derivative shows considerable detail for the comparison. As electronic phase measurement methods, both methods are very accurate and are intrinsically compatible with computer controlled readout and data processing. Heterodyne moire is relatively inexpensive and has high variable sensitivity. Heterodyne holographic interferometry is better developed, and can be used with poor quality optical access to the experiment.

  20. Broadband Heterodyne SIS Spectrometer Prototype: First Results

    NASA Technical Reports Server (NTRS)

    Rice, F.; LeDuc, H.; Harris, A.; Hu, S.; Sumner, M.; Zmuidzinas, J.

    2004-01-01

    The broadband heterodyne SIS receiver system described elsewhere (reference 1) has been assembled and tested both in the laboratory and during two observing runs on the Cassegrain focus of the 10 meter telescope at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. Here we present a brief summary of the initial results.

  1. Submillimeter local oscillators for spaceborne heterodyne applications

    NASA Technical Reports Server (NTRS)

    Petuchowski, S. J.; Durachta, J.

    1985-01-01

    Existing and prospective submillimeter local oscillator technologies are surveyed and compared with respect to criteria of suitability for application in spaceborne submillimeter heterodyne receivers as those proposed for the Large Deployable Reflector (LDR). Solid-state and plasma devices are considered in terms of fundamental limitations.

  2. Laser Metrology Heterodyne Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Loya, Frank; Halverson, Peter

    2009-01-01

    A method reduces sensitivity to noise in a signal from a laser heterodyne interferometer. The phase-locked loop (PLL) removes glitches that occur in a zero-crossing detector s output [that can happen if the signal-to-noise ratio (SNR) of the heterodyne signal is low] by the use of an internal oscillator that produces a square-wave signal at a frequency that is inherently close to the heterodyne frequency. It also contains phase-locking circuits that lock the phase of the oscillator to the output of the zero-crossing detector. Because the PLL output is an oscillator signal, it is glitch-free. This enables the ability to make accurate phase measurements in spite of low SNR, creates an immunity to phase error caused by shifts in the heterodyne frequency (i.e. if the target moves causing Doppler shift), and maintains a valid phase even when the signal drops out for brief periods of time, such as when the laser is blocked by a stray object.

  3. Digital Averaging Phasemeter for Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Johnson, Donald; Spero, Robert; Shaklan, Stuart; Halverson, Peter; Kuhnert, Andreas

    2004-01-01

    A digital averaging phasemeter has been built for measuring the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. This phasemeter performs well enough to enable interferometric measurements of distance with accuracy of the order of 100 pm and with the ability to track distance as it changes at a speed of as much as 50 cm/s. This phasemeter is unique in that it is a single, integral system capable of performing three major functions that, heretofore, have been performed by separate systems: (1) measurement of the fractional-cycle phase difference, (2) counting of multiple cycles of phase change, and (3) averaging of phase measurements over multiple cycles for improved resolution. This phasemeter also offers the advantage of making repeated measurements at a high rate: the phase is measured on every heterodyne cycle. Thus, for example, in measuring the relative phase of two signals having a heterodyne frequency of 10 kHz, the phasemeter would accumulate 10,000 measurements per second. At this high measurement rate, an accurate average phase determination can be made more quickly than is possible at a lower rate.

  4. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    PubMed

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  5. Spatial-heterodyne interferometry for transmission (SHIFT) measurements

    DOEpatents

    Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.

    2006-10-10

    Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.

  6. Ozone height profiles using laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  7. Quantum limited heterodyne detection of spin noise

    NASA Astrophysics Data System (ADS)

    Cronenberger, S.; Scalbert, D.

    2016-09-01

    Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.

  8. Stratospheric sounding by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kunde, V. G.; Mumma, M. J.; Kostiuk, T.; Buhl, D.; Frerking, M. A.

    1978-01-01

    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given.

  9. Influence of atmospheric phase compensation on optical heterodyne power measurements.

    PubMed

    Belmonte, Aniceto

    2008-04-28

    The simulation of beam propagation is used to examine the uncertainty inherent to the process of optical power measurement with a practical heterodyne receiver because of the presence of refractive turbulence. Phase-compensated heterodyne receivers offer the potential for overcoming the limitations imposed by the atmosphere by the partial correction of turbulence-induced wave-front phase aberrations. However, wave-front amplitude fluctuations can limit the compensation process and diminish the achievable heterodyne performance.

  10. Wide-band heterodyne receiver development for effluent measurements

    SciTech Connect

    Hutchinson, D.P.; Richards, R.K.; Simpson, M.L.; Bennett, C.A.; Liu, H.C.; Buchanan, M.

    1998-05-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced infrared heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Passive heterodyne radiometry in the LWIR region of the spectrum has historically been restricted by HgCdTe (MCT) detector technology to receiver bandwidths of only 2 GHz. Given typical atmospheric line widths of approximately 3 GHz, a CO{sub 2} (or isotope) laser local oscillator with an average line spacing of 50 GHz, and an MCT detector, only chemical species whose absorptions fall directly on top of laser lines can be measured. Thus, with traditional narrow-band heterodyne radiometry, much of the LWIR spectrum is missed and the less complex direct detection DIAL has been the preferred technique in remote sensing applications. Wide-band heterodyne receivers offer significant improvements in remote measurement capability. Progress at the Institute for Microstructural Sciences (IMS) at National Research Council of Canada and at ORNL in wide-band quantum-well infrared photodetectors (QIPs) and receivers is significantly enhancing the bandwidth capabilities of heterodyne radiometers. ORNL recently made measurements in the lab using QWIPs developed at IMS that demonstrate heterodyne quantum efficiencies of 5% with a heterodyne bandwidth of 7 GHz. The path forward indicates that > 10% heterodyne quantum efficiencies and 30-GHz bandwidths are achievable with current QWIP technology. With a chopped, 30-GHz passive heterodyne receiver, a much larger portion of the LWIR spectrum can now be covered. One potential advantage of wide-band heterodyne receivers for effluent measurements is to dramatically reduce the number of laser lines needed to characterize and distinguish multiple chemical species of interest. In the following paper, the authors discuss this and other implications of these new technologies to the characterization of effluents using both passive heterodyne radiometry and thermo-luminescence.

  11. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2009-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  12. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  13. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  14. Molecular backscatter heterodyne lidar: a computational evaluation.

    PubMed

    Rye, B J

    1998-09-20

    The application of heterodyne lidar to observe molecular scattering is considered. Despite the reduced Rayleigh cross section, infrared systems are predicted to require mean power levels comparable with those of current and proposed direct detection lidars that operate with the thermally broadened spectra in the visible or ultraviolet. Rayleigh-Brillouin scattering in the kinetic and hydrodynamic (collisional) regimes encountered in the infrared is of particular interest because the observed spectrum approaches a triplet of relatively narrow lines that are more suitable for wind, temperature, and pressure measurements.

  15. Self-Heterodyne Laser-Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Saif, Babak; Seery, Bernard D.

    1991-01-01

    Apparatus measures spectral widths of light emitted by GaAs or other narrow-linewidth diode lasers at wavelengths between 800 and 900 nm. Operating on quasi-homodyne of self-heterodyne principle, apparatus provides relatively high spectral resolution: measures spectral widths of order of 100 kHz. Fine spectral resolution of apparatus provides data relevant to use of AlGaAs diode lasers in such applications as coherent optical communication through free space and injection seeding of solid-state lasers. Also used to explore connections between lifetimes and spectral widths of diode lasers.

  16. Laser heterodyne spectroscopy. [of Venus atmosphere

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Sutton, E. C.; Mclaren, R. A.; Mcalary, C. W.

    1978-01-01

    High-resolution heterodyne spectroscopic studies of the atmosphere of Venus are surveyed with attention to Doppler shifts in the 10-micron CO2 lines. While the C-12(O-16)2 emission lines formed in the mesosphere near 115 km indicate that the winds are distinctly subsolar to antisolar, C-13(O-16)2 absorption lines for the stratosphere at about 75 km confirm that the pattern is a strong retrograde rotation with an average equatorial velocity of 90 plus or minus 7 m/sec. It is concluded that the winds change from retrograde to subsolar-to-antipolar between 80 and 115 km.

  17. Compact heterodyne NEMS oscillator for sensing applications

    NASA Astrophysics Data System (ADS)

    Sansa, Marc; Gourlat, Guillaume; Jourdan, Guillaume; Gely, Marc; Villard, Patrick; Sicard, Gilles; Hentz, Sébastien

    2016-11-01

    We present a novel topology of heterodyne nanoelectromechanical self-oscillator, aimed at the dense integration of resonator arrays for sensing applications. This oscillator is based on an original measurement method, suitable for both open loop and closed loop operations, which simplifies current down-mixing set-ups. When implemented on-chip, it will allow the reduction of the size and power consumption of readout CMOS circuitry. This is today the limiting factor for the integration density of NEMS oscillators for real-life applications. Here we characterize this method in both open-loop and closed-loop, and evaluate its frequency stability.

  18. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  19. THIS: a tuneable heterodyne infrared spectrometer.

    PubMed

    Wirtz, Daniel; Sonnabend, Guido; Schieder, Rudolf T

    2002-09-01

    With the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) we present a newly developed setup of a transportable heterodyne receiver. Competitiveness with regard to sensitivity, was reached for the first time with a semiconductor laser pumped system. Frequency tuneability of the local oscillator (LO) laser over a wide range of wavelengths is thus provided. This allows a variety of molecules, e.g. O3, NH3, CH4, N2O,.... in the earth's atmosphere, in planetary atmospheres or even in interstellar space to be observed with very high frequency resolution either from aboard the Stratospheric Observatory For Infrared Astronomy (SOFIA) or other ground based telescopes. Besides the good results with tuneable lead salt laser (TDL) operation there's room to improve: the power provided by such devices is not sufficient for a sensitivity close to the quantum limit. Therefore, first tests with recently developed high power quantum-cascade lasers (QCL) were carried out and further substantial improvement of the system noise temperature seems to be in reach.

  20. Surface plasmon resonance biosensor using heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Joe, Shen-fen; Wu, Chien-ming; Chang, Liann-be; Hsieh, Li-zen

    2005-02-01

    A Surface plasmon resonance (SPR) biosensor constructed with common path, heterodyne inteferometric system has been developed. The sensor ship consists of a BK7 substrate coated with gold film on which the receptor of the specific biomolecular or protein has been immobilized. The light source consisting of the s and p polarizations with heterodyne frequency of 60kHz is used to measure the phase difference between these two polarizations. Because the SPR sensor probes the changes of refractive index near the gold film (i.e. about one wave-length), the more the binding of molecules on the sensing surface results in the less sensitivity of the detection. In order to overcome this shortage, we set two quarter-wave plates before and after the SPR prism to make the sensitivity of measurement to be tunable. This sensor could detect the concentration of antibody of sheep IgG as low as several nanograms per milliliter. The results indicate that this system provides high sensitivity and is capable for detecting biomolecular interactions.

  1. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  2. Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission.

    PubMed

    Zhang, Junwen; Dong, Ze; Yu, Jianjun; Chi, Nan; Tao, Li; Li, Xinying; Shao, Yufeng

    2012-10-01

    We propose and experimentally demonstrate a simplified coherent receiver based on heterodyne detection with only two balanced photodetectors and two analog-to-digital converters. The polarization diversity hybrid can be simplified relative to the conventional one. The detected intermediate frequency signals are first downconverted to baseband with inphase and quadrature separation. Using this scheme, we successfully demonstrated the eight-channel 50 Gb/s polarization division multiplexed quadrature phase shift keying WDM signal with heterodyne detection based on digital signal processing over 1040 km single-mode fiber 28 with erbium-doped fiber amplifier only amplification.

  3. Homodyning and heterodyning the quantum phase

    NASA Technical Reports Server (NTRS)

    Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.

    1994-01-01

    The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.

  4. Far-Infrared Heterodyne Spectrometer for Sofia

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1998-01-01

    The project goal was to evaluate the scientific capabilities and technical requirements for a far-infrared heterodyne spectrometer suitable for the SOFIA Airborne Observatory, which is now being developed by NASA under contract to the Universities Space Research Association (USRA). The conclusions detailed below include our specific recommendations for astronomical observations, as well as our intended technical approach for reaching these scientific goals. These conclusions were presented to USRA in the form of a proposal to build this instrument. USRA subsequently awarded the University of Colorado a 3-year grant to develop the proposed Hot-Electron micro-Bolometer (HEB) mixer concept for high frequencies above 3 THz, as well as other semiconductor mixer technologies suitable for high sensitivity receivers in the 2-6 THz frequency band.

  5. Submillimeter local oscillators for heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Danielewicz, E. J., Jr.

    1980-01-01

    The major technological innovations in continuous wave (CW) submillimeter sources which are specifically suitable for application as local oscillators in heterodyne systems are reviewed. A description of the various sources is given which underscores the general principles and operating features for each type of device. Particular emphasis is placed on CW optically pumped lasers, which have had a dramatic impact as widely available sources of narrow linewidth coherent radiation. The state-of-the-art is summarized for these lasers and performance data are presented for several local oscillator packages. Optically pumped lasers are then compared and contrasted with other competing sources such as backward wave oscillators, IMPATT diodes, and Josephson junctions. By comparing their advantages and limitations for use as local oscillators, the potential applications of these different sources are projected. The prospects for increased tunability, reliability, and scalability are briefly considered, and several novel techniques for generating partially tunable radiation using Schottky diode mixers or CW Raman lasers are highlighted.

  6. Single-beam heterodyne FAST CARS microscopy.

    PubMed

    Shen, Yujie; Voronine, Dmitri V; Sokolov, Alexei V; Scully, Marlan O

    2016-09-19

    We demonstrate, for the first time, single-beam heterodyne FAST CARS imaging without data post-processing and with nonresonant background subtraction in a simple setup via the real-time piezo modulation of the probe delay. Our fast signal acquisition scheme does not require a spatial light modulator in the pulse shaper, and is suitable for high-resolution imaging and time-resolved dynamics. In addition, the spectral detection of the back-scattered FAST CARS signal is incorporated into the pulse shaper, allowing for a compact and more efficient design. Such epi-detection capability is demonstrated by imaging Si and MoS2 microstructures. PMID:27661903

  7. Far-Infrared Heterodyne Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.

    1998-01-01

    This report summarizes work done under NASA Grant NAG2-1062 awarded to the University of Colorado. The project goal was to evaluate the scientific capabilities and technical requirements for a far-infrared heterodyne spectrometer suitable for the SOFIA Airborne Observatory, which is now being developed by NASA under contract to the Universities Space Research Association (USRA). The conclusions detailed below include our specific recommendations for astronomical observations, as well as our intended technical approach for reaching these scientific goals. These conclusions were presented to USRA in the form of a proposal to build this instrument. USRA subsequently awarded the University of Colorado a 3-year grant (USRA 8500-98-010) to develop the proposed Hot-Electron micro-Bolometer (HEB) mixer concept for high frequencies above 3 THz, as well as other semiconductor mixer technologies suitable for high sensitivity receivers in the 2-6 THz frequency band.

  8. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  9. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.

    2006-10-03

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  10. Heterodyne method for high specificity gas detection.

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.

  11. Terahertz Superconducting Hot Electron Bolometer Heterodyne Receivers

    NASA Astrophysics Data System (ADS)

    Gao, J. R.; Hajenius, M..; Yang, Z. Q.; Baselmans, J. J. A.; Khosropanah, P..; Barends, R..; Klapwijk, T. M.

    2007-06-01

    We highlight the progress on NbN hot electron bolometer (HEB) mixers achieved through fruitful collaboration between SRON Netherlands Institute for Space Research and Delft University of Technology, the Netherlands. This includes the best receiver noise temperatures of 700 K at 1.63 THz using a twin-slot antenna mixer and 1050 K at 2.84 THz using a spiral antenna coupled HEB mixer. The mixers are based on thin NbN films on Si and fabricated with a new contact-process and-structure. By reducing their areas HEB mixers have shown an LO power requirement as low as 30 nW. Those small HEB mixers have demonstrated equivalent sensitivity as those with large areas provided the direct detection effect due to broadband radiation is removed. To manifest that a HEB based heterodyne receiver can in practice be used at arbitrary frequencies above 2 THz, we demonstrate a 2.8 THz receiver using a THz quantum cascade laser (QCL) as local oscillator.

  12. Broadband Infrared Heterodyne Spectrometer: Final Report

    SciTech Connect

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  13. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  14. Wideband Heterodyne QWIP Receiver Development for Thermonuclear Fusion Measurements

    SciTech Connect

    Bennett, C.A.; Buchanan, M.; Hutchinson, D.P.; Liu, H.C.; Richards, R.K.; Simpson, M.L.

    1998-11-01

    Oak Ridge National Laboratory (ORNL) has been developing heterodyne receivers for plasma diagnostic applications for over 20 years. One area of this work has been the development of a diagnostic system for the measurement of the energy of alpha particles created in a thermonuclear fusion reactor. These particles originate with an energy of 3.5 MeV and cool to the thermal energy of the plasma (around 15 keV) after several seconds. To measure the velocity distribution of these alpha particles, a Thomson scattering diagnostic is under development based on a high power CO{sub 2} laser at 10 microns with a heterodyne receiver. The Doppler shift generated by Thomson scattering of the alpha particles requires a wideband heterodyne receiver (greater than 10 GHz). Because Mercury-Cadimum-Telluride (MCT) detectors are limited to a bandwidth of approximately 2 GHz, a Quantum Well Infrared Photodetector (QWIP) detector was obtained from the National Research Council of Canada (NRC) and evaluated for its heterodyne performance using the heterodyne testing facility developed at ORNL.

  15. HTS Josephson heterodyne oscillator on a pulse-tube cryocooler

    NASA Astrophysics Data System (ADS)

    Du, J.; Macfarlane, J. C.; Lam, S. H. K.; Taylor, R.

    2009-10-01

    A high-temperature superconducting (HTS) Josephson heterodyne oscillator based on step-edge junction technology has recently been developed (Du et al 2008 Appl. Phys. Lett. 93 033507, Macfarlane et al 2009 IEEE Trans. Appl. Supercond. 19 920). In this work, the implementation and characterization of such a heterodyne oscillator on a compact pulse-tube cryocooler (PTC) are presented. The rf performance of the oscillator cooled by the cryocooler is compared to that of the same device when cooled in the quiet gas phase of a liquid helium Dewar. Any measurable influence of additional electromagnetic noise and mechanical vibration of the cryocooler on the oscillator performance is assessed by measuring the linewidth broadening of the heterodyne oscillation. The cryocooled oscillator demonstrated excellent performance and negligible excess noise was observed when operating the PTC.

  16. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  17. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  18. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  19. Optical heterodyne measurement of cloud droplet size distributions.

    PubMed

    Gollub, J P; Chabay, L; Flygare, W H

    1973-12-01

    Optical heterodyne spectra of laser light quasi-elastically scattered by falling water droplets (1-10-micro radius) in a diffusion cloud chamber were used to determine the droplet size distribution. The rate of fall depends on radius in a known way, thus yielding a heterodyne spectrum manifesting a distribution of Doppler shifts. This spectrum, in conjunction with the calculated Mie scattering intensity as a function of droplet radius, provides a direct measure of the droplet size distribution for droplets large enough that Brownian motion is negligible. The experiments described in this paper demonstrate the technique and establish the potential for further more quantitative studies of size distributions.

  20. THz QCLs for heterodyne receivers and wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Alan W. M.; Kao, Tsung-Yu; Zimmerman, Ian A.; Cole, William T. S.; Thurston, Richard; Saykally, Richard J.; Han, Ningren; Hu, Qing

    2016-05-01

    Milliwatt average power terahertz quantum cascade lasers (THz-QCLs, 2 THz to 5 THz) have been developed for spectroscopy and as local oscillators for heterodyne receivers. Novel DFB THz-QCLs have been fabricated and show single-mode operation. The narrow line widths of <10 MHz and stark shift tuning of of 6 GHz, allows for wavelength modulation spectroscopy of low pressure gasses in the unexplored THz frequency band. The same devices also act as local-oscillators for heterodyne receivers for remote-sensing and astronomy. Lastly we report on improved tunable DFB devices for use in spectroscopy.

  1. Integrated heterodyne interferometer with on-chip modulators and detectors.

    PubMed

    Cole, David B; Sorace-Agaskar, Cheryl; Moresco, Michele; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2015-07-01

    We demonstrate, to our knowledge, the first on-chip heterodyne interferometer fabricated on a 300-mm CMOS compatible process that exhibits root-mean-square (RMS) position noise on the order of 2 nm. Measuring 1 mm by 6 mm, the interferometer is also, to our knowledge, the smallest heterodyne interferometer demonstrated to date and will surely impact numerous interferometric and metrology applications, including displacement measurement, laser Doppler velocimetry and vibrometry, Fourier transform spectroscopy, imaging, and light detection and ranging (LIDAR). Here we present preliminary results that demonstrate the displacement mode. PMID:26125376

  2. A SIMPLE HETERODYNE TEMPORAL SPECKLE-PATTERN INTERFEROMETER

    SciTech Connect

    Wong, W. O.; Gao, Z.; Lu, J.

    2010-05-28

    A common light path design of heterodyne speckle pattern interferometer based on temporal speckle pattern interferometry is proposed for non-contact, full-field and real-time continuous displacement measurement. Double frequency laser is produced by rotating a half wave plate. An experiment was carried out to measure the dynamic displacement of a cantilever plate for testing the proposed common path heterodyne speckle pattern interferometer. The accuracy of displacement measurement was checked by measuring the motion at the mid-point of the plate with a point displacement sensor.

  3. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  4. Imaging doppler velocimeter with downward heterodyning in the optical domain

    DOEpatents

    Reu, Phillip L; Hansche, Bruce D

    2013-05-21

    In a Doppler velocimeter, the incoming Doppler-shifted beams are heterodyned to reduce their frequencies into the bandwidth of a digital camera. This permits the digital camera to produce at every sampling interval a complete two-dimensional array of pixel values. This sequence of pixel value arrays provides a velocity image of the target.

  5. Polarisation-insensitive optical heterodyne receiver for coherent FSK communications

    NASA Astrophysics Data System (ADS)

    Kreit, D.; Youngquist, R. C.

    1987-02-01

    An optical FSK heterodyne communications receiver is proposed using a polarization diversity technique which has a reduced level of complexity. The proposed receiver is constructed and tested at 100 kbit/s and shown to have a maximum fluctuation in sensitivity of 17 percent over conditions of originally complete polarization fading.

  6. Germanium:gallium photoconductors for far infrared heterodyne detection

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.; Grossman, E. N.; Watson, Dan M.

    1988-01-01

    Highly compensated Ge:Ga photoconductors for high bandwidth heterodyne detection have been fabricated and evaluated. Bandwidths up to 60 MHz have been achieved with a corresponding current responsivity of 0.01 A/W. The expected dependence of bandwidth on bias field is obtained. It is noted that increased bandwidth is obtained at the price of greater required local oscillator power.

  7. A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram

    NASA Technical Reports Server (NTRS)

    Lawler, J. E.; Labby, Z. E.; Roesler, F. L.; Harlander, J.

    2006-01-01

    A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters.

  8. Video-rate laser Doppler vibrometry by heterodyne holography.

    PubMed

    Samson, Benjamin; Verpillat, Frédéric; Gross, Michel; Atlan, Michael

    2011-04-15

    We report a demonstration video-rate heterodyne holography in off-axis configuration. Reconstruction and display of a one megapixel hologram is achieved at 24 frames per second, with a graphics processing unit. Our claims are validated with real-time screening of steady-state vibration amplitudes in a wide-field, noncontact vibrometry experiment.

  9. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  10. Single beam write and/or replay of spatial heterodyne holograms

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  11. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  12. A Deeper Look at the Fundamentals of Heterodyne Detection Requirements

    NASA Technical Reports Server (NTRS)

    Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.

    2007-01-01

    We generally accept the experimentally observed criteria for heterodyne detections that the two waves that are mixed must (i) be collinear, (ii) have matched wave fronts and (iii) cannot be orthogonally polarized. We have not found in the literature adequate physical explanations for these requirements. The purpose of this paper is to find deeper physical understanding of the coherent heterodyne detection processes that could lead to better coherent laser radar system designs1. We find that there are a number of unresolved paradoxes in classical and quantum optics regarding the definitions and understanding of the "interference" and "coherence" properties of light, which are attributed as essentially due to inherent properties of the EM waves. A deeper exploration indicates that it is the various quantum mechanical properties of the detecting material dipoles that make light detectable (visible, or measurable) to us. Accordingly, all the properties that we generally attribute to only light, are in reality manifestations of collective properties of dipole-light interactions. "Interference" and "coherence" can be better understood in terms of this mutual interaction, followed by energy absorption by the dipoles from EM wave fields, manifesting in some measurable transformation of the detecting dipoles. Light beams do not interfere by themselves. The superposition effects due to light beams become manifest through the response characteristics of the detecting dipoles. In this paper, we will show some preliminary expe rimental results that clearly demonstrate that the heterodyning wave fronts have quantitative degradation in signal generation as the angle between them deviates from perfect collinearity. Subsequently, we will propose a hypothesis for this behavior. We will present experimental data establishing that the so called incoherent light can be detected through heterodyne mixing as long as the pulse length contained in the "incoherent" light is longer than the

  13. The performance of heterodyne detection system for partially coherent beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chengqiang, Li; Tingfeng, Wang; Heyong, Zhang; Jingjiang, Xie; Lisheng, Liu; Shuai, Zhao; Jin, Guo

    2015-12-01

    The performance of heterodyne system is discussed for partially coherent beams in turbulent atmosphere by introducing turbulence spectrum of refractive-index fluctuations. Several analytic formulae for the heterodyne detection system using the partially coherent Gaussian Schell-model beam are presented. Based on Tatarskii spectrum model, some numerical results are given for the variation in the heterodyne efficiency with the misalignment angle, detector diameter, turbulence conditions, and parameters of the overlapping beams. According to the numerical results, we find that the turbulent atmosphere degrades the heterodyne efficiency significantly, and the variation in heterodyne efficiency is even slower against the misalignment angle in turbulence. For the deterministic received signal and the detector, the performance of the heterodyne detection can be adjusted by controlling the local oscillator signal parameters.

  14. High sensitivity infrared 10.6 micrometer heterodyne receiver development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented for a study on the design of an infrared 10.6-micrometer quantum-noise-limited optical receiver subsystem. Performance measurements of the HgCdTe photomixer preamplifier combination were carried out for photomixer temperatures up to 152 K and a photomixer frequency response of up to 420 MHz was obtained. Results of temperature and bias cycling of HgCdTe photomixers are reported. Design considerations for an operational 10.6 micrometer heterodyne receiver are presented. These consist of design data on required laser LO illumination, heat load levels for photomixer cooler, photomixer uniformity and the effects of photomixer impedance match on receiver sensitivity. Analysis and measurements of 10.6 micrometer heterodyne detection in an extrinsic photoconductive (p-type) HgCdTe photomixer are also presented.

  15. Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Mumma, M. J.; Kostiuk, T.; Buhl, D.

    1975-01-01

    A discussion and an evaluation of the degradation in sensitivity is given for a heterodyne spectrometer employing a HgCdTe photodiode mixer and tunable diode lasers. The minimum detectable source brightness is considered as a function of the mixer parameters, transmission coefficient of the beam splitter, and local oscillator emission powers. The degradation in the minimum detectable line source brightness which results from the bandwidth being a function of the line width is evaluated and plotted as a function of the wavelength and bandwidth for various temperature to mass ratios. It is shown that the minimum achievable degradation in the sensitivity of a practical astronomical heterodyne spectrometer is approximately 30. Estimates of signal-to-noise ratios with which infrared line emission from astronomical sources of interest may be detected are given.

  16. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  17. Speckle reduction in CO2 heterodyne laser radar systems

    NASA Astrophysics Data System (ADS)

    Lutzmann, Peter; Ebert, Reinhard R.

    1990-10-01

    A limitation of heterodyne C02-laser radars results from the statistical properties of speckle effects. Suppression of speckle influence by adding uncorrelated speckle pattern was experimentally studied. Using a space separation technique involving a quadrant detector allows to 'look' at different parts of the laser spot on the target at the same time. By choosing the proper diameter of the receiver optics nearly uncorrelated signals are seen with the four detector elements. The signal statistics was measured for direct and heterodyne detection. The achieved improvement in the signal probability distribution and in the contrast were compared with theory. The measurements were done with both a laboratory setup and with the Ff0 Laser-Radar-System BASIS 2.

  18. Phase-resolved ferromagnetic resonance using heterodyne detection method

    PubMed Central

    Yoon, Seungha; Liu, Jason; McMichael, Robert D.

    2016-01-01

    This paper describes a phase-resolved ferromagnetic resonance (FMR) measurement using a heterodyne method. Spin precession is driven by microwave fields and detected by 1550 nm laser light that is modulated at a frequency slightly shifted with respected to the FMR driving frequency. The evolving phase difference between the spin precession and the modulated light produces a slowly oscillating Kerr rotation signal with a phase equal to the precession phase plus a phase due to the path length difference between the excitation microwave signal and the optical signal. We estimate the accuracy of the precession phase measurement to be 0.1 rad. This heterodyne FMR detection method eliminates the need for field modulation and allows a stronger detection signal at higher intermediate frequency where the 1/f noise floor is reduced. PMID:27453957

  19. A polarization-based Thomson scattering technique for burning plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.; Mirnov, V. V.; Den Hartog, D. J.

    2014-02-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the spectrum. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the degree of polarization (P) of the scattered light; for fully polarized incident laser light, the scattered light becomes partially polarized. The resulting reduction of polarization is temperature dependent and has been proposed by other authors as a potential alternative to the traditional spectral decomposition technique. Following the previously developed Stokes vector approach, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states, scattering angles, and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures relevant to burning plasmas. We discuss the feasibility of a polarization based Thomson scattering diagnostic for ITER-like plasmas with both linearly and circularly polarized light and compare to the traditional technique.

  20. Heterodyne photomixer spectrometer with receiver photomixer driven at different frequency than source photomixer

    DOEpatents

    Wanke, Michael C; Fortier, Kevin; Shaner, Eric A; Barrick, Todd A

    2013-07-09

    A heterodyne photomixer spectrometer comprises a receiver photomixer that is driven at a different frequency than the source photomixer, thereby maintaining the coherent nature of the detection, eliminating etalon effects, and providing not only the amplitude but also the phase of the received signal. The heterodyne technique can be applied where the source and receiver elements are components of a waveguide thereby forming an on-chip heterodyne spectrometer.

  1. LACOMA- OPTICAL ANALYSIS FOR LASER HETERODYNE COMMUNICATION SYSTEM

    NASA Technical Reports Server (NTRS)

    Cohen, S.

    1994-01-01

    LACOMA (Laser Communicator Analysis Program) was developed to predict the effects of optical aberrations on transmitters and receivers used in heterodyne communication systems. Combining the proven techniques of a previous optical program with a new approach designed to evaluate heterodyne performance, the program is a general purpose package to be used by optical and communication engineers. Two independent optical trains for the received signal and the local oscillator are specified and evaluated. A comprehensive ray trace subroutine and Fourier transform compute complex amplitude spread functions in a specified detector plane. The two functions are combined and integrated over a specific detector to determine heterodyne signal power. This power is normalized with respect to an ideal value to provide a quantitative value for receiver degradation. Values of local oscillator illumination efficiency, optical transmission, detection efficiency and phase match efficiency are also evaluated to isolate the cause of any unexpected degradations. The program has been used for a tolerance analysis of a selected system designed for space communications, and for evaluation of several other systems. This program was implemented on an IBM 360/91 and an IBM 360/95 and needs approximately 103K bytes of core.

  2. Recording depth and signal competition in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    de La Rochefoucauld, Ombeline; Khanna, Shyam M.; Olson, Elizabeth S.

    2005-03-01

    A common way to measure submicroscopic motion of the organ of Corti is heterodyne interferometry. The depth over which vibration can be accurately measured with heterodyne interferometry is determined by both the optics, which controls to what extent light from nonfocal planes reaches the photodetectors, and demodulation electronics, which determines to what extent signal generated by out-of-focal-plane light influences the measurements. The influence of a second reflecting surface is investigated theoretically and experimentally. By reviewing the theory of FM demodulation and showing tests with a Revox FM demodulator, it is demonstrated that the influence of a secondary signal on a measurement depends on the modulation index. Both high- and low-modulation index signals are encountered in heterodyne interferometry of the cochlea. Using a He-Ne-like diode laser (λ=638 nm), the border between low- and high-modulation signals is at a displacement of about 25-100 nm. Confocal interferometry reduces the magnitude of out-of-focus signals, and therefore their effect on vibration measurement. The response of the confocal system to reflected signals from two surfaces separated by distances encountered within the cochlear partition is shown. The results underscore the benefit of steep optical sectioning for intracochlear measurements. .

  3. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  4. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  5. Heterodyne QELS instrument for diagnostics of biological fluids

    NASA Astrophysics Data System (ADS)

    Lebedev, Andrei D.; Ivanova, Mariya A.; Lomakin, Aleksey V.; Noskin, Valentin A.

    1997-05-01

    The instrument for the quasielastic light scattering (QELS), LCS-03 utilizes heterodyne optical scheme which permits a high resolution determination of particle size distribution. The vibration related problems, which are common for the heterodyne techniques, have been overcome by using a single glass block incorporating all the optical elements. The real-time correlation analysis of the photocurrent fluctuations is performed by a PC-embedded analog-to-digit converter card with digital signal processor (DSP) using an original algorithm. Both the technical specifications of the instrument and the software for the size distribution analysis are presented. The heterodyne technique consistently outperforms the homodyne one when the accurate characterization of the particle size distributions in heterogeneous systems is required. Diagnostic analysis of size distribution of particles in blood serum/plasma, liquor and saliva is such an application. This kind of diagnostics usually requires a simultaneous analysis of huge number of QELS data. The original statistical algorithm with graphic user interface is described. We discuss the technical specifications of instrumentation as well as methodical problems of biological fluids QELS diagnostics.

  6. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  7. Optics and cryogenics for the 1.1 THz multi-pixel heterodyne receiver for APEX

    NASA Astrophysics Data System (ADS)

    Hurtado, Norma; Graf, Urs U.; Adams, Henning; Honingh, C. E.; Jacobs, Karl; Pütz, Patrick; Güsten, Rolf; Stutzki, Jürgen

    2014-08-01

    The 1.1 THz multi-pixel heterodyne receiver will be mounted in the Nasmyth A cabin of the 12 m APEX telescope on the Chajnantor plateau, 5000 meters altitude in northern Chile. The receiver will cover the spectral window of 1000 - 1080 GHz, where important spectral lines like CO 9-8 at 1036.9 GHz, a tracer of warm and dense gas and OH+ at 1033 GHz and NH+ at 1012.6 GHz, both important for the study of chemical networks in the ISM, are located. The multi-pixel receiver greatly enhances the science output under the difficult observing conditions in this frequency range. Two 9-pixel focal plane sub-arrays on orthogonal polarizations are installed in easily removable cartridges. We developed a new thermal link to connect the cartridges to the cryostat. Our thermal link is an all-metal design: aluminum and Invar. All the optics is fully reflective, thus avoiding the absorption and reflection losses of dielectric lenses and reducing standing waves in the receiver. To guaranty internal optics alignment, we employ a monolithic integrated optics approach for the cold optics and the Focal Plane Unit (FPU) optics modeled after the CHARM (Compact Heterodyne Array Receiver Module) concept. The receiver uses synthesizer-driven solid-state local oscillators (LO) and the mixers will be balanced SIS mixers, which are essentially based on the design of the on-chip balanced SIS mixers at 490 GHz developed in our institute. Singleended HEB mixers are used for the laboratory tests of the optics. The LO power distribution is accommodated behind the FPU optics. It is composed of the LO optics, which includes a collimating Fourier grating, and an LO distribution plate to supply LO signal to each of the 9 pixels of the sub-array. Different options for the LO coupling design and fabrication are being analyzed and will be based on in-house hybrid waveguide/planar technology. We summarize the receiver project with emphasis on the cryogenics and the optics and present laboratory test results

  8. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes

    PubMed Central

    2013-01-01

    In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements. PMID:24350866

  9. Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes.

    PubMed

    Ma, Zong-Min; Mu, Ji-Liang; Tang, Jun; Xue, Hui; Zhang, Huan; Xue, Chen-Yang; Liu, Jun; Li, Yan-Jun

    2013-01-01

    In this paper, the potential sensitivity in Kelvin probe force microscopy (KPFM) was investigated in frequency modulation (FM) and heterodyne amplitude modulation (AM) modes. We showed theoretically that the minimum detectable contact potential difference (CPD) in FM-KPFM is higher than in heterodyne AM-KPFM. We experimentally confirmed that the signal-to-noise ratio in FM-KPFM is lower than that in heterodyne AM-KPFM, which is due to the higher minimum detectable CPD dependence in FM-KPFM. We also compared the corrugations in the local contact potential difference on the surface of Ge (001), which shows atomic resolution in heterodyne AM-KPFM. In contrast, atomic resolution cannot be obtained in FM-KPFM under the same experimental conditions. The higher potential resolution in heterodyne AM-KPFM was attributed to the lower crosstalk and higher potential sensitivity between topographic and potential measurements.

