Science.gov

Sample records for polarized atomic photofragments

  1. An investigation of polarized atomic photofragments using the ion imaging technique

    SciTech Connect

    Bracker, A.S.

    1997-12-01

    This thesis describes measurement and analysis of the recoil angle dependence of atomic photofragment polarization (atomic v-J correlation). This property provides information on the electronic rearrangement which occurs during molecular photodissociation. Chapter 1 introduces concepts of photofragment vector correlations and reviews experimental and theoretical progress in this area. Chapter 2 described the photofragment ion imaging technique, which the author has used to study the atomic v-J correlation in chlorine and ozone dissociation. Chapter 3 outlines a method for isolating and describing the contribution to the image signal which is due exclusively to angular momentum alignment. Ion imaging results are presented and discussed in Chapter 4. Chapter 5 discusses a different set of experiments on the three-fragment dissociation of azomethane. 122 refs.

  2. Atomic polarization in the photodissociation of diatomic molecules.

    PubMed

    Clark, A P; Brouard, M; Quadrini, F; Vallance, C

    2006-12-28

    The angular momentum polarization of atomic photofragments provides a detailed insight into the dynamics of the photodissociation process. In this article, the origins of electronic angular momentum polarization are introduced and experimental and theoretical methods for the measurement or calculation of atomic orientation and alignment parameters described. Many diatomic photodissociation systems are surveyed, in order to provide an overview both of the historical development of the field and of the most state-of-the-art contemporary studies.

  3. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: The role of the Coriolis interaction

    SciTech Connect

    Shternin, Peter S.; Vasyutinskii, Oleg S.

    2008-05-21

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of the generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.

  4. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: the role of the Coriolis interaction.

    PubMed

    Shternin, Peter S; Vasyutinskii, Oleg S

    2008-05-21

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of the generalized dynamical functions fK(q,q',q,q') of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.

  5. Microfabricated Spin Polarized Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Jimenez Martinez, Ricardo

    Spin polarized atomic magnetometers involve the preparation of atomic spins and their detection for monitoring magnetic fields. Due to the fact that magnetic fields are ubiquitous in our world, spin polarized atomic magnetometers are used in a wide range of applications from the detection of magnetic fields generated by the human heart and brain to the detection of nuclear magnetic resonance. In this thesis we developed microfabricated spin polarized atomic magnetometers. These sensors are based on optical pumping and spin-exchange collisions between alkali atoms and noble gases contained in microfabricated millimeter-scale vapor cells. In the first part of the thesis, we improved different features of current microfabricated optical magnetometers. Specifically, we improved the bandwidth of these devices, without degrading their magnetic field sensitivity, by broadening their magnetic resonance through spin-exchange collisions between alkali atoms. We also implemented all-optical excitation techniques to avoid problems, such as the magnetic perturbation of the environment, induced by the radio-frequency fields used in some of these sensors. In the second part of the thesis we demonstrated a microfluidic chip for the optical production and detection of hyperpolarized Xe gas through spin-exchange collisions with optically pumped Rb atoms. These devices are critical for the widespread use of spin polarized atomic magnetometers in applications requiring simple, compact, low-cost, and portable instrumentation.

  6. Doppler polarization spectroscopy of the photofragments from an in-plane rotation of water: Demonstration of unperturbed vector correlations

    SciTech Connect

    David, D.; Bar, I.; Rosenwaks, S. )

    1993-11-11

    The [mu]-v, v-J, and [mu]-v-J vector correlations of the OH fragments from the photodissociation at 193 nm of the 3[sub 03] in-plane rotational state of the fundamental symmetric stretch of water, H[sub 2]O (1,0,0), are probed by Doppler polarization spectroscopy. The observed correlations are close to the limiting values expected for an idealized orientation (with minimal influence of the parent rotation) where the transition dipole moment of the parent is parallel to the fragment angular momentum and perpendicular to its velocity. This is the first time that these correlations are measured for the photodissociation of an initially prepared, vibrationally excited molecule in a specific rotational state. 23 refs., 2 figs., 1 tab.

  7. Ionization of polarized hydrogen atoms

    SciTech Connect

    Alessi, J.G.

    1983-01-01

    Methods are discussed for the production of polarized H/sup -/ ions from polarized atoms produced in ground state atomic beam sources. Present day sources use ionizers of two basic types - electron ionizers for H/sup +/ Vector production followed by double charge exchange in a vapor, or direct H/sup -/ Vector production by charge exchange of H/sup 0/ with Cs/sup 0/. Both methods have ionization efficiencies of less than 0.5%. Ionization efficiencies in excess of 10% may be obtained in the future by the use of a plasma ionizer plus charge exchange in Cs or Sr vapor, or ionization by resonant charge exchange with a self-extracted D/sup -/ beam from a ring magnetron or HCD source. 36 references, 4 figures.

  8. Molecular ion photofragment spectroscopy

    SciTech Connect

    Bustamente, S.W.

    1983-11-01

    A new molecular ion photofragment spectrometer is described which features a supersonic molecular beam ion source and a radio frequency octapole ion trap interaction region. This unique combination allows several techniques to be applied to the problem of detecting a photon absorption event of a molecular ion. In particular, it may be possible to obtain low resolution survey spectra of exotic molecular ions by using a direct vibrational predissociation process, or by using other more indirect detection methods. The use of the spectrometer is demonstrated by measuring the lifetime of the O/sub 2//sup +/(/sup 4/..pi../sub u/) metastable state which is found to consist of two main components: the /sup 4/..pi../sub 5/2/ and /sup 4/..pi../sub -1/2/ spin components having a long lifetime (approx. 129 ms) and the /sup 4/..pi../sub 3/2/ and /sup 4/..pi../sub 1/2/ spin components having a short lifetime (approx. 6 ms).

  9. Communication: angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets.

    PubMed

    Hernando, Alberto; Beswick, J Alberto; Halberstadt, Nadine

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe200 studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  10. Communication: Angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets

    SciTech Connect

    Hernando, Alberto; Beswick, J. Alberto; Halberstadt, Nadine

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He){sub 200}, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe{sub 200} studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  11. Atom interferometry with polarizing beam splitters

    NASA Astrophysics Data System (ADS)

    Hinderthür, H.; Pautz, A.; Ruschewitz, F.; Sengstock, K.; Ertmer, W.

    1998-06-01

    A special kind of atomic beam splitter using a four-level atomic system in combination with polarized light fields is demonstrated. These specific atom optical elements are used to operate an atom interferometer where the beam-splitting mechanism acts selectively on specific paths only and therefore allows for several different interferometer geometries. Based on a Ramsey-Bordé configuration, the experimental data show considerably better accuracy and a contrast enhanced by 65% compared to the two-level interferometer. Our concept appears to be especially interesting in the context of metrological aspects in matter-wave interferometry.

