Science.gov

Sample records for polarization-based balanced heterodyne

  1. Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy.

    PubMed

    Middleton, Chris T; Strasfeld, David B; Zanni, Martin T

    2009-08-17

    We demonstrate amplitude, phase and polarization shaping of femtosecond mid-IR pulses using a germanium acousto-optical modulator by independently shaping the frequency-dependent amplitudes and phases of two orthogonally polarized pulses which are then collinearly overlapped using a wire-grid polarizer. We use a feedback loop to set and stabilize the relative phase of the orthogonal pulses. We have also used a wire-grid polarizer to implement polarization-based balanced heterodyne detection for improved signal-to-noise of 2D IR spectra collected in a pump-probe geometry. Applications include coherent control of molecular vibrations and improvements in multidimensional IR spectroscopy.

  2. Quantum-limited operation of balanced mixer homodyne and heterodyne receivers

    NASA Astrophysics Data System (ADS)

    Machida, Susumu; Yamamoto, Yoshihisa

    1986-05-01

    In the GaAs semiconductor laser balanced mixer heterodyne receiver of Abbas and Chan (1983), the photocurrent fluctuation due to local oscillator wave intensity noise was suppressed, but the absolute quantum noise level calibration was not clarified. In this paper, the results of experimental calibration of the quantum noise level were obtained using two different methods: photocurrent spectral density measurement and photoelectron counting. The noise of a balanced mixer operation was confirmed to be truly quantum limited; the photocurrent fluctuation spectral density measured with a spectrum analyzer agreed with the quantum noise spectral density. The deviations from the absolute quantum noise level were within + or -0.02 dB. Complete suppression of local oscillator excess noise was demonstrated in the 0-1.5 GHz frequency region. Uses of balanced mixers for observing the squeezing phenomenon and quantum nondemolition measurement is mentioned.

  3. Polarization-based balanced detection for spectral-domain optical coherence tomography.

    PubMed

    Black, Adam J; Akkin, Taner

    2015-08-20

    We present a new design for spectral-domain optical coherence tomography that allows balanced detection using a single camera. The design uses polarization optics to encode the light in reference and sample arms. Two parallel and highly aligned spectra, which carry out-of-phase interference signals, in-phase common noise, and auto-interference terms, are focused on the camera, which performs the digital balanced detection for each wavelength. The optical system is characterized and tested for tissue imaging. Results demonstrate consistent signal gains in depth and suppression of DC and sample auto-interference. The design could be further amended for polarization-sensitive imaging and might demonstrate a market for manufacturing dual-line cameras with analog-balanced detection capability.

  4. Design of a full-dynamic-range balanced detection heterodyne gyroscope with common-path configuration.

    PubMed

    Lin, Chu-En; Yu, Chih-Jen; Chen, Chii-Chang

    2013-04-22

    In this article, we propose an optical heterodyne common-path gyroscope which has common-path configuration and full-dynamic range. Different from traditional non-common-path optical heterodyne technique such as Mach-Zehnder or Michelson interferometers, we use a two-frequency laser light source (TFLS) which can generate two orthogonally polarized light with a beat frequency has a common-path configuration. By use of phase measurement, this optical heterodyne gyroscope not only has the capability to overcome the drawback of the traditional interferometric fiber optic gyro: lack for full-dynamic range, but also eliminate the total polarization rotation caused by SMFs. Moreover, we also demonstrate the potential of miniaturizing this gyroscope as a chip device. Theoretically, if we assume that the wavelength of the laser light is 1550nm, the SMFs are 250m in length, and the radius of the fiber ring is 3.5cm, the bias stability is 0.872 deg/hr.

  5. A new balanced-path heterodyne I/Q-interferometer scheme for low environmental noise, high sensitivity phase measurements for both reflection and transmission geometry.

    PubMed

    Yoon, Seunghyun; Park, Youngkyu; Cho, Kyuman

    2013-09-09

    A new heterodyne interferometer scheme which has open accesses to both the geometrically balanced probe beam (PB) and reference beam (RB) paths, for which, depending on the nature of a specific sensing mechanism, a transmission geometry or a reflection geometry can be employed, is presented. We will show that, because of a small separation between the short length PB and RB running parallel to each other our newly proposed optical arrangement allows high rejection of unlocalized environmental perturbations. In fact, the geometrically balanced optical arrangement provides 19 dB rejection of any vibrations parallel to the direction of beam propagation, which cannot be achieved in a conventional interferometer scheme. Applications of this new interferometer scheme are discussed. As an example, we will show that our newly proposed interferometer scheme can be applied for high sensitivity measurements of concentration dependent refractive indexes in various solutions.

  6. Spatial heterodyne interferometry with polarization gratings.

    PubMed

    Kudenov, Michael W; Miskiewicz, Matthew N; Escuti, Michael J; Dereniak, Eustace L

    2012-11-01

    The implementation of a polarization-based spatial heterodyne interferometer (SHI) is described. While a conventional SHI uses a Michelson interferometer and diffraction gratings, our SHI exploits mechanically robust Wollaston prisms and polarization gratings. A theoretical model for the polarization SHI is provided and validated with data from our proof of concept experiments. This device is expected to provide a compact monolithic sensor for subangstrom resolution spectroscopy in remote sensing, biomedical imaging, and machine vision applications.

  7. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1989-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency and the like, and provides spectral analysis of a laser beam.

  8. Heterodyne laser spectroscopy system

    DOEpatents

    Wyeth, Richard W.; Paisner, Jeffrey A.; Story, Thomas

    1990-01-01

    A heterodyne laser spectroscopy system utilizes laser heterodyne techniques for purposes of laser isotope separation spectroscopy, vapor diagnostics, processing of precise laser frequency offsets from a reference frequency, and provides spectral analysis of a laser beam.

  9. Spatially-Heterodyned Holography

    DOEpatents

    Thomas, Clarence E [Knoxville, TN; Hanson, Gregory R [Clinton, TN

    2006-02-21

    A method of recording a spatially low-frequency heterodyne hologram, including spatially heterodyne fringes for Fourier analysis, includes: splitting a laser beam into a reference beam and an object beam; interacting the object beam with an object; focusing the reference beam and the object beam at a focal plane of a digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis; digital recording the spatially low-frequency heterodyne hologram; Fourier transforming axes of the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam; cutting off signals around an origin; and performing an inverse Fourier transform.

  10. 30-micron heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Spears, David L.

    1987-01-01

    Advantages and constraints of remote measurements using heterodyne spectroscopy near 30 microns are discussed. The state of the art of wideband HgCdTe photomixers and PbSnSe diode-laser local oscillators being developed for FIR heterodyne receivers is described. The first compact 30-micron heterodyne radiometer was built, and initial results at 28-microns show about 2-percent mixer efficiency for a 500-MHz-bandwidth receiver. Factors limiting receiver performance are discussed, along with the projected sensitivity of new interdigitated-electrode HgCdTe photoconductor mixers being developed for operation up to 200 microns.

  11. Submillimeter wave heterodyne receiver

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam (Inventor); Manohara, Harish (Inventor); Siegel, Peter H. (Inventor); Ward, John (Inventor)

    2011-01-01

    In an embodiment, a submillimeter wave heterodyne receiver includes a finline ortho-mode transducer comprising thin tapered metallic fins deposited on a thin dielectric substrate to separate a vertically polarized electromagnetic mode from a horizontally polarized electromagnetic mode. Other embodiments are described and claimed.

  12. Heterodyne Interferometer Angle Metrology

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  13. Infrared heterodyne spectroscopy in astronomy

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1980-01-01

    A heterodyne spectrometer was constructed and applied to problems in infrared astronomical spectroscopy. The instrument offers distinct observational advantages for the detection and analysis of individual spectral lines at Doppler-limited resolution. Observations of carbon dioxide in planetary atmospheres and ammonia in circumstellar environments demonstrate the substantial role that infrared heterodyne techniques will play in the astronomical spectroscopy of the future.

  14. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark; Wanke, Michael C.

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  15. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  16. Heterodyne speckle velocimetry

    SciTech Connect

    Alaimo, M. D.; Magatti, D.; Ferri, F.; Potenza, M.A.C.

    2006-05-08

    We present a simple method for fluid velocimetry based on the velocity of the heterodyne speckles generated by tracking particles illuminated with coherent light. It works in real time and provides instantaneous two-dimensional velocity mappings in the direction orthogonal to the optical axis, independently of the particle concentration and size, also for subwavelength particles. It also provides the velocity distribution of the fluid over the entire sample thickness. The method has been quantitatively tested by using the motions of rigid diffusers and applied for mapping the flow of a confined fluid.

  17. Digitally Enhanced Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge

    2010-01-01

    Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.

  18. White Light Heterodyne Interferometry SNR

    DTIC Science & Technology

    2015-04-09

    INTRODUCTION The subject of heterodyne interferometry, most successfully demonstrated for astronomy in the long- wave infrared (LWIR) at the...zero sun -like star puts out 4 × 107 photons/s/m2/nm at the surface of the earth at this wavelength, which corresponds to a power per unit bandwidth...MID- WAVE AND LONG- WAVE INFRARED While there is a significant penalty to the heterodyne approach in the visible through short- wave infrared (SWIR

  19. Dove prism heterodyne refractometer

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Chih; Lee, Chia-Yun; Chu, Kuan-Ho; Wu, Tsai-Chen

    2015-10-01

    In this study, we proposed an alternative method, integrating a Dove prism and precision circular heterodyne interferometry, for measuring the refractive index and concentration of sodium chloride and hydrogen peroxide solutions with low phase error. Due to the optical properties of the Dove prism, the test light undergoes total internal reflection (TIR) at the interface between the test sample and the prism. The light beam travels in and out of the Dove prism while maintaining the same direction. Therefore, only slight alignment is required, leading to only small errors in the phase and refractive index. In this study, the phase error, refractive index error, and resolution of the concentration are approximated to be 0.003°, 2×10-5, and 1×10-3 M, respectively. The proposed method has the advantages of a simple optical configuration, ease of operation, little alignment required, and high stability, and it allows for high-precision measurement of the refractive index and concentration of the liquid sample.

  20. Heterodyne systems and technology, part 1. [conferences

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various aspects of optical heterodyning are considered. Topics covered heterodyning throughout the electromagnetic spectrum including detectors, local oscillators, tunable diode lasers, astronomical systems, and environmental sensors, with both active and passive systems represented.

  1. Paired circularly polarized heterodyne ellipsometer

    SciTech Connect

    Yu, C.-J.; Lin, C.-E.; Yu, L.-P.; Chou, C

    2009-02-01

    We develop a paired circularly polarized heterodyne ellipsometer (PCPHE), in which a heterodyne interferometer based on a two-frequency circularly polarized laser beam is set up. It belongs to an amplitude-sensitive ellipsometer that is able to provide not only a wider dynamic range of polarization modulation frequency but also a higher detection sensitivity than that of a conventional photometric ellipsometer. A real-time and precise measurement of ellipsometric parameters, which demonstrated an accuracy of less than 1 nm on thickness measurement of SiO2 thin film deposited on silicon substrate, can be applied with the PCPHE.

  2. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  3. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  4. Modified Phasemeter for a Heterodyne Laser Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank M.

    2010-01-01

    Modifications have been made in the design of instruments of the type described in "Digital Averaging Phasemeter for Heterodyne Interferometry". A phasemeter of this type measures the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. The phasemeter design lacked immunity to drift of the heterodyne frequency, was bandwidth-limited by computer bus architectures then in use, and was resolution-limited by the nature of field-programmable gate arrays (FPGAs) then available. The modifications have overcome these limitations and have afforded additional improvements in accuracy, speed, and modularity. The modifications are summarized.

  5. Robust terahertz self-heterodyne system using a phase noise compensation technique.

    PubMed

    Song, Hajun; Song, Jong-In

    2015-08-10

    We propose and demonstrate a robust terahertz self-heterodyne system using a phase noise compensation technique. Conventional terahertz self-heterodyne systems suffer from degraded phase noise performance due to phase noise of the laser sources. The proposed phase noise compensation technique uses an additional photodiode and a simple electric circuit to produce phase noise identical to that observed in the terahertz signal produced by the self-heterodyne system. The phase noise is subsequently subtracted from the terahertz signal produced by the self-heterodyne system using a lock-in amplifier. While the terahertz self-heterodyne system using a phase noise compensation technique offers improved phase noise performance, it also provides a reduced phase drift against ambient temperature variations. The terahertz self-heterodyne system using a phase noise compensation technique shows a phase noise of 0.67 degree in terms of a standard deviation value even without using overall delay balance control. It also shows a phase drift of as small as approximately 10 degrees in an open-to-air measurement condition without any strict temperature control.

  6. Two-wavelength spatial-heterodyne holography

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.; Simpson, John T.; Karnowski, Thomas P.; Voelkl, Edgar

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  7. Berkeley heterodyne interferometer. [for IR stellar observations

    NASA Technical Reports Server (NTRS)

    Betz, A.

    1975-01-01

    A prototype heterodyne stellar interferometer has been built in order to demonstrate the feasibility of heterodyne techniques in measuring angular diameters of bright infrared stars. The first system tests were performed in December 1972. Attention is given to investigations concerning the possibility that optical air turbulence within the structure of the solar telescope employed can possibly destroy the phase coherence of the fringe signals.

  8. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  9. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  10. Heterodyne lidar for chemical sensing

    SciTech Connect

    Oldenborg, R. C.; Tiee, J. J.; Shimada, T.; Wilson, C. W.; Remelius, D. K.; Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging

  11. Spatial heterodyne spectrometer for FLEX

    NASA Astrophysics Data System (ADS)

    Scott, Alan; Zheng, Sheng-Hai; Brown, Stephen; Bell, Andrew

    2007-10-01

    A spatial heterodyne spectrometer (SHS) has significant advantages for high spectral resolution imaging over narrow pre-selected bands compared to traditional solutions. Given comparable optical étendue at R~6500, a field-widened SHS will have a throughput-resolution product ~170 x larger than an air-spaced etalon spectrometer, and ~1000 x larger than a standard grating spectrometer. The monolithic glass Michelson design and lack of moving parts allows maximum stability of spectral calibration over the mission life. For these reasons, SHS offers considerable advantages for the core spectrometer instrument in the European Space Agency's (ESA) Fluorescence Explorer (FLEX) mission.

  12. Balancing

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    At many occasions we are asked to achieve a “balance” in our lives: when it comes, for example, to work and food. Balancing is crucial in game design as well as many have pointed out. In games with a meaningful purpose, however, balancing is remarkably different. It involves the balancing of three different worlds, the worlds of Reality, Meaning, and Play. From the experience of designing Levee Patroller, I observed that different types of tensions can come into existence that require balancing. It is possible to conceive of within-worlds dilemmas, between-worlds dilemmas, and trilemmas. The first, the within-world dilemmas, only take place within one of the worlds. We can think, for example, of a user interface problem which just relates to the world of Play. The second, the between-worlds dilemmas, have to do with a tension in which two worlds are predominantly involved. Choosing between a cartoon or a realistic style concerns, for instance, a tension between Reality and Play. Finally, the trilemmas are those in which all three worlds play an important role. For each of the types of tensions, I will give in this level a concrete example from the development of Levee Patroller. Although these examples come from just one game, I think the examples can be exemplary for other game development projects as they may represent stereotypical tensions. Therefore, to achieve harmony in any of these forthcoming games, it is worthwhile to study the struggles we had to deal with.

  13. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  14. Ripplon scattering using grating heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Sirohi, R. S.; Edwards, R. V.; Mann, J. A., Jr.

    1980-01-01

    Heterodyne photon spectroscopy was used for the study of the viseo-elastic properties of the liquid interface by studying the scattering from thermal ripplons. A theory of a heterodyne apparatus based on a grating is presented, and the heterodyne condition is given in terms of the parameters of the experimental set-up. Emphasis was placed on the study of the instrumental function and its influence on the measurement data. The instrumental function is not always gaussian, but its functional form depends on the parameters of the experimental set-up. An algorithm is suggested to arrive at the center frequency and half width at half height of the spectrum from the noisy experimental data, and applied to the measurement data obtained from ethanol and water surfaces.

  15. Optical Heterodyne With Lower Phase Noise

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T.

    1994-01-01

    Proposed improvement enhances utility of optical-heterodyne apparatus used to generate radio signal at chosen frequency between 1 and 1,000 GHz. Two lasers injection-locked to third, mode-locked laser. Beat-frequency heterodyne output contains much less phase noise if generated from outputs of two independent lasers, and phase-coherent with reference signal. Potential applications include phased-array radar, fiber-optic communication systems, fiber-optic stabilized oscillators, and other applications involving conversions between optical and millimeter-wave signals.

  16. Digital Averaging Phasemeter for Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Johnson, Donald; Spero, Robert; Shaklan, Stuart; Halverson, Peter; Kuhnert, Andreas

    2004-01-01

    A digital averaging phasemeter has been built for measuring the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. This phasemeter performs well enough to enable interferometric measurements of distance with accuracy of the order of 100 pm and with the ability to track distance as it changes at a speed of as much as 50 cm/s. This phasemeter is unique in that it is a single, integral system capable of performing three major functions that, heretofore, have been performed by separate systems: (1) measurement of the fractional-cycle phase difference, (2) counting of multiple cycles of phase change, and (3) averaging of phase measurements over multiple cycles for improved resolution. This phasemeter also offers the advantage of making repeated measurements at a high rate: the phase is measured on every heterodyne cycle. Thus, for example, in measuring the relative phase of two signals having a heterodyne frequency of 10 kHz, the phasemeter would accumulate 10,000 measurements per second. At this high measurement rate, an accurate average phase determination can be made more quickly than is possible at a lower rate.

  17. Broadband Heterodyne SIS Spectrometer Prototype: First Results

    NASA Technical Reports Server (NTRS)

    Rice, F.; LeDuc, H.; Harris, A.; Hu, S.; Sumner, M.; Zmuidzinas, J.

    2004-01-01

    The broadband heterodyne SIS receiver system described elsewhere (reference 1) has been assembled and tested both in the laboratory and during two observing runs on the Cassegrain focus of the 10 meter telescope at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. Here we present a brief summary of the initial results.

  18. Submillimeter local oscillators for spaceborne heterodyne applications

    NASA Technical Reports Server (NTRS)

    Petuchowski, S. J.; Durachta, J.

    1985-01-01

    Existing and prospective submillimeter local oscillator technologies are surveyed and compared with respect to criteria of suitability for application in spaceborne submillimeter heterodyne receivers as those proposed for the Large Deployable Reflector (LDR). Solid-state and plasma devices are considered in terms of fundamental limitations.

  19. Laser Metrology Heterodyne Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Loya, Frank; Halverson, Peter

    2009-01-01

    A method reduces sensitivity to noise in a signal from a laser heterodyne interferometer. The phase-locked loop (PLL) removes glitches that occur in a zero-crossing detector s output [that can happen if the signal-to-noise ratio (SNR) of the heterodyne signal is low] by the use of an internal oscillator that produces a square-wave signal at a frequency that is inherently close to the heterodyne frequency. It also contains phase-locking circuits that lock the phase of the oscillator to the output of the zero-crossing detector. Because the PLL output is an oscillator signal, it is glitch-free. This enables the ability to make accurate phase measurements in spite of low SNR, creates an immunity to phase error caused by shifts in the heterodyne frequency (i.e. if the target moves causing Doppler shift), and maintains a valid phase even when the signal drops out for brief periods of time, such as when the laser is blocked by a stray object.

  20. Spatial-heterodyne interferometry for transmission (SHIFT) measurements

    DOEpatents

    Bingham, Philip R.; Hanson, Gregory R.; Tobin, Ken W.

    2006-10-10

    Systems and methods are described for spatial-heterodyne interferometry for transmission (SHIFT) measurements. A method includes digitally recording a spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis using a reference beam, and an object beam that is transmitted through an object that is at least partially translucent; Fourier analyzing the digitally recorded spatially-heterodyned hologram, by shifting an original origin of the digitally recorded spatially-heterodyned hologram to sit on top of a spatial-heterodyne carrier frequency defined by an angle between the reference beam and the object beam, to define an analyzed image; digitally filtering the analyzed image to cut off signals around the original origin to define a result; and performing an inverse Fourier transform on the result.

  1. Ozone height profiles using laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Jain, S. L.

    1994-01-01

    The monitoring of vertical profiles of ozone and related minor constituents in the atmosphere are of great significance to understanding the complex interaction between atmospheric dynamics, chemistry and radiation budget. An ultra high spectral resolution tunable CO2 laser heterodyne radiometer has been designed, developed and set up at the National Physical Laboratory, New Delhi to obtain vertical profiles of various minor constituents the characteristic absorption lines in 9 to 11 micron spectral range. Due to its high spectral resolution the lines can be resolved completely and data obtained are inverted to get vertical profiles using an inversion technique developed by the author. In the present communication the salient features of the laser heterodyne system and the results obtained are discussed in detail.

  2. Nanoscale defect detection by heterodyne interferometry

    SciTech Connect

    Lin Haoshan; Li Yuhe; Wang Dongsheng; Tong Xiaolei; Liu Mei

    2009-03-10

    We construct an instrument that facilitates the measurement of nanoscale defects. It is based on heterodyne interferometry with phase measurement that utilizes a polarizing beam splitter to form a measuring signal and an oscillating cantilever tip that acts as a scanning probe to get the measurement values of sample topography. The dependence of the tip displacement on the variation of tip-sample distance and the comb scanning of the sample topography are investigated by experiments. The results prove that the tip displacement increases and is enough to be discriminated in various positions where the sample is approached. The system has been successfully utilized to measure the defect characterization by measuring the pitch of the standard sample. The results also show that the heterodyne system has good repeatability, a large measurement range, and high accuracy, with a measurement stability of 0.5 nm.

  3. A heterodyne interferometer for angle metrology.

    PubMed

    Hahn, Inseob; Weilert, M; Wang, X; Goullioud, R

    2010-04-01

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/square root of Hz at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately +/-0.15 mrad, and 3 microrad rms, respectively.

  4. A heterodyne interferometer for angle metrology

    SciTech Connect

    Hahn, Inseob; Weilert, M.; Wang, X.; Goullioud, R.

    2010-04-15

    We have developed a compact, high-resolution, angle measurement instrument based on a heterodyne interferometer. Common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer set up, an optical mask is used to sample the laser beam reflecting back from four areas on a target surface. From the relative displacement measurements of the target surface areas, we can simultaneously determine angular rotations around two orthogonal axes in a plane perpendicular to the measurement beam propagation direction. The device is used in a testbed for a tracking telescope system where pitch and yaw angle measurements of a flat mirror are performed. Angle noise measurement of the device shows 0.1 nrad/{radical}(Hz) at 1 Hz, at a working distance of 1 m. The operation range and nonlinearity of the device when used with a flat mirror is approximately {+-}0.15 mrad, and 3 {mu}rad rms, respectively.

  5. Stratospheric sounding by infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kunde, V. G.; Mumma, M. J.; Kostiuk, T.; Buhl, D.; Frerking, M. A.

    1978-01-01

    Intensity profiles of infrared spectral lines of stratospheric constituents can be fully resolved with a heterodyne spectrometer of sufficiently high resolution. The constituents' vertical distributions can then be evaluated accurately by analytic inversion of the measured line profiles. Estimates of the detection sensitivity of a heterodyne receiver are given in terms of minimum detectable volume mixing ratios of stratospheric constituents, indicating a large number of minor constituents which can be studied. Stratospheric spectral line shapes, and the resolution required to measure them are discussed in light of calculated synthetic line profiles for some stratospheric molecules in a model atmosphere. The inversion technique for evaluation of gas concentration profiles is briefly described and applications to synthetic lines of O3, CO2, CH4 and N2O are given.

  6. Quantum limited heterodyne detection of spin noise

    NASA Astrophysics Data System (ADS)

    Cronenberger, S.; Scalbert, D.

    2016-09-01

    Spin noise spectroscopy is a powerful technique for studying spin relaxation in semiconductors. In this article, we propose an extension of this technique based on optical heterodyne detection of spin noise, which provides several key advantages compared to conventional spin noise spectroscopy: detection of high frequency spin noise not limited by detector bandwidth or sampling rates of digitizers, quantum limited sensitivity even in case of very weak probe power, and possible amplification of the spin noise signal. Heterodyne detection of spin noise is demonstrated on insulating n-doped GaAs. From measurements of spin noise spectra up to 0.4 Tesla, we determined the distribution of g-factors, Δg/g = 0.49%.

  7. Wide-band heterodyne receiver development for effluent measurements

    SciTech Connect

    Hutchinson, D.P.; Richards, R.K.; Simpson, M.L.; Bennett, C.A.; Liu, H.C.; Buchanan, M.

    1998-05-01

    Oak Ridge National Laboratory (ORNL) has been developing advanced infrared heterodyne receivers for plasma diagnostics in fusion reactors for over 20 years. Passive heterodyne radiometry in the LWIR region of the spectrum has historically been restricted by HgCdTe (MCT) detector technology to receiver bandwidths of only 2 GHz. Given typical atmospheric line widths of approximately 3 GHz, a CO{sub 2} (or isotope) laser local oscillator with an average line spacing of 50 GHz, and an MCT detector, only chemical species whose absorptions fall directly on top of laser lines can be measured. Thus, with traditional narrow-band heterodyne radiometry, much of the LWIR spectrum is missed and the less complex direct detection DIAL has been the preferred technique in remote sensing applications. Wide-band heterodyne receivers offer significant improvements in remote measurement capability. Progress at the Institute for Microstructural Sciences (IMS) at National Research Council of Canada and at ORNL in wide-band quantum-well infrared photodetectors (QIPs) and receivers is significantly enhancing the bandwidth capabilities of heterodyne radiometers. ORNL recently made measurements in the lab using QWIPs developed at IMS that demonstrate heterodyne quantum efficiencies of 5% with a heterodyne bandwidth of 7 GHz. The path forward indicates that > 10% heterodyne quantum efficiencies and 30-GHz bandwidths are achievable with current QWIP technology. With a chopped, 30-GHz passive heterodyne receiver, a much larger portion of the LWIR spectrum can now be covered. One potential advantage of wide-band heterodyne receivers for effluent measurements is to dramatically reduce the number of laser lines needed to characterize and distinguish multiple chemical species of interest. In the following paper, the authors discuss this and other implications of these new technologies to the characterization of effluents using both passive heterodyne radiometry and thermo-luminescence.

  8. Error sources in deferred heterodyne moire deflectometry - An analytical study

    NASA Technical Reports Server (NTRS)

    Stricker, Josef

    1989-01-01

    The effects of the aperture size and shape of the photodetector and of the structure of the grating lines on the performance of deferred electronic heterodyne moire deflectometry are studied. It is shown that scanning of a moire fringe pattern parallel to an unshifted fringe yields periodical variations in the heterodyne phase and amplitude, which cause severe errors in the measurements.

  9. Analysis of Optimum Heterodyne Receivers for Coherent Lidar Applications

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin

    2002-01-01

    A full analysis of the combined effects of all the noise sources of optical heterodyne receiver and the interaction between the competing control parameters of the receiver detector and pre-amplifier will be presented. This analysis provides the mean for true optimization of the coherent lidar receiver. The significance of the optimization of heterodyne receiver is shown for 2-micron coherent lidar.

  10. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  11. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2009-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  12. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  13. Next generation heterodyne array for JCMT

    NASA Astrophysics Data System (ADS)

    Chen, M.-T.; Dempsey, J.; Ho, P. T. P.; Friberg, P.; Bintley, D.; Walther, C.

    2016-07-01

    As part of the JCMT Future Instrumentation Project, the EAO looks to optimize the premier niche of the facility as the go-to telescope for fast, deep wide-field mapping of the universe at 345 GHz (850 um). The next generation heterodyne array for JCMT will be designed to provide deep ultra-fast mapping capabilities that takes advantage of the full field-of-view available to the telescope, and an array of 90 SIS mixers. This paper presents a preliminary design options and the critical science drivers for the project.

  14. Tunable Diode Laser Heterodyne Spectrophotometry of Ozone

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; McElroy, C. T.; Goldman, A.; Murcray, D. G.

    1988-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (less than 0.0005/ cm) solar spectra in the 9.6 micron ozone band. Observations have shown that a signal-to-noise ratio of 95 : 1 (35% of theoretical) for an integration time of 1/8 second can be achieved at a resolution of 0.0005 wavenumbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that. measured at the nearby National Oceanographic and Atmospheric Administration (NOAA) ozone monitoring facility in Boulder, Colorado.

  15. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  16. SCATTERING OF LIGHT PULSES: Optical heterodyning study of the propagation dynamics of IR femtosecond laser pulses in a strongly scattering porous medium

    NASA Astrophysics Data System (ADS)

    Bestem'yanov, K. P.; Gordienko, Vyacheslav M.; Ivanov, Anatoliy A.; Konovalov, Aleksei N.; Podshivalov, Alexey A.

    2004-07-01

    A system is devised for optical heterodyning based on a femtosecond Cr:forsterite laser using a balance scheme for the laser noise compensation. The dependence of a heterodyne signal on the time delay is measured by detecting backscattered laser radiation from a strongly scattering porous object (a sheet of paper). It is found that the backscattered signal contains 'a long tail' with an exponential decay caused by multiple scattering. The exponent of the exponential is determined by the lifetime of photons in a scattering layer. The absorption and scattering coefficients for different types of paper are measured by the photon lifetime.

  17. Simplified coherent receiver with heterodyne detection of eight-channel 50 Gb/s PDM-QPSK WDM signal after 1040 km SMF-28 transmission.

    PubMed

    Zhang, Junwen; Dong, Ze; Yu, Jianjun; Chi, Nan; Tao, Li; Li, Xinying; Shao, Yufeng

    2012-10-01

    We propose and experimentally demonstrate a simplified coherent receiver based on heterodyne detection with only two balanced photodetectors and two analog-to-digital converters. The polarization diversity hybrid can be simplified relative to the conventional one. The detected intermediate frequency signals are first downconverted to baseband with inphase and quadrature separation. Using this scheme, we successfully demonstrated the eight-channel 50 Gb/s polarization division multiplexed quadrature phase shift keying WDM signal with heterodyne detection based on digital signal processing over 1040 km single-mode fiber 28 with erbium-doped fiber amplifier only amplification.

  18. Phase and frequency tracking considerations for heterodyne optical communications

    NASA Astrophysics Data System (ADS)

    Kaufmann, J. E.

    Heterodyne optical communications systems represent a potential for substantial performance improvement over direct detection systems. Certain difficulties can arise, however, in heterodyne systems, in connection with a frequency instability of the employed laser. In general, frequency or phase tracking will be needed at the receiver to avoid significant degradations in communications performance and requirements for increased transmitter power unless very stable lasers are available. The present investigation is concerned with receiver phase and frequency tracking schemes suitable for heterodyne PSK and MFSK (multilevel frequency-shift-keying) systems in a space communications context, although this work is also applicable to fiberoptic systems.

  19. Homodyning and heterodyning the quantum phase

    NASA Technical Reports Server (NTRS)

    Dariano, Giacomo M.; Macchiavello, C.; Paris, M. G. A.

    1994-01-01

    The double-homodyne and the heterodyne detection schemes for phase shifts between two synchronous modes of the electromagnetic field are analyzed in the framework of quantum estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated and compared with the ideal one in the limit of strong local reference oscillator. The present operational approach leads to a reasonable definition of phase measurement, whose sensitivity is actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple-homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited squeezed states.

  20. Heterodyne spectroscopy of polariton spinor interactions

    NASA Astrophysics Data System (ADS)

    Takemura, N.; Trebaol, S.; Wouters, M.; Portella-Oberli, M. T.; Deveaud, B.

    2014-11-01

    We report on spinor polariton interactions in GaAs based microcavities. This investigation is carried out by means of heterodyne polarized pump-probe spectroscopy. We show the dependence of the energy renormalization of the lower and upper polariton resonances with cavity detuning for different polariton densities. We use the exciton-photon based Gross-Pitaevskii equation to model the experiment for both lower and upper polariton modes. The theoretical results reproduce qualitatively the experimental observations revealing the magnitude and sign of the parallel and antiparallel spin interaction strength. We evidence the strong influence of the biexciton resonance on the antiparallel spin polariton energy shift and provide the exciton-biexciton coupling constant. We derive our results in the lower polariton basis using the Gross-Pitaevskii equation, from which we express analytically the spinor polariton interactions and identify the clear role of the biexciton resonance.

  1. Far-Infrared Heterodyne Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Boreiko, R. T.

    1998-01-01

    This report summarizes work done under NASA Grant NAG2-1062 awarded to the University of Colorado. The project goal was to evaluate the scientific capabilities and technical requirements for a far-infrared heterodyne spectrometer suitable for the SOFIA Airborne Observatory, which is now being developed by NASA under contract to the Universities Space Research Association (USRA). The conclusions detailed below include our specific recommendations for astronomical observations, as well as our intended technical approach for reaching these scientific goals. These conclusions were presented to USRA in the form of a proposal to build this instrument. USRA subsequently awarded the University of Colorado a 3-year grant (USRA 8500-98-010) to develop the proposed Hot-Electron micro-Bolometer (HEB) mixer concept for high frequencies above 3 THz, as well as other semiconductor mixer technologies suitable for high sensitivity receivers in the 2-6 THz frequency band.

  2. Far-Infrared Heterodyne Spectrometer for Sofia

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1998-01-01

    The project goal was to evaluate the scientific capabilities and technical requirements for a far-infrared heterodyne spectrometer suitable for the SOFIA Airborne Observatory, which is now being developed by NASA under contract to the Universities Space Research Association (USRA). The conclusions detailed below include our specific recommendations for astronomical observations, as well as our intended technical approach for reaching these scientific goals. These conclusions were presented to USRA in the form of a proposal to build this instrument. USRA subsequently awarded the University of Colorado a 3-year grant to develop the proposed Hot-Electron micro-Bolometer (HEB) mixer concept for high frequencies above 3 THz, as well as other semiconductor mixer technologies suitable for high sensitivity receivers in the 2-6 THz frequency band.

  3. Heterodyne technique in photoinduced force microscopy with photothermal effect

    NASA Astrophysics Data System (ADS)

    Yamanishi, J.; Naitoh, Y.; Li, Y. J.; Sugawara, Y.

    2017-03-01

    The heterodyne technique is used to detect short-range forces. Using the heterodyne technique, we demonstrate photoinduced force microscopy (PiFM) imaging and z-spectroscopy without the artifact of photothermal vibration. The rejection ratio was at least 99.975% under a high-scattering condition. In addition, the heterodyne technique employs the optimal amplitude at the first resonance frequency of the cantilever to detect the photoinduced force sensitively. According to our calculation, the optimal ratio of the amplitude to the distance between the dipole of the tip and that of the sample is 0.4448. The heterodyne technique can be employed to perform PiFM without the artifact by using the optimal amplitude.

  4. Heterodyne efficiency of a detection system for partially coherent beams.

    PubMed

    Salem, Mohamed; Rolland, Jannick P

    2010-05-01

    We consider the heterodyne efficiency as a measure of quality for a coherent detection system. The heterodyne efficiency reflects the matching between the received beam and the local oscillator beam on the detector surface, and one can use this property for the alignment of the system. In this paper we derive a general expression for the heterodyne efficiency of a detection system for beams at any state of coherence, assuming that the propagation directions for the two signals (the received signal and the locally generated one) are slightly different. We derive an analytical expression for the heterodyne efficiency when mixing coherently two partially coherent Gaussian Schell-model beams on a photodetector surface. Numerical examples are given for the variation in the heterodyne efficiency with the misalignment angle, the detector radius, and the parameters of the overlapping beams. We show that partially coherent beams, although they suffer more than coherent beams from a decrease in the heterodyne efficiency, are less affected than coherent beams by the misalignment of the detection system.

  5. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.

    2006-10-03

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  6. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  7. Broadband Infrared Heterodyne Spectrometer: Final Report

    SciTech Connect

    Stevens, C G; Cunningham, C T; Tringe, J W

    2010-12-16

    This report summarizes the most important results of our effort to develop a new class of infrared spectrometers based on a novel broadband heterodyne design. Our results indicate that this approach could lead to a near-room temperature operation with performance limited only by quantum noise carried by the incoming signal. Using a model quantum-well infrared photodetector (QWIP), we demonstrated key performance features of our approach. For example, we directly measured the beat frequency signal generated by superimposing local oscillator (LO) light of one frequency and signal light of another through a spectrograph, by injecting the LO light at a laterally displaced input location. In parallel with the development of this novel spectrometer, we modeled a new approach to reducing detector volume though plasmonic resonance effects. Since dark current scales directly with detector volume, this ''photon compression'' can directly lead to lower currents. Our calculations indicate that dark current can be reduced by up to two orders of magnitude in an optimized ''superlens'' structure. Taken together, our spectrometer and dark current reduction strategies provide a promising path toward room temperature operation of a mid-wave and possibly long-wave infrared spectrometer.

  8. Heterodyne method for high specificity gas detection.

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Donaldson, R. W.; Gunter, W. D., Jr.; Jaynes, D. N.; Margozzi, A. P.; Deboo, G. J.; Mcclatchie, E. A.; Williams, K. G.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of gases. The technique involves the use of a reference cell (containing a known amount of the gas being sought) and a sample cell (containing an unknown amount of the same gas) wherein the gas densities are modulated. Light passing through the two cells in sequence is modulated in intensity at the vibrational-rotational lines characteristic of the absorption spectrum for the gas of interest. Since the absorption process is nonlinear, modulating the two absorption cells at two different frequencies gives rise to a heterodyning effect, which in turn introduces sum and difference frequencies in the detected signal. Measuring the ratio of the difference frequency signal for example, to the signal introduced by the reference cell provides a normalized measure of the amount of the gas in the sample cell. The readings produced are thereby independent of source intensity, window transparency, and detector sensitivity. Experimental evaluation of the technique suggests that it should be applicable to a wide range of gases, that it should be able to reject spurious signals due to unwanted gases, and that it should be sensitive to concentrations of the order of 10 to the minus 8th power when used with a sample cell of only 20 cm length.

  9. Comparison of direct and heterodyne detection optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, C. C.; Gardner, C. S.

    1987-01-01

    The performance of direct and heterodyne detection optical intersatellite communication links are evaluated and compared. It is shown that the performance of optical links is very sensitive to the pointing and tracking errors at the transmitter and receiver. In the presence of random pointing and tracking errors, optimal antenna gains exist that will minimize the required transmitter power. In addition to limiting the antenna gains, random pointing and tracking errors also impose a power penalty in the link budget. This power penalty is between 1.6 to 3 dB for a direct detection QPPM link, and 3 to 5 dB for a heterodyne QFSK system. For the heterodyne systems, the carrier phase noise presents another major factor of performance degradation that must be considered. In contrast, the loss due to synchronization error is small. The link budgets for direct and heterodyne detection systems are evaluated. It is shown that, for systems with large pointing and tracking errors, the link budget is dominated by the spatial tracking error, and the direct detection system shows a superior performance because it is less sensitive to the spatial tracking error. On the other hand, for systems with small pointing and tracking jitters, the antenna gains are in general limited by the launch cost, and suboptimal antenna gains are often used in practice. In which case, the heterodyne system has a slightly higher power margin because of higher receiver sensitivity.

  10. Design considerations for optical heterodyne receivers: A review

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1980-01-01

    The current state of knowledge concerning optical heterodyne receivers is reviewed. Following a discussion of noise processes in the heterodyne receiver and the manner in which sensitivity is increased through time integration of the detected signal, an expression for the mean square signal current is derived by mixing a coherent local oscillator with a partially coherent, quasimonochromatic source. Then the manner in which the IF signal calculation can be transferred to any convenient plane in the optical front end of the receiver is demonstrated. Using these techniques, a relatively simple equation is obtained for the coherently detected signal from an extended incoherent source and applied to the heterodyne detection of an extended thermal source and to the backscatter lidar problem where the antenna patterns of both the transmitter beam and heterodyne receiver must be taken into account. Finally, the detection of a coherent source is considered and, in particular, a distant point source such as a star or laser transmitter in a long range heterodyne communications system is discussed.

  11. Doppler Asymmetric Spatial Heterodyne Spectroscopy (DASH): An Innovative Concept for Measuring Winds in Planetary Atmospheres

    DTIC Science & Technology

    2006-01-01

    Doppler Asymmetric Spatial Heterodyne Spectroscopy (DASH): An innovative concept for measuring winds in planetary atmospheres Christoph R...USA Keywords: Wind, atmospheric dynamics, Doppler imaging, Spatial Heterodyne Spectroscopy , Michelson Interferometer, planetary atmospheres...Heterodyne Spectroscopy (DASH): An innovative concept for measuring winds in planetary atmospheres 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  12. Two-wavelength full-field heterodyne interferometric profilometry

    NASA Astrophysics Data System (ADS)

    Hsieh, Hung-Chih; Chen, Yen-Liang; Jian, Zhi-Chen; Wu, Wang-Tsung; Su, Der-Chin

    2009-02-01

    An alternative full-field interferometric profilometry is proposed by combining two-wavelength interferometry and heterodyne interferometry. A collimated heterodyne light is introduced into a modified Twyman-Green interferometer, the full-field interference signals are taken by a fast CMOS camera. The sampled intensities recorded by each pixel are fitted to derive a sinusoidal signal with the least-square sine wave fitting algorithm, and its phase can be obtained. Comparing the phase of the reference point, the relative phase of the pixel can be calculated. Next, the same measurement is made again at a different wavelength. The relative phase with respect to the effective wavelength can be calculated and the profile of the tested sample can be derived with the two-wavelength interferometric technique. Its validity is demonstrated. It has merits of both two-wavelength interferometry and heterodyne interferometry.

  13. Velocity measurement by coherent x-ray heterodyning

    SciTech Connect

    Lhermitte, Julien R. M.; Rogers, Michael C.; Manet, Sabine; Sutton, Mark

    2017-01-01

    We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.

  14. Investigation of the quantum efficiency of optical heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1984-01-01

    The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.

  15. IQ quadrature demodulation algorithm used in heterodyne detection

    NASA Astrophysics Data System (ADS)

    Wang, Chunhui; Qu, Yang; Tang, Yajun Pang Tiantian

    2015-09-01

    In order to obtain better detection results of heterodyne, we used phase IQ quadrature demodulation algorithm to process the data which detected by laser heterodyne. Based on laser heterodyne interferometer, processing the data in the interferometer phase IQ quadrature demodulation algorithm from the signal to noise ratio, sampling rate, sampling rate, filter order and cutoff frequency, verify the effects of these system parameters to the phase precision, and choose the best parameters to obtain a better phase precision through experiment as: the signal to noise ratio is 25 dB, the IF signal frequency is 98.3 MHz, 98.5 MHz, 99.1 MHz, 99.5 MHz and 100 MHz, the sampling rate is 512-2048, the cutoff frequency and order of the filter are 0.11 and 40, respectively.

  16. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  17. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  18. Widefield heterodyne interferometry using a custom CMOS modulated light camera.

    PubMed

    Patel, Rikesh; Achamfuo-Yeboah, Samuel; Light, Roger; Clark, Matt

    2011-11-21

    In this paper a method of taking widefield heterodyne interferograms using a prototype modulated light camera is described. This custom CMOS modulated light camera (MLC) uses analogue quadrature demodulation at each pixel to output the phase and amplitude of the modulated light as DC voltages. The heterodyne interference fringe patterns are generated using an acousto-optical frequency shifter (AOFS) in an arm of a Mach-Zehnder interferometer. Widefield images of fringe patterns acquired using the prototype MLC are presented. The phase can be measured to an accuracy of ±6.6°. The added value of this method to acquire widefield images are discussed along with the advantages.

  19. Optical heterodyne measurement of cloud droplet size distributions.

    PubMed

    Gollub, J P; Chabay, L; Flygare, W H

    1973-12-01

    Optical heterodyne spectra of laser light quasi-elastically scattered by falling water droplets (1-10-micro radius) in a diffusion cloud chamber were used to determine the droplet size distribution. The rate of fall depends on radius in a known way, thus yielding a heterodyne spectrum manifesting a distribution of Doppler shifts. This spectrum, in conjunction with the calculated Mie scattering intensity as a function of droplet radius, provides a direct measure of the droplet size distribution for droplets large enough that Brownian motion is negligible. The experiments described in this paper demonstrate the technique and establish the potential for further more quantitative studies of size distributions.

  20. Integrated heterodyne interferometer with on-chip modulators and detectors.

    PubMed

    Cole, David B; Sorace-Agaskar, Cheryl; Moresco, Michele; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2015-07-01

    We demonstrate, to our knowledge, the first on-chip heterodyne interferometer fabricated on a 300-mm CMOS compatible process that exhibits root-mean-square (RMS) position noise on the order of 2 nm. Measuring 1 mm by 6 mm, the interferometer is also, to our knowledge, the smallest heterodyne interferometer demonstrated to date and will surely impact numerous interferometric and metrology applications, including displacement measurement, laser Doppler velocimetry and vibrometry, Fourier transform spectroscopy, imaging, and light detection and ranging (LIDAR). Here we present preliminary results that demonstrate the displacement mode.