  10. Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN

    2006-02-14

    Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.

  11. Dual-channel heterodyne measurements of atmospheric phase fluctuations.

    PubMed

    Ridley, Kevin D; Jakeman, Eric; Bryce, David; Watson, Stephen M

    2003-07-20

    A dual-channel fiber-coupled laser heterodyne system operating at a 1.55-microm wavelength is used to investigate phase fluctuations induced on a laser beam by propagation through turbulent air. Two receivers are used to characterize spatial and temporal variations produced by a turbulent layer of air in the laboratory. The system is also used for measurements through extended turbulence along an 80-m outdoor atmospheric path. Phase structure functions, power spectral densities, and cross correlations are presented. PMID:12921273

  12. A photomixer local oscillator for a 630-GHz heterodyne receiver

    NASA Astrophysics Data System (ADS)

    Verghese, Simon; Duerr, Erik K.; McIntosh, K. A.; Duffy, Sean M.; Calawa, Stephen D.; Tong, Cheuk-yu Edward; Kimberk, Robert; Blundell, Raymond

    1999-06-01

    A photomixer local oscillator (LO) operating at the 630-GHz difference frequency of two laser diodes was successfully demonstrated with a heterodyne detector based on a niobium superconducting tunnel junction. The low-temperature-grown GaAs photomixer generated 0.20 μW in the input spatial mode of the receiver. Using the photomixer LO, the double-sideband noise temperature of the receiver was 331 K-in good agreement with the 323 K noise temperature obtained when a multiplied Gunn oscillator generating 0.25 μW was substituted for the photomixer.

  13. Spatial heterodyne spectroscopy - Interferometric performance at any wavelength without scanning

    NASA Technical Reports Server (NTRS)

    Roesler, F. L.; Harlander, J.

    1990-01-01

    Spatial heterodyne spectroscopy (SHS) employing a two-beam dispersive interferometer producing a Fizeau fringe pattern having wavelength-dependent spatial frequencies is presented. The pattern is recorded on an imaging detector and Fourier transformed to recover the input stream. It is pointed out that spectrometers operating on the SHS principle can achieve the theoretical resolution limit of the gratings without scanning, retaining at the same time the large angular input tolerance and multiplexing properties of conventional scanning Fourier-transform spectrometers. Additionally, broad spectral coverages can be achieved, and field widening can be accomplished without moving parts.

  14. Tuneable Heterodyne Infrared Spectrometer for atmospheric and astronomical studies.

    PubMed

    Sonnabend, Guido; Wirtz, Daniel; Schmülling, Frank; Schieder, Rudolf

    2002-05-20

    The transportable setup of the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) is presented. Frequency tuneability over a wide range provided by the use of tuneable diode lasers as local oscillators (LO) allows a variety of molecules in the mid-infrared to be observed. Longtime integration, which is essential for astronomical observations, is possible owing to tight frequency control of the LO with optical feedback from an external cavity. THIS is developed to fly on the Stratospheric Observatory for Infrared Astronomy beginning in 2006 but can also be used on different types of ground-based telescopes.

  15. Spatial heterodyne spectroscopy at the Naval Research Laboratory.

    PubMed

    Englert, Christoph R; Harlander, John M; Brown, Charles M; Marr, Kenneth D

    2015-11-01

    Spatial heterodyne spectroscopy (SHS) is based on traditional Michelson interferometry. However, instead of employing retro-reflectors in the interferometer arms, one or both of which are moving, it uses fixed, tilted diffraction gratings and an imaging detector to spatially sample the optical path differences. This concept allows high-resolution, high-throughput spectroscopy without moving interferometer parts, particularly suitable for problems that require compact, robust instrumentation. Here, we briefly review about 20 years of ground- and space-based SHS work performed at the U.S. Naval Research Laboratory (NRL), which started with a visit by Prof. Fred Roesler to NRL in 1993.

  16. Heterodyne receiver on silicon - An exercise in integration

    NASA Astrophysics Data System (ADS)

    Sriram, S.; Brandt, G. B.; Supertzi, E. P.

    1982-08-01

    An integrated optical device which utilizes bulk acousto-optic modulation to introduce GHz modulation on the guided light has been designed and fabricated. This device, which may be used as either a heterodyne receiver or modulator in a high frequency optical data link, is fabricated on a silicon substrate using photolithographic and etching techniques developed for semiconductor manufacture. Modulation is accomplished utilizing segmented thin film acoustic transducers. Fabrication of this device involves nearly twenty separate operations each of which must be successful in order for the device to work. These fabrication steps and their influence on the overall yield of this integrated optical device are discussed.

  17. Novel phase measurement technique of the heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; Park, Kyihwan; La, Jongpil

    2005-09-15

    This article describes a novel phase measurement technique to increase the measurement velocity compared to the previous arc-tangent method in the heterodyne laser interferometer. The proposed method can reduce the calculation load because the pulse width modulation signal has a linear relation between the phase difference, while the nonlinear function such as arc tangent is required to demodulate the sinusoidal interferent signal. The brief analysis and measurement scheme of the system, and the experimental result using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed phase measurement technique is proven to be three times faster and more robust than previous arc-tangent method.

  18. Free-Space Quantum Signatures Using Heterodyne Measurements.

    PubMed

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter. PMID:27636461

  19. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  20. Free-Space Quantum Signatures Using Heterodyne Measurements

    NASA Astrophysics Data System (ADS)

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  1. Contour mapping of Europa using frequency diverse spatial heterodyne imaging

    NASA Astrophysics Data System (ADS)

    Kendrick, R. L.; Höft, Thomas; Marron, J. C.; Pitman, Joe; Seldomridge, Nathan

    2006-09-01

    Three dimensional imaging of planetary and lunar surfaces has traditionally been the purview of Synthetic Aperture Radar payloads. We propose an active imaging technique that utilizes laser frequency diversity coupled with spatial heterodyne imaging. Spatial heterodyne imaging makes use of a local oscillator which encodes pupil plane object information on a carrier frequency. The object information is extracted via Fourier analysis. Snapshots of the encoded pupil plane information are acquired as the frequency of the illumination laser is varied in small steps (GHz). The resulting three-dimensional data cube is processed to provide angle-angle-range information. The range resolution can be adjusted from microns to meters simply by adjusting the range over which the illuminator laser frequency is varied. The proposed technique can provide fine resolution contour maps of planetary surfaces having widely varying characteristics of importance to science exploration, such as the search for astrobiological habitat niches near the surface of heavily irradiated Europa. This information can be used to better understand the geological processes that form the surface features, and help characterize candidate potential habitat sites on the surface of Europa and other planetary bodies of interest. In this paper we present simulations and experimental data that demonstrate the concept.

  2. Heterodyning Time Resolution Boosting for Velocimetry and Reflectivity Measurements

    SciTech Connect

    Erskine, D J

    2004-08-02

    A theoretical technique is described for boosting the temporal resolving power by several times, of detectors such as streak cameras in experiments that measure light reflected from or transmitted through a target, including velocity interferometer (VISAR) measurements. This is a means of effectively increasing the number of resolvable time bins in a streak camera record past the limit imposed by input slit width and blur on the output phosphor screen. The illumination intensity is modulated sinusoidally at a frequency similar to the limiting time response of the detector. A heterodyning effect beats the high frequency science signal down a lower frequency beat signal, which is recorded together with the conventional science signal. Using 3 separate illuminating channels having different phases, the beat term is separated algebraically from the conventional signal. By numerically reversing the heterodyning, and combining with the ordinary signal, the science signal can be reconstructed to better effective time resolution than the detector used alone. The effective time resolution can be approximately halved for a single modulation frequency, and further decreased inversely proportional to the number of independent modulation frequencies employed.

  3. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  4. Heterodyne Receiver for Laboratory Spectrosocpy of Molecules of Astrophysical Importance

    NASA Astrophysics Data System (ADS)

    Wehres, Nadine; Lewen, Frank; Endres, Christian; Hermanns, Marius; Schlemmer, Stephan

    2016-06-01

    We present first results of a heterodyne receiver built for high-resolution emission laboratory spectroscopy of molecules of astrophysical interest. The room-temperature receiver operates at frequencies between 80 and 110 GHz, consistent with ALMA band 3. Many molecules have been identified in the interstellar and circumstellar medium at exactly these frequencies by comparing emission spectra obtained from telescopes to high-resolution laboratory absorption spectra. Taking advantage of the recent progresses in the field of mm/submm technology in the astronomy community, we have built a room-temperature emission spectrometer making use of heterodyne receiver technology at an instantaneous bandwidth of currently 2.5 GHz. The system performance, in particular the noise temperature and systematic errors, is presented. The proof-of-concept is demonstrated by comparing the emission spectrum of methyl cyanide to respective absorption spectra and to the literature. Future prospects as well as limitations of the new laboratory receiver for the spectroscopy of complex organic molecules or transient species in discharges will be discussed.

  5. Free-Space Quantum Signatures Using Heterodyne Measurements.

    PubMed

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  6. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence.

    PubMed

    Chan, K P; Killinger, D K; Sugimoto, N

    1991-06-20

    We performed an experimental study on the effect of atmospheric turbulence on heterodyne and direct detection lidar at 1 microm, employing a pulsed Nd:YAG bistatic focused beam lidar that permitted simultaneous heterodyne and direct detection of the same lidar returns. The average carrier-to-noise ratio and statistical fluctuation level in the lidar return signals were measured in various experimental and atmospheric conditions. The results showed that atmospheric turbulence could reduce the effective receiver telescope diameter of the l-microm heterodyne lidar to <5cm at a relatively short range of approximately 450 m near the ground. The observed effective telescope aperture and heterodyne detection efficiency varied during the day as the atmospheric turbulence level changed. At this time, we are not able to compare our experimental lidar data to a rigorous atmospheric turbulence and lidar detection theory which includes independently variable transmitter, receiver, and detector geometry. It is interesting to note, however, that the observed limitation of the effective receiver aperture was similar in functional form with those predictions based on the heterodyne wavefront detection theory by D. L. Fried [Proc. IEEE 55, 57-67 (1967)] and the heterodyne lidar detection theory for a fixed monostatic system by S. F. Clifford and S. Wandzura [Appl. Opt. 20, 514-516 (1981)]. We have also applied such an effective receiver aperture limitation to predict the system performance for a heterodyne Ho lidar operating at 2 microm.

  7. Electronic heterodyne recording and processing of optical holograms using phase modulated reference waves

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Pao, Y.-H.; Claspy, P. C.

    1978-01-01

    The use of a phase-modulated reference wave for the electronic heterodyne recording and processing of a hologram is described. Heterodyne recording is used to eliminate the self-interference terms of a hologram and to create a Leith-Upatnieks hologram with coaxial object and reference waves. Phase modulation is also shown to be the foundation of a multiple-view hologram system. When combined with hologram scale transformations, heterodyne recording is the key to general optical processing. Spatial filtering is treated as an example.

  8. Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    von Vacano, Bernhard; Buckup, Tiago; Motzkus, Marcus

    2006-08-01

    Single-beam coherent anti-Stokes Raman-scattering (CARS) microspectroscopy achieves a complete CARS scheme with a femtosecond laser. Here, we introduce heterodyne detection in a simple experimental extension: the optical fields driving the CARS process and the local oscillator used for heterodyning are derived from a single beam of ultrashort laser pulses by pulse shaping. The heterodyne signal is amplified by more than 3 orders of magnitude and is linearly dependent on the concentration of Raman scatterers. This dramatically increases the sensitivity of chemically selective detection at microscopic resolution while maintaining the simplicity of the single-beam setup.

  9. High Resolution Optical Surface Investigation based on Heterodyne Interferometry

    NASA Astrophysics Data System (ADS)

    Spannagel, Ruven; Schuldt, Thilo; Braxmaier, Claus

    2012-07-01

    We present results on high precision optical profilometry for investigating reflecting surfaces with respect to surface properties such as structure, roughness, and waviness. Our metrology system is based on a highly symmetric heterodyne interferometer with a potential sensitivity at the picometer level. The profilometer is capable of scanning surfaces by actuating either the device under test (DUT), or the measurement laser beam of the interferometer. The current setup with DUT-actuation has a sensitivity of about 1 nm/ ? , and achives a measurement accuracy better than 5 nm at a measurement range of 100 μm with a lateral resolution of approximately 15 μm. Different profiles of various surfaces were measured and the reproducibility of the results have been demonstrated by measuring a reference surface.

  10. OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartula, Renata J.; Ghandhi, Jaal B.; Sanders, Scott T.; Mierkiewicz, Edwin J.; Roesler, Fred L.; Harlander, John M.

    2007-12-01

    We demonstrate measurements of OH absorption spectra in the post-flame zone of a McKenna burner using spatial heterodyne spectroscopy (SHS). SHS permits high-resolution, high-throughput measurements. In this case the spectra span ~308-310 nm with a resolution of 0.03 nm, even though an extended source (extent of ~2×10-7 m2 rad2) was used. The high spectral resolution is important for interpreting spectra when multiple absorbers are present for inferring accurate gas temperatures from measured spectra and for monitoring weak absorbers. The present measurement paves the way for absorption spectroscopy by SHS in practical combustion devices, such as reciprocating and gas-turbine engines.

  11. Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology

    NASA Astrophysics Data System (ADS)

    Dilhaire, S.; Pernot, G.; Calbris, G.; Rampnoux, J. M.; Grauby, S.

    2011-12-01

    Picosecond thermoreflectance is an unprecedented powerful technique for nanoscale heat transfer analysis and metrology, but different sources of artifacts were reported in the literature making this technique difficult to use for long delay (several ns) thermal analysis. We present in this paper a new heterodyne picosecond thermoreflectance (HPTR) technique. As it uses two slightly frequency shifted lasers instead of a mechanical translation stage, it is possible to avoid all artifacts leading to erroneous thermal parameter identifications. The principle and set-up are described as well as the model. The signal delivered by the HPTR experiment is calculated for each excitation configurations, modulating or not the pump beam. We demonstrate the accuracy of the technique in the identification of the thermal conductivity of a 50 nm thick SiO2 layer. Then, we discuss the role of the modulation frequency for nanoscale heat transfer analysis.

  12. Airborne astronomy with a 150 micrometer - 500 micrometer heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1991-01-01

    This report summarizes work done under NASA Grant NAG2-254 awarded to the University of California. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory (KAO), and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved; the spectrometer is now in routine use aboard the KAO. Detections of particular note have been the 370 micrometers line of neutral atomic carbon, the 158 micrometers transition of ionized carbon, many of the high-J rotational lines of 12CO and 13CO between J=9-8 and J=22-21, the 119 micron ground-state rotational line of OH, and the 219 micron ground-state rotational line of H2D(+). All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.

  13. A space-qualified transmitter system for heterodyne optical communications

    NASA Astrophysics Data System (ADS)

    McDonough, D. F.; Taylor, J. A.; Pillsbury, A. D.; Verly, D. P.; Kintzer, E. S.

    A space-based optical communications system requires the development of high-precision yet rugged electrooptical hardware. As part of a program to develop this technology, Lincoln Laboratory has designed and constructed a laser transmitter and a companion diagnostics module that have passed a rigorous space-qualification test program. The transmitter and diagnostics module are critical components of a satellite-to-satellite, 220 Mb/sec heterodyne communications experiment. The transmitter includes four redundant 30-mW diode lasers in a compact, lightweight package. The diagnostics module enables precise and autonomous setting of the transmitter laser power, wavelength, and modulation characteristics. The successful qualification of these components is a first, and a major milestone in the development of spaceborne optical communications systems.

  14. Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers

    SciTech Connect

    Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

    1999-04-05

    The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

  15. InSb heterodyne receivers for submillimeter astronomy

    NASA Technical Reports Server (NTRS)

    Phillips, T. G.

    1981-01-01

    InSb hot electron bolometer mixer receivers have been developed for submillimeter line studies of the interstellar medium up to about 500 GHz. The receivers have been used aboard the NASA Kuiper Airborne Observatory which is transported to about 12,000 km by a C141 aircraft. Data have been obtained on new interstellar lines (such as the ground-state fine structure transition of atomic carbon at 492 GHz) and such molecular transitions as carbon monoxide and water. Other data were obtained at ground level using the 5-cm Hale telescope at Mount Palomar and the NASA Infrared Telescope facility at Mauna Kea, HI. The heterodyne bolometers have reached noise temperatures of less than 400 K at all frequencies to 500 GHz.

  16. A THz heterodyne instrument for biomedical imaging applications

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.

    2004-01-01

    An ultra-wide-dynamic-range heterodyne imaging system operating at 2.5 THz is described. The instrument employs room temperature Schottky barrier diode mixers and far infrared gas laser sources developed for NASA space applications. A dynamic range of over 100dB at fixed intermediate frequencies has been realized. Amplitude/phase tracking circuitry results in stability of 0.02 dB and +-2 degrees of phase. The system is being employed to characterize biological (human and animal derived tissues) and a variety of materials of interest to NASA. This talk will describe the instrument and some of the early imaging experiments on everything from mouse tail to aerogel.

  17. Heterodyne Interferometric System with Subnanometer Accuracy for Measurement of Straightness

    NASA Astrophysics Data System (ADS)

    Wu, Chien-Ming

    2004-07-01

    A generalized laser interferometer system based on three design principles, i.e., heterodyne frequency, prevention of mixing, and perfect symmetry, is described. These design principles give rise to an interferometer in a highly stable system with no periodic nonlinearity. A novel straightness sensor, consisting of a straightness prism and a straightness reflector, is incorporated into the generalized system to form a straightness interferometer. A Hewlett-Packard commercial linear interferometer was used to validate the interferometer's parameters. Based on the present design, the interferometer has a gain of 0.348, a periodic nonlinearity of less than 40 pm, and a displacement noise of 12 pm/Hz at a bandwidth of 7.8 kHz. This system is useful for precision straightness measurements.

  18. Phase-resolved ferromagnetic resonance detection using heterodyning

    NASA Astrophysics Data System (ADS)

    Yoon, Seungha; McMichael, Robert D.

    We have developed a new phase-resolved ferromagnetic (FMR) detection method using a heterodyne method. Phase resolution is important to determine the characteristics of spin transfer torques in magnetization dynamics under microwave excitation. Specifically, field-like torques and damping-like torques result in magnetization precession with different phases. In this method, we drive spin precession in a Permalloy thin film using microwaves. The resulting precession is detected using 1550 nm laser light, that is modulated at a frequency slightly shifted with respect to the driving frequency. In the reflected light, beating of the spin precession and the light modulation produces an oscillating Kerr rotation signal with a phase equal to the precession phase plus a phase due to the path length difference between the excitation microwave and the optical signal. This detection method eliminates the need for field modulation and allows detection at higher frequencies where the 1/f noise floor is reduced

  19. [Study on calibration method of spatial heterodyne spectrometer].

    PubMed

    Shi, Hai-Liang; Xiong, Wei; Zuo, Ming-Min; Luo, Hai-Yan; Wu, Jun; Fang, Yong-Hua; Qiao, Yan-Li

    2010-06-01

    Spatial heterodyne spectroscopy (SHS) is a novel method for hyperspectral analysis, but the calibration methods have not been thoroughly studied. The present paper gives some basic theories of SHS, and investigates the laboratory calibration methods, including spectral calibration and radiometric calibration. According to emission lines and the relation between detector size and system bandwidth, we designed the spectral calibration plan for SHS, which uses tunable laser and halogen lamp. Experiments show that the actual spectral range and resolution of our instrument is the same as it was designed, and the spectral shift is less by stability testing. For radiometric calibration, we measured the system's stability by using integrating sphere, and its responses were also calibrated by using standard lamp and diffuser. The experimental results, after validation, proved that our method can be used for SHS calibration. This is a fundamental work for quantified retrieval.

  20. Differential heterodyne interferometer for measuring thickness of glass panels

    SciTech Connect

    Protopopov, Vladimir; Cho, Sunghoon; Kim, Kwangso; Lee, Sukwon; Kim, Hyuk

    2007-07-15

    Differential heterodyne interferometer is applied for measuring spatial thickness variations across glass panels of liquid-crystal displays. This system uses the Zeeman laser as a source of two-frequency shifted orthogonally linearly polarized probe waves, passing through the glass in two spatially separated points. These waves are then recombined in a single beam to produce the intermediate frequency signal with the phase proportional to the thickness gradient of a glass sample. The phase of the intermediate signal is measured against the laser reference by means of a lock-in amplifier, and finally real-time integration provides the thickness variation. Since spatial separation of the probe beams is only 1.35 mm good approximation for the thickness gradient is achieved. Detailed design of the interferometer and experimental results on real samples are presented.

  1. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    A stratospheric ozone absorption line in the 10 microns band was measured and resolved completely, using an infrared heterodyne spectrometer with spectral resolution of 5 MHz (0.000167 cm to -1 power). The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectral line profile. The absolute total column density was 0.34 cm atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) to (7,1,7) O3 line center frequency was found to be 1043.1775 + or - 0.00033 cm to toe -1 power, or 430 + or - 10 MHz higher than the P(24) CO2 laser line frequency.

  2. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.; Spears, D.

    1978-01-01

    A stratospheric ozone absorption line in the 10 micron band was measured and resolved completely, using an infrared heterodyne spectrometer with a spectral resolution of 5 MHz. The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectra line profile. The absolute total column density was 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) - (7,1,7) O3 line center frequency was found to be 1043.1772 plus or minus 0.00033 cm/1 or 420 plus or minus 10 MHz higher than the P(24) CO2 laser line frequency.

  3. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  4. Heterodyne efficiency for a coherent laser radar with diffuse or aerosol targets

    NASA Technical Reports Server (NTRS)

    Frehlich, R. G.

    1993-01-01

    The performance of a Coherent Laser Radar is determined by the statistics of the coherent Doppler signal. The heterodyne efficiency is an excellent indication of performance because it is an absolute measure of beam alignment and is independent of the transmitter power, the target backscatter coefficient, the atmospheric attenuation, and the detector quantum efficiency and gain. The theoretical calculation of heterodyne efficiency for an optimal monostatic lidar with a circular aperture and Gaussian transmit laser is presented including beam misalignment in the far-field and near-field regimes. The statistical behavior of estimates of the heterodyne efficiency using a calibration hard target are considered. For space based applications, a biased estimate of heterodyne efficiency is proposed that removes the variability due to the random surface return but retains the sensitivity to misalignment. Physical insight is provided by simulation of the fields on the detector surface. The required detector calibration is also discussed.

  5. Evaluation of quantum-cascade lasers as local oscillators for infrared heterodyne spectroscopy.

    PubMed

    Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf

    2005-11-20

    We report experiments evaluating the feasibility of quantum-cascade lasers (QCLs) at mid-infrared wavelengths for use as local oscillators (LOs) in a heterodyne receiver. Performance tests with continuous-wave (cw) lasers around 9.6 and 9.2 microm were carried out investigating optical output power, laser linewidth, and tunability. A direct comparison with a CO2 gas laser LO is presented as well. The achieved system sensitivity in a heterodyne spectrometer of only a factor of 2 above the quantum limit together with the measured linewidth of less than 1.5 MHz shows that QCLs are suitable laser sources for heterodyne spectroscopy with sufficient output power to replace gas lasers as LOs even in high-sensitivity astronomical heterodyne receivers. In addition, our experiments show that the tunability of the lasers can be greatly enhanced by use of an external cavity.

  6. Reception of modulated optical radiation using radio heterodyning in a photomultiplier tube and double light modulation

    NASA Astrophysics Data System (ADS)

    Dianova, V. A.; Mustel', E. R.; Rudnykh, S. I.

    1987-11-01

    Two systems for the reception of modulated optical radiation which are based on modulation-frequency conversion are investigated experimentally in the 10-150 MHz range: (1) radio heterodyning in a photomultiplier tube and (2) double light modulation (DLM). The radio-heterodyning technique can produce frequency conversion using low control voltages of 1-3 V. The maximum frequency that can be received through the use of the radio heterodyning technique exceeds 100 MHz; this band is significantly higher than the amplitude-frequency response band of a standard photomultiplier tube. The DLM system requires considerably higher control voltages but is characterized by a greater noise immunity than the radio heterodyning system.

  7. Balance Problems

    MedlinePlus

    ... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...

  8. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  9. Lens-free heterodyne transient grating method for dynamics measurement of photoexcited species in liquid

    NASA Astrophysics Data System (ADS)

    Yamaguchi, M.; Katayama, K.; Sawada, T.

    2003-08-01

    A recently developed lens-free heterodyne transient grating method was applied for the measurement of ultrafast photoexcited dynamics of several kinds of dye molecules in aqueous solutions. The principle of the lens-free heterodyne transient grating method was clarified in detail, especially for thick samples, such as liquid and semi-transparent solid samples. The ultrafast dynamics of malachite green and methyl orange molecules in aqueous solutions was successfully monitored, and the obtained time constants agreed with those in other reports.

  10. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  11. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  12. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.

    PubMed

    Ma, Zong Min; Kou, Lili; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2013-06-01

    The effect of stray capacitance on potential measurements was investigated using Kelvin probe force microscopy (KPFM) at room temperature under ultra-high vacuum (UHV). The stray capacitance effect was explored in three modes, including frequency modulation (FM), amplitude modulation (AM) and heterodyne amplitude modulation (heterodyne AM). We showed theoretically that the distance-dependence of the modulated electrostatic force in AM-KPFM is significantly weaker than in FM- and heterodyne AM-KPFMs and that the stray capacitance of the cantilever, which seriously influences the potential measurements in AM-KPFM, was almost completely eliminated in FM- and heterodyne AM-KPFMs. We experimentally confirmed that the contact potential difference (CPD) in AM-KPFM, which compensates the electrostatic force between the tip and the surface, was significantly larger than in FM- and heterodyne AM-KPFMs due to the stray capacitance effect. We also compared the atomic scale corrugations in the local contact potential difference (LCPD) among the three modes on the surface of Si(111)-7 × 7 finding that the LCPD corrugation in AM-KPFM was significantly weaker than in FM- and heterodyne AM-KPFMs under low AC bias voltage conditions. The very weak LCPD corrugation in AM-KPFM was attributed to the artefact induced by topographic feedback.

  13. Balance Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Balance Problems Basic Facts & Information What are Balance Problems? Having good balance means being able to ... Only then can you “keep your balance.” Why Balance is Important Your feelings of dizziness may last ...

  14. Laser-induced breakdown spectroscopy combined with spatial heterodyne spectroscopy.

    PubMed

    Gornushkin, Igor B; Smith, Ben W; Panne, Ulrich; Omenetto, Nicoló

    2014-01-01

    A spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter. The main advantage is high throughput, about 200 times higher than that of dispersive spectrometers used in LIBS. This makes LIBS-SHS a promising technique for low-light standoff applications. The output signal of the SHS is an interferogram that is Fourier-transformed to retrieve the original plasma spectrum. In this proof-of-principle study, we investigate the potential of LIBS-SHS for material classification and quantitative analysis. Brass standards with broadly varying concentrations of Cu and Zn were tested. Classification via principal component analysis (PCA) shows distinct groupings of materials according to their origin. The quantification via partial least squares regression (PLS) shows good precision (relative standard deviation < 10%) and accuracy (within ± 5% of nominal concentrations). It is possible that LIBS-SHS can be developed into a portable, inexpensive, rugged instrument for field applications. PMID:25226262

  15. A digital heterodyne laser interferometer for studying cochlear mechanics.

    PubMed

    Jacob, Stefan; Johansson, Cecilia; Ulfendahl, Mats; Fridberger, Anders

    2009-05-15

    Laser interferometry is the technique of choice for studying the smallest displacements of the hearing organ. For low intensity sound stimulation, these displacements may be below 1 nm. This cannot be reliably measured with other presently available techniques in an intact organ of Corti. In a heterodyne interferometer, light is projected against an object of study and motion of the target along the optical axis causes phase and frequency modulations of the back-reflected light. To recover object motion, the reflected light is made to interfere with a reference beam of artificially altered frequency, producing a beating signal. In conventional interferometers, this carrier signal is demodulated with analog electronics. In this paper, we describe a digital implementation of the technique, using direct carrier sampling. In order to obtain the necessary reference signal for demodulation we introduce an additional third light path. Together, this results in lower noise and reduces the cost of the system. Within the hearing organ, different structures may move in different directions. It is therefore necessary to precisely measure the angle of incidence of the laser light, and to precisely localize the anatomical structure where the measurement is performed. Therefore, the interferometer is integrated with a laser scanning confocal microscope that permits us to map crucial morphometric parameters in each experiment. We provide key construction parameters and a detailed performance characterization. We also show that the system accurately measures the diminutive vibrations present in the apical turn of the cochlea during low-level sound stimulation. PMID:19428537

  16. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  17. Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Six, P.; Bretheau, L.; Sarlette, A.; Mirrahimi, M.; Rouchon, P.; Huard, B.

    2016-01-01

    A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.

  18. Supercooled water relaxation dynamics probed with heterodyne transient grating experiments

    NASA Astrophysics Data System (ADS)

    Taschin, Andrea; Bartolini, Paolo; Eramo, Roberto; Torre, Renato

    2006-09-01

    We report results from a heterodyne-detected transient grating experiment on liquid and supercooled water in a wide temperature range, from -17.5to90°C . The measured signal covers an extremely large time window with an excellent signal-to-noise ratio that enables the investigation in a single experiment of the sound speed and attenuation, thermal diffusivity, and temperature dependence of the dielectric constant. The experimental data clearly show the effect of the density and the temperature fluctuations on the water dielectric function. In order to describe the experimental results, we introduce a comprehensive hydrodynamic model taking into account the coupled density and temperature variables and their relevance in the definition of the spontaneous and forced dielectric variations. We use this model to describe the measured signal in transient grating experiments, including the heating and the electrostrictive sources produced by the laser excitation. The fitting procedure enables the safe extraction of several dynamic proprieties of liquid and supercooled water: the sound velocity and its damping, the thermal diffusivity, and the ratio between the dielectric thermodynamic derivatives. The measured parameters are compared to the literature data and discussed in the complex scenario of water physics.

  19. THIS: A Next Generation Tuneable Heterodyne Infrared Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf

    2004-01-01

    A new infrared heterodyne instrument has been developed which allows the use of both tuneable diode lasers (TDL) and quantum cascade lasers (QCL) as local oscillators (LO). The current frequency tuning range of our system extends from 900 to 1100/cm depending on the availability of lasers but is planned to be extended to 600/cm soon. The IF-bandwidth is 1.4 GHz using an acousto-optical spectrometer (AOS). The frequency resolution and stability of the system is approximately 10(exp 7). Currently, mercury-cadmium-telluride (MCT) detectors are used as mixers while new devices like quantum-well-infrared-photodetectors (QWIP) and hot-electron-bolometers (HEB) are investigated. The IF-bandwidth can be extended to about 3 GHz by using a new broadband acousto-optical spectrometer presently under development. The instrument is fully transportable and can be attached to any infrared or optical telescope. The semiconductor laser is stabilized to a Fabry-Perot ring-resonator, which is also used as an efficient diplexer to superimpose the local-oscillator and the signal radiation. As a first step measurements of trace gases in Earth's atmosphere and non-LTE emission from Venus' atmosphere were carried out as well as observations of molecular features in sunspots. Further astronomical observations from ground-based telescopes and the airborne observatory SOFIA are planned for the future. Of particular interest are molecules without a permanent dipole moment like H2, CH4, C2H2 etc.

  20. Submillimeter heterodyne spectroscopy and remote sensing of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Waters, J. W.

    1992-01-01

    Submillimeter-wavelength heterodyne spectroscopy by microwave limb sounding (MLS) from orbiting satellite is a measurement technique for studying Earth's stratosphere, mesosphere and lowerr thermosphere on a global scale. Development and deployment of such tools are timely, as stratospheric ozone shileds life from solar ultraviolet radiation but is depleted by pollution from industrial activities. MLS experiments on NASA's Upper Atmosphere Research Satellite (UARS) and Earth Observing System (EOS) are now being developed and implementend for global monitoring. Atmospheric thermal-emission spectra at millimeter and submillimeter wave-lengths are measured as the instrument field of view (FOV) is scanned through the limb from above. Atmospheric profiles of molecular abundances, temperature, pressure, wind and magnetic field can be determined from the measured emission spectra. Intensity of the emission can provide abundance and temperature. Measured linewidths, and emission from temperature-insensitive O2 lines, can provide pressure. Differentitaion of measured pressure with repsect ot measured height differential (obtaiend from the instrument FOV scan encoder) can also provide temperature through atmospheric hydrostatic equilibrium (which relates temperature to pressure and height differential). Doppler shifts of spectral lines can provide wind, and Zeeman splitting of the magnetic-dipole lines of O2 can provide magnetic field.

  1. Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.

    1982-01-01

    A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.

  2. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  3. Balance Problems

    MedlinePlus

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  4. Electronic heterodyne moire deflectometry: A method for transient and three dimensional density fields measurements

    NASA Technical Reports Server (NTRS)

    Stricker, Josef

    1987-01-01

    Effects of diffraction and nonlinear photographic emulsion characteristics on the performance of deferred electronic heterodyne moire deflectometry are investigated. The deferred deflectometry is used for measurements of nonsteady phase objects where it is difficult to complete the analysis of the field in real time. The sensitivity, accuracy and resolution of the system are calculated and it is shown that they are weakly affected by diffraction and by nonlinear recording. The feactures of the system are significantly improved compared with the conventional deferred intensity moire technique, and are comparable with the online heterodyne moire. The system was evaluated experimentally by deferred measurements of the refractive index gradients of a weak phase object consisting of a large KD*P crystal. This was done by photographing the phase object through a Ronchi grating and analyzing the tranparency with the electronic heterodyne readout system. The results are compared with the measurements performed on the same phase object with online heterodyne moire deflectometry and with heterodyne holographic interferometry methods. Some practical considerations for system improvement are discussed.

  5. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.

    PubMed

    Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong

    2012-10-20

    The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.

  6. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1998-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. Figure 1 is a photograph of the 2 THz double feedhorn structure designed and constructed under the auspices of this grant

  7. Stabilizing carrier-envelope offset frequency of a femtosecond laser using heterodyne interferometry.

    PubMed

    Zhang, Xiaosheng; Wu, Guanhao; Hu, Minghao; Xiong, Shilin

    2016-09-15

    We propose a time-domain fceo stabilization method of a femtosecond laser using heterodyne interferometry. A femtosecond pulse train that is delayed by a spatial delay line interferes with the original pulse train. The phase difference between heterodyne interference signals extracted from different spectral regions is used to stabilize the relative position of the two pulse trains; then the heterodyne interference phase is used to stabilize the carrier-envelope offset frequency fceo. The experimental results show that, after being stabilized, the relative Allan deviations of fceo are 1.0×10-9 at 0.5 s and 4.6×10-10 at 50 s. PMID:27628376

  8. Extending the operating temperature, wavelength and frequency response of HgCdTe heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1980-01-01

    Near ideal optical heterodyne performance was obtained at GHz IF frequencies in the 10 micrometer wavelength region with liquid nitrogen cooled HgCdTe photodiodes. Heterodyne NEP's as low as 2.7 x 10 to the minus 20th power W/Hz at 100MHz, 5.4 x 10 to the minus 20th power W/Hz at 1.5 GHz, and 9.4 x 19 to the minus 20th power W/Hz at 3 GHz were achieved. Various physical phenomena which occur within a photodiode and affect heterodyne operation were examined in order to assess the feasibility of extending the operating temperature, wavelength, and frequency response of these HgCdTe photomixers.

  9. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz1/2 and 0.5 nrad/Hz1/2 at 1 Hz.

  10. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  11. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  12. Signal averaging limitations in heterodyne- and direct-detection laser remote sensing measurements

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.; Menyuk, C. R.

    1983-01-01

    The improvement in measurement uncertainty brought about by the averaging of increasing numbers of pulse return signals in both heterodyne- and direct-detection lidar systems is investigated. A theoretical analysis is presented which shows the standard deviation of the mean measurement to decrease as the inverse square root of the number of measurements, except in the presence of temporal correlation. Experimental measurements based on a dual-hybrid-TEA CO2 laser differential absorption lidar system are reported which demonstrate that the actual reduction in the standard deviation of the mean in both heterodyne- and direct-detection systems is much slower than the inverse square-root dependence predicted for uncorrelated signals, but is in agreement with predictions in the event of temporal correlation. Results thus favor the use of direct detection at relatively short range where the lower limit of the standard deviation of the mean is about 2 percent, but advantages of heterodyne detection at longer ranges are noted.