  12. Assembling Ultracold Polar Molecules From Single Atoms

    NASA Astrophysics Data System (ADS)

    Liu, Lee R.; Hutzler, Nicholas R.; Yu, Yichao; Zhang, Jessie T.; Ni, Kang-Kuen

    2016-05-01

    Ultracold polar molecules are promising candidates for studying quantum many-body phenomena and building quantum information systems, due to their long-range, anisotropic, and tunable interactions. This calls for a technique to create low entropy samples of ultracold polar molecules with a large dipole moment. The lowest entropy molecular gas to date was created from atomic quantum gases in bulk or in optical lattices. The entropy is limited by that of the constituent atomic gases. We propose a method that addresses this limitation by assembling sodium cesium (NaCs) molecules from individually manipulated atoms. First, we load single Na and Cs atoms in separate optical tweezers from MOTs. We will cool them to their motional ground state using Raman sideband cooling and then merge them into a single tweezer. The tweezer confinement provides enhanced wavefunction overlap between the atom pair and molecule states. Using coherent two-photon techniques, we will then transfer the atom pair into a molecule. Our method offers reduced apparatus complexity and cycle time, single-site manipulation and imaging resolution, and should be readily extended to different species.

  13. Atomic Rydberg Reservoirs for Polar Molecules

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Glaetzle, A. W.; Pupillo, G.; Zoller, P.

    2012-05-01

    We discuss laser-dressed dipolar and van der Waals interactions between atoms and polar molecules, so that a cold atomic gas with laser admixed Rydberg levels acts as a designed reservoir for both elastic and inelastic collisional processes. The elastic scattering channel is characterized by large elastic scattering cross sections and repulsive shields to protect from close encounter collisions. In addition, we discuss a dissipative (inelastic) collision where a spontaneously emitted photon carries away (kinetic) energy of the collision partners, thus providing a significant energy loss in a single collision. This leads to the scenario of rapid thermalization and cooling of a molecule in the mK down to the μK regime by cold atoms.

  14. Ultrafast charge transfer and atomic orbital polarization

    SciTech Connect

    Deppe, M.; Foehlisch, A.; Hennies, F.; Nagasono, M.; Beye, M.; Sanchez-Portal, D.; Echenique, P. M.; Wurth, W.

    2007-11-07

    The role of orbital polarization for ultrafast charge transfer between an atomic adsorbate and a substrate is explored. Core hole clock spectroscopy with linearly polarized x-ray radiation allows to selectively excite adsorbate resonance states with defined spatial orientation relative to the substrate surface. For c(4x2)S/Ru(0001) the charge transfer times between the sulfur 2s{sup -1}3p*{sup +1} antibonding resonance and the ruthenium substrate have been studied, with the 2s electron excited into the 3p{sub perpendicular}* state along the surface normal and the 3p{sub parallel}* state in the surface plane. The charge transfer times are determined as 0.18{+-}0.07 and 0.84{+-}0.23 fs, respectively. This variation is the direct consequence of the different adsorbate-substrate orbital overlap.

  15. The HERMES Polarized Atomic Beam Source

    SciTech Connect

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHz has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.

  16. Nuclear Polarization of H{sub 2} Molecules formed from Polarized Atoms

    SciTech Connect

    Wise, T.; Balewski, J.T.; Daehnick, W.W.; Doskow, J.; Friesel, D.; Haeberli, W.; Kolster,H.; Lorentz, B.; Meyer, H.O.; Pancella, P.V.; Pollock, R.E.; Przewoski, B.v.; Quin, P.A.; Rathmann, F.; Rinckel, T.; Saha, Swapan K.; Schwartz, B.; Wellinghausen, A.

    2000-12-31

    A planned experiment to measure the nuclear polarization of H{sub 2} molecules formed by recombination of polarized H atoms is described. Polarization will be measured with a longitudinally polarized 200-MeV proton beam and a longitudinally polarized storage cell gas target at the IUCF cooler ring.

  17. Spin-polarized spontaneous-force atom trap

    NASA Astrophysics Data System (ADS)

    Walker, T.; Feng, P.; Hoffmann, D.; Williamson, R. S., III

    1992-10-01

    We present observations of a spontaneous-force optical trap in which rubidium atoms are spin polarized by optical pumping. Stable trapping is achieved in two dimensions by the same force as in the Zeeman-shift optical trap, and in the third dimension by a macroscopic vortex force that is insensitive to light polarizations and magnetic fields. When the light along this third direction is circularly polarized and a parallel magnetic field is applied, the atoms become spin polarized.

  18. Photodissociation of ozone at 276nm by photofragment imaging and high resolution photofragment translational spectroscopy

    SciTech Connect

    Blunt, D.A.; Suits, A.G.

    1996-11-01

    The photodissociation of ozone at 276 nm is investigated using both state resolved ion imaging and high-resolution photofragment translational spectroscopy. Ion images from both [3+1] and [2+1] resonance enhanced multiphoton ionization of the O({sup 1}D) photofragment are reported. All images show strong evidence of O({sup 1}D) orbital alignment. Photofragment translation spectroscopy time-of-flight spectra are reported for the O{sub 2} ({sup 1}{Delta}{sub g}) photofragment. Total kinetic energy release distributions determined form these spectra are generally consistent with those distributions determined from imaging data. Observed angular distributions are reported for both detection methods, pointing to some unresolved questions for ozone dissociation in this wavelength region.

  19. Ultra-cold methods for polarized atomic hydrogen

    SciTech Connect

    Luppov, V. G.; Arnold, J. D.; Blinov, B. B.; Gladycheva, S. E.; Krisch, A. D.; Lin, A. M. T.; Raymond, R. S.; Bychkov, M. A.; Fimushkin, V. V.; Mochalov, V. V.; Semenov, P. A.

    1998-01-20

    Using the ultra-cold electron-spin-polarized atomic hydrogen technique, one can produce a slow monochromatic beam for use as a polarized jet target. We will first review the development of the ultra-cold technique and then discuss the recent progress on Michigan's Mark-II ultra-cold proton-spin-polarized hydrogen jet target.