  1. Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    NASA Technical Reports Server (NTRS)

    Deming, D.; Hillman, J. J.; Kostiuk, T.; Mumma, M. J.; Zipoy, D. M.

    1984-01-01

    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region.

  2. Germanium:gallium photoconductors for far infrared heterodyne detection

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.; Grossman, E. N.; Watson, Dan M.

    1988-01-01

    Highly compensated Ge:Ga photoconductors for high bandwidth heterodyne detection have been fabricated and evaluated. Bandwidths up to 60 MHz have been achieved with a corresponding current responsivity of 0.01 A/W. The expected dependence of bandwidth on bias field is obtained. It is noted that increased bandwidth is obtained at the price of greater required local oscillator power.

  3. An SIS Waveguide heterodyne Reciever for 600 GHz - 635 GHz

    NASA Technical Reports Server (NTRS)

    Salez, Morvan; Febvre, Pascal; McGrath, William R.; Bumble, Bruce; LeDuc, Henry G.

    1994-01-01

    A waveguide SIS heterodyne receiver using a Nb/A10xNb junction has been built for astronomical observations of molecular tranitions in the frequency range 600GHz - 635GHZ, and has been successfully used at the Caltech Submillimeter Observatory (CSO).

  4. Laser/Heterodyne Measurement of Temperature and Salinity

    NASA Technical Reports Server (NTRS)

    Jobson, D. J.; Fales, C. L.; Katzberg, S. J.

    1982-01-01

    Proposed visible-light laser/heterodyne receiver would remotely measure temperature and salinity of subsurface water. Operation is based on acoustic/optical scattering of light by sound waves. Application of this concept is foreseen in current research on energy conversion from ocean currents produced by thermal gradients and on future marine remote-sensing program.

  5. Imaging doppler velocimeter with downward heterodyning in the optical domain

    DOEpatents

    Reu, Phillip L; Hansche, Bruce D

    2013-05-21

    In a Doppler velocimeter, the incoming Doppler-shifted beams are heterodyned to reduce their frequencies into the bandwidth of a digital camera. This permits the digital camera to produce at every sampling interval a complete two-dimensional array of pixel values. This sequence of pixel value arrays provides a velocity image of the target.

  6. A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram

    NASA Technical Reports Server (NTRS)

    Lawler, J. E.; Labby, Z. E.; Roesler, F. L.; Harlander, J.

    2006-01-01

    A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters.

  7. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  8. Single beam write and/or replay of spatial heterodyne holograms

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2007-11-20

    A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.

  9. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  10. A Deeper Look at the Fundamentals of Heterodyne Detection Requirements

    NASA Technical Reports Server (NTRS)

    Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.

    2007-01-01

    We generally accept the experimentally observed criteria for heterodyne detections that the two waves that are mixed must (i) be collinear, (ii) have matched wave fronts and (iii) cannot be orthogonally polarized. We have not found in the literature adequate physical explanations for these requirements. The purpose of this paper is to find deeper physical understanding of the coherent heterodyne detection processes that could lead to better coherent laser radar system designs1. We find that there are a number of unresolved paradoxes in classical and quantum optics regarding the definitions and understanding of the "interference" and "coherence" properties of light, which are attributed as essentially due to inherent properties of the EM waves. A deeper exploration indicates that it is the various quantum mechanical properties of the detecting material dipoles that make light detectable (visible, or measurable) to us. Accordingly, all the properties that we generally attribute to only light, are in reality manifestations of collective properties of dipole-light interactions. "Interference" and "coherence" can be better understood in terms of this mutual interaction, followed by energy absorption by the dipoles from EM wave fields, manifesting in some measurable transformation of the detecting dipoles. Light beams do not interfere by themselves. The superposition effects due to light beams become manifest through the response characteristics of the detecting dipoles. In this paper, we will show some preliminary expe rimental results that clearly demonstrate that the heterodyning wave fronts have quantitative degradation in signal generation as the angle between them deviates from perfect collinearity. Subsequently, we will propose a hypothesis for this behavior. We will present experimental data establishing that the so called incoherent light can be detected through heterodyne mixing as long as the pulse length contained in the "incoherent" light is longer than the

  11. High sensitivity infrared 10.6 micrometer heterodyne receiver development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are presented for a study on the design of an infrared 10.6-micrometer quantum-noise-limited optical receiver subsystem. Performance measurements of the HgCdTe photomixer preamplifier combination were carried out for photomixer temperatures up to 152 K and a photomixer frequency response of up to 420 MHz was obtained. Results of temperature and bias cycling of HgCdTe photomixers are reported. Design considerations for an operational 10.6 micrometer heterodyne receiver are presented. These consist of design data on required laser LO illumination, heat load levels for photomixer cooler, photomixer uniformity and the effects of photomixer impedance match on receiver sensitivity. Analysis and measurements of 10.6 micrometer heterodyne detection in an extrinsic photoconductive (p-type) HgCdTe photomixer are also presented.

  12. Development of trace gas detection instrumentation. [using the heterodyne principle

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Breadboard hardware was constructed to demonstrate detection of a gaseous species by the heterodyne principle. The characteristics of the component parts were investigated and preliminary measurements were made to establish the sensitivity and selectivity of the method for gas analysis of CO, CO2, and N2O. A prototype heterodyne gas analyzer was designed, built, and brought into operational condition. Performance parameters of the prototype analyzer were investigated and its sensitivity to CO2 measured. Further development was undertaken for both the optical bench and the electronic processor components. A three-gas prototype analyzer, capable of measuring the gases CO, CO2, and CH4 was also constructed and tested. Detailed descriptions of the work and results are presented.

  13. Heterodyne moiré interferometry for measuring corneal surface profile

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yao; Chen, Kun-Huang; Chen, Der-Chin; Tseng, Jung-Kai; Chen, Shyan-Tarng; Sun, Han-Ying; Chen, Jing-Heng; Hsu, Ken Y.

    2014-03-01

    This study proposes an accurate method for reconstructing the corneal surface profile. By applying a constant velocity to the projection grating along the grating plane, a series of sampling points of the sinusoidal wave, which behaves in the manner of heterodyne interferometric signals, can be recorded using a CMOS camera. The phase distribution of the moiré fringes can then be obtained using the IEEE 1241 least-square sine fitting algorithm and two-dimensional (2D) phase unwrapping. Finally, the corneal surface profile can be reconstructed by substituting the phase distribution into a specially derived equation. To validate the proposed method, the corneal surface of a pig eyeball was measured. The measurement resolution was approximately 3.5 μm. Because of the introduction of the Talbot effect, the projection moiré method, and heterodyne interferometry, this approach provides the advantages of a simple optical setup, ease of operation, high stability, and high resolution.

  14. Sensitivity limits of an infrared heterodyne spectrometer for astrophysical applications

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Mumma, M. J.; Kostiuk, T.; Buhl, D.

    1975-01-01

    A discussion and an evaluation of the degradation in sensitivity is given for a heterodyne spectrometer employing a HgCdTe photodiode mixer and tunable diode lasers. The minimum detectable source brightness is considered as a function of the mixer parameters, transmission coefficient of the beam splitter, and local oscillator emission powers. The degradation in the minimum detectable line source brightness which results from the bandwidth being a function of the line width is evaluated and plotted as a function of the wavelength and bandwidth for various temperature to mass ratios. It is shown that the minimum achievable degradation in the sensitivity of a practical astronomical heterodyne spectrometer is approximately 30. Estimates of signal-to-noise ratios with which infrared line emission from astronomical sources of interest may be detected are given.

  15. The Beauty and Limitations of 10 Micron Heterodyne Interferometry (ISI)

    NASA Technical Reports Server (NTRS)

    Danchi, William C.

    2003-01-01

    Until recently, heterodyne interferometry at 10 microns has been the only successful technique for stellar interferometry in the very difficult atmospheric window from 9-12 microns. For most of its operational lifetime the U.C. Berkeley Infrared Spatial Interferometer was a single-baseline two telescope (1.65 m aperture) system using CO2 lasers as local oscillators. This instrument was designed and constructed from 1983-1988, and first fringes were obtained at Mt. Wilson in June 1988. During the past few years, a third telescope was constructed and just recently the first closure phases were obtained at 11.15 microns. We discuss the history, physics and technology of heterodyne interferometry in the mid-infrared, and some key astronomical results that have come from this unique instrument.

  16. Phase-resolved ferromagnetic resonance using heterodyne detection method

    PubMed Central

    Yoon, Seungha; Liu, Jason; McMichael, Robert D.

    2016-01-01

    This paper describes a phase-resolved ferromagnetic resonance (FMR) measurement using a heterodyne method. Spin precession is driven by microwave fields and detected by 1550 nm laser light that is modulated at a frequency slightly shifted with respected to the FMR driving frequency. The evolving phase difference between the spin precession and the modulated light produces a slowly oscillating Kerr rotation signal with a phase equal to the precession phase plus a phase due to the path length difference between the excitation microwave signal and the optical signal. We estimate the accuracy of the precession phase measurement to be 0.1 rad. This heterodyne FMR detection method eliminates the need for field modulation and allows a stronger detection signal at higher intermediate frequency where the 1/f noise floor is reduced. PMID:27453957

  17. Spatial heterodyne spectrometer based on the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Cai, Qisheng; Xiangli, Bin; Du, Shusong

    2015-11-01

    Spatial heterodyne spectroscopy (SHS) is a new kind of Fourier-transform spectroscopic technique capable of very high spectral resolution. In this paper, a spatial heterodyne spectrometer based on the Mach-Zehnder interferometer (MZ-SHS) is proposed. It is modified by replacing one mirror in the Mach-Zehnder interferometer with a diffraction grating. This technique retains many of the advantages of traditional SHS. Moreover, the spatial frequency of the interferogram is strictly linear with wavenumber. We describe the concept of the new MZ-SHS and elaborate the exact expression of the interferogram. Also, a design example and two kinds of imitated interferograms are presented in this paper. One is simulated in MATLAB and the other is generated in ZEMAX using ray tracing method. The retrieved spectra from these two interferograms show a good agreement with the theoretical results.

  18. Noise characteristics of heterodyne/homodyne frequency-domain measurements

    PubMed Central

    Kupinski, Matthew A.

    2012-01-01

    Abstract. We theoretically develop and experimentally validate the noise characteristics of heterodyne and/or homodyne measurements that are widely used in frequency-domain diffusive imaging. The mean and covariance of the modulated heterodyne output are derived by adapting the random amplification of a temporal point process. A multinomial selection rule is applied to the result of the temporal noise analysis to additionally model the spatial distribution of intensified photons measured by a charge-coupled device (CCD), which shows that the photon detection efficiency of CCD pixels plays an important role in the noise property of detected photons. The approach of using a multinomial probability law is validated from experimental results. Also, experimentally measured characteristics of means and variances of homodyne outputs are in agreement with the developed theory. The developed noise model can be applied to all photon amplification processes. PMID:22352646

  19. Design of a sun tracker for a laser heterodyne spectrometer

    NASA Astrophysics Data System (ADS)

    Delahaigue, A.; Thiebeaux, C.; Courtois, D.; Le Corre, H.

    1988-01-01

    A sun tracker with a tracking precision of 0.001 degree has been developed for use with a high-resolution Laser Heterodyne Spectrometer. The mechanical and optical arrangement of the tracker are described in detail, in addition to the tracking software. The system was used to record ozone atmospheric spectra in the 10-micron region in March 1987. The analysis range is + or - 1220 MHz.

  20. Heterodyne Interferometer for Triggering Gas-Puff PRSs

    DTIC Science & Technology

    2007-11-02

    completion of the Phase I effort. They are: "* Implement a heterodyne interferometer in a Michelson format using fiber optic components. "* Interface the...of single-mode fiber cable. These fibers represent the two legs of a Michelson interferometer . One fiber is terminated in a reflector and is the...independently through the same fiber to the interferometer head. They are subject to identical stresses and, therefore, incur identical phase noise which cancels

  1. Infrared heterodyne receivers with IF responses approaching 5 GHz

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Peyton, B. J.

    1980-01-01

    Specialized coherent 10.6 micrometer infrared receivers were developed with infrared frequency responses approaching 5 GHz. Carbon dioxide lasers were employed for these applications because of their availability, stability, and high average power levels. Heterodyne receivers which employ extrinsic photoconductive Ge:Cu(Sb) mixers were developed for measurements of carbon dioxide laser scattering to determine: (1) the drive lower hybrid wave density fluctuations; and (2) the plasma ion temperature of the dense Tokamak plasmas.

  2. Heterodyne spectroscopy with superconducting single-photon detector

    NASA Astrophysics Data System (ADS)

    Lobanov, Yu. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.

    2016-12-01

    We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.

  3. Heterodyne photomixer spectrometer with receiver photomixer driven at different frequency than source photomixer

    DOEpatents

    Wanke, Michael C; Fortier, Kevin; Shaner, Eric A; Barrick, Todd A

    2013-07-09

    A heterodyne photomixer spectrometer comprises a receiver photomixer that is driven at a different frequency than the source photomixer, thereby maintaining the coherent nature of the detection, eliminating etalon effects, and providing not only the amplitude but also the phase of the received signal. The heterodyne technique can be applied where the source and receiver elements are components of a waveguide thereby forming an on-chip heterodyne spectrometer.

  4. Preliminary results of heterodyne detection with quantum-cascade lasers in the 9 microm region.

    PubMed

    Parvitte, B; Joly, L; Zéninari, V; Courtois, D

    2004-12-01

    In this paper, we describe recent results in mid-infrared heterodyne detection using quantum-cascade (QC) lasers as local oscillator (LO). In the 9 microm range, the heterodyne detection technique was first developed with CO(2) lasers and then with Pb-salt diode lasers. Quantum-cascade lasers are promising high quality tunable mid-infrared sources. We developed a quantum-cascade laser based heterodyne spectrometer. Atmospheric absorption spectra of ozone are presented.

  5. Selected applications of photothermal and photoluminescence heterodyne techniques for process control in silicon wafer manufacturing

    NASA Astrophysics Data System (ADS)

    Ehlert, Andreas; Kerstan, Michael; Lundt, Holger; Huber, Anton; Helmreich, Dieter; Geiler, Hans-Dieter; Karge, Harald; Wagner, Matthias

    1997-02-01

    Two noncontact laser-based heterodyne techniques, photothermal heterodyne (PTH) and photoluminescence heterodyne (PLH), are introduced and applied to processing and quality control in silicon wafer manufacturing. The crystallographic characteristics of process-induced defects in silicon wafers are suitable for the application of PTH and PLH techniques, which are demonstrated on selected examples from different steps of silicon wafer production. Both PLH and PTH techniques meet the demand for nondestructive and on-line-suitable measurement in the semiconductor industry.

  6. Limitations for heterodyne detection of Brillouin scattered light

    SciTech Connect

    Allemeier, R.T.; Wagner, J.W.; Telschow, K.L.

    1995-01-01

    One means by which elastic properties of a material may be determined is measuring sound wave velocities in the material, from which elastic moduli of interest can be computed. Velocity can be measured by conventional piezoelectric transduction techniques, by applying laser ultrasonics, or by using Brillouin-scattering methods. Brillouin-scattering techniques for determining the sound wave velocity are particularly attractive since they are completely noninvasive. Only a probe beam of light is required since the thermal energy in the material provides the elastic motion. Heterodyne methods for detection of Brillouin-scattered light are considered one possible means to increase the speed of the scattered light frequency detection. Results of experiments with simulated Brillouin scattering suggest that heterodyne detection of the Brillouin-scattered light is feasible. Experiments to detect Brillouin-scattered light, with water as the scattering medium, were designed and interpreted using the results of the simulated scattering experiments. Overall, results showed that it is difficult to narrow the linewidth for Brillouin scattering to an acceptable level. The results given indicate that heterodyne detection of the Brillouin components requires detection bandwidths that are quite small, perhaps 10 Hz or lower. These small bandwidths can be routinely achieved using lock-in amplifier techniques.

  7. Principles and Application of Heterodyne Scanning Tunnelling Spectroscopy

    PubMed Central

    Matsuyama, Eiji; Kondo, Takahiro; Oigawa, Haruhiro; Guo, Donghui; Nemoto, Shojiro; Nakamura, Junji

    2014-01-01

    Detection of the extremely weak signals in spectroscopy over an extremely wide frequency region is central to diverse sciences, including materials science, biology, astronomy and chemistry. Here we show a new type of atomic-scale spectroscopy, heterodyne scanning tunnelling spectroscopy (HSTS), which is based on the innovative application of the nonlinear heterodyne-mixing detection at the metal-insulator-metal (MIM) heterojunction of STM tip–vacuum–sample. The principle of HSTS is identical to that of the Atacama Large Millimeter Array (ALMA) space telescope in terms of using heterojunction for detecting extremely weak signals by converting from terahertz region to lower frequency regions. The MIM detector of ALMA, which is composed of niobium–titanium–nitride (NbTiN) tip-insulator-NbTiN, is very similar in shape and size to that of HSTS. We successfully detect a heterodyne beat signal f3 (= |f2 − f1|) and intermodulation distortion via tunnelling current by superimposing two different AC signals, f1 and f2, onto the DC tunnelling current at a highly oriented pyrolytic graphite (HOPG) surface. We then obtain spectra of the localized electronic states of HOPG by using f3. HSTS can be performed with a high resolution and over a wide energy range, including the terahertz range. PMID:25342108

  8. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  9. Research on beam splitting prism in laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin

    2014-08-01

    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  10. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  11. Spatial-temporal demodulation technique for heterodyne optical scanning holography

    NASA Astrophysics Data System (ADS)

    Liu, Jung-Ping; Luo, Dao-Zheng; Lu, Sheng-Hua

    2015-05-01

    In optical scanning holography (OSH), the object is raster scanned by a heterodyne fringe pattern. The light scattered from the object is detected by a photodetector. Traditionally, the photo-electric signal is demodulated by a dual-channel lock-in amplifier (LIA) to extract a complex hologram. The use of LIA complicates the detection module of the system and increases the cost, especially when the heterodyne frequency is high. In this paper, an alternative demodulation method called a spatial-temporal demodulation technique (STDT) is studied. In STDT, the photo-electric temporal signal is directly digitized as scanning lines. The spectrum of each scanning line is band-pass filtered to remove the zeroth-order term and the complex conjugate term. Finally, a complex hologram is obtained from the filtered spectrum. The first merit of STDT is that the phase of the demodulated complex hologram is insensitive to the modulation error. Thus it is easily applied to the applications of particle holography. Besides, the bandwidth of the zeroth-order term in STDT is narrow, which allows the system to be operated in a wide range of heterodyne frequency. This feature enables STDT-based OSH to be applied in low-cost and high-speed dynamic holographic imaging.

  12. Heterodyne Doppler 1-micron lidar measurement of reduced effective telescope aperture due to atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Chan, Kin Pui; Killinger, Dennis K.; Sugimoto, Nobuo

    1991-01-01

    A pulsed Nd:YAG bistatic focused-beam lidar allowing simultaneous heterodyne and direct detection of the same lidar returns has been experimentally employed to ascertain the effect of atmospheric turbulence on heterodyne and direct-detection lidar at 1 micron, by measuring the average carrier-to-noise ratio and statistical fluctuation level in the return signals under various experimental and atmospheric conditions. Atmospheric turbulence is found capable of reducing the lidar receiver's effective telescope aperture and heterodyne detection efficiency. This observed effective-aperture limitation functionally resembles predictions based on the Clifford and Wandzura (1981) heterodyne wavefront detection theory.

  13. A polarization-based Thomson scattering technique for burning plasmas

    NASA Astrophysics Data System (ADS)

    Parke, E.; Mirnov, V. V.; Den Hartog, D. J.

    2014-02-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the spectrum. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the degree of polarization (P) of the scattered light; for fully polarized incident laser light, the scattered light becomes partially polarized. The resulting reduction of polarization is temperature dependent and has been proposed by other authors as a potential alternative to the traditional spectral decomposition technique. Following the previously developed Stokes vector approach, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states, scattering angles, and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures relevant to burning plasmas. We discuss the feasibility of a polarization based Thomson scattering diagnostic for ITER-like plasmas with both linearly and circularly polarized light and compare to the traditional technique.

  14. Packaged heterodyne source modules based on external cavity lasers for microwave applications

    NASA Astrophysics Data System (ADS)

    Chuyanov, Vadim; Kupershmidt, Vladimir; Kusnadi, Frans; Plaessmann, Henry; Ozcan, Meric

    2005-03-01

    External cavity lasers (ECL) based on semiconductor diode gain elements and Fiber Bragg Gratings (FBG) have been developed for Telecom (OC-48) nd Analog (CATV, QAM) applications. They possess very narrow linewidth (100 kHz) and exceptional wavelength stability. These qualities makes them attractive platform for implementation of heterodyne sources and Optical Phase Locked Loops (OPLL) for Microwave Photonics applications. We discuss two types of such heterodyne sources: heterodyne oscillator based on heterodyning of two ECL, and fixed frequency heterodyne oscillators based on ECL with FBG written in the polarization maintaining fiber. All two types of heterodyne sources were built based on industry standard 14-pin butterfly package. All of them exhibited excellent wavelength stability (less than 1 pm/mA and 1-2 pm/°C). Fixed frequency sources provided beat oscillation around 40 GHz. We present performance characteristics and measurement data on (linewidth, phase noise, heterodyne mixing, etc.) and discuss the merits of ECL use as heterodyne sources for Microwave Photonics applications.

  15. The effects of polarization changes of stochastic electromagnetic beams on heterodyne detection in turbulence

    NASA Astrophysics Data System (ADS)

    Yan, Wang; Chengqiang, Li; Tingfeng, Wang; Heyong, Zhang; Jingjiang, Xie; Lisheng, Liu; Jin, Guo

    2016-11-01

    The performance of heterodyne systems is discussed for stochastic electromagnetic beams in turbulent atmospheres by introducing a turbulence spectrum of refractive-index fluctuations. Several analytic formulae for the heterodyne detection system are presented by employing the beam coherence polarization matrix of an electromagnetic Gaussian Schell-model beam. Based on the Tatarskii spectrum model, some numerical results are given for the variation of heterodyne efficiency with the misalignment angle, detector diameter, turbulence conditions and parameters of the overlapping beams. According to the numerical results, we find that the change in heterodyne efficiency is dependent on the initial polarization of the beams, and that a turbulent atmosphere degrades the heterodyne efficiency significantly for a lager detector diameter. The change in heterodyne efficiency in a turbulent atmosphere is basically the same as that in free space for a relatively short distance z s. However, the change in heterodyne efficiency is different for a sufficiently long distance. For the deterministic received signal and the detector, the performance of the heterodyne detection can be adjusted by controlling the local oscillator signal parameters.

  16. Atmospheric solar absorption measurements in the 9-11 micron region using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Hoell, J. M., Jr.

    1980-01-01

    A tunable diode laser heterodyne radiometer was developed for ground based measurements of atmospheric solar absorption spectra in the 9 to 12 micron spectral range. The performance and operating characteristics of this tunable infrared heterodyne radiometer (TIHR) is discussed along with recently measured heterodyne solar absorption spectra in the 10 to 11 micron spectral region.

  17. Optics and cryogenics for the 1.1 THz multi-pixel heterodyne receiver for APEX

    NASA Astrophysics Data System (ADS)

    Hurtado, Norma; Graf, Urs U.; Adams, Henning; Honingh, C. E.; Jacobs, Karl; Pütz, Patrick; Güsten, Rolf; Stutzki, Jürgen

    2014-08-01

    The 1.1 THz multi-pixel heterodyne receiver will be mounted in the Nasmyth A cabin of the 12 m APEX telescope on the Chajnantor plateau, 5000 meters altitude in northern Chile. The receiver will cover the spectral window of 1000 - 1080 GHz, where important spectral lines like CO 9-8 at 1036.9 GHz, a tracer of warm and dense gas and OH+ at 1033 GHz and NH+ at 1012.6 GHz, both important for the study of chemical networks in the ISM, are located. The multi-pixel receiver greatly enhances the science output under the difficult observing conditions in this frequency range. Two 9-pixel focal plane sub-arrays on orthogonal polarizations are installed in easily removable cartridges. We developed a new thermal link to connect the cartridges to the cryostat. Our thermal link is an all-metal design: aluminum and Invar. All the optics is fully reflective, thus avoiding the absorption and reflection losses of dielectric lenses and reducing standing waves in the receiver. To guaranty internal optics alignment, we employ a monolithic integrated optics approach for the cold optics and the Focal Plane Unit (FPU) optics modeled after the CHARM (Compact Heterodyne Array Receiver Module) concept. The receiver uses synthesizer-driven solid-state local oscillators (LO) and the mixers will be balanced SIS mixers, which are essentially based on the design of the on-chip balanced SIS mixers at 490 GHz developed in our institute. Singleended HEB mixers are used for the laboratory tests of the optics. The LO power distribution is accommodated behind the FPU optics. It is composed of the LO optics, which includes a collimating Fourier grating, and an LO distribution plate to supply LO signal to each of the 9 pixels of the sub-array. Different options for the LO coupling design and fabrication are being analyzed and will be based on in-house hybrid waveguide/planar technology. We summarize the receiver project with emphasis on the cryogenics and the optics and present laboratory test results

  18. Spatial-Heterodyne Interferometry For Reflection And Transm Ission (Shirt) Measurements

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN; Tobin, Ken W [Harriman, TN

    2006-02-14

    Systems and methods are described for spatial-heterodyne interferometry for reflection and transmission (SHIRT) measurements. A method includes digitally recording a first spatially-heterodyned hologram using a first reference beam and a first object beam; digitally recording a second spatially-heterodyned hologram using a second reference beam and a second object beam; Fourier analyzing the digitally recorded first spatially-heterodyned hologram to define a first analyzed image; Fourier analyzing the digitally recorded second spatially-heterodyned hologram to define a second analyzed image; digitally filtering the first analyzed image to define a first result; and digitally filtering the second analyzed image to define a second result; performing a first inverse Fourier transform on the first result, and performing a second inverse Fourier transform on the second result. The first object beam is transmitted through an object that is at least partially translucent, and the second object beam is reflected from the object.

  19. Heterodyne interrogation system for TDM interferometric fiber optic sensors array

    NASA Astrophysics Data System (ADS)

    Fang, Gaosheng; Xu, Tuanwei; Li, Fang

    2015-04-01

    We proposed an interrogation system for time sequenced fiber optic sensors array based on the heterodyne detection and orthogonal demodulation techniques, where the sensors array is a kind of interferometric fiber optic sensors. The techniques are theoretically analyzed and experimentally demonstrated with recovering the sinusoid wave and triangle wave applied to the sensors. The system has a phase resolution about 1×10-4 rad/√Hz, the amplitude consistency and linearity of the demodulated results are 95.275% and 98.379%, respectively with single frequency event applied to the sensors.

  20. Novel phase measurement technique of the heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; Park, Kyihwan; La, Jongpil

    2005-09-15

    This article describes a novel phase measurement technique to increase the measurement velocity compared to the previous arc-tangent method in the heterodyne laser interferometer. The proposed method can reduce the calculation load because the pulse width modulation signal has a linear relation between the phase difference, while the nonlinear function such as arc tangent is required to demodulate the sinusoidal interferent signal. The brief analysis and measurement scheme of the system, and the experimental result using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed phase measurement technique is proven to be three times faster and more robust than previous arc-tangent method.

  1. JCMT Science Archive: Advanced Heterodyne Data Products Pipeline

    NASA Astrophysics Data System (ADS)

    Jenness, T.; Cavanagh, B.; Economou, F.; Berry, D. S.

    2008-08-01

    The James Clerk Maxwell Telescope Science Archive (JSA), hosted by CADC, will contain reduced and calibrated data products from the ACSIS/HARP and SCUBA-2 instruments on JCMT and will support the JCMT Legacy Surveys. This paper describes the Advanced Data Products pipeline being developed for the JCMT heterodyne instrumentation suite. One of the goals is to generate clump catalogues, line catalogues and other advanced data products from these submillimetre data with the eventual aim of integrating these data into the Virtual Observatory. This paper describes the data reduction pipeline that will take calibrated data cubes and generate the advanced data products.

  2. Optical heterodyne sensor using the Goos-Hänchen shift.

    PubMed

    Hashimoto, T; Yoshino, T

    1989-09-01

    A new sensing scheme, capable of measuring various quantities using the Goos-Häanchen shift in the polarization phase domain, is proposed. The phase retardation between s and p polarizations on total reflection is enhanced by using multiple reflections in a plane-parallel transparent plate. This phase shift can be sensitively and stably detected using an in-line heterodyne method. As an application of this method, a displacement sensor utilizing the deflection of a light beam by a lens is developed. This displacement sensor has a resolution of 60 nm over a dynamic range of 120 microm. Good agreement between theoretical and experimental results is shown.

  3. Free-Space Quantum Signatures Using Heterodyne Measurements.

    PubMed

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-02

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  4. Optical heterodyne detection for cavity ring-down spectroscopy

    DOEpatents

    Levenson, Marc D.; Paldus, Barbara A.; Zare, Richard N.

    2000-07-25

    A cavity ring-down system for performing cavity ring-down spectroscopy (CRDS) using optical heterodyne detection of a ring-down wave E.sub.RD during a ring-down phase or a ring-up wave E.sub.RU during a ring up phase. The system sends a local oscillator wave E.sub.LO and a signal wave E.sub.SIGNAL to the cavity, preferably a ring resonator, and derives an interference signal from the combined local oscillator wave E.sub.LO and the ring-down wave E.sub.RD (or ring-up wave E.sub.RU). The local oscillator wave E.sub.LO has a first polarization and the ring-down wave E.sub.RD has a second polarization different from the first polarization. The system has a combining arrangement for combining or overlapping local oscillator wave E.sub.LO and the ring-down wave E.sub.RD at a photodetector, which receives the interference signal and generates a heterodyne current I.sub.H therefrom. Frequency and phase differences between the waves are adjustable.

  5. Heterodyning Time Resolution Boosting for Velocimetry and Reflectivity Measurements

    SciTech Connect

    Erskine, D J

    2004-08-02

    A theoretical technique is described for boosting the temporal resolving power by several times, of detectors such as streak cameras in experiments that measure light reflected from or transmitted through a target, including velocity interferometer (VISAR) measurements. This is a means of effectively increasing the number of resolvable time bins in a streak camera record past the limit imposed by input slit width and blur on the output phosphor screen. The illumination intensity is modulated sinusoidally at a frequency similar to the limiting time response of the detector. A heterodyning effect beats the high frequency science signal down a lower frequency beat signal, which is recorded together with the conventional science signal. Using 3 separate illuminating channels having different phases, the beat term is separated algebraically from the conventional signal. By numerically reversing the heterodyning, and combining with the ordinary signal, the science signal can be reconstructed to better effective time resolution than the detector used alone. The effective time resolution can be approximately halved for a single modulation frequency, and further decreased inversely proportional to the number of independent modulation frequencies employed.

  6. Free-Space Quantum Signatures Using Heterodyne Measurements

    NASA Astrophysics Data System (ADS)

    Croal, Callum; Peuntinger, Christian; Heim, Bettina; Khan, Imran; Marquardt, Christoph; Leuchs, Gerd; Wallden, Petros; Andersson, Erika; Korolkova, Natalia

    2016-09-01

    Digital signatures guarantee the authorship of electronic communications. Currently used "classical" signature schemes rely on unproven computational assumptions for security, while quantum signatures rely only on the laws of quantum mechanics to sign a classical message. Previous quantum signature schemes have used unambiguous quantum measurements. Such measurements, however, sometimes give no result, reducing the efficiency of the protocol. Here, we instead use heterodyne detection, which always gives a result, although there is always some uncertainty. We experimentally demonstrate feasibility in a real environment by distributing signature states through a noisy 1.6 km free-space channel. Our results show that continuous-variable heterodyne detection improves the signature rate for this type of scheme and therefore represents an interesting direction in the search for practical quantum signature schemes. For transmission values ranging from 100% to 10%, but otherwise assuming an ideal implementation with no other imperfections, the signature length is shorter by a factor of 2 to 10. As compared with previous relevant experimental realizations, the signature length in this implementation is several orders of magnitude shorter.

  7. Infrared heterodyne radiometer for airborne atmospheric transmittance measurements

    NASA Technical Reports Server (NTRS)

    Wolczok, J. M.; Lange, R. A.; Dinardo, A. J.

    1980-01-01

    An infrared heterodyne radiometer (IHR) was used to measure atmospheric transmittance at selected hydrogen fluoride (2.7 micrometer) and deuterium fluoride (3.8 micrometer) laser transitions. The IHR was installed aboard a KC-135 aircraft for an airborne atmospheric measurements program that used the sun as a backlighting source for the transmission measurements. The critical components are: a wideband indium antimonide (1nSb) photomixer, a CW HF/DF laser L0, a radiometric processor, and a 1900 K blackbody reference source. The measured heterodyne receiver sensitivity (NEP) is 1.3 x 10 to the -19th power W/Hz, which yields a calculated IHR temperature resolution accuracy of delta I sub S/-3 sub S = 0.005 for a source temperature of 1000 K and a total transmittance of 0.5. Measured atmospheric transmittance at several wavelengths and aircraft altitudes from 9.14 km (30,000 ft) to 13.72 km (45,000 ft) were obtained during the measurements program and have been compared with values predicted by the AFGL Atmospheric Line Parameter Compilation.

  8. Non-Contact Photoacoustic Imaging Using a Commercial Heterodyne Interferometer.

    PubMed

    Tian, Chao; Feng, Ting; Wang, Cheng; Liu, Shengchun; Cheng, Qian; Oliver, David E; Wang, Xueding; Xu, Guan

    2016-12-01

    Most current photoacoustic imaging (PAI) systems employ piezoelectric transducers to receive photoacoustic signals, which requires coupling medium to facilitate photoacoustic wave propagation and are not favored in many applications. Here, we report an all-optical non-contact PAI system based on a commercial heterodyne interferometer working at 1550 nm. The interferometer remotely detects ultrasound-induced surface vibration and does not involve any physical contact with the sample. The theoretically predicated and experimentally measured noise equivalent detection limits of the optical sensor are about 4.5 and 810 Pa over 1.2 MHz bandwidth. Using a raster-scan PAI system equipped with the non-contact design, stereotactic boundaries of an artificial tumor in a pig brain were accurately delineated. The non-contact design also enables the tomographic PAI of biological tissue samples in a non-invasive manner. The preliminary results and analyses reveal that the heterodyne interferometer-based non-contact PAI system holds good potential in biomedical imaging.

  9. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    PubMed

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  10. Note: Periodic error measurement in heterodyne interferometers using a subpicometer accuracy Fabry-Perot interferometer.

    PubMed

    Zhu, Minhao; Wei, Haoyun; Wu, Xuejian; Li, Yan

    2014-08-01

    Periodic error is the major problem that limits the accuracy of heterodyne interferometry. A traceable system for periodic error measurement is developed based on a nonlinearity free Fabry-Perot (F-P) interferometer. The displacement accuracy of the F-P interferometer is 0.49 pm at 80 ms averaging time, with the measurement results referenced to an optical frequency comb. Experimental comparison between the F-P interferometer and a commercial heterodyne interferometer is carried out and it shows that the first harmonic periodic error dominates in the commercial heterodyne interferometer with an error amplitude of 4.64 nm.

  11. Digital Phase Meter for a Laser Heterodyne Interferometer

    NASA Technical Reports Server (NTRS)

    Loya, Frank

    2008-01-01

    The Digital Phase Meter is based on a modified phase-locked loop. When phase alignment between the reference input and the phase-shifted metrological input is achieved, the loop locks and the phase shift of the digital phase shifter equals the phase difference that one seeks to measure. This digital phase meter is being developed for incorporation into a laser heterodyne interferometer in a metrological apparatus, but could also be adapted to other uses. Relative to prior phase meters of similar capability, including digital ones, this digital phase meter is smaller, less complex, and less expensive. The phase meter has been constructed and tested in the form of a field-programmable gate array (FPGA).

  12. Transmission Raman Measurements Using a Spatial Heterodyne Raman Spectrometer (SHRS).

    PubMed

    Strange, K Alicia; Paul, Kelly C; Angel, S Michael

    2017-02-01

    A spatial heterodyne Raman spectrometer (SHRS) was used to measure transmission Raman spectra of highly scattering compounds. Transmission Raman spectral intensities of ibuprofen were only 2.4 times lower in intensity than backscatter Raman spectra. The throughput was about eight times higher than an f/1.8 dispersive spectrometer, and the width of the area viewed was found to be seven to nine times higher, using 50.8 mm and 250 mm focal length collection lenses. However, the signal-to-noise (S/N) ratio was two times lower for the SHRS than the f/1.8 dispersive spectrometer, apparently due to high levels of stray light.

  13. Analysis and System Design Framework for Infrared Spatial Heterodyne Spectrometers

    SciTech Connect

    Cooke, B.J.; Smith, B.W.; Laubscher, B.E.; Villeneuve, P.V.; Briles, S.D.

    1999-04-05

    The authors present a preliminary analysis and design framework developed for the evaluation and optimization of infrared, Imaging Spatial Heterodyne Spectrometer (SHS) electro-optic systems. Commensurate with conventional interferometric spectrometers, SHS modeling requires an integrated analysis environment for rigorous evaluation of system error propagation due to detection process, detection noise, system motion, retrieval algorithm and calibration algorithm. The analysis tools provide for optimization of critical system parameters and components including : (1) optical aperture, f-number, and spectral transmission, (2) SHS interferometer grating and Littrow parameters, and (3) image plane requirements as well as cold shield, optical filtering, and focal-plane dimensions, pixel dimensions and quantum efficiency, (4) SHS spatial and temporal sampling parameters, and (5) retrieval and calibration algorithm issues.

  14. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    A stratospheric ozone absorption line in the 10 microns band was measured and resolved completely, using an infrared heterodyne spectrometer with spectral resolution of 5 MHz (0.000167 cm to -1 power). The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectral line profile. The absolute total column density was 0.34 cm atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) to (7,1,7) O3 line center frequency was found to be 1043.1775 + or - 0.00033 cm to toe -1 power, or 430 + or - 10 MHz higher than the P(24) CO2 laser line frequency.

  15. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.; Spears, D.

    1978-01-01

    A stratospheric ozone absorption line in the 10 micron band was measured and resolved completely, using an infrared heterodyne spectrometer with a spectral resolution of 5 MHz. The vertical concentration profile of stratospheric ozone was obtained through an analytical inversion of the measured spectra line profile. The absolute total column density was 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio occurring at approximately 24 km. The (7,1,6) - (7,1,7) O3 line center frequency was found to be 1043.1772 plus or minus 0.00033 cm/1 or 420 plus or minus 10 MHz higher than the P(24) CO2 laser line frequency.

  16. High resolution atmospheric spectroscopy using a diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Harward, C. N.; Lo, W.

    1982-01-01

    Ultrahigh resolution (0.007 per cm) atmospheric solar absorption spectra that have been obtained from a tunable infrared heterodyne radiometer are discussed. The radiometer was developed for ground based observations in the 8-12 micron region, and tunability is achieved through the use of Pb-salt semiconductor laser local oscillators. Spectra have been obtained in a piecewise fashion from 9.1 to 11.1 microns using laser emission modes that exhibit characteristics suitable for local-oscillator operation. Spectra showing absorption features of HNO3, O3, CO2, and H2O are presented along with comparisons of experimental and synthetic spectra calculated using a line-by-line atmospheric transmission model.

  17. Diffraction effects and special advantages in electronic heterodyne moire deflectometry

    NASA Technical Reports Server (NTRS)

    Stricker, J.

    1986-01-01

    Effects of diffraction on the performance of electronic heterodyne readout of moire fringes are investigated. The sensitivity, accuracy, and resolution of the system are calculated, and it is shown that these features are significantly improved compared with the conventional intensity moire readout technique. The sensitivity of the system can be tripled without changing the distance between gratings. The system was evaluated experimentally by measuring the refractive-index derivatives of a weak phase object consisting of a large KD(asterisk)P crystal. Effects of nonlinear fringe modulation were studied both theoretically and experimentally. It is shown that in this case the electronic phase is not linearly related to the fringe shift, and calibration of the system is necessary.

  18. A THz heterodyne instrument for biomedical imaging applications

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.

    2004-01-01

    An ultra-wide-dynamic-range heterodyne imaging system operating at 2.5 THz is described. The instrument employs room temperature Schottky barrier diode mixers and far infrared gas laser sources developed for NASA space applications. A dynamic range of over 100dB at fixed intermediate frequencies has been realized. Amplitude/phase tracking circuitry results in stability of 0.02 dB and +-2 degrees of phase. The system is being employed to characterize biological (human and animal derived tissues) and a variety of materials of interest to NASA. This talk will describe the instrument and some of the early imaging experiments on everything from mouse tail to aerogel.

  19. Heterodyne Hall effect in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Oka, Takashi; Bucciantini, Leda

    2016-10-01

    We study the hitherto unaddressed phenomenon of the quantum Hall effect with a magnetic and electric field oscillating in time with resonant frequencies. This phenomenon highlights an example of a heterodyne device with the magnetic field acting as a driving force, and it is analyzed in detail in its classical and quantum versions using Floquet theory. A bulk current flowing perpendicularly to the applied electric field is found, with a frequency shifted by integer multiples of the driving frequency. When the ratio of the cyclotron and driving frequency takes special values, the electron's classical trajectory forms a loop and the effective mass diverges, while in the quantum case we find an analog of the Landau quantization. A possible realization using metamaterial plasmonics is discussed.

  20. Subsurface contrast due to friction in heterodyne force microscopy

    NASA Astrophysics Data System (ADS)

    Verbiest, G. J.; Oosterkamp, T. H.; Rost, M. J.

    2017-02-01

    The nondestructive imaging of subsurface structures on the nanometer scale has been a long-standing desire in both science and industry. A few impressive images were published so far that demonstrate the general feasibility by combining ultrasound with an atomic force microscope. From different excitation schemes, heterodyne force microscopy seems to be the most promising candidate delivering the highest contrast and resolution. However, the physical contrast mechanism is unknown, thereby preventing any quantitative analysis of samples. Here we show that friction at material boundaries within the sample is responsible for the contrast formation. This result is obtained by performing a full quantitative analysis, in which we compare our experimentally observed contrasts with simulations and calculations. Surprisingly, we can rule out all other generally believed responsible mechanisms, like Rayleigh scattering, sample (visco)elasticity, damping of the ultrasonic tip motion, and ultrasound attenuation. Our analytical description paves the way for quantitative subsurface-AFM imaging.

  1. Airborne Astronomy with a 150 micron - 400 micron Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1995-01-01

    This report summarizes work done under NASA Grant NAG2-753 awarded to the University of Colorado. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory, and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved. Detections of particular note have been the 370 micron line of neutral atomic carbon, the 158 micron transition of ionized carbon, many of the high-J rotational lines of CO-12 and CO-13 between J=9-8 and J=22-21, the 119 micron and 163 micron rotational lines of OH, the 219 micron ground-state rotational line of H2D(+), and the 63 microns fine structure line of neutral atomic oxygen. All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.

  2. Airborne Astronomy with a 150 microns - 400 microns Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1995-01-01

    This report summarizes work done under NASA Grant NAG2-753 awarded to the University of Colorado. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory, and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved. Detections of particular note have been the 370 micron line of neutral atomic carbon, the 158 micron transition of ionized carbon, many of the high-J rotational lines of CO-12 and CO-13 between J=9-8 and J=22-21, the 119 micron and 163 micron rotational lines of OH, the 219 micron ground-state rotational line of H2D(+), and the 63 micron fine structure line of neutral atomic oxygen. All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6) thereby allowing accurate line shapes and Doppler velocities to be measured.

  3. Airborne astronomy with a 150 micrometer - 500 micrometer heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Betz, A. L.

    1991-01-01

    This report summarizes work done under NASA Grant NAG2-254 awarded to the University of California. The project goal was to build a far-infrared heterodyne spectrometer for NASA's Kuiper Airborne Observatory (KAO), and to use this instrument to observe atomic and molecular spectral lines from the interstellar medium. This goal was successfully achieved; the spectrometer is now in routine use aboard the KAO. Detections of particular note have been the 370 micrometers line of neutral atomic carbon, the 158 micrometers transition of ionized carbon, many of the high-J rotational lines of 12CO and 13CO between J=9-8 and J=22-21, the 119 micron ground-state rotational line of OH, and the 219 micron ground-state rotational line of H2D(+). All of these lines were observed at spectral resolutions exceeding 1 part in 10(exp 6), thereby allowing accurate line shapes and Doppler velocities to be measured.