  13. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    PubMed

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  14. Second harmonic measurement of multi-beam laser heterodyne with ultra-precision for the small angle

    NASA Astrophysics Data System (ADS)

    Li, Y. Chao; Ding, Q.; Wang, Y. Qiao; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2015-08-01

    In order to improve the measurement accuracy of the angle and signal processing speed of operation, this paper proposes a novel method of second harmonic measurement of multi-beam laser heterodyne for the angle, which based on the combination of Doppler effect and heterodyne technology, loaded the information of the angle to the frequency difference of second harmonic of the multi-beam laser heterodyne signal by frequency modulation of the oscillating mirror, which is in the light path. Heterodyne signal frequency can be obtained by fast Fourier transform, and can obtain values of the angle accurately after the multi-beam laser heterodyne signal demodulation. This novel method is used to simulate measurement for incident angle of standard mirror by Matlab, the obtained result shows that the relative measurement error of this method is just 0.5213%.

  15. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors.

    PubMed

    Xu, Danfeng; Gu, Bing; Rui, Guanghao; Zhan, Qiwen; Cui, Yiping

    2016-02-22

    We present an arbitrary vector field with hybrid polarization based on the combination of a pair of orthogonal elliptically polarized base vectors on the Poincaré sphere. It is shown that the created vector field is only dependent on the latitude angle 2χ but is independent on the longitude angle 2ψ on the Poincaré sphere. By adjusting the latitude angle 2χ, which is related to two identical waveplates in a common path interferometric arrangement, one could obtain arbitrary type of vector fields. Experimentally, we demonstrate the generation of such kind of vector fields and confirm the distribution of state of polarization by the measurement of Stokes parameters. Besides, we investigate the tight focusing properties of these vector fields. It is found that the additional degree of freedom 2χ provided by arbitrary vector field with hybrid polarization allows one to control the spatial structure of polarization and to engineer the focusing field. PMID:26907066

  16. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    DOEpatents

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  17. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection.

    PubMed

    Gao, S; Hui, R

    2012-06-01

    A frequency-modulated continuous-wave (FMCW) lidar is demonstrated with heterodyne detection. The lidar transmitter utilizes an electro-optic I/Q modulator for the first time to generate carrier-suppressed and frequency-shifted FM modulation. This eliminates the need for an acousto-optic frequency shifter commonly used in heterodyne lidar transmitters. It also allows the use of a much wider modulation bandwidth to improve the range resolution. The capability of complex optical field modulation of the I/Q modulator provides an additional degree of freedom compared with an intensity modulator, which will benefit future lidar applications. PMID:22660108

  18. Scanning heterodyne Kerr-effect microscope for imaging of magnetic tracks

    NASA Astrophysics Data System (ADS)

    Protopopov, Vladimir V.; Lee, Sukwon; Kwon, Youngkun; Cho, Sunghoon; Kim, Hyuk; Chae, Jonggyn

    2006-07-01

    Design and performance of a new type of Kerr microscope based on heterodyne cross-polarized technique is presented. Weak depolarization of the probe beam due to longitudinal magneto-optical Kerr effect is detected by means of heterodyne mixing of the two cross-polarized and frequency shifted waves generated by Zeeman-type He-Ne laser. In comparison with the traditional homodyne method the proposed technique has better sensitivity and spatial resolution. Experimental results of imaging service magnetic tracks on real samples of magnetic disks are presented, showing better contrast and spatial resolution with respect to the images obtained from commercial devices available in the market.

  19. Clutter isolation and cardiac monitoring using harmonic doppler radar with heterodyne receiver and passive RF tags.

    PubMed

    Singh, Aditya; Lubecke, Victor

    2010-01-01

    A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source.

  20. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  1. Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser

    PubMed Central

    Mërtiri, Alket; Jeys, Thomas; Liberman, Vladimir; Hong, M. K.; Mertz, Jerome; Altug, Hatice; Erramilli, Shyamsunder

    2012-01-01

    We report a technique to measure the mid-infrared photothermal response induced by a tunable quantum cascade laser in the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB), without any intercalated dye. Heterodyne detection using a Ti:sapphire laser of the response in the solid, smectic, nematic and isotropic liquid crystal phases allows direct detection of a weak mid-infrared normal mode absorption using an inexpensive photodetector. At high pump power in the nematic phase, we observe an interesting peak splitting in the photothermal response. Tunable lasers that can access still stronger modes will facilitate photothermal heterodyne mid-infrared vibrational spectroscopy. PMID:22912508

  2. Methods, compositions and kits for imaging cells and tissues using nanoparticles and spatial frequency heterodyne imaging

    DOEpatents

    Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian

    2016-04-19

    Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.

  3. Multi-mode heterodyned 5th-order infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Leger, Joel D.; Varner, Clyde; Rubtsov, Igor V.

    2016-10-01

    Fifth-order multidimensional infrared spectroscopy with heterodyned detection was carried out in the three-beam dual-frequency configuration. Numerous 5th-order cross peaks were detected for the 4-azidobutyrate-N-hydroxysuccinimide ester compound in solution involving several vibrational modes ranging in frequency from 1045 to 2100 cm-1. Cross peaks involving overtones (2X/Z) and combination bands (XY/Z) among the tags, modes X and Y excited by the first two mid-IR laser pulses, and the reporter, modes Z excited by the third laser pulse, were acquired and the factors affecting the amplitude of 5th-order cross peaks are discussed. The 5th-order cross peaks were detected among modes that are spatially close (a few bonds apart) as well as for modes spatially separated by ca. 12 Å (eight bonds apart). In both cases, the waiting time dependences for the 3rd and 5th order cross peaks were found to be different. In particular, the waiting time at which the cross-peak maximum is reached, the decay time, and the value of a plateau at large waiting times were all differing strongly. The differences are explained by reduced sensitivity of the 5th-order signals to modes coupled weakly to the reporter mode and different relaxation dynamics involving overtone state of the tag. The ability of the 5th-order peaks to single out the modes coupled strongly to the reporter can help identifying specific energy relaxation and transport pathways, which will be useful for understanding energy transport dynamics in molecules. The absorptive 5th-order cross peaks were constructed which report on three-point correlation functions. It is shown that in addition to the triple-frequency correlation functions, a correlation of the frequencies with the mode coupling (anharmonicity) can be naturally measured by the 5th-order spectroscopy. The current limit for detecting 5th-order signals was estimated at the level of 1 × 10-3 in reduced anharmonicity, which is determined by the corresponding two

  4. Timing jitter characterization of mode-locked lasers with <1 zs/√Hz resolution using a simple optical heterodyne technique.

    PubMed

    Hou, D; Lee, C-C; Yang, Z; Schibli, T R

    2015-07-01

    Timing jitter characterization of free-running mode-locked lasers with an unprecedented resolution is demonstrated using an optical heterodyne technique. A highly sensitive timing jitter phase-discrimination signal with low-parasitic-amplitude sensitivity is achieved. Analytical and numerical methods are used to analyze the properties of the discrimination signal. For an experimental demonstration, we measure the timing jitter between two loosely synchronized mode-locked Er:Yb:glass lasers with 500-MHz fundamental repetition rates. The timing jitter-detection noise floor for a single mode-locked laser reaches 2.8×10(-13)  fs(2)/Hz (∼530  ys/√Hz), and the integrated timing jitter is 16.3 as from 10 kHz to the Nyquist frequency (250 MHz). These results show that this approach can be a simpler alternative to the well-established balanced optical cross-correlation technique. PMID:26125348

  5. Novel coherent self-heterodyne receiver based on phase modulation detection.

    PubMed

    Huynh, Tam N; Nguyen, Lim; Barry, Liam P

    2012-03-12

    We propose a novel coherent self-heterodyne receiver structure based on phase modulation detection that potentially simplifies the front-end of a coherent optical receiver. The scheme has been demonstrated via simulations and experimentally for a 10 Gb/s DQPSK transmission system.

  6. Heterodyne holography with full control of both the signal and reference arms.

    PubMed

    Gross, Michel

    2016-01-20

    Heterodyne holography is a variant of phase-shifting holography in which the reference and signal arms are controlled by acousto-optic modulators. In this review paper, we will briefly describe the method and its properties, and we will illustrate its advantages in experimental applications. PMID:26835961

  7. 140 Mbit/s heterodyne ASK data transmission with diode-pumped Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Leeb, Walter R.; Scholtz, Arpad L.; Pribil, Klaus; Hirn, Richard

    1990-07-01

    The capabilities of the Nd-YAG laser for optical intersatellite links have been experimentally demonstrated. The experimental setup is described and the heterodyne ASK receiver sensitivity is reported. The receiver exhibited a degradation of -5.6 dB compared to the shot noise limit.

  8. SURVEY OF OPTICAL VELOCIMETRY EXPERIMENTS - APPLICATIONS OF PDV, A HETERODYNE VELOCIMETER

    SciTech Connect

    HOLTKAMP, DAVID B.

    2007-02-12

    Optical velocimetry has been an important experimental diagnostic for many experiments. Recent improvements to heterodyne techniques have resulted in compact, inexpensive and high performance velocimetry measurement systems. We report on developments and improvements in this area and illustrate the performance of Photon Doppler Velocimetry (PDV) by showing several experimental examples.

  9. Synthetic Array Heterodyne Detection: Developments within the Caliope CO{sub 2} DIAL Program

    SciTech Connect

    Rehse, S.J.; Strauss, E.M.

    1995-09-01

    A new technique, Synthetic Array Heterodyne Detection, offers a wider field of view and improved signal to noise for coherent DIAL systems by reducing speckle interference. We have implemented a synthetic multi-pixel array using a CO{sub 2} laser on a single element HgCdTe photodiode.

  10. Tunable diode laser heterodyne radiometer measurement of atmospheric absorption of solar radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Copeland, G. E.

    1980-01-01

    A tunable infrared heterodyne radiometer (TIHR) which uses a diode laser as the local oscillator is described as well as methods for the evaluation of the excess noise characteristics of the tunable diode laser. Preliminary atmospheric absorption data taken with the TIHR are presented and show the capability of the TIHR for making the highest resolution atmospheric measurements to date.

  11. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    NASA Astrophysics Data System (ADS)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  12. The polarization-based collimated beam combiner and the proposed NOVA fringe tracker (NFT) for the VLTI

    NASA Astrophysics Data System (ADS)

    Meisner, Jeffrey A.; Jaffe, Walter J.; Le Poole, Rudolf S.; Pereira, Silvania F.; Quirrenbach, Andreas; Raban, David; Vosteen, Amir

    2010-07-01

    The Polarization-Based Collimated Beam Combiner efficiently produces pairwise interference between beams from multiple telescopes. An important feature is achieving "Photometric Symmetry" whereby interference measurements have no first-order sensitivity to wavefront perturbations (or photometric variations following spatial filtering) which otherwise entail visibility measurements with increased error, bias, and nonlinearity in phase determination. Among other proposed applications, this topology has been chosen as the basis for the design of the NOVA Fringe Tracker (NFT), a proposed 4 or 6 telescope second-generation fringe tracker for the VLTI. The NFT takes advantage of the photometric symmetry thus achieved making it capable of tracking on stars resolved beyond the first visibility null, as well as interfering a telescope beam with one which is 20 times brighter, a design goal set by ESO. By not requiring OPD modulation for interferometric detection, the detector exposure time can be increased without performance reduction due to time skew nor is sensitivity reduced by removing optical power for photometric monitoring, and use of two-phase interferometric detection saves one half of the photons being diverted for detection of the other two (mainly) unused quadrature phases. The topology is also proposed for visibility measuring interferometers with configurations proposed for the achievement of balanced quadrature or 3-phase interferometric detection. A laboratory demonstration confirms >>100:1 rejection of photometric crosstalk in a fringe tracking configuration where atmospheric OPD fluctuations were simulated using a hair dryer. Tracking with a 30:1 intensity ratio between the incoming beams was performed while rejecting large introduced photometric fluctuations.

  13. Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutman; Ward, John; Manohara, Harish; Siegel, Peter

    2009-01-01

    A proposed heterodyne receiver would be capable of detecting electromagnetic radiation in both of two orthogonal linear polarizations, separating sidebands, and providing balanced outputs in a frequency band centered at 1.5 THz with a fractional bandwidth greater than 40 percent. Dual polarization, sideband-separating, and balanced-output receivers are well-known and have been used extensively at frequencies up to about 100 GHz; and there was an earlier proposal for such a receiver for frequencies up to 900 GHz. However, the present proposal represents the first realistic design concept for such a receiver capable of operating above 1 THz. The proposed receiver is intended to be a prototype of mass-producible receiver units, operating at frequencies up to 6 THz, that would be incorporated into highly sensitive heterodyne array instruments to be used in astronomical spectroscopic and imaging studies.

  14. Multi-beam laser heterodyne measurement with ultra-precision for Young modulus based on oscillating mirror modulation

    NASA Astrophysics Data System (ADS)

    Li, Y. Chao; Ding, Q.; Gao, Y.; Ran, L. Ling; Yang, J. Ru; Liu, C. Yu; Wang, C. Hui; Sun, J. Feng

    2014-07-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for Young modulus. Based on Doppler effect and heterodyne technology, loaded the information of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by mass variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain value of Young modulus of the sample by the calculation. This novel method is used to simulate measurement for Young modulus of wire under different mass by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.3%.

  15. Rayleigh backscattering noise suppression based on real-time heterodyne receiver for loop-back WDM-PON.

    PubMed

    Feng, Hanlin; Xiao, Shilin; Zhou, Qi; Ge, Jia; Fok, Mable P

    2014-09-22

    In this paper, we propose a Rayleigh backscattering (RB) noise mitigation scheme based on the use of real-time heterodyne receiver for loop-back wavelength division multiplexing passive optical network (WDM-PON). Heterodyne detection has been utilized to increase the upstream receiver sensitivity, while an electro-absorption modulator (EAM) is used to simultaneously turn heterodyning bipolar signal into single polar signal and mitigate accumulated carrier RB noise. With the help of the nonlinear negative-slope transfer function of EAM, low frequency interference noise is suppressed successfully. RB noise mitigation performance is studied over 45-km single mode fiber (SMF) transmission, and the optical-signal-to-Rayleigh-noise-ratio (OSRNR) is reduced to 15.6 dB, when bias voltage of EAM is at -4 V. Through utilizing this real-time heterodyne receiver in single fiber loop-back structure, upstream error free transmission is realized with receiver sensitivity of -25 dBm.

  16. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  17. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively. PMID:27411154

  18. A 4.7THz heterodyne receiver for a balloon borne telescope

    NASA Astrophysics Data System (ADS)

    Hayton, D. J.; Kloosterman, J. L.; Ren, Y.; Kao, T. Y.; Gao, J. R.; Klapwijk, T. M.; Hu, Q.; Walker, C. K.; Reno, J. L.

    2014-07-01

    We report on the performance of a high sensitivity 4.7 THz heterodyne receiver based on a NbN hot electron bolometer mixer and a quantum cascade laser (QCL) as local oscillator. The receiver is developed to observe the astronomically important neutral atomic oxygen [OI] line at 4.7448 THz on a balloon based telescope. The single-line frequency control and improved beam pattern of QCL have taken advantage of a third-order distributed feedback structure. We measured a double sideband receiver noise temperature (Trec(DSB)) of 815 K, which is ~ 7 times the quantum noise limit (hν/2kB). An Allan time of 15 s at an effective noise fluctuation bandwidth of 18 MHz is demonstrated. Heterodyne performance was further supported by a measured methanol line spectrum around 4.7 THz.

  19. Spin-squeezing and Dicke-state preparation by heterodyne measurement

    SciTech Connect

    Vanderbruggen, T.; Bernon, S.; Bertoldi, A.; Bouyer, P.; Landragin, A.

    2011-01-15

    We investigate the quantum nondemolition (QND) measurement of an atomic population based on a heterodyne detection and show that the induced back-action allows for the preparation of both spin-squeezed and Dicke states. We use a wave-vector formalism to describe the stochastic process of the measurement and the associated atomic evolution. Analytical formulas of the atomic distribution momenta are derived in the weak-coupling regime both for short- and long-time behavior, and they are in good agreement with those obtained by a Monte Carlo simulation. The experimental implementation of the proposed heterodyne detection scheme is discussed. The role played in the squeezing process by the spontaneous emission is considered.

  20. Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Alvarez, J. M.

    1981-01-01

    The techniques which have been employed for inversion of IR heterodyne measurements for remote sounding of stratospheric trace constituents usually rely on either geometric effects based on limb-scan observations (i.e., onion peel techniques) or spectral effects by using weighting functions corresponding to different frequencies of an IR spectral line. An experimental approach and inversion technique are discussed which optimize the retrieval of concentration profiles by combining the geometric and the spectral effects in an IR heterodyne receiver. The results of inversions of some synthetic CIO spectral lines corresponding to solar occultation limb scans of the stratosphere are presented, indicating considerable improvement in the accuracy of the retrieved profiles. The effects of noise on the accuracy of retrievals are discussed for realistic situations.

  1. Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor.

    PubMed

    Koch, C

    1999-05-01

    A fiber-optic measurement system is described that allows ultrasound to be detected in fluids. It is based on a heterodyne interferometer, and the sensing element consists of a metal-coated fiber tip. The heterodyne technique permits direct acquisition of the sound pressure. The required ac photodetection is carried out with wide bandwidth, and the system provides high temporal and spatial resolution. For optimum performance the system parameters are matched to the sound-wave properties of the current application with the aid of theoretical and numerical calculations. The fiber-optic sensor system was applied to two problems of ultrasonic exposimetry in which the favorable features of the measurement technique were exploited. Shock waves from an electromagnetic lithotripter were investigated by use of the wide bandwidth of the system, and the subharmonic in an ultrasonic cleaner was detected, which indicates cavitation.

  2. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme. PMID:27607936

  3. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively.

  4. Real-time heterodyne speckle pattern interferometry using the correlation image sensor.

    PubMed

    Kimachi, Akira

    2010-12-10

    A real-time method for heterodyne speckle pattern interferometry using the correlation image sensor (CIS) is proposed. The CIS demodulates the interference phase of heterodyned speckle wavefronts pixelwise at an ordinary video frame rate. The proposed method neither suffers loss of spatial resolution nor requires a high frame rate. Interferometers for out-of-plane and in-plane deformation are developed with a 200 × 200 pixel CIS camera. Experimental results confirm that the proposed method realizes real-time imaging of a rough-surfaced object under deformation. The average standard deviations of demodulated phase-difference images for the out-of-plane and in-plane interferometers are 0.33 and 0.13 rad, respectively.

  5. Measurements of the single sideband suppression for a 650 GHz heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Crewell, S.; Nett, H.

    1992-01-01

    A large number of atmospheric trace gases, involved in the process of stratospheric ozone depletion, show emission features in the submillimeter wavelength range (lambda = 0.1-1mm). High-resolution heterodyne techniques are a particularly useful tool in this spectral region as vertical distribution of these species can be deduced. Here the receiver has to be operated in the single sideband (ssb) mode preferably to avoid any interferences between the contributions in both receiver sidebands. In the 625-655 GHz heterodyne receiver developed at the University of Bremen a Martin-Puplett interferometer is used as a ssb-filter. A laboratory set-up has been built up to measure the performance of this interferometer.

  6. Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms.

    PubMed

    Abbas, M M; Shapiro, G L; Alvarez, J M

    1981-11-01

    The techniques which have been employed for inversion of IR heterodyne measurements for remote sounding of stratospheric trace constituents usually rely on either geometric effects based on limb-scan observations (i.e., onion peel techniques) or spectral effects by using weighting functions corresponding to different frequencies of an IR spectral line. An experimental approach and inversion technique are discussed which optimize the retrieval of concentration profiles by combining the geometric and the spectral effects in an IR heterodyne receiver. The results of inversions of some synthetic ClO spectral lines corresponding to solar occultation limb scans of the stratosphere are presented, indicating considerable improvement in the accuracy of the retrieved profiles. The effects of noise on the accuracy of retrievals are discussed for realistic situations. PMID:20372255

  7. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  8. Heterodyne detection through rain, snow, and turbid media - Effective receiver size at optical through millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Kazovsky, L. G.; Kopeika, N. S.

    1983-03-01

    An effective heterodyne receiver size for both a purely scattering channel and a real-world turbulent scatter channel is determined. Forward scattering reduces the effective heterodyne receiver area through spatial coherence degradation, and treatment of scattering as an attenuation phenomenon is demonstrated to be invalid in some cases, yielding an underestimation of the SNR. Dealing with scattering as attenuation is valid when the SNR is greater than 100, i.e., when the scattering angle is large. The SNR improves when the ratio of scattering particulate size to turbulence coherence diameter decreases. Arrays of small receivers are concluded to be more effective than large receivers for optically sampling the same area. The results are significant for optical sensing through fog, clouds, precipitation, and turbid media in general.

  9. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-20

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  10. Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter.

    PubMed

    Zhang, Wending; Gao, Wei; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Yang, Dexing; Zhang, Guoquan; Xu, Jingjun; Zhao, Jianlin

    2015-06-29

    An all-fiber optical heterodyne detection configuration was proposed based on an all-fiber acousto-optic structure, which acted as both frequency shifter and coupler at the same time. The vibration waveform within a frequency range between 1 Hz to 200 kHz of a piezoelectric mirror was measured using this optical heterodyne detection system. The minimal measurable vibration amplitude and resolution are around 6 pm and 1 pm in the region of tens to hundreds of kilohertz, respectively. The configuration has advantages of compact size, high accuracy and non-contact measurement. Moreover, it is of a dynamically adjustable signal-to-noise ratio to adapt different surface with different reflections in the measurement, which will improve the usage efficiency of the light power. PMID:26191765

  11. Source self-mixing in the detection of extended incoherent sources. [in optical heterodyne radiometry

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1975-01-01

    We consider the self-beating of incoherent light from an extended source at a wideband photomixer. The intermediate frequency mean squared current is found to be proportional to the product of the direct detected source power and the power within the IF bandpass about the optical frequency and within the heterodyne field of view. Thus the ratio of the heterodyne signal to self-beating power is proportional to the ratio of local oscillator power to direct detected power. This ratio is usually large for systems employing efficient local oscillators that generate shot-noise-limited operation. In less efficient systems, such as those employing tunable diode lasers, the effects of self-mixing may be significant.

  12. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  13. Air pollution - Remote detection of several pollutant gases with a laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1974-01-01

    An infrared heterodyne radiometer with a spectral resolution of 0.04 reciprocal centimeters has been used to remotely detect samples of ozone, sulfur dioxide, ammonia, and ethylene at room temperature, and samples of nitric oxide at 390 K. Each gas was observed in a background of nitrogen or oxygen at atmospheric pressure. Sensitivities to some of these gases are adequate for detection of ambient concentrations as low as a few parts per billion.

  14. Spatial heterodyne Stokes vector imaging of the motional Stark-Zeeman multiplet.

    PubMed

    Howard, John; Chung, Jinil

    2012-10-01

    We present a general Stokes interferometer/polarimeter suitable for polarimetric imaging the elliptically polarized motional Stark-Zeeman multiplet. We also introduce a fully phase-heterodyne spatial multiplex variant of the system that has been used for imaging of Balmer alpha emission from the heating neutral beam in the KSTAR super-conducting tokamak in Korea. The polarimeter performance is illustrated using various polarization test targets. PMID:23126853

  15. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  16. Optical imaging of objects in turbid media using heterodyned optical Kerr gate

    NASA Astrophysics Data System (ADS)

    Zhan, Pingping; Tan, Wenjiang; Si, Jinhai; Xu, Shichao; Tong, Junyi; Hou, Xun

    2014-05-01

    In this paper, we demonstrated optical imaging of objects hidden behind highly turbid media with a femtosecond heterodyned optical Kerr gate (HOKG). The experimental results showed that when compared with traditional optical Kerr gated (OKG) imaging, the HOKG imaging system provided higher image sharpness and higher spatial resolution. In traditional OKG imaging system, low pass filtering due to a photoinduced soft aperture decreased the image sharpness. When the HOKG was used, the high spatial frequency components of the object could be effectively compensated.

  17. Rapid-tuning device for CO/sub 2/ heterodyne detection lidar

    SciTech Connect

    Fox, J. A.; Gautier, C. R.; Ahl, J. L.

    1989-07-01

    A device for rapid-tuning cw, /ital Q/-switched lasers for a CO/sub 2/ heterodyne detection lidar is presented. It is shown that it is possible to utilize galvanometer-driven mirrors to rapidly switch wavelengths over randomly selected lasing transitions in the 9--11 /mu/m portion of the spectrum. Both a transmitter and a local oscillator are simultaneously switched between transitions while still achieving the frequency stability typically required for a coherent lidar system.

  18. Heterodyne phase-sensitive detection for calibration-free molecular dispersion spectroscopy.

    PubMed

    Martín-Mateos, Pedro; Acedo, Pablo

    2014-06-16

    In this paper, a technique for molecular dispersion spectroscopy based on heterodyne phase-sensitive detection is presented. The method offers immunity to fluctuations of the received optical power and an output linearly dependent of the gas concentration. Besides this, an analytical model for the propagation of light in gaseous samples has been developed enabling calibration-free operation. The proposed architecture has been tested and experimentally validated using methane as target gas. PMID:24977607

  19. Two-wavelength laser-diode heterodyne interferometry with one phasemeter

    NASA Astrophysics Data System (ADS)

    Onodera, Ribun; Ishii, Yukihiro

    1995-12-01

    A two-wavelength laser-diode interferometer that is based on heterodyne detection with one phasemeter has been constructed. Two laser diodes are frequency modulated by mutually inverted sawtooth currents on an unbalanced interferometer. One can measure the tested phase at a synthetic wavelength from the sum of the interference beat signals by synchronizing them with the modulation frequency. The experimental result presented shows a phase-measurement range with a 4.7- mu m synthetic wavelength.

  20. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (c-12)(o-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  1. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1976-01-01

    Strong 10-micron line emission from (C-12)(O-16)2 in the upper atmosphere of Venus has been detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicated mean zonal wind velocities less than 10 m/s in the upper atmosphere near the equator. No evidence was found for the 100-m/s wind velocity implied by the apparent four-day rotation period of ultraviolet cloud features.

  2. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Johnson, M. A.; Mclaren, R. A.; Sutton, E. C.

    1975-01-01

    Strong 10 micrometer line emission from (C-12)(O-16)2 in the upper atmosphere of Venus was detected by heterodyne techniques. Observations of the absolute Doppler shift of the emission features indicate mean zonal wind velocities less than 10 m/sec in the upper atmosphere near the equator. No evidence was found of the 100 m/sec wind velocity implied by the apparent 4-day rotation period of ultraviolet cloud features.

  3. Heterodyne lock-in thermal coupling measurements in integrated circuits: Applications to test and characterization.

    PubMed

    Altet, J; Aldrete-Vidrio, E; Mateo, D; Salhi, A; Grauby, S; Claeys, W; Dilhaire, S; Perpiñà, X; Jordà, X

    2009-02-01

    Heterodyne strategies can be used to characterize thermal coupling in integrated circuits when the electrical bandwidth of the dissipating circuit is beyond the bandwidth of the thermal coupling mechanism. From the characterization of the thermal coupling, two possible applications are described: extraction of characteristics of the dissipating circuit (the determination of the center frequency of a low-noise amplifier) and the extraction of the thermal coupling transfer function. PMID:19256677

  4. Multichannel heterodyne radiometer with computer control for electron cyclotron emission measurements of a tokomak plasma

    SciTech Connect

    Cima, G.; Ramponi, G.; Simonetto, A.

    1985-10-01

    A multichannel heterodyne radiometer in the frequency range 50--75 GHz which has been used to measure the second-harmonic cyclotron emission of the Thor Tokomak plasma is described. Real-time frequency switching, analog output averaging, autocalibration, data-acquisition, and graphical display are all functions performed under control of an Apple II personal computer. Typical experimental results are presented to illustrate the measuring capabilities of the instrument.

  5. Multichannel heterodyne radiometer with computer control for electron cyclotron emission measurements of a tokamak plasma

    NASA Astrophysics Data System (ADS)

    Cima, G.; Ramponi, G.; Simonetto, A.

    1985-10-01

    A multichannel heterodyne radiometer in the frequency range 50-75 GHz which has been used to measure the second-harmonic cyclotron emission of the Thor Tokomak plasma is described. Real-time frequency switching, analog output averaging, autocalibration, data-acquisition, and graphical display are all functions performed under control of an Apple II personal computer. Typical experimental results are presented to illustrate the measuring capabilities of the instrument.

  6. First Light for the Spatial Heterodyne Spectrometer to Detect Thermospheric Neutral Oxygen Density via Bowen Fluorescence at 844.6 nm

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Migliozzi, M.; Waldrop, L.

    2007-05-01

    This project involves the spectroscopic observation of neutral oxygen via Bowen fluorescence at 844.0 nm using the Spatial Heterodyne Spectrometer. This will allow for the determination of neutral oxygen densities in the thermopshere, and for improved forward modeling of the dynamics of that important region between 250 and 500 km (where neutral oxygen is the dominant species). The values for the neutral oxygen density will be derived from the observations following the technique developed by Dr. Redgie Lancaster. The specific relations between O and O+ in the thermosphere and ionosphere -- involving charge exchange equilibrium and ion energy balance -- will be constrained with this data. The data will also probe the inferred discrepancy between the neutral oxygen density values calculated from O I airglow observations at 6300 Angstroms and those calculated from MSIS theory. The Spatial Heterodyne Spectrometer (SHS) is a novel kind of interferometer, capable of high-resolution spectroscopy without internal scanning mechanisms. It thus combines the etendue and compactness advantages conventional interferometers (such as the Michelson and Fabry-Perot) enjoy over slit spectrometers with a greatly increased robustness that makes it particularly suited to studies from space platforms or in harsh environments on Earth. Such applications in astronomy and atmospheric science are now being developed. The SHS developed for this project will make ground-based observations of Bowen fluorescence at the Millstone Hill Observatory beginning in March 2007. The expected signal strength is in the range of a few to tens of Rayleighs, observed around sunset, and the SHS will observe it with a signal-to-noise ratio of 600, including a 3- Angstrom narrowband filter.

  7. VizieR Online Data Catalog: Fundamental stellar parameters from PolarBase (Paletou+, 2015)

    NASA Astrophysics Data System (ADS)

    Paletou, F.; Boehm, T.; Watson, V.; Trouilhet, J.-F.

    2015-02-01

    Our reference spectra are taken from the Elodie stellar library (Prugniel et al. 2007, astro-ph/0703658, Cat. III/251; Prugniel & Soubiran 2001A&A...369.1048P, Cat. III/218). Our main purpose is inverting of stellar parameters from high-resolution spectra coming from Narval and ESPaDOnS spectropolarimeters. These data are now available from the public database PolarBase (Petit et al., 2014PASP..126..469P, Cat. J/PASP/126/469). Narval is a modern spectropolarimeter operating in the 380-1000nm spectral domain, with a spectral resolution of 65000 in its polarimetric mode. It is an improved copy, adapted to the 2m TBL telescope, of the ESPaDOnS spectropolarimeter, which is in operations since 2004 at the 3.6m aperture CFHT telescope. (1 data file).

  8. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies.

    PubMed

    Weidmann, D; Reburn, W J; Smith, K M

    2007-07-01

    The advent of quantum cascade lasers has provided matured continuously tunable solid state laser sources emitting from mid-infrared to terahertz wavelengths. Such sources, used as local oscillators, offer the practical prospect of aircraft, high altitude platform, and satellite deployment of compact and shot noise limited heterodyne radiometers for Earth observation and astronomy. A ground-based prototype of a quantum cascade laser heterodyne radiometer operating in the mid-infrared has been developed and is presented. The instrument design and concepts are described, together with evaluation of the instrument in the laboratory and during field measurements of atmospheric ozone. In this study the best performance achieved by the prototype quantum cascade laser heterodyne radiometer was a signal-to-noise ratio of three times the theoretical shot-noise limit. The prototype has allowed the main sources of excess noise to be identified as residual optical feedback in the local oscillator optical path and a lack of mechanical and thermal stability in the local oscillator collimation system. Instrument improvements are currently being implemented and enhanced performance is expected in the near future.

  9. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback.

    PubMed

    Galeti, José Henrique; Kitano, Cláudio; Connelly, Michael J

    2015-12-10

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity measurement using interferometric sensors as it can provide an output signal which is immune to interferometric drift. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In conventional synthetic-heterodyne demodulation schemes, to obtain the dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a new synthetic-heterodyne demodulation method is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly less sensitive to the received optical power. In addition, the application of two independent phase and gain feedback loops is used to compensate for the nonideal gain and phase response of the anti-aliasing filter required for the signal acquisition of the received wideband interferometer signal. The efficacy of the improved system is demonstrated by measuring the displacement sensitivity frequency response and linearity of a Piezoelectric Mirror-Shifter (PMS) over a range of 200 Hz-9 kHz. In addition, the system is used to measure the response of the PMS to triangular and impulse type stimuli. The experimental results show excellent agreement with measurements taken using two independent industry standard calibration methods. PMID:26836865

  10. Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer.

    PubMed

    Wang, Yin; Nikodem, Michal; Wysocki, Gerard

    2013-01-14

    A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10(-8) rad/Hz(1/2) is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz(1/2) was achieved using the R(17/2) transition of NO at 1906.73 cm(-1).

  11. Balancing Acts

    MedlinePlus

    ... a new type of balance therapy using computerized, virtual reality. UPMC associate professor Susan Whitney, Ph.D., developed ... a virtual grocery store in the university's Medical Virtual Reality Center. Patients walk on a treadmill and safely ...

  12. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  13. Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour

    SciTech Connect

    Niwa, Yoshito; Arai, Koji; Ueda, Akitoshi; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2009-11-10

    A heterodyne metrology interferometer was stabilized down to a noise level of 20 picometers (pm) as a root-mean-square (RMS) value integrated between 0.3 mHz and 1 Hz. This noise level was achieved by employing active and passive interferometer stabilization techniques. The heterodyne interferometer was built on a 50 mm square ultralow expansion glass plate in order to reduce an optical path length change caused by temperature variation. An optical configuration of the interferometer is a Mach-Zehnder interferometer with a design as symmetric as possible so that a detection signal can be insensitive to homogeneous thermal expansion of the glass plate. The heterodyne frequency is actively controlled in order to suppress residual noises caused by optical path length changes outside of the glass plate as well as phase fluctuations of the heterodyne frequency source. Our stabilization scheme is considered useful in achieving the 20 pm noise level without a stable heterodyne frequency source, as well as temperature stabilization around a whole apparatus. This interferometer can be used in precise metrology applications, such as characterization of deformation for satellite optical components against thermal exposure.

  14. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, C.E.

    1997-11-18

    Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.

  15. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, Charlie E.

    1997-01-01

    Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.

  16. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  17. Composite film polarizer based on the oriented assembly of electrospun nanofibers.

    PubMed

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  18. Composite film polarizer based on the oriented assembly of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  19. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle. PMID:17952192

  20. Balancing Eggs

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    Theory predicts that an egg-shaped body should rest in stable equilibrium when on its side, balance vertically in metastable equilibrium on its broad end and be completely unstable on its narrow end. A homogeneous solid egg made from wood, clay or plastic behaves in this way, but a real egg will not stand on either end. It is shown that this…

  1. Carrier envelope phase retrieval of a multi-cycle pulse by heterodyne mixing of a pulse containing a few cycles

    NASA Astrophysics Data System (ADS)

    Shao, Tianjiao; Zhao, Guangjiu; Yao, Cuixia; Wen, Bin

    2013-02-01

    We present a theoretical routine for carrier envelope phase (CEP) retrieval of a multi-cycle femtosecond pulse by heterodyne mixing with a CEP-known few-cycle pulse using the time-dependent wavepacket quantum dynamics method. Our study is based on the CEP measuring technique and the dependence of high-order harmonic generation (HHG) spectra on CEP. After heterodyne mixing, half-cycle cutoffs (HCOs) in HHG spectra become distinct when the CEPs of multi-cycle and few-cycle pulses are well matched. The well-matched CEP of the heterodyne mixing field has a significant effect on the HHG spectra. Moreover, both quantum analysis and classical calculations are performed to demonstrate our theoretical results. The extension of CEP measurement from few-cycle pulses to multi-cycle pulses strengthens the controllability of laser parameters for femtosecond pulses.