  20. Photofragment imaging: The photo-dissociation of bromomethane, bromoethane, and bromoethanol

    SciTech Connect

    Chandler, D.W. ); Thoman, J.W. Jr. . Dept. of Chemistry); Hess, W.P. )

    1990-09-01

    Bromomethane, bromoethane and bromoethanol are photolyzed with 205-nm light and the velocity of the bromine atoms is recorded by the technique of photofragment imaging. The velocity distribution of the bromine atoms is a direct reflection of the internal-state distribution of the methyl, ethyl, and hydroxy-ethyl radicals and the orientation of the transition moment in the parent molecule. 8 refs., 2 figs., 1 tab.

  1. VCSEL polarization control for chip-scale atomic clocks.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Wendt, Joel Robert; Serkland, Darwin Keith; Keeler, Gordon Arthur

    2007-01-01

    Sandia National Laboratories and Mytek, LLC have collaborated to develop a monolithically-integrated vertical-cavity surface-emitting laser (VCSEL) assembly with controllable polarization states suitable for use in chip-scale atomic clocks. During the course of this work, a robust technique to provide polarization control was modeled and demonstrated. The technique uses deeply-etched surface gratings oriented at several different rotational angles to provide VCSEL polarization stability. A rigorous coupled-wave analysis (RCWA) model was used to optimize the design for high polarization selectivity and fabrication tolerance. The new approach to VCSEL polarization control may be useful in a number of defense and commercial applications, including chip-scale atomic clocks and other low-power atomic sensors.

  2. The role of fullerene shell upon stuffed atom polarization potential

    NASA Astrophysics Data System (ADS)

    Amusia, Miron; Chernysheva, Larissa

    2016-05-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scattering upon endohedrals that are formed when Ne and Ar atom are stuffed inside fullerene C60. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the endohedrals polarization potential. By applying this approach, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the endohedral polarization potential. Using concrete examples we have demonstrated that the elastic scattering of electrons upon endohedrals is an entirely quantum mechanical process, where addition of even a single atom can qualitatively alter the multi-particle cross-section.

  3. Michigan ultra-cold polarized atomic hydrogen jet target

    NASA Astrophysics Data System (ADS)

    Blinov, B. B.; Gladycheva, S. E.; Kageya, T.; Kantsyrev, D. Yu.; Krisch, A. D.; Luppov, V. G.; Morozov, V. S.; Murray, J. R.; Raymond, R. S.; Borisov, N. S.; Fimushkin, V. V.; Grishin, V. N.; Mysnik, A. I.; Kleppner, D.

    2001-06-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms. The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam, which is then focused by a superconducting sextupole into the interaction region. In recent tests, we studied a polarized beam of hydrogen atoms focused by the superconducting sextupole into a compression tube detector, which measured the polarized atoms' intensity. The Jet produced, at the detector, a spin-polarized atomic hydrogen beam with a measured intensity of about 2.8.1015 H s-1 and a FWHM area of less than 0.13 cm2. This intensity corresponds to a free jet density of about 1.1012 H cm-3 with a proton polarization of about 50%. When the transition RF unit is installed, we expect a proton polarization higher than 90%. .

  4. Ultra-cold methods for polarized atomic hydrogen

    SciTech Connect

    Luppov, V.G.; Arnold, J.D.; Blinov, B.B.; Bychkov, M.A.; Gladycheva, S.E.; Krisch, A.D.; Lin, A.M.; Raymond, R.S.; Fimushkin, V.V.; Bychkov, M.A.; Mochalov, V.V.; Semenov, P.A.

    1998-01-01

    Using the ultra-cold electron-spin-polarized atomic hydrogen technique, one can produce a slow monochromatic beam for use as a polarized jet target. We will first review the development of the ultra-cold technique and then discuss the recent progress on Michigan{close_quote}s Mark-II ultra-cold proton-spin-polarized hydrogen jet target. {copyright} {ital 1998 American Institute of Physics.}

  5. Oxalyl chloride photofragment imaging: One photon - four fragments

    SciTech Connect

    Ahmed, M.; Suits, A.G.

    1996-12-31

    Recently we have built an crossed molecular beams ion imaging system to study reactive scattering and photodissociation dynamics. The ion imaging machine has been designed to incorporate tunable vaccuum ultraviolet radiation generated by the Advanced Light Source to carry out soft ionization of product species. Here we present first results of the photodissociation dynamics of oxalyl chloride (CLCO)2. In this case photolysis and probe light were generated using Nd-YAG pumped dye lasers. With the absorption of one photon around 230 nm, the molecule breaks apart into four fragments (Cl + CO + CO + CL). The velocity and angular distributions of these fragments are studied using resonantly enhanced mutiphoton ionization and imaging techniques. Photofragment translational energy and angular distributions are presented for ground state and spin-orbit excited Cl atoms as well as for individual rotational levels of the CO product. These distributions suggest a simple model for the dissociation dynamics.

  6. Frequency redistribution function for the polarized two-term atom

    SciTech Connect

    Casini, R.; Landi Degl'Innocenti, M.; Manso Sainz, R.; Landolfi, M.

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  7. Polarization-selective optical nonlinearities in cold Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.

    2015-12-01

    We study the interaction between a probe and a trigger weak fields in a sample of cold rubidium atoms in the presence of a coupling and a dressing strong fields. Dipole Rydberg blockade may occur and can be set to depend on the probe and trigger polarizations giving rise to diverse regimes of electromagnetically induced transparency (EIT) with a concomitant small probe and trigger absorption and dispersion. This is shown to be relevant to the implementation of polarization conditional probe and trigger cross nonlinearities in cold Rydberg atoms.

  8. Role of a fullerene shell upon stuffed atom polarization potential

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.

    2016-02-01

    We have demonstrated that the polarization of the fullerene shell considerably alters the polarization potential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as well as corresponding cross sections. We illustrate the general trend by particular examples of electron scattering upon endohedrals Ne@C60 and Ar@C60. To obtain the presented results, we have suggested a simplified approach that permits to incorporate the effect of fullerenes polarizability into the Ne@C60 and Ar@C60 polarization potential. By applying this approach, we obtained numeric results that show strong variations in shape and magnitudes of scattering phases and cross sections due to effect of fullerene polarization upon the endohedral polarization potential.

  9. Atomic and Electronic Structure of Polar Oxide Interfaces

    SciTech Connect

    Gajdardziska-Josifovska, Marija

    2014-01-17

    In this project we developed fundamental understanding of atomic and electronic mechanisms for stabilization of polar oxide interfaces. An integrated experimental and theoretical methodology was used to develop knowledge on this important new class of ionic materials with limited dimensionality, with implications for multiple branches of the basic and applied energy sciences.

  10. ATOMIC BEAM POLARIZATION MEASUREMENT OF THE RHIC POLARIZED H-JET TARGET.

    SciTech Connect

    MAKDISI,Y.; NASS,A.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; RITTER,J.; ET AL.