  4. High resolution heterodyne interferometer without detectable periodic nonlinearity.

    PubMed

    Joo, Ki-Nam; Ellis, Jonathan D; Buice, Eric S; Spronck, Jo W; Schmidt, Robert H Munnig

    2010-01-18

    A high resolution heterodyne laser interferometer without periodic nonlinearity for linear displacement measurements is described. It uses two spatially separated beams with an offset frequency and an interferometer configuration which has no mixed states to prevent polarization mixing. In this research, a simple interferometer configuration for both retroreflector and plane mirror targets which are both applicable to industrial applications was developed. Experimental results show there is no detectable periodic nonlinearity for both of the retro-reflector interferometer and plane mirror interferometer to the noise level of 20 pm. Additionally, the optical configuration has the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Because of non-symmetry in the plane mirror interferometer, a differential plane mirror interferometer to reduce the thermal error is also discussed.

  5. Monitoring atmospheric pollutants with a heterodyne radiometer transmitter-receiver

    NASA Technical Reports Server (NTRS)

    Menzies, R. T. (Inventor)

    1973-01-01

    The presence of selected atmospheric pollutants can be determined by transmitting an infrared beam of proper wavelength through the atmosphere, and detecting the reflections of the transmitted beam with a heterodyne radiometer transmitter-receiver using part of the laser beam as a local oscillator. The particular pollutant and its absorption line strength to be measured are selected by the laser beam wave length. When the round-trip path for the light is known or measured, concentration can be determined. Since pressure (altitude) will affect the shape of the molecular absorption line of a pollutant, tuning the laser through a range of frequencies, which includes a part of the absorption line of the pollutant of interest, yields pollutant altitude data from which the altitude and altitude profile is determined.

  6. Investigation of heterodyne performance of quantum-well detectors. Final report

    SciTech Connect

    Simpson, M.L.; Hutchinson, D.P.; Calabretta, J.

    1994-09-23

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Martin Marietta Energy Systems Inc., (Contractor) and Martin Marietta Electronic Missles (Participant) is the determination of the heterodyne characteristics of quantum-well detectors. The Participant has developed a quantum-well infrared imaging video detector with very low light level characteristics. A further improvement in low-level infrared detection could be achieved if this device can be operated in the coherent or heterodyne mode. A major program in the Physics Division of Oak Ridge National Laboratory (ORNL) presently uses individual heterodyne infrared detectors in a system under development for fusion diagnostics. An imaging infrared heterodyne detector would represent a major breakthrough in this area and would have major implications for other plasma diagnostic programs. The Participant is also studying the application of this device in the area of laser radar.

  7. Balance Problems

    MedlinePlus

    ... version of this page please turn Javascript on. Balance Problems About Balance Problems Have you ever felt dizzy, lightheaded, or ... dizziness problem during the past year. Why Good Balance is Important Having good balance means being able ...

  8. Comparative performance of HgCdTe photodiodes for heterodyne application

    NASA Technical Reports Server (NTRS)

    Kowitz, H. R.

    1980-01-01

    The use of photodiodes as optical photomixers in laser heterodyne spectroscopy systems is discussed. The quantum efficiency of the photodiodes is reported with the emphasis on its effect on the system's signal to noise ratio. The measurement techniques used to determine photodiode dc and heterodyne quantum efficiencies are described. The theory behind the measurements as well as actual measurements data for two HgCdTe photodiodes are presented.

  9. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    NASA Astrophysics Data System (ADS)

    dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [

    F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)
    ], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  10. Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    SciTech Connect

    Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2004-03-01

    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.

  11. Preliminary results of heterodyne detection with quantum-cascade lasers in the 9 μm region

    NASA Astrophysics Data System (ADS)

    Parvitte, B.; Joly, L.; Zéninari, V.; Courtois, D.

    2004-12-01

    In this paper, we describe recent results in mid-infrared heterodyne detection using quantum-cascade (QC) lasers as local oscillator (LO). In the 9 μm range, the heterodyne detection technique was first developed with CO 2 lasers and then with Pb-salt diode lasers. Quantum-cascade lasers are promising high quality tunable mid-infrared sources. We developed a quantum-cascade laser based heterodyne spectrometer. Atmospheric absorption spectra of ozone are presented.

  12. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1996-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The beam

  13. Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.

    1982-01-01

    A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.

  14. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  15. A compact high-sensitivity heterodyne interferometer for industrial metrology

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Peters, Achim; Johann, Ulrich; Braxmaier, Claus

    2008-04-01

    For translation and tilt metrology, we developed a compact fiber-coupled polarizing heterodyne interferometer which is based on a highly symmetric design where both, measurement and reference beam have similar optical pathlengths and the same frequency and polarization. The method of differential wavefront sensing is implemented for tilt measurement. With this setup we reached noise levels below 5 pm/square root of Hz; Hz in translation and below 10 nrad/square root of Hz; in tilt measurement, both for frequencies above 10-2 Hz. While this setup is developed with respect to the requirements of the LISA (Laser Interferometer Space Antenna) space mission, we here present the current status of its adoption to industrial applications. We currently design a very compact and quasi-monolithic setup of the interferometer sensor head based on ultra-low expansion glass material. The resulting compact and robust sensor head can be used for nano-positioning control. We also plan to implement a scan of the measurement beam over the surface under investigation enabling high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness). The dedicated low-noise (<=1nm/square root of Hz) piezo-electric actuator in the measurement beam of the interferometer will be realized using integrated micro-system technology and can either be implemented in one or two dimensions.

  16. A simple and versatile phase detector for heterodyne interferometers

    NASA Astrophysics Data System (ADS)

    Mlynek, A.; Faugel, H.; Eixenberger, H.; Pautasso, G.; Sellmair, G.

    2017-02-01

    The measurement of the relative phase of two sinusoidal electrical signals is a frequently encountered task in heterodyne interferometry, but also occurs in many other applications. Especially in interferometry, multi-radian detectors are often required, which track the temporal evolution of the phase difference and are able to register phase changes that exceed 2π. While a large variety of solutions to this problem is already known, we present an alternative approach, which pre-processes the signals with simple analog circuitry and digitizes two resulting voltages with an analog-to-digital converter (ADC), whose sampling frequency can be far below the frequency of the sinusoidal signals. Phase reconstruction is finally carried out by software. The main advantage of this approach is its simplicity, using only few low-cost hardware components and a standard 2-channel ADC with low performance requirements. We present an application on the two-color interferometer of the ASDEX Upgrade tokamak, where the relative phase of 40 MHz sinusoids is measured.

  17. A heterodyne interferometer for high-performance industrial metrology

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Gohlke, Martin; Weise, Dennis; Johann, Ulrich; Peters, Achim; Braxmaier, Claus

    2008-11-01

    We developed a compact, fiber-coupled heterodyne interferometer for translation and tilt metrology. Noise levels below 5 pm/√Hz in translation and below 10 nrad/√Hz in tilt measurement, both for frequencies above 10-2 Hz, were demonstrated in lab experiments. While this setup was developed with respect to the LISA (Laser Interferometer Space Antenna) space mission current activities focus on its adaptation for dimensional characterization of ultra-stable materials and industrial metrology. The interferometer is used in high-accuracy dilatometry measuring the coefficient of thermal expansion (CTE) of dimensionally highly stable materials such as carbon-fiber reinforced plastic (CFRP) and Zerodur. The facility offers the possibility to measure the CTE with an accuracy better 10-8/K. We also develop a very compact and quasi-monolithic sensor head utilizing ultra-low expansion glass material which is the basis for a future space-qualifiable interferometer setup and serves as a prototype for a sensor head used in industrial environment. For high resolution 3D profilometry and surface property measurements (i. e. roughness, evenness and roundness), a low-noise (<=1nm/√ Hz) actuator will be implemented which enables a scan of the measurement beam over the surface under investigation.

  18. THIS: A Next Generation Tuneable Heterodyne Infrared Spectrometer for SOFIA

    NASA Technical Reports Server (NTRS)

    Sonnabend, Guido; Wirtz, Daniel; Schieder, Rudolf

    2004-01-01

    A new infrared heterodyne instrument has been developed which allows the use of both tuneable diode lasers (TDL) and quantum cascade lasers (QCL) as local oscillators (LO). The current frequency tuning range of our system extends from 900 to 1100/cm depending on the availability of lasers but is planned to be extended to 600/cm soon. The IF-bandwidth is 1.4 GHz using an acousto-optical spectrometer (AOS). The frequency resolution and stability of the system is approximately 10(exp 7). Currently, mercury-cadmium-telluride (MCT) detectors are used as mixers while new devices like quantum-well-infrared-photodetectors (QWIP) and hot-electron-bolometers (HEB) are investigated. The IF-bandwidth can be extended to about 3 GHz by using a new broadband acousto-optical spectrometer presently under development. The instrument is fully transportable and can be attached to any infrared or optical telescope. The semiconductor laser is stabilized to a Fabry-Perot ring-resonator, which is also used as an efficient diplexer to superimpose the local-oscillator and the signal radiation. As a first step measurements of trace gases in Earth's atmosphere and non-LTE emission from Venus' atmosphere were carried out as well as observations of molecular features in sunspots. Further astronomical observations from ground-based telescopes and the airborne observatory SOFIA are planned for the future. Of particular interest are molecules without a permanent dipole moment like H2, CH4, C2H2 etc.

  19. Seedless Laser Velocimetry Using Heterodyne Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.; Jenkins, Luther N.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    A need exists for a seedless equivalent of laser Doppler velocimetry (LDV) for use in low-turbulence or supersonic flows or elsewhere where seeding is undesirable or impractical. A compact laser velocimeter using heterodyne non-resonant laser-induced thermal acoustics (LITA) to measure a single component of velocity is described. Neither molecular (e.g. NO2) nor particulate seed is added to the flow. In non-resonant LITA two beams split from a short-pulse pump laser are crossed; interference produces two counterpropagating sound waves by electrostriction. A CW probe laser incident on the sound waves at the proper angle is directed towards a detector. Measurement of the beating between the Doppler-shifted light and a highly attenuated portion of the probe beam allows determination of one component of flow velocity, speed of sound, and temperature. The sound waves essentially take the place of the particulate seed used in LDV. The velocimeter was used to study the flow behind a rearward-facing step in NASA Langley Research Center's Basic Aerodynamics Research Tunnel. Comparison is made with pitot-static probe data in the freestream over the range 0 m/s - 55 m/s. Comparison with LDV is made in the recirculation region behind the step and in a well-developed boundary layer in front of the step. Good agreement is found in all cases.

  20. Heterodyne Stabilization for the Laser Interferometer Space Antenna (LISA)

    NASA Astrophysics Data System (ADS)

    Eichholz, Johannes; Hochman, Steven; Preston, Alix; Mueller, Guido

    2010-10-01

    LISA is a joint NASA/ESA space mission to detect gravitational waves from 0.1 mHz to 1 Hz generated e.g. by super-massive black hole mergers. Three spacecraft move in a triangular constellation on a heliocentric orbit. Their distances are monitored interferometrically with laser links. LISA detects fluctuations of the 5 million km arm lengths on a picometer scale. The requirement for the frequency stability of the lasers is 141 Hz/μHz. I will present a new stabilization scheme based on heterodyne interferometry. It requires less components than the currently envisioned Pound Drever Hall technique and can easily be integrated into LISA's interferometry measurement system. The two lasers of each spacecraft are injected into the same optical cavity. Near resonance, the phase of the reflected light is sensitive to frequency fluctuations. The second, off-resonant beam can be used to lock the primary laser to the cavity resonance. I will discuss this technique and present experimental results. This work is supported by NASA Contract #00078244 and NASA Grant NNX08AG75G.

  1. High-resolution optical fiber heterodyne interferometer for measuring displacement

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Jia; Cao, Mang; Li, Dacheng

    1990-07-01

    Many Methods have been developed to .easure displace.ent with high accuracy, for exap1e, with a dual frequency laser interferometer (AC interferometer) and an classic interferoseter (DC interferoeter) which use a stabilized laser and fringe counter, and an AC interfero.eter has ore advantage over the DC one. An AC interfero.eter with a Zee.an laser can get a high resolution, in the order of nanoMeters, but its resolution extension liRited by nonlinear relation between phase and displace.ent which caused by the two-frequency coRponents in interferoaeter[1]. Because the fundaaental length scale of the interferometer is the wavelength of the light source in the air. The accuracy of an interferoeter is li.ited by the operating envireaent, teRperature, husidity, pressure, etc. because the aiRs of interferoseters expose in the air. A high resolution optical fiber heterodyne interfermeter is described in the paper.

  2. Balance Problems

    MedlinePlus

    ... often, it could be a sign of a balance problem. Balance problems can make you feel unsteady or as ... fall-related injuries, such as hip fracture. Some balance problems are due to problems in the inner ...

  3. Quantum secure direct communication protocol with blind polarization bases and particles' transmitting order

    NASA Astrophysics Data System (ADS)

    Song, Jie; Zhu, Ai-Dong; Zhang, Shou

    2007-03-01

    This paper presents a modified secure direct communication protocol by using the blind polarization bases and particles' random transmitting order. In our protocol, a sender (Alice) encodes secret messages by rotating a random polarization angle of particle and then the receiver (Bob) sends back these particles as a random sequence. This ensures the security of communication.

  4. Coherent summation of spatially distorted Doppler lidar signals using a two-dimensional heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin Pui; Killinger, Dennis K.

    1992-01-01

    We have investigated the improvement in the signal-to-noise ratio for a coherent Doppler lidar through the use of a multi-element heterodyne detector array. Such an array enables the spatial summation of atmospheric refractive turbulence induced speckles, and time varying target speckles. Our recent experiments have shown that the non-coherent summation of the lidar signals from a heterodyne detector array can enhance the heterodyne mixing efficiency and thus the signal-to-noise ratio. In this paper, we expand this work to include the coherent summation of array signals. The digitized heterodyne signals were stored in a personal computer. Fast Fourier transforms were performed on both the non-coherent and coherent summations of the detector array signals. It was found that the coherent summation greatly enhanced the accuracy in the Doppler frequency estimate. A theoretical analysis was performed and indicated good agreement with experimental results. We have also applied these results to the more general lidar applications including atmospheric wind sensing, and have found that in most lidar applications the Doppler frequency estimate is increased through the use of the heterodyne detector array.

  5. Short term frequency stability measurement for narrow linewidth laser by time domain self-heterodyne method

    NASA Astrophysics Data System (ADS)

    Lu, Lidong; Sun, Xiaoyan; Bu, Xiande; Li, Binglin

    2016-11-01

    Based on the time delay self-heterodyne method to measure the laser linewidth, the short-term linewidth variation of a narrow linewidth laser is experimentally studied and analyzed, and then a time domain self-heterodyne method is proposed to measure the short-term frequency stability of narrow linewidth laser. The Rayleigh backscattering frequency of a pulsed light propagating in an optical fiber with length of 100km is used as the local oscillation frequency with relatively long time duration to measure the frequency variation of the narrow linewidth laser. By heterodyne between the laser frequency and the local oscillation frequency, the variation of the laser frequency is presented in the heterodyne radio frequency (IF). Then the time domain data of the heterodyne IF are extracted by an oscilloscope and through short time Fourier transform the frequency from the laser in different time segments is obtained. Experimental results demonstrate that for narrow linewidth laser its frequency in short-term is randomly fluctuating with a range less than triple of the laser linewidth. The measurement and evaluation of laser short-term frequency stability benefits the application of narrow linewidth lasers in distributed optical fiber sensing area.

  6. Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence.

    PubMed

    Ren, Yongxiong; Dang, Anhong; Liu, Ling; Guo, Hong

    2012-10-20

    The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.

  7. A 2 THz Heterodyne Array Receiver for SOFIA

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1998-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approx. 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the FIR portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galaxy evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (greater than or equal to 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. Figure 1 is a photograph of the 2 THz double feedhorn structure designed and constructed under the auspices of this grant

  8. Extending the operating temperature, wavelength and frequency response of HgCdTe heterodyne detectors

    NASA Technical Reports Server (NTRS)

    Spears, D. L.

    1980-01-01

    Near ideal optical heterodyne performance was obtained at GHz IF frequencies in the 10 micrometer wavelength region with liquid nitrogen cooled HgCdTe photodiodes. Heterodyne NEP's as low as 2.7 x 10 to the minus 20th power W/Hz at 100MHz, 5.4 x 10 to the minus 20th power W/Hz at 1.5 GHz, and 9.4 x 19 to the minus 20th power W/Hz at 3 GHz were achieved. Various physical phenomena which occur within a photodiode and affect heterodyne operation were examined in order to assess the feasibility of extending the operating temperature, wavelength, and frequency response of these HgCdTe photomixers.

  9. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  10. Signal averaging limitations in heterodyne- and direct-detection laser remote sensing measurements

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.; Menyuk, C. R.

    1983-01-01

    The improvement in measurement uncertainty brought about by the averaging of increasing numbers of pulse return signals in both heterodyne- and direct-detection lidar systems is investigated. A theoretical analysis is presented which shows the standard deviation of the mean measurement to decrease as the inverse square root of the number of measurements, except in the presence of temporal correlation. Experimental measurements based on a dual-hybrid-TEA CO2 laser differential absorption lidar system are reported which demonstrate that the actual reduction in the standard deviation of the mean in both heterodyne- and direct-detection systems is much slower than the inverse square-root dependence predicted for uncorrelated signals, but is in agreement with predictions in the event of temporal correlation. Results thus favor the use of direct detection at relatively short range where the lower limit of the standard deviation of the mean is about 2 percent, but advantages of heterodyne detection at longer ranges are noted.

  11. Heterodyne Spectroscopy in the Thermal Infrared Region: A Window on Physics and Chemistry

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor

    2004-01-01

    The thermal infrared region contains molecular bands of many of the most important species in gaseous astronomical sources. True shapes and frequencies of emission and absorption spectral lines from these constituents of planetary and stellar atmospheres contain unique information on local temperature and abundance distribution, non-thermal effects, composition, local dynamics and winds. Heterodyne spectroscopy in the thermal infrared can remotely measure true line shapes in relatively cool and thin regions and enable the retrieval of detailed information about local physics and chemistry. The concept and techniques for heterodyne detection will be discussed including examples of thermal infrared photomixers and instrumentation used in studies of several astronomical sources. Use of heterodyne detection to study non-LTE phenomena, planetary aurora, minor planetary species and gas velocities (winds) will be discussed. A discussion of future technological developments and relation to space flight missions will be addressed.

  12. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.

    PubMed

    Yan, Hao; Duan, Hui-Zong; Li, Lin-Tao; Liang, Yu-Rong; Luo, Jun; Yeh, Hsien-Chi

    2015-12-01

    Picometer laser interferometry is an essential tool for ultra-precision measurements in frontier scientific research and advanced manufacturing. In this paper, we present a dual-heterodyne laser interferometer for simultaneously measuring linear and angular displacements with resolutions of picometer and nanoradian, respectively. The phase measurement method is based on cross-correlation analysis and realized by a PXI-bus data acquisition system. By implementing a dual-heterodyne interferometer with a highly symmetric optical configuration, low frequency noises caused by the environmental fluctuations can be suppressed to very low levels via common-mode noise rejection. Experimental results for the dual-heterodyne interferometer configuration presented demonstrate that the noise levels of the linear and angular displacement measurements are approximately 1 pm/Hz(1/2) and 0.5 nrad/Hz(1/2) at 1 Hz.

  13. New Wavenumber Calibration Tables From Heterodyne Frequency Measurements

    PubMed Central

    Maki, Arthur G.; Wells, Joseph S.

    1992-01-01

    This new calibration atlas is based on frequency rather than wavelength calibration techniques for absolute references. Since a limited number of absolute frequency measurements is possible, additional data from alternate methodology are used for difference frequency measurements within each band investigated by the frequency measurements techniques. Data from these complementary techniques include the best Fourier transform measurements available. Included in the text relating to the atlas are a description of the heterodyne frequency measurement techniques and details of the analysis, including the Hamiltonians and least-squares-fitting and calculation. Also included are other relevant considerations such as intensities and lincshape parameters. A 390-entry bibliography which contains all data sources used and a subsequent section on errors conclude the text portion. The primary calibration molecules are the linear triatomics, carbonyl sulfide and nitrous oxide, which cover portions of the infrared spectrum ranging from 488 to 3120 cm−1. Some gaps in the coverage afforded by OCS and N2O are partially covered by NO, CO, and CS2. An additional region from 4000 to 4400 cm−1 is also included. The tabular portion of the atlas is too lengthy to include in an archival journal. Furthermore, different users have different requirements for such an atlas. In an effort to satisfy most users, we have made two different options available. The first is NIST Special Publication 821, which has a spectral map/facing table format. The spectral maps (as well as the facing tables) are calculated from molecular constants derived for the work. A complete list of all of the molecular transitions that went into making the maps is too long (perhaps by a factor of 4 or 5) to include in the facing tables. The second option for those not interested in maps (or perhaps to supplement Special Publication 821) is the complete list (tables-only) which is available in computerized format as

  14. Mode beating and heterodyning of monolithically integrated semiconductor ring lasers

    NASA Astrophysics Data System (ADS)

    Liu, Chiyu

    Monolithically integrated semiconductor ring lasers (SRLs) are attractive optical sources for optoelectronic integrated circuits (OEICs) because they do not require any feedback elements, do not have parts exposed to external ambient, and can operate in a traveling-wave mode. They are promising candidates for wavelength filtering, unidirectional traveling-wave operation, and multiplexing/demultiplexing applications. Ring lasers can also be used as ultrashort pulse generators using various mode-locking schemes and as active gyro components. However, the SRL is a very complicated dynamic system, which requires more investigations to understand the performance regarding details of the design and fabrication. As a part of NASA-supported project "Monolithically Integrated Semiconductor Ring Laser Gyro for Space Applications", this dissertation research was focused on design and characterization of a novel monolithically integrated rotation sensor based on two large-size independent SRLs. Numerical modeling based on the beam propagation method (BPM) was used to design the fabrication parameters for the single-mode ridge-waveguide ring cavity and directional coupler waveguides. The mode internal coupling in single lateral-mode laser diodes with InGaAs/GaAs material system was investigated by optical experiments and numerical modeling. To gain the understanding of the SRL performance, optical and electrical characterization was performed on fabricated SRLs. Particular emphasis was placed on the study of optical and radio frequency (RF) beating spectra of longitudinal modes of ring lasers. RF measurements provide high accuracy in the diagnosis of laser oscillation parameters by purely electronic means, particularly in the measurement of the group index and its dependence on current and temperature. Theoretical analysis based on the effective index method provides good agreement between the experimental data and numerical calculations. Finally, optical heterodyning spectra

  15. Measurement of in-plane displacement by wavelength-modulated heterodyne speckle interferometry.

    PubMed

    Lee, Ju-Yi; Lu, Ming-Pei; Lin, Kun-Yi; Huang, Szu-Han

    2012-03-10

    The use of wavelength-modulated light incorporated into an optical-path-difference speckle interferometer is demonstrated as a heterodyne technique for measuring the in-plane displacement of a rough object. The in-plane displacement can be determined from the measured phase variation of the heterodyne speckle signal. We also improved the optical configuration to create a high-contrast interference pattern. Experimental results reveal that the proposed method can detect displacement up to a long range of 220 μm and displacement variation down to the nanometer range. Moreover, the sensitivity can reach up to 0.8°/nm. The performance of the system is discussed.

  16. Clutter isolation and cardiac monitoring using harmonic doppler radar with heterodyne receiver and passive RF tags.

    PubMed

    Singh, Aditya; Lubecke, Victor

    2010-01-01

    A harmonic radar employing the use of harmonic passive RF tags can be successfully used to isolate the human respiration from environmental clutter. This paper describes the successful use of heterodyne receiver architecture with Doppler radar to track the heart-rate of a human being using passive body-worn harmonic tags in presence of a controlled noise generator at distances up to 120 cm. The heterodyne system results have been compared with those of a conventional Doppler radar for cardiopulmonary monitoring that fails to isolate the noise from heart-rate in presence of a noise source.

  17. Methods, compositions and kits for imaging cells and tissues using nanoparticles and spatial frequency heterodyne imaging

    DOEpatents

    Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian

    2016-04-19

    Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.

  18. Mid-infrared photothermal heterodyne spectroscopy in a liquid crystal using a quantum cascade laser

    PubMed Central

    Mërtiri, Alket; Jeys, Thomas; Liberman, Vladimir; Hong, M. K.; Mertz, Jerome; Altug, Hatice; Erramilli, Shyamsunder

    2012-01-01

    We report a technique to measure the mid-infrared photothermal response induced by a tunable quantum cascade laser in the neat liquid crystal 4-octyl-4′-cyanobiphenyl (8CB), without any intercalated dye. Heterodyne detection using a Ti:sapphire laser of the response in the solid, smectic, nematic and isotropic liquid crystal phases allows direct detection of a weak mid-infrared normal mode absorption using an inexpensive photodetector. At high pump power in the nematic phase, we observe an interesting peak splitting in the photothermal response. Tunable lasers that can access still stronger modes will facilitate photothermal heterodyne mid-infrared vibrational spectroscopy. PMID:22912508

  19. V-groove diffraction grating for use in an FUV spatial heterodyne interferometer

    NASA Technical Reports Server (NTRS)

    Cotton, Daniel M.; Bach, Bernie; Bush, Brett C.; Chakrabarti, Supriya

    1991-01-01

    A need has arisen for efficient, blazed, symmetric gratings for use as beam splitters in far and extreme ultraviolet interferometers. In particular, the development of an all-reflection, far ultraviolet spatial heterodyne interferometer can benefit tremendously from such a grating. To fulfill this need, we have manufactured a mechanically ruled grating with a V-groove profile blazed for H Lyman-alpha at 1216 A. We present the grating performance at Lyman-alpha in the context of its application to the spatial heterodyne interferometer.

  20. Usefulness of the infrared heterodyne radiometer in remote sensing of atmospheric pollutants.

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1971-01-01

    The application of narrow-band optical receivers to the problem of sensing atmospheric pollution is discussed. The emission/absorption lines of many major atmospheric pollutant molecules overlap the operating frequency bands of CO2 laser and CO laser heterodyne receivers. Several remote pollution sensing systems which are based upon utilization of these spectral overlaps are described, and an analysis of their potential is presented. The possibility of using other lasers (e.g.: the PbSnTe tunable diode laser) as local oscillators is also considered. Results of laboratory experiments with a CO2 laser heterodyne radiometer are presented.

  1. Great circle solution to polarization-based quantum communication (QC) in optical fiber

    DOEpatents

    Nordholt, Jane Elizabeth; Peterson, Charles Glen; Newell, Raymond Thorson; Hughes, Richard John

    2016-03-15

    Birefringence in optical fibers is compensated by applying polarization modulation at a receiver. Polarization modulation is applied so that a transmitted optical signal has states of polarization (SOPs) that are equally spaced on the Poincare sphere. Fiber birefringence encountered in propagation between a transmitter and a receiver rotates the great circle on the Poincare sphere that represents the polarization bases used for modulation. By adjusting received polarizations, polarization components of the received optical signal can be directed to corresponding detectors for decoding, regardless of the magnitude and orientation of the fiber birefringence. A transmitter can be configured to transmit in conjugate polarization bases whose SOPs can be represented as equidistant points on a great circle so that the received SOPs are mapped to equidistant points on a great circle and routed to corresponding detectors.

  2. Multi-mode heterodyned 5th-order infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Leger, Joel D.; Varner, Clyde; Rubtsov, Igor V.

    2016-10-01

    Fifth-order multidimensional infrared spectroscopy with heterodyned detection was carried out in the three-beam dual-frequency configuration. Numerous 5th-order cross peaks were detected for the 4-azidobutyrate-N-hydroxysuccinimide ester compound in solution involving several vibrational modes ranging in frequency from 1045 to 2100 cm-1. Cross peaks involving overtones (2X/Z) and combination bands (XY/Z) among the tags, modes X and Y excited by the first two mid-IR laser pulses, and the reporter, modes Z excited by the third laser pulse, were acquired and the factors affecting the amplitude of 5th-order cross peaks are discussed. The 5th-order cross peaks were detected among modes that are spatially close (a few bonds apart) as well as for modes spatially separated by ca. 12 Å (eight bonds apart). In both cases, the waiting time dependences for the 3rd and 5th order cross peaks were found to be different. In particular, the waiting time at which the cross-peak maximum is reached, the decay time, and the value of a plateau at large waiting times were all differing strongly. The differences are explained by reduced sensitivity of the 5th-order signals to modes coupled weakly to the reporter mode and different relaxation dynamics involving overtone state of the tag. The ability of the 5th-order peaks to single out the modes coupled strongly to the reporter can help identifying specific energy relaxation and transport pathways, which will be useful for understanding energy transport dynamics in molecules. The absorptive 5th-order cross peaks were constructed which report on three-point correlation functions. It is shown that in addition to the triple-frequency correlation functions, a correlation of the frequencies with the mode coupling (anharmonicity) can be naturally measured by the 5th-order spectroscopy. The current limit for detecting 5th-order signals was estimated at the level of 1 × 10-3 in reduced anharmonicity, which is determined by the corresponding two

  3. Deriving eigenmode excitation spectrum of synthetic photonic lattices by means of optical heterodyning

    NASA Astrophysics Data System (ADS)

    Tikan, A. M.; Vatnik, I. D.; Churkin, D. V.; Sukhorukov, A. A.

    2017-02-01

    A method based on optical heterodyning is proposed for measuring relative optical phases of pulses circulating in synthetic photonic lattices (SPL). The knowledge of the phases can be further used for qualitative reconstruction of an eigenmode excitation spectrum in the SPL.

  4. Heterodyne holography with full control of both the signal and reference arms.

    PubMed

    Gross, Michel

    2016-01-20

    Heterodyne holography is a variant of phase-shifting holography in which the reference and signal arms are controlled by acousto-optic modulators. In this review paper, we will briefly describe the method and its properties, and we will illustrate its advantages in experimental applications.

  5. Synthetic Array Heterodyne Detection: Developments within the Caliope CO{sub 2} DIAL Program

    SciTech Connect

    Rehse, S.J.; Strauss, E.M.

    1995-09-01

    A new technique, Synthetic Array Heterodyne Detection, offers a wider field of view and improved signal to noise for coherent DIAL systems by reducing speckle interference. We have implemented a synthetic multi-pixel array using a CO{sub 2} laser on a single element HgCdTe photodiode.

  6. SURVEY OF OPTICAL VELOCIMETRY EXPERIMENTS - APPLICATIONS OF PDV, A HETERODYNE VELOCIMETER

    SciTech Connect

    HOLTKAMP, DAVID B.

    2007-02-12

    Optical velocimetry has been an important experimental diagnostic for many experiments. Recent improvements to heterodyne techniques have resulted in compact, inexpensive and high performance velocimetry measurement systems. We report on developments and improvements in this area and illustrate the performance of Photon Doppler Velocimetry (PDV) by showing several experimental examples.

  7. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    NASA Astrophysics Data System (ADS)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  8. Dual-Polarization, Sideband-Separating, Balanced Receiver for 1.5 THz

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutman; Ward, John; Manohara, Harish; Siegel, Peter

    2009-01-01

    A proposed heterodyne receiver would be capable of detecting electromagnetic radiation in both of two orthogonal linear polarizations, separating sidebands, and providing balanced outputs in a frequency band centered at 1.5 THz with a fractional bandwidth greater than 40 percent. Dual polarization, sideband-separating, and balanced-output receivers are well-known and have been used extensively at frequencies up to about 100 GHz; and there was an earlier proposal for such a receiver for frequencies up to 900 GHz. However, the present proposal represents the first realistic design concept for such a receiver capable of operating above 1 THz. The proposed receiver is intended to be a prototype of mass-producible receiver units, operating at frequencies up to 6 THz, that would be incorporated into highly sensitive heterodyne array instruments to be used in astronomical spectroscopic and imaging studies.

  9. Introducing tunable special heterodyne spectrometers in cometary studies

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.

    2014-07-01

    Cometary remote sensing, in many cases, depends on measurement of fine spectral features from targets covering relatively large angular areas on the sky. The range of studies in cometary science is highly diverse. Size scales and perspectives vary dramatically, with opportunities for both Earth-based and in situ studies. Many characteristics of comets, such as coma dynamics, outflow/escape, radiative transfer, and isotopic ratios, are best addressed with high-resolving-power studies that integrate a large FOV. In addition, it is of great importance to obtain high-resolution data to resolve small Doppler shifts, fine structure, line shapes, and atomic multiplets/molecular bands. However, more detection is not enough, because the coma is inherently active; it can manifest substantial variation both temporally and spatially. As a result, we must combine a study of the target's global evolution parallel to the ability to measure with some spatial fidelity across the FOV and to map its variation in time. This combination of requirements is a challenge that modern instrumental approaches are limited in their ability to meet. One method for addressing these needs is through the use of a broadly tunable all-reflective Special Heterodyne Spectrometer (SHS). SHS instruments are common-path two-beam Fourier-transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5--1°), high resolving power (of order ˜ 10^5), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity-resolved observations of wide field targets from both small and large telescopes. We have constructed a tunable SHS, Khayyam, at fixed focal plane of the Coudé Auxiliary Telescope (CAT) at Mt. Hamilton. The CAT provides a test case for on-axis use of SHS, and the

  10. The polarization-based collimated beam combiner and the proposed NOVA fringe tracker (NFT) for the VLTI

    NASA Astrophysics Data System (ADS)

    Meisner, Jeffrey A.; Jaffe, Walter J.; Le Poole, Rudolf S.; Pereira, Silvania F.; Quirrenbach, Andreas; Raban, David; Vosteen, Amir

    2010-07-01

    The Polarization-Based Collimated Beam Combiner efficiently produces pairwise interference between beams from multiple telescopes. An important feature is achieving "Photometric Symmetry" whereby interference measurements have no first-order sensitivity to wavefront perturbations (or photometric variations following spatial filtering) which otherwise entail visibility measurements with increased error, bias, and nonlinearity in phase determination. Among other proposed applications, this topology has been chosen as the basis for the design of the NOVA Fringe Tracker (NFT), a proposed 4 or 6 telescope second-generation fringe tracker for the VLTI. The NFT takes advantage of the photometric symmetry thus achieved making it capable of tracking on stars resolved beyond the first visibility null, as well as interfering a telescope beam with one which is 20 times brighter, a design goal set by ESO. By not requiring OPD modulation for interferometric detection, the detector exposure time can be increased without performance reduction due to time skew nor is sensitivity reduced by removing optical power for photometric monitoring, and use of two-phase interferometric detection saves one half of the photons being diverted for detection of the other two (mainly) unused quadrature phases. The topology is also proposed for visibility measuring interferometers with configurations proposed for the achievement of balanced quadrature or 3-phase interferometric detection. A laboratory demonstration confirms >>100:1 rejection of photometric crosstalk in a fringe tracking configuration where atmospheric OPD fluctuations were simulated using a hair dryer. Tracking with a 30:1 intensity ratio between the incoming beams was performed while rejecting large introduced photometric fluctuations.

  11. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  12. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection.

    PubMed

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-03-20

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively.

  13. Detrimental Effect Elimination of Laser Frequency Instability in Brillouin Optical Time Domain Reflectometer by Using Self-Heterodyne Detection

    PubMed Central

    Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin

    2017-01-01

    A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508

  14. Laser Balancing

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  15. A 4.7THz heterodyne receiver for a balloon borne telescope

    NASA Astrophysics Data System (ADS)

    Hayton, D. J.; Kloosterman, J. L.; Ren, Y.; Kao, T. Y.; Gao, J. R.; Klapwijk, T. M.; Hu, Q.; Walker, C. K.; Reno, J. L.

    2014-07-01

    We report on the performance of a high sensitivity 4.7 THz heterodyne receiver based on a NbN hot electron bolometer mixer and a quantum cascade laser (QCL) as local oscillator. The receiver is developed to observe the astronomically important neutral atomic oxygen [OI] line at 4.7448 THz on a balloon based telescope. The single-line frequency control and improved beam pattern of QCL have taken advantage of a third-order distributed feedback structure. We measured a double sideband receiver noise temperature (Trec(DSB)) of 815 K, which is ~ 7 times the quantum noise limit (hν/2kB). An Allan time of 15 s at an effective noise fluctuation bandwidth of 18 MHz is demonstrated. Heterodyne performance was further supported by a measured methanol line spectrum around 4.7 THz.

  16. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-20

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  17. Inversion technique for IR heterodyne sounding of stratospheric constituents from space platforms

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Alvarez, J. M.

    1981-01-01

    The techniques which have been employed for inversion of IR heterodyne measurements for remote sounding of stratospheric trace constituents usually rely on either geometric effects based on limb-scan observations (i.e., onion peel techniques) or spectral effects by using weighting functions corresponding to different frequencies of an IR spectral line. An experimental approach and inversion technique are discussed which optimize the retrieval of concentration profiles by combining the geometric and the spectral effects in an IR heterodyne receiver. The results of inversions of some synthetic CIO spectral lines corresponding to solar occultation limb scans of the stratosphere are presented, indicating considerable improvement in the accuracy of the retrieved profiles. The effects of noise on the accuracy of retrievals are discussed for realistic situations.

  18. Some n-p (Hg,Cd)Te photodiodes for 8-14 micrometer heterodyne applications

    NASA Technical Reports Server (NTRS)

    Shanley, J. F.; Flanagan, C. T.

    1980-01-01

    The results describing the dc and CO2 laser heterodyne characteristics of a three element photodiode array and single element and four element photodiode arrays are presented. The measured data shows that the n(+)-p configuration is capable of achieving bandwidths of 475 to 725 MHz and noise equivalent powers of 3.2 x 10 to the minus 20th power W/Hz at 77 K and 1.0 x 10 to the minus 19th power W/Hz at 145 K. The n(+)-n(-)-p photodiodes exhibited wide bandwidths (approximately 2.0 GHz) and fairly good effective heterodyne quantum efficiencies (approximately 13-30 percent at 2.0 GHz). Noise equivalent powers ranging from 1.44 x 10 to the minus 19th power W/Hz to 6.23 x 10 to the minus 20th power W/Hz were measured at 2.0 GHz.

  19. Improved optical pulse heterodyne demodulation scheme for fiber-optic interferometric sensors

    NASA Astrophysics Data System (ADS)

    Lai, Haiqiang; Wang, Jianfei; Tu, Xiaobo; Meng, Zhou

    2015-10-01

    An improved optical pulse heterodyne demodulation scheme for fiber-optic interferometric sensors is demonstrated. This scheme uses two series-connected Acoustic-optic modulators (AOMs) as intensity modulator and frequency shifter respectively. Compared to the traditional optical heterodyne demodulation structure, this scheme eliminates the polarization-induced signal fading and the noise floor is lowered for using the Michelson-configuration delay structure and Faraday rotation mirrors (FRMs) in the optic architecture of system. At the same time, the architecture of this scheme is not complicated and can be used to complex a large sensor array. Experimental results show that the phase noise floor of this demodulation scheme is flat and reaches -99dB/sqrt(Hz) at frequencies above 300 Hz.

  20. Imaging and target detection with a heterodyne-reception optical radar.

    PubMed

    Shapiro, J H; Capron, B A; Harney, R C

    1981-10-01

    A mathematical system model for a compact heterodyne-reception infrared radar is developed. This model incorporates the statistical effects of propagation through atmospheric turbulence, target speckle and glint, and heterodyne-reception shot noise. It is used to find the image signal-to-noise ratio of a matched-filter envelope-detector receiver and the target detection probability of the optimum likelihood ratio processor. For realistic parameter values it is shown that turbulence-induced beam spreading and coherence loss may be neglected. Target speckle and atmospheric scintillation, however, present serious limitations on single-frame imaging and target-detection performance. Experimental turbulence strength measurements are reviewed, and selected results are used in sample performance calculations for a realistic infrared radar.

  1. A Miniaturized Laser Heterodyne Radiometer for Greenhouse Gas Measurements in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily Wilson

    2015-01-01

    Laser Heterodyne Radiometry is a technique adapted from radio receiver technology has been used to measure trace gases in the atmosphere since the 1960s.By leveraging advances in the telecommunications industry, it has been possible to miniaturize this technology.The mini-LHR (Miniaturized Laser Heterodyne Radiometer) has been under development at NASA Goddard Space flight Center since 2009. This sun-viewing instrument measures carbon dioxide and methane in the atmospheric column and operates in tandem with an AERONET sun photometer producing a simultaneous measure of aerosols. The mini-LHR has been extensively field tested in a range of locations ranging in the continental US as well as Alaska and Hawaii and now operates autonomously with sensitivities of approximately 0.2 ppmv and approximately10 ppbv, for carbon dioxide and methane respectively, for 10 averaged scans under clear sky conditions.

  2. Bulk and integrated acousto-optic spectrometers for molecular astronomy with heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Chin, G.; Buhl, D.; Florez, J. M.

    1981-01-01

    A survey of acousto-optic spectrometers for molecular astronomy is presented, noting a technique of combining the acoustic bending of a collimated coherent light beam with a Bragg cell followed by an array of sensitive photodetectors. This acousto-optic spectrometer has a large bandwidth, a large number of channels, high resolution, and is energy efficient. Receiver development has concentrated on high-frequency heterodyne systems for the study of the chemical composition of the interstellar medium. RF spectrometers employing acousto-optic diffraction cells are described. Acousto-optic techniques have been suggested for applications to electronic warfare, electronic countermeasures and electronic support systems. Plans to use integrated optics for the further miniaturization of acousto-optic spectrometers are described. Bulk acousto-optic spectrometers with 300 MHz and 1 GHz bandwidths are being developed for use in the back-end of high-frequency heterodyne receivers for astronomical research.

  3. Heterodyne interferometry method for calibration of a Soleil-Babinet compensator.

    PubMed

    Zhang, Wenjing; Zhang, Zhiwei

    2016-05-20

    A method based on the common-path heterodyne interferometer system is proposed for the calibration of a Soleil-Babinet compensator. In this heterodyne interferometer system, which consists of two acousto-optic modulators, the compensator being calibrated is inserted into the signal path. By using the reference beam as the benchmark and a lock-in amplifier (SR844) as the phase retardation collector, retardations of 0 and λ (one wavelength) can be located accurately, and an arbitrary retardation between 0 and λ can also be measured accurately and continuously. By fitting a straight line to the experimental data, we obtained a linear correlation coefficient (R) of 0.995, which indicates that this system is capable of linear phase detection. The experimental results demonstrate determination accuracies of 0.212° and 0.26° and measurement precisions of 0.054° and 0.608° for retardations of 0 and λ, respectively.

  4. Frequency locking of a field-widened Michelson interferometer based on optimal multi-harmonics heterodyning.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Shen, Yibing; Liu, Chong; Bai, Jian; Wang, Kaiwei; Su, Lin; Yang, Liming

    2016-09-01

    A general resonant frequency locking scheme for a field-widened Michelson interferometer (FWMI), which is intended as a spectral discriminator in a high-spectral-resolution lidar, is proposed based on optimal multi-harmonics heterodyning. By transferring the energy of a reference laser to multi-harmonics of different orders generated by optimal electro-optic phase modulation, the heterodyne signal of these multi-harmonics through the FWMI can reveal the resonant frequency drift of the interferometer very sensitively within a large frequency range. This approach can overcome the locking difficulty induced by the low finesse of the FWMI, thus contributing to excellent locking accuracy and lock acquisition range without any constraint on the interferometer itself. The theoretical and experimental results are presented to verify the performance of this scheme.

  5. Method of vibration analysis using holographic interferometry and heterodyne optical detection

    NASA Technical Reports Server (NTRS)

    Vlad, V. I.; Maurer, J.; Popa, D.

    1974-01-01

    A method of studying thin plate vibrations with the aid of a laser beam is discussed. Through a suitable combination of time-average holographic interferometry, real-time holographic interferometry, and heterodyne optical detection, it is possible to obtain complete information on the vibration parameters of modes, amplitudes, frequencies, and phases. The method has the advantage of three dimensional global observation, noncontact, and high precision measurements.

  6. Security of Y-00 under heterodyne measurement and fast correlation attack

    NASA Astrophysics Data System (ADS)

    Donnet, Stéphane; Thangaraj, Andrew; Bloch, Matthieu; Cussey, Johann; Merolla, Jean-Marc; Larger, Laurent

    2006-08-01

    We provide a security analysis of the Y-00 protocol under heterodyne measurement and correlation attack. We show that the secrecy of the data encryption scheme is extremely sensitive to the running-key generation process. In many situations our simple attack succeeds in recovering the initial shared secret key. Our simulation results suggest that a truly secure implementation of the protocol should take into account the effective key generation method.

  7. Air pollution - Remote detection of several pollutant gases with a laser heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1974-01-01

    An infrared heterodyne radiometer with a spectral resolution of 0.04 reciprocal centimeters has been used to remotely detect samples of ozone, sulfur dioxide, ammonia, and ethylene at room temperature, and samples of nitric oxide at 390 K. Each gas was observed in a background of nitrogen or oxygen at atmospheric pressure. Sensitivities to some of these gases are adequate for detection of ambient concentrations as low as a few parts per billion.