  2. Multi-frequency THz Heterodyne Spectroscopy using Electro-Optic Sampling

    NASA Astrophysics Data System (ADS)

    Jones, David

    2010-03-01

    Multi-frequency heterodyne spectroscopy, developed by two groups (Schiller as well as van der Weide, Keilmann and co-workers) uses one optical femtosecond frequency comb (FFC) to probe a sample. A second FFC with a slightly detuned spacing is used as a multi frequency local oscillator to uniquely map the broadband optical spectroscopic information to the RF domain where it can be easily analyzed. Researchers at NIST (Coddington et al) have realized the full potential of this technique by tightly locking the detuned combs together using optical locking techniques. It is of considerable interest to extend such capabilities to access the so-called molecular vibrational ``fingerprint'' range of approximately 10 to 100 THz (300 to 3000 cm-1). A transfer of the direct heterodyne detection approach used in the optical regime down to this frequency range is fraught with difficulties including significantly lower power of the probe THz frequency comb. In addition, a low noise detector with a relatively fast RF response (>100 MHz at a minimum) is required. An alternative, indirect detection technique for detecting THz signals is electro-optic sampling (EOS). It has employed for time domain THz spectroscopic applications for a number of years with a demonstrated spectral detection ranging from 0.5 THz range to over 100 THz. Through careful analysis of the EOS we show how electro-optic sampling of THz frequency comb by a detuned optical FFC followed by direct optical detection of the optical sampling beam enables conversion of the THz spectroscopic data directly to the RF domain. In particular, we show there is a one-to-one correspondence between a detected RF heterodyne beat and THz comb element. Numerical simulations predict excellent signal to noise ratio of the RF beats (20 dB) with modest acquisition times (10 μs). We will also summarize our progress toward experimental realization of such a system.

  3. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  4. [Study on the Technology of the 4.4 μm Mid-Infrared Laser Heterodyne Spectrum].

    PubMed

    Tan, Tu; Cao, Zhen-song; Wang, Gui-shi; Wang, Lei; Liu, Kun; Huang, Yin-bo; Chen Wei-dong; Gao, Wei-ming

    2015-06-01

    In this paper, first time as our knowledge, we describe the development and performance evaluation of a 4.4 μm external cavity quantum cascade laser based laser heterodyne radiometer. Laser heterodyne spectroscopy is a high sensitive laser spectroscopy technique which offers the potential to develop a compact ground or satellite based radiometer for Earth observation and astronomy. An external cavity quantum cascade laser operating at 4. 4 μm, with output power up to 180 mW and narrow line width was used as a local oscillation. The external cavity quantum cascade laser offers wide spectral tuning range, it is tunable from 4.38 to 4.52 μm with model hop free and can be used for simultaneous detections of CO2, CO and N2 O. A blackbody was used as a signal radiation source. Development and fundamental theory of Laser heterodyne spectroscopy was described. The performance of the developed Laser heterodyne radiometer was evaluated by measuring of CO2 spectral at different pressures. Analyses results showed that a signal-to-noise ratio of 86 was achieved which was less than the theoretical value of 287. The spectral resolution of the developed Laser heterodyne spectroscopy is about 0.007 8 cm(-1) which could meet the requirement of high resolution spectroscopy measurement in the case of Doppler linewidth. The experiment showed that middle Infrared laser heterodyne spectroscopy system had high signal-to-noise ratio and spectral resolution, and had broad application prospect in high precision measurement of atmospheric greenhouse gas concentration and vertical profile.

  5. Metrological characterization of nm-range dynamic etalons using a heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Kazieva, T. V.; Kuznetsov, A. P.; Ponarina, M. V.; Gubskiy, K. L.; Reshetov, V. N.

    2016-09-01

    Test structures used for calibration of scanning probe microscopes have certain limitations. They are short-lived, their work surface becomes coated with microparticles over time, and it gradually wears out by contact with the measuring probe, resulting in the etalon geometry deformation. Dynamic etalons allow calibrating SPMs in ranges from pm to nm. In this article we present the results of dynamic etalon metrological characteristics research using an SPM equipped with tree-coordinate heterodyne laser interferometer. Obtained data indicates stability of piezoelectric modulus and absence of piezoelectric hysteresis phenomena in the etalon samples used.

  6. Heterodyne measurements of laser light scattering by a turbulent phase screen.

    PubMed

    Ridley, Kevin D; Watson, Stephen M; Jakeman, Eric; Harris, Michael

    2002-01-20

    We report experiments in which a fiber-coupled heterodyne laser system operating at a wavelength of 1.5 microm is used to measure the phase fluctuations induced on a laser beam by passage through a thin layer of turbulent air and subsequent propagation through free space. We investigate the statistical properties and power spectra of the phase and its rate of change, in addition to the intensity statistics. We find that the power spectrum of the rate of change of phase has a simple negative exponential form. We discuss our results in the context of the problem of detection of phase variations over an extended turbulent atmospheric path. PMID:11905580

  7. A 16-channel heterodyne electron cyclotron emission radiometer on J-TEXT

    SciTech Connect

    Yang, Z. J.; Zhuang, G.; Xiao, J. S.; Wang, Z. J.; Phillips, P. E.; Huang, H.; Rowan, W. L.

    2012-10-15

    To study equilibrium temporal dynamics and the mechanisms of magnetohydrodynamic instabilities, a 16-channel heterodyne electron cyclotron emission (ECE) radiometer has been developed to view the J-TEXT tokamak from the low field side. The ECE radiometer detects second-harmonic extraordinary mode in the frequency band of 94-125 GHz which corresponds to resonances from 1.8 T to 2.2 T. This ECE system consists of an ECE transmission line, a radio frequency unit, and two 8-channel intermediate frequency units. An in situ blackbody calibration source is applied for system calibration by comparison of hot and cold sources in order to provide an absolute temperature measurement.

  8. Heterodyne interferometry for the detection of elastic waves: a tutorial and open-hardware project

    NASA Astrophysics Data System (ADS)

    Hitchman, Sam; van Wijk, Kasper; Broderick, Neil; Adam, Ludmila

    2015-05-01

    Non-contacting acoustic and ultrasonic measurements are of interest in applications ranging from nondestructive evaluation to rock physics and medical imaging. The fundamental workings of the detector—the interferometer—are easily explained in undergraduate physics courses, but practical implementations are dominated by specialized, and commercial, devices. We present a robust and relatively inexpensive detector, which consists of a heterodyne interferometer and phase locked loop frequency demodulator, as an open-source alternative. We illustrate the broadband capabilities with the detection of ultrasonic waves in a mudstone sample, and low-frequency (100 Hz) vibrations of a piston.

  9. Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser.

    PubMed

    Bai, Yan; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Qian, Liming; Chen, Zhenlei

    2012-01-16

    In this study, heterodyne detection is adopted to measure the velocity of a target simulated by a rapidly rotating plate by using a mode-locked pulse laser as the resource. The coherent beat frequency of the signal light reflected by target and local oscillation light occurred on the surface of the detector. Then the waveform of beat frequency was processed by filtering to obtain the Doppler frequency shift of the signal light induced by target. With this frequency shift, the velocity of target could be obtained by calculation. Results indicate that the measurement has a high precision. The error on average is within 0.4 m/s. PMID:22274421

  10. Imaging through obscurants with a heterodyne detection-based ladar system

    NASA Astrophysics Data System (ADS)

    Reibel, Randy R.; Roos, Peter A.; Kaylor, Brant M.; Berg, Trenton J.; Curry, James R.

    2014-06-01

    Bridger Photonics has been researching and developing a ladar system based on heterodyne detection for imaging through brownout and other DVEs. There are several advantages that an FMCW ladar system provides compared to direct detect pulsed time-of-flight systems including: 1) Higher average powers, 2) Single photon sensitive while remaining tolerant to strong return signals, 3) Doppler sensitivity for clutter removal, and 4) More flexible system for sensing during various stages of flight. In this paper, we provide a review of our sensor, discuss lessons learned during various DVE tests, and show our latest 3D imagery.

  11. Simple method for reducing the first-order optical nonlinearity in a heterodyne laser interferometer.

    PubMed

    Fu, Haijin; Hu, Pengcheng; Tan, Jiubin; Fan, Zhigang

    2015-07-10

    A simple method was proposed by using a tunable attenuator fitted in the reference or measurement arm of a heterodyne laser interferometer to adjust the values of mixing laser beams while the spectrum of the measurement signal is monitored using a signal analyzer. The effectiveness of the proposed method in reducing the first-order optical nonlinearity was verified through experiments. Results indicated that the peak value of the first-order optical nonlinearity could be reduced from 5.15 to 0.24 nm. It was therefore concluded that the proposed method was applicable to ultraprecision laser interferometry. PMID:26193410

  12. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  13. Infrared heterodyne spectroscopy of CO2 in the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Mclaren, R. A.; Johnson, M. A.; Sutton, E. C.

    1977-01-01

    An infrared heterodyne spectrometer with a resolving power of 6 million has been used to obtain detailed profiles of the 10-micron absorption lines of CO2 in the atmosphere of Mars. An analysis of the results with an empirical model-atmosphere calculation indicates a nearly pure CO2 atmosphere with an average surface pressure of 5.2 + or - 0.5 mbar in the observed regions, a subsolar surface temperature near 275 K, an atmospheric temperature of 235 to 240 K above the subsolar point, and a lapse rate of 2 K/km.

  14. Heterodyne Doppler velocity measurement of moving targets by mode-locked pulse laser.

    PubMed

    Bai, Yan; Ren, Deming; Zhao, Weijiang; Qu, Yanchen; Qian, Liming; Chen, Zhenlei

    2012-01-16

    In this study, heterodyne detection is adopted to measure the velocity of a target simulated by a rapidly rotating plate by using a mode-locked pulse laser as the resource. The coherent beat frequency of the signal light reflected by target and local oscillation light occurred on the surface of the detector. Then the waveform of beat frequency was processed by filtering to obtain the Doppler frequency shift of the signal light induced by target. With this frequency shift, the velocity of target could be obtained by calculation. Results indicate that the measurement has a high precision. The error on average is within 0.4 m/s.

  15. Conceptual design and applications of HgCdTe infrared photodiodes for heterodyne systems

    NASA Technical Reports Server (NTRS)

    Sirieix, M. B.; Hofheimer, H.

    1980-01-01

    The significance of HgCdTe photodiodes are discussed relative to their existance in heterodyne detection systems operating in the 9 to 11 micrometer CO2 laser wavelength region. Their successful fabrication as well as the physical properties of the materials are described. The implementation of controlled industrial processes are reported with emphasis on the yield of predictable and repeatable detector characteristics to the discriminating systems, demands for high cutoff frequencies, quantum efficiency, and reliability. The most salient production steps and diode characteristics are presented. Measured results from production units are also given.

  16. Common-Path Heterodyne Laser-Induced Thermal Acoustics for Seedless Laser Velocimetry

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, G. C.; Balla, R. Jeffrey; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    We demonstrate the use of a novel technique for the detection of heterodyne laser-induced thermal acoustics signals, which allows the construction of a highly stable seedless laser velocimeter. A common-path configuration is combined with quadrature detection to provide flow direction, greatly improve robustness to misalignment and vibration, and give reliable velocity measurement at low flow velocities. Comparison with Pitot tube measurements in the freestream of a wind tunnel shows root-mean-square errors of 0.67 m/s over the velocity range 0.55 m/s.

  17. A terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer.

    SciTech Connect

    Klaassen, T. O.; Hajenius, M.; Adam, A. J. L.; Klapwijk, T. M.; Baryshev, A.; Kumar, Sushil; Baselmans, J. J. A.; Hu, Qing; Yang, Z. Q.; Hovenier, J. N.; Williams, Benjamin S.; Gao, J. R.; Reno, John Louis

    2005-03-01

    We report the first demonstration of an all solid-state heterodyne receiver that can be used for high-resolution spectroscopy above 2 THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8 THz as local oscillator. We measure a double sideband receiver noise temperature of 1400 K at 2.8 THz and 4.2 K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.

  18. Heterodyne fiber-optic gyroscope using orthogonally polarized two-frequency beams

    NASA Astrophysics Data System (ADS)

    Imai, Yoh; Koseki, Hideaki; Ohtsuka, Yoshihiro

    1987-08-01

    A new type of heterodyne fiber-optic gyroscope using orthogonally polarized light components with different frequencies is described. Each counterpropagating beam consists of the orthogonal components transmitted in the principal axes of a polarization-maintaining fiber coil. A pair of beat signals containing Sagnac phase shifts with opposite signs can be produced by selectively superimposing the counterpropagating components. Detection of the difference between the two beat signals allows a doubling of the Sagnac phase shift free from noise sources raised from differences in frequency and path. In a preliminary experiment, a long-term stability of 5 deg/h was attained.

  19. Terahertz quantum cascade laser as local oscillator in a heterodyne receiver.

    PubMed

    Hübers, Heinz-Wilhelm; Pavlov, S; Semenov, A; Köhler, R; Mahler, L; Tredicucci, A; Beere, H; Ritchie, D; Linfield, E

    2005-07-25

    Terahertz quantum cascade lasers have been investigated with respect to their performance as a local oscillator in a heterodyne receiver. The beam profile has been measured and transformed in to a close to Gaussian profile resulting in a good matching between the field patterns of the quantum cascade laser and the antenna of a superconducting hot electron bolometric mixer. Noise temperature measurements with the hot electron bolometer and a 2.5 THz quantum cascade laser yielded the same result as with a gas laser as local oscillator.

  20. BPSK homodyne and DPSK heterodyne receivers for free-space communication with Nd:host lasers

    NASA Astrophysics Data System (ADS)

    Bopp, M.; Huether, G.; Spatscheck, Th.; Specker, H.; Wiesmann, Th.

    1991-05-01

    An investigation of the most promising coherent receiver configurations for application in Nd:YAG laser based optical transmission links is presented. A BPSK homodyne receiver based on a Costas phase locked loop was realized for a data rate of 600 Mbit/s, using a commercially available diode pumped ring laser at 1064 nm. Furthermore, a DPSK heterodyne receiver with the same data rate using an intermediate frequency of 1.2 GHz was realized. Both have been tested successfully. An optical 90-deg hybrid, built of bulk optical components, was used for the investigation of the receivers. Design and performance of this bulk hybrid are described.

  1. Self-heterodyne detection of backscattered radiation in single-mode CO{sub 2} lasers

    SciTech Connect

    Gordienko, Vyacheslav M; Konovalov, Aleksei N; Ul'yanov, V A

    2011-05-31

    Self-heterodyning in dc-discharge-pumped single-mode CO{sub 2} lasers is analysed theoretically and studied experimentally under strong and weak feedback conditions. Relations for the autodyne gain and modulation depth due to the effect of backscattered radiation with a Doppler-shifted frequency are obtained. Nonlinear distortions of the autodyne signal caused by a strong laser - target feedback are studied. It is shown that the autodyne detection of backscattered radiation in CO{sub 2} lasers can be considered linear even in the case of strong laser beam distortions (nonlinear distortions below 5%). (control of laser radiation parameters)

  2. Homodyne and heterodyne optical interferometry for frequency dependent piezoelectric displacement measurement

    NASA Astrophysics Data System (ADS)

    Delahoussaye, Keith; Guo, Ruyan; Bhalla, Amar

    2014-09-01

    The electromechanical coupling in piezoelectric materials has been widely studied however a unified view of this interaction as function of frequencies using different measurement techniques has not previously been available. This study examines and compares multiple optical based homodyne and heterodyne interferometry techniques for displacement measurement over a wide range of frequencies and including a comparison made by using a commercial Laser Doppler Vibrometer. Ferroelectric lead titanate PbTiO3 with high ferroelectric strain is studied in this work. Frequency dependence of the electromechanical displacement is obtained using multiple techniques and the emphasis is given to near resonant frequency interrogations.

  3. Remote Sensing of Methane in the Martian Atmosphere using Infrared Laser Heterodyne Radiometry

    NASA Astrophysics Data System (ADS)

    Passmore, R. L.; Bowles, N. E.; Weidmann, D.; Smith, K.

    2011-12-01

    In the last few years, several research teams have reported the detection of methane in the atmosphere of Mars, measuring 10 ppb on average [1][2][3]. The source of the methane is still unknown, but its identification is important as its presence could imply a biological origin. However, the detection limits of current instruments lie below the requirements for an unambiguous determination of concentration mapping and distribution. We investigate the viability of detecting methane in the Martian atmosphere via a high sensitivity remote sensing technique known as passive mid-infrared laser heterodyne radiometry. Although heterodyne spectroscopy is not a new idea, recent advancements in local oscillator technology [4] offer the possibility of significant instrument miniaturisation relevant to space deployment. We present our current work on a laser heterodyne radiometer (LHR) which involves adapting an existing 10 μm laser breadboard design, which was used with much success to study stratospheric ozone [5], to operate at 7.7 μm in order to target the ν4 fundamental band of methane. The core of the LHR consists of a distributed-feedback quantum cascade laser (QCL) operating in continuous-wave mode, which acts as the local oscillator. QCLs are ideal local oscillators for this type of instrument as they emit with high spectral purity and the necessary optical power in the mid-infrared region where characteristic spectral lines of interest lie. Atmospheric modelling of the Martian atmosphere and instrument sensitivity studies enabled simulated methane spectral features to be studied in detail, which subsequently determined the focus for experimental efforts in the laboratory. Testing of the LHR was initially carried out on small gas cells containing pure methane gas, but in order to test the instrument more rigorously for atmospheric studies a larger gas cell was constructed that approximates the Martian atmosphere in the laboratory. Trace quantities of methane were

  4. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH).

    PubMed

    Englert, Christoph R; Harlander, John M; Emmert, John T; Babcock, David D; Roesler, Frederick L

    2010-12-20

    We present the first thermospheric wind measurements using a Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer and the oxygen red-line nightglow emission. The ground-based observations were made from Washington, DC and include simultaneous calibration measurements to track and correct instrument drifts. Even though the measurements were made under challenging thermal and light pollution conditions, they are of good quality with photon statistics uncertainties between about three and twenty-nine meters per second, depending on the nightglow intensity. The wind data are commensurate with a representative set of Millstone Hill Fabry-Perot wind measurements selected for similar geomagnetic and solar cycle conditions.

  5. Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; La, Jongpil; Park, Kyihwan

    2006-10-15

    A Zeeman-type He-Ne laser is frequently used as a heterodyne laser due to the simple construction and the small loss of a light. However, the low beat frequency of the Zeeman-type laser limits the maximum measurable velocity. In this article, an electronic frequency modulation algorithm is proposed to overcome the drawback of the low velocity measurement capability by increasing the beat frequency electronically. The brief analysis, the measurement scheme of the proposed algorithm, and the experimental results are presented. It is demonstrated that the proposed algorithm is proven to enhance the maximum measurable velocity.

  6. A novel heterodyne displacement interferometer with no detectable periodic nonlinearity and optical resolution doubling

    SciTech Connect

    Joo, K; Ellis, J D; Buice, E S; Spronck, J W; Munnig Schmidt, R H

    2010-02-05

    This paper describes a novel heterodyne laser interferometer with no significant periodic nonlinearity for linear displacement measurements. Moreover, the optical configurations have the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Experimental results show no discernable periodic nonlinearity for a retro-reflector interferometer and plane mirror interferometer configurations with a noise level below 20 pm. The incoming laser beams of the interferometers are achieved by utilizing two single mode optical fibers. To determine the stability of the optical fiber couplers a fiber delivery prototype was also built and tested.

  7. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH).

    PubMed

    Englert, Christoph R; Harlander, John M; Emmert, John T; Babcock, David D; Roesler, Frederick L

    2010-12-20

    We present the first thermospheric wind measurements using a Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer and the oxygen red-line nightglow emission. The ground-based observations were made from Washington, DC and include simultaneous calibration measurements to track and correct instrument drifts. Even though the measurements were made under challenging thermal and light pollution conditions, they are of good quality with photon statistics uncertainties between about three and twenty-nine meters per second, depending on the nightglow intensity. The wind data are commensurate with a representative set of Millstone Hill Fabry-Perot wind measurements selected for similar geomagnetic and solar cycle conditions. PMID:21197018

  8. A broadband RF continuously variable time delay device. [using Bragg cell and optical heterodyne technology for signal processing

    NASA Technical Reports Server (NTRS)

    Freyre, F. W.

    1981-01-01

    A method for implementation of continuously variable time delay of broadband RF signals is described. The method uses Bragg Cell and optical heterodyne technology. The signal to be delayed is applied to the Bragg Cell acoustic transducer, and the delay time is the acoustic transit time from this transducer to the incident light beam. By translating the light beam, the delay is varied. Expressions describing the Bragg Cell diffraction, lens Fourier transformation, and the optical heterodyne processes are developed. Specifications for the variable delay including bandwidth, range of delay, and insertion loss are provided. Applications include radar signal processing, spread spectrum intercept, radar ECM, and adaptive array antenna processing.

  9. Quantum-cascade lasers as local oscillators for heterodyne spectrometers in the spectral range around 4.745 THz

    NASA Astrophysics Data System (ADS)

    Schrottke, L.; Wienold, M.; Sharma, R.; Lü, X.; Biermann, K.; Hey, R.; Tahraoui, A.; Richter, H.; Hübers, H.-W.; Grahn, H. T.

    2013-03-01

    Local oscillators in terahertz heterodyne spectrometers have to be operated in continuous-wave mode at precisely defined target frequencies. In particular, for advanced airborne instruments, several specifications such as operating temperature and cooling requirements are necessary to be considered. We have developed a quantum-cascade laser (QCL) applicable as a local oscillator for heterodyne spectroscopy of the OI line at 4.745 THz, which is of particular interest for astronomy. We demonstrate a distributed-feedback QCL operating in continuous-wave mode up to about 60 K, which can be tuned precisely to the target frequency when operated in a mechanical cooler.

  10. Balance (or Vestibular) Rehabilitation

    MedlinePlus

    ... for the Public / Hearing and Balance Balance (or Vestibular) Rehabilitation Audiologic (hearing), balance, and medical diagnostic tests help indicate whether you are a candidate for vestibular (balance) rehabilitation. Vestibular rehabilitation is an individualized balance ...

  11. Balanced Can

    NASA Astrophysics Data System (ADS)

    Shakerin, Said

    2013-12-01

    The ordinary 12-oz beverage cans in the figures below are not held up with any props or glue. The bottom of such cans is stepped at its circumference for better stacking. When this kind of can is tilted, as shown in Fig. 1, the outside corners of the step touch the surface beneath, providing an effective contact about 1 cm wide. Because the contact is relatively wide and the geometry is symmetrical, it is easy to balance an empty can by simply adding an appropriate amount of water so that the overall center of mass is located directly above the contact. In fact, any amount of water between about 40 and 210 mL will work. A computational animation of this trick by Sijia Liang and Bruce Atwood that shows center of mass as a function of amount of added water is available at http://demonstrations.wolfram.com. Once there, search "balancing can."

  12. Development of a P-I-N HgCdTe photomixer for laser heterodyne spectrometry

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1987-01-01

    An improved HgCdTe photomixer technology was demonstrated employing a p-i-n photodiode structure. The i-region was near intrinsic n-type HgCdTe; the n-region was formed by B+ ion implantation; and the p-region was formed either by a shallow Au diffusion or by a Pt Schottky barrier. Experimental devices in a back-side illuminated mesa diode configuration were fabricated, tested, and delivered. The best photomixer was packaged in a 24-hour LN2 dewar along with a cooled GaAs FET preamplifier. Testing was performed by mixing black-body radiation with a CO2 laser beam and measuring the IF signal, noise, and signal-to-noise ratio in the GHz frequency range. Signal bandwidth for this photomixer was 1.3 GHz. The heterodyne NEP was 4.4 x 10 to the -20 W/Hz out to 1 GHz increasing to 8.6 x 10 to the -10 W/Hz at 2 GHz. Other photomixers delivered on this program had heterodyne NEPs at 1 GHz ranging from 8 x 10 to the -20 to 4.4 x 10 to the -19 W/Hz and NEP bandwidths from 2 to 4 GHz.

  13. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  14. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  15. First Supra-THz Heterodyne Array Receivers for Astronomy With the SOFIA Observatory

    NASA Astrophysics Data System (ADS)

    Risacher, Christophe; Gusten, Rolf; Stutzki, Jurgen; Hubers, Heinz-Wilhelm; Buchel, Denis; Graf, Urs U.; Heyminck, Stefan; Honingh, Cornelia E.; Jacobs, Karl; Klein, Bernd; Klein, Thomas; Leinz, Christian; Putz, Patrick; Reyes, Nicolas; Ricken, Oliver; Wunsch, Hans-Joachim; Fusco, Paul; Rosner, Stefan

    2016-03-01

    We present the upGREAT THz heterodyne arrays for far-infrared astronomy. The Low Frequency Array (LFA) is designed to cover the 1.9-2.5 THz range using 2x7-pixel waveguide-based HEB mixer arrays in a dual polarization configuration. The High Frequency Array (HFA) will perform observations of the [OI] line at ~4.745 THz using a 7-pixel waveguide-based HEB mixer array. This paper describes the common design for both arrays, cooled to 4.5 K using closed- cycle pulse tube technology. We then show the laboratory and telescope characterization of the first array with its 14 pixels (LFA), which culminated in the successful commissioning in May 2015 aboard the SOFIA airborne observatory observing the [CII] fine structure transition at 1.905 THz. This is the first successful demonstration of astronomical observations with a heterodyne focal plane array above 1 THz and is also the first time high- power closed-cycle coolers for temperatures below 4.5 K are operated on an airborne platform.

  16. Heterodyne detection through rain, snow, and turbid media: effective receiver size at optical through millimeter wavelengths.

    PubMed

    Kazovsky, L G; Kopeika, N S

    1983-03-01

    Both scattering and turbulence can effect the spatial coherence of short wavelength signals propagating through the open atmosphere. In this paper, the influence of forward scattering on heterodyne receiver performance is investigated, taking into account turbulence. It is shown that the effect of forward scattering is to reduce the effective heterodyne receiver area through spatial coherence degradation. A common approach to scattering as an attenuation phenomenon is not always valid. Generally, this approach underestimates the SNR. The accuracy of the attenuation approach depends on the ratio R of the actual receiver diameter to the scattering particle diameter. If R >100, scattering is essentially large angle and the typical treatment of scattering as an attenuation effect is indeed justified. However, for small R, forward scattering is primarily small angle, field coherence is noticeably affected by forward scattering, and the attenuation approach is not valid. Further, it is shown that the SNR is improved when the ratio of the scattering particulate size to turbulence coherence diameter decreases. From the practical point of view, the most important result of this study is that small receivers use their area more effectively than large receivers. Thus, an array of several small receivers may perform better than one large receiver with the same total area. The treatment here is particularly relevant for coherent detection through clouds, fog, precipitation, and turbid media in general, including liquid media.

  17. Femtosecond Heterodyne Transient Grating Spectroscopic Studies of Intramolecular Charge Transfer Character of Peridinin and Peridinin Analogs

    NASA Astrophysics Data System (ADS)

    Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll-a protein is a light harvesting complex found in several species of dinoflagellates. Peridinin absorbs strongly in the mid-visible spectral region and, despite the lack of a strong permanent dipole moment in its lowest energy excited state, is able to transfer excitation energy quickly and efficiently to chlorophyll-a. It is believed that the high efficiency arises from the development of intramolecular charge-transfer (ICT) character upon photoexcitation. Recently, heterodyne transient grating spectroscopy has been used to study the ultrafast (<50 fs) dynamics of β carotene and peridinin. The studies show evidence for a structurally displaced intermediate in both cases and strong ICT character in the case of peridinin, but up to now the work has not provided appropriate control experiments. The present experiments examine peridinin and two peridinin analogs, S1-peridinin and S2-peridinin. S1-peridinin is reported to have greatly diminished ICT character, and S2-peridinin is reported to have little-or-no ICT character. Heterodyne transient grating data will be presented and provide a more unambiguous characterization spectral and kinetic properties associated with the peridinin ICT state. Funded by the DoE-BES, Grant No. DE-SC0012376.

  18. Heterodyne detection through rain, snow, and turbid media: effective receiver size at optical through millimeter wavelengths.

    PubMed

    Kazovsky, L G; Kopeika, N S

    1983-03-01

    Both scattering and turbulence can effect the spatial coherence of short wavelength signals propagating through the open atmosphere. In this paper, the influence of forward scattering on heterodyne receiver performance is investigated, taking into account turbulence. It is shown that the effect of forward scattering is to reduce the effective heterodyne receiver area through spatial coherence degradation. A common approach to scattering as an attenuation phenomenon is not always valid. Generally, this approach underestimates the SNR. The accuracy of the attenuation approach depends on the ratio R of the actual receiver diameter to the scattering particle diameter. If R >100, scattering is essentially large angle and the typical treatment of scattering as an attenuation effect is indeed justified. However, for small R, forward scattering is primarily small angle, field coherence is noticeably affected by forward scattering, and the attenuation approach is not valid. Further, it is shown that the SNR is improved when the ratio of the scattering particulate size to turbulence coherence diameter decreases. From the practical point of view, the most important result of this study is that small receivers use their area more effectively than large receivers. Thus, an array of several small receivers may perform better than one large receiver with the same total area. The treatment here is particularly relevant for coherent detection through clouds, fog, precipitation, and turbid media in general, including liquid media. PMID:18195859

  19. Optical Heterodyne Investigation of the Microwave Frequency Acoustic Properties of Liquids.

    NASA Astrophysics Data System (ADS)

    Bonney, Rob

    An optical heterodyne interferometer with a state -of-the-art microwave frequency acoustic transducer was used to measure the acoustic properties of liquids and solutions at frequencies up to 1.5 GHz. Heterodyne detection with a strong optical local oscillator was used to detect a weak optical signal beam produced by Bragg deflection from an acoustic wave coupled into a liquid sample. The acoustic transducer had a frequency range of 0.2-1.5 GHz. Several liquid mixtures were measured for the first time, including aqueous dimethyl sulfoxide, and ethyl acetate in carbon disulphide. In some cases, previously unknown dispersions were characterized. A thermodynamic model (valid in the low frequency limit) involving the heat of mixing was used successfully to predict the variation of velocity with composition of liquid mixtures. With this model as a guide, an attempt was made to identify a liquid mixture which would make a superior medium for the acoustic microscope. The search produced results which supported theoretical predictions, but no superior medium was found. Solutions of biomolecules were also investigated due to interest in possible resonant acoustic modes in DNA. No dispersions or resonances were found in solutions of polyglycines, and results for DNA solutions were inconclusive. Applications of this work include general studies in liquid acoustics at very high frequencies, acoustic studies of DNA solutions, and characterization of media for such technological applications as acoustic microscopy or phase conjugation using stimulated Brillouin scattering.

  20. Wide-field heterodyne interferometric vibrometry for two-dimensional surface vibration measurement

    NASA Astrophysics Data System (ADS)

    Choi, Samuel; Maruyama, Yuta; Suzuki, Takamasa; Nin, Fumiaki; Hibino, Hiroshi; Sasaki, Osami

    2015-12-01

    Conventional laser Doppler vibrometry and heterodyne interferometry suffer during the simultaneous measurement of the spatial distribution of vibration parameters such as the amplitude, frequency and phase in a wide field of view. Although demand is increasing for methods that can measure vibrations over a wide field of view for a wide range of applications from industrial product inspections to biological measurements, full-field (FF) techniques for high-speed vibration measurements without a spatial scan are untapped. We propose a new method for high-speed FF vibration measurement that can easily be combined with profilometry and tomographic interferometry using a conventional CCD or CMOS camera. In principle, the measurable vibration frequency is unrestricted because the heterodyne signal produced by the modulated interferogram can be controlled to accommodate the CCD frame rate. The validity of the proposed method and the measurement accuracy of the spatial vibration amplitude were evaluated through simulations and experiments. In experiments, the spatial vibration parameters of a mirror vibrated at a frequency of 1 kHz and amplitude of approximately 5-65 nm were successfully measured with a spatial fluctuation of 3%-6.5%.

  1. Laser heterodyne method of shift measurement using acousto-optic interaction

    SciTech Connect

    Teleshevskii, V.I.

    1985-04-01

    Heterodyne methods of optical-field detection using acousto-optic interaction (AOI) have gained use in optical and acoustical holography, optical interferometry and interference microscopy, and ultrasonics. These methods detect the amplitude and phase at each point of the optical field at a given carrier frequency and, in conjunction with scanning, recover the wave fronts scattered by an object. This paper examines another heterodyne method of acoustooptic conversion of light-wave phase shift in which AOI is accomplished at the output of the interference system. The described method allows a differential scheme for conversion of light-wave phase shifts which increases stability and doubles sensitivity. This is a two-channel system and has an electrical reference signal that is formed by acousto-optic conversion in transillumination of the point of the acoustic grating as the measuring signal. The proposed method has provided a basis for designing and putting into serial production laser meters with displacement ranges of up to 10 m and up to 30 m and with discreteness to 0.01 micrometers.

  2. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  3. Simple digital phase-measuring algorithm for low-noise heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Kokuyama, Wataru; Nozato, Hideaki; Ohta, Akihiro; Hattori, Koichiro

    2016-08-01

    We present a digital algorithm for measuring the phase of a sinusoidal signal that combines the modified digital fringe-counting method with two-sample zero crossing to enable sequential signal processing. This technique can be applied to a phase meter for measuring dynamic phase differences between two sinusoidal signals with high resolution, particularly for heterodyne interferometry. The floor noise obtained from a demonstration with an electrical apparatus is 5× {{10}-8} \\text{rad}\\text{/}{{\\sqrt{\\text{Hz}}}{}} at frequencies above approximately 0.1 Hz for 80 kHz signal frequency. In addition, by applying this method to a commercial heterodyne interferometer with a modulation frequency of 80 MHz, the floor-noise level is confirmed to be 7× {{10}-14}\\text{m}\\text{/}{{\\sqrt{\\text{Hz}}}{}} from 4 kHz to 1 MHz. We also confirm the validity of the algorithm by comparing its results with those from a standard homodyne interferometer for measuring shock-motion peak acceleration greater than 5000 \\text{m} {{\\text{s}}-2} and a 10 mm stroke.

  4. Heterodyne double-channel polarimeter for mapping birefringence and thickness of flat glass panels

    SciTech Connect

    Protopopov, Vladimir V.; Cho, Sunghoon; Kim, Kwangso; Lee, Sukwon; Kim, Hyuk; Kim, Daesuk

    2006-05-15

    A new cross-polarized heterodyne optical technique is developed for two-dimensional (2D) simultaneous mapping of both birefringence and thickness variations in large flat glass panels commonly used in liquid-crystal displays (LCDs). Weak depolarization of a linearly polarized probe beam due to glass birefringence is detected by means of heterodyne mixing of the two cross-polarized and frequency shifted waves generated by Zeeman-type laser. Amplitude variations of the transmitted laser beam due to interference of the partial waves reflected from the both sides of a sample provide information about glass thickness. Measurements are being performed at the intermediate frequency of 2.3 MHz, providing several orders of magnitude higher speed of data acquisition with respect to traditional polarimeters. That high speed of measurements makes it possible to perform quality assessment of LCD glass panels not only in few randomly chosen points as it was in common practice before but to obtain entire 2D maps of both birefringence and thickness variations with millimeter scale spatial resolution. The medium-scale prototype of the LCD glass inspection system is developed and tested. Design and performance of the prototype are described.

  5. Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals.

    PubMed

    Antos, Roman; Veis, Martin

    2010-12-20

    We demonstrate an enhancement of the plane wave expansion method treating two-dimensional photonic crystals by applying Fourier factorization with generally elliptic polarization bases. By studying three examples of periodically arranged cylindrical elements, we compare our approach to the classical Ho method in which the permittivity function is simply expanded without changing coordinates, and to the normal vector method using a normal-tangential polarization transform. The compared calculations clearly show that our approach yields the best convergence properties owing to the complete continuity of our distribution of polarization bases. The presented methodology enables us to study more general systems such as periodic elements with an arbitrary cross-section or devices such as photonic crystal waveguides. PMID:21197026

  6. Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals.

    PubMed

    Antos, Roman; Veis, Martin

    2010-12-20

    We demonstrate an enhancement of the plane wave expansion method treating two-dimensional photonic crystals by applying Fourier factorization with generally elliptic polarization bases. By studying three examples of periodically arranged cylindrical elements, we compare our approach to the classical Ho method in which the permittivity function is simply expanded without changing coordinates, and to the normal vector method using a normal-tangential polarization transform. The compared calculations clearly show that our approach yields the best convergence properties owing to the complete continuity of our distribution of polarization bases. The presented methodology enables us to study more general systems such as periodic elements with an arbitrary cross-section or devices such as photonic crystal waveguides.