    2005-01-28

    The RHIC polarized H-Jet measures the polarization of the RHIC proton beam via elastic scattering off a nuclear polarized atomic hydrogen beam. The atomic beam is produced by a dissociator, a beam forming system and sextupole magnets. Nuclear polarization is achieved by exchanging occupation numbers of hyperfine states using high frequency transitions. The polarization was measured using a modified form of a Breit-Rabi polarimeter including focusing magnets and another set of high frequency transitions. The sampling of a large part of the beam and low noise electronics made it possible to measure the polarization to a high degree of accuracy in a very short time period (1 min). Using this system, we measured no depolarization of the atomic beam due to the RF fields of the bunched proton beam. Time-of-Flight measurements were done using a fast chopper and a QMA at the position of the RHIC interaction point to determine the areal density of the atomic beam seen by the RHIC beam.

  11. ATOMIC AND MOLECULAR PHYSICS: Spontaneous Emission of a Polarized Atom in a Medium Between Two Parallel Mirrors

    NASA Astrophysics Data System (ADS)

    Wang, De-Hua; Huang, Kai-Yun; Xu, Qiang

    2010-01-01

    Using the photon closed orbit theory, the spontaneous emission rate of a polarized atom in a medium between two parallel mirrors is derived and calculated. It is found that the spontaneous emission rate of a polarized atom between the mirrors is related to the atomic position and the polarization direction. The results show that in the vicinity of the mirror, the variation of the spontaneous emission rate depends crucially on the atomic polarization direction. With the increase of the polarization angle, the oscillation in the spontaneous emission rate becomes decreased. For the polarization direction parallel to the mirror plane, the oscillation is the greatest; while for the perpendicular polarization direction, the oscillation is nearly vanished. The agreement between our result and the quantum electrodynamics result suggests the correctness of our calculation. This study further verifies that the atomic spontaneous emission process can be effectively controlled by changing the polarization orientation of the atom.

  12. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    SciTech Connect

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ∼243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ∼243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ∼243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H{sup +} images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  13. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging

    NASA Astrophysics Data System (ADS)

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-01

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ˜243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ˜243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ˜243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H+ images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation.

  14. Enhanced sensitivity in H photofragment detection by two-color reduced-Doppler ion imaging.

    PubMed

    Epshtein, Michael; Portnov, Alexander; Kupfer, Rotem; Rosenwaks, Salman; Bar, Ilana

    2013-11-14

    Two-color reduced-Doppler (TCRD) and one-color velocity map imaging (VMI) were used for probing H atom photofragments resulting from the ~243.1 nm photodissociation of pyrrole. The velocity components of the H photofragments were probed by employing two counterpropagating beams at close and fixed wavelengths of 243.15 and 243.12 nm in TCRD and a single beam at ~243.1 nm, scanned across the Doppler profile in VMI. The TCRD imaging enabled probing of the entire velocity distribution in a single pulse, resulting in enhanced ionization efficiency, as well as improved sensitivity and signal-to-noise ratio. These advantages were utilized for studying the pyrrole photodissociation at ~243.1 and 225 nm, where the latter wavelength provided only a slight increase in the H yield over the self-signal from the probe beams. The TCRD imaging enabled obtaining high quality H(+) images, even for the low H photofragment yields formed in the 225 nm photolysis process, and allowed determining the velocity distributions and anisotropy parameters and getting insight into pyrrole photodissociation. PMID:24320267

  15. Iridium wire grid polarizer fabricated using atomic layer deposition.

    PubMed

    Weber, Thomas; Käsebier, Thomas; Szeghalmi, Adriana; Knez, Mato; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2011-10-25

    In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  16. ATOMIC AND MOLECULAR PHYSICS: Multiphoton ionization of the hydrogen atom exposed to circularly or linearly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Jie; He, Feng

    2009-12-01

    This paper studies the multiphoton ionization of the hydrogen atom exposed to the linearly or circularly polarized laser pulses by solving the time-dependent Schrödinger equation. It finds that the ratio of the ionization probabilities by linearly and circularly polarized laser pulses varies with the numbers of absorbing photons. With the same laser intensity, the circularly polarized laser pulse favors to ionize the atom with more ease than the linearly polarized laser pulse if only two or three photons are necessary to be absorbed. For the higher order multiphoton ionization, the linearly polarized laser pulse has the advantage over circularly polarized laser pulse to ionize the atom.

  17. Collisional properties of cold spin-polarized metastable neon atoms.

    PubMed

    Spoden, P; Zinner, M; Herschbach, N; van Drunen, W J; Ertmer, W; Birkl, G

    2005-06-10

    We measure the rates of elastic and inelastic two-body collisions of cold spin-polarized neon atoms in the metastable 3P2 state for 20Ne and 22Ne in a magnetic trap. From particle loss, we determine the loss parameter of inelastic collisions beta=6.5(18) x 10(-12) cm(3) s(-1) for 20Ne and beta=1.2(3) x 10(-11) cm(3) s(-1) for 22Ne. These losses are caused by ionizing (i.e., Penning) collisions and occur less frequently than for unpolarized atoms. This proves the suppression of Penning ionization due to spin polarization. From cross-dimensional relaxation measurements, we obtain elastic scattering lengths of a=-180(40)a(0) for 20Ne and a = +150(+80)(-50)a(0) for 22Ne, where a(0)=0.0529 nm.

  18. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.

    PubMed

    Taichenachev, A V; Yudin, V I; Ovsiannikov, V D; Pal'chikov, V G

    2006-10-27

    The light-induced frequency shift due to hyperpolarizability (i.e., terms of second-order in intensity) is studied for a forbidden optical transition, J = 0 --> J = 0. A simple universal dependence on the field ellipticity is obtained. This result allows minimization of the second-order light shift with respect to the field polarization for optical lattices operating at a magic wavelength (at which the first-order shift vanishes). We show the possibility for the existence of a magic elliptical polarization, for which the second-order frequency shift vanishes. The optimal polarization of the lattice field can be either linear, circular, or magic elliptical. The obtained results could improve the accuracy of lattice-based atomic clocks.