  8. Two-wavelength laser-diode heterodyne interferometry with one phasemeter

    NASA Astrophysics Data System (ADS)

    Onodera, Ribun; Ishii, Yukihiro

    1995-12-01

    A two-wavelength laser-diode interferometer that is based on heterodyne detection with one phasemeter has been constructed. Two laser diodes are frequency modulated by mutually inverted sawtooth currents on an unbalanced interferometer. One can measure the tested phase at a synthetic wavelength from the sum of the interference beat signals by synchronizing them with the modulation frequency. The experimental result presented shows a phase-measurement range with a 4.7- mu m synthetic wavelength.

  9. Rapid-tuning device for CO/sub 2/ heterodyne detection lidar

    SciTech Connect

    Fox, J. A.; Gautier, C. R.; Ahl, J. L.

    1989-07-01

    A device for rapid-tuning cw, /ital Q/-switched lasers for a CO/sub 2/ heterodyne detection lidar is presented. It is shown that it is possible to utilize galvanometer-driven mirrors to rapidly switch wavelengths over randomly selected lasing transitions in the 9--11 /mu/m portion of the spectrum. Both a transmitter and a local oscillator are simultaneously switched between transitions while still achieving the frequency stability typically required for a coherent lidar system.

  10. Study of LPG-assisted fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation

    NASA Astrophysics Data System (ADS)

    Caldas, P.; Araújo, F.; Ferreira, L. A.; Rego, G.; Marques, M. B.; Santos, J. L.

    2007-07-01

    In this work, the LPG-assisted fibre Michelson modal interferometer is studied as a sensing structure for environmental refractive index, temperature and liquid level when coherence addressing and heterodyne interrogation are considered. The effects on measurand sensitivity of the order of the cladding mode excited by the LPG, of the degree of etching of the sensing fibre and of the fibre type used are investigated.

  11. Development of a slab waveguide spatial heterodyne spectrometer for remote sensing

    NASA Astrophysics Data System (ADS)

    Florjańczyk, Miroslaw; Cheben, Pavel; Janz, Siegfried; Lamontagne, Boris; Lapointe, Jean; Scott, Alan; Solheim, Brian; Xu, Dan-Xia

    2010-02-01

    We present development of a compact, robust, waveguide Fourier-transform microspectrometer for high-resolution and high-throughput spectroscopy in space-based applications. The prototype device is being developed to monitor water vapor in the atmosphere from a micro-satellite platform. The instrument is based on a unique slab waveguide spatial heterodyne spectrometer (SHS) chip fabricated at the National Research Council Canada in silicon-on-insulator (SOI) technology.

  12. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect

    Liu, X.; Zhao, H. L.; Liu, Y. Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D.; Domier, C. W.; Luhmann, N. C.

    2014-09-15

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  13. Development and performance of a laser heterodyne spectrometer using tunable semiconductor lasers as local oscillators

    NASA Technical Reports Server (NTRS)

    Glenar, D.; Kostiuk, T.; Jennings, D. E.; Mumma, M. J.

    1980-01-01

    A diode laser based IR heterodyne spectrometer for laboratory and field use was developed for high efficiency operation between 7.5 and 8.5 microns. The local oscillator is a PbSSe tunable diode laser kept continuously at operating temperatures of 12-60 K using a closed cycle cooler. The laser output frequency is controlled and stabilized using a high precision diode current supply, constant temperature controller, and a shock isolator mounted between the refrigerator cold tip and the diode mount. Single laser modes are selected by a grating placed in the local oscillator beam. The system employs reflecting optics throughout to minimize losses from internal reflection and absorption, and to eliminate chromatic effects. Spectral analysis of the diode laser output between 0 and 1 GHz reveals excess noise at many diode current settings, which limits the infrared spectral regions over which useful heterodyne operation can be achieved. System performance has been studied by making heterodyne measurements of etalon fringes and several Freon 13 (CF3Cl) absorption lines against a laboratory blackbody source. Preliminary field tests have also been performed using the Sun as a source.

  14. Deferred electronic heterodyne moire deflectometry: A method for transient density fields measurement

    NASA Technical Reports Server (NTRS)

    Stricker, Josef

    1989-01-01

    Effects of spherical aberrations of the mirror used in the moire system on the angular resolution of the system are investigated. It is shown that the spherical aberrations may reduce significantly the performance of the conventional moire deflectometer. However, due to the heterodyne procedure, this is not the case with the heterodyne moire system. A moire system with a constant speed moving grating is demonstrated. It is shown that the system readout is linear and the system does not need calibration. In addition, the repeatability of the measurements is improved in this system as compared to the sinusoidally moving grating setup. The problem of the photographic plates alignment is solved by using a mechanical system in which the plate is held firmly throughout the experiment and accurately replaced after removing for photographic processing. The effect of a circular detector's aperture size on readout was tested. It is shown that the spatial phase variations, observed when scanning along a straight moire fringe, may considerably be reduced. At present we may say that both the on-line and the deferred heterodyne moire techniques may reliably be used. The errors of phase readings are 1 deg and 5 deg for the on-line and deferred methods. The total error due to subtraction of two readings at each position is, therefore, 1.4 deg and 7 deg, respectively. Further research for improving the deferred system is suggested.

  15. Common mode noise rejection properties of amplitude and phase noise in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2013-05-01

    High precision metrology systems based on heterodyne interferometry can measure the position and attitude of objects to accuracies of picometer and nanorad, respectively. A frequently found feature of the general system design is the subtraction of a reference phase from the phase of the position interferometer, which suppresses low frequency common mode amplitude and phase fluctuations occurring in volatile optical path sections shared by both the position and reference interferometer. Spectral components of the noise at frequencies around or higher than the heterodyne frequency, however, are generally transmitted into the measurement band and may limit the measurement accuracy. Detailed analytical calculations complemented with Monte Carlo simulations show that high frequency noise components may also be entirely suppressed, depending on the relative difference of measurement and reference phase, which may be exploited by corresponding design provisions. While these results are applicable to any heterodyne interferometer with certain design characteristics, specific calculations and related discussions are given for the example of the optical metrology system of the LISA Pathfinder mission to space.

  16. Method for measuring the refractive index distribution of a GRIN lens with heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Hsieh, H. C.; Chen, Y. L.; Wu, W. T.; Su, D. C.

    2009-06-01

    Based on the Fresnel's equations and the heterodyne interferometry, an alternative method for measuring the refractive index distribution of a GRIN lens is presented. A light coming from the heterodyne light source passes through a quarterwave plate and is incident on the tested GRIN lens. The reflected light passes through an analyzer and an imaging lens; finally it enters a CMOS camera. The interference signals produced by the components of the s- and the p-polarizations are recorded and they are sent to a personal computer to be analyzed. In order to measure the absolute phases of the interference signals accurately, a special condition is chosen. Then, the interference signals become a group of periodic sinusoidal segments, and each segment has an initial phase ψ with the information of the refractive index. Consequently, the estimated data of ψ are substituted into the special equations derived from Fresnel's equations, and the refractive index distribution of the GRIN lens can be obtained. Because of its common-path optical configuration, this method has both merits of the common-path interferometry and the heterodyne interferometry. In addition, the phase can be measured without reference signals.

  17. Ground-based prototype quantum cascade laser heterodyne radiometer for atmospheric studies

    NASA Astrophysics Data System (ADS)

    Weidmann, D.; Reburn, W. J.; Smith, K. M.

    2007-07-01

    The advent of quantum cascade lasers has provided matured continuously tunable solid state laser sources emitting from mid-infrared to terahertz wavelengths. Such sources, used as local oscillators, offer the practical prospect of aircraft, high altitude platform, and satellite deployment of compact and shot noise limited heterodyne radiometers for Earth observation and astronomy. A ground-based prototype of a quantum cascade laser heterodyne radiometer operating in the mid-infrared has been developed and is presented. The instrument design and concepts are described, together with evaluation of the instrument in the laboratory and during field measurements of atmospheric ozone. In this study the best performance achieved by the prototype quantum cascade laser heterodyne radiometer was a signal-to-noise ratio of three times the theoretical shot-noise limit. The prototype has allowed the main sources of excess noise to be identified as residual optical feedback in the local oscillator optical path and a lack of mechanical and thermal stability in the local oscillator collimation system. Instrument improvements are currently being implemented and enhanced performance is expected in the near future.

  18. Improved synthetic-heterodyne Michelson interferometer vibrometer using phase and gain control feedback.

    PubMed

    Galeti, José Henrique; Kitano, Cláudio; Connelly, Michael J

    2015-12-10

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity measurement using interferometric sensors as it can provide an output signal which is immune to interferometric drift. With the advent of cost effective, high-speed real-time signal processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In conventional synthetic-heterodyne demodulation schemes, to obtain the dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a new synthetic-heterodyne demodulation method is described leading to an expression for the dynamic displacement and velocity of the object under test that is significantly less sensitive to the received optical power. In addition, the application of two independent phase and gain feedback loops is used to compensate for the nonideal gain and phase response of the anti-aliasing filter required for the signal acquisition of the received wideband interferometer signal. The efficacy of the improved system is demonstrated by measuring the displacement sensitivity frequency response and linearity of a Piezoelectric Mirror-Shifter (PMS) over a range of 200 Hz-9 kHz. In addition, the system is used to measure the response of the PMS to triangular and impulse type stimuli. The experimental results show excellent agreement with measurements taken using two independent industry standard calibration methods.

  19. Polarizer based upon a plasmonic resonant thin layer on a squeezed photonic crystal fiber.

    PubMed

    Khaleque, Abdul; Hattori, Haroldo T

    2015-03-20

    In this article, a polarizer based on surface plasmon resonance in a squeezed rectangular lattice is analyzed through a full-vector finite-element method solver. The device allows one state of polarization (e.g., y-polarized mode) to propagate through the fiber while the other state (x-polarized mode) is heavily attenuated: the modal losses for the x- and y-polarized modes are 1221 dB/cm and 1.6 dB/cm, respectively, at the wavelength of 1310 nm. Given the high differential attenuation between the two orthogonal polarization modes, the device could be used as a compact polarizer with potential applications in sensing, communications, and other areas.

  20. Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial.

    PubMed

    Cheng, Yongzhi; Gong, Rongzhou; Cheng, Zhengze; Nie, Yan

    2014-09-01

    A near-perfect dual-band circular polarizer based on bilayer twisted, single split-ring resonator structure asymmetric chiral metamaterial was proposed and investigated. The simple bilayer structure with a 90° twisted angle allows for equalizing the orthogonal components of the electric field at the output interface with a 90° phase difference for a y-polarized wave propagating along the backward (-z) direction. It is found that right- and left-hand circular polarization are realized in transmissions at 7.8 and 10.1 GHz, respectively. Experiments agree well with numerical simulations, which exhibit that the polarization extinction ratio is more than 30 dB at the resonant frequencies. Further, the simple design also can be operated at the terahertz range by scaling down the geometrical parameters of the unit cell.

  1. Polarization-based material classification technique using passive millimeter-wave polarimetric imagery.

    PubMed

    Hu, Fei; Cheng, Yayun; Gui, Liangqi; Wu, Liang; Zhang, Xinyi; Peng, Xiaohui; Su, Jinlong

    2016-11-01

    The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.

  2. Balancing Acts

    MedlinePlus

    ... a new type of balance therapy using computerized, virtual reality. UPMC associate professor Susan Whitney, Ph.D., ... involves simulated trips down the aisles of a virtual grocery store in the university's Medical Virtual Reality ...

  3. Scanning balanced-path homodyne I/Q-interferometer scheme and its applications.

    PubMed

    Eang, Seang Hor; Yoon, Seunghyun; Park, Jun Gyu; Cho, Kyuman

    2015-06-01

    The balanced-path scheme of a heterodyne interferometer proposed by Yoon et al. has been applied to the scanning homodyne I/Q-interferometer. This provides an 11-dB improvement on common vibration rejection over the heterodyne scheme and, thereby, allows high sensitivity and high stability phase and amplitude measurements for high-speed scanning interferometer applications. It is shown that our new scanning interferometer scheme is very useful for diagnosing a sample that requires complex analysis. As an example, our new scanning interferometer scheme has been applied for obtaining phase and amplitude images of the protein biochip samples prepared by using the sandwich ELISA. The amplitude images are used for diagnosing homogeneity of the sample, while the phase images are used for measuring the phase difference between samples treated with different concentrations of IL-5.

  4. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, Charlie E.

    1997-01-01

    Apparatus and method for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO.sub.2 laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart.

  5. Apparatus and method for heterodyne-generated two-dimensional detector array using a single element detector

    DOEpatents

    Strauss, C.E.

    1997-11-18

    Apparatus and method are disclosed for heterodyne-generated, two-dimensional detector array using a single detector. Synthetic-array heterodyne detection, permits a single-element optical detector to behave as though it were divided into an array of separate heterodyne detector elements. A fifteen-element synthetic array has successfully been experimentally realized on a single-element detector, permitting all of the array elements to be read out continuously and in parallel from one electrical connection. A CO{sub 2} laser and a single-element HgCdTe photodiode are employed. A different heterodyne local oscillator frequency is incident upon the spatially resolvable regions of the detector surface. Thus, different regions are mapped to different heterodyne beat frequencies. One can determine where the photons were incident on the detector surface even though a single electrical connection to the detector is used. This also prevents the destructive interference that occurs when multiple speckles are imaged (similar to spatial diversity), In coherent LIDAR this permits a larger field of view. An acoustooptic modulator generates the local oscillator frequencies and can achieve adequate spatial separation of optical frequencies of the order of a megahertz apart. 4 figs.

  6. Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour.

    PubMed

    Niwa, Yoshito; Arai, Koji; Ueda, Akitoshi; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2009-11-10

    A heterodyne metrology interferometer was stabilized down to a noise level of 20 picometers (pm) as a root-mean-square (RMS) value integrated between 0.3 mHz and 1 Hz. This noise level was achieved by employing active and passive interferometer stabilization techniques. The heterodyne interferometer was built on a 50 mm square ultralow expansion glass plate in order to reduce an optical path length change caused by temperature variation. An optical configuration of the interferometer is a Mach-Zehnder interferometer with a design as symmetric as possible so that a detection signal can be insensitive to homogeneous thermal expansion of the glass plate. The heterodyne frequency is actively controlled in order to suppress residual noises caused by optical path length changes outside of the glass plate as well as phase fluctuations of the heterodyne frequency source. Our stabilization scheme is considered useful in achieving the 20 pm noise level without a stable heterodyne frequency source, as well as temperature stabilization around a whole apparatus. This interferometer can be used in precise metrology applications, such as characterization of deformation for satellite optical components against thermal exposure.

  7. Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour

    SciTech Connect

    Niwa, Yoshito; Arai, Koji; Ueda, Akitoshi; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei

    2009-11-10

    A heterodyne metrology interferometer was stabilized down to a noise level of 20 picometers (pm) as a root-mean-square (RMS) value integrated between 0.3 mHz and 1 Hz. This noise level was achieved by employing active and passive interferometer stabilization techniques. The heterodyne interferometer was built on a 50 mm square ultralow expansion glass plate in order to reduce an optical path length change caused by temperature variation. An optical configuration of the interferometer is a Mach-Zehnder interferometer with a design as symmetric as possible so that a detection signal can be insensitive to homogeneous thermal expansion of the glass plate. The heterodyne frequency is actively controlled in order to suppress residual noises caused by optical path length changes outside of the glass plate as well as phase fluctuations of the heterodyne frequency source. Our stabilization scheme is considered useful in achieving the 20 pm noise level without a stable heterodyne frequency source, as well as temperature stabilization around a whole apparatus. This interferometer can be used in precise metrology applications, such as characterization of deformation for satellite optical components against thermal exposure.

  8. Balance System

    NASA Technical Reports Server (NTRS)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  9. Complete all-optical processing polarization-based binary logic gates and optical processors.

    PubMed

    Zaghloul, Y A; Zaghloul, A R M

    2006-10-16

    We present a complete all-optical-processing polarization-based binary-logic system, by which any logic gate or processor can be implemented. Following the new polarization-based logic presented in [Opt. Express 14, 7253 (2006)], we develop a new parallel processing technique that allows for the creation of all-optical-processing gates that produce a unique output either logic 1 or 0 only once in a truth table, and those that do not. This representation allows for the implementation of simple unforced OR, AND, XOR, XNOR, inverter, and more importantly NAND and NOR gates that can be used independently to represent any Boolean expression or function. In addition, the concept of a generalized gate is presented which opens the door for reconfigurable optical processors and programmable optical logic gates. Furthermore, the new design is completely compatible with the old one presented in [Opt. Express 14, 7253 (2006)], and with current semiconductor based devices. The gates can be cascaded, where the information is always on the laser beam. The polarization of the beam, and not its intensity, carries the information. The new methodology allows for the creation of multiple-input-multiple-output processors that implement, by itself, any Boolean function, such as specialized or non-specialized microprocessors. Three all-optical architectures are presented: orthoparallel optical logic architecture for all known and unknown binary gates, singlebranch architecture for only XOR and XNOR gates, and the railroad (RR) architecture for polarization optical processors (POP). All the control inputs are applied simultaneously leading to a single time lag which leads to a very-fast and glitch-immune POP. A simple and easy-to-follow step-by-step algorithm is provided for the POP, and design reduction methodologies are briefly discussed. The algorithm lends itself systematically to software programming and computer-assisted design. As examples, designs of all binary gates, multiple

  10. Balancing Eggs

    ERIC Educational Resources Information Center

    Mills, Allan

    2014-01-01

    Theory predicts that an egg-shaped body should rest in stable equilibrium when on its side, balance vertically in metastable equilibrium on its broad end and be completely unstable on its narrow end. A homogeneous solid egg made from wood, clay or plastic behaves in this way, but a real egg will not stand on either end. It is shown that this…

  11. Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne.

    PubMed

    Zhang, Shangjian; Wang, Heng; Zou, Xinhai; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-06-15

    An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

  12. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  13. Michelson interferometer vibrometer using self-correcting synthetic-heterodyne demodulation.

    PubMed

    Connelly, Michael J; Galeti, José Henrique; Kitano, Cláudio

    2015-06-20

    Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is a Michelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.

  14. Composite film polarizer based on the oriented assembly of electrospun nanofibers

    NASA Astrophysics Data System (ADS)

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  15. Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides.

    PubMed

    Dai, Daoxin; Wang, Zhi; Julian, Nick; Bowers, John E

    2010-12-20

    A new way to make broadband polarizers on silicon-on-insulator (SOI) waveguides is proposed, analyzed and characterized. The characteristics of the eigenmodes in a shallowly-etched SOI ridge optical waveguide are analyzed by using a full-vectorial finite-different method (FV-FDM) mode solver. The theoretical calculation shows that the loss of TE fundamental mode could be made very low while at the same time the TM fundamental mode has very large leakage loss, which is strongly dependent on the trench width. The leakage loss of the TM fundamental mode changes quasi-periodically as the trench width w(tr) varies. The formula of the period ∆w(tr) is given. By utilizing the huge polarization dependent loss of this kind of waveguide, a compact and simple optical polarizer based on a straight waveguide was demonstrated. The polarizer is fabricated on a 700 nm-thick SOI wafer and then characterized by using a free-space optical system. The measured extinction ratio is as high as 25 dB over a 100 nm wavelength range for a 1 mm-long polarizer.

  16. Composite film polarizer based on the oriented assembly of electrospun nanofibers.

    PubMed

    Hu, Zhongliang; Ma, Zhijun; Peng, Mingying; He, Xin; Zhang, Hang; Li, Yang; Qiu, Jianrong

    2016-04-01

    Polarizers are widely applied in antiglare glasses, planner displays, photography filters and optical communications, etc. In this investigation, we propose a new strategy for the preparation of a flexible film polarizer based on the electrospinning technique. An aligned assembly of polyvinyl acetate (PVA) nanofibers was electrospun and collected by a fast-rotating drum, then soaked in polymethyl methacrylate (PMMA) solution and dried thoroughly to obtain a transparent PVA-PMMA composite film polarizer. The morphology, structure and optical performance of the PVA nanofibers and the film polarizers were characterized with a scanning electron microscope, UV-vis-IR spectrometer and polarized Raman spectra, etc. The PVA-PMMA film polarizer demonstrated efficient polarizing activity toward visible and near-infrared light, while keeping fair transparency in the range of 400-1400 nm. Due to the protection from the hydrophobic PMMA matrix, the PVA-PMMA film polarizers show high moisture resistance, making it applicable in a humid environment. Considering the scalability and versatility of the strategy employed here, the PVA-PMMA film polarizer prepared could replace the conventional film polarizers in a wide range of applications.

  17. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  18. Polarization-based optical imaging and processing techniques with application to the cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Gang L.; Li, Yanfang; Cameron, Brent D.

    2002-06-01

    In this investigation, a polarization-based imaging system is developed and described that measures the two-dimensional effective backscattering Mueller matrix of a sample in near real-time. As is well known, a Mueller matrix can provide considerable information on the makeup and optical characteristics of a sample and also directly describes how the sample transforms an incident light beam. The ability to measure the two-dimensional Mueller matrix of a biological sample, therefore, can provide considerable information on the sample composition as well as the potential to reveal significant structural information that normally would not be visible through standard imaging techniques. Additional information can also be obtained through the application of image-processing, decomposition, and reconstruction techniques that operate directly on the 2D Mueller matrix. Using the developed system, it is shown how the induction of internal strain within the sample coupled with image reconstruction and decomposition techniques can further improve image contrast and aid in the detection of boundaries between tissues of different biomechanical and structural properties. The studies presented were performed with both rat tissue and a melanoma-based tissue culture. The results demonstrate how these techniques could provide information that may be of diagnostic value in the physical detection of malignant lesion boundaries.

  19. Conceptual design and applications of HgCdTe infrared photodiodes for heterodyne systems

    NASA Technical Reports Server (NTRS)

    Sirieix, M. B.; Hofheimer, H.

    1980-01-01

    The significance of HgCdTe photodiodes are discussed relative to their existance in heterodyne detection systems operating in the 9 to 11 micrometer CO2 laser wavelength region. Their successful fabrication as well as the physical properties of the materials are described. The implementation of controlled industrial processes are reported with emphasis on the yield of predictable and repeatable detector characteristics to the discriminating systems, demands for high cutoff frequencies, quantum efficiency, and reliability. The most salient production steps and diode characteristics are presented. Measured results from production units are also given.

  20. A network of heterodyne laser interferometers for monitoring and control of large ring-lasers

    NASA Astrophysics Data System (ADS)

    Donazzan, Alberto; Naletto, Giampiero; Pelizzo, Maria G.; Cuccato, Davide; Beghi, Alessandro; Ortolan, Antonello; Belfi, Jacopo; Bosi, Filippo; Simonelli, Andreino; Beverini, Nicolò; Carelli, Giorgio; Maccioni, Enrico; Santagata, Rosa; Porzio, Alberto; Tartaglia, Angelo; Di Virgilio, Angela

    2016-08-01

    The sensitivity achieved by large ring-laser gyroscopes will make it possible to detect faint relativistic effects related to the rotation of the Earth's mass. This task requires a strict control of the ring cavity geometry (shape and orientation), which can be performed by a novel network of portable heterodyne interferometers, capable of measuring the absolute distance betweeen two retro-reflectors with a nominal accuracy better than 1nm. First steps have been taken towards the realization of this device and a starting prototype of distance gauge is under development and test.

  1. A 16-channel heterodyne electron cyclotron emission radiometer on J-TEXT.

    PubMed

    Yang, Z J; Phillips, P E; Zhuang, G; Xiao, J S; Huang, H; Rowan, W L; Wang, Z J

    2012-10-01

    To study equilibrium temporal dynamics and the mechanisms of magnetohydrodynamic instabilities, a 16-channel heterodyne electron cyclotron emission (ECE) radiometer has been developed to view the J-TEXT tokamak from the low field side. The ECE radiometer detects second-harmonic extraordinary mode in the frequency band of 94-125 GHz which corresponds to resonances from 1.8 T to 2.2 T. This ECE system consists of an ECE transmission line, a radio frequency unit, and two 8-channel intermediate frequency units. An in situ blackbody calibration source is applied for system calibration by comparison of hot and cold sources in order to provide an absolute temperature measurement.

  2. A 16-channel heterodyne electron cyclotron emission radiometer on J-TEXT

    SciTech Connect

    Yang, Z. J.; Zhuang, G.; Xiao, J. S.; Wang, Z. J.; Phillips, P. E.; Huang, H.; Rowan, W. L.

    2012-10-15

    To study equilibrium temporal dynamics and the mechanisms of magnetohydrodynamic instabilities, a 16-channel heterodyne electron cyclotron emission (ECE) radiometer has been developed to view the J-TEXT tokamak from the low field side. The ECE radiometer detects second-harmonic extraordinary mode in the frequency band of 94-125 GHz which corresponds to resonances from 1.8 T to 2.2 T. This ECE system consists of an ECE transmission line, a radio frequency unit, and two 8-channel intermediate frequency units. An in situ blackbody calibration source is applied for system calibration by comparison of hot and cold sources in order to provide an absolute temperature measurement.

  3. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    SciTech Connect

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  4. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique.

    PubMed

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-20

    In a modified Twyman-Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  5. High-accuracy thickness measurement of a transparent plate with the heterodyne central fringe identification technique

    NASA Astrophysics Data System (ADS)

    Wu, Wang-Tsung; Hsieh, Hung-Chih; Chang, Wei-Yao; Chen, Yen-Liang; Su, Der-Chin

    2011-07-01

    In a modified Twyman--Green interferometer, the optical path variation is measured with the heterodyne central fringe identification technique, as the light beam is focused by a displaced microscopic objective on the front/rear surface of the test transparent plate. The optical path length variation is then measured similarly after the test plate is removed. The geometrical thickness of the test plate can be calculated under the consideration of dispersion effect. This method has a wide measurable range and a high accuracy in the measurable range.

  6. A novel heterodyne displacement interferometer with no detectable periodic nonlinearity and optical resolution doubling

    SciTech Connect

    Joo, K; Ellis, J D; Buice, E S; Spronck, J W; Munnig Schmidt, R H

    2010-02-05

    This paper describes a novel heterodyne laser interferometer with no significant periodic nonlinearity for linear displacement measurements. Moreover, the optical configurations have the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Experimental results show no discernable periodic nonlinearity for a retro-reflector interferometer and plane mirror interferometer configurations with a noise level below 20 pm. The incoming laser beams of the interferometers are achieved by utilizing two single mode optical fibers. To determine the stability of the optical fiber couplers a fiber delivery prototype was also built and tested.

  7. Electronic frequency modulation for the increase of maximum measurable velocity in a heterodyne laser interferometer

    SciTech Connect

    Choi, Hyunseung; La, Jongpil; Park, Kyihwan

    2006-10-15

    A Zeeman-type He-Ne laser is frequently used as a heterodyne laser due to the simple construction and the small loss of a light. However, the low beat frequency of the Zeeman-type laser limits the maximum measurable velocity. In this article, an electronic frequency modulation algorithm is proposed to overcome the drawback of the low velocity measurement capability by increasing the beat frequency electronically. The brief analysis, the measurement scheme of the proposed algorithm, and the experimental results are presented. It is demonstrated that the proposed algorithm is proven to enhance the maximum measurable velocity.

  8. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents.

    PubMed

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-09-22

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based "nanobubble" contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size.

  9. Design and construction of a coelostat for heterodyne measurements at a wavelength of 10 micrometer

    NASA Astrophysics Data System (ADS)

    Strzoda, Rainer

    1987-01-01

    A heliostat was designed and built as carrier for a 10 micrometer IR heterodyne spectrometer for transmission measurements in the Earth atmosphere for investigations of solar oscillations. The high wavelength resolution allows the determination of line profiles and transition frequencies with high precision. A series of highly resolved ozone absorption spectra lead to the vertical ozone distribution, in good agreement with reference measurements. An improvement of the results is expected after a more precise determination of ozone spectroscopic data from laboratory measurements. The measurement uncertainties are still too high to determine a frequency spectrum of solar oscillations.

  10. Bandpass filtering of moving-object laser heterodyne-signals by finite apertures.

    PubMed

    Leader, J C

    1978-04-15

    Expressions for the frequency power spectral density and power spectral density SNR of a heterodyne detection system are derived assuming the signal radiation field results from a laser illuminated, moving rough object. The calculated spectral density is attenuated at large spectral spread frequencies (resulting from target rotation) by averaging of the high spatial frequency speckle pattern by the finite extent (aperture) of the local oscillator field. Optimum signal detection is obtained only at the Doppler shifted frequency. Spatial anisotropy of the radiation field mutual coherence function precludes exact calculations for arbitrary local oscillator field distributions.

  11. Remote Sensing of Methane in the Martian Atmosphere using Infrared Laser Heterodyne Radiometry

    NASA Astrophysics Data System (ADS)

    Passmore, R. L.; Bowles, N. E.; Weidmann, D.; Smith, K.

    2011-12-01

    In the last few years, several research teams have reported the detection of methane in the atmosphere of Mars, measuring 10 ppb on average [1][2][3]. The source of the methane is still unknown, but its identification is important as its presence could imply a biological origin. However, the detection limits of current instruments lie below the requirements for an unambiguous determination of concentration mapping and distribution. We investigate the viability of detecting methane in the Martian atmosphere via a high sensitivity remote sensing technique known as passive mid-infrared laser heterodyne radiometry. Although heterodyne spectroscopy is not a new idea, recent advancements in local oscillator technology [4] offer the possibility of significant instrument miniaturisation relevant to space deployment. We present our current work on a laser heterodyne radiometer (LHR) which involves adapting an existing 10 μm laser breadboard design, which was used with much success to study stratospheric ozone [5], to operate at 7.7 μm in order to target the ν4 fundamental band of methane. The core of the LHR consists of a distributed-feedback quantum cascade laser (QCL) operating in continuous-wave mode, which acts as the local oscillator. QCLs are ideal local oscillators for this type of instrument as they emit with high spectral purity and the necessary optical power in the mid-infrared region where characteristic spectral lines of interest lie. Atmospheric modelling of the Martian atmosphere and instrument sensitivity studies enabled simulated methane spectral features to be studied in detail, which subsequently determined the focus for experimental efforts in the laboratory. Testing of the LHR was initially carried out on small gas cells containing pure methane gas, but in order to test the instrument more rigorously for atmospheric studies a larger gas cell was constructed that approximates the Martian atmosphere in the laboratory. Trace quantities of methane were

  12. Atmospheric turbulence-induced signal fades on optical heterodyne communication links

    NASA Astrophysics Data System (ADS)

    Winick, K. A.

    1986-06-01

    The three basic atmospheric propagation effects, absorption, scattering, and turbulence, are reviewed. A simulation approach is then developed to determine signal fade probability distributions on heterodyne-detected satellite links which operate through naturally occurring atmospheric turbulence. The calculations are performed on both angle-tracked and nonangle-tracked downlinks, and on uplinks, with and without adaptive optics. Turbulence-induced degradations in communication performance are determined using signal fade probability distributions, and it is shown that the average signal fade can be a poor measure of the performance degradation.

  13. Space position measurement using long-path heterodyne interferometer with optical frequency comb.

    PubMed

    Wang, Xiaonan; Takahashi, Satoru; Takamasu, Kiyoshi; Matsumoto, Hirokazu

    2012-01-30

    A heterodyne interference system was developed for position measurement. A stabilized optical-frequency comb is used as the laser source. The preliminary experiment to measure a distance of 22.478 m shows a drift of 1.6 μm in 20 minutes after the temperature compensation. Comparison and frequency shift experiments have been done for a distance of about 7.493 m. The experimental results show that the drift is mainly caused by environmental condition changes and the vibration of the table and floor also has some effects. It was verified that the absolute distance measurement can be realized by fringe scanning and frequency-shifting methods.

  14. Comment on "Heterodyne Lidar Returns in the Turbulent Atmosphere: Performance Evaluation of Simulated Systems"

    NASA Technical Reports Server (NTRS)

    Frehlich, Rod; Kavaya, Michael J.

    2000-01-01

    The explanation for the difference between simulation and the zero-order theory for heterodyne lidar returns in a turbulent atmosphere proposed by Belmonte and Rye is incorrect. The theoretical expansion is not developed under a square- law-structure function approximation (random wedge atmosphere). Agreement between the simulations and the zero-order term of the theoretical expansion is produced for the limit of statistically independent paths (bi-static operation with large transmitter-receiver separation) when the simulations correctly include the large-scale gradients of the turbulent atmosphere.

  15. Imaging through obscurants with a heterodyne detection-based ladar system

    NASA Astrophysics Data System (ADS)

    Reibel, Randy R.; Roos, Peter A.; Kaylor, Brant M.; Berg, Trenton J.; Curry, James R.

    2014-06-01

    Bridger Photonics has been researching and developing a ladar system based on heterodyne detection for imaging through brownout and other DVEs. There are several advantages that an FMCW ladar system provides compared to direct detect pulsed time-of-flight systems including: 1) Higher average powers, 2) Single photon sensitive while remaining tolerant to strong return signals, 3) Doppler sensitivity for clutter removal, and 4) More flexible system for sensing during various stages of flight. In this paper, we provide a review of our sensor, discuss lessons learned during various DVE tests, and show our latest 3D imagery.

  16. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  17. Laser heterodyne interferometer for simultaneous measuring displacement and angle based on the Faraday effect.

    PubMed

    Zhang, Enzheng; Hao, Qun; Chen, Benyong; Yan, Liping; Liu, Yanna

    2014-10-20

    A laser heterodyne interferometer for simultaneous measuring displacement and angle based on the Faraday effect is proposed. The optical configuration of the proposed interferometer is designed and the mathematic model for measuring displacement and angle is established. The influences of the translational, lateral and rotational movements of the measuring reflector on displacement and angle measurement are analyzed in detail. The experimental setup based on the proposed interferometer was constructed and a series of experiments of angle comparison and simultaneous measuring displacement and angle were performed to verify the feasibility of the proposed interferometer for precision displacement and angle measurement.

  18. [Study on the Technology of the 4.4 μm Mid-Infrared Laser Heterodyne Spectrum].

    PubMed

    Tan, Tu; Cao, Zhen-song; Wang, Gui-shi; Wang, Lei; Liu, Kun; Huang, Yin-bo; Chen Wei-dong; Gao, Wei-ming

    2015-06-01

    In this paper, first time as our knowledge, we describe the development and performance evaluation of a 4.4 μm external cavity quantum cascade laser based laser heterodyne radiometer. Laser heterodyne spectroscopy is a high sensitive laser spectroscopy technique which offers the potential to develop a compact ground or satellite based radiometer for Earth observation and astronomy. An external cavity quantum cascade laser operating at 4. 4 μm, with output power up to 180 mW and narrow line width was used as a local oscillation. The external cavity quantum cascade laser offers wide spectral tuning range, it is tunable from 4.38 to 4.52 μm with model hop free and can be used for simultaneous detections of CO2, CO and N2 O. A blackbody was used as a signal radiation source. Development and fundamental theory of Laser heterodyne spectroscopy was described. The performance of the developed Laser heterodyne radiometer was evaluated by measuring of CO2 spectral at different pressures. Analyses results showed that a signal-to-noise ratio of 86 was achieved which was less than the theoretical value of 287. The spectral resolution of the developed Laser heterodyne spectroscopy is about 0.007 8 cm(-1) which could meet the requirement of high resolution spectroscopy measurement in the case of Doppler linewidth. The experiment showed that middle Infrared laser heterodyne spectroscopy system had high signal-to-noise ratio and spectral resolution, and had broad application prospect in high precision measurement of atmospheric greenhouse gas concentration and vertical profile.

  19. Balance (or Vestibular) Rehabilitation

    MedlinePlus

    ... the Public / Hearing and Balance Balance (or Vestibular) Rehabilitation Audiologic (hearing), balance, and medical diagnostic tests help ... whether you are a candidate for vestibular (balance) rehabilitation. Vestibular rehabilitation is an individualized balance retraining exercise ...

  20. Chirped pulse heterodyne for optimal beat note detection between a frequency comb and a continuous wave laser.

    PubMed

    Deschênes, Jean-Daniel; Genest, Jérôme

    2015-04-06

    Chirped pulse heterodyne is proposed to maximize the signal-to-noise ratio (SNR) when measuring the beat note between an optical frequency comb and a continuous wave (CW) laser. The noise model reveals that all the comb power within the largest possible detection bandwidth can be used to increase the SNR. The chirped comb/CW interference experiment is shown to be equivalent to CW/CW interference, using the comb's spectrally available power. The approach can also greatly alleviate dynamic range issues when detected pulsed heterodyne signals. A beat note SNR of 68.3 dB in a 100 kHz bandwidth is achieved.

  1. A broadband RF continuously variable time delay device. [using Bragg cell and optical heterodyne technology for signal processing

    NASA Technical Reports Server (NTRS)

    Freyre, F. W.

    1981-01-01

    A method for implementation of continuously variable time delay of broadband RF signals is described. The method uses Bragg Cell and optical heterodyne technology. The signal to be delayed is applied to the Bragg Cell acoustic transducer, and the delay time is the acoustic transit time from this transducer to the incident light beam. By translating the light beam, the delay is varied. Expressions describing the Bragg Cell diffraction, lens Fourier transformation, and the optical heterodyne processes are developed. Specifications for the variable delay including bandwidth, range of delay, and insertion loss are provided. Applications include radar signal processing, spread spectrum intercept, radar ECM, and adaptive array antenna processing.

  2. Coherent summation of spatially distorted laser Doppler signals by using a two-dimensional heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin P.; Killinger, Dennis K.

    1992-01-01

    Phase-sensitive coherent summation of individual heterodyne detector array signals was demonstrated for the enhanced detection of spatially distorted laser Doppler returns. With the use of a 2 x 2 heterodyne detector array, the phase and amplitude of a time-varying speckle pattern was detected, and the signal-to-noise ratio of the Doppler shift estimate was shown to be improved by a factor of 2, depending on the extent of spatial coherence loss. These results are shown to agree with a first-order analysis and indicate the advantage of coherent summation for both short-range laser Doppler velocimetry and long-range atmospheric coherent lidar.

  3. Khayyam: progress and prospects of coupling a spatial heterodyne spectrometer (SHS) to a Cassegrain telescope for optical interferometry

    NASA Astrophysics Data System (ADS)

    Hosseini, Sona; Harris, Walter

    2016-08-01

    In the temporal study of faint, extended sources at high resolving power, Spatial Heterodyne Spectrometer (SHS) can offer significant advantages about conventional dispersive grating spectrometers. We describe here a four-year continuous progress in Mt. Hamilton, Lick Observatory, toward development of a prototype reflective Spacial Heterodyne Spectrometer, Khayyam, instrument-telescope configuration to combine all of the capabilities necessary to obtain high resolving power visible band spectra of diffuse targets from small aperture on-axis telescopes where significant observing time can be obtained. We will discuss the design considerations going into this new system, installation, testing of the interferometer-telescope combination, the technical challenges and procedures moving forward.

  4. Wavelength shift tolerance of a heterodyne detection scheme for cost-efficient DWDM-PON / 60 GHz wireless integration

    NASA Astrophysics Data System (ADS)

    Medeiros, M. C. R.; Thakur, M. P.; Mikroulis, S.; Mitchell, J. E.

    2015-01-01

    Radio-over-fiber systems employing remote antenna units (RAUs) based on coherent optical heterodyne detection of two phase uncorrelated lasers and envelope detection have been recently demonstrated. By using two uncorrelated lasers, this system concept allows simple implementation that can additionally be improved, if thermally uncooled lasers are used. Although such asynchronous receiver design is mildly affected by the laser phase noise, it suffers from the wavelength drift that occurs between the uncooled laser sources. Also, there are performance penalties due to high laser line-width when complex modulation formats are used for transmission. In this work, we analyze the performance of heterodyne based optical receivers, using OOK and multilevel modulation.

  5. Digital balanced detection for fast optical computerized tomography

    NASA Astrophysics Data System (ADS)

    Hafiz, Rehan; Ozanyan, Krikor B.

    2006-10-01

    Analogue Balanced Photo-detection has found extensive usage in high- sensitivity small signal applications e.g. coherent heterodyne detection. It is particularly effective for laser intensity noise removal. Nevertheless, the high cost of the commercially available analogue systems makes them unsuitable for multi-channel applications, such as fast tomography. In this paper a flexible, scalable, inexpensive and compact solution for multi channel digital balanced detection is presented. The proposed system has two components: an analogue front-end, comprising a differential photodiode amplifier for minimizing the external interference noise, and a digital balanced noise remover. The latter component initially calculates a balancing factor (BF) from the average power ratio of the signal and reference photocurrents, measured with the object removed from the signal path. Three digital balancing algorithms (DBAx) are considered for subsequent processing. In DBA1, BF is directly used in real-time ratiometric calculations. In DBA2, the BF is adjusted in real time by monitoring the window-averaged power of the received photocurrents. In DBA3, first the baseline is removed using differentiation and then ratiometric detection is performed. Using the digital alternative only one measurement of the reference beam is necessary for single-source, multi-channel detection systems. The data from multiple channels are processed in parallel by pipelined hardware, configured as a state machine. The proposed system leads to a fast optical computerized tomography system using digital balanced detection.

  6. A heterodyne interferometer with periodic nonlinearities smaller than ±10 pm

    NASA Astrophysics Data System (ADS)

    Weichert, C.; Köchert, P.; Köning, R.; Flügge, J.; Andreas, B.; Kuetgens, U.; Yacoot, A.

    2012-09-01

    The PTB developed a new optical heterodyne interferometer in the context of the European joint research project ‘Nanotrace’. A new optical concept using plane-parallel plates and spatially separated input beams to minimize the periodic nonlinearities was realized. Furthermore, the interferometer has the resolution of a double-path interferometer, compensates for possible angle variations between the mirrors and the interferometer optics and offers a minimal path difference between the reference and the measurement arm. Additionally, a new heterodyne phase evaluation based on an analogue to digital converter board with embedded field programmable gate arrays was developed, providing a high-resolving capability in the single-digit picometre range. The nonlinearities were characterized by a comparison with an x-ray interferometer, over a measurement range of 2.2 periods of the optical interferometer. Assuming an error-free x-ray interferometer, the nonlinearities are considered to be the deviation of the measured displacement from a best-fit line. For the proposed interferometer, nonlinearities smaller than ±10 pm were observed without any quadrature fringe correction.

  7. Monolithically integrated heterodyne optical phase-lock loop with RF XOR phase detector.

    PubMed

    Steed, Robert J; Pozzi, Francesca; Fice, Martyn J; Renaud, Cyril C; Rogers, David C; Lealman, Ian F; Moodie, David G; Cannard, Paul J; Lynch, Colm; Johnston, Lilianne; Robertson, Michael J; Cronin, Richard; Pavlovic, Leon; Naglic, Luka; Vidmar, Matjaz; Seeds, Alwyn J

    2011-10-10

    We present results for an heterodyne optical phase-lock loop (OPLL), monolithically integrated on InP with external phase detector and loop filter, which phase locks the integrated laser to an external source, for offset frequencies tuneable between 0.6 GHz and 6.1 GHz. The integrated semiconductor laser emits at 1553 nm with 1.1 MHz linewidth, while the external laser has a linewidth less than 150 kHz. To achieve high quality phase locking with lasers of these linewidths, the loop delay has been made less than 1.8 ns. Monolithic integration reduces the optical path delay between the laser and photodiode to less than 20 ps. The electronic part of the OPLL was implemented using a custom-designed feedback circuit with a propagation delay of ~1 ns and an open-loop bandwidth greater than 1 GHz. The heterodyne signal between the locked slave laser and master laser has phase noise below -90 dBc/Hz for frequency offsets greater than 20 kHz and a phase error variance in 10 GHz bandwidth of 0.04 rad2.

  8. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    NASA Astrophysics Data System (ADS)

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-03-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

  9. Spectral line inversion for sounding of stratospheric minor constituents by infrared heterodyne technique from balloon altitudes

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Shapiro, G. L.; Allario, F.; Alvarez, J. M.

    1981-01-01

    A combination of two different techniques for the inversion of infrared laser heterodyne measurements of tenuous gases in the stratosphere by solar occulation is presented which incorporates the advantages of each technique. An experimental approach and inversion technique are developed which optimize the retrieval of concentration profiles by incorporating the onion peel collection scheme into the spectral inversion technique. A description of an infrared heterodyne spectrometer and the mode of observations for solar occulation measurement is presented, and the results of inversions of some synthetic ClO spectral lines corresponding to solar occulation limb-scans of the stratosphere are examined. A comparison between the new techniques and one of the current techniques indicates that considerable improvement in the accuracy of the retrieved profiles can be achieved. It is found that noise affects the accuracy of both techniques but not in a straightforward manner since there is interaction between the noise level, noise propagation through inversion, and the number of scans leading to an optimum retrieval.

  10. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  11. Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1997-01-01

    This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.

  12. Detection of nonlinear distortions in the vibration of acoustically driven mechanical systems using heterodyne vibrometry

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.; Pintelon, R.