  7. Orientation-dependent visibility of long thin objects in polarization-based microscopy.

    PubMed Central

    Arimoto, R; Murray, J M

    1996-01-01

    Under conditions of directional illumination, the visibility of long, thin objects depends very strongly on the direction and polarization of the incident light. Solutions to Maxwell's equations for the case of an infinite cylinder in an electromagnetic field are well known, and have been used by others in the past for theoretical analysis of light scattering by long, thin objects. The existence of those solutions allows us to calculate the expected angular distribution and polarization of the light scattered from long, thin objects illuminated by a plane wave at any angle. In this paper we show for the first time how one can incorporate these solutions of Maxwell's equations into a quantitative description of the expected appearance of filamentous biological structures in polarization-based microscopy. Our calculations for unidirectional polarized illumination show that thin, dielectric linear objects such as microtubules (or shallow interfaces) observed with finite aperture optics 1) are totally invisible when the angle (phi) between the object's long axis and incident illumination is outside the range magnitude of 90 - phi < or = sin-1 [1.33/N.A.obj]degrees; and 2) are seen with maximum intensity when phi = 90 degrees for incident illumination and scattered light polarized, either both parallel or both perpendicular to the long axis of the object; whereas 3) two maxima appear at phi approximately equal to 90 +/- 25 degrees for polarization of the incident illumination parallel to, but the scattered light perpendicular to the long axis, or vice versa; and 4) in either of these latter conditions, the objects are invisible when the illumination is near normal incidence. These counterintuitive predictions were exactly borne out by our experimental measurements of light-scattering intensity from flagellar axonemes as a function of orientation in a polarizing microscope. These calculations and measurements provide a foundation for furthering our understanding of

  8. Orientation-dependent visibility of long thin objects in polarization-based microscopy.

    PubMed

    Arimoto, R; Murray, J M

    1996-06-01

    Under conditions of directional illumination, the visibility of long, thin objects depends very strongly on the direction and polarization of the incident light. Solutions to Maxwell's equations for the case of an infinite cylinder in an electromagnetic field are well known, and have been used by others in the past for theoretical analysis of light scattering by long, thin objects. The existence of those solutions allows us to calculate the expected angular distribution and polarization of the light scattered from long, thin objects illuminated by a plane wave at any angle. In this paper we show for the first time how one can incorporate these solutions of Maxwell's equations into a quantitative description of the expected appearance of filamentous biological structures in polarization-based microscopy. Our calculations for unidirectional polarized illumination show that thin, dielectric linear objects such as microtubules (or shallow interfaces) observed with finite aperture optics 1) are totally invisible when the angle (phi) between the object's long axis and incident illumination is outside the range magnitude of 90 - phi < or = sin-1 [1.33/N.A.obj]degrees; and 2) are seen with maximum intensity when phi = 90 degrees for incident illumination and scattered light polarized, either both parallel or both perpendicular to the long axis of the object; whereas 3) two maxima appear at phi approximately equal to 90 +/- 25 degrees for polarization of the incident illumination parallel to, but the scattered light perpendicular to the long axis, or vice versa; and 4) in either of these latter conditions, the objects are invisible when the illumination is near normal incidence. These counterintuitive predictions were exactly borne out by our experimental measurements of light-scattering intensity from flagellar axonemes as a function of orientation in a polarizing microscope. These calculations and measurements provide a foundation for furthering our understanding of

  9. A method of measuring micro-impulse with torsion pendulum based on multi-beam laser heterodyne

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Wang, Chun-Hui

    2012-02-01

    In this paper, we propose a novel method of multi-beam laser heterodyne measurement for micro-impulse. The measurement of the micro-impulse, which is converted into the measurement of the small tuning angle of the torsion pendulum, is realized by considering the interaction between pulse laser and working medium. Based on Doppler effect and heterodyne technology, the information regarding the small tuning angle is loaded to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, thereby obtaining many values of the small tuning angle after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, the small tuning angle can be obtained accurately and the value of the micro-impulse can eventually be calculated. Using Polyvinylchlorid+2%C as a working medium, this novel method is used to simulate the value of the micro-impulse by MATLAB which is generated by considering the interaction between the pulse laser and the working medium, the obtained result shows that the relative error of this method is just 0.5%.

  10. Appendix: Limits on the use of heterodyning and amplification in optical interferometry

    NASA Astrophysics Data System (ADS)

    Burke, Bernard F.

    1992-11-01

    The development of optical fibers, lasers, and mixers at optical frequencies has offered the hope that active methods can contribute to optical interferometry. Heterodyning, in particular, looks attractive, even though bandwidths are narrower than one would like at present; one might expect this limitation to lessen as technology develops. That expectation, unfortunately, is not likely to benefit interferometry at optical wavelengths because of the intervention of quantum mechanics and the second law of thermodynamics, as Burke (1985a) pointed out. So much 'second quantization' noise is generated that only at infrared frequencies, somewhere in the 10-100 micron range, can one look forward to heterodyning in any realistic sense. The reason is easily understood. Every amplifier, in the quantum limit, works by stimulated emission, even though this basic truth is not obvious at radio frequencies. This means that there must be spontaneous emission occurring within every amplifier, and Strandberg (1957) showed that this implied a limiting noise temperature, TN = h nu/k, for any amplifier. Burke (1969) used this result to demonstrate that, if it were not for this quantum noise, the VLBI method would allow one to tell which slit a photon went through before forming an interference pattern, thus violating basic tenants of quantum mechanics. In essence, the second quantization condition Delta N Delta phi greater than or = 1 saves one from paradox. One can state the conclusion simply: any amplifier produces approximately one photon per Hertz of bandwidth. In optical interferometry, one will certainly want bandwidth in the 1012 to 1014 Hz range, and that implies an intolerable cacophony of noise photons. Only at infrared frequencies can one tolerate the quantum noise, where the natural noise background may be high and the mixers are not as efficient as one would hope for. The crossover at present is about 10 or 20 microns, but the boundary will shift to longer wavelengths as

  11. Laser Heterodyne Radiometer for Sensitive Detection of CO2 and CH4

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Miller, J. Houston

    2011-01-01

    We propose to develop an inexpensive, miniaturized, passive laser heterodyne radiometer (LHR) using commercially available telecommunications laser components to measure two significant carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). This instrument would operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach that supports the Decadal Survey. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In a laser heterodyne radiometer, the weak input signal is light that has undergone absorption by a trace gas. The local oscillator is a laser at a near-by frequency - in this case a low-cost distributed feedback (DFB) telecommunications laser. These two light waves are superimposed in either a beamsplitter or in a fiber coupler (as is the case in this design). The signals are mixed in the detector, and the RF beat frequency is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. A schematic of the progression of the LHR development project is shown in the figure below. At the center (within the dashed line), light from the local oscillator is superimposed upon light that has undergone absorption by a trace gas, in a single mode

  12. Shaft balancing

    DOEpatents

    Irwin, John A.

    1979-01-01

    A gas turbine engine has an internal drive shaft including one end connected to a driven load and an opposite end connected to a turbine wheel and wherein the shaft has an in situ adjustable balance system near the critical center of a bearing span for the shaft including two 360.degree. rings piloted on the outer diameter of the shaft at a point accessible through an internal engine panel; each of the rings has a small amount of material removed from its periphery whereby both of the rings are precisely unbalanced an equivalent amount; the rings are locked circumferentially together by radial serrations thereon; numbered tangs on the outside diameter of each ring identify the circumferential location of unbalance once the rings are locked together; an aft ring of the pair of rings has a spline on its inside diameter that mates with a like spline on the shaft to lock the entire assembly together.

  13. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy

    PubMed Central

    1981-01-01

    Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777

  14. Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy.

    PubMed

    Inoué, S

    1981-05-01

    Video cameras with contrast and black level controls can yield polarized light and differential interference contrast microscope images with unprecedented image quality, resolution, and recording speed. The theoretical basis and practical aspects of video polarization and differential interference contrast microscopy are discussed and several applications in cell biology are illustrated. These include: birefringence of cortical structures and beating cilia in Stentor, birefringence of rotating flagella on a single bacterium, growth and morphogenesis of echinoderm skeletal spicules in culture, ciliary and electrical activity in a balancing organ of a nudibranch snail, and acrosomal reaction in activated sperm. PMID:6788777

  15. A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions

    NASA Technical Reports Server (NTRS)

    DeLange, Gert; Jacobson, Brian R.; Hu, Qing

    1996-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  16. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    SciTech Connect

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-11-15

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  17. Observation of nonlinear dissipation in piezoresistive diamond nanomechanical resonators by heterodyne down-mixing.

    PubMed

    Imboden, Matthias; Williams, Oliver A; Mohanty, Pritiraj

    2013-09-11

    We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant. PMID:23953003

  18. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal.

    PubMed

    Zhang, Enzheng; Chen, Benyong; Yan, Liping; Yang, Tao; Hao, Qun; Dong, Wenjun; Li, Chaorong

    2013-02-25

    A novel phase measurement method composed of the rising-edge locked signal processing and the digital frequency mixing is proposed for laser heterodyne interferometer. The rising-edge locked signal processing, which employs a high frequency clock signal to lock the rising-edges of the reference and measurement signals, not only can improve the steepness of the rising-edge, but also can eliminate the error counting caused by multi-rising-edge phenomenon in fringe counting. The digital frequency mixing is realized by mixing the digital interference signal with a digital base signal that is different from conventional frequency mixing with analogue signals. These signal processing can improve the measurement accuracy and enhance anti-interference and measurement stability. The principle and implementation of the method are described in detail. An experimental setup was constructed and a series of experiments verified the feasibility of the method in large displacement measurement with high speed and nanometer resolution.

  19. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  20. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  1. Multichannel optical-fibre heterodyne interferometer for ultrasound detection of partial discharges in power transformers

    NASA Astrophysics Data System (ADS)

    Posada, J. E.; Garcia-Souto, J. A.; Rubio-Serrano, J.

    2013-09-01

    A multichannel interferometric system is proposed for the ultrasonic detection of partial discharges using intrinsic optical fibre sensors that may be immersed in oil. It is based on a heterodyne scheme which drives at least four sensor heads in order to localize the source of the acoustic emissions. Proper design of the sensing head improves its sensitivity through magnification and reaches a compact encapsulated probe able to be installed within power transformers. The optoelectronic implementation and the experimental tests are presented to optimize the resolution (4 channels—4 mrad). In addition, the results of ultrasound measurements at 150 kHz with an optical fibre sensor immersed in water in an acoustic test bench are shown, in which a resolution better than 10 Pa was obtained. Finally, the set-up for three-phase power transformers is demonstrated and characterized to detect and locate the source of acoustic emissions.

  2. Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1998-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  3. Two-axis pointing mechanism for Earth observation system using heterodyne interferometry positioning sensor

    NASA Astrophysics Data System (ADS)

    Tsuda, Naozumi; Shimizu, Katsutoshi

    1998-10-01

    The 2-Axis pointing mechanism which we developed is designed for earth observation system. This pointing mechanism is expected to work on the geostationary orbit with high resolution compare with former one. To achieve high resolution, we adopted optical heterodyne technique to mirror angle detecting sensor instead of rotary encoder. The angle of the mirror is calculated from the distance between mirror base and a certain point of reverse side of the mirror. We can get the resolution of 0.029 (mu) rad. For mirror driving mechanism, we adopted a crank mechanism because a pointing mechanism working on the geostationary orbit is not necessary to rotate whole angle. We can get about 1:10 reduction ratio with a crank mechanism in addition to the reduction gear attached to the motor shaft. We have made experimental model and validated its performance.

  4. Ground-based remote sensing of methane height profiles with a tunable diode laser heterodyne spectrometer

    SciTech Connect

    Koide, M.; Taguchi, M.; Fukunsishi, H.; Okano, S.

    1995-02-01

    Height distributions of methane in the troposphere and stratosphere were derived from high resolution absorption spectra observed with a ground-based tunable diode laser heterodyne spectrometer. The center wavenumber of the measured methane absorption line is 1223.1561/cm. In the retrieval of methane height profiles, a volume mixing ratio of methane was assumed to have a constant value in the troposphere and to decrease with a constant rate in the stratosphere. The tropospheric mixing ratio and the decreasing rate in stratosphere were derived to be 1.7 +/- 0.1 ppmv and -0.06 ppmv/km, respectively, for measurements at Tsukuba (36.0 deg N, 140.1 deg E) on December 17 and 20, 1991.

  5. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  6. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  7. Unsteady pressure-sensitive paint measurement based on the heterodyne method using low frame rate camera

    NASA Astrophysics Data System (ADS)

    Matsuda, Yu; Yorita, Daisuke; Egami, Yasuhiro; Kameya, Tomohiro; Kakihara, Noriaki; Yamaguchi, Hiroki; Asai, Keisuke; Niimi, Tomohide

    2013-10-01

    The pressure-sensitive paint technique based on the heterodyne method was proposed for the precise pressure measurement of unsteady flow fields. This measurement is realized by detecting the beat signal that results from interference between a modulating illumination light source and a pressure fluctuation. The beat signal is captured by a camera with a considerably lower frame rate than the frequency of the pressure fluctuation. By carefully adjusting the frequency of the light and the camera frame rate, the signal at the frequency of interest is detected, while the noise signals at other frequencies are eliminated. To demonstrate the proposed method, we measured the pressure fluctuations in a resonance tube at the fundamental, second, and third harmonics. The pressure fluctuation distributions were successfully obtained and were consistent with measurements from a pressure transducer. The proposed method is a useful technique for measuring unsteady phenomena.

  8. An upgraded 32-channel heterodyne electron cyclotron emission radiometer on Tore Supra

    SciTech Connect

    Segui, J.L.; Molina, D.; Giruzzi, G.; Goniche, M.; Huysmans, G.; Maget, P.; Ottaviani, M.

    2005-12-15

    A 32-channel, 1 GHz spaced heterodyne radiometer is used on the Tore Supra tokamak to measure electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O:E parallel B,k perpendicular B) and 94-126 GHz for the extraordinary mode (X:E perpendicular B,k perpendicular B). The radial resolution is essentially limited by ECE relativistic effects, depending on electron temperature and density, and not by the channels' frequency spacing. The time resolution depends on the acquisition scheme: the system allows for both 1 ms and 10 {mu}s acquisition. For example, this leads to precise electron temperature mapping during MHD activity. First experimental results obtained with this upgraded 32-channel radiometer are presented.

  9. Atom-interferometric gravitational-wave detection using heterodyne laser links

    NASA Astrophysics Data System (ADS)

    Hogan, Jason M.; Kasevich, Mark A.

    2016-09-01

    We propose a gravitational-wave detection method based on heterodyne laser links and light-pulse atom interferometry that enables high sensitivity gravitational-wave detection in the 0.1-mHz to 1-Hz frequency band using a single, long (>108 m), detector baseline. The detection baseline in previous atom-based proposals was constrained by the need for a reference laser to remain collimated over the optical propagation path between two satellites. Here we circumvent this requirement by employing a strong local oscillator laser near each atom ensemble that is phase referenced or phase locked to the reference laser beam. Longer baselines offer a number of potential advantages, including enhanced sensitivity, simplified atom optics, and reduced atomic source flux requirements.

  10. Wideband infrared heterodyne receiver front-end. [for use in CO2 laser communications

    NASA Technical Reports Server (NTRS)

    Peyton, B. J.; Wolczok, J.

    1974-01-01

    A 10.6 micron infrared heterodyne receiver front end was developed for use in a wideband CO2 laser communications link. The infrared receiver employs an 850 MHz response PV HgCdTe photomixer which is mounted in a space quality housing, a low-noise 5 to 1500 MHz IF preamplifier, and a remote control panel. The receiver was designed to handle + or - 750 MHz of Doppler shift while providing an instantaneous information bandwidth of 400 MHz. The measured receiver sensitivity NEP was 1.0 x 10 to the 19th power W/Hz for a photomixer temperature of T sub m = 77 K and an IF beat frequency of 20 MHz and degraded to 1.75 x 10 to the 19th power W/Hz for T sub m = 130 K.

  11. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    PubMed Central

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  12. Unsteady pressure-sensitive paint measurement based on the heterodyne method using low frame rate camera.

    PubMed

    Matsuda, Yu; Yorita, Daisuke; Egami, Yasuhiro; Kameya, Tomohiro; Kakihara, Noriaki; Yamaguchi, Hiroki; Asai, Keisuke; Niimi, Tomohide

    2013-10-01

    The pressure-sensitive paint technique based on the heterodyne method was proposed for the precise pressure measurement of unsteady flow fields. This measurement is realized by detecting the beat signal that results from interference between a modulating illumination light source and a pressure fluctuation. The beat signal is captured by a camera with a considerably lower frame rate than the frequency of the pressure fluctuation. By carefully adjusting the frequency of the light and the camera frame rate, the signal at the frequency of interest is detected, while the noise signals at other frequencies are eliminated. To demonstrate the proposed method, we measured the pressure fluctuations in a resonance tube at the fundamental, second, and third harmonics. The pressure fluctuation distributions were successfully obtained and were consistent with measurements from a pressure transducer. The proposed method is a useful technique for measuring unsteady phenomena.

  13. W-band Heterodyne Receiver Module with 27 K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Gawande, R.; Reeves, R.; Cleary, K.; Readhead, A. C.; Gaier, T.; Kangaslahti, P.; Samoska, L.; Church, S.; Sieth, M.; Voll, P.; Harris, A.; Lai, R.; Sarkozy, S.

    2012-01-01

    We present noise temperature and gain measurements of a W-band heterodyne module populated with MMIC LNAs designed and fabricated using 35nm InP HEMT process. The module has a WR-10 waveguide input. GPPO connectors are used for the LO input and the I and and Q IF outputs. The module is tested at both ambient (300 K) and cryogenic (25 K) temperatures. At 25 K physical temperature, the module has a noise temperature in the range of 27-45 K over the frequency band of 75-111 GHz. The module gain varies between 15 dB and 27 dB. The band-averaged module noise temperature of 350 K and 33 K were measured over 80-110 GHz for the physical temperature of 300 K and 25 K, respectively. The resulting cooling factor is 10.6.

  14. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  15. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    NASA Astrophysics Data System (ADS)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  16. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  17. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  18. Automated control and data acquisition for a tunable diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Shull, T. S.; Rinsland, P. L.

    1983-01-01

    This paper describes the hardware and software design, development, and implementation of the control and data electronics of a laser heterodyne spectrometer instrument being built at NASA Langley Research Center for a technology demonstration. Functional partitioning, applied at all levels of hardware and software, has been found to provide expedient design, development, and testing of the instrument. The instrument is composed of distributed microprocessor-based units. A master/slave protocol is presented which can be simulated by a terminal for unit checkout. All but one of the units are implemented using a set of core boards, plus unique boards where necessary. This design has led to reduced hardware development, reduced parts inventory, and replication of software modules, while providing the flexibility needed for a development instrument. The development tools and documentation guidelines are discussed.

  19. Development of an angular displacement measurement technique through birefringence heterodyne interferometry.

    PubMed

    Hsieh, Hung-Lin; Lee, Ju-Yi; Chen, Lin-Yu; Yang, Yang

    2016-04-01

    An angular displacement measurement sensor with high resolution for large range measurement is presented. The design concept of the proposed method is based on the birefringence effect and phase detection of heterodyne interferometry. High system symmetry and simple operation can be easily achieved by employing an innovative sandwich optical design for the angular sensor. To evaluate the feasibility and performance of the proposed method, several experiments were performed. The experimental results demonstrate that our angular displacement measurement sensor can achieve a measurement range greater than 26°. Considering the high-frequency noise, the measurement resolution of the system is approximately 1.2° × 10-4. Because of the common-path arrangement, our proposed method can provide superior immunity against environmental disturbances. PMID:27136979

  20. Development of long wavelength semiconductor diode lasers near 28 microns for use in infrared heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1984-01-01

    The development of tunable diode lasers operating in the 28 micrometers spectral region for use in infrared heterodyne spectrometers is reported. A process capable of yielding lasers emitting 500 micron W of multimode power, 112 micron W in a true single mode and true single mode operation at laser currents of up to 35% above threshold was developed. Results were obtained from narrow mesastripe (20 micrometer wide) short cavity (120 micrometer length) laser configurations. Six stripe geometry lasers, with a variety of cavity widths and lengths were delivered. The techniques to fabricate such devices was obtained and the long term reliability of such lasers by reproducible electrical and optical output characteristics fabrication from lasers are demonstrated.

  1. Heterodyne Velocimetry measurements on solids shock driven by high power lasers

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Sollier, Arnaud; Lescoute, Emilen; Cuq-Lelandais, Jean-Paul; Gay, Elise; de Resseguier, Thibaut; Berthe, Laurent; Boustie, Michel; Nivard, Mariette; Claverie, Alain; Rabec Le Gloahec, Marc

    2009-06-01

    A new Heterodyne Velocimeter (PDV) is under development at CEA for high explosive experimentations. Recently, we used it onto metallic target shock driven by high power laser. The aim is to test the ability of this means to reveal the propagation and the effects of shocks into materials, at extremely high strain rate and fast variations into the loading evolution. Spallation and fragmentation experiments carried out on aluminum samples, were performed on the LULI lasers at the Ecole Polytechnique, with both VISAR and HV diagnostics. Comparisons reveal a very good consistency of both experimental results. In addition, HV diagnostic evidence several levels of velocity in the experiment of fragmentation. Interpretation of these measurements is supported by transverse shadowgraphy analysis.

  2. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  3. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    NASA Technical Reports Server (NTRS)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  4. Determination of thermoelastic material properties by differential heterodyne detection of impulsive stimulated thermal scattering

    PubMed Central

    Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.

    2015-01-01

    The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643

  5. Remote sensing of atmospheric winds using speckleturbulence interaction, a CO(2) laser, and optical heterodyne detection.

    PubMed

    Holmes, J F; Amzajerdian, F; Gudimetla, R V; Hunt, J M

    1988-06-15

    Speckle-turbulence interaction can be utilized to measure the vector wind in a plane perpendicular to the line of sight from a laser transmitter to a target. A continuous wave source of around 1 W and operating at 10.6 microm, in conjunction with an optical heterodyne receiver, has been used to measure atmospheric winds along horizontal paths. A theoretical basis, the experimental apparatus, processing techniques, and experimental results are presented. The technique has been demonstrated for remote sensing of atmospheric winds along horizontal paths but also has potential for global remote sensing of atmospheric winds and for onboard wind shear detection systems for aircraft. The results show that rms accuracies of the order of 0.5 m/s are possible with averaging times as short as 2 s.

  6. First calibration and visible band observations of Khayyam, a Tunable Spatial Heterodyne Spectroscopy (SHS)

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.; Corliss, J.

    2013-12-01

    We present initial results from observations of wide-field targets using new instrumentation based on an all-reflective spatial heterodyne spectrometer (SHS). SHS instruments are quasi common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~10^5), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. We have constructed both narrow band pass and broadly tunable designs at fixed focal plane facilities on Mt Hamilton and Kitt Peak. This report focuses on the tunable instrument at Mt Hamilton, which is at the focus of the Coudé Auxiliary Telescope (CAT). The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2012 S1 (ISON), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability. Khayyam, The Tunable all-reflective Special Heterodyne Spectrometer (SHS) that has being characterized at the Coudé Auxiliary Telescope (CAT) on Mt. Hamilton.

  7. Characteristics and performance of offset phase locked single frequency heterodyned laser systems.

    PubMed

    Tulchinsky, David A; Hastings, Alexander S; Williams, Keith J

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  8. Dual-wavelength operation of monolithically integrated arrayed waveguide grating lasers for optical heterodyning

    NASA Astrophysics Data System (ADS)

    Guzmán M., Robinson C.; Jimenez, Álvaro; Lawniczuk, Katarzyna; Corradi, Antonio; Leijtens, Xaveer J. M.; Bente, Erwin A. J. M.; Carpintero, Guillermo

    2013-05-01

    A cost-effective solution to provide higher data rates in wireless communication system is to push carrier wave frequencies into millimeter wave (MMW) range, where the frequency bands within the E-band and F-band have been allocated. Photonics is a key technology to generate low phase noise signals, offering methods of generating continuous MMW with varying performance in terms of frequency bandwidth, tunability, and stability. Recently, we demonstrated for the first time of our knowledge the generation of a 95-GHz signal by optical heterodyning of two modes from different channels of a monolithically integrated arrayed waveguide grating multi-wavelength laser (AWGL). The device uses an arrayed waveguide grating (AWG) as an intra-cavity filter. With up to 16-channel sources with independent amplifiers and a booster amplifier on the common waveguide, the laser cavity is formed between cleaved facets of the chip. The two wavelengths required for optical heterodyning are generated activating simultaneously two channel SOAs and the Boost amplifier. In this work, we analyze the effect on the dual-wavelength operation of the Boost SOA, which is shared by two wavelengths. Mapping the optical spectrum, sweeping the two channel and Boost bias currents, we show the interaction among the different SOAs two find the regions of dual wavelength operation. The size of dual wavelength operation region depends greatly on the Boost SOA bias level. Initial results of a numerical model of the AWGL will be also presented, in which a digital filter is used to implement the AWG frequency behavior.

  9. Characteristics and performance of offset phase locked single frequency heterodyned laser systems.

    PubMed

    Tulchinsky, David A; Hastings, Alexander S; Williams, Keith J

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note. PMID:27250392

  10. Characteristics and performance of offset phase locked single frequency heterodyned laser systems

    NASA Astrophysics Data System (ADS)

    Tulchinsky, David A.; Hastings, Alexander S.; Williams, Keith J.

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  11. Vertical profiling of methane and carbon dioxide using high resolution near-infrared heterodyne spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander; Klimchuk, Artem; Churbanov, Dmitry; Pereslavtseva, Anastasia; Spiridonov, Maxim; Nadezhdinskyi, Alexander

    2014-05-01

    We present new method of monitoring greenhouse gases using spectroscopic observations of solar radiation passed through the atmosphere with spectral resolution ΛvδΛ up to 108. Such a high resolution is achieved by heterodyne technique and allows to retrieve full information about spectral line shape which, in turn, is used to distinguish contribution of different atmospheric layers to the resulting absorption. Weak absorption line at 6056.5 cm-1 was selected for CO2 measurements and a quartet of lines centered at 6057 cm-1for CH4. The instrument setup includes Sun tracker with a microtelescope and chopper, diode DFB laser used as a local oscillator, a bundle of single mode optical fibers that provides medium for radiation transfer and beam coupling, reference cell with depressurized methane for LO frequency stabilization, and Fabry-Perot etalon for LO frequency calibration. A commercial p-i-n diode with squared detector replaces a mixer and IF spectrometer, providing measurement of heterodyne beating within a bandpass of few MHz, which determines the effective spectral resolution of the instrument. Spectral coverage within narrow range (about 1 cm-1) is provided by ramping the LO frequency based on feedback from the reference channel. Observations of Sun in the Moscow region have resulted for the first time in measurements of the atmospheric transmission near 1.65 μm with sub-Doppler spectral resolution. In order to retrieve vertical profiles of methane and carbon dioxide we developed the inversion algorithm implementing Tikhonov regularization approach. With measured transmission having S/N ratio of 100 or higher, the uncertainty of CH4 profile is about 10 ppb, with the uncertainty of CO2 profile at 1 ppm. This techniques is promising an affordable opportunity or widespread monitoring of greenhouse gases and may be implemented on existing ground-based stations. This work has been supported by the grant of Russian Ministry of education and science #11.G34.31.0074

  12. Numerical investigation of multi-beam laser heterodyne measurement with ultra-precision for linear expansion coefficient of metal based on oscillating mirror modulation

    NASA Astrophysics Data System (ADS)

    Li, Yan-Chao; Wang, Chun-Hui; Qu, Yang; Gao, Long; Cong, Hai-Fang; Yang, Yan-Ling; Gao, Jie; Wang, Ao-You

    2011-01-01

    This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.

  13. Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy.

    PubMed

    Stupar, Dusan; Krieg, Jürgen; Krötz, Peter; Sonnabend, Guido; Sornig, Manuela; Giesen, Thomas F; Schieder, Rudolf

    2008-06-01

    To our knowledge we present the first experiments with a fully reflective external-cavity quantum-cascade laser system at mid-infrared wavelengths for use as a local oscillator in a heterodyne receiver. The performance of the presented setup was investigated using absorption spectroscopy as well as heterodyne techniques. Tunability over approximately 30 cm(-1) at 1130 cm(-1) was demonstrated using a grating spectrometer. A continuous tuning range of 0.28 cm(-1) was verified by observing the spectra of an internally coupled confocal Fabry-Pérot interferometer and the absorption lines of gas phase SO(2). In a second step the output from the system was used as a local oscillator signal for a heterodyne setup. We show that spectral stability and side mode suppression are excellent and that a compact external-cavity quantum-cascade laser system is well suited to be used as a local oscillator in infrared heterodyne spectrometers.

  14. Automated reduction of sub-millimetre single-dish heterodyne data from the James Clerk Maxwell Telescope using ORAC-DR

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Currie, Malcolm J.; Tilanus, Remo P. J.; Cavanagh, Brad; Berry, David S.; Leech, Jamie; Rizzi, Luca

    2015-10-01

    With the advent of modern multidetector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope (JCMT). The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally, it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.

  15. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level. PMID:27411152

  16. Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons

    SciTech Connect

    Shangina, E. L. Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol'tsman, G. N.; Verevkin, A. A.; Toropov, A. I.

    2010-11-15

    The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f{sub 3dB}) is varied from 150 to 250 MHz with a change in the concentration n{sub s} according to the power law f{sub 3dB} {proportional_to} n{sub s}{sup -0.5} due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility ({mu} > 3 x 10{sup 5} cm{sup 2} V{sup -1} s{sup -1} at 4.2 K).

  17. Modulated heterodyne light scattering set-up for measuring long relaxation time at small and wide angle

    SciTech Connect

    Leone, Nancy; Villari, Valentina; Micali, Norberto

    2012-08-15

    We present a simple, compact, and versatile experimental setup working in the heterodyne detection mode with modulation of the reference beam. The system is implemented with a collection optics based on a unimodal optical fiber coupler. This choice allows the heterodyne to be used in a wide range of scattering angles, even for very small ones, without losing the optical beating. The apparatus can be successfully used to study translational diffusive dynamics of dispersed particles at scattering angles smaller than 5 Degree-Sign and it is suitable for exploring slow relaxation processes in sub-Hertz frequency domain, for example, in glass-forming systems. It is also possible to measure the electrophoretic mobility by applying an electric field into a charged particles solution.

  18. High-sensitivity mid-infrared heterodyne spectrometer with a tunable diode laser as a local oscillator.

    PubMed

    Schmülling, F; Klumb, B; Harter, M; Schieder, R; Vowinkel, B; Winnewisser, G

    1998-08-20

    A new mid-IR heterodyne spectrometer, which is intended to be applied for atmospheric and astrophysical studies, is presented. The spectrometer uses a frequency-stabilized tunable diode laser as a local oscillator. Owing to the low output power of available single-mode diode lasers, a newly developed confocal-ring resonator, the diplexer, is used to superimpose the source signal efficiently with that of the local oscillator. Additionally, the diplexer serves as an optical filter that establishes controlled optical feedback between the laser diode and the detector, which allows stable laser operation with linewidths of the order of 1 MHz. The heterodyne signal from the HgCdTe detector is analyzed by means of a 1.4-GHz acousto-optical spectrometer. With this setup we find system temperatures as low as 4400 K (double sideband), that is, approximately a factor of 6 of the quantum limit.

  19. NO2 heterodyne frequency measurements with a tunable diode laser, a CO laser transfer oscillator and CO2 laser standards

    NASA Technical Reports Server (NTRS)

    Zink, L. R.; Vanek, M.; Wells, J. S.

    1987-01-01

    Heterodyne frequency measurements have been made on selected groups of nitrogen dioxide rovibronic transitions between 1580.8 and 1650.7/cm. The groups are separated by 7 to 10/cm, and the intent is to provide a limited (and interim) calibration table for the region. In addition to a table of measured frequencies in the region, figures of spectra in the vicinity of the measured lines are included to provide a map for identifying the transitions measured.

  20. A Generalized Heterodyne Method Incorporating a High-Frequency Integral-Type PLL for Sensorless Drives of PMSMs

    NASA Astrophysics Data System (ADS)

    Shinnaka, Shinji

    This paper proposes a new generalized heterodyne method that incorporates a high-frequency integral-type phase-locked loop (PLL) as a versatile rotor-phase estimation method from stator current caused by high-frequency voltage injection for sensorless drive of salient-pole permanent-magnet synchronous motors. The proposed method has the following characteristics that are in direct contrast to those of conventional heterodyne methods. 1) In principle, it can be applied to almost all voltage injection methods. 2) In principle, it can properly estimate the rotor phase over a wide range of speed. 3) It employs a new simple estimation structure based on the high-frequency integral-type PLL method, which does not require any additional filters. 4) An analytical method for designing the components of the structure has been established and no trial and error method is required for selecting the parameters for the components. 5) The stability of the phase-estimation system of the structure is guaranteed. 6) The high-frequency noises generated in the heterodyne process do not appear on the estimated rotor phase.

  1. Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4b/s/Hz.

    PubMed

    Li, Xinying; Dong, Ze; Yu, Jianjun; Yu, Jianguo; Chi, Nan

    2013-04-01

    We experimentally demonstrate heterodyne coherent detection of 8 × 112-Gb/s ultra-density wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal after 1120-km single-mode fiber-28 (SMF-28) transmission. The spectral efficiency (SE) is 4b/s/Hz. It is the first time to realize WDM signal transmission with high SE by adopting heterodyne coherent detection. At the heterodyne coherent receiver, intermediate frequency (IF) down conversion is realized in digital frequency domain after analog-to-digital conversion. A digital post filter and 1-bit maximum likelihood sequence estimation (MLSE) adopted after carrier phase estimation (CPE) in the conventional digital-signal-processing (DSP) process is used to suppress the enhanced noise and crosstalk as well as overcome the filtering effects. The bit-error ratio (BER) for all channels is under the forward-error-correction (FEC) limit of 3.8 × 10(-3) after 1120-km SMF-28 transmission.

  2. Heterodyne detection and transmission of 60-Gbaud PDM-QPSK signal with SE of 4b/s/Hz.

    PubMed

    Li, Xinying; Xiao, Jiangnan; Yu, Jianjun

    2014-04-21

    We experimentally demonstrate 8 × 240-Gb/s super-Nyquist wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission on a 50-GHz grid with a net spectral efficiency (SE) of 4b/s/Hz adopting hardware-efficient simplified heterodyne detection. 9-ary quadrature-amplitude-modulation-like (9QAM-like) processing based on multi-modulus blind equalization (MMBE) is adopted to reduce analog-to-digital converter (ADC) bandwidth requirement and improve receiver sensitivity. The transmission distance at the soft-decision forward-error-correction (SD-FEC) threshold of 2 × 10(-2) is 2 × 420 km based on digital post filtering while largely extended to over 5 × 420 km based on 9QAM-like processing, which well illustrates 9QAM-like processing is more efficient for heterodyne coherent WDM system. Moreover, only two ADC channels are needed for simplified heterodyne detection of one 60-Gbaud PDM-QPSK WDM channel, and thus only one commercial oscilloscope (OSC) with two input ports can work well for each WDM channel.

  3. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  4. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    NASA Astrophysics Data System (ADS)

    Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.

    2012-12-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal in the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations in pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  5. Remote sensing of the stratospheric ozone profile using a tunable sideband CO(2) laser heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Shahnazi, Kambiz

    1997-12-01

    In this work, a systematic approach for remote sensing of stratospheric ozone was developed. Preliminary studies of the line shape, Doppler width, number density, and its theoretical location from Hitran data base using direct detection were made. Seven absorption lines were studied and recorded. These lines were only a few wavenumbers away from various CO2 vibrational rotational lines. This extracted information allowed us to choose a few particular lines in our stratospheric measurements. The sweeping of these lines was done by an electro-optic phase modulator capable of tuning from 8-18 GHz with input electrical power of about 10 Watts, and optical power of 300 mW. The uniqueness of this experiment is its sweeping capability with resolution limited by the laser line width (≈100 KHz) and synthesizer tuning. The resolution of our measurements was 5 MHz (0.000016 cm-1) with signal to noise ratio of 100. By using the heterodyne technique in the laboratory, an absorption line of ozone was obtained. The measured ozone line was at 14.65 GHz away from CO2 carrier at 9p22 transition line with signal to noise ratio of 100:1 and with resolution of about 5 MHz. The next objective was to obtain field data on stratospheric ozone. The field measurements were obtained on February 12 and February 23 1997 between 9:00 A.M and 11:30 A.M. The angle of the sun from the horizon was about 40-45 degrees. With a modified sun tracking system, a window of about 3-5 minutes per scan was obtained. A total of three lines were observed and recorded using this heterodyne technique. Information regarding temperature and number density from these lines were estimated. The calculated number density from the Beer- Lambert Law was approximated to be about ~1011 molecules/cm3. The temperature was approximately to 240 to 260K with signal to noise ratio of about 100:1. The importance of this measurement technique was its capability to map individual absorption line for further studies.

  6. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column

  7. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  8. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Miller, J. H.; McLinden, M. L.; Ott, L.; Holben, B. N.