  19. Polarization enhanced Nuclear Quadrupole Resonance with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.; Barrall, Geoffrey A.; Espy, Michelle A.; Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) has been demonstrated for the detection of 14-N in explosive compounds. Application of a material specific radio-frequency (RF) pulse excites a response typically detected with a wire- wound antenna. NQR is non-contact and material specific, however fields produced by NQR are typically very weak, making demonstration of practical utility challenging. For certain materials, the NQR signal can be increased by transferring polarization from hydrogen nuclei to nitrogen nuclei using external magnetic fields. This polarization enhancement (PE) can enhance the NQR signal by an order of magnitude or more. Atomic magnetometers (AM) have been shown to improve detection sensitivity beyond a conventional antenna by a similar amount. AM sensors are immune to piezo-electric effects that hamper conventional NQR, and can be combined to form a gradiometer for effective RF noise cancellation. In principle, combining polarization enhancement with atomic magnetometer detection should yield improvement in signal-to-noise ratio that is the product of the two methods, 100-fold or more over conventional NQR. However both methods are even more exotic than traditional NQR, and have never been combined due to challenges in operating a large magnetic field and ultra-sensitive magnetic field sensor in proximity. Here we present NQR with and without PE with an atomic magnetometer, demonstrating signal enhancement greater than 20-fold for ammonium nitrate. We also demonstrate PE for PETN using a traditional coil for detection with an enhancement factor of 10. Experimental methods and future applications are discussed.

  20. Photodissociation dynamics of the phenyl radical via photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Negru, Bogdan; Goncher, Scott J.; Brunsvold, Amy L.; Just, Gabriel M. P.; Park, Dayoung; Neumark, Daniel M.

    2010-08-01

    Photofragment translational spectroscopy was used to study the photodissociation dynamics of the phenyl radical C6H5 at 248 and 193 nm. At 248 nm, the only dissociation products observed were from H atom loss, attributed primarily to H+o-C6H4 (ortho-benzyne). The observed translational energy distribution was consistent with statistical decay on the ground state surface. At 193 nm, dissociation to H+C6H4 and C4H3+C2H2 was observed. The C6H4 fragment can be either o-C6H4 or l-C6H4 resulting from decyclization of the phenyl ring. The C4H3+C2H2 products dominate over the two H loss channels. Attempts to reproduce the observed branching ratio by assuming ground state dynamics were unsuccessful. However, these calculations assumed that the C4H3 fragment was n-C4H3, and better agreement would be expected if the lower energy i-C4H3+C2H2 channel were included.

  1. Photodissociation dynamics of the phenyl radical via photofragment translational spectroscopy

    SciTech Connect

    Negru, Bogdan; Goncher, Scott J.; Brunsvold, Amy L.; Just, Gabriel M. P.; Park, Dayoung; Neumark, Daniel M.

    2010-08-21

    Photofragment translational spectroscopy was used to study the photodissociation dynamics of the phenyl radical C{sub 6}H{sub 5} at 248 and 193 nm. At 248 nm, the only dissociation products observed were from H atom loss, attributed primarily to H+o-C{sub 6}H{sub 4} (ortho-benzyne). The observed translational energy distribution was consistent with statistical decay on the ground state surface. At 193 nm, dissociation to H+C{sub 6}H{sub 4} and C{sub 4}H{sub 3}+C{sub 2}H{sub 2} was observed. The C{sub 6}H{sub 4} fragment can be either o-C{sub 6}H{sub 4} or l-C{sub 6}H{sub 4} resulting from decyclization of the phenyl ring. The C{sub 4}H{sub 3}+C{sub 2}H{sub 2} products dominate over the two H loss channels. Attempts to reproduce the observed branching ratio by assuming ground state dynamics were unsuccessful. However, these calculations assumed that the C{sub 4}H{sub 3} fragment was n-C{sub 4}H{sub 3}, and better agreement would be expected if the lower energy i-C{sub 4}H{sub 3}+C{sub 2}H{sub 2} channel were included.

  2. Magnetic-field-assisted atomic polarization spectroscopy of 4 He

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Wang, Haidong; Wu, Teng; Peng, Xiang; Guo, Hong; Cream Team

    2016-05-01

    Atomic polarization spectroscopy (PS) is a high resolution sub-Doppler atomic spectroscopic technique with free modulation. It is always desirable to obtain a PS signal with zero background as it can provide a more preferable laser frequency stabilization performance. There are many factors that can affect the PS signal background, i.e., the laser power, the laser polarization and the magnetic field. Here, we demonstrate a method for observing and analyzing the effects on the PS signal of 4 He under different magnetic fields. At the beginning, under nearly zero magnetic field, the large asymmetrical PS signal background has been observed and cannot be eliminated by only optically adjusting. Then, we find that the PS signal profile can be changed and controlled by varying the magnetic field with transverse or longitudinal direction and different intensity. The optimized PS signal with symmetrical dispersive profile and zero background is obtained when the magnetic field is chosen and controlled in the transverse direction and more than 20000nT intensity. Similar phenomenon cannot be observed under the longitudinal magnetic field. A theoretical model is also presented, which explains and agrees well with our experimental results.

  3. Resonant quenching of Rydberg atomic states by highly polar molecules

    NASA Astrophysics Data System (ADS)

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S.

    2016-06-01

    The results of theoretical studies of the resonant quenching and ion-pair formation processes induced by collisions of Rydberg atoms with highly polar molecules possessing small electron affinities are reported. We elaborate an approach for describing collisional dynamics of both processes and demonstrate the predominant role of resonant quenching channel of reaction for the destruction of Rydberg states by electron-attaching molecules. The approach is based on the solution of the coupled differential equations for the transition amplitudes between the ionic and Rydberg covalent terms of a quasimolecule formed during a collision of particles. It takes into account the possibility of the dipole-bound anion decay in the Coulomb field of the positive ionic core and generalizes previous models of charge-transfer processes involving Rydberg atoms to the cases, when the multistate Landau–Zener approaches become inapplicable. Our calculations for {{Rb}}({nl}) atom perturbed by {{{C}}}2{{{H}}}4{{SO}}3, {{CH}}2{CHCN}, {{CH}}3{{NO}}2, {{CH}}3{CN}, {{{C}}}3{{{H}}}2{{{O}}}3, and {{{C}}}3{{{H}}}4{{{O}}}3 molecules show that the curves representing the dependence of the resonant quenching cross sections on the principal quantum number n are bell-shaped with the positions of maxima being shifted towards lower values of n and the peak values, {σ }{max}({{q})}, several times higher than those for the ion-pair formation, {σ }{max}({{i})}. We obtain a simple power relation between the energy of electron affinity of a molecule and the position of maximum in n-dependence of the resonant quenching cross section. It can be used as an additional means for determining small binding energies of dipole-bound anions from the experimental data on resonant quenching of Rydberg states by highly polar molecules.

  4. Resonant quenching of Rydberg atomic states by highly polar molecules

    NASA Astrophysics Data System (ADS)

    Narits, A. A.; Mironchuk, E. S.; Lebedev, V. S.