    2008-06-01

    Recently, a measurement set-up was presented to detect small nonlinear distortions in the vibration of acoustically driven mechanical systems. A speaker generates a specially designed multisine excitation signal that drives the vibration of a test object. The generated sound pressure is measured with a probe microphone in front of the test object, and an heterodyne vibrometer measures the corresponding vibration. Due to the high degree of linearity of the heterodyne technique, very small nonlinear distortions can be detected. In this paper the set-up is used to verify whether small nonlinear distortions are present in the vibration of the middle ear system, which is classically considered to be a completely linear system. In vitro measurements on the right ear of an adult male gerbil proved that nonlinear distortions are present in the vibration of the tympanic membrane. Similar results were seen in measurements on the left ear. The influence of post-mortem changes on the nonlinear behaviour of the middle ear was verified in a number of successive measurements. These indicated that the nonlinear behaviour of the middle ear decreases in time.

  13. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers.

    PubMed

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-03-17

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

  14. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  15. Performance limitations of a free-space optical communication satellite network owing to vibrations: heterodyne detection.

    PubMed

    Arnon, S; Rotman, S R; Kopeika, N S

    1998-09-20

    Free-space optical communication between satellites in a distributed network can permit high data rates of communication between different places on Earth. To establish optical communication between any two satellites requires that the line of sight of their optics be aligned during the entire communication time. Because of the large distance between the satellites and the alignment accuracy required, the pointing from one satellite to another is complicated because of vibrations of the pointing system caused by two fundamental stochastic mechanisms: tracking noise created by the electro-optic tracker and vibrations derived from mechanical components. Vibration of the transmitter beam in the receiver plane causes a decrease in the received optical power. Vibrations of the receiver telescope relative to the received beam decrease the heterodyne mixing efficiency. These two factors increase the bit-error rate of a coherent detection network. We derive simple mathematical models of the network bit-error rate versus the system parameters and the transmitter and receiver vibration statistics. An example of a practical optical heterodyne free-space satellite optical communication network is presented. From this research it is clear that even low-amplitude vibration of the satellite-pointing systems dramatically decreases network performance.

  16. Femtosecond Heterodyne Transient Grating Spectroscopic Studies of Intramolecular Charge Transfer Character of Peridinin and Peridinin Analogs

    NASA Astrophysics Data System (ADS)

    Bishop, Michael; Khosravi, Soroush; Obaid, Razib; Whitelock, Hope; Carroll, Ann Marie; Lafountain, Amy; Frank, Harry; Beck, Warren; Gibson, George; Berrah, Nora

    2016-05-01

    The peridinin chlorophyll-a protein is a light harvesting complex found in several species of dinoflagellates. Peridinin absorbs strongly in the mid-visible spectral region and, despite the lack of a strong permanent dipole moment in its lowest energy excited state, is able to transfer excitation energy quickly and efficiently to chlorophyll-a. It is believed that the high efficiency arises from the development of intramolecular charge-transfer (ICT) character upon photoexcitation. Recently, heterodyne transient grating spectroscopy has been used to study the ultrafast (<50 fs) dynamics of β carotene and peridinin. The studies show evidence for a structurally displaced intermediate in both cases and strong ICT character in the case of peridinin, but up to now the work has not provided appropriate control experiments. The present experiments examine peridinin and two peridinin analogs, S1-peridinin and S2-peridinin. S1-peridinin is reported to have greatly diminished ICT character, and S2-peridinin is reported to have little-or-no ICT character. Heterodyne transient grating data will be presented and provide a more unambiguous characterization spectral and kinetic properties associated with the peridinin ICT state. Funded by the DoE-BES, Grant No. DE-SC0012376.

  17. Development of a P-I-N HgCdTe photomixer for laser heterodyne spectrometry

    NASA Technical Reports Server (NTRS)

    Bratt, Peter R.

    1987-01-01

    An improved HgCdTe photomixer technology was demonstrated employing a p-i-n photodiode structure. The i-region was near intrinsic n-type HgCdTe; the n-region was formed by B+ ion implantation; and the p-region was formed either by a shallow Au diffusion or by a Pt Schottky barrier. Experimental devices in a back-side illuminated mesa diode configuration were fabricated, tested, and delivered. The best photomixer was packaged in a 24-hour LN2 dewar along with a cooled GaAs FET preamplifier. Testing was performed by mixing black-body radiation with a CO2 laser beam and measuring the IF signal, noise, and signal-to-noise ratio in the GHz frequency range. Signal bandwidth for this photomixer was 1.3 GHz. The heterodyne NEP was 4.4 x 10 to the -20 W/Hz out to 1 GHz increasing to 8.6 x 10 to the -10 W/Hz at 2 GHz. Other photomixers delivered on this program had heterodyne NEPs at 1 GHz ranging from 8 x 10 to the -20 to 4.4 x 10 to the -19 W/Hz and NEP bandwidths from 2 to 4 GHz.

  18. First Supra-THz Heterodyne Array Receivers for Astronomy With the SOFIA Observatory

    NASA Astrophysics Data System (ADS)

    Risacher, Christophe; Gusten, Rolf; Stutzki, Jurgen; Hubers, Heinz-Wilhelm; Buchel, Denis; Graf, Urs U.; Heyminck, Stefan; Honingh, Cornelia E.; Jacobs, Karl; Klein, Bernd; Klein, Thomas; Leinz, Christian; Putz, Patrick; Reyes, Nicolas; Ricken, Oliver; Wunsch, Hans-Joachim; Fusco, Paul; Rosner, Stefan

    2016-03-01

    We present the upGREAT THz heterodyne arrays for far-infrared astronomy. The Low Frequency Array (LFA) is designed to cover the 1.9-2.5 THz range using 2x7-pixel waveguide-based HEB mixer arrays in a dual polarization configuration. The High Frequency Array (HFA) will perform observations of the [OI] line at ~4.745 THz using a 7-pixel waveguide-based HEB mixer array. This paper describes the common design for both arrays, cooled to 4.5 K using closed- cycle pulse tube technology. We then show the laboratory and telescope characterization of the first array with its 14 pixels (LFA), which culminated in the successful commissioning in May 2015 aboard the SOFIA airborne observatory observing the [CII] fine structure transition at 1.905 THz. This is the first successful demonstration of astronomical observations with a heterodyne focal plane array above 1 THz and is also the first time high- power closed-cycle coolers for temperatures below 4.5 K are operated on an airborne platform.

  19. Laser Heterodyne Radiometer for Sensitive Detection of CO2 and CH4

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Miller, J. Houston

    2011-01-01

    We propose to develop an inexpensive, miniaturized, passive laser heterodyne radiometer (LHR) using commercially available telecommunications laser components to measure two significant carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). This instrument would operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach that supports the Decadal Survey. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In a laser heterodyne radiometer, the weak input signal is light that has undergone absorption by a trace gas. The local oscillator is a laser at a near-by frequency - in this case a low-cost distributed feedback (DFB) telecommunications laser. These two light waves are superimposed in either a beamsplitter or in a fiber coupler (as is the case in this design). The signals are mixed in the detector, and the RF beat frequency is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. A schematic of the progression of the LHR development project is shown in the figure below. At the center (within the dashed line), light from the local oscillator is superimposed upon light that has undergone absorption by a trace gas, in a single mode

  20. Shaft balancing

    DOEpatents

    Irwin, John A.

    1979-01-01

    A gas turbine engine has an internal drive shaft including one end connected to a driven load and an opposite end connected to a turbine wheel and wherein the shaft has an in situ adjustable balance system near the critical center of a bearing span for the shaft including two 360.degree. rings piloted on the outer diameter of the shaft at a point accessible through an internal engine panel; each of the rings has a small amount of material removed from its periphery whereby both of the rings are precisely unbalanced an equivalent amount; the rings are locked circumferentially together by radial serrations thereon; numbered tangs on the outside diameter of each ring identify the circumferential location of unbalance once the rings are locked together; an aft ring of the pair of rings has a spline on its inside diameter that mates with a like spline on the shaft to lock the entire assembly together.

  1. Measuring the thermal expansion coefficient of the carbon fiber optical tube by heterodyne laser interferometry

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; He, Wenjun; Zhang, Lei; Zhao, Xuan; Tian, Yuqi

    2016-11-01

    In This paper, we present an experimental design of measuring thermal expansion coefficient of the carbon fiber optical tube based on the heterodyne laser interferometry. In the course of the experiment, the error caused by the temperature changes of the external environment was considered, and the compensation is carried out. The data of the experiment was recorded and analyzed. The curve of the thermal expansion coefficient of the carbon fiber optical tube was close. The measurement of the thermal expansion coefficient was finished within a small range of temperature changes. The thermal expansion coefficient of the carbon fiber optical tube was 6 0.78 x 10-5m/ ° C - × , which was consistent with the experience value. Athermalization for the supporting structure of the Cassette optical system was designed according to the results of the experiment.

  2. Development of long wavelength semiconductor diode lasers near 28 microns for use in infrared heterodyne spectrometers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.

    1984-01-01

    The development of tunable diode lasers operating in the 28 micrometers spectral region for use in infrared heterodyne spectrometers is reported. A process capable of yielding lasers emitting 500 micron W of multimode power, 112 micron W in a true single mode and true single mode operation at laser currents of up to 35% above threshold was developed. Results were obtained from narrow mesastripe (20 micrometer wide) short cavity (120 micrometer length) laser configurations. Six stripe geometry lasers, with a variety of cavity widths and lengths were delivered. The techniques to fabricate such devices was obtained and the long term reliability of such lasers by reproducible electrical and optical output characteristics fabrication from lasers are demonstrated.

  3. MASTER: A Triple Heterodyne Receiver for Astronomy in the Millimetre and Submillimetre Domain

    NASA Astrophysics Data System (ADS)

    Battistelli, E.; Zannoni, M.; Boella, G.; Gervasi, M.; Passerini, A.; Sironi, G.; Andreone, D.; Brunetti, L.; Lacquaniti, V.; Maggi, S.; Steni, R.; Natale, E.; Thorpe, J. R.

    A progress report of the MASTER project is presented here. MASTER is a system of three heterodyne receivers based on SIS (superconductor-insulator-superconductor) tunnel junction mixers. In our instrument these mixers will allow direct down-conversion from 94, 225, and 345 to 1.5GHz, the IF where the signal will be detected. This instrument, coupled to a 2-4m telescope like the one proposed for the DOME C base in Antarctica and in conjunction with an Acusto Optical Spectrometer, can be used to detect emission lines associated with molecular clouds in the interstellar medium. The current status of a 94GHz receiver, the prototype of MASTER, will be presented too. The study of the optical coupling between the receiver and MITO telescope in the Italian Alps will also be described.

  4. Highly integrated optical heterodyne phase-locked loop with phase/frequency detection.

    PubMed

    Lu, Mingzhi; Park, Hyunchul; Bloch, Eli; Sivananthan, Abirami; Bhardwaj, Ashish; Griffith, Zach; Johansson, Leif A; Rodwell, Mark J; Coldren, Larry A

    2012-04-23

    A highly-integrated optical phase-locked loop with a phase/frequency detector and a single-sideband mixer (SSBM) has been proposed and demonstrated for the first time. A photonic integrated circuit (PIC) has been designed, fabricated and tested, together with an electronic IC (EIC). The PIC integrates a widely-tunable sampled-grating distributed-Bragg-reflector laser, an optical 90 degree hybrid and four high-speed photodetectors on the InGaAsP/InP platform. The EIC adds a single-sideband mixer, and a digital phase/frequency detector, to provide single-sideband heterodyne locking from -9 GHz to 7.5 GHz. The loop bandwith is 400 MHz.

  5. Design and simulated performance of a CARS spectrometer for dynamic temperature measurements using electronic heterodyning

    NASA Technical Reports Server (NTRS)

    Deen, M. Jamal; Thompson, E. D.

    1989-01-01

    A new design for generating CARS signals and for the detection and processing of these signals is presented and evaluated. The design is based on electronic heterodyning of the CARS spectrum of nitrogen at two selected narrowband frequencies, ratioing the resulting signal strengths, and comparing this ratio with a theoretically derived temperature scale. A reference cell is incorporated into the design for system calibration and for accurate temperature measurements. The spectrometer is found capable of measuring temperature in the submillisecond time scale with an accuracy of 10 percent in the 1000-2000 K temperature range. A typical result using the Hg(x)Cd(1-x)Te photomixer for T = 1500 K, Delta T = 50 K is a SNR of 21 dB and a data collection rate of 300 Hz.

  6. A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions

    NASA Technical Reports Server (NTRS)

    DeLange, Gert; Jacobson, Brian R.; Hu, Qing

    1996-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  7. Thermal phase lag heterodyne infrared imaging for current tracking in radio frequency integrated circuits

    NASA Astrophysics Data System (ADS)

    Perpiñà, X.; León, J.; Altet, J.; Vellvehi, M.; Reverter, F.; Barajas, E.; Jordà, X.

    2017-02-01

    With thermal phase lag measurements, current paths are tracked in a Class A radio frequency (RF) power amplifier at 2 GHz. The amplifier is heterodynally driven at 440 MHz and 2 GHz, and its resulting thermal field was inspected, respectively, at 1013 and 113 Hz with an infrared lock-in thermography system. The phase lag maps evidence with a higher sensitivity than thermal amplitude measurements an input-output loop due to a substrate capacitive coupling. This limits the amplifier's performance, raising the power consumption in certain components. Other information relative to local power consumption and amplifier operation is also inferred. This approach allows the local non-invasive testing of integrated systems regardless of their operating frequency.

  8. Development of a Multi-axis Heterodyne Interferometry system for LISA

    NASA Astrophysics Data System (ADS)

    Fulda, Paul; Thorpe, James

    2017-01-01

    Precision laser interferometric readout of test mass position and angle is one of the key technologies enabling a space-based gravitational wave mission such as LISA. At Goddard Space Flight Center we are developing a test-bed to demonstrate a Multi-Axis Heterodyne Interferometry (MAHI) system capable of meeting the measurement, range of motion and noise requirements for the short-arm measurement (test-mass to spacecraft) of LISA. Crucially, this system will use an optical design, photoreceivers and phase measurement systems which are also suitable for the long-arm measurement (spacecraft to spacecraft), thus reducing mission complexity. We will report on the progress of the MAHI system development, including preliminary measurements from a table-top prototype MAHI system.

  9. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  10. Improving Spectral Results Using Row-by-Row Fourier Transform of Spatial Heterodyne Raman Spectrometer Interferogram.

    PubMed

    Barnett, Patrick D; Strange, K Alicia; Angel, S Michael

    2016-12-12

    This work describes a method of applying the Fourier transform to the two-dimensional Fizeau fringe patterns generated by the spatial heterodyne Raman spectrometer (SHRS), a dispersive interferometer, to correct the effects of certain types of optical alignment errors. In the SHRS, certain types of optical misalignments result in wavelength-dependent and wavelength-independent rotations of the fringe pattern on the detector. We describe here a simple correction technique that can be used in post-processing, by applying the Fourier transform in a row-by-row manner. This allows the user to be more forgiving of fringe alignment and allows for a reduction in the mechanical complexity of the SHRS.

  11. The effect of patch potentials in Casimir force measurements determined by heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Somers, David; Munday, Jeremy N.

    2015-06-01

    Measurements of the Casimir force require the elimination of the electrostatic force between the surfaces. However, due to electrostatic patch potentials, the voltage required to minimize the total force may not be sufficient to completely nullify the electrostatic interaction. Thus, these surface potential variations cause an additional force, which can obscure the Casimir force signal. In this paper, we inspect the spatially varying surface potential of e-beamed, sputtered, sputtered and annealed, and template stripped gold surfaces with Heterodyne amplitude modulated Kelvin probe force microscopy (HAM-KPFM). It is demonstrated that HAM-KPFM improves the spatial resolution of surface potential measurements compared to amplitude modulated Kelvin probe force microscopy. We find that patch potentials vary depending on sample preparation, and that the calculated pressure can be similar to the pressure difference between Casimir force calculations employing the plasma and Drude models.

  12. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer.

    PubMed

    Hechenblaikner, Gerald

    2010-09-01

    We present an analytical derivation of the coupling parameter relating the angle between two interfering beams in a heterodyne interferometer to the differential phase signals detected by a quadrant photodiode. This technique, also referred to as differential wavefront sensing, is commonly used in space-based gravitational wave detectors to determine the attitude of a test mass in one of the interferometer arms from the quadrant diode signals. Successive approximations to the analytical expression are made to simplify the investigation of parameter dependencies. Motivated by our findings, we propose what we believe to be a new measurement method to accurately determine the absolute wavefront curvature of a single measurement beam. We also investigate the change in the coupling parameter when the interferometer "test mirror" is moved from its nominal position, an effect which mediates the coupling of mirror displacement noise into differential phase measurements.

  13. A laser interferometer for measuring straightness and its position based on heterodyne interferometry

    SciTech Connect

    Chen Benyong; Zhang Enzheng; Yan Liping; Li Chaorong; Tang Wuhua; Feng Qibo

    2009-11-15

    Not only the magnitude but also the position of straightness errors are of concern to users. However, current laser interferometers used for measuring straightness seldom give the relative position of the straightness error. To solve this problem, a laser interferometer for measuring straightness and its position based on heterodyne interferometry is proposed. The optical configuration of the interferometer is designed and the measurement principle is analyzed theoretically. Two experiments were carried out. The first experiment verifies the validity and repeatability of the interferometer by measuring a linear stage. Also, the second one for measuring a flexure-hinge stage demonstrates that the interferometer is capable of nanometer measurement accuracy. These results show that this interferometer has advantages of simultaneously measuring straightness error and the relative position with high precision, and a compact structure.

  14. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb.

    PubMed

    Wu, Xuejian; Wei, Haoyun; Zhang, Hongyuan; Ren, Libing; Li, Yan; Zhang, Jitao

    2013-04-01

    We present a frequency-sweeping heterodyne interferometer to measure an absolute distance based on a frequency-tunable diode laser calibrated by an optical frequency comb (OFC) and an interferometric phase measurement system. The laser frequency-sweeping process is calibrated by the OFC within a range of 200 GHz and an accuracy of 1.3 kHz, which brings about a precise temporal synthetic wavelength of 1.499 mm. The interferometric phase measurement system consisting of the analog signal processing circuit and the digital phase meter achieves a phase difference resolution better than 0.1 deg. As the laser frequency is sweeping, the absolute distance can be determined by measuring the phase difference variation of the interference signals. In the laboratory condition, our experimental scheme realizes micrometer accuracy over meter distance.

  15. Imaging system for low-density plasma by heterodyne interferometer with fan beam microwave

    NASA Astrophysics Data System (ADS)

    Ito, H.; Yugami, N.; Nishida, Y.; Sakai, W.

    2002-12-01

    A microwave imaging system based on a heterodyne interferometer has been developed to measure the spatial distribution of the plasma density without introducing any direct disturbance to the plasma by employing a diode array scattering technique. The imaging system with the use of a fan beam microwave for a radar system demonstrates the principle of the technique by placing finite-size dielectric phantoms instead of the plasma between the horn antenna and the diode antenna array. Experimental results show that very good image of the objects can be reconstructed and the system is equivalent to popularly known multichannel imaging system. As a result, it is possible to make simple, low-cost, and compact microwave interferometer for measuring the spatial distribution of the plasma density.

  16. Heterodyne spectrophotometry of ozone in the 9.6-micron band using a tunable diode laser

    NASA Technical Reports Server (NTRS)

    Mcelroy, C. T.; Goldman, A.; Fogal, P. F.; Murcray, D. G.

    1990-01-01

    Tunable diode laser heterodyne spectrophotometry (TDLHS) has been used to make extremely high resolution (0.0003/cm) solar spectra in the 9.6-micron ozone band. Observations have shown that a signal-to-noise ratio of 120:1 (about 30 percent of theoretical) for an integration time of 1/8 s can be achieved at a resolution of 0.0013 wave numbers. The spectral data have been inverted to yield a total column amount of ozone, in good agreement with that measured at the nearby NOAA ozone monitoring facility in Boulder, Colorado. Line positions for several ozone lines in the spectral region 996-997/cm are reported. Recent improvements have produced a signal-to-noise ratio of 95:1 (about 40 percent of theoretical) at 0.0003/cm and extended the range of wavelengths which can be observed.

  17. Multichannel optical-fibre heterodyne interferometer for ultrasound detection of partial discharges in power transformers

    NASA Astrophysics Data System (ADS)

    Posada, J. E.; Garcia-Souto, J. A.; Rubio-Serrano, J.

    2013-09-01

    A multichannel interferometric system is proposed for the ultrasonic detection of partial discharges using intrinsic optical fibre sensors that may be immersed in oil. It is based on a heterodyne scheme which drives at least four sensor heads in order to localize the source of the acoustic emissions. Proper design of the sensing head improves its sensitivity through magnification and reaches a compact encapsulated probe able to be installed within power transformers. The optoelectronic implementation and the experimental tests are presented to optimize the resolution (4 channels—4 mrad). In addition, the results of ultrasound measurements at 150 kHz with an optical fibre sensor immersed in water in an acoustic test bench are shown, in which a resolution better than 10 Pa was obtained. Finally, the set-up for three-phase power transformers is demonstrated and characterized to detect and locate the source of acoustic emissions.

  18. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kazakov, A.; Voronov, B. M.; Goltsman, G. N.

    2016-12-01

    Here, we report on successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the Local Oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth was limited by the spectral band of single-photon response pulse of the detector, which is proportional to the detector size. We observed gain bandwidth of 65 MHz and 140 MHz for 7x7 um^2 and 3x3 um^2 devices respectively. Tiny amount of the required Local Oscillator power and wide gain and noise bandwidths along with the needless of any Low Noise Amplification opens possibility for a photon counting heterodyne-born megapixel array development.

  19. A W-Band Heterodyne FMCW Radar Based on TX IQ-Modulation

    NASA Astrophysics Data System (ADS)

    Feger, Reinhard; Wagner, Christoph; Stelzer, Andreas

    2011-08-01

    In this paper a method to realize a heterodyne frequency-modulated continuous-wave (FMCW) radar is presented. The proposed principle relies on the use of an inphase/quadrature (IQ)-modulator as single-sideband-mixer to shift the frequency of the FMCW-output away from dc. Since in any IQ-modulator phase and amplitude imbalances occur, the effect of these imbalances will be investigated by deriving the corresponding signal model. Based on this analysis, a method to compensate the imbalances by a predistortion of the modulation signal will be derived. The presented method does not require special test signals or additional hardware, but relies on a standard FMCW measurement onto a calibration target. A prototype radar system was built and used in test measurements to verify the proposed principle. The measurement results show that a suppression of unwanted signal components caused by IQ-imbalances better than 45 dB is achievable.

  20. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  1. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  2. Laser heterodyne interferometric signal processing method based on rising edge locking with high frequency clock signal.

    PubMed

    Zhang, Enzheng; Chen, Benyong; Yan, Liping; Yang, Tao; Hao, Qun; Dong, Wenjun; Li, Chaorong

    2013-02-25

    A novel phase measurement method composed of the rising-edge locked signal processing and the digital frequency mixing is proposed for laser heterodyne interferometer. The rising-edge locked signal processing, which employs a high frequency clock signal to lock the rising-edges of the reference and measurement signals, not only can improve the steepness of the rising-edge, but also can eliminate the error counting caused by multi-rising-edge phenomenon in fringe counting. The digital frequency mixing is realized by mixing the digital interference signal with a digital base signal that is different from conventional frequency mixing with analogue signals. These signal processing can improve the measurement accuracy and enhance anti-interference and measurement stability. The principle and implementation of the method are described in detail. An experimental setup was constructed and a series of experiments verified the feasibility of the method in large displacement measurement with high speed and nanometer resolution.

  3. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device.

    PubMed

    Heywood, Sarah L; Glavin, Boris A; Beardsley, Ryan P; Akimov, Andrey V; Carr, Michael W; Norman, James; Norton, Philip C; Prime, Brian; Priestley, Nigel; Kent, Anthony J

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1-12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  4. Miniaturized Laser Heterodyne Radiometer for Measurements of CO2 in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Wilson, E. L.; Mclinden, M. L.; Miller, J. H.; Allan, G. R.; Lott, L. E.; Melroy, H. R.; Clarke, G. B.

    2013-01-01

    We have developed a low-cost, miniaturized laser heterodyne radiometer for highly sensitive measurements of carbon dioxide (CO2) in the atmospheric column. In this passive design, sunlight that has undergone absorption by CO2 in the atmosphere is collected and mixed with continuous wave laser light that is step-scanned across the absorption feature centered at 1,573.6 nm. The resulting radio frequency beat signal is collected as a function of laser wavelength, from which the total column mole fraction can be de-convolved. We are expanding this technique to include methane (CH4) and carbon monoxide (CO), and with minor modifications, this technique can be expanded to include species such as water vapor (H2O) and nitrous oxide (N2O).

  5. Remote sensing of atmospheric winds using speckleturbulence interaction, a CO(2) laser, and optical heterodyne detection.

    PubMed

    Holmes, J F; Amzajerdian, F; Gudimetla, R V; Hunt, J M

    1988-06-15

    Speckle-turbulence interaction can be utilized to measure the vector wind in a plane perpendicular to the line of sight from a laser transmitter to a target. A continuous wave source of around 1 W and operating at 10.6 microm, in conjunction with an optical heterodyne receiver, has been used to measure atmospheric winds along horizontal paths. A theoretical basis, the experimental apparatus, processing techniques, and experimental results are presented. The technique has been demonstrated for remote sensing of atmospheric winds along horizontal paths but also has potential for global remote sensing of atmospheric winds and for onboard wind shear detection systems for aircraft. The results show that rms accuracies of the order of 0.5 m/s are possible with averaging times as short as 2 s.

  6. Using Infrared Laser Heterodyne Radiometry to Search for Methane in the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Passmore, Richard; Bowles, Neil; Weidmann, Damien; Smith, Kevin

    2010-05-01

    Introduction Methane has been detected in the atmosphere of Mars by several research teams in the last few years. Ground-based observations [1][2] and space-based instruments (e.g. the Planetary Fourier Transform spectrometer on Mars Express [3]) have reported low levels of methane gas (approximately 10 ppb) in the Martian atmosphere. Methane detection is important as its presence could imply a biological origin, and Martian methane sources are still unknown. However, current methane concentration measurements are at instruments' lower limits of detection. The viability of remote sensing using infrared laser heterodyne radiometry (LHR) to detect methane in the Martian atmosphere is investigated. The LHR technique allows high spectral resolution (greater than 0.001 cm-1) measurements over a narrow spectral range (~10 cm-1) when a distributed feedback quantum cascade laser (QCL) is used as local oscillator. The advantages of such an instrument, including its compact lightweight design, over current remote sensing spectral instruments are reviewed. The Laser Heterodyne Radiometer Laser heterodyne radiometers have been used extensively, and with much success, for atmospheric studies such as work on stratospheric ozone [4], mainly because the ultrahigh spectral resolution of the instrument allows fully resolved narrow molecular absorption line-shapes, which contain information on vertical concentration profiles. It has been shown that a carefully selected specific high resolution micro-window provides as much vertical profile information as a medium resolution radiometer covering a broad spectral range [5]. In addition to the high spectral resolution, the LHR is also extremely compact and robust and so has a significant advantage when targeting specific trace species over larger instruments such as high-resolution Fourier Transform spectrometers. Quantum Cascade Laser as Local Oscillator At the heart of the current generation infrared LHR is the use of a Quantum Cascade

  7. Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Gill, John J.; Mehdi, Imran; Crawford, Timothy J.; Sergeev, Andrei V.; Mitin, Vladimir V.

    2012-01-01

    High-resolution submillimeter/terahertz spectroscopy is important for studying atmospheric and interstellar molecular gaseous species. It typically uses heterodyne receivers where an unknown (weak) signal is mixed with a strong signal from the local oscillator (LO) operating at a slightly different frequency. The non-linear mixer devices for this frequency range are unique and are not off-the-shelf commercial products. Three types of THz mixers are commonly used: Schottky diode, superconducting hot-electron bolometer (HEB), and superconductor-insulation-superconductor (SIS) junction. A HEB mixer based on the two-dimensional electron gas (2DEG) formed at the interface of two slightly dissimilar semiconductors was developed. This mixer can operate at temperatures between 100 and 300 K, and thus can be used with just passive radiative cooling available even on small spacecraft.

  8. Scanning laser differential-heterodyne interferometer for flying-height measurement.

    PubMed

    Ngoi, B K; Venkatakrishnan, K; Tan, B

    2000-02-01

    With conventional optical interferometry flying-height testing, a stationary measurement beam and a two-axis moving stage are used to measure slider-disk spacing at different points on the slider. Pitch angle or roll angle is calculated on the basis of the measurement results. We report on a scanning differential-heterodyne interferometer, which measures the continuous flying-height variation along the edge of a slider with two continuously scanning laser beams. Pitch angle or roll angle can be obtained directly from the scanning measurement. The system can also measure points individually to obtain the absolute flying height at different locations on the slider. Experiments were performed to demonstrate the concept of scanning measurement. The flying-height variation along the slider edge was measured by continuous scan and by point-to-point moving. The measurement results from continuous scan coincided with those of conventional methods.

  9. Spatial Frequency Heterodyne Imaging of Water Filled Multi-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Schunk, Francisco; Rand, Danielle; Rose-Petruck, Christoph

    2015-03-01

    Evaporation and condensation of water on multi-walled carbon nanotube (MWCNT) surfaces was monitored as a function of both temperature and time using x-ray Spatial Frequency Heterodyne Imaging (SFHI). SFHI is an imaging method that produces an absorption and scatter image from a single exposure, with increased sensitivity to variations in electron density relative to more common place x-ray imaging techniques. Different features seen in the temporal scatter intensity profiles recorded during evaporation and condensation revealed the existence of an absorption-desorption hysteresis. Effects on the previously mentioned phenomena due to chemical functionalization of the carbon nanotube surfaces were also observed. Functionalization increased the interaction potential between the MWCNT walls and water molecules, altering the evaporation event time scale and increasing the temperature at which condensation could take place. The observed temperature dependent changes in evaporation time scales coincide with the boiling point for confined water predicted by the Kelvin equation.

  10. Determination of thermoelastic material properties by differential heterodyne detection of impulsive stimulated thermal scattering

    PubMed Central

    Verstraeten, B.; Sermeus, J.; Salenbien, R.; Fivez, J.; Shkerdin, G.; Glorieux, C.

    2015-01-01

    The underlying working principle of detecting impulsive stimulated scattering signals in a differential configuration of heterodyne diffraction detection is unraveled by involving optical scattering theory. The feasibility of the method for the thermoelastic characterization of coating-substrate systems is demonstrated on the basis of simulated data containing typical levels of noise. Besides the classical analysis of the photoacoustic part of the signals, which involves fitting surface acoustic wave dispersion curves, the photothermal part of the signals is analyzed by introducing thermal wave dispersion curves to represent and interpret their grating wavelength dependence. The intrinsic possibilities and limitations of both inverse problems are quantified by making use of least and most squares analysis. PMID:26236643

  11. Automated control and data acquisition for a tunable diode laser heterodyne spectrometer

    NASA Technical Reports Server (NTRS)

    Shull, T. S.; Rinsland, P. L.

    1983-01-01

    This paper describes the hardware and software design, development, and implementation of the control and data electronics of a laser heterodyne spectrometer instrument being built at NASA Langley Research Center for a technology demonstration. Functional partitioning, applied at all levels of hardware and software, has been found to provide expedient design, development, and testing of the instrument. The instrument is composed of distributed microprocessor-based units. A master/slave protocol is presented which can be simulated by a terminal for unit checkout. All but one of the units are implemented using a set of core boards, plus unique boards where necessary. This design has led to reduced hardware development, reduced parts inventory, and replication of software modules, while providing the flexibility needed for a development instrument. The development tools and documentation guidelines are discussed.

  12. An upgraded 32-channel heterodyne electron cyclotron emission radiometer on Tore Supra

    SciTech Connect

    Segui, J.L.; Molina, D.; Giruzzi, G.; Goniche, M.; Huysmans, G.; Maget, P.; Ottaviani, M.

    2005-12-15

    A 32-channel, 1 GHz spaced heterodyne radiometer is used on the Tore Supra tokamak to measure electron cyclotron emission (ECE) in the frequency range 78-110 GHz for the ordinary mode (O:E parallel B,k perpendicular B) and 94-126 GHz for the extraordinary mode (X:E perpendicular B,k perpendicular B). The radial resolution is essentially limited by ECE relativistic effects, depending on electron temperature and density, and not by the channels' frequency spacing. The time resolution depends on the acquisition scheme: the system allows for both 1 ms and 10 {mu}s acquisition. For example, this leads to precise electron temperature mapping during MHD activity. First experimental results obtained with this upgraded 32-channel radiometer are presented.

  13. W-band Heterodyne Receiver Module with 27 K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Gawande, R.; Reeves, R.; Cleary, K.; Readhead, A. C.; Gaier, T.; Kangaslahti, P.; Samoska, L.; Church, S.; Sieth, M.; Voll, P.; Harris, A.; Lai, R.; Sarkozy, S.

    2012-01-01

    We present noise temperature and gain measurements of a W-band heterodyne module populated with MMIC LNAs designed and fabricated using 35nm InP HEMT process. The module has a WR-10 waveguide input. GPPO connectors are used for the LO input and the I and and Q IF outputs. The module is tested at both ambient (300 K) and cryogenic (25 K) temperatures. At 25 K physical temperature, the module has a noise temperature in the range of 27-45 K over the frequency band of 75-111 GHz. The module gain varies between 15 dB and 27 dB. The band-averaged module noise temperature of 350 K and 33 K were measured over 80-110 GHz for the physical temperature of 300 K and 25 K, respectively. The resulting cooling factor is 10.6.

  14. Heterodyne coherent anti-Stokes Raman scattering by the phase control of its intrinsic background

    SciTech Connect

    Wang Xi; Wang Kai; Welch, George R.; Sokolov, Alexei V.

    2011-08-15

    We demonstrate the use of femtosecond laser pulse shaping for precise control of the interference between the coherent anti-Stokes Raman scattering (CARS) signal and the coherent nonresonant background generated within the same sample volume. Our technique is similar to heterodyne detection with the coherent background playing the role of the local oscillator field. In our experiment, we first apply two ultrashort (near-transform-limited) femtosecond pump and Stokes laser pulses to excite coherent molecular oscillations within a sample. After a short and controllable delay, we then apply a laser pulse that scatters off of these oscillations to produce the CARS signal. By making fine adjustments to the probe field spectral profile, we vary the relative phase between the Raman-resonant signal and the nonresonant background, and we observe a varying spectral interference pattern. These controlled variations of the measured pattern reveal the phase information within the Raman spectrum.

  15. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    PubMed Central

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-01-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies. PMID:27477841

  16. Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1998-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  17. FPGA-based smart sensor for online displacement measurements using a heterodyne interferometer.

    PubMed

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application.

  18. High-speed high-resolution heterodyne interferometer using a laser with low beat frequency.

    PubMed

    Diao, Xiaofei; Hu, Pengcheng; Xue, Zi; Kang, Yanhui

    2016-01-01

    A high-speed high-resolution heterodyne interferometer using a laser with low beat frequency is developed. The interferometer has two spatially separated parallel beams with different frequencies. Two interference signals with opposite Doppler shift are optically generated by the interferometric optics. The measurement electronics uses two identical phasemeters for the two opposite interference signals. The two interference signals are selectively used according to the speed of the target, which makes sure that the Doppler shift of the selected signal is always positive, so that the measurable speed is no longer limited by the beat frequency of the laser source. Experimental results show that the measurement resolution is 0.62 nm. The measurable speed can exceed the restriction determined by the beat frequency. Compared with a commercial interferometer, the displacement difference is less than 40 nm in a travel range of 900 mm.

  19. Heterodyne mixing of millimetre electromagnetic waves and sub-THz sound in a semiconductor device

    NASA Astrophysics Data System (ADS)

    Heywood, Sarah L.; Glavin, Boris A.; Beardsley, Ryan P.; Akimov, Andrey V.; Carr, Michael W.; Norman, James; Norton, Philip C.; Prime, Brian; Priestley, Nigel; Kent, Anthony J.

    2016-08-01

    We demonstrate heterodyne mixing of a 94 GHz millimetre wave photonic signal, supplied by a Gunn diode oscillator, with coherent acoustic waves of frequency ~100 GHz, generated by pulsed laser excitation of a semiconductor surface. The mixing takes place in a millimetre wave Schottky diode, and the intermediate frequency electrical signal is in the 1–12 GHz range. The mixing process preserves all the spectral content in the acoustic signal that falls within the intermediate frequency bandwidth. Therefore this technique may find application in high-frequency acoustic spectroscopy measurements, exploiting the nanometre wavelength of sub-THz sound. The result also points the way to exploiting acoustoelectric effects in photonic devices working at sub-THz and THz frequencies, which could provide functionalities at these frequencies, e.g. acoustic wave filtering, that are currently in widespread use at lower (GHz) frequencies.

  20. Characteristics and performance of offset phase locked single frequency heterodyned laser systems

    NASA Astrophysics Data System (ADS)

    Tulchinsky, David A.; Hastings, Alexander S.; Williams, Keith J.

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  1. Laser photothermoacoustic heterodyned lock-in depth profilometry in turbid tissue phantoms.

    PubMed

    Fan, Ying; Mandelis, Andreas; Spirou, Gloria; Vitkin, I Alex; Whelan, William M

    2005-11-01

    Frequency-domain correlation and spectral analysis photothermoacoustic (FD-PTA) imaging is a promising new technique, which is being developed to detect tumor masses in turbid biological tissue. Unlike conventional biomedical photoacoustics which uses time-of-flight acoustic information induced by a pulsed laser to indicate the tumor size and location, in this research, a new FD-PTA instrument featuring frequency sweep (chirp) and heterodyne modulation and lock-in detection of a continuous-wave laser source at wavelength is constructed and tested for its depth profilometric capabilities with regard to turbid media imaging. Owing to the linear relationship between the depth of acoustic signal generation and the delay time of signal arrival to the transducer, information specific to a particular depth can be associated with a particular frequency in the chirp signal. Scanning laser-fluence modulation frequencies with a linear frequency sweep method preserves the depth-to-delay time linearity and recovers FD-PTA signals from a range of depths. Combining with the depth information carried by the back-propagated acoustic chirp signal at each scanning position, one could rapidly generate subsurface three-dimensional images of the scanning area at optimal signal-to-noise ratios and low laser fluences, a combination of tasks that is difficult or impossible by use of pulsed photoacoustic detection. In this paper, results of PTA scans performed on tissue mimicking control phantoms with various optical, acoustical, and geometrical properties are presented. A mathematical model is developed to study the laser-induced photothermoacoustic waves in turbid media. The model includes both the scattering and absorption properties of the turbid medium. A good agreement is obtained between the experimental and numerical results. It is concluded that frequency domain photothermoacoustics using a linear frequency sweep method and heterodyne lock-in detection has the potential to be a

  2. First calibration and visible band observations of Khayyam, a Tunable Spatial Heterodyne Spectroscopy (SHS)

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.; Corliss, J.

    2013-12-01

    We present initial results from observations of wide-field targets using new instrumentation based on an all-reflective spatial heterodyne spectrometer (SHS). SHS instruments are quasi common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~10^5), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. We have constructed both narrow band pass and broadly tunable designs at fixed focal plane facilities on Mt Hamilton and Kitt Peak. This report focuses on the tunable instrument at Mt Hamilton, which is at the focus of the Coudé Auxiliary Telescope (CAT). The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2012 S1 (ISON), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability. Khayyam, The Tunable all-reflective Special Heterodyne Spectrometer (SHS) that has being characterized at the Coudé Auxiliary Telescope (CAT) on Mt. Hamilton.

  3. Characteristics and performance of offset phase locked single frequency heterodyned laser systems.

    PubMed

    Tulchinsky, David A; Hastings, Alexander S; Williams, Keith J

    2016-05-01

    We demonstrate and characterize the performance of two heterodyned optical phase locked loop (PLL) laser systems for use in characterizing photodetector RF frequency response and nonlinearities. Descriptions of PLL circuit parameters for Nd:YAG non-planar ring oscillator lasers at 1064 nm and 1319 nm, and Er ion fiber lasers from 1530 nm to 1565 nm are presented. Both laser systems have piezoelectric transducer wavelength control over the PLL voltage controlled oscillator circuit. Offset frequency phase locking from 1.5 kHz to 51+ GHz is demonstrated. Frequency stability at 10 MHz is measured to be ±50 μHz, limited by the stability of the Rb stabilized crystal oscillator. Phase noise of the phase-locked 1319 nm laser system is discussed where we find that the phase noise is dominated by the input source noise at frequency offsets below 100 Hz and by the laser's RIN noise at frequency offsets > 100 Hz. Comparing nonlinearity data from an InGaAs p-i-n photodiode using both 1319 nm and 1550 nm PLL nonlinearity measurement systems, we find two new separate photodetector nonlinearity mechanisms. Measurements of the harmonic components of a 11 MHz sinusoidal heterodyned optical beat note signal are found to be at or below 1 nW/mW for the second harmonic (at 22 MHz) and at or below 0.25 nW/mW for the 3rd harmonic (at 33 MHz), confirming the nearly pure sinusoidal nature of the optically generated microwave beat note.

  4. Vertical profiling of methane and carbon dioxide using high resolution near-infrared heterodyne spectroscopic observations

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander; Klimchuk, Artem; Churbanov, Dmitry; Pereslavtseva, Anastasia; Spiridonov, Maxim; Nadezhdinskyi, Alexander

    2014-05-01

    We present new method of monitoring greenhouse gases using spectroscopic observations of solar radiation passed through the atmosphere with spectral resolution ΛvδΛ up to 108. Such a high resolution is achieved by heterodyne technique and allows to retrieve full information about spectral line shape which, in turn, is used to distinguish contribution of different atmospheric layers to the resulting absorption. Weak absorption line at 6056.5 cm-1 was selected for CO2 measurements and a quartet of lines centered at 6057 cm-1for CH4. The instrument setup includes Sun tracker with a microtelescope and chopper, diode DFB laser used as a local oscillator, a bundle of single mode optical fibers that provides medium for radiation transfer and beam coupling, reference cell with depressurized methane for LO frequency stabilization, and Fabry-Perot etalon for LO frequency calibration. A commercial p-i-n diode with squared detector replaces a mixer and IF spectrometer, providing measurement of heterodyne beating within a bandpass of few MHz, which determines the effective spectral resolution of the instrument. Spectral coverage within narrow range (about 1 cm-1) is provided by ramping the LO frequency based on feedback from the reference channel. Observations of Sun in the Moscow region have resulted for the first time in measurements of the atmospheric transmission near 1.65 μm with sub-Doppler spectral resolution. In order to retrieve vertical profiles of methane and carbon dioxide we developed the inversion algorithm implementing Tikhonov regularization approach. With measured transmission having S/N ratio of 100 or higher, the uncertainty of CH4 profile is about 10 ppb, with the uncertainty of CO2 profile at 1 ppm. This techniques is promising an affordable opportunity or widespread monitoring of greenhouse gases and may be implemented on existing ground-based stations. This work has been supported by the grant of Russian Ministry of education and science #11.G34.31.0074

  5. Heterodyne Receiver Requirements for the Single Aperture Far-Infrared (SAFIR) Observatory

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Kooi, Jacob; Oegerle, William (Technical Monitor)

    2003-01-01

    In the next few years, work will commence in earnest on the development of technology for the next generation large cryogenic far-infrared telescope: the Single Aperture Far- Infrared (SAFIR) Observatory. SAFIR's science goals are driven by the fact that youngest stages of almost all phenomena in the universe are shrouded in absorption by cool dust, resulting in the energy being emitted primarily in the far-infrared. The earliest stages of star formation, when gas and dust clouds are collapsing and planets forming, can only be observed in the far-infrared. Spectral diagnostics in the far-infrared are typically quite narrow (approx. 1 km/s) and require high sensitivity to detect them. SAFIR is a 10 m-class telescope designed for cryogenic operation at L2, removing all sources of thermal emission from the telescope and atmosphere. Despite its limited collecting area and angular resolution as compared to the ALMA interferometer, its potential for covering the entire far-infrared band cannot be matched by any ground-based or airborne observatory. This places a new challenge on heterodyne receivers: broad frequency coverage. The ideal mixer would be able to detect frequencies over several octaves (e.g., 0.6 THz - 12 THz) with near quantum-limited performance at all frequencies. In contrast to ground-based observatories, it may not be necessary to strive for high instantaneous bandwidth, as direct detection spectroscopy is preferable for bandwidths of Delta v/ v greater than or equal to 10(exp -4) (e.g., 1 GHz at 10 THz). We consider likely directions for technology development for heterodyne receivers for SAFIR.

  6. High spatial Resolution mapping of Venus Mesospheric Winds by infrared heterodyne Spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Sonnabend, G.; Sornig, M.; Krötz, P.; Stupar, D.; Livengood, T.; Schieder, R.; Kostiuk, T.