    2012-12-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (CO2, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photo-receiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion. We offer a low-cost (<$30K/unit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  9. Laser heterodyne system for obtaining height profiles of minor species in the atmosphere

    NASA Technical Reports Server (NTRS)

    Jain, S. L.; Saha, A. K.

    1986-01-01

    An infrared laser heterodyne system for obtaining height profiles of minor constituents of the atmosphere was developed and erected. A brief discription of the system is given. The system consists of a tunable CO2 waveguide laser in the 9 to 11 micrometer band, that is used as a local oscillator and a heliostat that follows the sun and brings in solar radiation, that is mixed with the laser beam in a high speed liquid nitrogen cooled mercury cadmium telluride detector. The detected signal is analysed in a RF spectrum analyser that allows tracing absorption line profiles. Absorption lines of a number of minor constituents in the troposphere and stratosphere, such as O3, NH3, H2O, SO2, ClO, N2O, are in the 9 to 11 micrometer band and overlap with that of CO2 laser range. The experimental system has been made operational and trial observations taken. Current measurements are limited to ozone height profiles. Results are presented.

  10. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  11. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  12. Development and field tests of a narrowband all-reflective spatial heterodyne spectrometer.

    PubMed

    Corliss, J B; Harris, W M; Mierkiewicz, E J; Roesler, F L

    2015-10-20

    We describe the design, development, and performance of a narrowband, all-reflective, unaliased spatial heterodyne spectrometer (SHS) that has been tested in observations at the focus of the 1.6 m main telescope of the McMath-Pierce solar telescope on Kitt Peak. The all-reflective SHS described herein is a highly robust common-path Fourier transform spectrometer without moving parts that, over a limited spectral region, combines the large field of view and high resolving power characteristic of interference spectrometers but at substantially reduced instrument size and optical tolerances. The self-scanned region of wavelength space and resolving power of the SHS are determined by the beam size, the diffraction grating groove density, the number of detector elements, and the fixed orientation of a set of pilot mirrors. The results presented here represent the first successful implementation of this reflective SHS design for field use. We discuss concepts behind the unaliased reflective SHS design and report the performance of the instrument when used to observe terrestrial airglow and absorption features, the solar spectrum, and the Jovian spectrum near λ=6300  Å, at the achieved resolving power (R=λ/δλ) of R>100,000. The results confirm that reflective SHS instruments can deliver effective interferometric performance in the visible to the far-ultraviolet wavelengths with commercial optics of moderate surface quality. PMID:26560368

  13. HARP: a submillimetre heterodyne array receiver operating on the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Smith, H.; Buckle, J.; Hills, R.; Bell, G.; Richer, J.; Curtis, E.; Withington, S.; Leech, J.; Williamson, R.; Dent, W.; Hastings, P.; Redman, R.; Wooff, B.; Yeung, K.; Friberg, P.; Walther, C.; Kackley, R.; Jenness, T.; Tilanus, R.; Dempsey, J.; Kroug, M.; Zijlstra, T.; Klapwijk, T. M.

    2008-07-01

    This paper describes the key design features and performance of HARP, an innovative heterodyne focal-plane array receiver designed and built to operate in the submillimetre on the James Clerk Maxwell Telescope (JCMT) in Hawaii. The 4x4 element array uses SIS detectors, and is the first sub-millimetre spectral imaging system on the JCMT. HARP provides 3-dimensional imaging capability with high sensitivity at 325-375 GHz and affords significantly improved productivity in terms of speed of mapping. HARP was designed and built as a collaborative project between the Cavendish Astrophysics Group in Cambridge UK, the UK-Astronomy Technology Centre in Edinburgh UK, the Herzberg Institute of Astrophysics in Canada and the Joint Astronomy Centre in Hawaii. SIS devices for the mixers were fabricated to a Cavendish Astrophysics Group design at the Delft University of Technology in the Netherlands. Working in conjunction with the new Auto Correlation Spectral Imaging System (ACSIS), first light with HARP was achieved in December 2005. HARP synthesizes a number of interesting features across all elements of the design; we present key performance characteristics and images of astronomical observations obtained during commissioning.

  14. Spatial frequency heterodyne imaging of aqueous phase transitions inside multi-walled carbon nanotubes.

    PubMed

    Schunk, F M; Rand, D; Rose-Petruck, C

    2015-12-14

    The evaporation and condensation of water on multi-walled carbon nanotube (MWCNT) surfaces was studied as a function of temperature and time using X-ray spatial frequency heterodyne imaging (SFHI). SFHI is an imaging modality that produces an absorption and scatter image in a single exposure, and has increased sensitivity to variations in electron density relative to more common place X-ray imaging techniques. Differing features exhibited in the temporal scatter intensity profiles recorded during evaporation and condensation revealed the existence of an absorption-desorption hysteresis. Effects on the aforementioned phenomena due to chemical functionalization of the carbon nanotube surfaces were also monitored. The increased interaction potential between the functionalized MWCNT walls and water molecules altered the evaporation event time scale and increased the temperature at which condensation could take place. Theoretical calculations were used to correlate the shape of the observed scatter profiles during condensation to changes in the MWCNT cross section geometry and configuration of the contained water volume. Changes in evaporation time scales with temperature coincided with the boiling point for confined water predicted by the Kelvin equation, indicating that a thermodynamic description of mesoscopic confined water is permissible in some instances. PMID:26549826

  15. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Sharma, Shiv K; Acosta, Tayro E; Angel, S Michael

    2016-04-01

    A spatial heterodyne Raman spectrometer (SHRS) is evaluated for stand-off Raman measurements in ambient light conditions using both ultraviolet (UV) and visible pulsed lasers with a gated ICCD detector. The wide acceptance angle of the SHRS simplifies optical coupling of the spectrometer to the telescope and does not require precise laser focusing or positioning of the laser on the sample. If the laser beam wanders or loses focus on the sample, as long as it is in the field of view of the SHRS, the Raman signal will still be collected. The SHRS is not overly susceptible to vibrations, and a vibration isolated optical table was not necessary for these measurements. The system performance was assessed by measuring stand-off UV and visible Raman spectra of a wide variety of materials at distances up to 18 m, using 266 nm and 532 nm pulsed lasers, with 12.4 in. and 3.8 in. aperture telescopes, respectively. PMID:26883731

  16. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  17. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Sharma, Shiv K; Acosta, Tayro E; Angel, S Michael

    2016-04-01

    A spatial heterodyne Raman spectrometer (SHRS) is evaluated for stand-off Raman measurements in ambient light conditions using both ultraviolet (UV) and visible pulsed lasers with a gated ICCD detector. The wide acceptance angle of the SHRS simplifies optical coupling of the spectrometer to the telescope and does not require precise laser focusing or positioning of the laser on the sample. If the laser beam wanders or loses focus on the sample, as long as it is in the field of view of the SHRS, the Raman signal will still be collected. The SHRS is not overly susceptible to vibrations, and a vibration isolated optical table was not necessary for these measurements. The system performance was assessed by measuring stand-off UV and visible Raman spectra of a wide variety of materials at distances up to 18 m, using 266 nm and 532 nm pulsed lasers, with 12.4 in. and 3.8 in. aperture telescopes, respectively.

  18. Automated Removal of Bad-Baseline Spectra from ACSIS/HARP Heterodyne Time Series

    NASA Astrophysics Data System (ADS)

    Currie, M. J.

    2013-10-01

    Heterodyne time-series spectral data often exhibit distorted or noisy baselines. These are either transient due to external interference or pickup; or affect a receptor throughout an observation or extended period, possibly due to a poor cable connection. While such spectra can be excluded manually, this is time consuming and prone to omission, especially for the high-frequency interference affecting just one or two spectra in typically several to twenty thousand, yet can produce undesirable artifacts in the reduced spectral cube. Further astronomers have tended to reject an entire receptor if any of its spectra are suspect; as a consequence the reduced products have lower signal-to-noise, and enhanced graticule patterns due to the variable coverage and detector relative sensitivities. This paper illustrates some of the types of aberrant spectra for ACSIS/HARP on the James Clerk Maxwell Telescope and the algorithms used to identify and remove them, applied within the ORAC-DR pipeline, and compares an integrated map with and without baseline filtering.

  19. Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation.

    PubMed

    Hébert, Nicolas Bourbeau; Michaud-Belleau, Vincent; Anstie, James D; Deschênes, Jean-Daniel; Luiten, Andre N; Genest, Jérôme

    2015-10-19

    We present an original instrument designed to accomplish high-speed spectroscopy of individual optical lines based on a frequency comb generated by pseudo-random phase modulation of a continuous-wave (CW) laser. This approach delivers efficient usage of the laser power as well as independent control over the spectral point spacing, bandwidth and central wavelength of the comb. The comb is mixed with a local oscillator generated from the same CW laser frequency-shifted by an acousto-optic modulator, enabling a self-heterodyne detection scheme. The current configuration offers a calibrated spectrum every 1.12 µs. We demonstrate the capabilities of the spectrometer by producing averaged, as well as time-resolved, spectra of the D1 transition of cesium with a 9.8-MHz point spacing, a 50-kHz resolution and a span of more than 3 GHz. The spectra obtained after 1 ms of averaging are fitted with complex Voigt profiles that return parameters in good agreement with expected values. PMID:26480442

  20. Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)

    NASA Technical Reports Server (NTRS)

    Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.

    2014-01-01

    Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.

  1. A laser-heterodyne bunch length monitor for the SLC interaction point

    SciTech Connect

    Kotseroglou, T.; Alley, R.; Jobe, K.

    1997-05-01

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a `laser wire`, by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point.

  2. THz instrumentation for the Herschel Space Observatory's heterodyne instrument for far infrared

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Mehdi, Imran; Ward, John S.; Maiwald, Frank W.; Ferber, Robert R.; LeDuc, Henry G.; Schlecht, Erich T.; Gill, John J.; Hatch, William A.; Kawamura, Jonathan H.; Stern, Jeffrey A.; Gaier, Todd C.; Samoska, Lorene A.; Weinreb, Sander; Bumble, Bruce; Pukala, David M.; Javadi, Hamid H.; Finamore, Bradley P.; Lin, Robert H.; Dengler, Robert J.; Velebir, James R.; Luong, Edward M.; Tsang, Raymond; Peralta, Alejandro; Wells, Mary; Chun, William; Zmuidzinas, Jonas; Karpov, Alexandre; Phillips, Thomas; Miller, David; Maestrini, Alain E.; Erickson, Neal; Swift, Gerald; Liao, K. T.; Paquette, Michael

    2004-10-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480- 1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-band Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  3. THz frequency receiver instrumentation for Herschel's heterodyne instrument for far infrared (HIFI)

    NASA Astrophysics Data System (ADS)

    Pearson, John C.; Mehdi, Imran; Schlecht, Erich; Maiwald, Frank; Maestrini, Alain; Gill, John J.; Martin, Suzanne C.; Pukala, Dave; Ward, J.; Kawamura, Jonathan; McGrath, William R.; Hatch, William; Harding, Dennis G.; LeDuc, Henry G.; Stern, Jeffry A.; Bumble, Bruce; Samoska, Lorene A.; Gaier, Todd C.; Ferber, Robert; Miller, David; Karpov, Alexandre; Zmuidzinas, Jonas; Phillips, Thomas G.; Erickson, Neal R.; Swift, Jerry; Chung, Yun; Lai, Richard; Wang, Huei

    2003-03-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unti will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS mixtures. The National Aeronautics and Space Administration's Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the highest frequency (1650-1910 GHz) HEB mixers, local oscillators for the three highest frequency receivers as well as W-band power amplifiers, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. The current state of the art for each of these devices is presented along with a programmatic view of the development effort.

  4. Technology and Capibilities of the Herschel Space Observatory's Heterodyne Instrument for Far Infrared (HIFI)

    NASA Astrophysics Data System (ADS)

    Pearson, J. C.; Phillips, T. G.

    2004-05-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. The HIFI receivers employ W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS and HEB mixers. The HIFI instrument is built by an international consortium lead by Space Research Organization the Netherlands with a substantial contribution by the National Aeronautics and Space Administration's Jet Propulsion Laboratory. HIFI combines the new receiver technology and a variety of potential observing modes into an extremely power system with unprecedented sensitivity and capability. HIFI will be available for all to use through the Herschel open time proposal process. An overview of the HIFI technology, receiver configuration, functionality and observing capabilities will be presented.

  5. An Extremely Wide Bandwidth, Low Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.

  6. Tantalum hot-electron bolometers for low-noise heterodyne receivers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W.; Bumble, B.; LeDuc, H. G.

    2002-01-01

    We describe superconducting diffusion-cooled hot-electron bolometers that were fabricated fromtantalum films grown on a thin niobium seed layer. The seed layer promotes single-phase growth of the Ta films, resulting in high-quality bolometers with transition temperatures up to 2.35 K and transition widths of less than 0.2 K. An S-parameter measurement set-up in a He-3 cryostat was used to measure device impedance versus frequency of a 400 nm long device at a temperature of 400 mK. It is shown that a 3 dB roll-off frequency of about 1 GHz can be achieved when the device resistance matches the impedance of the embedding network (no electrothermal feedback). This would lead to a prediction of 16 GHz for a 100 nm device, and indicates that a heterodyne mixer using a Ta HEB should be able to operate at several GHz even with a significant amount of electrothermal feedback.

  7. Noncontact photoacoustic tomography of in vivo chicken chorioallantoic membrane based on all-fiber heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Eom, Jonghyun; Park, Seong Jun; Lee, Byeong Ha

    2015-10-01

    We present three-dimensional (3-D) in vivo photoacoustic (PA) images of the blood vasculature of a chicken chorioallantoic membrane (CAM) obtained by using a fiber-based noncontact PA tomography system. With a fiber-optic heterodyne interferometer, the system measures the surface displacement of a sample, induced by the PA wave, which overcomes the disadvantage of physical-contact of ultrasonic transducer in a conventional system. The performance of an implemented system is analyzed and its capability of in vivo 3-D bioimaging is presented. At a depth of 2.5 mm in a phantom experiment, the lateral and axial resolutions were measured as 100 and 30 μm, respectively. The lateral resolution became doubled at a depth of 7.0 mm however, interestingly, the axial resolution was not noticeably deteriorated with the depth. With the CAM experiment, performed under the American National Standards Institute laser safety standard condition, blood vessel structures placed as deep as 3.5 mm were clearly recognized.

  8. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    PubMed Central

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  9. Application of heterodyne velocimetry and pyrometry as diagnostics for explosive characterisation

    NASA Astrophysics Data System (ADS)

    Ferguson, J. W.; Taylor, P.

    2014-05-01

    The results of four cylinder tests performed on two batches of the HMX based explosive EDC37 using a new suite of diagnostics are described. Heterodyne laser velocimetry (het-v) and pyrometry were fielded for the first time on cylinder tests within AWE. Pyrometry gave a measurement of the temperature of the detonating HE of 2600-3485 K. Sixteen channels of het-v were fielded and provided high fidelity expansion data at distances of up to 30 mm. High speed framing camera images were obtained and show no signs of cylinder break up or spallation until distances greater then 35 mm. The het-v expansion data made it possible to resolve up to 8 shock reverberations in the wall as it expands. The expansion of the cylinder wall was recorded both before and after steady state detonation was reached and the results compared. Het-v probes were fielded at different angles to the expanding cylinder wall allowing both the vertical and horizontal expansion velocity to be determined. The extra information that these cylinder tests yielded will allow for more accurate code validation and determination of the equation of state of the explosive products.

  10. Balance in Assessment

    ERIC Educational Resources Information Center

    White, Richard

    2007-01-01

    The review by Black and Wiliam of national systems makes clear the complexity of assessment, and identifies important issues. One of these is "balance": balance between local and central responsibilities, balance between the weights given to various purposes of schooling, balance between weights for various functions of assessment, and balance…

  11. Dynamic balance improvement program

    NASA Technical Reports Server (NTRS)

    Butner, M. F.

    1983-01-01

    The reduction of residual unbalance in the space shuttle main engine (SSME) high pressure turbopump rotors was addressed. Elastic rotor response to unbalance and balancing requirements, multiplane and in housing balancing, and balance related rotor design considerations were assessed. Recommendations are made for near term improvement of the SSME balancing and for future study and development efforts.

  12. A Question of Balance

    ERIC Educational Resources Information Center

    Claxton, David B.; Troy, Maridy; Dupree, Sarah

    2006-01-01

    Most authorities consider balance to be a component of skill-related physical fitness. Balance, however, is directly related to health, especially for older adults. Falls are a leading cause of injury and death among the elderly. Improved balance can help reduce falls and contribute to older people remaining physically active. Balance is a…

  13. Balancing Vanguard Satellites

    NASA Technical Reports Server (NTRS)

    Simkovich, A.; Baumann, Robert C.

    1961-01-01

    The Vanguard satellites and component parts were balanced within the specified limits by using a Gisholt Type-S balancer in combination with a portable International Research and Development vibration analyzer and filter, with low-frequency pickups. Equipment and procedures used for balancing are described; and the determination of residual imbalance is accomplished by two methods: calculation, and graphical interpretation. Between-the-bearings balancing is recommended for future balancing of payloads.

  14. Quad-Chip Double-Balanced Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.

  15. CONDOR - A heterodyne receiver at 1.25-1.5 THz

    NASA Astrophysics Data System (ADS)

    Wiedner, M. C.; Wieching, G.; Bielau, F.; Emprechtinger, M.; Graf, U. U.; Honingh, C. E.; Jacobs, K.; Paulussen, D.; Rettenbacher, K.; Volgenau, N. H.

    The CO N+ Deuterium Observations Receiver (CONDOR) is a heterodyne receiver that operates between 1250 - 1530 GHz. Its primary goal is to observe star-forming regions in CO, N^+, and H[2]D^+ emission. The instrument follows the standard heterodyne design. It uses a solid state local oscillator (LO), whose signal is overlaid with that of the sky using a Martin-Puplett interferometer. The heart of the receiver is a superconducting NbTiN hot electron bolometer (HEB) (Munoz et al. 2006). The bolometer has an area of 0.25 x 2.8 microns and is mounted on a SiN membrane in a waveguide mixer block. To facilitate operation at remote sites, CONDOR is the first receiver that cools the HEB with a closed-cycle system. Since HEBs are particularly sensitive to temperature fluctuations as well as modulations in LO power, we use a Pulse Tube Cooler, which has less vibration than, e.g., a Gifford-McMahon cooler. In order to further minimize vibrations and temperature fluctuations, the mixer and first amplifier are mounted on a separate plate connected via flexible heat straps to the 4K stage. CONDOR has an intermediate frequency (IF) of about 1.0 -1.8 GHz. We consistently obtain receiver noise temperatures below 1800 K and minima in the spectral Allan variances at 25 - 35 s, which is approximately the optimum individual on-source integration time. In November 2005, CONDOR was successfully commissioned on the 12-m Atacama Pathfinder Experiment (APEX) telescope and the first astronomical observations were performed (see IAU Sym. 237 contribution "CONDOR Observations of High Mass Star Formation in Orion" by Volgenau, and Wiedner et al. (2006).) Pointing observations were preformed on the Moon and Mars. The first spectral line observations were obtained of CO J=13-12 emission at 1497~GHz from several sources in Orion. (For details on the first light observations see Wiedner et al. (2006).) integration time (see Schieder & Kramer 2001). As expected, the Allan variance is dominated by the

  16. A New 350 GHz Heterodyne Array Receiver (HARP) and Observations of Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Leech, Jamie

    2002-08-01

    This thesis describes the design, theoretical modelling and experimental verification of a 16 element heterodyne array receiver for operation between 325 and 375~GHz. The development of array receivers is crucial for submillimetre astronomy with single dish telescopes since they promise order of magnitude increases in spectroscopic mapping speeds compared to single element receivers. The HARP (Heterodyne Array Receiver Programme) receiver, when attached to the James Clerk Maxwell Telescope (JCMT), will enable fast mapping of several astrophysically important constituents of the interstellar medium, both in the Milky Way and in external galaxies. The imaging module for the HARP receiver consists of 16 SIS (Superconductor - Insulator - Superconductor) fixed-tuned mixers with corrugated horn-reflector feeds. The design, electromagnetic modelling and experimental testing of a new type of corrugated horn, combining good performance with ease of machining, is described. The incoming astronomical and LO signals are coupled from a rectangular waveguide to the SIS tunnel junction by means of a one-sided microstrip probe. The input impedance of such one-sided probes is analysed theoretically and confirmed by measurements on a 5 GHz scale model. The potential of using such probes in combination with extended backshort to achieve sideband suppression is also examined. The design of the SIS devices to be used in each HARP mixer in the array is described, and electromagnetic modelling is used to achieve improved designs. Noise temperatures for a range of HARP SIS devices are measured, and the consequences of these measurements for receiver performance is assessed. Embedding impedance recovery techniques are successfully used to assess the tuning of the SIS devices. The design for the injection of local oscillator signal into each mixer in the array is developed, by using theoretical modelling based on single and multi-mode Gaussian beams. The performance of the prototype LO

  17. Dual-polarization modes and self-heterodyne noise in a single-frequency 2.1-microm microchip Ho,Tm:YAG laser.

    PubMed

    He, C; Killinger, D K

    1994-03-15

    We have observed, for the first time to our knowledge, residual stress-induced birefringent dual-polarization modes in a diode-pumped, single-frequency, microchip cw 2.0914-microm Ho,Tm:YAG laser. The two orthogonally polarized modes were separated in frequency by approximately 12 MHz and, when photodetected, produced a 12-MHz self-heterodyne beat signal. The self-heterodyne signal could be eliminated by an external lambda/4 plate and a polarizer to filter out one of the modes, but this required regulation of the pump laser power to better than 1%. These results have important implications for use of the microchip Ho,Tm:YAG laser in a heterodyne detection coherent lidar.

  18. Evidence for high-altitude haze thickening on the dark side of Venus from 10-micron heterodyne spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M.

    1982-01-01

    Infrared heterodyne spectroscopy provides data for isolated spectral lines with a spectral resolution which is small compared to the Doppler width. Heterodyne spectroscopy of CO2 lines near 10 micrometers was first reported for the atmosphere of Venus by Betz et al. (1976). The present investigation is concerned with observations of two absorption lines of (C-12)(O-16)2 conducted with an infrared heterodyne spectrometer interfaced with a solar telescope. The 10.8598-micrometer P(44) line was observed on the day side of Venus and the 10.3337-micrometer R(8) line was observed on the night side. It is shown that continuous opacity due to haze, and possible departures from vibrational LTE in CO2, are crucial considerations in fitting the observed lines.

  19. First Performance Results of a New Geocoronal Balmer-alpha Field-Widened Spatial Heterodyne Spectrometer

    NASA Astrophysics Data System (ADS)

    Gardner, D.; Mierkiewicz, E. J.; Roesler, F. L.; Harlander, J.; Jaehnig, K.; Nossal, S. M.; Haffner, L. M.

    2015-12-01

    During 2013, a new, high resolution field-widened spatial heterodyne spectrometer (FW-SHS) uniquely designed to observe geocoronal Balmer-alpha emission ([Ha], 6563A) was installed at Pine Bluff Observatory (PBO) near Madison Wisconsin. FW-SHS observations were compared with an already well-characterized dual-etalon Fabry Perot Interferometer (FPI) optimized for [Ha], also at PBO. The FW-SHS is a robust new Fourier-transform instrument that combines a large throughput advantage with high spectral resolution and a relatively long spectral baseline (~10x that of the FPI) in a compact, versatile instrument with no moving parts. Coincident [Ha] observations by FW-SHS and FPI were obtained over similar integration times, resolving power (~80,000 at [Ha]) and field-of-view (1.8 and 1.4 degrees, respectively). This paper describes the FW-SHS first light performance and [Ha] observational results collected from observing nights across 2013 and 2014. Initial FW-SHS observations of Balmer-alpha intensity and temperature (doppler width) vs. viewing geometry (shadow altitude) show excellent relative agreement with the geocoronal observations previously obtained at PBO by FPI. The FW-SHS is capable of determining geocoronal Balmer-alpha doppler shifts on the order of 100 m/s across a 640km/s [Ha] spectral bandpass, with a temporal resolution on the order of minutes. These characteristics make the FW-SHS well suited for spectroscopic studies of relatively faint, diffuse-source geocoronal Balmer-alpha emission from Earth's upper atmosphere (~2-14R) and the interstellar medium in our Galaxy. Current and future observations expand long-term geocoronal hydrogen observation data sets already spanning two solar maximums.

  20. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    NASA Astrophysics Data System (ADS)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  1. Electron density measurements in an atmospheric pressure air plasma by means of infrared heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; El-Habachi, Ahmed; Schoenbach, Karl H.

    2000-09-01

    An infrared heterodyne interferometer has been used to measure the spatial distribution of the electron density in direct current, atmospheric pressure discharges in air. Spatial resolution of the electron density in the high-pressure glow discharge with characteristic dimensions on the order of 100 µm required the use of a CO2 laser at a wavelength of 10.6 µm. For this wavelength and electron densities greater than 1011 cm-3 the index of refraction of the atmospheric air plasma is mainly determined by heavy particles rather than electrons. The electron contribution to the refractive index was separated from that of the heavy particles by taking the different relaxation times of the two particle species into account. With the discharge operated in a repetitive pulsed mode, the initial rapid change of the refractive index was assumed to be due to the increase in electron density, whereas the following slower rise is due to the decrease in gas density caused by gas heating. By reducing the time between pulses, direct current conditions were approached, and the electron density as well as the gas density, and gas temperature, respectively, were obtained through extrapolation. A computation inversion method was used to determine the radial distribution of the plasma parameters in the cylindrical discharge. For a direct-current filamentary discharge in air, at a current of 10 mA, the electron density was found to be 1013 cm-3 in the centre, decreasing to half of this value at a radial distance of 0.21 mm. Gaussian temperature profiles with σ = 1.1 mm and maximum values of 1000-2000 K in the centre were also obtained with, however, larger error margins than for electron densities.

  2. SuperCam: a 64-pixel heterodyne imaging array for the 870-micron atmospheric window

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher; Walker, Christopher; Kulesa, Craig; Pütz, Patrick; Golish, Dathon; Gensheimer, Paul; Hedden, Abigail; Bussmann, Shane; Weinreb, Sander; Kuiper, Tom; Kooi, Jacob; Jones, Glenn; Bardin, Joseph; Mani, Hamdi; Lichtenberger, Arthur; Narayanan, Gopal

    2006-06-01

    We report on the development of SuperCam, a 64 pixel, superheterodyne camera designed for operation in the astrophysically important 870 μm atmospheric window. SuperCam will be used to answer fundamental questions about the physics and chemistry of molecular clouds in the Galaxy and their direct relation to star and planet formation. The advent of such a system will provide an order of magnitude increase in mapping speed over what is now available and revolutionize how observational astronomy is performed in this important wavelength regime. Unlike the situation with bolometric detectors, heterodyne receiver systems are coherent, retaining information about both the amplitude and phase of the incident photon stream. From this information a high resolution spectrum of the incident light can be obtained without multiplexing. SuperCam will be constructed by stacking eight, 1×8 rows of fixed tuned, SIS mixers. The IF output of each mixer will be connected to a low-noise, broadband MMIC amplifier integrated into the mixer block. The instantaneous IF bandwidth of each pixel will be ~2 GHz, with a center frequency of 5 GHz. A spectrum of the central 500 MHz of each IF band will be provided by the array spectrometer. Local oscillator power is provided by a frequency multiplier whose output is divided between the pixels by using a matrix of waveguide power dividers. The mixer array will be cooled to 4K by a closed-cycle refrigeration system. SuperCam will reside at the Cassegrain focus of the 10m Heinrich Hertz telescope (HHT). A prototype single row of the array will be tested on the HHT in 2006, with the first engineering run of the full array in late 2007. The array is designed and constructed so that it may be readily scaled to higher frequencies.

  3. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  4. THIS -- next-generation mid-infrared remote sensing of planetary atmospheres using a tuneable heterodyne infrared spectrometer

    NASA Astrophysics Data System (ADS)

    Sonnabend, G.; Wirtz, D.; Vetterle, V.; Schieder, R.

    2003-12-01

    The Cologne spectrometer THIS (Tuneable Heterodyne Infrared Spectrometer) opens the mid-infrared wavelength region from 8 to 17 microns to ultra-high-resolution spectroscopy. The main scientific goal of THIS is to analyze highly resolved lineshape data of molecules (e.g. O3, NH3, CH4, N2O, HxCy etc.) to deduce physical parameters like wind velocities or height profiles of gases in either the Earth's or other planetary atmospheres. Also astronomical observations of non-solar-system IR-sources like IRC+10216 as well as the measurement of pure rotational transitions of H2 in the interstellar-medium from ground based telescopes are planned in the near future. THIS is a proposed second-generation instrument for the stratospheric observatory SOFIA. With a system noise temperature of less than three times the quantum limit THIS is the first widely tuneable and transportable infrared heterodyne receiver having a sensitivity equivalent to CO2-laser based heterodyne systems. A quantum-cascade-laser is used as local oscillator. Its radiation is superimposed to that from the signal by use of a Fabry-Perot ring-resonator to provide optimum efficiency. The frequency mixing is done by a Mercury-Cadmium-Telluride photomixer and spectral analysis with a resolution of up to 3x107 is performed by means of an Acousto-Optical spectrometer. We report on THIS' successful first observing run performed at the west auxiliary telescope at McMath-Pierce solar observatory on Kitt Peak/Arizona in 11/2002. Very weak non-LTE CO2 emission from the atmosphere of Venus have been observed as well as trace gases in Earth's atmosphere and molecular features in sunspots.

  5. Heterodyne detected transient grating spectroscopy in resonant and non-resonant systems using a simplified diffractive optics method

    NASA Astrophysics Data System (ADS)

    Xu, Qing-Hua; Ma, Ying-Zhong; Fleming, Graham R.

    2001-04-01

    We report a simplified optical heterodyne detected transient grating setup consisting of a single diffractive optical element based on modifications of the arrangement used by Miller and co-workers [J. Phys. Chem. A, 103 (1999) 10619]. Our arrangement features ease of alignment, suppression of scattering and is free of pump-probe contamination in the detected transient grating signals. The capability of our arrangement is demonstrated by measurements on a non-resonant system, CS 2, and a resonant system, malachite green in ethanol.

  6. Heterodyne-detected and ultrafast time-resolved second-harmonic generation for sensitive measurements of charge transfer.

    PubMed

    Wilcox, Daniel E; Sykes, Matthew E; Niedringhaus, Andrew; Shtein, Max; Ogilvie, Jennifer P

    2014-07-15

    In organic photovoltaics many key ultrafast processes occur at the interface between electron donor and acceptor molecules. Traditional ultrafast spectroscopies, such as pump-probe or time-resolved fluorescence, are not ideal for studying the interface because most of their signal is from the bulk material. Time-resolved second-harmonic generation (TRSHG) spectroscopy solves this problem by only generating signal from the interface. We demonstrate an optically heterodyned TRSHG to reduce the impact of stray light, enhance sensitivity, and detect the full complex signal field.

  7. Full-field heterodyne polariscope with an image signal processing method for principal axis and phase retardation measurements

    SciTech Connect

    Lo, Y.-L.; Chih, H.-W.; Yeh, C.-Y.; Yu, T.-C

    2006-11-01

    We develop a heterodyne polariscope for measuring the two-dimensional principal axis and phase retardation in a linear birefringence material using novel three-frame and two-frame integrating-bucket methods and a CCD. By using a complex programmable logic device to provide an external trigger to the CCD, integrating buckets with multiple frames are achieved. The advantages of the proposed three-frame and two-frame integrating-bucket methods include a simpler signal processing algorithm based on fewer frames and the elimination of flyback error caused by a sawtooth modulation signal at higher frequencies.

  8. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  9. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement

    SciTech Connect

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  10. Measurement of laser-induced thermo-elastic deformation in an optic using polarization-based lateral shearing interferometry

    NASA Astrophysics Data System (ADS)

    Cordier, Mark A.

    A polarization-based shearing interferometer is presented that is capable of measuring the thermal deformation of a mirror subject to heating from absorption of a Gaussian laser beam. The shear is generated by spatial walk-off in a birefringent crystal. By adjusting the orientation of the crystal, the components of the wavefront gradient can be independently measured to allow determination of the full wavefront vector gradate as well as reconstruction of the wavefront. Furthermore, the monolithic nature of the birefringent crystal allows non-critical alignment of the interferometer's components. The interferogram is modulated, and a homodyne detection algorithm analyzes the modulated interferograms to extract the components of the wavefront gradient from which the wavefront is reconstructed. The thermal deformation of the laser-heated mirror was accurately observed with a sensitivity better than λ/160. The sensitivity of this interferometer is scale invariant, and we present a method to account for the non-uniform spatial frequency response of the interferometer.

  11. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  12. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  13. Polarization-balanced beamsplitter

    DOEpatents

    Decker, Derek E.

    1998-01-01

    A beamsplitter assembly that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting.

  14. Get the Balance Right.

    ERIC Educational Resources Information Center

    Haddock, Rebecca Jaurigue

    Today work goes on 24 hours a day, 7 days a week, and is about acceleration and access. Workers need balance more than ever. In fact, recent college graduates value work/life balance as their key factor in selecting employers. This paper, written for career counselors, defines balance as encompassing emotional, spiritual, physical, and…

  15. Design study for a spatial heterodyne Doppler coherence imaging system for flow measurements on NSTX-U

    NASA Astrophysics Data System (ADS)

    Schwartz, Jacob; Jaworski, M. A.; Diallo, A.; Kaita, R.; Nichols, J. H.

    2015-11-01

    Measuring the flow of impurities in the SOL of NSTX-U can lead to understanding of main ion flow and heat transport. Spatial heterodyne Doppler coherence imaging is a technique that allows a single camera frame to record both the brightness and Doppler shift of an emitted spectral line over the entire field of view. With a tangential view on NSTX-U it is possible to tomographically reconstruct 2d (r-z) profiles of emissivity and flow velocity for an imaged impurity ion by assuming axisymmetry and field-aligned flow. One can derive the main ion parallel flow velocity by making four measurements and using additional assumptions. Imaging of two spectral lines each from two ion species allows solving for ne, Te, and the density of the two ion species by using ADAS emissivity tables. Since measurements of the velocity of two impurities are planned, it is possible to derive a main ion parallel velocity by using a reconstructed ni and Ti (from other diagnostics), a 1d conduction-limited SOL model, and a 1d model of forces on impurities. With fewer than four measurements, it is possible to derive the main ion velocity if the impurities are entrained in the flow. A design study for such a spatial heterodyne Doppler coherence imaging system on NSTX-U will be presented. Supported by U.S. DOE Contract No. DE-AC02-09CH11466.

  16. Autonomous Field Measurements of CO2 in the Atmospheric Column with the Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Technical Reports Server (NTRS)

    Melroy, H. R.; Wilson, E. L.; Clarke, G. B.; Ott, L. E.; Mao, J.; Ramanathan, A. K.; McLinden, M. L.

    2015-01-01

    We present column CO2 measurements taken by the passive Miniaturized Laser Heterodyne Radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory (MLO) in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15 minute intervals during daylight hours. Laser Heterodyne Radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here is a preliminary retrieval analysis and the performance analysis that demonstrates that the Mini-LHR responds extremely well to changes in the atmospheric absorption.

  17. Reconceptualizing balance: attributes associated with balance performance.

    PubMed

    Thomas, Julia C; Odonkor, Charles; Griffith, Laura; Holt, Nicole; Percac-Lima, Sanja; Leveille, Suzanne; Ni, Pensheng; Latham, Nancy K; Jette, Alan M; Bean, Jonathan F

    2014-09-01

    Balance tests are commonly used to screen for impairments that put older adults at risk for falls. The purpose of this study was to determine the attributes that were associated with balance performance as measured by the Frailty and Injuries: Cooperative Studies of Intervention Techniques (FICSIT) balance test. This study was a cross-sectional secondary analysis of baseline data from a longitudinal cohort study, the Boston Rehabilitative Impairment Study of the Elderly (Boston RISE). Boston RISE was performed in an outpatient rehabilitation research center and evaluated Boston area primary care patients aged 65 to 96 (N=364) with self-reported difficulty or task-modification climbing a flight of stairs or walking 1/2 of a mile. The outcome measure was standing balance as measured by the FICSIT-4 balance assessment. Other measures included: self-efficacy, pain, depression, executive function, vision, sensory loss, reaction time, kyphosis, leg range of motion, trunk extensor muscle endurance, leg strength and leg velocity at peak power. Participants were 67% female, had an average age of 76.5 (±7.0) years, an average of 4.1 (±2.0) chronic conditions, and an average FICSIT-4 score of 6.7 (±2.2) out of 9. After adjusting for age and gender, attributes significantly associated with balance performance were falls self-efficacy, trunk extensor muscle endurance, sensory loss, and leg velocity at peak power. FICSIT-4 balance performance is associated with a number of behavioral and physiologic attributes, many of which are amenable to rehabilitative treatment. Our findings support a consideration of balance as multidimensional activity as proposed by the current International Classification of Functioning, Disability, and Health (ICF) model. PMID:24952097

  18. First nightglow 844.6-nm observations with the Millstone Hill Spatial Heterodyne Spectrometer

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Waldrop, L.