    2016-06-01

    The results of theoretical studies of the resonant quenching and ion-pair formation processes induced by collisions of Rydberg atoms with highly polar molecules possessing small electron affinities are reported. We elaborate an approach for describing collisional dynamics of both processes and demonstrate the predominant role of resonant quenching channel of reaction for the destruction of Rydberg states by electron-attaching molecules. The approach is based on the solution of the coupled differential equations for the transition amplitudes between the ionic and Rydberg covalent terms of a quasimolecule formed during a collision of particles. It takes into account the possibility of the dipole-bound anion decay in the Coulomb field of the positive ionic core and generalizes previous models of charge-transfer processes involving Rydberg atoms to the cases, when the multistate Landau-Zener approaches become inapplicable. Our calculations for {{Rb}}({nl}) atom perturbed by {{{C}}}2{{{H}}}4{{SO}}3, {{CH}}2{CHCN}, {{CH}}3{{NO}}2, {{CH}}3{CN}, {{{C}}}3{{{H}}}2{{{O}}}3, and {{{C}}}3{{{H}}}4{{{O}}}3 molecules show that the curves representing the dependence of the resonant quenching cross sections on the principal quantum number n are bell-shaped with the positions of maxima being shifted towards lower values of n and the peak values, {σ }{max}({{q})}, several times higher than those for the ion-pair formation, {σ }{max}({{i})}. We obtain a simple power relation between the energy of electron affinity of a molecule and the position of maximum in n-dependence of the resonant quenching cross section. It can be used as an additional means for determining small binding energies of dipole-bound anions from the experimental data on resonant quenching of Rydberg states by highly polar molecules.

  5. Electronic Spectroscopy of Trapped PAH Photofragments

    NASA Astrophysics Data System (ADS)

    Joblin, Christine; Bonnamy, Anthony

    2016-06-01

    The PIRENEA set-up combines an ion cyclotron resonance cell mass spectrometer with cryogenic cooling in order to study the physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) of astrophysical interest. In space, PAHs are submitted to UV photons that lead to their dissociation. It is therefore of interest to study fragmentation pathways and search for species that might be good interstellar candidates because of their stability. Electronic spectroscopy can bring major insights into the structure of species formed by photofragmentation. This is also a way to identify new species in space as recently illustrated in the case of C60^+. In PIRENEA, the trapped ions are not cold enough, and thus we cannot use complexation with rare gas in order to record spectroscopy, as was nicely performed in the work by Campbell et al. on C60^+. We are therefore using the dissociation of the trapped ions themselves instead, which requires in general a multiple photon scheme. This leads to non-linear effects that affect the measured spectrum. We are working on improving this scheme in the specific case of the photofragment obtained by H-loss from 1-methylpyrene cation (CH_3-C16H9^+). A recent theoretical study has shown that a rearrangement can occur from 1-pyrenemethylium cation (CH_2-C16H9^+) to a system containing a seven membered ring (tropylium like pyrene system). This study also reports the calculated electronic spectra of both isomers, which are specific enough to distinguish them, and as a function of temperature. We will present experiments that have been performed to study the photophysics of these ions using the PIRENEA set-up and a two-laser scheme for the action spectroscopy. J. Montillaud, C. Joblin, D. Toublanc, Astron. & Astrophys. 552 (2013), id.A15 E.K. Campbell, M. Holz, D. Gerlich, and J.P. Maier, Nature 523 (2015), 322-323 F. Useli-Bacchitta, A. Bonnamy, G. Malloci, et al., Chem. Phys. 371 (2010), 16-23; J. Zhen, A. Bonnamy, G. Mulas, C

  6. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    NASA Astrophysics Data System (ADS)

    Balandikov, N. I.; Ershov, V. P.; Fimushkin, V. V.; Kulikov, M. V.; Pilipenko, Yu. K.; Shutov, V. B.

    1995-09-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented.

  7. Magnetic trapping of cold bromine atoms.

    PubMed

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  8. Photodissociation Dynamics of the Phenyl Radical via Photofragment Translational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Negru, Bogdan; Goncher, Scott J.; Brunsvold, Amy L.; Neumark, Daniel M.

    2010-06-01

    Photofragment translational spectroscopy was used to study the photodissociation dynamics of the phenyl radical at 193 and 248 nm. Time of flight data collected for the C_6H_4, C_4H_3, and C_2H_2 photofragments show the presence of two decomposition channels. The only C_6H_5 decomposition channel observed at 248 nm corresponds to C-H bond fission from the cyclic radical producing ortho-benzyne. The translational energy distribution peaks at 0 kcal/mol and is consistent with no exit barrier for the H loss process. At 193 nm photodissociation, however, H loss was observed to be the minor channel, while the major decomposition pathway corresponds with decyclization of the C_6H_5 radical and subsequent fragmentation to n-C_4H_3 and C_2H_2. These two momentum matched photofragments have a translational energy distribution that peaks around 9 kcal/mol, indicative of a process that proceeds through a tighter transition state. Previous theoretical work on the unimolecular decomposition of the phenyl radical predicts a second H loss process that occurs after C_6H_5 decyclization resulting in the linear C_6H_4 photofragment. This channel cannot be unambiguously discerned from the C_6H_4^+ time of flight data, but is believed to take place since decyclization is observed. L. K. Madden, L. V. Moskaleva, S. Kristyan, and M. C. Lin J. Phys. Chem. A 1997, 101, 6790.

  9. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    SciTech Connect

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular, for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum computing.

  10. Modelization of nanospace interaction involving a ferromagnetic atom: a spin polarization effect study by thermogravimetric analysis.

    PubMed

    Santhanam, K S V; Chen, Xu; Gupta, S

    2014-04-01

    Ab initio studies of ferromagnetic atom interacting with carbon nanotubes have been reported in the literature that predict when the interaction is strong, a higher hybridization with confinement effect will result in spin polarization in the ferromagnetic atom. The spin polarization effect on the thermal oxidation to form its oxide is modeled here for the ferromagnetic atom and its alloy, as the above studies predict the 4s electrons are polarized in the atom. The four models developed here provide a pathway for distinguishing the type of interaction that exists in the real system. The extent of spin polarization in the ferromagnetic atom has been examined by varying the amount of carbon nanotubes in the composites in the thermogravimetric experiments. In this study we report the experimental results on the CoNi alloy which appears to show selective spin polarization. The products of the thermal oxidation has been analyzed by Fourier Transform Infrared Spectroscopy. PMID:24734699

  11. High-intensity pulsed source of polarized protons with an atomic beam

    SciTech Connect

    Belov, A.S.; Esin, S.K.; Kubalov, S.A.; Kuzik, V.E.; Stepanov, A.A.; Yakushev, V.P.