    2007-08-01

    We present wind measurements in the Venusian upper mesosphere / lower thermosphere by means of infrared heterodyne spectroscopy of CO2 features at 959.3917 cm-1. Observations are carried out using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) from May 25th to June 6th 2007 shortly before Venus superior conjunction at the McMath-Pierce solar telescope on Kitt Peak in Arizona. Providing high spectral resolution winds can be retrieved from Doppler-shifts of CO2 non-thermal emission from the upper mesosphere. The sub-solar to anti-solar flow (SS-AS flow) and the retrograde superrotating zonal circulation (RSZ) are targeted and observations are carried out systematically on the day-side of the planet which is illuminated appr. 50%. The mesospheric region is of special interest because it is the not very well understood transitions zone form the RSZ dominated troposphere and the SS-AS flow dominated thermosphere. Measurements are part of the coordinated ground-based observing campaign to support VenusExpress from May 25th to June 9th. Complementary ground based observing methods probing wind velocities at different altitudes in the atmosphere of Venus provide the possibility to get a vertical wind profile. E.g. Doppler shifts of CO2 lines at visible wavelength together with reflected solar Frauenhofer lines probe dynamics at the cloud tops and a few kilometer above while interferometric CO millimeter observations provide information about the lower mesosphere and sub-millimeter spectral line observations are pointing to a region between 95 and 105km. The presented mid- IR measurements probe an altitude of 100-120km.

  7. Automated reduction of sub-millimetre single-dish heterodyne data from the James Clerk Maxwell Telescope using ORAC-DR

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Currie, Malcolm J.; Tilanus, Remo P. J.; Cavanagh, Brad; Berry, David S.; Leech, Jamie; Rizzi, Luca

    2015-10-01

    With the advent of modern multidetector heterodyne instruments that can result in observations generating thousands of spectra per minute it is no longer feasible to reduce these data as individual spectra. We describe the automated data reduction procedure used to generate baselined data cubes from heterodyne data obtained at the James Clerk Maxwell Telescope (JCMT). The system can automatically detect baseline regions in spectra and automatically determine regridding parameters, all without input from a user. Additionally, it can detect and remove spectra suffering from transient interference effects or anomalous baselines. The pipeline is written as a set of recipes using the ORAC-DR pipeline environment with the algorithmic code using Starlink software packages and infrastructure. The algorithms presented here can be applied to other heterodyne array instruments and have been applied to data from historical JCMT heterodyne instrumentation.

  8. Nondestructive evaluation of as-implanted and annealed ultra shallow junctions by photothermal and photoluminescence heterodyne techniques

    NASA Astrophysics Data System (ADS)

    Geiler, H. D.; Karge, H.; Wagner, M.; Lerch, W.; Paul, S.

    2005-08-01

    The control of implantation dose, ion energy and the junction depth after annealing are key points of the on-line metrology for ultra shallow junction fabrication. Nondestructive and non-contact optical methods are examined with respect to their applicability for related tasks. High sensitive low noise photothermal heterodyne (PTH) and photoluminescence heterodyne (PLH) techniques are applied to control implant parameters of 0.5 keV B+ - implants both immediately after implantation and after spike annealing. The photothermal response shows that beside dose and energy dependencies monitored after implantation the spike annealing results in a layer with reduced carrier lifetime and mobility. By photoluminescence response the existence of an impurity band and the correlation with the p-n-junction depth is demonstrated by measuring the response of carrier dynamics.

  9. Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser.

    PubMed

    Wu, Hanzhong; Zhang, Fumin; Liu, Tingyang; Balling, Petr; Qu, Xinghua

    2016-05-20

    In this paper, we develop a multi-heterodyne system capable of absolute distance measurement using a frequency comb and a tunable diode laser locked to a Fabry-Perot cavity. In a series of subsequent measurements, numerous beat components can be obtained by downconverting the optical frequency into the RF region with multi-heterodyne interferometry. The distances can be measured via the mode phases with a series of synthetic wavelengths. The comparison with the reference interferometer shows an agreement within 1.5 μm for the averages of five measurements and 2.5 μm for the single measurement, which is at the 10-8 relative precision level.

  10. Modulated heterodyne light scattering set-up for measuring long relaxation time at small and wide angle

    NASA Astrophysics Data System (ADS)

    Leone, Nancy; Villari, Valentina; Micali, Norberto

    2012-08-01

    We present a simple, compact, and versatile experimental setup working in the heterodyne detection mode with modulation of the reference beam. The system is implemented with a collection optics based on a unimodal optical fiber coupler. This choice allows the heterodyne to be used in a wide range of scattering angles, even for very small ones, without losing the optical beating. The apparatus can be successfully used to study translational diffusive dynamics of dispersed particles at scattering angles smaller than 5° and it is suitable for exploring slow relaxation processes in sub-Hertz frequency domain, for example, in glass-forming systems. It is also possible to measure the electrophoretic mobility by applying an electric field into a charged particles solution.

  11. Multi-heterodyne molecular absorption spectrum detection of H13C14N based on dual frequency combs

    NASA Astrophysics Data System (ADS)

    Yang, Honglei; Wei, Haoyun; Li, Yan

    2014-11-01

    In order to acquire high-resolution molecular absorption spectrum, a measurement system consisting of two Erbium-doped fiber optical frequency combs based on multi-heterodyne detection method is established. Preliminary result shows that the specific line in the RF spectrum corresponding to 6452.59 cm-1 in the optical region, where there is an error of 0.14 cm-1 compared with the simulation result. And the further improvement of this system will be discussed in the end.

  12. Design and Laboratory Tests of a Doppler Asymmetric Spatial Heterodyne (DASH) Interferometer for Upper Atmospheric Wind and Temperature Observations

    DTIC Science & Technology

    2010-12-06

    interferometer for upper atmospheric wind and temperature observations of the O[1D] 630 nm emission. The monolithic interferometer has no moving parts, a large...Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations of the O[1D] 630 nm emission. The monolithic ...To date the instruments of choice have been Fabry-Perot [1–3] and wide-angle Michelson interferometers [4]. The technical difficulties associated

  13. Ultrafast dynamics in complex fluids observed through the ultrafast optically-heterodyne-detected optical-Kerr-effect (OHD-OKE).

    PubMed

    Hunt, Neil T; Jaye, Andrew A; Meech, Stephen R

    2007-06-14

    The ultrafast molecular dynamics of complex fluids have been recorded using the optically-heterodyne-detected optical-Kerr-effect (OHD-OKE). The OHD-OKE method is reviewed and some recent refinements to the method are described. Applications to a range of complex fluids, including microemulsions, polymer melts and solutions, liquid crystal and ionic liquids are surveyed. The level of detail attainable with the OHD-OKE method in these complex fluids is discussed. The prospects for future experiments are discussed.

  14. NO2 heterodyne frequency measurements with a tunable diode laser, a CO laser transfer oscillator and CO2 laser standards

    NASA Technical Reports Server (NTRS)

    Zink, L. R.; Vanek, M.; Wells, J. S.

    1987-01-01

    Heterodyne frequency measurements have been made on selected groups of nitrogen dioxide rovibronic transitions between 1580.8 and 1650.7/cm. The groups are separated by 7 to 10/cm, and the intent is to provide a limited (and interim) calibration table for the region. In addition to a table of measured frequencies in the region, figures of spectra in the vicinity of the measured lines are included to provide a map for identifying the transitions measured.

  15. Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4b/s/Hz.

    PubMed

    Li, Xinying; Dong, Ze; Yu, Jianjun; Yu, Jianguo; Chi, Nan

    2013-04-08

    We experimentally demonstrate heterodyne coherent detection of 8 × 112-Gb/s ultra-density wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal after 1120-km single-mode fiber-28 (SMF-28) transmission. The spectral efficiency (SE) is 4b/s/Hz. It is the first time to realize WDM signal transmission with high SE by adopting heterodyne coherent detection. At the heterodyne coherent receiver, intermediate frequency (IF) down conversion is realized in digital frequency domain after analog-to-digital conversion. A digital post filter and 1-bit maximum likelihood sequence estimation (MLSE) adopted after carrier phase estimation (CPE) in the conventional digital-signal-processing (DSP) process is used to suppress the enhanced noise and crosstalk as well as overcome the filtering effects. The bit-error ratio (BER) for all channels is under the forward-error-correction (FEC) limit of 3.8 × 10(-3) after 1120-km SMF-28 transmission.

  16. Heterodyne detection and transmission of 60-Gbaud PDM-QPSK signal with SE of 4b/s/Hz.

    PubMed

    Li, Xinying; Xiao, Jiangnan; Yu, Jianjun

    2014-04-21

    We experimentally demonstrate 8 × 240-Gb/s super-Nyquist wavelength-division-multiplexing (WDM) polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission on a 50-GHz grid with a net spectral efficiency (SE) of 4b/s/Hz adopting hardware-efficient simplified heterodyne detection. 9-ary quadrature-amplitude-modulation-like (9QAM-like) processing based on multi-modulus blind equalization (MMBE) is adopted to reduce analog-to-digital converter (ADC) bandwidth requirement and improve receiver sensitivity. The transmission distance at the soft-decision forward-error-correction (SD-FEC) threshold of 2 × 10(-2) is 2 × 420 km based on digital post filtering while largely extended to over 5 × 420 km based on 9QAM-like processing, which well illustrates 9QAM-like processing is more efficient for heterodyne coherent WDM system. Moreover, only two ADC channels are needed for simplified heterodyne detection of one 60-Gbaud PDM-QPSK WDM channel, and thus only one commercial oscilloscope (OSC) with two input ports can work well for each WDM channel.

  17. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  18. Balance Food and Activity

    MedlinePlus

    ... eNewsletters Calendar Balance Food and Activity What is Energy Balance? Energy is another word for "calories." Your ... adults, fewer calories are needed at older ages. Energy Balance in Real Life Think of it as ...

  19. Dizziness and Balance

    MedlinePlus

    AUDIOLOGY Dizziness and Balance Inform ation Seri es Our balance system helps us walk, run, and move without falling. ... if I have a problem with balance or dizziness? It is important to see your doctor if ...

  20. A 2 THz Heterodyne Array Receiver for SOFIA: Summary of Research

    NASA Technical Reports Server (NTRS)

    Walker, Christopher K.

    1998-01-01

    We proposed to perform a comprehensive design study of a 16-element heterodyne array receiver for SOFIA. The array was designed to utilize hot-electron bolometers in an efficient, low-cost waveguide mount to achieve low noise performance between approximately 1500 and 2400 GHz. Due to the prevailing physical conditions in the interstellar medium, this frequency range is one of the richest in the Far-Infra Red (FIR) portion of the spectrum. An array designed for this wavelength range will make excellent use of the telescope and the available atmospheric transmission, and will provide a new perspective on stellar, chemical, and galactic evolution in the present as well as past epochs. A few of the most important molecular and atomic species which the instrument will sample are CII, OI, CO, OH, NII, and CH. The system used the most sensitive detectors available in an efficient optical system. The local oscillator was a compact CO2 pumped far-infrared laser currently under development for SOFIA. The backend spectrometer was an array acousto-optic spectrometer (aAOS). The spectrometer utilizes proven hardware and technologies to provide broadband performance (> 1 GHz per AOS channel) and high spectral resolution (1 MHz) with the maximum sensitivity and minimum complexity and cost. The proposed instrument would be the fastest and most sensitive heterodyne receiver ever to operate in the 1.5 - 2.4 THz band. One of the key technologies developed for the proposed instrument is the laser micromachining of waveguide structures. These structures provide both the optical link between the instrument and the telescope (via an array of efficient feedhorns) and the impedance transformation between the detectors and free space. With the assistance of funds provided from this grant, we were able to fabricate and test the world's first laser micromachined feedhorns. The quality of the waveguide structure is far better than that obtainable using any other fabrication technique. The

  1. Measurement of the modulation transfer function of x-ray scintillators via heterodyne speckles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Manfredda, Michele; Giglio, Marzio

    2016-09-01

    The approach can be seen as the optical transposition of what is done in electronics, when a system is fed with a white noise (the input signal autocorrelation is a Diract-delta) and the autocorrelation of the the output signal is then taken, thus yielding the Point Spread Function (PSF) of the system (which is the Fourier Transform of the MTF). In the realm of optics, the tricky task consists in the generation and handling of such a suitable random noise, which must be produced via scattering. Ideally, pure 2D white noise (random superposition of sinusoidal intensity modulation at all spatial frequencies in all the diractions) would be produced by ideal point-like scatterers illuminated with completely coherent radiation: interference between scattered waves would generate high-frequency fringes, realizing the sought noise signal. Practically, limited scatterer size and limited coherence properties of radiation introduce a limitation in the spatial bandwidth of the illuminating field. Whereas information about particle-size effect can be promptly obtained from the form factor of the sample used, which is very well known in the case of spherical particles, the information about beam coherence, in general, is usally not known with adequate accuracy, especially at the x-ray wavelengths. In the particular configuration used, speckles are produced by interfering the scattered waves with the strong transmitted beam, (heterodyne speckles), contrarily to the very common case where speckles are produced by the mutual interference between scattered waves (without any transmitted beam acting as local oscillator) (homodyne speckles). In the end the use of an heterodyne speckle field, thanks to its self-referencing scheme, allows to gather, at a fixed distance, response curves spanning a wide range of wavevectors. By crossing the info from curves acquired at few distances (e.g. 2-3) , it is possible to experimentally separate the contribution of spurious effects (such as

  2. Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily; McLinden, Matthew

    2012-01-01

    This passive laser heterodyne radiometer (LHR) instrument simultaneously measures multiple trace gases in the atmospheric column including carbon dioxide (CO2) and methane (CH4), and resolves their concentrations at different altitudes. This instrument has been designed to operate in tandem with the passive aerosol sensor currently used in AERONET (an established network of more than 450 ground aerosol monitoring instruments worldwide). Because aerosols induce a radiative effect that influences terrestrial carbon exchange, simultaneous detection of aerosols with these key carbon cycle gases offers a uniquely comprehensive measurement approach. Laser heterodyne radiometry is a technique for detecting weak signals that was adapted from radio receiver technology. In a radio receiver, a weak input signal from a radio antenna is mixed with a stronger local oscillator signal. The mixed signal (beat note, or intermediate frequency) has a frequency equal to the difference between the input signal and the local oscillator. The intermediate frequency is amplified and sent to a detector that extracts the audio from the signal. In the LHR instrument described here, sunlight that has undergone absorption by the trace gas is mixed with laser light at a frequency matched to a trace gas absorption feature in the infrared (IR). Mixing results in a beat signal in the RF (radio frequency) region that can be related to the atmospheric concentration. For a one-second integration, the estimated column sensitivities are 0.1 ppmv for CO2, and <1 ppbv for CH4. In addition to producing a standalone ground measurement product, this instrument could be used to calibrate/validate four Earth observing missions: ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons), OCO-2 (Orbiting Carbon Observatory), OCO-3, and GOSAT (Greenhouse gases Observational SATellite). The only network that currently measures CO2 and CH4 in the atmospheric column is TCCON (Total Carbon Column

  3. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Melroy, Hilary R.; Miller, J. Houston; McLinden, Matthew L.; Ott, Lesley E.; Holben, Brent

    2012-01-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (C02, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photoreceiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion, We offer a low-cost $30Klunit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  4. A Miniaturized Laser Heterodyne Radiometer for a Global Ground-Based Column Carbon Monitoring Network

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Miller, J. H.; McLinden, M. L.; Ott, L.; Holben, B. N.

    2012-12-01

    We present progress in the development of a passive, miniaturized Laser Heterodyne Radiometer (mini-LHR) that will measure key greenhouse gases (CO2, CH4, CO) in the atmospheric column as well as their respective altitude profiles, and O2 for a measure of atmospheric pressure. Laser heterodyne radiometry is a spectroscopic method that borrows from radio receiver technology. In this technique, a weak incoming signal containing information of interest is mixed with a stronger signal (local oscillator) at a nearby frequency. In this case, the weak signal is sunlight that has undergone absorption by a trace gas of interest and the local oscillator is a distributive feedback (DFB) laser that is tuned to a wavelength near the absorption feature of the trace gas. Mixing the sunlight with the laser light, in a fast photo-receiver, results in a beat signal in the RF. The amplitude of the beat signal tracks the concentration of the trace gas in the atmospheric column. The mini-LHR operates in tandem with AERONET, a global network of more than 450 aerosol sensing instruments. This partnership simplifies the instrument design and provides an established global network into which the mini-LHR can rapidly expand. This network offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern as well as an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and ASCENDS. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON (Total Column Carbon Observing Network) with 18 operational sites worldwide and two in the US. Cost and size of TCCON installations will limit the potential for expansion. We offer a low-cost (<$30K/unit) solution to supplement these measurements with the added benefit of an established aerosol optical depth

  5. Optical heterodyne-detected Raman-Induced Kerr Effect (OHD-RIKE) microscopy

    PubMed Central

    Freudiger, Christian W.; Roeffaers, Maarten B. J.; Zhang, Xu; Saar, Brian G.; Min, X., Wei; Xie, Sunney

    2012-01-01

    Label-free microscopy based on Raman scattering has been increasingly used in biomedical research to image samples that cannot be labeled or stained. Stimulated Raman scattering (SRS) microscopy, allows signal amplification of the weak Raman signal for fast imaging speeds without introducing the non-resonant background and coherent image artifacts that are present in coherent anti-Stokes Raman scattering (CARS) microscopy. Here we present the Raman-induced Kerr effect (RIKE) as a contrast for label-free microscopy. RIKE allows us to measure different elements of the non-linear susceptibility tensor, both the real and imaginary parts by optical heterodyne detection (OHD-RIKE). OHD-RIKE microscopy provides information similar to polarization CARS (P-CARS) and interferometric CARS (I-CARS) microscopy, with a simple modification of the two-beam SRS microscopy setup. We show that while OHD-RIKE micro-spectroscopy can be in principle more sensitive than SRS, it does not supersede SRS microscopy of heterogeneous biological samples, such as mouse skin tissue, because it is complicated by variations of linear birefringence across the sample. PMID:21504149

  6. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors

    NASA Astrophysics Data System (ADS)

    Thomas, Elizabeth K.; Clemens, Steven C.; Sun, Youbin; Prell, Warren L.; Huang, Yongsong; Gao, Li; Loomis, Shannon; Chen, Guangshan; Liu, Zhengyu

    2016-12-01

    For the past decade, East Asian monsoon history has been interpreted in the context of an exceptionally well-dated, high-resolution composite record of speleothem oxygen isotopes (δ18Ocave) from the Yangtze River Valley. This record is characterized by a unique spectral response, with variance concentrated predominantly within the precession band and an enigmatic lack of variance at the eccentricity and obliquity bands. Here we examine the spectral characteristics of all existing >250-kyr-long terrestrial water isotope records in Asia, including a new water isotope record using leaf wax hydrogen isotope ratios from the Chinese Loess Plateau. There exist profound differences in spectral characteristics among all orbital-scale Asian water isotope records. We demonstrate that these differences result from latitudinal gradients in the influence of the winter and summer monsoons, both of which impact climate and water isotopes throughout East Asia. Water isotope records therefore do not reflect precipitation during a single season or from a single circulation system. Rather, water isotope records in East Asia reflect the complex interplay of oceanic and continental moisture sources, operating at multiple Earth-orbital periods. These non-linear interactions are reflected in water isotope spectra by the presence of heterodynes. Although complex, we submit that water isotope records, when paired with rapidly developing isotope-enabled model simulations, will have the potential to elucidate mechanisms causing seasonal precipitation variability and moisture source variability in East Asia.

  7. A compact fiber optics-based heterodyne combined normal and transverse displacement interferometer

    NASA Astrophysics Data System (ADS)

    Zuanetti, Bryan; Wang, Tianxue; Prakash, Vikas

    2017-03-01

    While Photonic Doppler Velocimetry (PDV) has become a common diagnostic tool for the measurement of normal component of particle motion in shock wave experiments, this technique has not yet been modified for the measurement of combined normal and transverse motion, as needed in oblique plate impact experiments. In this paper, we discuss the design and implementation of a compact fiber-optics-based heterodyne combined normal and transverse displacement interferometer. Like the standard PDV, this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550 nm wavelength 2 W fiber-coupled laser, an optical focuser, and single mode fibers to transport light to and from the target. Two additional optical probes capture first-order beams diffracted from a reflective grating at the target free-surface and deliver the beams past circulators and a coupler where the signal is combined to form a beat frequency. The combined signal is then digitized and analyzed to determine the transverse component of the particle motion. The maximum normal velocity that can be measured by this system is limited by the equivalent transmission bandwidth (3.795 GHz) of the combined detector, amplifier, and digitizer and is estimated to be ˜2.9 km/s. Sample symmetric oblique plate-impact experiments are performed to demonstrate the capability of this diagnostic tool in the measurement of the combined normal and transverse displacement particle motion.

  8. Automated Removal of Bad-Baseline Spectra from ACSIS/HARP Heterodyne Time Series

    NASA Astrophysics Data System (ADS)

    Currie, M. J.

    2013-10-01

    Heterodyne time-series spectral data often exhibit distorted or noisy baselines. These are either transient due to external interference or pickup; or affect a receptor throughout an observation or extended period, possibly due to a poor cable connection. While such spectra can be excluded manually, this is time consuming and prone to omission, especially for the high-frequency interference affecting just one or two spectra in typically several to twenty thousand, yet can produce undesirable artifacts in the reduced spectral cube. Further astronomers have tended to reject an entire receptor if any of its spectra are suspect; as a consequence the reduced products have lower signal-to-noise, and enhanced graticule patterns due to the variable coverage and detector relative sensitivities. This paper illustrates some of the types of aberrant spectra for ACSIS/HARP on the James Clerk Maxwell Telescope and the algorithms used to identify and remove them, applied within the ORAC-DR pipeline, and compares an integrated map with and without baseline filtering.

  9. Tantalum hot-electron bolometers for low-noise heterodyne receivers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W.; Bumble, B.; LeDuc, H. G.

    2002-01-01

    We describe superconducting diffusion-cooled hot-electron bolometers that were fabricated fromtantalum films grown on a thin niobium seed layer. The seed layer promotes single-phase growth of the Ta films, resulting in high-quality bolometers with transition temperatures up to 2.35 K and transition widths of less than 0.2 K. An S-parameter measurement set-up in a He-3 cryostat was used to measure device impedance versus frequency of a 400 nm long device at a temperature of 400 mK. It is shown that a 3 dB roll-off frequency of about 1 GHz can be achieved when the device resistance matches the impedance of the embedding network (no electrothermal feedback). This would lead to a prediction of 16 GHz for a 100 nm device, and indicates that a heterodyne mixer using a Ta HEB should be able to operate at several GHz even with a significant amount of electrothermal feedback.

  10. Miniature Spatial Heterodyne Raman Spectrometer with a Cell Phone Camera Detector.

    PubMed

    Barnett, Patrick D; Angel, S Michael

    2016-08-29

    A spatial heterodyne Raman spectrometer (SHRS) with millimeter-sized optics has been coupled with a standard cell phone camera as a detector for Raman measurements. The SHRS is a dispersive-based interferometer with no moving parts and the design is amenable to miniaturization while maintaining high resolution and large spectral range. In this paper, a SHRS with 2.5 mm diffraction gratings has been developed with 17.5 cm(-1) theoretical spectral resolution. The footprint of the SHRS is orders of magnitude smaller than the footprint of charge-coupled device (CCD) detectors typically employed in Raman spectrometers, thus smaller detectors are being explored to shrink the entire spectrometer package. This paper describes the performance of a SHRS with 2.5 mm wide diffraction gratings and a cell phone camera detector, using only the cell phone's built-in optics to couple the output of the SHRS to the sensor. Raman spectra of a variety of samples measured with the cell phone are compared to measurements made using the same miniature SHRS with high-quality imaging optics and a high-quality, scientific-grade, thermoelectrically cooled CCD.

  11. Ultraviolet Stand-off Raman Measurements Using a Gated Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Sharma, Shiv K; Acosta, Tayro E; Angel, S Michael

    2016-04-01

    A spatial heterodyne Raman spectrometer (SHRS) is evaluated for stand-off Raman measurements in ambient light conditions using both ultraviolet (UV) and visible pulsed lasers with a gated ICCD detector. The wide acceptance angle of the SHRS simplifies optical coupling of the spectrometer to the telescope and does not require precise laser focusing or positioning of the laser on the sample. If the laser beam wanders or loses focus on the sample, as long as it is in the field of view of the SHRS, the Raman signal will still be collected. The SHRS is not overly susceptible to vibrations, and a vibration isolated optical table was not necessary for these measurements. The system performance was assessed by measuring stand-off UV and visible Raman spectra of a wide variety of materials at distances up to 18 m, using 266 nm and 532 nm pulsed lasers, with 12.4 in. and 3.8 in. aperture telescopes, respectively.

  12. Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength.

    PubMed

    Shcherbatenko, M; Lobanov, Y; Semenov, A; Kovalyuk, V; Korneev, A; Ozhegov, R; Kazakov, A; Voronov, B M; Goltsman, G N

    2016-12-26

    Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 × 7 µm2 and 3 × 3 µm2 devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array.

  13. Note: using an optical phase-locked loop in heterodyne velocimetry.

    PubMed

    Tao, Tianjiong; Wang, Xiang; Ma, Heli; Liu, Shenggang; Li, Xinzhu; Weng, Jidong

    2013-07-01

    An optical phase-locked loop was introduced in heterodyne velocimetry to lock the differential frequency between a fiber laser and an external cavity diode laser. An uncertainty less than 1 MHz of the locked beat frequency was achieved during several microseconds, corresponding to a velocity uncertainty at 0.1 m/s level for 1550 nm light. In this way, a measurement with higher precision and better time resolution simultaneously can be obtained during a transient process. Three proof-of-principles shots were performed to measure elastic wave-induced vibrations on surfaces of steel films with submillimeter thicknesses. The surface velocity fluctuations were probed with amplitudes of about 2 m/s and periods of tens of nanoseconds, and propagating times and sound velocities of waves were also well analyzed at a time scale 0.5 μs. A velocity resolution of 0.1 m/s level and a temporal resolution of a few nanoseconds were achieved in these measurements.

  14. Towards chip-scale optical frequency synthesis based on optical heterodyne phase-locked loop.

    PubMed

    Arafin, Shamsul; Simsek, Arda; Kim, Seong-Kyun; Dwivedi, Sarvagya; Liang, Wei; Eliyahu, Danny; Klamkin, Jonathan; Matsko, Andrey; Johansson, Leif; Maleki, Lute; Rodwell, Mark; Coldren, Larry

    2017-01-23

    An integrated heterodyne optical phase-locked loop was designed and demonstrated with an indium phosphide based photonic integrated circuit and commercial off-the-shelf electronic components. As an input reference, a stable microresonator-based optical frequency comb with a 50-dB span of 25 nm (~3 THz) around 1550 nm, having a spacing of ~26 GHz, was used. A widely-tunable on-chip sampled-grating distributed-Bragg-reflector laser is offset locked across multiple comb lines. An arbitrary frequency synthesis between the comb lines is demonstrated by tuning the RF offset source, and better than 100Hz tuning resolution with ± 5 Hz accuracy is obtained. Frequency switching of the on-chip laser to a point more than two dozen comb lines away (~5.6 nm) and simultaneous locking to the corresponding nearest comb line is also achieved in a time ~200 ns. A low residual phase noise of the optical phase-locking system is successfully achieved, as experimentally verified by the value of -80 dBc/Hz at an offset of as low as 200 Hz.

  15. A laser-heterodyne bunch length monitor for the SLC interaction point

    SciTech Connect

    Kotseroglou, T.; Alley, R.; Jobe, K.

    1997-05-01

    Since 1996, the transverse beam sizes at the SLC interaction point (IP) can be determined with a `laser wire`, by detecting the rate of Compton-scattered photons as a function of the beam-laser separation in space. Nominal laser parameters are: 350 nm wavelength, 2 mJ energy per pulse, 40 Hz repetition rate, and 150 ps FWHM pulse length. The laser system is presently being modified to enable measurements of the longitudinal beam profile. For this purpose, two laser pulses of slightly different frequency are superimposed, which creates a travelling fringe pattern and, thereby, introduces a bunch-to-bunch variation of the Compton rate. The magnitude of this variation depends on the beat wavelength and on the Fourier transform of the longitudinal distribution. This laser heterodyne technique is implemented by adding a 1-km long optical fibre at the laser oscillator output, which produces a linearly chirped laser pulse with 4.5-A linewidth and 60-ps FWHM pulse length. Also, the pulse is amplified in a regenerative amplifier and tripled with two nonlinear crystals. Then a Michelson interferometer spatially overlaps two split chirped pulses, which are temporally shifted with respect to each other, generating a quasi-sinusoidal adjustable fringe pattern. This laser pulse is then transported to the Interaction Point.

  16. Self-heterodyne interference spectroscopy using a comb generated by pseudo-random modulation.

    PubMed

    Hébert, Nicolas Bourbeau; Michaud-Belleau, Vincent; Anstie, James D; Deschênes, Jean-Daniel; Luiten, Andre N; Genest, Jérôme

    2015-10-19

    We present an original instrument designed to accomplish high-speed spectroscopy of individual optical lines based on a frequency comb generated by pseudo-random phase modulation of a continuous-wave (CW) laser. This approach delivers efficient usage of the laser power as well as independent control over the spectral point spacing, bandwidth and central wavelength of the comb. The comb is mixed with a local oscillator generated from the same CW laser frequency-shifted by an acousto-optic modulator, enabling a self-heterodyne detection scheme. The current configuration offers a calibrated spectrum every 1.12 µs. We demonstrate the capabilities of the spectrometer by producing averaged, as well as time-resolved, spectra of the D1 transition of cesium with a 9.8-MHz point spacing, a 50-kHz resolution and a span of more than 3 GHz. The spectra obtained after 1 ms of averaging are fitted with complex Voigt profiles that return parameters in good agreement with expected values.

  17. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Astrophysics Data System (ADS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-08-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  18. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    SciTech Connect

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A. -V.; Wang, Y.

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  19. Note: Using an optical phase-locked loop in heterodyne velocimetry

    NASA Astrophysics Data System (ADS)

    Tao, Tianjiong; Wang, Xiang; Ma, Heli; Liu, Shenggang; Li, Xinzhu; Weng, Jidong

    2013-07-01

    An optical phase-locked loop was introduced in heterodyne velocimetry to lock the differential frequency between a fiber laser and an external cavity diode laser. An uncertainty less than 1 MHz of the locked beat frequency was achieved during several microseconds, corresponding to a velocity uncertainty at 0.1 m/s level for 1550 nm light. In this way, a measurement with higher precision and better time resolution simultaneously can be obtained during a transient process. Three proof-of-principles shots were performed to measure elastic wave-induced vibrations on surfaces of steel films with submillimeter thicknesses. The surface velocity fluctuations were probed with amplitudes of about 2 m/s and periods of tens of nanoseconds, and propagating times and sound velocities of waves were also well analyzed at a time scale 0.5 μs. A velocity resolution of 0.1 m/s level and a temporal resolution of a few nanoseconds were achieved in these measurements.

  20. An Extremely Wide Bandwidth, Low Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.

  1. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    DOE PAGES

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less

  2. Heterodyne detection of the 752.033-GHz H2O rotational absorption line

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Fitzgerald, J. F.; Chang, T. S.; Litvak, M. M.; Fetterman, H. R.

    1980-01-01

    A tunable high resolution two stage heterodyne radiometer was developed for the purpose of investigating the intensity and lineshape of the 752.033 GHz rotational transition of water vapor. Single-sideband system noise temperatures of approximately 45,000 K were obtained using a sensitive GaAs Schottky diode as the first stage mixer. First local oscillator power was supplied by a CO2 laser pumped formic acid laser (761.61 GHz), generating an X-band IF signal with theoretical line center at 9.5744 GHz. Second local oscillator power was provided by means of a 3 GHz waveguide cavity filter with only 9 dB insertion loss. In absorption measurements of the H2O taken from a laboratory simulation of a high altitude rocket plume, the center frequency of the 752 GHz line was determined to within 1 MHz of the reported value. A rotational temperature 75 K, a linewidth 5 MHz and a Doppler shift 3 MHz were measured with the line-of-sight intersecting the simulated-plume axis at a distance downstream of 30 nozzle diameters. These absorption data were obtained against continuum background radiation sources at temperatures of 1175 and 300 K.

  3. Laser heterodyne system for obtaining height profiles of minor species in the atmosphere

    NASA Technical Reports Server (NTRS)

    Jain, S. L.; Saha, A. K.

    1986-01-01

    An infrared laser heterodyne system for obtaining height profiles of minor constituents of the atmosphere was developed and erected. A brief discription of the system is given. The system consists of a tunable CO2 waveguide laser in the 9 to 11 micrometer band, that is used as a local oscillator and a heliostat that follows the sun and brings in solar radiation, that is mixed with the laser beam in a high speed liquid nitrogen cooled mercury cadmium telluride detector. The detected signal is analysed in a RF spectrum analyser that allows tracing absorption line profiles. Absorption lines of a number of minor constituents in the troposphere and stratosphere, such as O3, NH3, H2O, SO2, ClO, N2O, are in the 9 to 11 micrometer band and overlap with that of CO2 laser range. The experimental system has been made operational and trial observations taken. Current measurements are limited to ozone height profiles. Results are presented.

  4. Heterodyne stabilization as a possible laser frequency stabilization technique for LISA

    NASA Astrophysics Data System (ADS)

    Eichholz, Johannes

    The Laser Interferometer Space Antenna is a joint NASA/ESA mission aimed at the detection of gravitational wave radiation in the frequency range from 30 uHz to 0.1 Hz. LISA uses a modified Michelson interferometer setup consisting of three identical spacecraft, arranged in an equilateral triangular constellation. It measures the differential length changes of the 5 · 109 m long interferometer arms between free-floating proof masses housed within each spacecraft. Laser pre-stabilization is required in conjunction with Time-Delay Interferometry data post-processing to monitor the armlength changes with picometer precision. A modulation/demodulation technique to stabilize the frequency of the lasers to an optical reference cavity has been proposed for a long time, but it requires several additional optical components and would need to be built as a separate system. Using a different sensing tech-nique, heterodyne interferometry, we propose a modified stabilization scheme, which similarly transfers the stability of an optical reference cavity to the laser frequency. It only uses com-ponents that are already available in the LISA assembly and can easily be integrated into the optical bench design. A similar stabilization scheme is going to be used in LISA Pathfinder. We will discuss this technique in detail and present initial experimental results, as well as predicted performances on the LISA bench.

  5. Uncertainty Analysis for the Miniaturized Laser Heterodyne Radiometer (mini-LHR)

    NASA Technical Reports Server (NTRS)

    Clarke, G. B.; Wilson E. L.; Miller, J. H.; Melroy, H. R.

    2014-01-01

    Presented here is a sensitivity analysis for the miniaturized laser heterodyne radiometer (mini-LHR). This passive, ground-based instrument measures carbon dioxide (CO2) in the atmospheric column and has been under development at NASA/GSFC since 2009. The goal of this development is to produce a low-cost, easily-deployable instrument that can extend current ground measurement networks in order to (1) validate column satellite observations, (2) provide coverage in regions of limited satellite observations, (3) target regions of interest such as thawing permafrost, and (4) support the continuity of a long-term climate record. In this paper an uncertainty analysis of the instrument performance is presented and compared with results from three sets of field measurements. The signal-to-noise ratio (SNR) and corresponding uncertainty for a single scan are calculated to be 329.4+/-1.3 by deploying error propagation through the equation governing the SNR. Reported is an absorbance noise of 0.0024 for 6 averaged scans of field data, for an instrument precision of approximately 0.2 ppmv for CO2.

  6. THz Instrumentation for the Herschel Space Observatory's Heterodyne Instrument for Far Infrared

    NASA Technical Reports Server (NTRS)

    Pearson, J. C.; Mehdi, I.; Ward, J. S.; Maiwald, F.; Ferber, R. R.; Leduc, H. G.; Schlecht, E. T.; Gill, J. J.; Hatch, W. A.; Kawamura, J. H.; Stern, J. A.; Gaier, T. C.; Samoska, L. A.; Weinreb, S.; Bumble, B.; Pukala, D. M.; Javadi, H. H.; Finamore, B. P.; Lin, R. H.; Dengler, R. J.; Velebir, J. R.; Luong, E. M.; Tsang, R.; Peralta, A .; Wells, M.

    2004-01-01

    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory utilizes a variety of novel RF components in its five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. The local oscillator unit will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, high power W-bapd Isolators, and novel material systems in the SIS mixers. The National Aeronautics and Space Administration through the Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the local oscillators oscillators for the three highest frequency receivers as well as W-band power amplifiers, high power W-band isolators, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. This paper presents an update of the performance and the current state of development.

  7. Real-time digital heterodyne interferometer for high resolution plasma density measurements at ISTTOK

    SciTech Connect

    Marques, T. G.; Gouveia, A.; Pereira, T.; Fortunato, J.; Carvalho, B. B.; Sousa, J.; Silva, C.; Fernandes, H.

    2008-10-15

    With the implementation of alternating discharges (ac) at the ISTTOK tokamak, the typical duration of the discharges increased from 35 to 250 ms. This time increase created the need for a real-time electron density measurement in order to control the plasma fueling. The diagnostic chosen for the real-time calculation was the microwave interferometer. The ISTTOK microwave interferometer is a heterodyne system with quadrature detection and a probing frequency of 100 GHz ({lambda}{sub 0}=3 mm). In this paper, a low-cost approach for real-time diagnostic using a digital signal programable intelligent computer embedded system is presented, which allows the measurement of the phase with a 1% fringe accuracy in less than 6 {mu}s. The system increases its accuracy by digitally correcting the offsets of the input signals and making use of a judicious lookup table optimized to improve the nonlinear behavior of the transfer curve. The electron density is determined at a rate of 82 kHz (limited by the analog to digital converter), and the data are transmitted for each millisecond although this last parameter could be much lower (around 12 {mu}s--each value calculated is transmitted). In the future, this same system is expected to control plasma actuators, such as the piezoelectric valve of the hydrogen injection system responsible for the plasma fueling.

  8. Real-time digital heterodyne interferometer for high resolution plasma density measurements at ISTTOK.

    PubMed

    Marques, T G; Gouveia, A; Pereira, T; Fortunato, J; Carvalho, B B; Sousa, J; Silva, C; Fernandes, H

    2008-10-01

    With the implementation of alternating discharges (ac) at the ISTTOK tokamak, the typical duration of the discharges increased from 35 to 250 ms. This time increase created the need for a real-time electron density measurement in order to control the plasma fueling. The diagnostic chosen for the real-time calculation was the microwave interferometer. The ISTTOK microwave interferometer is a heterodyne system with quadrature detection and a probing frequency of 100 GHz (lambda(0)=3 mm). In this paper, a low-cost approach for real-time diagnostic using a digital signal programmable intelligent computer embedded system is presented, which allows the measurement of the phase with a 1% fringe accuracy in less than 6 micros. The system increases its accuracy by digitally correcting the offsets of the input signals and making use of a judicious lookup table optimized to improve the nonlinear behavior of the transfer curve. The electron density is determined at a rate of 82 kHz (limited by the analog to digital converter), and the data are transmitted for each millisecond although this last parameter could be much lower (around 12 micros--each value calculated is transmitted). In the future, this same system is expected to control plasma actuators, such as the piezoelectric valve of the hydrogen injection system responsible for the plasma fueling.

  9. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    NASA Astrophysics Data System (ADS)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  10. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  11. Application of heterodyne velocimetry and pyrometry as diagnostics for explosive characterisation

    NASA Astrophysics Data System (ADS)

    Ferguson, J. W.; Taylor, P.

    2014-05-01

    The results of four cylinder tests performed on two batches of the HMX based explosive EDC37 using a new suite of diagnostics are described. Heterodyne laser velocimetry (het-v) and pyrometry were fielded for the first time on cylinder tests within AWE. Pyrometry gave a measurement of the temperature of the detonating HE of 2600-3485 K. Sixteen channels of het-v were fielded and provided high fidelity expansion data at distances of up to 30 mm. High speed framing camera images were obtained and show no signs of cylinder break up or spallation until distances greater then 35 mm. The het-v expansion data made it possible to resolve up to 8 shock reverberations in the wall as it expands. The expansion of the cylinder wall was recorded both before and after steady state detonation was reached and the results compared. Het-v probes were fielded at different angles to the expanding cylinder wall allowing both the vertical and horizontal expansion velocity to be determined. The extra information that these cylinder tests yielded will allow for more accurate code validation and determination of the equation of state of the explosive products.

  12. Design of an Fiber-Coupled Laser Heterodyne Interferometer for the FLARE

    NASA Astrophysics Data System (ADS)

    Frank, Samuel; Yoo, Jongsoo; Ji, Hantao; Jara-Almonte, Jon

    2016-10-01

    The FLARE (Facility for Laboratory Reconnection Experiments), which is currently under construction at PPPL, requires a complete set of laboratory plasma diagnostics. The Langmuir probes that will be used in the device to gather local density data require a reliable interferometer system to serve as baseline for density measurement calibration. A fully fiber-coupled infrared laser heterodyne interferometer has been designed in order to serve as the primary line-integrated electron density diagnostic. Thanks to advances in the communications industry many fiber optic devices and phase detection methods have advanced significantly becoming increasingly reliable and inexpensive. Fully fiber coupling a plasma interferometer greatly simplifies alignment procedures needed since the only free space laser path needing alignment is through the plasma itself. Fiber-coupling also provides significant resistance to vibrational noise, a common problem in plasma interferometry systems. This device also uses a greatly simplified phase detection scheme in which chips, originally developed for the communications industry, capable of directly detecting the phase shift of a signal with high time resolution. The design and initial performance of the system will be discussed.

  13. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    PubMed Central

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  14. Balance in Assessment

    ERIC Educational Resources Information Center

    White, Richard

    2007-01-01

    The review by Black and Wiliam of national systems makes clear the complexity of assessment, and identifies important issues. One of these is "balance": balance between local and central responsibilities, balance between the weights given to various purposes of schooling, balance between weights for various functions of assessment, and balance…

  15. A Question of Balance

    ERIC Educational Resources Information Center

    Claxton, David B.; Troy, Maridy; Dupree, Sarah

    2006-01-01

    Most authorities consider balance to be a component of skill-related physical fitness. Balance, however, is directly related to health, especially for older adults. Falls are a leading cause of injury and death among the elderly. Improved balance can help reduce falls and contribute to older people remaining physically active. Balance is a…

  16. Dynamic balance improvement program

    NASA Technical Reports Server (NTRS)

    Butner, M. F.

    1983-01-01

    The reduction of residual unbalance in the space shuttle main engine (SSME) high pressure turbopump rotors was addressed. Elastic rotor response to unbalance and balancing requirements, multiplane and in housing balancing, and balance related rotor design considerations were assessed. Recommendations are made for near term improvement of the SSME balancing and for future study and development efforts.

  17. Balancing Vanguard Satellites

    NASA Technical Reports Server (NTRS)

    Simkovich, A.; Baumann, Robert C.

    1961-01-01

    The Vanguard satellites and component parts were balanced within the specified limits by using a Gisholt Type-S balancer in combination with a portable International Research and Development vibration analyzer and filter, with low-frequency pickups. Equipment and procedures used for balancing are described; and the determination of residual imbalance is accomplished by two methods: calculation, and graphical interpretation. Between-the-bearings balancing is recommended for future balancing of payloads.

  18. Quad-Chip Double-Balanced Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Lin, Robert H.; Ward, John S.; Bruneau, Peter J.; Mehdi, Imran; Thomas, Bertrand C.; Maestrini, Alain

    2010-01-01

    Solid-state frequency multipliers are used to produce tunable broadband sources at millimeter and submillimeter wavelengths. The maximum power produced by a single chip is limited by the electrical breakdown of the semiconductor and by the thermal management properties of the chip. The solution is to split the drive power to a frequency tripler using waveguides to divide the power among four chips, then recombine the output power from the four chips back into a single waveguide. To achieve this, a waveguide branchline quadrature hybrid coupler splits a 100-GHz input signal into two paths with a 90 relative phase shift. These two paths are split again by a pair of waveguide Y-junctions. The signals from the four outputs of the Y-junctions are tripled in frequency using balanced Schottky diode frequency triplers before being recombined with another pair of Y-junctions. A final waveguide branchline quadrature hybrid coupler completes the combination. Using four chips instead of one enables using four-times higher power input, and produces a nearly four-fold power output as compared to using a single chip. The phase shifts introduced by the quadrature hybrid couplers provide isolation for the input and output waveguides, effectively eliminating standing waves between it and surrounding components. This is accomplished without introducing the high losses and expense of ferrite isolators. A practical use of this technology is to drive local oscillators as was demonstrated around 300 GHz for a heterodyne spectrometer operating in the 2-3-THz band. Heterodyne spectroscopy in this frequency band is especially valuable for astrophysics due to the presence of a very large number of molecular spectral lines. Besides high-resolution radar and spectrographic screening applications, this technology could also be useful for laboratory spectroscopy.