    2008-05-01

    A Spatial Heterodyne Spectrometer (SHS) has been installed at Millstone Hill Observatory to detect mid-latitude 844.6-nm emissions from nightglow due to Bowen fluorescence, as a way of measuring thermospheric neutral oxygen density. Neutral oxygen is a dominant species in the F-region of the thermosphere, and new measurements are needed to make more accurate models of that region, models which better describe responses to impulsive events such as storms and coronal mass ejections. The SHS instrument at Millstone was originally designed with a field of view of one degree, taking observations with a time resolution of twelve minutes. While this provides an adequate signal-to-noise ratio (SNR) for line detection in spectrum obtained through the Fourier transform, it was found insufficient to detect the O I emission in nightglow above detector noise. Because of this, the SHS needed to be field-widened, to look at a field of view of 4.65 degrees. The field-widened SHS defeats detector dark noise, and reduces the exposure time to create the same SNR as the original instrument to two minutes. Field-widening the SHS requires inserting wedge prisms in each arm, and those prisms will arrive in early March 2008. Meanwhile, the SHS is being calibrated at 844.6 nm, using an oxygen spectrum tube (collimated through the SHS's five-angstrom line filter). The SHS prisms, once they arrive, will be inserted in the instrument between the gratings and beamsplitter at the proper angle, approximately 34 degrees from the system's optical axis. Once this is done, sky observations will commence in March 2007. It is expected that a significant fraction of the detected 844.6 light will be due to photoelectron (PE) impact excitation, though, as observations proceed into summer, Bowen fluorescence will come to dominate the 844.6 nightglow emissions. The two will be distinguished by characteristic line ratios between two of the three lines of the 844.6 triplet. Initial sky observations will be

  19. The First Detection of Diffuse Interstellar [OII] Emission from the Milky Way using Spatial Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mierkiewicz, E. J.; Roesler, F. L.; Harlander, J. M.; Reynolds, R. J.; Jaehnig, K. P.

    2004-12-01

    Using a newly developed Spatial Heterodyne Spectrometer (SHS), we have achieved the first detection of diffuse [OII] 372.6 nm and 372.9 nm emission lines from the warm (10,000 K), low density (0.1 cm-3) ionized component of our Galaxy's interstellar medium (WIM). These [OII] lines are a principal coolant for this wide spread, photoionized gas and are a potential tracer of variations in the gas temperature resulting from unidentified interstellar heating processes that appear to be acting within the Galaxy's disk and halo. We have also detected numerous, weak airglow lines, including terrestrial [OII] emission. In our SHS system, Fizeau fringes of wavenumber-dependent spatial frequency are produced by a Michelson interferometer modified by replacing the return mirrors with diffraction gratings. These fringes are recorded on a position sensitive detector and Fourier transformed to recover a spectrum over a limited range centered at the grating Littrow wavenumber. SHS combines interferometric and field-widening gains to achieve sensitivities much larger than conventional grating instruments of similar size and resolving power, and comparable to the Wisconsin Hα Mapper (WHAM) Fabry-Perot, but in the near UV where WHAM cannot observe. Our early results confirm the superb performance of the SHS technique for measurements of spatially extended faint emissions, including the first detection of [OII] emission lines extending out to 20 degrees from the Galactic equator in the longitude range of 110 to 150 degrees. [OII] intensities range from tens of Rayleighs near the Galactic plane to less than one Rayleigh at high Galactic latitudes. The [OII] line profiles clearly show structure indicating emission along the lines of sight from both local interstellar gas and more distant gas in the Perseus spiral arm. Preliminary line ratio comparisons with WHAM [NII] (658.4 nm) and Hα (656.3 nm) observations confirm the utility of the [OII] observations as a temperature diagnostic

  20. The evaluation of a HgCdTe photomixer with a Tunable Diode Laser (TDL) and the evaluation of TDL's as a local oscillator in a heterodyne detection system

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Kindle, E. C.

    1977-01-01

    Heterodyne systems would be much more versatile if a broadly tunable laser, such as a semiconductor diode laser (TDL), could be used as the local oscillator (LO). Previous studies have shown that while a TDL can be used as an LO, the TDL lack sufficient power to cause the signal-to-noise ratio to be shot noise limited. The heterodyne system with a HgCdTe photodiode as the LO was characterized and the beat frequency response of the heterodyne systems was mapped out.

  1. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    NASA Astrophysics Data System (ADS)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory

  2. A balanced view of balanced solutions.

    PubMed

    Guidet, Bertrand; Soni, Neil; Della Rocca, Giorgio; Kozek, Sibylle; Vallet, Benoît; Annane, Djillali; James, Mike

    2010-01-01

    The present review of fluid therapy studies using balanced solutions versus isotonic saline fluids (both crystalloids and colloids) aims to address recent controversy in this topic. The change to the acid-base equilibrium based on fluid selection is described. Key terms such as dilutional-hyperchloraemic acidosis (correctly used instead of dilutional acidosis or hyperchloraemic metabolic acidosis to account for both the Henderson-Hasselbalch and Stewart equations), isotonic saline and balanced solutions are defined. The review concludes that dilutional-hyperchloraemic acidosis is a side effect, mainly observed after the administration of large volumes of isotonic saline as a crystalloid. Its effect is moderate and relatively transient, and is minimised by limiting crystalloid administration through the use of colloids (in any carrier). Convincing evidence for clinically relevant adverse effects of dilutional-hyperchloraemic acidosis on renal function, coagulation, blood loss, the need for transfusion, gastrointestinal function or mortality cannot be found. In view of the long-term use of isotonic saline either as a crystalloid or as a colloid carrier, the paucity of data documenting detrimental effects of dilutional-hyperchloraemic acidosis and the limited published information on the effects of balanced solutions on outcome, we cannot currently recommend changing fluid therapy to the use of a balanced colloid preparation.

  3. Identifying Balance in a Balanced Scorecard System

    ERIC Educational Resources Information Center

    Aravamudhan, Suhanya; Kamalanabhan, T. J.

    2007-01-01

    In recent years, strategic management concepts seem to be gaining greater attention from the academicians and the practitioner's alike. Balanced Scorecard (BSC) concept is one such management concepts that has spread in worldwide business and consulting communities. The BSC translates mission and vision statements into a comprehensive set of…

  4. Modeling and Analysis of Phase Fluctuation in a High-Precision Roll Angle Measurement Based on a Heterodyne Interferometer.

    PubMed

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Bao

    2016-01-01

    Heterodyne interferometry is a high-precision method applied in roll angle measurements. Phase metering is essential for high precision. During a high-precision measurement, a phase fluctuation appears even when the roll angle does not vary, which has never been analyzed before. Herein, the reason for the phase fluctuation is revealed, which results from the frequency-difference fluctuation and time difference between measurement and reference beams. A mathematical model of that phase-fluctuation mechanism is established, and that model provides a theoretical basis for analyzing and reducing the phase fluctuation. The impact that the main factors have on the phase metering is analyzed quantitatively, and experiments are carried out to validate the model. Finally, the phase fluctuation decreases to 0.02° by frequency reduction, which conversely verifies the theoretical model. PMID:27490552

  5. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  6. Design, development, and field testing of Infrared Heterodyne Radiometer (IHR) for remote profiling of tropospheric and stratospheric species

    NASA Technical Reports Server (NTRS)

    Lange, R.; Savage, M.; Peyton, B.

    1981-01-01

    The performance of a dual-channel infrared heterodyne radiometer, designed to remotely monitor the concentration and vertical distribution of selected atmospheric species, is described. Ground based solar viewing measurement using the IHR were performed at selected laser transitions for ammonia (NH3 and ozone O3). Flight tests were conducted aboard the Galileo II, NASA Ames CV-990, on the Latitude Survey Mission. Ozone was the selected atmospheric species for the airborne flight measurements because of the scientific interest in this atmospheric species, the availability of in situ monitors, the coordinated ozone measurements, and the availability of ground truth data. The IHS was operated in the solar viewing mode to determine ozone distributions in the stratosphere and in the nadir viewing mode to determine the ozone distribution in the troposphere. Airborne atmospheric propagation measurements also were carried out at selected CO2 laser transitions.

  7. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    NASA Technical Reports Server (NTRS)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have

  8. Development of a diode laser heterodyne spectrometer and observations of silicon monoxide in sunspots. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1981-01-01

    A state of the art, tunable diode laser infrared heterodyne spectrometer was designed and constructed for ground based observations throughout the 8 to 12 micron atmospheric window. The instrument was optimized for use with presently available tunable diode lasers, and was designed as a flexible field system for use with large reflecting telescopes. The instrument was aligned and calibrated using laboratory and astronomical sources. Observations of SiO fundamental (v = 1-0) and hot band (v = 2-1) absorption features were made in sunspots near 8 microns using the spectrometer. The data permit an unambiguous determination of the temperature pressure relation in the upper layers of the umbral atmosphere, and support the sunspot model suggested by Stellmacher and Wiehr.

  9. Performance of heterodyne differential phase-shift keying system over double Weibull free-space optical channel

    NASA Astrophysics Data System (ADS)

    Musa Hasan, Omar

    2015-06-01

    In this paper, the bit error rate (BER), outage probability, and outage rate analysis of the heterodyne differential phase-shift keying system over double Weibull-distributed free-space optical channel (FSO) are proposed. The channel statistics are modeled based on the scintillation theory and derived as the product of two independent Weibull random variables. Novel closed-form expressions for evaluating BER, outage probability, and outage rate are derived taking into account the effect of turbulence strength and inner-scale turbulent cell size. Numerical results are provided to evaluate the FSO system performance for weak to strong turbulence channel conditions and inner-scale turbulent cell size. The BER, outage probability, and outage rate performance are displayed for different values of turbulence strength conditions, inner-scale values and signal-to-noise ratios.

  10. A heterodyne receiver for the submillimeter wavelength region based on cyclotron resonance in InSb at low temperatures

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Keene, J.; Phillips, T. G.

    1985-01-01

    A heterodyne receiver has been developed for observation of interstellar atomic and molecular lines in the submillimeter wavelength region. The main detection mechanism of the device is cyclotron resonance in bulk n-InSb due to a quantized magnetic field. Measurements were carried out between 492 and 812 GHz in order to determine the sensitivity of the device for astrophysical applications. Double sideband receiver noise temperatures of 250 K at 492 GHz; 350 K at 625 GHz; and 510 K at 812 GHz were obtained. The magnetic induction for the laboratory tests was about 2.5 KG and the mixer operating temperature was about 1.6 K. It is shown that the receiver is sensitive enough to identify the narrow rotation lines of diatomic hydrides in dark-cloud regions of the interstellar medium.

  11. Noise-immune cavity-enhanced optical heterodyne detection of HO2 in the near-infrared range.

    PubMed

    Bell, Claire L; van Helden, Jean-Pierre H; Blaikie, Tom P J; Hancock, Gus; van Leeuwen, Nicola J; Peverall, Robert; Ritchie, Grant A D

    2012-05-31

    Accurate measurements of the absolute concentrations of radical species present in the atmosphere are invaluable for better understanding atmospheric processes and their impact on Earth systems. One of the most interesting species is HO(2), the hydroperoxyl radical, whose atmospheric daytime levels are on the order of 10 ppt and whose observation therefore requires very sensitive detection techniques. In this work, we demonstrate the first steps toward the application of external-cavity diode-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) to the detection of the HO(2) radical in the near-infrared range. Measurements of stable species and of HO(2) were made in a laboratory setting, and the possibilities of extending the sensitivity of the technique to atmospheric conditions are discussed. PMID:22591249

  12. Modeling and Analysis of Phase Fluctuation in a High-Precision Roll Angle Measurement Based on a Heterodyne Interferometer

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Bao

    2016-01-01

    Heterodyne interferometry is a high-precision method applied in roll angle measurements. Phase metering is essential for high precision. During a high-precision measurement, a phase fluctuation appears even when the roll angle does not vary, which has never been analyzed before. Herein, the reason for the phase fluctuation is revealed, which results from the frequency-difference fluctuation and time difference between measurement and reference beams. A mathematical model of that phase-fluctuation mechanism is established, and that model provides a theoretical basis for analyzing and reducing the phase fluctuation. The impact that the main factors have on the phase metering is analyzed quantitatively, and experiments are carried out to validate the model. Finally, the phase fluctuation decreases to 0.02° by frequency reduction, which conversely verifies the theoretical model. PMID:27490552

  13. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    SciTech Connect

    Gong, W.; Peng, X. Li, W.; Guo, H.

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  14. Frequency stabilization of a 1083 nm fiber laser to 4He transition lines with optical heterodyne saturation spectroscopies

    NASA Astrophysics Data System (ADS)

    Gong, W.; Peng, X.; Li, W.; Guo, H.

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable 4He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10-12@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  15. Coherent demodulation of microwave signals by using optical heterodyne technique with applications to point to point indoor wireless communications systems

    NASA Astrophysics Data System (ADS)

    García-Juárez, A.; Zaldívar-Huerta, I. E.; Aguayo-Rodríguez, G.; Rodríguez-Asomoza, J.; Gómez-Colín, M. R.; Rojas-Hernández, A. G.

    2011-01-01

    An optical communications system using a couple microstrip antennas for distributing point to point analog TV with coherent demodulation based on optical heterodyne in close vicinity is reported in this paper. In the proposed experimental setup, two optical waves at different wavelengths are mixed and applied to a photodetector. Then a beat signal with a frequency equivalent to the spacing of the two wavelengths is obtained at the output of the photodetector. This signal corresponds to a microwave signal located at 1.25 GHz, which it is used as a microwave carrier in the transmitter and as a local oscillator in the receiver of our optical communication system. The feasibility of this technique is demonstrated transmitting a TV signal of 66-72MHz.

  16. A search for lower-hybrid-drift fluctuations in a field-reversed configuration using CO2 heterodyne scattering

    NASA Astrophysics Data System (ADS)

    Carlson, Arthur W.

    1987-05-01

    An upper bound of (ñe/ne) <10-4 for frequencies and wavenumbers relevant to the lower-hybrid-drift (LHD) instability is set on fluctuations in field-reversed configurations (FRC's) produced by TRX-2 [Fusion Techn. 9, 48 (1986)]. LHD is a well-studied microinstability that is often invoked to explain particle loss rates in FRC's. The conventional technique of CO2 laser scattering with heterodyne detection is here modified to compensate for severe refraction. The calibration of the system is verified by scattering from acoustic waves in salt. The measured bound is two orders of magnitude below both the fluctuation level usually predicted and the level needed to account for observed particle loss rates. Electron collisionality is identified as the most likely LHD stabilization mechanism. Some alternative explanations of anomalous loss rates are discussed.

  17. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  18. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer.

    PubMed

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-01

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002″. Experiment has proved its feasibility and practicability.

  19. Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole.

    PubMed

    Kundu, Achintya; Tanaka, Shogo; Ishiyama, Tatsuya; Ahmed, Mohammed; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Sawai, Hiromi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-07-01

    Heterodyne-detected vibrational sum frequency generation spectroscopy was applied to the water surface for measuring the imaginary part of second-order nonlinear susceptibility (Im χ((2))) spectrum in the bend frequency region for the first time. The observed Im χ((2)) spectrum shows an overall positive band around 1650 cm(-1), contradicting former theoretical predictions. We further found that the Im χ((2)) spectrum of NaI aqueous solution exhibits an even larger positive band, which is apparently contrary to the flip-flop orientation of surface water. These unexpected observations are elucidated by calculating quadrupole contributions beyond the conventional dipole approximation. It is indicated that the Im χ((2)) spectrum in the bend region has a large quadrupole contribution from the bulk water. PMID:27322348

  20. High-frequency heterodyne lock-in thermography (HeLIT): A highly sensitive method to detect early caries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang

    2016-10-01

    In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.

  1. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shuo; Li, Min; Gao, Hongyun; Dai, Yawen

    2016-09-01

    A laser linewidth measurement method which uses a Mach-Zehnder electro-optic modulator (MZM) is proposed in a loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI). Compared with the traditional acousto-optic modulator (AOM), the electro-optic modulator has the merits of broader bandwidth, lower insertion loss, higher extinction ratio and thus, a wider application. A theoretical analysis shows that the power spectrum curve of the novel measurement system is a Lorentzian line, which fits well with experiment. The linewidth is measured to be 137 ± 7 kHz at a frequency shift of 4 GHz. Measurement of a distributed feedback Bragg (DFB) laser has manifested that the linewidth broadens from 98.5 kHz to 137.4 kHz as the operating temperature changes by 16 °C. This work will allow investigation of narrow linewidth semiconductor and fiber laser stability.

  2. CHIMPS: the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey

    NASA Astrophysics Data System (ADS)

    Rigby, A. J.; Moore, T. J. T.; Plume, R.; Eden, D. J.; Urquhart, J. S.; Thompson, M. A.; Mottram, J. C.; Brunt, C. M.; Butner, H. M.; Dempsey, J. T.; Gibson, S. J.; Hatchell, J.; Jenness, T.; Kuno, N.; Longmore, S. N.; Morgan, L. K.; Polychroni, D.; Thomas, H.; White, G. J.; Zhu, M.

    2016-03-01

    We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≤ 0.5° and 28° ≲ l ≲ 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≤20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations.

  3. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser.

    PubMed

    Özdemir, Şahin Kaya; Zhu, Jiangang; Yang, Xu; Peng, Bo; Yilmaz, Huzeyfe; He, Lina; Monifi, Faraz; Huang, Steven He; Long, Gui Lu; Yang, Lan

    2014-09-16

    Optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms for label-free detection of nano-objects. The ultimate sensitivity of WGMRs is determined by the strength of the light-matter interaction quantified by quality factor/mode volume, Q/V, and the resolution is determined by Q. To date, to improve sensitivity and precision of detection either WGMRs have been doped with rare-earth ions to compensate losses and increase Q or plasmonic resonances have been exploited for their superior field confinement and lower V. Here, we demonstrate, for the first time to our knowledge, enhanced detection of single-nanoparticle-induced mode splitting in a silica WGMR via Raman gain-assisted loss compensation and WGM Raman microlaser. In particular, the use of the Raman microlaser provides a dopant-free, self-referenced, and self-heterodyned scheme with a detection limit ultimately determined by the thermorefractive noise. Notably, we detected and counted individual nanoparticles with polarizabilities down to 3.82 × 10(-6) μm(3) by monitoring a heterodyne beatnote signal. This level of sensitivity is achieved without exploiting plasmonic effects, external references, or active stabilization and frequency locking. Single nanoparticles are detected one at a time; however, their characterization by size or polarizability requires ensemble measurements and statistical averaging. This dopant-free scheme retains the inherited biocompatibility of silica and could find widespread use for sensing in biological media. The Raman laser and operation band of the sensor can be tailored for the specific sensing environment and the properties of the targeted materials by changing the pump laser wavelength. This scheme also opens the possibility of using intrinsic Raman or parametric gain for loss compensation in other systems where dissipation hinders progress and limits applications. PMID:25197086

  4. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser

    PubMed Central

    Özdemir, Şahin Kaya; Zhu, Jiangang; Yang, Xu; Peng, Bo; Yilmaz, Huzeyfe; He, Lina; Monifi, Faraz; Huang, Steven He; Long, Gui Lu; Yang, Lan

    2014-01-01

    Optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms for label-free detection of nano-objects. The ultimate sensitivity of WGMRs is determined by the strength of the light–matter interaction quantified by quality factor/mode volume, Q/V, and the resolution is determined by Q. To date, to improve sensitivity and precision of detection either WGMRs have been doped with rare-earth ions to compensate losses and increase Q or plasmonic resonances have been exploited for their superior field confinement and lower V. Here, we demonstrate, for the first time to our knowledge, enhanced detection of single-nanoparticle-induced mode splitting in a silica WGMR via Raman gain-assisted loss compensation and WGM Raman microlaser. In particular, the use of the Raman microlaser provides a dopant-free, self-referenced, and self-heterodyned scheme with a detection limit ultimately determined by the thermorefractive noise. Notably, we detected and counted individual nanoparticles with polarizabilities down to 3.82 × 10−6 μm3 by monitoring a heterodyne beatnote signal. This level of sensitivity is achieved without exploiting plasmonic effects, external references, or active stabilization and frequency locking. Single nanoparticles are detected one at a time; however, their characterization by size or polarizability requires ensemble measurements and statistical averaging. This dopant-free scheme retains the inherited biocompatibility of silica and could find widespread use for sensing in biological media. The Raman laser and operation band of the sensor can be tailored for the specific sensing environment and the properties of the targeted materials by changing the pump laser wavelength. This scheme also opens the possibility of using intrinsic Raman or parametric gain for loss compensation in other systems where dissipation hinders progress and limits applications. PMID:25197086

  5. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  6. Leadership: A Balancing Act

    ERIC Educational Resources Information Center

    Hines, Thomas E.

    2011-01-01

    Maintaining balance in leadership can be difficult because balance is affected by the personality, strengths, and attitudes of the leader as well as the complicated environment within and outside the community college itself. This article explores what being a leader at the community college means, what the threats are to effective leadership, and…

  7. Judicial Checks and Balances

    ERIC Educational Resources Information Center

    La Porta, Rafael; Lopez-de-Silanes, Florencio; Pop-Eleches, Cristian; Shleifer, Andrei

    2004-01-01

    In the Anglo-American constitutional tradition, judicial checks and balances are often seen as crucial guarantees of freedom. Hayek distinguishes two ways in which the judiciary provides such checks and balances: judicial independence and constitutional review. We create a new database of constitutional rules in 71 countries that reflect these…

  8. The Technology Balance Beam

    ERIC Educational Resources Information Center

    Coulson, Eddie K.

    2006-01-01

    "The Technology Balance Beam" is designed to question the role of technology within school districts. This case study chronicles a typical school district in relation to the school district's implementation of technology beginning in the 1995-1996 school year. The fundamental question that this scenario raises is, What is the balance between…

  9. A Balance of Power?

    ERIC Educational Resources Information Center

    Mosey, Edward

    1991-01-01

    The booming economy of the Pacific Northwest region promotes the dilemma of balancing the need for increased electrical power with the desire to maintain that region's unspoiled natural environment. Pertinent factors discussed within the balance equation are population trends, economic considerations, industrial power requirements, and…

  10. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  11. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  12. Load Balancing Scientific Applications

    SciTech Connect

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  13. Consideration of Dynamical Balances

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.

  14. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  15. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  16. A question of balance

    SciTech Connect

    Cook, G.; Brown, H.; Strawn, N.

    1996-12-31

    Nature seeks a balance. The global carbon cycle, in which carbon is exchanged between the atmosphere, biosphere, and oceans through natural processes such as absorption, photosynthesis, and respiration, is one of those balances. This constant exchange promotes an equilibrium in which atmospheric carbon dioxide is keep relatively steady over long periods of time. For the last 10,000 years, up to the 19th century, the global carbon cycle has maintained atmospheric concentrations of carbon dioxide between 260 and 290 ppm. This article discusses the disturbance of the balance, how ethanol fuels address the carbon dioxide imbalance, and a bioethanol strategy.

  17. Calibration of a high spatial resolution laser two-color heterodyne interferometer for density profile measurements in the TJ-II stellarator

    SciTech Connect

    Acedo, Pablo; Pedreira, P.; Criado, A. R.; Lamela, Horacio; Sanchez, Miguel; Sanchez, Joaquin

    2008-10-15

    A high spatial resolution two-color (CO{sub 2}, {lambda}=10.6 {mu}m, He-Ne, {lambda}=633 nm) interferometer for density profile measurements in the TJ-II stellarator is under development and installation, based in the currently operational single channel two-color heterodyne interferometer. To achieve the objectives of 32 channels, with 4-5 mm lateral separation between plasma chords, careful design and calibration of the interferometric waveforms for both the measurement and vibration compensation wavelengths are undertaken. The first step has been to set up in our laboratories an expanded-beam heterodyne/homodyne interferometer to evaluate the quality of both interferometric wavefronts, a reported source of poor vibration compensation and thus low resolution in the density profile measurements. This novel interferometric setup has allowed us to calibrate the spatial resolution in the profile measurements resulting in {approx}2 mm lateral resolution in the reconstruction of the interferometric wavefront.

  18. Comparison of photonic integrated circuits for millimeter-wave signal generation between dual-wavelength sources for optical heterodyning and pulsed mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Carpintero, Guillermo; Gordon, Carlos; Guzman, Robinson; Leijtens, Xaveer; Van Dijk, Frédéric; Kervella, Gaël.; Fice, Martyn J.; Balakier, Katarzyna; Renaud, Cyril C.

    2015-03-01

    A comparative study of two different Photonic Integrated Circuits (PICs) structures for continuous-wave generation of millimeter-wave (MMW) signals is presented, each using a different approach. One approach is optical heterodyning, using an integrated dual-wavelength laser source based on Arrayed Waveguide Grating. The other is based on ModeLocked Laser Diodes (MLLDs). A novel building block -Multimode Interference Reflectors (MIRs) - is used to integrate on-chip both structures, without need of cleaved facets to define the laser cavity. This fact enables us to locate any of these structures at any location within the photonic chip. As will be shown, the MLLD structure provides a simple source for low frequencies. Higher frequencies are easier to achieve by optical heterodyne. Both types of structures have been fabricated on a generic foundry in a commercial MPW PIC technology.

  19. The physics of heterodyne detection in the far-infrared: Transition from electric-field to photon-absorption detection in a simple system

    NASA Technical Reports Server (NTRS)

    Teich, M. C.

    1980-01-01

    The history of heterodyne detection is reviewed from the radiowave to the optical regions of the electromagnetic spectrum with emphasion the submillimeter/far infrared. The transition from electric field to photon absorption detection in a simple system is investigated. The response of an isolated two level detector to a coherent source of incident radiation is calculated for both heterodyne and video detection. When the processes of photon absorption and photon emission cannot be distinguished, the relative detected power at double- and sum-frequencies is found to be multiplied by a coefficient, which is less than or equal to unity, and which depends on the incident photon energy and on the effective temperature of the system.

  20. Development of a THz heterodyne receiver with quantum cascade laser and hot electron bolometer mixer for standoff detection of explosive material

    NASA Astrophysics Data System (ADS)

    Richter, H.; Semenov, A. D.; Pavlov, S. G.; Mahler, L.; Tredicucci, A.; Beere, H. E.; Ritchie, D. A.; Ortolani, M.; Schade, U.; Il'in, K. S.; Siegel, M.; Hübers, H.-W.

    2009-05-01

    The terahertz (THz) portion of the electromagnetic spectrum provides specific spectroscopic information for substance identification. It has been shown that the spectral features of explosive materials might be used for detection and identification at stand-off distances. We report on the development of a THz spectrometer for explosive detection and identification. The system is based on THz quantum cascade lasers working at different frequencies. These are used for illumination of the object under test. The reflected and backscattered radiation from the object under test is detected with a sensitive heterodyne receiver. As a first step a single frequency, liquid-cryogen free heterodyne receiver operating at 2.5 THz has been developed. In order to realize maximum sensitivity a phonon-cooled NbN hot electron bolometric mixer with a quantum cascade laser as local oscillator were chosen. The concept of the system and first results will be presented.

  1. Nonlinear compensation and crosstalk suppression for 4 × 160.8 Gb/s WDM PDM-QPSK signal with heterodyne detection.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Dong, Ze; Li, Xinying

    2013-04-22

    We experimentally investigate digital intra-channel nonlinear impairment compensation and inter-channel crosstalk suppression for 4 × 160.8-Gb/s wavelength division multiplexing (WDM) polarization division multiplexing quadrature phase shift keying (PDM-QPSK) transmission over 1300-km single-mode fiber-28 (SMF-28) on a 50-GHz grid with the spectral efficiency of 3.21b/s/Hz, adopting simplified heterodyne coherent detection. By using nonlinear compensation based on DBP with crosstalk suppression based on post filter and maximum likelihood sequence estimation (PF&MLSE), the BER has been improved from 1.0 × 10(-3) to 3.5 × 10(-4) for 4 × 160.8Gb/s WDM PDM-QPSK with heterodyne detection after 1300km SMF-28 transmission.

  2. Mars Balance Challenge

    NASA Video Gallery

    The Challenge is to develop ideas for how NASA can turn available entry, descent, and landing balance mass on a future Mars mission into a scientific or technological payload. Proposed concepts sho...

  3. The Balancing Act

    SciTech Connect

    Fowler, Kimberly M.

    2008-05-01

    This essay is being proposed as part of a book titled: "Motherhood: The Elephant in the Laboratory." It offers professional and personal advice on how to balance working in the research field with a family life.

  4. Posttraumatic balance disorders.

    PubMed

    Hoffer, Michael E; Balough, Ben J; Gottshall, Kim R

    2007-01-01

    Head trauma is being more frequently recognized as a causative agent in balance disorders. Most of the published literature examining traumatic brain injury (TBI) after head trauma has focused on short-term prognostic indicators and neurocognitive disorders. Few data are available to guide those individuals who see patients with balance disorders secondary to TBI. Our group has previously examined balance disorders after mild head trauma. In this study, we study all classes of head trauma. We provide a classification system that is useful in the diagnosis and management of balance disorders after head trauma and we examine treatment outcomes. As dizziness is one of the most common outcomes of TBI, it is essential that those who study and treat dizziness be familiar with this subject. PMID:17691667

  5. Balance Function Disorders

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Researchers at the Balance Function Laboratory and Clinic at the Minneapolis (MN) Neuroscience Institute on the Abbot Northwestern Hospital Campus are using a rotational chair (technically a "sinusoidal harmonic acceleration system") originally developed by NASA to investigate vestibular (inner ear) function in weightlessness to diagnose and treat patients with balance function disorders. Manufactured by ICS Medical Corporation, Schaumberg, IL, the chair system turns a patient and monitors his or her responses to rotational stimulation.

  6. Watt and joule balances

    NASA Astrophysics Data System (ADS)

    Robinson, Ian A.

    2014-04-01

    The time is fast approaching when the SI unit of mass will cease to be based on a single material artefact and will instead be based upon the defined value of a fundamental constant—the Planck constant—h . This change requires that techniques exist both to determine the appropriate value to be assigned to the constant, and to measure mass in terms of the redefined unit. It is important to ensure that these techniques are accurate and reliable to allow full advantage to be taken of the stability and universality provided by the new definition and to guarantee the continuity of the world's mass measurements, which can affect the measurement of many other quantities such as energy and force. Up to now, efforts to provide the basis for such a redefinition of the kilogram were mainly concerned with resolving the discrepancies between individual implementations of the two principal techniques: the x-ray crystal density (XRCD) method [1] and the watt and joule balance methods which are the subject of this special issue. The first three papers report results from the NRC and NIST watt balance groups and the NIM joule balance group. The result from the NRC (formerly the NPL Mk II) watt balance is the first to be reported with a relative standard uncertainty below 2 × 10-8 and the NIST result has a relative standard uncertainty below 5 × 10-8. Both results are shown in figure 1 along with some previous results; the result from the NIM group is not shown on the plot but has a relative uncertainty of 8.9 × 10-6 and is consistent with all the results shown. The Consultative Committee for Mass and Related Quantities (CCM) in its meeting in 2013 produced a resolution [2] which set out the requirements for the number, type and quality of results intended to support the redefinition of the kilogram and required that there should be agreement between them. These results from NRC, NIST and the IAC may be considered to meet these requirements and are likely to be widely debated

  7. Cavendish Balance Automation

    NASA Technical Reports Server (NTRS)

    Thompson, Bryan

    2000-01-01

    This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.

  8. Miniaturized Near Infrared Heterodyne Spectroradiometer for Monitoring CO2, CH4 and CO in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimchuk, A., Sr.; Rodin, A.; Nadezhdinskiy, A.; Churbanov, D.; Spiridonov, M.

    2014-12-01

    The paper describes the concept of a compact, lightweight heterodyne NIR spectro-radiometer suitable for atmospheric sounding with solar occultations, and the first measurement of CO2 and CH4 absorption near 1.60mm and 1.65 mm with spectral resolution l/dl ~ 5*107. Highly stabilized DFB laser was used as local oscillator, while single model quartz fiber Y-coupler served as a diplexer. Radiation mixed in the single mode fiber was detected by quadratic detector using p-i-n diode within the bandpass of ~10 MHz. Wavelength coverage of spectral measurement was provided by sweeping local oscillator frequency in the range 1,1 см-1. With the exposure time of 10 min, the absorption spectrum of the atmosphere over Moscow has been recorded with S/N ~ 300. We retrieved methane vertical profile using Tikhonov method of smooth functional, which takes into account a priori information about first guess profile. The reference to model methane profile means that the regularization procedure always selects a priorivalues unless the measurements contradict this assumption.The retrieved methane profile demonstrates higher abundances in the lower scale height compared to the assumed model profile, well expected in the megalopolis center. The retrievals sensitivity is limited by 10 ppb, with the exception of the lower part of the profile where the tendency to lower values is revealed. Thus the methane abundance variations may be evaluated with relative accuracy better than 1%, which fits the requirements of greenhouse gas monitoring. The retrievals sensitivity of CO2 is about 1-2 ppm. CO2 observations was also used to estimate stratoshere wind by doppler shift of absorption line. Due to higher spectral resolution, lower sensitivity to atmospheric temperatures and other external factors, compared to heterodyne measurements in the thermal IR spectral range, the described technique provides accuracy comparable with much more complicated high resolution measurements now used in TCCON

  9. Improved analysis of column carbon dioxide and methane data from ground-based Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Ramanathan, A. K.; Mao, J.; Clarke, G.; McLinden, M.; Ott, L. E.; Miller, J. H. H.; Allan, G. R.; Holben, B. N.

    2014-12-01

    We present an improved data analysis for the Mini-LHR column measurements of CO2 and CH4 that includes corrections for refraction through the atmosphere and meteorological conditions. Multi-scan averaging has also been added to compensate for current shot noise limitations and improve instrument sensitivity. Data with the improved analysis will be shown for field measurements at the TCCON site at CalTech (March 2014), Calpoly during COW-Gas (March 2014), at Mauna Loa Observatory (May 2013), and Atwater, CA (February 2013). The Mini-LHR is a miniaturized version of a laser heterodyne radiometer that implements telecommunications lasers and components to produce a significantly reduced size, low-cost instrument. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. The Mini-LHR is passive and uses sunlight as the primary light source to measure absorption of CO2 and CH4 in the infrared. Sunlight is collected with collimation optics mounted to the AERONET sun tracker and superimposed with laser light in a single mode fiber coupler. The signals are mixed in a fast photoreceiver (InGaAs detector), and the RF (radio frequency) beat signal is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the mini-LHR to be expanded into a global monitoring network. AERONET has more than 450 instruments worldwide and offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. A mini-LHR global ground network can also provide an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and

  10. The cryogenic balance design and balance calibration methods

    NASA Astrophysics Data System (ADS)

    Ewald, B.; Polanski, L.; Graewe, E.

    1992-07-01

    The current status of a program aimed at the development of a cryogenic balance for the European Transonic Wind Tunnel is reviewed. In particular, attention is given to the cryogenic balance design philosophy, mechanical balance design, reliability and accuracy, cryogenic balance calibration concept, and the concept of an automatic calibration machine. It is shown that the use of the automatic calibration machine will improve the accuracy of calibration while reducing the man power and time required for balance calibration.

  11. Imaging Morphological Changes in Live-cells at various time-scales using Heterodyne Mach-Zehnder Interferometer

    NASA Astrophysics Data System (ADS)

    Joseph, Shiju; Newport, David; Li, Yongli; Woulfe, Bernie

    2011-11-01

    Measurement of the dynamic behavior of the cell will provide new insights about the state of the live cells, since this response depends upon its structure and functional state. Studies have shown that all mammalian cells exhibit continuous regional motion and shape changes. This is controlled by the dynamic cytoskeleton of the cell. Existing measurement techniques are either limited to point observation or do not have required speed and accuracy. The optical arrangement consists of a Mach-Zehnder interferometer integrated to a microscope. Heterodyning is achieved using a pair of AOMs. Temporal phase shifting technique is used to extract the continuously varying phase information, which is caused by the changes in cell. Due to dynamic phase change, the continuous wave signal reaching the detector is a frequency modulated signal. To extract dynamic phase, at first the instantaneous frequency of the phase modulated signal is determined, which is then integrated with respect to time to obtain time-varying phase. Results obtained for in vitro live 3T3 Fibroblast cells and REH Leukocyte cell lines are presented. Phase imaging of live leukemic cells, can be used for studying morphological differences between various sub-types of the cancerous cells.