    1985-10-25

    A source of polarized protons with a beam current up to 2.5 mA in the pulse, a degree of polarization 0.78 +- 0.01, a current pulse length of 120 ..mu..s, and a repetition frequency of 1 Hz is described. This is the first source of polarized protons which makes use of the charge exchange of polarized hydrogen atoms with ions of a deuterium plasma.

  12. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  13. Anisotropy modeling of terahertz metamaterials: polarization dependent resonance manipulation by meta-atom cluster.

    PubMed

    Jung, Hyunseung; In, Chihun; Choi, Hyunyong; Lee, Hojin

    2014-06-09

    Recently metamaterials have inspired worldwide researches due to their exotic properties in transmitting, reflecting, absorbing or refracting specific electromagnetic waves. Most metamaterials are known to have anisotropic properties, but existing anisotropy models are applicable only to a single meta-atom and its properties. Here we propose an anisotropy model for asymmetrical meta-atom clusters and their polarization dependency. The proposed anisotropic meta-atom clusters show a unique resonance property in which their frequencies can be altered for parallel polarization, but fixed to a single resonance frequency for perpendicular polarization. The proposed anisotropic metamaterials are expected to pave the way for novel optical systems.

  14. Anisotropy Modeling of Terahertz Metamaterials: Polarization Dependent Resonance Manipulation by Meta-Atom Cluster

    NASA Astrophysics Data System (ADS)

    Jung, Hyunseung; in, Chihun; Choi, Hyunyong; Lee, Hojin

    2014-06-01

    Recently metamaterials have inspired worldwide researches due to their exotic properties in transmitting, reflecting, absorbing or refracting specific electromagnetic waves. Most metamaterials are known to have anisotropic properties, but existing anisotropy models are applicable only to a single meta-atom and its properties. Here we propose an anisotropy model for asymmetrical meta-atom clusters and their polarization dependency. The proposed anisotropic meta-atom clusters show a unique resonance property in which their frequencies can be altered for parallel polarization, but fixed to a single resonance frequency for perpendicular polarization. The proposed anisotropic metamaterials are expected to pave the way for novel optical systems.

  15. Ultraviolet photodissociation of C2F5I with a small and simple photofragment translational spectrometer.

    PubMed

    Yu, Zijun; Xu, Xiling; Cheng, Min; Yu, Dan; Du, Yikui; Zhu, Qihe

    2009-07-28

    Photodissociation dynamics of C(2)F(5)I near 280 and 304 nm has been investigated on a small and simple time-of-flight photofragment translational spectrometer (PTS). On this new PTS, the photolyzed and ionized fragments, not accelerated by electric field, travel freely for a short flight path (<50 mm) and are detected by microchannel plates. In the spectra of the I(*)((2)P(1/2)) channel at 281.73 and 304.02 nm, vibrational peaks with spacing of approximately 350 cm(-1) are partially resolved, indicating the preferential excitation of CF(2) wag mode (nu(11)=366 cm(-1)) of C(2)F(5) photofragment. The fraction of the available energy disposed into the internal energy is higher than 50% for both I(*) channel and I channel, showing the high excitation of vibration in the C(2)F(5) fragments. The fragment recoil anisotropy parameter beta(I(*)), determined to be 1.70 at 281.73 nm and 1.64 at 304.02 nm, reveals that I(*) atoms are produced predominantly from the parallel (3)Q(0) <-- N transition. The anisotropy parameter beta(I), determined to be 1.25 at 279.71 nm and 0.88 at 304.67 nm, implies that I atoms are produced from two excited states, i.e., direct dissociation via the perpendicular (3)Q(1) <-- N transition, and indirect dissociation via the parallel (3)Q(0) <-- N transition then curve crossing to the (1)Q(1) potential energy surface. Analysis on the recent studies with vibrational state resolution in the photodissociation of alkyl iodides in the A band reveals that the "symmetric bending" mode on alpha-carbon of alkyl iodides is the preferential vibrational excitation mode, which can be explained by the classic impulsive model. PMID:19655883

  16. Steady-state multipole moments of atoms in a resonant field with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Taichenachev, A. V.; Basalaev, M. Yu; Lazebny, D. B.; Yudin, V. I.

    2014-07-01

    Steady-state multipole moments of atoms ρK q of the rank K ⩽ 2 are analytically calculated for all closed dipole transitions Jg → Je in a resonant radiation field with arbitrary intensity and arbitrary elliptical polarization. The nonlinear propagation of a monochromatic elliptically polarized wave through a medium consisting of atoms with resonant transition Jg → Je is considered as an application.

  17. Polarization and trapping of weakly bound atoms in penning trap fields.

    PubMed

    Kuzmin, S G; O'Neil, T M

    2004-06-18

    The ATHENA and ATRAP groups at CERN recently reported the production of weakly bound antihydrogen atoms in a non-neutral positron-antiproton plasma. This Letter derives an equation of motion for weakly bound atoms in the electric and magnetic fields of the plasma and trap. The atoms are polarized by the electric field and can be trapped radially in the edge region of the plasma where the electric field is maximum.

  18. Atomic-scale compensation phenomena at polar interfaces

    SciTech Connect

    Chisholm, Matthew F; Luo, Weidong; Oxley, Mark P; Pantelides, Sokrates T; Lee, Ho Nyung

    2010-01-01

    The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we investigate using aberration-corrected electron microscopy and density-functional theory to show how interfaces cope with the need to terminate ferroelectric polarization. In one case, we show evidence for ionic screening, which has been predicted by theory but never observed. For a ferroelectric film on an insulating substrate, we found that compensation can be mediated by an interfacial charge generated, for example, by oxygen vacancies.

  19. Electron spin polarization in strong-field ionization of xenon atoms

    NASA Astrophysics Data System (ADS)

    Hartung, Alexander; Morales, Felipe; Kunitski, Maksim; Henrichs, Kevin; Laucke, Alina; Richter, Martin; Jahnke, Till; Kalinin, Anton; Schöffler, Markus; Schmidt, Lothar Ph. H.; Ivanov, Misha; Smirnova, Olga; Dörner, Reinhard

    2016-08-01

    As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter, from solids to molecules and atoms, for example, by causing magnetism. Yet, despite its importance, the spin dynamics of the electrons released during the interaction of atoms with strong ultrashort laser pulses has remained experimentally unexplored. Here, we report the experimental detection of electron spin polarization by the strong-field ionization of xenon atoms and support our results with theoretical analysis. We found up to 30% spin polarization changing its sign with electron energy. This work opens the new dimension of spin to strong-field physics. It paves the way to the production of sub-femtosecond spin-polarized electron pulses with applications ranging from probing the magnetic properties of matter at ultrafast timescales to testing chiral molecular systems with sub-femtosecond temporal and sub-ångström spatial resolutions.