  19. High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop.

    PubMed

    Dennis, Tasshi; Hale, Paul D

    2011-10-10

    We demonstrate a high-accuracy heterodyne measurement system for characterizing the magnitude of the frequency response of high-speed 1.55 µm photoreceivers from 2 MHz to greater than 50 GHz. At measurement frequencies below 2 GHz, we employ a phase-locked loop with a double-heterodyne detection scheme, which enables precise tuning of the heterodyne beat frequency with an RF synthesizer. At frequencies above 2 GHz the system is operated in free-run mode with thermal tuning of the laser beat frequency. We estimate the measurement uncertainties for the low frequency range and compare the measured high-frequency response of a photoreceiver to a measurement using electro-optic sampling.

  20. Development of he Nanosat Oxygen A-Band Spatial Heterodyne Interferometer (NOASHIN)

    NASA Astrophysics Data System (ADS)

    Watchorn, S. R.; Noto, J.; Doe, R. A.; Fish, C. S.

    2014-12-01

    The abundance of CO2 in the mesopause region has long been shown to track with mesopause cooling, making mesopause-region temperature measurement a way to track CO2 abundance in this critical region, where climate change indications often manifest early. One of the brightest thermally excited emissions in the mesopause region is the O2 A-band, whose emission peaks are significantly modulated as a function of temperature. Thus, spectroscopic recovery of a set of A-band emission lines between 763 and 765 nm, and a comparison of peak intensities, will provide information about mesopause temperature, and thus CO2 abundance. To get global coverage of this emission with high time resolution ( < 1s) requires a high-etendue spectrometer that can resolve the target lines (resolution ~ .06 nm), preferably aboard an efficient, economical vehicle capable of the global coverage that would be most beneficial to existing mesopause models. Nanosatellites are such a vehicle. The NOASHIN instrument is a spectrometer very well suited to the low size, weight, and power (SWAP) of the nanosat platform. It is built around a Spatial Heterodyne Spectrometer (SHS), a monolithic Fourier transform spectrometer with no moving parts that shares the high etendue, high resolution advantages of conventional interferometers in a robust package ideal for space-based platforms. The NOASHIN instrument will be developed for, ultimately, a 1-U CubeSat, nadir-viewing nightglow measurement payload, used in a pushbroom imaging configuration from low-Earth orbit (~ 650 km), with an exposure time of < 1 s, leading to a target footprint of 9-km along-track. The current development project will integrate a prototype NOASHIN SHS monolith into a 1.5-U CubeSat engineering prototype at the design SWAP requirements. The prototype will be detect emissions of the expected intensity (~700 R) from a lab source near the A-band and offload data onto a local computer for analysis.

  1. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Goldstein, Jeffrey J.

    1990-01-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  2. Thermal infrared laser heterodyne spectroradiometry for solar occultation atmospheric CO2 measurements

    NASA Astrophysics Data System (ADS)

    Hoffmann, Alex; Macleod, Neil A.; Huebner, Marko; Weidmann, Damien

    2016-12-01

    This technology demonstration paper reports on the development, demonstration, performance assessment, and initial data analysis of a benchtop prototype quantum cascade laser heterodyne spectroradiometer, operating within a narrow spectral window of ˜ 1 cm-1 around 953.1 cm-1 in transmission mode and coupled to a passive Sun tracker. The instrument has been specifically designed for accurate dry air total column, and potentially vertical profile, measurements of CO2. Data from over 8 months of operation in 2015 near Didcot, UK, confirm that atmospheric measurements with noise levels down to 4 times the shot noise limit can be achieved with the current instrument. Over the 8-month period, spectra with spectral resolutions of 60 MHz (0.002 cm-1) and 600 MHz (0.02 cm-1) have been acquired with median signal-to-noise ratios of 113 and 257, respectively, and a wavenumber calibration uncertainty of 0.0024 cm-1.Using the optimal estimation method and RFM as the radiative transfer forward model, prior analysis and theoretical benchmark modelling had been performed with an observation system simulator (OSS) to target an optimized spectral region of interest. The selected narrow spectral window includes both CO2 and H2O ro-vibrational transition lines to enable the measurement of dry air CO2 column from a single spectrum. The OSS and preliminary retrieval results yield roughly 8 degrees of freedom for signal (over the entire state vector) for an arbitrarily chosen a priori state with relatively high uncertainty ( ˜ 4 for CO2). Preliminary total column mixing ratios obtained are consistent with GOSAT monthly data. At a spectral resolution of 60 MHz with an acquisition time of 90 s, instrumental noise propagation yields an error of around 1.5 ppm on the dry air total column of CO2, exclusive of biases and geophysical parameters errors at this stage.

  3. Absolute wind measurements in the lower thermosphere of Venus using infrared heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Goldstein, Jeffrey J.

    1990-05-01

    The first absolute wind velocities above the Venusian cloud-tops were obtained using NASA/Goddard infrared heterodyne spectrometers at the NASA Infrared Telescope Facility (IRTF) and the McMath Solar Telescope. Beam-integrated Doppler displacements in the non-thermal emission core of (12)C(16)O2 10.33 micron R(8) sampled the line of sight projection of the lower thermospheric wind field (100 to 120 km). A field-usable Lamb-dip laser stabilization system, developed for spectrometer absolute frequency calibration to less than + or - 0.1 MHz, allowed S/N-limited line of sight velocity resolution at the 1 m/s level. The spectrometer's diffraction-limited beam (1.7 arc-second HPBW at McMath, 0.9 arc-second HPBW at IRTF), and 1 to 2 arc-second seeing, provided the spatial resolution necessary for circulation model discrimination. Qualitative analysis of beam-integrated winds provided definitive evidence of a dominant subsolar-antisolar circulation in the lower thermosphere. Beam-integrated winds were modelled with a 100x100 grid over the beam, incorporating beam spatial rolloff and across-the-beam gradients in non-thermal emission intensity, line of sight projection geometry, and horizontal wind velocity. Horizontal wind velocity was derived from a 2-parameter model wind field comprised of subsolar-antisolar and zonal components. Best-fit models indicated a dominant subsolar-antisolar flow with 120 m/s cross-terminator winds and a retrograde zonal component with a 25 m/s equatorial velocity. A review of all dynamical indicators above the cloud-tops allowed development of an integrated and self-consistent picture of circulation in the 70 to 200 km range.

  4. Development of a high-speed wavelength-agile CO2 local oscillator for heterodyne DIAL measurements

    NASA Astrophysics Data System (ADS)

    Senft, Daniel C.; Pierrottet, Diego F.

    2002-06-01

    A high repetition rate, wavelength agile CO2 laser has been developed at the Air Force Research Laboratory for use as a local oscillator in a heterodyne detection receiver. Fats wavelength selection is required for measurements of airborne chemical vapors using the differential absorption lidar (DIAL) technique. Acousto-optic modulator are used to tune between different wavelengths at high speeds without the need for moving mechanical parts. Other advantages obtained by the use of acousto-optic modulators are laser output power control per wavelength and rugged packaging for field applications. The local oscillator design is described, and the results from laboratory DIAL measurements are presented. The coherent remote optical sensor system is an internal research project being conducted by the Air Force Research Laboratory Directed Energy Directorate, Active Remote Sensing Branch. The objective of the project is to develop a new long-range standoff spectral sensor that takes advantage of the enhanced performance capabilities coherent detection can provide. Emphasis of the development is on a low cost, compact, and rugged active sensor exclusively designed for heterodyne detection using the differential absorption lidar technique. State of the art technologies in waveguide laser construction and acousto- optics make feasible the next generation of lasers capable of supporting coherent lidar system requirements. Issues addressed as part of the development include optoelectronic engineering of a low cost rugged system, and fast data throughput for real time chemical concentration measurements. All hardware used in this sensor are off-the- shelf items, so only minor hardware modifications were required for the system as it stands. This paper describes a high-speed heterodyne detection CO2 DIAL system that employs a wavelength agile, acousto-optically tuned local oscillator in the receiver. Sample experimental data collected in a controlled environment are presented as

  5. A small-displacement sensor using total internal reflection theory and surface plasmon resonance technology for heterodyne interferometry.

    PubMed

    Wang, Shinn-Fwu

    2009-01-01

    A small-displacement sensor based on total-internal reflection theory and surface plasmon resonance technology is proposed for use in heterodyne interferometry. A small displacement can be obtained simply by measuring the variation in phase difference between s- and p-polarization states with the small-displacement sensor. The theoretical displacement resolution of the small-displacement sensor can reach 0.45 nm. The sensor has some additional advantages, e.g., a simple optical setup, high resolution, high sensitivity and rapid measurement. Its feasibility is also demonstrated.

  6. Exciton spin coherence in InGaAs/GaAs quantum dots revisited by heterodyne pump-probe experiment

    NASA Astrophysics Data System (ADS)

    Eble, B.; Siarry, B.; Bernardot, F.; Grinberg, P.; Testelin, C.; Lemaître, A.

    2016-10-01

    We demonstrate here the phase control of the neutral exciton quantum beats in InGaAs/GaAs quantum dots. A longitudinal magnetic field is used as a tuning parameter to change the phase of the oscillations in a deterministic way. This effect arises from the competition between the Zeeman splitting and the electron/hole exchange interaction on the exciton dipole symmetry. To explore this mechanism, we have developed a pump-probe setup based on the optical heterodyne detection of the quantum dots reflectivity allowing one to measure the exciton dynamics from a small quantum dots ensemble (˜300).

  7. Random depth access full-field heterodyne low-coherence interferometry utilizing acousto-optic modulation and a complementary metaloxide semiconductor camera.

    PubMed

    Egan, Patrick; Connelly, Michael J; Lakestani, Fereydoun; Whelan, Maurice P

    2006-04-01

    With analog scanning, time-domain low-coherence interferometry lacks precise depth information, and optical carrier generation demands a linear scanning speed. Full-field heterodyne low-coherence interferometry that uses a logarithmic complementary metal-oxide semiconductor camera, acousto-optic modulation, and digital depth stepping is reported, with which random regions of interest, lateral and axial, can be accessed. Furthermore, nanometer profilometry is possible through heterodyne phase retrieval of the interference signal. The approach demonstrates inexpensive yet high-precision functional machine vision offering true digital random access in three dimensions.

  8. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Steel, Emily Wilson

    2016-01-01

    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  9. Alternative method for measuring the full-field refractive index of a gradient-index lens with normal incidence heterodyne interferometry.

    PubMed

    Chen, Yen-Liang; Hsieh, Hung-Chih; Wu, Wang-Tsung; Chang, Wei-Yao; Su, Der-Chin

    2010-12-20

    A linearly/circularly polarized heterodyne light beam coming from a heterodyne light source with an electro-optic modulator in turn enters a modified Twyman-Green interferometer to measure the surface plane of a GRIN lens. Two groups of periodic sinusoidal segments recorded by a fast complementary metal-oxide semiconductor camera are modified, and their associated phases are derived with the unique technique. The data are substituted into the special equations derived from the Fresnel equations, and the refractive index can be obtained. When the processes are applied to other pixels, the full-field refractive-index distribution can be obtained similarly. Its validity is demonstrated.

  10. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement.

    PubMed

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  11. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement

    SciTech Connect

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  12. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  13. A new ultrafast technique for measuring the terahertz dynamics of chiral molecules: the theory of optical heterodyne-detected Raman-induced Kerr optical activity.

    PubMed

    Wynne, Klaas

    2005-06-22

    Optical heterodyne-detected Raman-induced Kerr optical activity (OHD-RIKOA) is a nonresonant ultrafast chiroptical technique for measuring the terahertz-frequency Raman spectrum of chirally active modes in liquids, solutions, and glasses of chiral molecules. OHD-RIKOA has the potential to provide much more information on the structure of molecules and the symmetries of librational and vibrational modes than the well-known nonchirally sensitive technique optical heterodyne-detected Raman-induced Kerr-effect spectroscopy (OHD-RIKES). The theory of OHD-RIKOA is presented and possible practical ways of performing the experiments are analyzed.

  14. Occlusal cranial balancing technique.

    PubMed

    Smith, Gerald H

    2007-01-01

    The acronym for Occlusal Cranial Balancing Technique is OCB. The OCB concept is based on the architectural principle of a level foundation. The principles of Occlusal Cranial Balancing are a monumental discovery and if applied will enhance total body function.

  15. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  16. Polarization-balanced beamsplitter

    DOEpatents

    Decker, Derek E.

    1998-01-01

    A beamsplitter assembly that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting.

  17. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  18. Hybrid Waveguides and Heterodyne Detectors Integrated Optics for 10 Micron Wavelengths

    DTIC Science & Technology

    1975-02-28

    waveguide 10 dB directional coupler for single-ended operation. A fully integrated approach in a balanced configuration Msing two detectors and hybrid...oscillator power requirements as is established practice in the Microwave art. The balanced configuration illustrated in Figure 3 requires a...Semiconductors. Cambridge University Press, 1961. 20. M. DiDomenico and 0. Svelto, "Solid-State Photodetection : A Comparison Between Photodlodes

  19. Wind Tunnel Balances

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Norton, F H

    1920-01-01

    Report embodies a description of the balance designed and constructed for the use of the National Advisory Committee for Aeronautics at Langley Field, and also deals with the theory of sensitivity of balances and with the errors to which wind tunnel balances of various types are subject.

  20. Coaching for Balance.

    ERIC Educational Resources Information Center

    Larson, Bonnie

    2001-01-01

    Discusses coaching for balance the integration of the whole self: physical (body), intellectual (mind), spiritual (soul), and emotional (heart). Offers four ways to identify problems and tell whether someone is out of balance and four coaching techniques for creating balance. (Contains 11 references.) (JOW)

  1. Human Balance System

    MedlinePlus

    ... and vision problems, and difficulty with concentration and memory. What is balance? Balance is the ability to maintain the body’s center of mass over its base of support. 1 A properly functioning balance system allows humans to see clearly while moving, identify orientation with ...

  2. Autonomous Field Measurements of CO2 in the Atmospheric Column with the Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Technical Reports Server (NTRS)

    Melroy, H. R.; Wilson, E. L.; Clarke, G. B.; Ott, L. E.; Mao, J.; Ramanathan, A. K.; McLinden, M. L.

    2015-01-01

    We present column CO2 measurements taken by the passive Miniaturized Laser Heterodyne Radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory (MLO) in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15 minute intervals during daylight hours. Laser Heterodyne Radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here is a preliminary retrieval analysis and the performance analysis that demonstrates that the Mini-LHR responds extremely well to changes in the atmospheric absorption.

  3. Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements.

    PubMed

    Akiyama, T; Van Zeeland, M A; Boivin, R L; Carlstrom, T N; Chavez, J A; Muscatello, C M; O'Neill, R C; Vasquez, J; Watkins, M; Martin, W; Colio, A; Finkenthal, D K; Brower, D L; Chen, J; Ding, W X; Perry, M

    2016-12-01

    A heterodyne detection scheme is combined with a 10.59 μm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 10(17) m(-2). Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.

  4. Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer (Mini-LHR).

    PubMed

    Melroy, H R; Wilson, E L; Clarke, G B; Ott, L E; Mao, J; Ramanathan, A K; McLinden, M L

    We present column CO2 measurements taken by the passive miniaturized laser heterodyne radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15-min intervals during daylight hours. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here are preliminary retrieval analysis and the performance analysis that demonstrate that the Mini-LHR responds extremely well to changes in the atmospheric absorption.

  5. Simultaneous ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH) and Fabry-Perot Interferometry

    NASA Astrophysics Data System (ADS)

    Englert, C. R.; Harlander, J. M.; Meriwether, J. W.; Brown, C. M.; Drob, D. P.; Emmert, J. T.; Castelaz, M.; Roesler, F. L.

    2011-12-01

    The concept of Doppler Asymmetric Spatial Heterodyne (DASH) instruments to measure upper atmospheric winds was initially published in 2006. The DASH approach is identical to the concept of Spatial Heterodyne Spectroscopy (SHS) except that one interferometer arm includes an additional fixed optical path offset, similar to the phase stepping Michelson technique which was used for the WINDII (Wind Imaging Interferometer) experiment. The advantages of DASH include having no moving parts, high sensitivity, and the ability to simultaneously observe multiple isolated emission lines, including a known light source for real time calibration. Since it was first proposed, the development of the DASH technique has progressed significantly. Major milestones include a proof of concept in the laboratory, the design, fabrication and test of a monolithic DASH interferometer for the thermospheric red line (O I 630nm), and initial ground based thermospheric wind measurements using this interferometer. To further increase the technical readiness level (TRL) of DASH for a future satellite instrument, we have conducted coordinated measurements with a DASH prototype and Fabry-Perot interferometer (FPI) from the Pisgah Astronomical Research Institute in North Carolina in the summer of 2011. We will present a comparison of the two experimental data sets and examine how they compare with the empirical horizontal wind model HWM-07.

  6. Bench testing of a heterodyne CO2 laser dispersion interferometer for high temporal resolution plasma density measurements

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Van Zeeland, M. A.; Boivin, R. L.; Carlstrom, T. N.; Chavez, J. A.; Muscatello, C. M.; O'Neill, R. C.; Vasquez, J.; Watkins, M.; Martin, W.; Colio, A.; Finkenthal, D. K.; Brower, D. L.; Chen, J.; Ding, W. X.; Perry, M.

    2016-12-01

    A heterodyne detection scheme is combined with a 10.59 μm CO2 laser dispersion interferometer for the first time to allow large bandwidth measurements in the 10-100 MHz range. The approach employed utilizes a 40 MHz acousto-optic cell operating on the frequency doubled CO2 beam which is obtained using a high 2nd harmonic conversion efficiency orientation patterned gallium arsenide crystal. The measured standard deviation of the line integrated electron density equivalent phase resolution obtained with digital phase demodulation technique, is 4 × 1017 m-2. Air flow was found to significantly affect the baseline of the phase signal, which an optical table cover was able to reduce considerably. The heterodyne dispersion interferometer (DI) approach is found to be robustly insensitive to motion, with measured phase shifts below baseline drifts even in the presence of several centimeters of retroreflector induced path length variations. Plasma induced dispersion was simulated with a wedged ZnSe plate and the measured DI phase shifts are consistent with expectations.

  7. Autonomous field measurements of CO2 in the atmospheric column with the miniaturized laser heterodyne radiometer (Mini-LHR)

    NASA Astrophysics Data System (ADS)

    Melroy, H. R.; Wilson, E. L.; Clarke, G. B.; Ott, L. E.; Mao, J.; Ramanathan, A. K.; McLinden, M. L.

    2015-09-01

    We present column CO2 measurements taken by the passive miniaturized laser heterodyne radiometer (Mini-LHR) at 1611.51 nm at the Mauna Loa Observatory in Hawaii. The Mini-LHR was operated autonomously, during the month of May 2013 at this site, working in tandem with an AERONET sun photometer that measures aerosol optical depth at 15-min intervals during daylight hours. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. This iteration of the technology utilizes distributed feedback lasers to produce a low-cost, small, portable sensor that has potential for global deployment. Applications of this instrument include supplementation of existing monitoring networks to provide denser global coverage, providing validation for larger satellite missions, and targeting regions of carbon flux uncertainty. Also presented here are preliminary retrieval analysis and the performance analysis that demonstrate that the Mini-LHR responds extremely well to changes in the atmospheric absorption.

  8. Design study for a spatial heterodyne Doppler coherence imaging system for flow measurements on NSTX-U

    NASA Astrophysics Data System (ADS)

    Schwartz, Jacob; Jaworski, M. A.; Diallo, A.; Kaita, R.; Nichols, J. H.

    2015-11-01

    Measuring the flow of impurities in the SOL of NSTX-U can lead to understanding of main ion flow and heat transport. Spatial heterodyne Doppler coherence imaging is a technique that allows a single camera frame to record both the brightness and Doppler shift of an emitted spectral line over the entire field of view. With a tangential view on NSTX-U it is possible to tomographically reconstruct 2d (r-z) profiles of emissivity and flow velocity for an imaged impurity ion by assuming axisymmetry and field-aligned flow. One can derive the main ion parallel flow velocity by making four measurements and using additional assumptions. Imaging of two spectral lines each from two ion species allows solving for ne, Te, and the density of the two ion species by using ADAS emissivity tables. Since measurements of the velocity of two impurities are planned, it is possible to derive a main ion parallel velocity by using a reconstructed ni and Ti (from other diagnostics), a 1d conduction-limited SOL model, and a 1d model of forces on impurities. With fewer than four measurements, it is possible to derive the main ion velocity if the impurities are entrained in the flow. A design study for such a spatial heterodyne Doppler coherence imaging system on NSTX-U will be presented. Supported by U.S. DOE Contract No. DE-AC02-09CH11466.

  9. Reconceptualizing balance: attributes associated with balance performance.

    PubMed

    Thomas, Julia C; Odonkor, Charles; Griffith, Laura; Holt, Nicole; Percac-Lima, Sanja; Leveille, Suzanne; Ni, Pensheng; Latham, Nancy K; Jette, Alan M; Bean, Jonathan F

    2014-09-01

    Balance tests are commonly used to screen for impairments that put older adults at risk for falls. The purpose of this study was to determine the attributes that were associated with balance performance as measured by the Frailty and Injuries: Cooperative Studies of Intervention Techniques (FICSIT) balance test. This study was a cross-sectional secondary analysis of baseline data from a longitudinal cohort study, the Boston Rehabilitative Impairment Study of the Elderly (Boston RISE). Boston RISE was performed in an outpatient rehabilitation research center and evaluated Boston area primary care patients aged 65 to 96 (N=364) with self-reported difficulty or task-modification climbing a flight of stairs or walking 1/2 of a mile. The outcome measure was standing balance as measured by the FICSIT-4 balance assessment. Other measures included: self-efficacy, pain, depression, executive function, vision, sensory loss, reaction time, kyphosis, leg range of motion, trunk extensor muscle endurance, leg strength and leg velocity at peak power. Participants were 67% female, had an average age of 76.5 (±7.0) years, an average of 4.1 (±2.0) chronic conditions, and an average FICSIT-4 score of 6.7 (±2.2) out of 9. After adjusting for age and gender, attributes significantly associated with balance performance were falls self-efficacy, trunk extensor muscle endurance, sensory loss, and leg velocity at peak power. FICSIT-4 balance performance is associated with a number of behavioral and physiologic attributes, many of which are amenable to rehabilitative treatment. Our findings support a consideration of balance as multidimensional activity as proposed by the current International Classification of Functioning, Disability, and Health (ICF) model.

  10. The evaluation of a HgCdTe photomixer with a Tunable Diode Laser (TDL) and the evaluation of TDL's as a local oscillator in a heterodyne detection system

    NASA Technical Reports Server (NTRS)

    Harward, C. N.; Kindle, E. C.

    1977-01-01

    Heterodyne systems would be much more versatile if a broadly tunable laser, such as a semiconductor diode laser (TDL), could be used as the local oscillator (LO). Previous studies have shown that while a TDL can be used as an LO, the TDL lack sufficient power to cause the signal-to-noise ratio to be shot noise limited. The heterodyne system with a HgCdTe photodiode as the LO was characterized and the beat frequency response of the heterodyne systems was mapped out.

  11. Identifying Balance in a Balanced Scorecard System

    ERIC Educational Resources Information Center

    Aravamudhan, Suhanya; Kamalanabhan, T. J.

    2007-01-01

    In recent years, strategic management concepts seem to be gaining greater attention from the academicians and the practitioner's alike. Balanced Scorecard (BSC) concept is one such management concepts that has spread in worldwide business and consulting communities. The BSC translates mission and vision statements into a comprehensive set of…

  12. Development of a diode laser heterodyne spectrometer and observations of silicon monoxide in sunspots. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1981-01-01

    A state of the art, tunable diode laser infrared heterodyne spectrometer was designed and constructed for ground based observations throughout the 8 to 12 micron atmospheric window. The instrument was optimized for use with presently available tunable diode lasers, and was designed as a flexible field system for use with large reflecting telescopes. The instrument was aligned and calibrated using laboratory and astronomical sources. Observations of SiO fundamental (v = 1-0) and hot band (v = 2-1) absorption features were made in sunspots near 8 microns using the spectrometer. The data permit an unambiguous determination of the temperature pressure relation in the upper layers of the umbral atmosphere, and support the sunspot model suggested by Stellmacher and Wiehr.

  13. Coherent 1-micron lidar measurements of atmospheric-turbulence-induced spatial decorrelation using a multielement heterodyne detector array

    NASA Technical Reports Server (NTRS)

    Chan, Kin P.; Killinger, Dennis K.

    1992-01-01

    A coherent 1-micron Nd:YAG lidar system is employed to measure directly the reduced spatial coherence length rho 0 of the lidar returns caused by atmospheric turbulence. The experiments were conducted by using a 2 x 2 heterodyne detector array, which permitted real-time spatial correlation measurements of the lidar returns at two different detector spacings. The spatial correlation coefficients and spatial coherence length of the lidar returns from a hard target were measured during a day-to-night time period when the atmospheric turbulence parameter, Cn-squared, was measured to vary from 2 x 10 exp -13 to 2 x 10 exp -4 m exp -2/3. These directly measured values of rho 0 as a function of Cn-squared were found to be in good agreement with theoretical predictions.

  14. An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz

    NASA Technical Reports Server (NTRS)

    Siles, Jose V.; Mehdi, Imran; Schlecht, Erich T.; Gulkis, Samuel; Chattopadhyay, Goutam; Lin, Robert H.; Lee, Choonsup; Gill, John J.; Thomas, Bertrand; Maestrini, Alain E.

    2013-01-01

    Heterodyne receivers at submillimeter wavelengths have played a major role in astrophysics as well as Earth and planetary remote sensing. All-solid-state heterodyne receivers using both MMIC (monolithic microwave integrated circuit) Schottky-diode-based LO (local oscillator) sources and mixers are uniquely suited for long-term planetary missions or Earth climate monitoring missions as they can operate for decades without the need for any active cryogenic cooling. However, the main concern in using Schottky-diode-based mixers at frequencies beyond 1 THz has been the lack of enough LO power to drive the devices because 1 to 3 mW are required to properly pump Schottky diode mixers. Recent progress in HEMT- (high-electron-mobility- transistor) based power amplifier technology, with output power levels in excess of 1 W recently demonstrated at W-band, as well as advances in MMIC Schottky diode circuit technology, have led to measured output powers up to 1.4 mW at 0.9 THz. Here the first room-temperature tunable, all-planar, Schottky-diode-based receiver is reported that is operating at 1.2 THz over a wide (˜20%) bandwidth. The receiver front-end (see figure) consists of a Schottky-diode-based 540 to 640 GHz multiplied LO chain (featuring a cascade of W-band power amplifiers providing around 120 to 180 mW at W-band), a 200-GHz MMIC frequency doubler, and a 600-GHz MMIC frequency tripler, plus a biasable 1.2-THz MMIC sub-harmonic Schottky-diode mixer. The LO chain has been designed, fabricated, and tested at JPL and provides around 1 to 1.5 mW at 540 o 640 GHz. The sub-harmonic mixer consists of two Schottky diodes on a thin GaAs membrane in an anti-parallel configuration. An integrated metal insulator metal (MIM) capacitor has been included on-chip to allow dc bias for the Schottky diodes. A bias voltage of around 0.5 V/diode is necessary to reduce the LO power required down to the 1 to 1.5 mW available from the LO chain. The epilayer thickness and doping profiles have

  15. High-frequency heterodyne lock-in thermography (HeLIT): A highly sensitive method to detect early caries

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Jun-yan; Yang, Jun-han; Oliullah, Md.; Wang, Xiao-chun; Wang, Yang

    2016-10-01

    In this letter, a nonlinear photothermal characteristic of dental tissues has been verified by photothermal radiometry at a given frequency with changing of the laser intensity. Subsequently, the high-frequency heterodyne lock-in thermography (HeLIT) scheme has been introduced to overcome shortages of the low infrared camera frame rate and the poor signal-noise ratio. The smooth surface tooth was artificially demineralized at a different time, and then it was detected by HeLIT, Results illustrated that the phase delay increases with the extension of the demineralized treatment time. The comparison experiments between HeLIT and the homodyne lock-in thermography for detecting artificial caries were carried out. Experimental results illustrated that the HeLIT has the merits of high sensitivity and specificity in detecting early caries.

  16. A recirculating delayed self-heterodyne method using a Mach-Zehnder modulator for kHz-linewidth measurement

    NASA Astrophysics Data System (ADS)

    Deng, Shuo; Li, Min; Gao, Hongyun; Dai, Yawen

    2016-09-01

    A laser linewidth measurement method which uses a Mach-Zehnder electro-optic modulator (MZM) is proposed in a loss-compensated recirculating delayed self-heterodyne interferometer (LC-RDSHI). Compared with the traditional acousto-optic modulator (AOM), the electro-optic modulator has the merits of broader bandwidth, lower insertion loss, higher extinction ratio and thus, a wider application. A theoretical analysis shows that the power spectrum curve of the novel measurement system is a Lorentzian line, which fits well with experiment. The linewidth is measured to be 137 ± 7 kHz at a frequency shift of 4 GHz. Measurement of a distributed feedback Bragg (DFB) laser has manifested that the linewidth broadens from 98.5 kHz to 137.4 kHz as the operating temperature changes by 16 °C. This work will allow investigation of narrow linewidth semiconductor and fiber laser stability.

  17. Multi-event waveform-retrieved distributed optical fiber acoustic sensor using dual-pulse heterodyne phase-sensitive OTDR.

    PubMed

    He, Xiangge; Xie, Shangran; Liu, Fei; Cao, Shan; Gu, Lijuan; Zheng, Xiaoping; Zhang, Min

    2017-02-01

    We demonstrate a novel type of distributed optical fiber acoustic sensor, with the ability to detect and retrieve actual temporal waveforms of multiple vibration events that occur simultaneously at different positions along the fiber. The system is realized via a dual-pulse phase-sensitive optical time-domain reflectometry, and the actual waveform is retrieved by heterodyne phase demodulation. Experimental results show that the system has a background noise level as low as 8.91×10-4  rad/√Hz with a demodulation signal-to-noise ratio of 49.17 dB at 1 kHz, and can achieve a dynamic range of ∼60  dB at 1 kHz (0.1 to 104 rad) for phase demodulation, as well as a detection frequency range from 20 Hz to 25 kHz.

  18. Design, development, and field testing of Infrared Heterodyne Radiometer (IHR) for remote profiling of tropospheric and stratospheric species

    NASA Technical Reports Server (NTRS)

    Lange, R.; Savage, M.; Peyton, B.

    1981-01-01

    The performance of a dual-channel infrared heterodyne radiometer, designed to remotely monitor the concentration and vertical distribution of selected atmospheric species, is described. Ground based solar viewing measurement using the IHR were performed at selected laser transitions for ammonia (NH3 and ozone O3). Flight tests were conducted aboard the Galileo II, NASA Ames CV-990, on the Latitude Survey Mission. Ozone was the selected atmospheric species for the airborne flight measurements because of the scientific interest in this atmospheric species, the availability of in situ monitors, the coordinated ozone measurements, and the availability of ground truth data. The IHS was operated in the solar viewing mode to determine ozone distributions in the stratosphere and in the nadir viewing mode to determine the ozone distribution in the troposphere. Airborne atmospheric propagation measurements also were carried out at selected CO2 laser transitions.

  19. Vibrational Coupling at the Topmost Surface of Water Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy.

    PubMed

    Suzuki, Yudai; Nojima, Yuki; Yamaguchi, Shoichi

    2017-03-15

    Unraveling vibrational coupling is the key to consistently interpret vibrational spectra of complex molecular systems. The vibrational spectrum of the water surface heavily suffers from vibrational coupling, which hinders complete understanding of the molecular structure and dynamics of the water surface. Here we apply heterodyne-detected sum frequency generation spectroscopy to the water surface and accomplish the assignment of a weak vibrational band located at the lower energy side of the free OH stretch. We find that this band is due to a combination mode of the hydrogen-bonded OH stretch and a low-frequency intermolecular vibration, and this combination band appears in the surface vibrational spectrum through anharmonic vibrational coupling that takes place exclusively at the topmost surface.

  20. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  1. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak

    SciTech Connect

    Han, X.; Liu, X.; Liu, Y. Li, E. Z.; Hu, L. Q.; Gao, X.; Domier, C. W.; Luhmann, N. C.

    2014-07-15

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104–168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ∼500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  2. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    SciTech Connect

    Gong, W.; Peng, X. Li, W.; Guo, H.

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  3. Frequency stabilization of a 1083 nm fiber laser to 4He transition lines with optical heterodyne saturation spectroscopies

    NASA Astrophysics Data System (ADS)

    Gong, W.; Peng, X.; Li, W.; Guo, H.

    2014-07-01

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable 4He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10-12@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  4. Modeling and Analysis of Phase Fluctuation in a High-Precision Roll Angle Measurement Based on a Heterodyne Interferometer

    PubMed Central

    Huang, Junhui; Wang, Zhao; Gao, Jianmin; Yu, Bao

    2016-01-01

    Heterodyne interferometry is a high-precision method applied in roll angle measurements. Phase metering is essential for high precision. During a high-precision measurement, a phase fluctuation appears even when the roll angle does not vary, which has never been analyzed before. Herein, the reason for the phase fluctuation is revealed, which results from the frequency-difference fluctuation and time difference between measurement and reference beams. A mathematical model of that phase-fluctuation mechanism is established, and that model provides a theoretical basis for analyzing and reducing the phase fluctuation. The impact that the main factors have on the phase metering is analyzed quantitatively, and experiments are carried out to validate the model. Finally, the phase fluctuation decreases to 0.02° by frequency reduction, which conversely verifies the theoretical model. PMID:27490552

  5. A comparison of delayed self-heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers.

    PubMed

    Canagasabey, Albert; Michie, Andrew; Canning, John; Holdsworth, John; Fleming, Simon; Wang, Hsiao-Chuan; Aslund, Mattias L

    2011-01-01

    Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are w(L) (MZI) = (1.6 ± 0.2) kHz and w(L) (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. This is explained by the unscrambling of polarisation drift using the Faraday rotator mirrors, confirmed by comparing with non-rotating standard gold coated fibre end mirrors.

  6. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  7. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser

    PubMed Central

    Özdemir, Şahin Kaya; Zhu, Jiangang; Yang, Xu; Peng, Bo; Yilmaz, Huzeyfe; He, Lina; Monifi, Faraz; Huang, Steven He; Long, Gui Lu; Yang, Lan

    2014-01-01

    Optical whispering-gallery-mode resonators (WGMRs) have emerged as promising platforms for label-free detection of nano-objects. The ultimate sensitivity of WGMRs is determined by the strength of the light–matter interaction quantified by quality factor/mode volume, Q/V, and the resolution is determined by Q. To date, to improve sensitivity and precision of detection either WGMRs have been doped with rare-earth ions to compensate losses and increase Q or plasmonic resonances have been exploited for their superior field confinement and lower V. Here, we demonstrate, for the first time to our knowledge, enhanced detection of single-nanoparticle-induced mode splitting in a silica WGMR via Raman gain-assisted loss compensation and WGM Raman microlaser. In particular, the use of the Raman microlaser provides a dopant-free, self-referenced, and self-heterodyned scheme with a detection limit ultimately determined by the thermorefractive noise. Notably, we detected and counted individual nanoparticles with polarizabilities down to 3.82 × 10−6 μm3 by monitoring a heterodyne beatnote signal. This level of sensitivity is achieved without exploiting plasmonic effects, external references, or active stabilization and frequency locking. Single nanoparticles are detected one at a time; however, their characterization by size or polarizability requires ensemble measurements and statistical averaging. This dopant-free scheme retains the inherited biocompatibility of silica and could find widespread use for sensing in biological media. The Raman laser and operation band of the sensor can be tailored for the specific sensing environment and the properties of the targeted materials by changing the pump laser wavelength. This scheme also opens the possibility of using intrinsic Raman or parametric gain for loss compensation in other systems where dissipation hinders progress and limits applications. PMID:25197086

  8. CHIMPS: the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey

    NASA Astrophysics Data System (ADS)

    Rigby, A. J.; Moore, T. J. T.; Plume, R.; Eden, D. J.; Urquhart, J. S.; Thompson, M. A.; Mottram, J. C.; Brunt, C. M.; Butner, H. M.; Dempsey, J. T.; Gibson, S. J.; Hatchell, J.; Jenness, T.; Kuno, N.; Longmore, S. N.; Morgan, L. K.; Polychroni, D.; Thomas, H.; White, G. J.; Zhu, M.

    2016-03-01

    We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≤ 0.5° and 28° ≲ l ≲ 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≤20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations.

  9. HEB heterodyne focal plane arrays: a terahertz technology for high sensitivity near-range security imaging systems

    NASA Astrophysics Data System (ADS)

    Gerecht, Eyal; Gu, Dazhen; Yngvesson, Sigfrid; Rodriguez-Morales, Fernando; Zannoni, R.; Nicholson, John

    2005-05-01

    We have achieved the first demonstration of a low-noise heterodyne array operating at a frequency above 1 THz (1.6 THz). The prototype array has three elements, consisting of NbN hot electron bolometer (HEB) detectors on silicon substrates. We use a quasi-optical design to couple the signal and local oscillator (LO) power to the detector. We also demonstrate, for the first time, how the HEB detectors can be intimately integrated in the same block with monolithic microwave integrated circuit (MMIC) IF amplifiers. Such focal plane arrays can be increased in size to a few hundred elements using the next generation fabrication architecture for compact and easy assembly. Future HEB-based focal plane arrays will make low-noise heterodyne imaging systems with high angular resolution possible from 500 GHz to several terahertz. Large low-noise HEB arrays are well suited for real-time video imaging at any frequency over the entire terahertz spectrum. This is made possible by virtue of the extremely low local oscillator power requirements of the HEB detectors (a few hundred nanowatts to a microwatt per pixel). The operating temperature is 4 to 6 K, which can be provided by a compact and mobile cryocooler system, developed as a spin-off from the space program. The terahertz HEB imager consists of a computer-controlled optical system mounted on an elevation and azimuth scanning translator which provides a two-dimensional image of the target. We present preliminary measured data at the symposium for a terahertz security system of this type.

  10. Judicial Checks and Balances

    ERIC Educational Resources Information Center

    La Porta, Rafael; Lopez-de-Silanes, Florencio; Pop-Eleches, Cristian; Shleifer, Andrei

    2004-01-01

    In the Anglo-American constitutional tradition, judicial checks and balances are often seen as crucial guarantees of freedom. Hayek distinguishes two ways in which the judiciary provides such checks and balances: judicial independence and constitutional review. We create a new database of constitutional rules in 71 countries that reflect these…

  11. Leadership: A Balancing Act

    ERIC Educational Resources Information Center

    Hines, Thomas E.

    2011-01-01

    Maintaining balance in leadership can be difficult because balance is affected by the personality, strengths, and attitudes of the leader as well as the complicated environment within and outside the community college itself. This article explores what being a leader at the community college means, what the threats are to effective leadership, and…

  12. A Balance of Power?

    ERIC Educational Resources Information Center

    Mosey, Edward

    1991-01-01

    The booming economy of the Pacific Northwest region promotes the dilemma of balancing the need for increased electrical power with the desire to maintain that region's unspoiled natural environment. Pertinent factors discussed within the balance equation are population trends, economic considerations, industrial power requirements, and…

  13. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  14. A smartphone inertial balance

    NASA Astrophysics Data System (ADS)

    Barrera-Garrido, Azael

    2017-04-01

    In order to measure the mass of an object in the absence of gravity, one useful tool for many decades has been the inertial balance. One of the simplest forms of inertial balance is made by two mass holders or pans joined together with two stiff metal plates, which act as springs.

  15. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  16. Active balance system and vibration balanced machine

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang (Inventor); Augenblick, John E. (Inventor); Peterson, Allen A. (Inventor); White, Maurice A. (Inventor)

    2005-01-01

    An active balance system is provided for counterbalancing vibrations of an axially reciprocating machine. The balance system includes a support member, a flexure assembly, a counterbalance mass, and a linear motor or an actuator. The support member is configured for attachment to the machine. The flexure assembly includes at least one flat spring having connections along a central portion and an outer peripheral portion. One of the central portion and the outer peripheral portion is fixedly mounted to the support member. The counterbalance mass is fixedly carried by the flexure assembly along another of the central portion and the outer peripheral portion. The linear motor has one of a stator and a mover fixedly mounted to the support member and another of the stator and the mover fixedly mounted to the counterbalance mass. The linear motor is operative to axially reciprocate the counterbalance mass.

  17. Load Balancing Scientific Applications

    SciTech Connect

    Pearce, Olga Tkachyshyn

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  18. Consideration of Dynamical Balances

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.

    2015-01-01

    The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.

  19. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  20. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  1. Mars Balance Challenge

    NASA Video Gallery

    The Challenge is to develop ideas for how NASA can turn available entry, descent, and landing balance mass on a future Mars mission into a scientific or technological payload. Proposed concepts sho...

  2. Strength and Balance Exercises

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Strength and Balance Exercises Updated:Sep 8,2016 If you have medical ... if you have been inactive and want to exercise vigorously, check with your doctor before beginning a ...

  3. Balancing Work & Family.

    ERIC Educational Resources Information Center

    Lee, Chris

    1991-01-01

    Describes the responses of some companies to increasing demands for family-work balance in terms of flexibility in working hours and leave policies, child care, and fringe benefits. Identifies some of the effects on the "bottom line." (SK)

  4. The Balanced Literacy Diet.

    ERIC Educational Resources Information Center

    Willows, Dale

    2002-01-01

    Describes professional development program in Ontario school district to improve student reading and writing skills. Program used food-pyramid concepts to help teacher learn to provide a balanced and flexible approach to literacy instruction based on student needs. (PKP)

  5. Nonlinear compensation and crosstalk suppression for 4 × 160.8 Gb/s WDM PDM-QPSK signal with heterodyne detection.

    PubMed

    Zhang, Junwen; Yu, Jianjun; Chi, Nan; Dong, Ze; Li, Xinying

    2013-04-22

    We experimentally investigate digital intra-channel nonlinear impairment compensation and inter-channel crosstalk suppression for 4 × 160.8-Gb/s wavelength division multiplexing (WDM) polarization division multiplexing quadrature phase shift keying (PDM-QPSK) transmission over 1300-km single-mode fiber-28 (SMF-28) on a 50-GHz grid with the spectral efficiency of 3.21b/s/Hz, adopting simplified heterodyne coherent detection. By using nonlinear compensation based on DBP with crosstalk suppression based on post filter and maximum likelihood sequence estimation (PF&MLSE), the BER has been improved from 1.0 × 10(-3) to 3.5 × 10(-4) for 4 × 160.8Gb/s WDM PDM-QPSK with heterodyne detection after 1300km SMF-28 transmission.

  6. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.

    PubMed

    Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael

    2017-01-01

    A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.

  7. Balance Function Disorders

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Researchers at the Balance Function Laboratory and Clinic at the Minneapolis (MN) Neuroscience Institute on the Abbot Northwestern Hospital Campus are using a rotational chair (technically a "sinusoidal harmonic acceleration system") originally developed by NASA to investigate vestibular (inner ear) function in weightlessness to diagnose and treat patients with balance function disorders. Manufactured by ICS Medical Corporation, Schaumberg, IL, the chair system turns a patient and monitors his or her responses to rotational stimulation.

  8. Energy Balance and Obesity

    PubMed Central

    Hill, James O.; Wyatt, Holly R.; Peters, John C.

    2012-01-01

    This paper describes the interplay among energy intake, energy expenditure and body energy stores and illustrates how an understanding of energy balance can help develop strategies to reduce obesity. First, reducing obesity will require modifying both energy intake and energy expenditure and not simply focusing on either alone. Food restriction alone will not be effective in reducing obesity if human physiology is biased toward achieving energy balance at a high energy flux (i.e. at a high level of energy intake and expenditure). In previous environments a high energy flux was achieved with a high level of physical activity but in today's sedentary environment it is increasingly achieved through weight gain. Matching energy intake to a high level of energy expenditure will likely be more a more feasible strategy for most people to maintain a healthy weight than restricting food intake to meet a low level of energy expenditure. Second, from an energy balance point of view we are likely to be more successful in preventing excessive weight gain than in treating obesity. This is because the energy balance system shows much stronger opposition to weight loss than to weight gain. While large behavior changes are needed to produce and maintain reductions in body weight, small behavior changes may be sufficient to prevent excessive weight gain. In conclusion, the concept of energy balance combined with an understanding of how the body achieves balance may be a useful framework in helping develop strategies to reduce obesity rates. PMID:22753534

  9. Watt and joule balances

    NASA Astrophysics Data System (ADS)

    Robinson, Ian A.