  12. Single-shot high-resolution heterodyne detection of millimeter wave superradiance in Rydberg-Rydberg transitions

    NASA Astrophysics Data System (ADS)

    Grimes, David; Yelin, Susanne; Barnum, Timothy; Zhou, Yan; Coy, Steven; Field, Robert

    2016-05-01

    Millimeter wave (mm-wave) superradiance has been directly detected on a shot-by-shot basis in a neon buffer gas cooled beam of barium atoms. Rydberg-Rydberg transitions are well suited for the study of superradiance due to both the large transition dipole moments and long wavelengths associated with Δn = 1 transitions. We trigger the superradiant evolution of an initially 100% inverted system of Rydberg atoms (n = 30) with a weak mm-wave trigger pulse that is well-characterized in both spatial intensity distribution and phase. The resultant mm-wave emission is recorded in a heterodyne detection scheme with high resolution in both the time (20 ps) and frequency (250 kHz) domains. We observe that the width and emission delay of the time-domain intensity can be well described by a mean-field theory, but that the frequency-domain effects are not even qualitatively reproduced. In particular, a density-dependent broadening, frequency chirp, and line shift are observed. Comparisons to a two-atom master equation theoretical model will be discussed.

  13. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  14. Implementation of the coupled-wave method for V-shaped groove characterization with a scanning differential heterodyne microscope

    NASA Astrophysics Data System (ADS)

    Akhmedzhanov, I. M.; Baranov, D. V.; Zolotov, E. M.

    2011-01-01

    The image formation theory is presented for scanning differential heterodyne microscope respect to triangular-shaped grooves used for plasmon-polariton waveguiding. The scattering problem of the illuminating probe beams focused on the object surface is resolved with rigorous coupled-wave analysis (RCWA) for groove corrugated grating etched in a substrate with the finite conductivity. To adapt the RCWA method for SDHM the problems were considered associated with a discretization of the diffracted field and sampling the focused probe beams. The focused beams are expanded in terms of plane waves so that the each chosen incident wave is order of one another and then the diffraction problem is solved for every plane wave of TE polarization. The groove was decomposed into thin layers in which the permittivity and electromagnetic field are expanded in Fourier series. The diffraction of the probe beams by triangular groove was analyzed, at that the convergence of modulus and phase responses of SDHM in dependence of the number of the layers and the number of Fourier modes in optical field expansion was investigated. The elaborated algorithm was used for the simulation of differential responses from triangular grooves with various parameters.

  15. The determination of HNO3 column amounts from tunable diode laser heterodyne spectrometer spectra taken at Jungfruajoch, Switzerland

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; Murcray, D. G.; Martin, N. A.; Swann, N. R.; Woods, P. T.; Mcelroy, C. T.

    1994-01-01

    In May of 1991 a tunable diode laser heterodyne spectrometer built by the National Physical Laboratory was operated at the International Scientific Station of the Jungfraujoch (46.5 deg N, 8.0 deg E, altitude 3.56 km). Nitric acid spectra in the region of 868 wavenumbers were recorded at sunset and sunrise on two separate days at a resolution of 0.0013 wavenumbers with a signal-to-noise ratio of approximately 130:1. A vertical column amount of HNO3 of 1.61 x 10(exp 16) molecules/sq cm was determined using an atmospheric transmission model developed at the University of Denver. The mean of a number of mid-latitude, northern hemisphere profiles was used as the initial profile for the inversion. A comparison of different initial profiles provides information on the sensitivity of the retrieved column amount of 1.61 x 10(exp 16) molecules/sq cm lies within the range of values published in the World Meteorological Organization Report no. 16 (1986), but is considerably larger than the value of (0.99 - 1.29) x 10(exp 16) reported by Rinsland et al. (1991) for June during the period 1986 to 1990.

  16. Integrated 1.55 µm photomixer local oscillator sources for heterodyne receivers from 70 GHz to beyond 250 GHz

    NASA Astrophysics Data System (ADS)

    Huggard, Peter G.; Azcona, Luis; Laisné, Alexandre; Ellison, Brian N.; Shen, Pengbo; Gomes, Nathan J.; Davies, Phil A.

    2004-10-01

    Photomixing is a flexible and efficient method of providing both local oscillator signals for heterodyne receivers and high frequency phase reference signals. Ultrafast, 70 GHz bandwidth, λ = 1.55 µm, photodiodes from u2t Photonics AG have been incorporated into three designs of mm-wave waveguide mounts. The photomixers utilise a thin freestanding gold foil, or a gold on dielectric, probe to couple power into the waveguide and to deliver the photodiode bias. The frequency coverage of the designs is from 70 GHz to 300 GHz. A method of rapidly characterizing the frequency response of these photomixers using spontaneous-spontaneous beating of light from an EDFA is described. Recent work has been directed at increasing the degree of integration of the photodiode with the waveguide probe and choke filter to reduce the frequency dependence of the output power. A simplified photomixer block manufacturing process has also been introduced. A combined probe and filter structure, impedance matched to both the coplanar output line on the photodiode chip and to 0.4 height milled waveguide, is presented. This matching is achieved over the W-band with a fixed waveguide backshort. We present modelled and experimental results showing the increased efficiency and smoother tuning. The design and frequency response of such a probe is reported. We also present the performance of a simpler mount, operating in the frequency range from 160 GHz to 300 GHz, which generates powers of around 10 µW up to 250 GHz.

  17. Stratospheric ozone isotopes observed by air-borne and space-borne submillimeter-wave heterodyne radiometry: A sensitivity study

    NASA Astrophysics Data System (ADS)

    Kasai, Y.; Urban, J.; Takahashi, C.; Smiles Mission Team

    2003-04-01

    The variation of the isotopic composition of a species in the Earth atmosphere provides us the information on the history of the air masses, because the isotope enrichment or depletion reflects the chemical and physical processes. Since the discovery of the heavy isotope enrichment of ozone in the stratosphere in 1981 considerable progress has been made in understanding the processes that control the isotope enrichment based on atmospheric observations, laboratory experiments, and so on. However, the exact mechanism for the effect remains uncertain and accurate sequentially observations of ozone isotopomer at global scale are still very sparse. Further improvements of measurement precision can be obtained by making use of the new technological development of high-precision submillimeter-wave heterodyne radiometry based on sensitive SIS detector technology. The airborne ASUR instrument (Airborne SUb-millimeter SIS Radiometer) observed lines of asymmetric-18 ozone in the frequency region of 645 GHz with this technology since ~1994. The JEM/SMILES instrument (Japaneses Experiment Module / Superconducting sub-MIllimeter Limb Emission Sounder), to be installed on the International Space Station in 2007, will measure several ozone isotopomer in the stratosphere at global scale from space using very similar frequency bands. An error analysis including the most typical systematic errors is performed.

  18. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Yuecheng; Ma, Cheng; Shi, Junhui; Wang, Lihong V.

    2016-06-01

    Ultrasound-modulated optical tomography (UOT) images optical contrast deep inside scattering media. Heterodyne holography based UOT is a promising technique that uses a camera for parallel speckle detection. In previous works, the speed of data acquisition was limited by the low frame rates of conventional cameras. In addition, when the signal-to-background ratio was low, these cameras wasted most of their bits representing an informationless background, resulting in extremely low efficiencies in the use of bits. Here, using a lock-in camera, we increase the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background. Moreover, compared with the conventional four-frame based amplitude measurement method, our single-frame method is more immune to speckle decorrelation. Using lock-in camera based UOT with an integration time of 286 μs, we imaged an absorptive object buried inside a dynamic scattering medium exhibiting a speckle correlation time ( τ c ) as short as 26 μs. Since our method can tolerate speckle decorrelation faster than that found in living biological tissue ( τ c ˜ 100-1000 μs), it is promising for in vivo deep tissue non-invasive imaging.

  19. Rotary and Magnus balances

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  20. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  1. Maintaining an Environmental Balance

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    A recent conference of the National Environmental Development Association focused on the concepts of environment, energy and economy and underscored the necessity for balancing the critical needs embodied in these issues. Topics discussed included: nuclear energy and wastes, water pollution control, federal regulations, environmental technology…

  2. Balancing Family and Work.

    ERIC Educational Resources Information Center

    Yahnke, Sally; And Others

    The purpose of this monograph is to present a series of activities designed to teach strategies needed for effectively managing the multiple responsibilities of family and work. The guide contains 11 lesson plans dealing with balancing family and work that can be used in any home economics class, from middle school through college. The lesson…

  3. A Balancing Act

    ERIC Educational Resources Information Center

    Lewis, Tamika; Mobley, Mary; Huttenlock, Daniel

    2013-01-01

    It's the season for the job hunt, whether one is looking for their first job or taking the next step along their career path. This article presents first-person accounts to see how teachers balance the rewards and challenges of working in different types of schools. Tamica Lewis, a third-grade teacher, states that faculty at her school is…

  4. Multidimensional spectral load balancing

    DOEpatents

    Hendrickson, Bruce A.; Leland, Robert W.

    1996-12-24

    A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

  5. Finding a Balance.

    ERIC Educational Resources Information Center

    Gordon, Milton A.; Gordon, Margaret F.

    1996-01-01

    New college presidents are inundated with requests for their time, and their private life is often sacrificed. Each administrator must decide what is the appropriate balance among various aspects of his/her position. Physical separation of public and private lives is essential, and the role of the spouse, who may have other professional…

  6. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  7. A compact ground-based laser heterodyne radiometer for global column measurements of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Steel, Emily; Clarke, Gregory; Ramanathan, Anand; Mao, Jianping; Ott, Lesley; Duncan, Bryan; Melroy, Hilary; McLinden, Matthew; Holben, Brent; Houston Miller, J.

    2015-04-01

    Implementing effective global strategies to understand climate change is hindered by a lack of understanding of both anthropogenic emissions and land and ocean carbon reservoirs. Though in situ surface measurements and satellites provide valuable information for estimating carbon fluxes, areas not well covered by current observing systems (e.g. high latitude regions, tropical forests and wetlands) remain poorly understood. Deficiencies in understanding the processes governing carbon flux introduce considerable uncertainty to predictions of climate change over the coming century. Our vision is to enhance worldwide carbon monitoring by developing a low-cost ground network of miniaturized laser heterodyne radiometer (Mini-LHR) instruments that measure CO2 and CH4 in the atmospheric column. Ground-based remote sensing has the potential to fill gaps in the satellite data record while providing a complementary long-term observational record. This uninterrupted data record, would both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3 and ASCENDS. Mini-LHR instruments will be deployed as an accompaniment to AERONET. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network. AERONET has more than 500 instruments worldwide offering coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. Mini-LHR instruments at AERONET locations could also greatly improve data coverage in regions with large flux uncertainties such as North America and Western Europe, and under-sampled areas such as South America and Asia. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON with 18 operational sites worldwide and two in the US. Cost and size of

  8. Balancing innovation and evidence.

    PubMed

    Pilcher, Jobeth W

    2015-01-01

    Nurse educators are encouraged to use evidence to guide their teaching strategies. However, evidence is not always available. How can educators make decisions regarding strategies when data are limited or absent? Where do innovation and creativity fit? How can innovation be balanced with evidence? This article provides a discussion regarding other sources of evidence, such as extrapolations, theories and principles, and collective expertise. Readers are encouraged to review the options and then analyze how they might be applied to innovation in education.

  9. First 844.6-nm observations of neutral oxygen using the Bowen fluorescence Spatial Heterodyne Spectrometer at Millstone Hill Observatory

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Waldrop, L.; Migliozzi, M.

    2007-12-01

    A Spatial Heterodyne Spectrometer (SHS) has been installed at Millstone Hill Observatory to detect mid-latitude 844.6-nm emissions from nightglow due to Bowen fluorescence, as a way of measuring thermospheric neutral oxygen density. Neutral oxygen is a dominant species in the F-region of the thermosphere, and new measurements of its density are needed to make more accurate models of that region, models which better describe responses to impulsive events such as storms and coronal mass ejections. The SHS will take readings with a time resolution of 12 minutes. It has been aligned an calibrated at 589 nm in association with a concurrent project at Scientific Solutions to perform Fraunhofer Line Discrimination spectroscopy at the sodium doublet wavelength. The SHS will presently be reset to look at 844.6 nm, which involves only a rotation of the SHS gratings to a new Littrow angle. The challenge of the mesaurement will be to separate the Bowen fluorescence 844.6-nm light from 844.6 light from other sources, most prominently photoelectron (PE) impact. It is expected that there will be characteristics of Bowen fluorescence 844.6 emissions which allow it to be distinguished from PE and other sources of 844.6. The most promising of these hallmarks is a specific intensity ratio theorized to exist between two of the three lines in the 844.6 triplet for Bowen fluorescence. It is also expected that Bowen fluorescence emissions at Millstone Hill will become more significant later at night, as the sun sets in the opposite hemisphere. First light 844.6 results and analysis will be presented.

  10. First results from ground-based CO2 remote sounding using high-resolution thermal IR laser heterodyne radiometry

    NASA Astrophysics Data System (ADS)

    Hoffmann, Alex; Huebner, Marko; Macleod, Neil; Weidmann, Damien

    2016-04-01

    Over the course of the last decade, the Laser Spectroscopy Group at RAL Space has considerably furthered the passive remote sensing technique of thermal IR Laser Heterodyne Radiometry (LHR), and applied it successfully to the ground-based sounding of atmospheric profiles of a variety of trace gases, including methane. LHR is underpinned by coherent detection technology and ideally shot noise-limited, which can significantly enhance the signal-to-noise ratio of acquired atmospheric spectra over conventional direct detection spectrometers when high spectral (>500,000 resolving power) and high spatial resolutions are needed. These benefits allow probing optimized narrow spectral windows (1 cm-1) with full absorption lineshape information, useful for trace gas vertical profiling. Furthermore, LHR has a high potential for miniaturization into a rugged, unprecedentedly compact package, through hollow waveguide optical integration, facilitating its deployment in ground-based observation networks, as well as on a variety of airborne and spaceborne platforms, whilst retaining its high specifications. This makes LHR well-suited to the remote sounding of key greenhouse gases, in particular carbon dioxide, as observations with high precision and accuracy are crucial to discriminate trends and small variations over a substantial background concentration, and in order to contribute to flux estimations in top-down carbon cycle inversion approaches and anthropogenic emission monitoring. Here, we present a new optical bench-based LHR prototype that has been specifically built to demonstrate CO2 sounding in the thermal IR. The instrument has been coupled to a new permanently installed solar tracker to take a long-term measurement series in solar occultation mode, and to assess the performance of the instrument. We discuss its theoretical performance modelled using an Observation System Simulator, and showcase first results from a 6 months' archive, with observations undergoing

  11. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hiromu; Aoki, Shohei; Sagawa, Hideo; Kasaba, Yasumasa; Murata, Isao; Sonnabend, Guido; Sornig, Manuela; Okano, Shoichi; Kuhn, Jeffrey R.; Ritter, Joseph M.; Kagitani, Masato; Sakanoi, Takeshi; Taguchi, Makoto; Takami, Kosuke

    2016-07-01

    A new Mid-Infrared Laser Heterodyne Instrument (MILAHI) with >106 resolving power at 7-12 μm was developed for continuous monitoring of planetary atmospheres by using dedicated ground-based telescopes for planetary science at Mt. Haleakalā, Hawaii. Room-temperature-type quantum cascade lasers (QCLs) that cover wavelength ranges of 7.69-7.73, 9.54-9.59, and 10.28-10.33 μm have been newly installed as local oscillators to allow observation of CO2, CH4, H2O2, H2O, and HDO. Modeling and predictions by radiative transfer code gave the following scientific capabilities and measurement sensitivities of the MILAHI. (1) Temperature profiles are achieved at altitudes of 65-90 km on Venus, and the ground surface to 30 km on Mars. (2) New wind profiles are provided at altitudes of 75-90 km on Venus, and 5-25 km on Mars. (3) Direct measurements of the mesospheric wind and temperature are obtained from the Doppler-shifted emission line at altitudes of 110 km on Venus and 75 km on Mars. (4) Detections of trace gases and isotopic ratios are performed without any ambiguity of the reproducing the terrestrial atmospheric absorptions in the observed wavelength range. A HDO measurement of twice the Vienna Standard Mean Ocean Water (VSMOW) can be obtained by 15-min integration, while H2O of 75 ppm is provided by 3.62-h integration. The detectability of the 100 ppb-CH4 on Mars corresponds to an integration time of 32 h.

  12. Temperature Measurements in Venus Upper Atmosphere between 2007 and 2015 from ground-based Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Pia; Wischnewski, Carolin; Sornig, Manuela; Stangier, Tobias; Sonnabend, Guido; Herrmann, Maren; Wiegand, Moritz; Kostiuk, Theodor; Livengood, Timothy

    2016-04-01

    The structure of Venus atmosphere has been the target of intense studies in the past decade. Among manifold ground based observations, the recent space mission Venus Express in particular has shed light on many open questions concerning the thermal and the dynamical behavior of its atmosphere. A comprehensive understanding of this atmospheric region is still missing. Therefore, direct measurements of atmospheric parameters on various time scales and at different locations on the planet are essential for an understanding and for the validation of global circulation models. Such observations are provided by the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University). These instruments fully resolve CO2 non-LTE emission lines for Doppler-wind and temperature retrievals at an pressure level of 1μbar (~110 km) by operating around 10μm. The Long- and short-term variability of daytime temperatures at the ~1μbar level from ground-based observing campaigns between 2007 to 2015 shall be presented. The observations yield a large quantity of temperature measurements at different positions on the planetary disk which allows to map a good part of the dayside of Venus. In addition a detailed study of the interesting but not well understood and only poorly investigated area close to the terminator will be given. Investigations on the general behavior of the temperature and differences between the morning and evening terminators are accomplished. Ongoing analysis of thermal variability and comparison to other observing methods and model calculations are in progress and will be included in the presentation if already available.

  13. Measurement of electron density in atmospheric pressure small-scale plasmas using CO2-laser heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Choi, Joon-Young; Takano, Nobuhiko; Urabe, Keiichiro; Tachibana, Kunihide

    2009-08-01

    CO2-laser heterodyne interferometry was applied to measure electron density ne in three different types of high pressure (including atmospheric pressure) small-scale plasma sources: a short hollow cathode (HC) discharge tube, a pulsed dc plasma jet and a micro-HC plasma jet. The interfering contribution of the gas density reduction due to Joule heating of the measured phase shift was separated from the electron component based on these different temporal dependences. The typical values of ne measured in the short HC discharge tube with helium gas were on the order of 1013 cm-3 at a discharge current that varied from 25 to 225 mA and the pressure from a few tens to hundreds of Torr; the values measured in argon gas were further increased by a factor of five to six. For the dc He plasma jet ejected into open air, the radial profile of ne on the order of 1014 cm-3 presented a hollowed distribution based on the tubular cathode structure. The micro-HC structure allowed us to evaluate ne in both the parallel and the perpendicular directions with respect to the plasma jet axis, and the derived values of ne from both directions were consistent. Thus, we verified that this diagnostic technique can be applied to measure ne in various sub-millimeter scale plasmas operated at atmospheric pressure in pulsed operation modes with a sensitivity of about 1013 cm-3 (at an optical length of 1 mm) and a spatial resolution better than 100 µm.

  14. Heterodyne photodetection measurements on cavity optomechanical systems: Interpretation of sideband asymmetry and limits to a classical explanation

    NASA Astrophysics Data System (ADS)

    Børkje, Kjetil

    2016-10-01

    We consider a system where an optical cavity mode is parametrically coupled to a mechanical oscillator. A laser beam driving the cavity at its resonance frequency will acquire red- and blue-shifted sidebands due to noise in the position of the mechanical oscillator. In a classical theory without noise in the electromagnetic field, the powers of these sidebands are of equal magnitude. In a quantum theory, however, an asymmetry between the sidebands can be resolved when the oscillator's average number of vibrational excitations (phonons) becomes small, i.e., comparable to 1. We discuss the interpretation of this sideband asymmetry in a heterodyne photodetection measurement scheme and show that it depends on the choice of detector model. In the optical regime, standard photodetection theory leads to a photocurrent noise spectrum given by normal- and time-ordered expectation values. The sideband asymmetry is in that case a direct reflection of the quantum asymmetry of the position noise spectrum of the mechanical oscillator. Conversely, for a detector that measures symmetric, nonordered expectation values, we show that the sideband asymmetry can be traced back to quantum optomechanical interference terms. This ambiguity in interpretation applies not only to mechanical oscillators, but to any degree of freedom that couples linearly to noise in the electromagnetic field. Finally, we also compare the quantum theory to a fully classical model, where sideband asymmetry can arise from classical optomechanical interference terms. We show that, due to the oscillator's lack of zero-point motion in a classical theory, the sidebands in the photocurrent spectrum differ qualitatively from those of a quantum theory at sufficiently low temperatures. We discuss the observable consequences of this deviation between classical and quantum theories.

  15. Simple Cell Balance Circuit

    NASA Technical Reports Server (NTRS)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  16. Seismic offset balancing

    SciTech Connect

    Ross, C.P.; Beale, P.L.

    1994-01-01

    The ability to successfully predict lithology and fluid content from reflection seismic records using AVO techniques is contingent upon accurate pre-analysis conditioning of the seismic data. However, all too often, residual amplitude effects remain after the many offset-dependent processing steps are completed. Residual amplitude effects often represent a significant error when compared to the amplitude variation with offset (AVO) response that the authors are attempting to quantify. They propose a model-based, offset-dependent amplitude balancing method that attempts to correct for these residuals and other errors due to sub-optimal processing. Seismic offset balancing attempts to quantify the relationship between the offset response of back-ground seismic reflections and corresponding theoretical predictions for average lithologic interfaces thought to cause these background reflections. It is assumed that any deviation from the theoretical response is a result of residual processing phenomenon and/or suboptimal processing, and a simple offset-dependent scaling function is designed to correct for these differences. This function can then be applied to seismic data over both prospective and nonprospective zones within an area where the theoretical values are appropriate and the seismic characteristics are consistent. A conservative application of the above procedure results in an AVO response over both gas sands and wet sands that is much closer to theoretically expected values. A case history from the Gulf of Mexico Flexure Trend is presented as an example to demonstrate the offset balancing technique.

  17. Gait and balance disorders.

    PubMed

    Masdeu, Joseph C

    2016-01-01

    This chapter focuses on one of the most common types of neurologic disorders: altered walking. Walking impairment often reflects disease of the neurologic structures mediating gait, balance or, most often, both. These structures are distributed along the neuraxis. For this reason, this chapter is introduced by a brief description of the neurobiologic underpinning of walking, stressing information that is critical for imaging, namely, the anatomic representation of gait and balance mechanisms. This background is essential not only in order to direct the relevant imaging tools to the regions more likely to be affected but also to interpret correctly imaging findings that may not be related to the walking deficit object of clinical study. The chapter closes with a discussion on how to image some of the most frequent etiologies causing gait or balance impairment. However, it focuses on syndromes not already discussed in other chapters of this volume, such as Parkinson's disease and other movement disorders, already discussed in Chapter 48, or cerebellar ataxia, in Chapter 23, in the previous volume. As regards vascular disease, the spastic hemiplegia most characteristic of brain disease needs little discussion, while the less well-understood effects of microvascular disease are extensively reviewed here, together with the imaging approach. PMID:27430451

  18. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  19. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    SciTech Connect

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-08-23

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  20. Dynamic frequency-noise spectrum measurement for a frequency-swept DFB laser with short-delayed self-heterodyne method.

    PubMed

    Zhou, Qian; Qin, Jie; Xie, Weilin; Liu, Zhangweiyi; Tong, Yitian; Dong, Yi; Hu, Weisheng

    2015-11-01

    We proposed and experimentally demonstrated a short-delayed self-heterodyne method with 15.5m delay to get a large-frequency-range laser frequency-noise spectrum over 10Hz to 50 MHz, and an averaging approach to extract the intrinsic frequency noise of a frequency-swept laser. With these two techniques, dynamic frequency-noise spectrum of a frequency-swept DFB laser when free running and servo-controlled are both measured. This measurement method permits accurate and insightful investigation of laser stability.

  1. Real-time heterodyne imaging interferometry: focal-plane amplitude and phase demodulation using a three-phase correlation image sensor.

    PubMed

    Kimachi, Akira

    2007-01-01

    A method of real-time heterodyne imaging interferometry using a three-phase correlation image sensor (3PCIS) is proposed. It simultaneously demodulates the amplitude and phase images of an incident interference pattern at an ordinary frame rate with good accuracy, thus overcoming the trade-off among measurement time, spatial resolution, and demodulation accuracy suffered in conventional interferometry. An experimental system is constructed with a 64x64 3PCIS camera operated at 30 frames/s and a two-frequency He-Ne laser with a beat frequency of 25 kHz. The results obtained for a scanning mirror and heated silicone oil confirm the proposed method.

  2. M-DLS laser and heterodyne IR spectrometer for studies of the martian atmosphere from ExoMars-2018 landing platform

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Vinogradov, Imant I.; Barke, Victor V.; Klimchuk, Artem Y.; Benderov, Oleg V.; Semenov, Vladimir S.; Lebedev, Yury V.; Churbanov, Dmitry V.; Spiridonov, Maxim V.; Pereslavtseva, Anastassia A.; Skripachev, Igor V.

    2015-09-01

    A compact, lightweight multichannel laser and heterodyne spectrometer is under development for the ExoMars-2018 landng platform. The instrument is aimed at sensitive measurements of the ambient atmosphere composition, isotopic ratios and structure, both in situ and on the open path by direct Sun observations. Begin the abstract two lines below author names and addresses. The abstract summarizes key findings in the paper. It is a paragraph of 250 words or less. For the keywords, select up to 8 key terms for a search on your manuscript's subject.

  3. Mapping the transverse coherence of the self amplified spontaneous emission of a free-electron laser with the heterodyne speckle method.

    PubMed

    Alaimo, Matteo D; Anania, Maria Pia; Artioli, Marcello; Bacci, Alberto; Bellaveglia, Marco; Ciocci, Franco; Chiadroni, Enrica; Cianchi, Alessandro; Dattoli, Giuseppe; Di Pirro, Giampierro; Ferrario, Massimo; Gatti, Giancarlo; Giannessi, Luca; Manfredda, Michele; Martucci, Roberta; Mostacci, Andrea; Paroli, Bruno; Petralia, Alberto; Petrillo, Vittoria; Pompili, Riccardo; Potenza, Marco A C; Quattormini, Marcello; Rau, Julietta; Redoglio, Daniele; Rossi, Andrea R; Serafini, Luca; Surrenti, Vincenzo; Torre, Amalia; Vaccarezza, Cristina; Villa, Fabio

    2014-12-01

    The two-dimensional single shot transverse coherence of the Self-Amplified Spontaneous Emission of the SPARC_LAB Free-Electron Laser was measured through the statistical analysis of a speckle field produced by heterodyning the radiation beam with a huge number of reference waves, scattered by a suspension of particles. In this paper we report the measurements and the evaluation of the transverse coherence along the SPARC_LAB undulator modules. The measure method was demonstrated to be precise and robust, it does not require any a priori assumptions and can be implemented over a wide range of wavelengths, from the optical radiation to the x-rays.

  4. Selection of hydronic balancing valves

    SciTech Connect

    Ahlgren, R.C.E.

    1998-10-01

    This paper describes the selection and setting of balance valves, which, when properly applied in the design of a hydronic system, will result in a balanced system, thus preventing over pumping without excessive energy costs.

  5. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers. PMID:20698188

  6. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.

  7. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  8. Lesson "Balance in Nature

    NASA Astrophysics Data System (ADS)

    Chapanova, V.

    2012-04-01

    Lesson "Balance in Nature" This simulation game-lesson (Balance in Nature) gives an opportunity for the students to show creativity, work independently, and to create models and ideas. It creates future-oriented thought connected to their experience, allowing them to propose solutions for global problems and personal responsibility for their activities. The class is divided in two teams. Each team chooses questions. 1. Question: Pollution in the environment. 2. Question: Care for nature and climate. The teams work on the chosen tasks. They make drafts, notes and formulate their solutions on small pieces of paper, explaining the impact on nature and society. They express their points of view using many different opinions. This generates alternative thoughts and results in creative solutions. With the new knowledge and positive behaviour defined, everybody realizes that they can do something positive towards nature and climate problems and the importance of individuals for solving global problems is evident. Our main goal is to recover the ecological balance, and everybody explains his or her own well-grounded opinions. In this work process the students obtain knowledge, skills and more responsible behaviour. This process, based on his or her own experience, dialogue and teamwork, helps the participant's self-development. Making the model "human↔ nature" expresses how human activities impact the natural Earth and how these impacts in turn affect society. Taking personal responsibility, we can reduce global warming and help the Earth. By helping nature we help ourselves. Teacher: Veselina Boycheva-Chapanova " Saint Patriarch Evtimii" Scholl Str. "Ivan Vazov"-19 Plovdiv Bulgaria

  9. Balancing Computation and Experiment

    SciTech Connect

    Farber, Rob

    2007-04-01

    How do you know when the science being performed on a supercomputer reflects what actually occurs inside a test tube, or in real life? The answer can be stated simply enough: “run the model on the computer, get the result, and then perform an experiment to test the result”. The adage “easier said than done” truly applies – especially when the focus is on innovative science to benefit government and industry. The trick in this case is to find the right balance of science-driven computing integrated with experiment.

  10. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.

  11. Watt and joule balances

    NASA Astrophysics Data System (ADS)

    Robinson, Ian A.

    2014-04-01

    The time is fast approaching when the SI unit of mass will cease to be based on a single material artefact and will instead be based upon the defined value of a fundamental constant—the Planck constant—h . This change requires that techniques exist both to determine the appropriate value to be assigned to the constant, and to measure mass in terms of the redefined unit. It is important to ensure that these techniques are accurate and reliable to allow full advantage to be taken of the stability and universality provided by the new definition and to guarantee the continuity of the world's mass measurements, which can affect the measurement of many other quantities such as energy and force. Up to now, efforts to provide the basis for such a redefinition of the kilogram were mainly concerned with resolving the discrepancies between individual implementations of the two principal techniques: the x-ray crystal density (XRCD) method [1] and the watt and joule balance methods which are the subject of this special issue. The first three papers report results from the NRC and NIST watt balance groups and the NIM joule balance group. The result from the NRC (formerly the NPL Mk II) watt balance is the first to be reported with a relative standard uncertainty below 2 × 10-8 and the NIST result has a relative standard uncertainty below 5 × 10-8. Both results are shown in figure 1 along with some previous results; the result from the NIM group is not shown on the plot but has a relative uncertainty of 8.9 × 10-6 and is consistent with all the results shown. The Consultative Committee for Mass and Related Quantities (CCM) in its meeting in 2013 produced a resolution [2] which set out the requirements for the number, type and quality of results intended to support the redefinition of the kilogram and required that there should be agreement between them. These results from NRC, NIST and the IAC may be considered to meet these requirements and are likely to be widely debated

  12. Resource Balancing Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc

    2010-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached.

  13. Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Zhang, Shangjian; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Zhang, Zhiyao; Liu, Yong

    2016-03-01

    An electrical method is proposed for the microwave characterization of dual-drive Mach-Zehnder modulators based on heterodyne mixing. The proposed method utilizes the heterodyne products between the two-tone modulated optical sidebands and frequency-shifted optical carrier, and achieves calibration-free and bias-drift-free microwave measurement of dual-drive Mach-Zehnder modulators with high resolution electrical-domain techniques. Our method avoids the extra calibration for the photodetector and reduces half the bandwidth requirement for the photodetector and the electrical spectrum analyzer through carefully choosing a half frequency relationship of the two-tone modulation. Moreover, our measurement avoids the bias drifting problem due to the insensitivity to the bias phase of the modulator under test. The frequency-dependent modulation depths and half-wave voltages are measured for a commercial dual-drive Mach-Zehnder modulator with our method, which agree well with the results obtained by the conventional optical spectrum analysis method.

  14. Balance ability and athletic performance.

    PubMed

    Hrysomallis, Con

    2011-03-01

    The relationship between balance ability and sport injury risk has been established in many cases, but the relationship between balance ability and athletic performance is less clear. This review compares the balance ability of athletes from different sports, determines if there is a difference in balance ability of athletes at different levels of competition within the same sport, determines the relationship of balance ability with performance measures and examines the influence of balance training on sport performance or motor skills. Based on the available data from cross-sectional studies, gymnasts tended to have the best balance ability, followed by soccer players, swimmers, active control subjects and then basketball players. Surprisingly, no studies were found that compared the balance ability of rifle shooters with other athletes. There were some sports, such as rifle shooting, soccer and golf, where elite athletes were found to have superior balance ability compared with their less proficient counterparts, but this was not found to be the case for alpine skiing, surfing and judo. Balance ability was shown to be significantly related to rifle shooting accuracy, archery shooting accuracy, ice hockey maximum skating speed and simulated luge start speed, but not for baseball pitching accuracy or snowboarding ranking points. Prospective studies have shown that the addition of a balance training component to the activities of recreationally active subjects or physical education students has resulted in improvements in vertical jump, agility, shuttle run and downhill slalom skiing. A proposed mechanism for the enhancement in motor skills from balance training is an increase in the rate of force development. There are limited data on the influence of balance training on motor skills of elite athletes. When the effectiveness of balance training was compared with resistance training, it was found that resistance training produced superior performance results for

  15. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  16. Skin friction balance

    NASA Technical Reports Server (NTRS)

    Ping, Tcheng (Inventor); Supplee, Frank H., Jr. (Inventor)

    1989-01-01

    A skin friction balance uses a parallel linkage mechanism to avoid inaccuracies in skin friction measurement attributable to off-center normal forces. The parallel linkage mechanism includes a stationary plate mounted in a cage, and an upper and lower movable plate which are linked to each other and to the stationary plate throught three vertical links. Flexure pivots are provided for pivotally connecting the links and the plates. A sensing element connected to the upper plate moves in response to skin friction, and the lower plate moves in the opposite direction of the upper plate. A force motor maintains a null position of the sensing element by exerting a restoring force in response to a signal generated by a linear variable differential transformer (LVDT).

  17. Balancing Family and Career

    NASA Astrophysics Data System (ADS)

    Andam, Aba Bentil; Dawson, Silvina Ponce; Horton, K. Renee; Sandow, Barbara

    2005-10-01

    In essentially all countries, responsibilities for child care, cooking, cleaning, and other homemaking tasks fall predominantly on the wife and mother. In addition, the childbearing years come during the period when a physicist must study hard, work long hours on research, and take temporary positions, often abroad. Thus, balancing family and career has long been one of the major barriers to women's participation in science and engineering fields, including physics. While many young women believe that they must choose between having children and having a science career, the fact is that the majority of women physicists in both developing and developed countries have successfully done both. This paper summarizes some ideas and recommendations raised in discussions, especially focused on easing the challenges of having children while in temporary jobs, returning to physics after a career break, the need for "family-friendly" working conditions, and the dual-career problem facing couples where both are scientists.

  18. Energy balance in peridynamics.

    SciTech Connect

    Lehoucq, Richard B.; Silling, Stewart Andrew

    2010-09-01

    The peridynamic model of solid mechanics treats internal forces within a continuum through interactions across finite distances. These forces are determined through a constitutive model that, in the case of an elastic material, permits the strain energy density at a point to depend on the collective deformation of all the material within some finite distance of it. The forces between points are evaluated from the Frechet derivative of this strain energy density with respect to the deformation map. The resulting equation of motion is an integro-differential equation written in terms of these interparticle forces, rather than the traditional stress tensor field. Recent work on peridynamics has elucidated the energy balance in the presence of these long-range forces. We have derived the appropriate analogue of stress power, called absorbed power, that leads to a satisfactory definition of internal energy. This internal energy is additive, allowing us to meaningfully define an internal energy density field in the body. An expression for the local first law of thermodynamics within peridynamics combines this mechanical component, the absorbed power, with heat transport. The global statement of the energy balance over a subregion can be expressed in a form in which the mechanical and thermal terms contain only interactions between the interior of the subregion and the exterior, in a form anticipated by Noll in 1955. The local form of this first law within peridynamics, coupled with the second law as expressed in the Clausius-Duhem inequality, is amenable to the Coleman-Noll procedure for deriving restrictions on the constitutive model for thermomechanical response. Using an idea suggested by Fried in the context of systems of discrete particles, this procedure leads to a dissipation inequality for peridynamics that has a surprising form. It also leads to a thermodynamically consistent way to treat damage within the theory, shedding light on how damage, including the

  19. Dynamic load balancing of applications

    DOEpatents

    Wheat, Stephen R.

    1997-01-01

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

  20. Dynamic load balancing of applications

    DOEpatents

    Wheat, S.R.

    1997-05-13

    An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.