    2014-04-01

    The time is fast approaching when the SI unit of mass will cease to be based on a single material artefact and will instead be based upon the defined value of a fundamental constant—the Planck constant—h . This change requires that techniques exist both to determine the appropriate value to be assigned to the constant, and to measure mass in terms of the redefined unit. It is important to ensure that these techniques are accurate and reliable to allow full advantage to be taken of the stability and universality provided by the new definition and to guarantee the continuity of the world's mass measurements, which can affect the measurement of many other quantities such as energy and force. Up to now, efforts to provide the basis for such a redefinition of the kilogram were mainly concerned with resolving the discrepancies between individual implementations of the two principal techniques: the x-ray crystal density (XRCD) method [1] and the watt and joule balance methods which are the subject of this special issue. The first three papers report results from the NRC and NIST watt balance groups and the NIM joule balance group. The result from the NRC (formerly the NPL Mk II) watt balance is the first to be reported with a relative standard uncertainty below 2 × 10-8 and the NIST result has a relative standard uncertainty below 5 × 10-8. Both results are shown in figure 1 along with some previous results; the result from the NIM group is not shown on the plot but has a relative uncertainty of 8.9 × 10-6 and is consistent with all the results shown. The Consultative Committee for Mass and Related Quantities (CCM) in its meeting in 2013 produced a resolution [2] which set out the requirements for the number, type and quality of results intended to support the redefinition of the kilogram and required that there should be agreement between them. These results from NRC, NIST and the IAC may be considered to meet these requirements and are likely to be widely debated

  10. Cavendish Balance Automation

    NASA Technical Reports Server (NTRS)

    Thompson, Bryan

    2000-01-01

    This is the final report for a project carried out to modify a manual commercial Cavendish Balance for automated use in cryostat. The scope of this project was to modify an off-the-shelf manually operated Cavendish Balance to allow for automated operation for periods of hours or days in cryostat. The purpose of this modification was to allow the balance to be used in the study of effects of superconducting materials on the local gravitational field strength to determine if the strength of gravitational fields can be reduced. A Cavendish Balance was chosen because it is a fairly simple piece of equipment for measuring gravity, one the least accurately known and least understood physical constants. The principle activities that occurred under this purchase order were: (1) All the components necessary to hold and automate the Cavendish Balance in a cryostat were designed. Engineering drawings were made of custom parts to be fabricated, other off-the-shelf parts were procured; (2) Software was written in LabView to control the automation process via a stepper motor controller and stepper motor, and to collect data from the balance during testing; (3)Software was written to take the data collected from the Cavendish Balance and reduce it to give a value for the gravitational constant; (4) The components of the system were assembled and fitted to a cryostat. Also the LabView hardware including the control computer, stepper motor driver, data collection boards, and necessary cabling were assembled; and (5) The system was operated for a number of periods, data collected, and reduced to give an average value for the gravitational constant.

  11. Miniaturized Near Infrared Heterodyne Spectroradiometer for Monitoring CO2, CH4 and CO in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Klimchuk, A., Sr.; Rodin, A.; Nadezhdinskiy, A.; Churbanov, D.; Spiridonov, M.

    2014-12-01

    The paper describes the concept of a compact, lightweight heterodyne NIR spectro-radiometer suitable for atmospheric sounding with solar occultations, and the first measurement of CO2 and CH4 absorption near 1.60mm and 1.65 mm with spectral resolution l/dl ~ 5*107. Highly stabilized DFB laser was used as local oscillator, while single model quartz fiber Y-coupler served as a diplexer. Radiation mixed in the single mode fiber was detected by quadratic detector using p-i-n diode within the bandpass of ~10 MHz. Wavelength coverage of spectral measurement was provided by sweeping local oscillator frequency in the range 1,1 см-1. With the exposure time of 10 min, the absorption spectrum of the atmosphere over Moscow has been recorded with S/N ~ 300. We retrieved methane vertical profile using Tikhonov method of smooth functional, which takes into account a priori information about first guess profile. The reference to model methane profile means that the regularization procedure always selects a priorivalues unless the measurements contradict this assumption.The retrieved methane profile demonstrates higher abundances in the lower scale height compared to the assumed model profile, well expected in the megalopolis center. The retrievals sensitivity is limited by 10 ppb, with the exception of the lower part of the profile where the tendency to lower values is revealed. Thus the methane abundance variations may be evaluated with relative accuracy better than 1%, which fits the requirements of greenhouse gas monitoring. The retrievals sensitivity of CO2 is about 1-2 ppm. CO2 observations was also used to estimate stratoshere wind by doppler shift of absorption line. Due to higher spectral resolution, lower sensitivity to atmospheric temperatures and other external factors, compared to heterodyne measurements in the thermal IR spectral range, the described technique provides accuracy comparable with much more complicated high resolution measurements now used in TCCON

  12. Improved analysis of column carbon dioxide and methane data from ground-based Miniaturized Laser Heterodyne Radiometer (Mini-LHR)

    NASA Astrophysics Data System (ADS)

    Wilson, E. L.; Melroy, H.; Ramanathan, A. K.; Mao, J.; Clarke, G.; McLinden, M.; Ott, L. E.; Miller, J. H. H.; Allan, G. R.; Holben, B. N.

    2014-12-01

    We present an improved data analysis for the Mini-LHR column measurements of CO2 and CH4 that includes corrections for refraction through the atmosphere and meteorological conditions. Multi-scan averaging has also been added to compensate for current shot noise limitations and improve instrument sensitivity. Data with the improved analysis will be shown for field measurements at the TCCON site at CalTech (March 2014), Calpoly during COW-Gas (March 2014), at Mauna Loa Observatory (May 2013), and Atwater, CA (February 2013). The Mini-LHR is a miniaturized version of a laser heterodyne radiometer that implements telecommunications lasers and components to produce a significantly reduced size, low-cost instrument. Laser heterodyne radiometry has been used since the 1970s to measure atmospheric gases such as ozone, water vapor, methane, ammonia, chlorine monoxide, and nitrous oxide. The Mini-LHR is passive and uses sunlight as the primary light source to measure absorption of CO2 and CH4 in the infrared. Sunlight is collected with collimation optics mounted to the AERONET sun tracker and superimposed with laser light in a single mode fiber coupler. The signals are mixed in a fast photoreceiver (InGaAs detector), and the RF (radio frequency) beat signal is extracted. Changes in concentration of the trace gas are realized through analyzing changes in the beat frequency amplitude. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the mini-LHR to be expanded into a global monitoring network. AERONET has more than 450 instruments worldwide and offers coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. A mini-LHR global ground network can also provide an uninterrupted data record that will both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3, and

  13. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  14. Sport-specific balance.

    PubMed

    Zemková, Erika

    2014-05-01

    This review includes the latest findings based on experimental studies addressing sport-specific balance, an area of research that has grown dramatically in recent years. The main objectives of this work were to investigate the postural sway response to different forms of exercise under laboratory and sport-specific conditions, to examine how this effect can vary with expertise, and to provide examples of the association of impaired balance with sport performance and/or increasing risk of injury. In doing so, sports where body balance is one of the limiting factors of performance were analyzed. While there are no significant differences in postural stability between athletes of different specializations and physically active individuals during standing in a standard upright position (e.g., bipedal stance), they have a better ability to maintain balance in specific conditions (e.g., while standing on a narrow area of support). Differences in magnitude of balance impairment after specific exercises (rebound jumps, repeated rotations, etc.) and mainly in speed of its readjustment to baseline are also observed. Besides some evidence on an association of greater postural sway with the increasing risk of injuries, there are many myths related to the negative influence of impaired balance on sport performance. Though this may be true for shooting or archery, findings have shown that in many other sports, highly skilled athletes are able to perform successfully in spite of increased postural sway. These findings may contribute to better understanding of the postural control system under various performance requirements. It may provide useful knowledge for designing training programs for specific sports.

  15. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  16. Rotary and Magnus balances

    NASA Technical Reports Server (NTRS)

    Malcolm, G. N.

    1981-01-01

    Two wind tunnel techniques for determining part of the aerodynamic information required to describe the dynamic bahavior of various types of vehicles in flight are described. Force and moment measurements are determined with a rotary-balance apparatus in a coning motion and with a Magnus balance in a high-speed spinning motion. Coning motion is pertinent to both aircraft and missiles, and spinning is important for spin stabilized missiles. Basic principles of both techniques are described, and specific examples of each type of apparatus are presented. Typical experimental results are also discussed.

  17. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    PubMed

    Lamsal, Nirmal; Angel, S Michael

    2016-11-22

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  18. Characterization of 3D MEMS structural dynamics with a conformal multi-channel fiber optic heterodyne vibrometer

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James; Apostol, Adela; Markov, Vladimir

    Insight into transient structural interactions, including coupled vibrations and modal non-degeneracy (mode splitting) is important to the development of current and next generation vibratory gyroscopes and MEMS resonators. Device optimization based on characterization of these effects is currently time consuming and limited by the requirement to perform spatially distributed measurements with existing single point sensors. In addition, the effects of interest and the diagnosis of their underlying causes and dependences are not readily revealed by traditional modal and finite element analyses. This paper, accordingly, discusses the design of a novel multi-channel fiber-optic heterodyne vibrometer which addresses this requirement directly. We describe a fiber-optic interferometer design which incorporates many standard fiber-optic telecommunications components, configured to support dynamic imaging of the real-time structural behavior of macro and micro vibratory resonators, including planar and 3D micro electromechanical systems (MEMS). The capabilities of the new sensor are illustrated by representative data obtained from a variety of 3D vibratory MEMS structures currently under development.

  19. Applications of UV Spatial Heterodyne Spectroscopy for High Spectral Resolution Studies of Diffuse Emission Line Sources in the Solar System

    NASA Astrophysics Data System (ADS)

    Harris, W.; Roesler, F.; Mierkiewicz, E.; Corliss, J.

    2003-05-01

    A Spatial Heterodyne Spectrometer (SHS) instrument combines high etendue and high spectral resolution in a compact package that is very effective for the study of diffuse low surface brightness emissions. SHS instruments require no telescope to achieve high sensitivity on extended sources and may be designed with fields of view exceeding 1 degree and spectral resolutions exceeding 100000. This combination makes them well suited to many solar system targets including comets, the interplanetary medium, and planetary atmospheres/coronas, using platforms from sounding rockets to remote probes. We are currently developing two variations of the SHS. The first of these is a new form of all-reflective, common-path SHS optimized for the study of FUV emission lines where transmitting optics will introduce an unacceptable attenuation of the incident beam. Secondly we are developing a multiorder variation of the SHS, where a customized high order grating is used to overlap integer orders of multiple target emission lines that can then be separated using a transform technique or with order separation filters. In this presentation we will describe the basic SHS technique, the design variations we are pursuing, and their rationale, both technical and scientific.

  20. Long-term Variation in Temperature and Dynamics in Venus Upper Atmosphere from ground-based Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sornig, Manuela; Sandor, Brad; Stangier, Tobias; Krause, Pia; Wischnewski, Caro; Kostiuk, Ted; Livengood, Tim

    Dynamics of the Venusian atmospheric transition zone between the sub-solar to anti-solar (SS-AS) flow dominated region above 120km and the superrotation dominated region below 90 km is not yet fully understood. Temperatures in the same region are not very well constrained and we lack a comprehensive understanding of this atmospheric region. Therefore direct measurements of these parameters on various time scales and on different locations on the planet are essential to validate global circulation models and for a comprehensive understanding of the atmosphere. Such observations can be provided by the infrared heterodyne spectrometers THIS (University of Cologne) and HIPWAC (NASA GSFC). Operating around 10μm both instruments fully resolve CO2 non-LTE emission lines for Doppler-wind and temperature retrievals at an pressure level of 1μbar (~110 km). In addition to this “one-altitude” information the broader CO2 absorption lines can be used to gain information about the temperature profile at attitudes in the range 60-90 km. Long term variability in Doppler-wind velocities and temperature at ~110km from campaigns between 1990 to 2013 will be presented. A report about local wave activities will be included. In addition recently retrieved temperature profiles from 60 to 90 km will be shown.

  1. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer.

    PubMed

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  2. The determination of HNO3 column amounts from tunable diode laser heterodyne spectrometer spectra taken at Jungfruajoch, Switzerland

    NASA Technical Reports Server (NTRS)

    Fogal, P. F.; Murcray, D. G.; Martin, N. A.; Swann, N. R.; Woods, P. T.; Mcelroy, C. T.

    1994-01-01

    In May of 1991 a tunable diode laser heterodyne spectrometer built by the National Physical Laboratory was operated at the International Scientific Station of the Jungfraujoch (46.5 deg N, 8.0 deg E, altitude 3.56 km). Nitric acid spectra in the region of 868 wavenumbers were recorded at sunset and sunrise on two separate days at a resolution of 0.0013 wavenumbers with a signal-to-noise ratio of approximately 130:1. A vertical column amount of HNO3 of 1.61 x 10(exp 16) molecules/sq cm was determined using an atmospheric transmission model developed at the University of Denver. The mean of a number of mid-latitude, northern hemisphere profiles was used as the initial profile for the inversion. A comparison of different initial profiles provides information on the sensitivity of the retrieved column amount of 1.61 x 10(exp 16) molecules/sq cm lies within the range of values published in the World Meteorological Organization Report no. 16 (1986), but is considerably larger than the value of (0.99 - 1.29) x 10(exp 16) reported by Rinsland et al. (1991) for June during the period 1986 to 1990.

  3. Diode laser heterodyne interferometry for refractive index measurement of small-scale plasmas in high pressure gases

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Terashima, Kazuo

    2013-09-01

    The electron density is one of the most important plasma parameters; however, the behavior of the electron density in high-pressure small-scale plasmas (so-called microplasmas) is still not well understood. We have studied the electron density in direct-current microplasmas operated at atmospheric pressure by using laser heterodyne interferometry and reported some results using CO2 laser as a light source. By measuring the temporal evolutions of the refractive index of the plasmas by the interferometer, the temporal changes of the electron and gas number densities can be derived. Because of its shorter wavelength, using near-infrared diode laser (890 nm) as a light source allows improving the spatial resolution of the measurement over that obtained using a CO2 laser (10.6 μm). Furthermore, by replacing a lock-in amplifier used in our previous CO2-laser interferometry by a custom-made phase detecting module, the response time and temporal resolution of the measurements could be improved. Finally, we discuss potentials of the diode laser interferometry for the measurement of electron and gas number densities with the measurement results of pulsed microplasmas operated in atmospheric and higher pressure gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21110002) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  4. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media.

    PubMed

    Liu, Yan; Shen, Yuecheng; Ma, Cheng; Shi, Junhui; Wang, Lihong V

    2016-06-06

    Ultrasound-modulated optical tomography (UOT) images optical contrast deep inside scattering media. Heterodyne holography based UOT is a promising technique that uses a camera for parallel speckle detection. In previous works, the speed of data acquisition was limited by the low frame rates of conventional cameras. In addition, when the signal-to-background ratio was low, these cameras wasted most of their bits representing an informationless background, resulting in extremely low efficiencies in the use of bits. Here, using a lock-in camera, we increase the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background. Moreover, compared with the conventional four-frame based amplitude measurement method, our single-frame method is more immune to speckle decorrelation. Using lock-in camera based UOT with an integration time of 286 μs, we imaged an absorptive object buried inside a dynamic scattering medium exhibiting a speckle correlation time ([Formula: see text]) as short as 26 μs. Since our method can tolerate speckle decorrelation faster than that found in living biological tissue ([Formula: see text] ∼ 100-1000 μs), it is promising for in vivo deep tissue non-invasive imaging.

  5. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  6. Phase-Resolved Heterodyne-Detected Transient Grating Enhances the Capabilities of 2D IR Echo Spectroscopy.

    PubMed

    Jin, Geun Young; Kim, Yung Sam

    2017-02-09

    2D IR echo spectroscopy, with high sensitivity and femtosecond time resolution, enables us to understand structure and ultrafast dynamics of molecular systems. Application of this experimental technique on weakly absorbing samples, however, had been limited by the precise and unambiguous phase determination of the echo signals. In this study, we propose a new experimental scheme that significantly increases the phase stability of the involved IR pulses. We have demonstrated that the incorporation of phase-resolved heterodyne-detected transient grating (PR-HDTG) spectroscopy greatly enhances the capabilities of 2D IR spectroscopy. The new experimental scheme has been used to obtain 2D IR spectra on weakly absorbing azide ions (N3(-)) in H2O (absorbance ∼0.025), free of phase ambiguity even at large waiting times. We report the estimated spectral diffusion time scale (1.056 ps) of azide ions in aqueous solution from the 2D IR spectra and the vibrational lifetime (750 ± 3 fs) and the reorientation time (1108 ± 24 fs) from the PR-HDTG spectra.

  7. Simultaneous absolute measurements of principal angle and phase retardation with a new common-path heterodyne interferometer.

    PubMed

    Lo, Yu-Lung; Lai, Chun-Hau; Lin, Jing-Fung; Hsu, Ping-Feng

    2004-04-01

    This study demonstrates a new method for simultaneously measuring both the angle of the principal axis and the phase retardation of the linear birefringence in optical materials. We used a circular common-path interferometer (polariscope) as the basic structure modulated by an electro-optic (EO) modulator. An algorithm was developed to simultaneously measure the principal axis and the phase retardation of a lambda/4 or lambda/8 plate as a sample. In the case of a lambda/4 plate, the average absolute error of the principal axis is approximately 3.77 degrees, and that of the phase retardation is approximately 1.03 degrees (1.09%). The retardation error is within the 5% uncertainty range of a commercial wave plate. Fortunately, the nonlinear error caused by the reflection phase retardation of the beam splitter dose not appear in the new system. Therefore the error could be attributed to misalignment and defects in the EO modulator or the other optical components. As for the repeatability of this new common-path heterodyne interferometer, the average deviation for the principal axis is 0.186 degrees and the phase retardation is 0.356 degrees. For the stability, the average deviation for the principal axis is 0.405 degrees and the phase retardation is 0.635 degrees. The resolution of this new system is estimated to be approximately 0.5 degrees, and the principal axis and phase retardation could be measured up to pi and 2pi, respectively, without ambiguity.

  8. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Yuecheng; Ma, Cheng; Shi, Junhui; Wang, Lihong V.

    2016-06-01

    Ultrasound-modulated optical tomography (UOT) images optical contrast deep inside scattering media. Heterodyne holography based UOT is a promising technique that uses a camera for parallel speckle detection. In previous works, the speed of data acquisition was limited by the low frame rates of conventional cameras. In addition, when the signal-to-background ratio was low, these cameras wasted most of their bits representing an informationless background, resulting in extremely low efficiencies in the use of bits. Here, using a lock-in camera, we increase the bit efficiency and reduce the data transfer load by digitizing only the signal after rejecting the background. Moreover, compared with the conventional four-frame based amplitude measurement method, our single-frame method is more immune to speckle decorrelation. Using lock-in camera based UOT with an integration time of 286 μs, we imaged an absorptive object buried inside a dynamic scattering medium exhibiting a speckle correlation time ( τ c ) as short as 26 μs. Since our method can tolerate speckle decorrelation faster than that found in living biological tissue ( τ c ˜ 100-1000 μs), it is promising for in vivo deep tissue non-invasive imaging.

  9. Integrated 1.55 µm photomixer local oscillator sources for heterodyne receivers from 70 GHz to beyond 250 GHz

    NASA Astrophysics Data System (ADS)

    Huggard, Peter G.; Azcona, Luis; Laisné, Alexandre; Ellison, Brian N.; Shen, Pengbo; Gomes, Nathan J.; Davies, Phil A.

    2004-10-01

    Photomixing is a flexible and efficient method of providing both local oscillator signals for heterodyne receivers and high frequency phase reference signals. Ultrafast, 70 GHz bandwidth, λ = 1.55 µm, photodiodes from u2t Photonics AG have been incorporated into three designs of mm-wave waveguide mounts. The photomixers utilise a thin freestanding gold foil, or a gold on dielectric, probe to couple power into the waveguide and to deliver the photodiode bias. The frequency coverage of the designs is from 70 GHz to 300 GHz. A method of rapidly characterizing the frequency response of these photomixers using spontaneous-spontaneous beating of light from an EDFA is described. Recent work has been directed at increasing the degree of integration of the photodiode with the waveguide probe and choke filter to reduce the frequency dependence of the output power. A simplified photomixer block manufacturing process has also been introduced. A combined probe and filter structure, impedance matched to both the coplanar output line on the photodiode chip and to 0.4 height milled waveguide, is presented. This matching is achieved over the W-band with a fixed waveguide backshort. We present modelled and experimental results showing the increased efficiency and smoother tuning. The design and frequency response of such a probe is reported. We also present the performance of a simpler mount, operating in the frequency range from 160 GHz to 300 GHz, which generates powers of around 10 µW up to 250 GHz.

  10. Single-shot high-resolution heterodyne detection of millimeter wave superradiance in Rydberg-Rydberg transitions

    NASA Astrophysics Data System (ADS)

    Grimes, David; Yelin, Susanne; Barnum, Timothy; Zhou, Yan; Coy, Steven; Field, Robert

    2016-05-01

    Millimeter wave (mm-wave) superradiance has been directly detected on a shot-by-shot basis in a neon buffer gas cooled beam of barium atoms. Rydberg-Rydberg transitions are well suited for the study of superradiance due to both the large transition dipole moments and long wavelengths associated with Δn = 1 transitions. We trigger the superradiant evolution of an initially 100% inverted system of Rydberg atoms (n = 30) with a weak mm-wave trigger pulse that is well-characterized in both spatial intensity distribution and phase. The resultant mm-wave emission is recorded in a heterodyne detection scheme with high resolution in both the time (20 ps) and frequency (250 kHz) domains. We observe that the width and emission delay of the time-domain intensity can be well described by a mean-field theory, but that the frequency-domain effects are not even qualitatively reproduced. In particular, a density-dependent broadening, frequency chirp, and line shift are observed. Comparisons to a two-atom master equation theoretical model will be discussed.

  11. A comparison between heterodyne and homodyne interferometry to realise the SI unit of acoustic pressure in water

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Robinson, Stephen; Rajagopal, Srinath; Zeqiri, Bajram

    2016-04-01

    Optical approaches for hydrophone calibrations offer significant advantages over existing methods based on reciprocity. In particular, heterodyne and homodyne interferometry can accurately measure particle velocity and displacements at a specific point in space thus enabling the acoustical pressure to be measured in an absolute, direct, assumption-free manner, with traceability through the SI definition of the metre. The calibration of a hydrophone can then be performed by placing the active element of the sensor at the point where the acoustic pressure field was measured and monitoring its electrical output. However, it is crucial to validate the performance and accuracy of such optical methods by direct comparison rather than through device calibration. Here we report on the direct comparison of two such optical interferometers used in underwater acoustics and ultrasonics in terms of acoustic pressure estimation and their associated uncertainties in the frequency range 200 kHz-3.5 MHz, with results showing agreement better than 1% in terms of pressure and typical expanded uncertainties better than 3% for both reported methods.

  12. Compensation algorithm for the phase-shift error of polarization-based parallel two-step phase-shifting digital holography.

    PubMed

    Tahara, Tatsuki; Ito, Kenichi; Kakue, Takashi; Fujii, Motofumi; Shimozato, Yuki; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2011-03-01

    We propose an algorithm for compensating the phase-shift error of polarization-based parallel two-step phase-shifting digital holography, which is a technique for recording a spatial two-step phase-shifted hologram. Although a polarization-based system of the technique has been experimentally demonstrated, there had been the problem that the phase difference of two phase-shifted holograms had been changed by the extinction ratio of the micropolarizer array attached to the image sensor used in the system. To improve the performance of the system, we established and formulated an algorithm for compensating the phase-shift error. Accurate spatial phase-shifting interferometry in the system can be conducted by the algorithm regardless of phase-shift error due to the extinction ratio. By the numerical simulation, the proposed algorithm was capable of reducing the root mean square errors of the reconstructed image by 1/4 and 1/5 in amplitude and phase, respectively. Also, the algorithm was experimentally demonstrated, and the experimental results showed that the system employing the proposed algorithm suppressed the conjugate image, which slightly appeared in the image reconstructed by the system not employing the algorithm, even when the extinction ratio was 10:1. Thus, the effectiveness of the proposed algorithm was numerically and experimentally verified.

  13. A Balancing Act

    ERIC Educational Resources Information Center

    Lewis, Tamika; Mobley, Mary; Huttenlock, Daniel

    2013-01-01

    It's the season for the job hunt, whether one is looking for their first job or taking the next step along their career path. This article presents first-person accounts to see how teachers balance the rewards and challenges of working in different types of schools. Tamica Lewis, a third-grade teacher, states that faculty at her school is…

  14. Multidimensional spectral load balancing

    DOEpatents

    Hendrickson, Bruce A.; Leland, Robert W.

    1996-12-24

    A method of and apparatus for graph partitioning involving the use of a plurality of eigenvectors of the Laplacian matrix of the graph of the problem for which load balancing is desired. The invention is particularly useful for optimizing parallel computer processing of a problem and for minimizing total pathway lengths of integrated circuits in the design stage.

  15. Balancing Family and Work.

    ERIC Educational Resources Information Center

    Yahnke, Sally; And Others

    The purpose of this monograph is to present a series of activities designed to teach strategies needed for effectively managing the multiple responsibilities of family and work. The guide contains 11 lesson plans dealing with balancing family and work that can be used in any home economics class, from middle school through college. The lesson…

  16. Balancing Your Evaluation Act.

    ERIC Educational Resources Information Center

    Willyerd, Karie A.

    1997-01-01

    Looks at different performance-measurement tools than can ensure that a training or performance solution is strategically aligned, objectively evaluated, and quantitatively measured for results. Suggests aiming for a balance among the financial, customer, and internal perspectives and the innovation and learning that can result. (Author/JOW)

  17. Balance functions reexamined

    SciTech Connect

    Bialas, A.

    2011-02-15

    The idea of glue clusters, i.e., short-range correlations in the quark-gluon plasma close to freeze-out, is used to estimate the width of balance functions in momentum space. A good agreement is found with the recent measurements of the STAR Collaboration for central Au-Au collisions.

  18. Regulation of Energy Balance.

    ERIC Educational Resources Information Center

    Bray, George A.

    1985-01-01

    Explains relationships between energy intake and expenditure focusing on the cellular, chemical and neural mechanisms involved in regulation of energy balance. Information is referenced specifically to conditions of obesity. (Physicians may earn continuing education credit by completing an appended test). (ML)

  19. Finding a Balance.

    ERIC Educational Resources Information Center

    Gordon, Milton A.; Gordon, Margaret F.

    1996-01-01

    New college presidents are inundated with requests for their time, and their private life is often sacrificed. Each administrator must decide what is the appropriate balance among various aspects of his/her position. Physical separation of public and private lives is essential, and the role of the spouse, who may have other professional…

  20. Lives in the Balance.

    ERIC Educational Resources Information Center

    Our Children, 1997

    1997-01-01

    Changes in the workplace that would provide flexibility for working parents are slowly developing and receiving government, business, and societal attention. A sidebar, "Mother, Professional, Volunteer: One Woman's Balancing Act," presents an account of how one woman rearranged her professional life to enable her to do full-time…

  1. Dynamic localized load balancing

    NASA Astrophysics Data System (ADS)

    Balandin, Sergey I.; Heiner, Andreas P.

    2003-08-01

    Traditionally dynamic load balancing is applied in resource-reserved connection-oriented networks with a large degree of managed control. Load balancing in connectionless networks is rather rudimentary and is either static or requires network-wide load information. This paper presents a fully automated, traffic driven dynamic load balancing mechanism that uses local load information. The proposed mechanism is easily deployed in a multi-vendor environment in which only a subset of routers supports the function. The Dynamic Localized Load Balancing (DLLB) mechanism distributes traffic based on two sets of weights. The first set is fixed and is inverse proportional to the path cost, typically the sum of reciprocal bandwidths along the path. The second weight reflects the utilization of the link to the first next hop along the path, and is therefore variable. The ratio of static weights defines the ideal load distribution, the ratio of variable weights the node-local load distribution estimate. By minimizing the difference between variable and fixed ratios the traffic distribution, with the available node-local knowledge, is optimal. The above mechanism significantly increases throughput and decreases delay from a network-wide perspective. Optionally the variable weight can include load information of nodes downstream to prevent congestion on those nodes. The latter function further improves network performance, and is easily implemented on top of the standard OSPF signaling. The mechanism does not require many node resources and can be implemented on existing router platforms.

  2. Maintaining an Environmental Balance

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1976

    1976-01-01

    A recent conference of the National Environmental Development Association focused on the concepts of environment, energy and economy and underscored the necessity for balancing the critical needs embodied in these issues. Topics discussed included: nuclear energy and wastes, water pollution control, federal regulations, environmental technology…

  3. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  4. Lunar Balance and Locomotion

    NASA Technical Reports Server (NTRS)

    Paloski, William H.

    2008-01-01

    Balance control and locomotor patterns were altered in Apollo crewmembers on the lunar surface, owing, presumably, to a combination of sensory-motor adaptation during transit and lunar surface operations, decreased environmental affordances associated with the reduced gravity, and restricted joint mobility as well as altered center-of-gravity caused by the EVA pressure suits. Dr. Paloski will discuss these factors, as well as the potential human and mission impacts of falls and malcoordination during planned lunar sortie and outpost missions. Learning objectives: What are the potential impacts of postural instabilities on the lunar surface? CME question: What factors affect balance control and gait stability on the moon? Answer: Sensory-motor adaptation to the lunar environment, reduced mechanical and visual affordances, and altered biomechanics caused by the EVA suit.

  5. A compact ground-based laser heterodyne radiometer for global column measurements of CO2 and CH4

    NASA Astrophysics Data System (ADS)

    Steel, Emily; Clarke, Gregory; Ramanathan, Anand; Mao, Jianping; Ott, Lesley; Duncan, Bryan; Melroy, Hilary; McLinden, Matthew; Holben, Brent; Houston Miller, J.

    2015-04-01

    Implementing effective global strategies to understand climate change is hindered by a lack of understanding of both anthropogenic emissions and land and ocean carbon reservoirs. Though in situ surface measurements and satellites provide valuable information for estimating carbon fluxes, areas not well covered by current observing systems (e.g. high latitude regions, tropical forests and wetlands) remain poorly understood. Deficiencies in understanding the processes governing carbon flux introduce considerable uncertainty to predictions of climate change over the coming century. Our vision is to enhance worldwide carbon monitoring by developing a low-cost ground network of miniaturized laser heterodyne radiometer (Mini-LHR) instruments that measure CO2 and CH4 in the atmospheric column. Ground-based remote sensing has the potential to fill gaps in the satellite data record while providing a complementary long-term observational record. This uninterrupted data record, would both bridge gaps in data sets and offer validation for key flight missions such as OCO-2, OCO-3 and ASCENDS. Mini-LHR instruments will be deployed as an accompaniment to AERONET. In addition to the complementary aerosol optical depth measurement, tandem operation with AERONET provides a clear pathway for the Mini-LHR to be expanded into a global monitoring network. AERONET has more than 500 instruments worldwide offering coverage in key arctic regions (not covered by OCO-2) where accelerated warming due to the release of CO2 and CH4 from thawing tundra and permafrost is a concern. Mini-LHR instruments at AERONET locations could also greatly improve data coverage in regions with large flux uncertainties such as North America and Western Europe, and under-sampled areas such as South America and Asia. Currently, the only ground global network that routinely measures multiple greenhouse gases in the atmospheric column is TCCON with 18 operational sites worldwide and two in the US. Cost and size of

  6. Wind tunnel balance

    NASA Technical Reports Server (NTRS)

    Horne, Warren L. (Inventor); Kunz, Nans (Inventor); Luna, Phillip M. (Inventor); Roberts, Andrew C. (Inventor); Smith, Kenneth M. (Inventor); Smith, Ronald C. (Inventor)

    1989-01-01

    A flow-through balance is provided which includes a non-metric portion and a metric portion which form a fluid-conducting passage in fluid communication with an internal bore in the sting. The non-metric and metric portions of the balance are integrally connected together by a plurality of flexure beams such that the non-metric portion, the metric portion and the flexure beams form a one-piece construction which eliminates mechanical hysteresis between the non-metric and the metric portion. The system includes structures for preventing the effects of temperature, pressure and pressurized fluid from producing asymmetric loads on the flexure beams. A temperature sensor and a pressure sensor are located within the fluid-conducting passage of the balance. The system includes a longitudinal bellows member connected at two ends to one of the non-metric portion and the metric portion and at an intermediate portion thereof to the other of (1) and (2). A plurality of strain gages are mounted on the flexure beams to measure strain forces on the flexure beams. The flexure beams are disposed so as to enable symmetric forces on the flexure beams to cancel out so that only asymmetric forces are measured as deviations by the strain gages.

  7. Seismic offset balancing

    SciTech Connect

    Ross, C.P.; Beale, P.L.

    1994-01-01

    The ability to successfully predict lithology and fluid content from reflection seismic records using AVO techniques is contingent upon accurate pre-analysis conditioning of the seismic data. However, all too often, residual amplitude effects remain after the many offset-dependent processing steps are completed. Residual amplitude effects often represent a significant error when compared to the amplitude variation with offset (AVO) response that the authors are attempting to quantify. They propose a model-based, offset-dependent amplitude balancing method that attempts to correct for these residuals and other errors due to sub-optimal processing. Seismic offset balancing attempts to quantify the relationship between the offset response of back-ground seismic reflections and corresponding theoretical predictions for average lithologic interfaces thought to cause these background reflections. It is assumed that any deviation from the theoretical response is a result of residual processing phenomenon and/or suboptimal processing, and a simple offset-dependent scaling function is designed to correct for these differences. This function can then be applied to seismic data over both prospective and nonprospective zones within an area where the theoretical values are appropriate and the seismic characteristics are consistent. A conservative application of the above procedure results in an AVO response over both gas sands and wet sands that is much closer to theoretically expected values. A case history from the Gulf of Mexico Flexure Trend is presented as an example to demonstrate the offset balancing technique.

  8. Gait and balance disorders.

    PubMed

    Masdeu, Joseph C

    2016-01-01

    This chapter focuses on one of the most common types of neurologic disorders: altered walking. Walking impairment often reflects disease of the neurologic structures mediating gait, balance or, most often, both. These structures are distributed along the neuraxis. For this reason, this chapter is introduced by a brief description of the neurobiologic underpinning of walking, stressing information that is critical for imaging, namely, the anatomic representation of gait and balance mechanisms. This background is essential not only in order to direct the relevant imaging tools to the regions more likely to be affected but also to interpret correctly imaging findings that may not be related to the walking deficit object of clinical study. The chapter closes with a discussion on how to image some of the most frequent etiologies causing gait or balance impairment. However, it focuses on syndromes not already discussed in other chapters of this volume, such as Parkinson's disease and other movement disorders, already discussed in Chapter 48, or cerebellar ataxia, in Chapter 23, in the previous volume. As regards vascular disease, the spastic hemiplegia most characteristic of brain disease needs little discussion, while the less well-understood effects of microvascular disease are extensively reviewed here, together with the imaging approach.

  9. Simple Cell Balance Circuit

    NASA Technical Reports Server (NTRS)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  10. Temperature Measurements in Venus Upper Atmosphere between 2007 and 2015 from ground-based Infrared Heterodyne Spectroscopy

    NASA Astrophysics Data System (ADS)

    Krause, Pia; Wischnewski, Carolin; Sornig, Manuela; Stangier, Tobias; Sonnabend, Guido; Herrmann, Maren; Wiegand, Moritz; Kostiuk, Theodor; Livengood, Timothy

    2016-04-01

    The structure of Venus atmosphere has been the target of intense studies in the past decade. Among manifold ground based observations, the recent space mission Venus Express in particular has shed light on many open questions concerning the thermal and the dynamical behavior of its atmosphere. A comprehensive understanding of this atmospheric region is still missing. Therefore, direct measurements of atmospheric parameters on various time scales and at different locations on the planet are essential for an understanding and for the validation of global circulation models. Such observations are provided by the infrared heterodyne spectrometers THIS (University of Cologne), HIPWAC (NASA GSFC) and MILAHI (Tohoku University). These instruments fully resolve CO2 non-LTE emission lines for Doppler-wind and temperature retrievals at an pressure level of 1μbar (~110 km) by operating around 10μm. The Long- and short-term variability of daytime temperatures at the ~1μbar level from ground-based observing campaigns between 2007 to 2015 shall be presented. The observations yield a large quantity of temperature measurements at different positions on the planetary disk which allows to map a good part of the dayside of Venus. In addition a detailed study of the interesting but not well understood and only poorly investigated area close to the terminator will be given. Investigations on the general behavior of the temperature and differences between the morning and evening terminators are accomplished. Ongoing analysis of thermal variability and comparison to other observing methods and model calculations are in progress and will be included in the presentation if already available.

  11. Heterodyne photodetection measurements on cavity optomechanical systems: Interpretation of sideband asymmetry and limits to a classical explanation

    NASA Astrophysics Data System (ADS)

    Børkje, Kjetil

    2016-10-01

    We consider a system where an optical cavity mode is parametrically coupled to a mechanical oscillator. A laser beam driving the cavity at its resonance frequency will acquire red- and blue-shifted sidebands due to noise in the position of the mechanical oscillator. In a classical theory without noise in the electromagnetic field, the powers of these sidebands are of equal magnitude. In a quantum theory, however, an asymmetry between the sidebands can be resolved when the oscillator's average number of vibrational excitations (phonons) becomes small, i.e., comparable to 1. We discuss the interpretation of this sideband asymmetry in a heterodyne photodetection measurement scheme and show that it depends on the choice of detector model. In the optical regime, standard photodetection theory leads to a photocurrent noise spectrum given by normal- and time-ordered expectation values. The sideband asymmetry is in that case a direct reflection of the quantum asymmetry of the position noise spectrum of the mechanical oscillator. Conversely, for a detector that measures symmetric, nonordered expectation values, we show that the sideband asymmetry can be traced back to quantum optomechanical interference terms. This ambiguity in interpretation applies not only to mechanical oscillators, but to any degree of freedom that couples linearly to noise in the electromagnetic field. Finally, we also compare the quantum theory to a fully classical model, where sideband asymmetry can arise from classical optomechanical interference terms. We show that, due to the oscillator's lack of zero-point motion in a classical theory, the sidebands in the photocurrent spectrum differ qualitatively from those of a quantum theory at sufficiently low temperatures. We discuss the observable consequences of this deviation between classical and quantum theories.

  12. IR heterodyne spectrometer MILAHI for continuous monitoring observatory of Martian and Venusian atmospheres at Mt. Haleakalā, Hawaii

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hiromu; Aoki, Shohei; Sagawa, Hideo; Kasaba, Yasumasa; Murata, Isao; Sonnabend, Guido; Sornig, Manuela; Okano, Shoichi; Kuhn, Jeffrey R.; Ritter, Joseph M.; Kagitani, Masato; Sakanoi, Takeshi; Taguchi, Makoto; Takami, Kosuke

    2016-07-01

    A new Mid-Infrared Laser Heterodyne Instrument (MILAHI) with >106 resolving power at 7-12 μm was developed for continuous monitoring of planetary atmospheres by using dedicated ground-based telescopes for planetary science at Mt. Haleakalā, Hawaii. Room-temperature-type quantum cascade lasers (QCLs) that cover wavelength ranges of 7.69-7.73, 9.54-9.59, and 10.28-10.33 μm have been newly installed as local oscillators to allow observation of CO2, CH4, H2O2, H2O, and HDO. Modeling and predictions by radiative transfer code gave the following scientific capabilities and measurement sensitivities of the MILAHI. (1) Temperature profiles are achieved at altitudes of 65-90 km on Venus, and the ground surface to 30 km on Mars. (2) New wind profiles are provided at altitudes of 75-90 km on Venus, and 5-25 km on Mars. (3) Direct measurements of the mesospheric wind and temperature are obtained from the Doppler-shifted emission line at altitudes of 110 km on Venus and 75 km on Mars. (4) Detections of trace gases and isotopic ratios are performed without any ambiguity of the reproducing the terrestrial atmospheric absorptions in the observed wavelength range. A HDO measurement of twice the Vienna Standard Mean Ocean Water (VSMOW) can be obtained by 15-min integration, while H2O of 75 ppm is provided by 3.62-h integration. The detectability of the 100 ppb-CH4 on Mars corresponds to an integration time of 32 h.

  13. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  14. Improving Balance with Tai Chi

    MedlinePlus

    ... 8428 · INFO @ VESTIBULAR . ORG · WWW . VESTIBULAR . ORG Improving Balance with Tai Chi By the Vestibular Disorders Association ... symptoms commonly experi- enced with vestibular (inner ear balance) disorders can cause overwhelming fatigue and anxiety. Many ...

  15. Determination of the C-12/C-13 and O-16/O-18 ratio in the Martian atmosphere by 10 micron heterodyne spectroscopy

    NASA Technical Reports Server (NTRS)

    Schrey, U.; Rothermel, H.; Drapatz, S.; Kaeufl, H. U.

    1986-01-01

    The planetary atmosphere of Mars was studied during the opposition of May, 1984, by means of a 10-micron heterodyne receiver mounted at the Cassegrain focus of a 3-m telescope. On the basis of a model of the Martian atmosphere, the isotopic ratios derived from the fully resolved absorption spectra obtained were compared with the results of Viking probe in situ measurements and terrestrial values; agreement is obtained within statistical errors. It is shown that highly resolving spectroscopy allows for the determination of isotopic ratios in remote sensing with a precision that is comparable to that of in situ mass spectroscopy.

  16. Noise Temperature and IF Bandwidth of a 530 GHz Heterodyne Receiver Employing a Diffusion-Cooled Superconducting Hot-Electron Mixer

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.; Burke, P. J.; Verheijen, A. A.; Prober, D. E.

    1995-01-01

    We report on the first heterodyne measurements with a diffusion-cooled hot-electron bolometer mixer in the submillimeter wave band, using a waveguide mixer cooled to 2.2 K. The best receiver noise temperature at a local oscillator frequency of 533 GHz and an intermediate frequency of 1.4 GHz was 650 K (double sideband). The 3 dB IF roll-off frequency was around 1.7 to 1.9 GHz, with a weak dependence on the device bias conditions.

  17. Semiconductor optical amplifier-based heterodyning detection for resolving optical terahertz beat-tone signals from passively mode-locked semiconductor lasers

    SciTech Connect

    Latkowski, Sylwester; Maldonado-Basilio, Ramon; Carney, Kevin; Parra-Cetina, Josue; Philippe, Severine; Landais, Pascal

    2010-08-23

    An all-optical heterodyne approach based on a room-temperature controlled semiconductor optical amplifier (SOA) for measuring the frequency and linewidth of the terahertz beat-tone signal from a passively mode-locked laser is proposed. Under the injection of two external cavity lasers, the SOA acts as a local oscillator at their detuning frequency and also as an optical frequency mixer whose inputs are the self-modulated spectrum of the device under test and the two laser beams. Frequency and linewidth of the intermediate frequency signal (and therefore, the beat-tone signal) are resolved by using a photodiode and an electrical spectrum analyzer.

  18. More on Chemical Reaction Balancing.

    ERIC Educational Resources Information Center

    Swinehart, D. F.

    1985-01-01

    A previous article stated that only the matrix method was powerful enough to balance a particular chemical equation. Shows how this equation can be balanced without using the matrix method. The approach taken involves writing partial mathematical reactions and redox half-reactions, and combining them to yield the final balanced reaction. (JN)

  19. Lesson "Balance in Nature

    NASA Astrophysics Data System (ADS)

    Chapanova, V.

    2012-04-01

    Lesson "Balance in Nature" This simulation game-lesson (Balance in Nature) gives an opportunity for the students to show creativity, work independently, and to create models and ideas. It creates future-oriented thought connected to their experience, allowing them to propose solutions for global problems and personal responsibility for their activities. The class is divided in two teams. Each team chooses questions. 1. Question: Pollution in the environment. 2. Question: Care for nature and climate. The teams work on the chosen tasks. They make drafts, notes and formulate their solutions on small pieces of paper, explaining the impact on nature and society. They express their points of view using many different opinions. This generates alternative thoughts and results in creative solutions. With the new knowledge and positive behaviour defined, everybody realizes that they can do something positive towards nature and climate problems and the importance of individuals for solving global problems is evident. Our main goal is to recover the ecological balance, and everybody explains his or her own well-grounded opinions. In this work process the students obtain knowledge, skills and more responsible behaviour. This process, based on his or her own experience, dialogue and teamwork, helps the participant's self-development. Making the model "human↔ nature" expresses how human activities impact the natural Earth and how these impacts in turn affect society. Taking personal responsibility, we can reduce global warming and help the Earth. By helping nature we help ourselves. Teacher: Veselina Boycheva-Chapanova " Saint Patriarch Evtimii" Scholl Str. "Ivan Vazov"-19 Plovdiv Bulgaria

  20. Micromechanical Oscillating Mass Balance

    NASA Technical Reports Server (NTRS)

    Altemir, David A. (Inventor)

    1997-01-01

    A micromechanical oscillating mass balance and method adapted for measuring minute quantities of material deposited at a selected location, such as during a vapor deposition process. The invention comprises a vibratory composite beam which includes a dielectric layer sandwiched between two conductive layers. The beam is positioned in a magnetic field. An alternating current passes through one conductive layers, the beam oscillates, inducing an output current in the second conductive layer, which is analyzed to determine the resonant frequency of the beam. As material is deposited on the beam, the mass of the beam increases and the resonant frequency of the beam shifts, and the mass added is determined.