  20. X-ray absorption spectroscopy in electrical fields: An element-selective probe of atomic polarization

    NASA Astrophysics Data System (ADS)

    Ney, V.; Wilhelm, F.; Ollefs, K.; Rogalev, A.; Ney, A.

    2016-01-01

    We have studied a range of polar and nonpolar materials using x-ray absorption near-edge spectroscopy (XANES) in external electric fields. An energy shift of the XANES by a few meV/kV is found which scales linearly with the applied voltage, thus being reminiscent of the linear Stark effect. This is corroborated by the consistent presence of this energy shift in polar thin films and bulk crystals and its absence in nonpolar materials as well as in conducting films. The observed energy shift of the XANES is different between two atomic species in one specimen and appears to scale linearly with the atomic number of the studied element. Therefore, XANES in electrical fields opens the perspective to study atomic polarization with element specificity in a range of functional materials.

  1. Electron elastic scattering off A @C60 : The role of atomic polarization under confinement

    NASA Astrophysics Data System (ADS)

    Dolmatov, V. K.; Amusia, M. Ya.; Chernysheva, L. V.

    2015-10-01

    The present paper explores possible features of electron elastic scattering off endohedral fullerenes A @C60 . It focuses on how dynamical polarization of the encapsulated atom A by an incident electron might alter scattering off A @C60 compared to the static-atom-A case, as well as how the C60 confinement modifies the impact of atomic polarization on electron scattering compared to the free-atom case. The aim is to provide researchers with a "relative frame of reference" for understanding which part of the scattering processes could be due to electron scattering off the encapsulated atom and which could be due to scattering off the C60 cage. To meet the goal, the C60 cage is modeled by an attractive spherical potential of a certain inner radius, thickness, and depth which is a model used frequently in a great variety of fullerene studies to date. Then, the Dyson equation for the self-energy part of the Green's function of an incident electron moving in the combined field of an encapsulated atom A and C60 is solved in order to account for the impact of dynamical polarization of the encaged atom upon e +A @C60 scattering. The Ba@C60 endohedral is chosen as the case study. The impact is found to be significant, and its utterly different role compared to that in e +Ba scattering is unraveled.

  2. Production of excited atomic hydrogen and deuterium from H2 and D2 photodissociation

    NASA Astrophysics Data System (ADS)

    Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; Machacek, J. R.; Martín, F.; McLaughlin, K. W.; Sanz-Vicario, J. L.

    2006-12-01

    We have measured the production of both Lyα and Hα fluorescence from atomic H and D for the photodissociation of H2 and D2 by linearly polarized photons with energies between 24 and 60 eV. In this energy range, excited photofragments result primarily from the production of doubly excited molecular species which promptly autoionize or dissociate into two neutrals. Our data are compared with ab initio calculations of the dissociation process, in which both doubly excited state production and prompt ionization (non-resonant) channels are considered. Agreement between our experimental data and that of earlier work, and with our theoretical calculations, is qualitative at best.

  3. Production of excited atomic hydrogen and deuterium from H2 and D2photodissociation

    SciTech Connect

    Bozek, J.D.; Furst, J.E.; Gay, T.J.; Gould, H.; Kilcoyne, A.L.D.; Machacek, J.R.; Martin, F.; McLaughlin, K.W.; Sanz-Vicario, J.L.

    2006-09-17

    We have measured the production of both Ly alpha and H alphafluorescence from atomic H and D for the photodissociation of H2 and D2by linearly polarized photons with energies between 24 and 60 eV. In thisenergy range, excited photofragments result primarily from the productionof doubly excited molecular species which promptly autoionize ordissociate into two neutrals. Our data are compared with ab initiocalculations of the dissociation process, in which both doubly excitedstate production and prompt ionization (nonresonant) channels areconsidered. Agreement between our experimental data and that of earlierwork, and with our theoretical calculations, is qualitative atbest.

  4. Reaction mechanism studies of unsaturated molecules using photofragment translational spectroscopy

    SciTech Connect

    Longfellow, C.A. |

    1996-05-01

    A number of molecules have been studied using the technique of photofragment translational spectroscopy. In Chapter One a brief introduction to the experimental technique is given. In Chapter Two the infrared multiphoton dissociation (IRMPD) of acetic acid is discussed. Carbon dioxide and methane were observed for the first time as products from dissociation under collisionless conditions. Chapter Three relates an IRMPD experiment of hexafluoropropene. The predominant channel produces CFCF{sub 3} or C{sub 2}F{sub 4} and CF{sub 2}, with the heavier species undergoing further dissociation to two CF{sub 2} fragments. In Chapter Four the ultraviolet (UV) dissociation of hexafluoropropene is investigated. Chapter Five explores the IRMPD of octafluoro-1-butene and octafluoro-2-butene.

  5. Nonadiabatic coupling in cold collisions of spin-polarized metastable hydrogen atoms

    SciTech Connect

    Forrey, Robert C.; Dalgarno, Alex; Vanne, Yulian V.; Saenz, Alejandro; Froelich, Piotr

    2007-11-15

    Previous calculations of low-temperature cross sections for collisions between spin-polarized metastable hydrogen atoms are improved to include nonadiabatic radial and angular coupling at large interatomic separations. The electrostatic dipole-quadrupole interaction produces nonadiabatic radial coupling between (2s,2p) and (2p,2p) states, while the Coriolis interaction produces nonadiabatic angular coupling. Both of these long-range contributions are handled in a space-fixed atomic gauge that is particularly convenient for a spin-polarized system. The improved theoretical results are compared with an existing experiment.

  6. Two-electron exchange interaction between polar molecules and atomic ions — Asymptotic approach

    NASA Astrophysics Data System (ADS)

    Karbovanets, Oleksandr M.; Karbovanets, Myroslav I.; Khoma, Mykhaylo V.; Lazur, Volodymyr Yu.

    2015-05-01

    We have described the asymptotic approach for calculation of the two-electron exchange interaction between atomic ion and polar molecule responsible for direct double electron transfer processes. The closed analytic expression for matrix element of exchange interaction has been obtained in the framework of the semiclassical version of the asymptotic theory and point-dipole approximation for description of the polar molecule. Contribution to the Topical Issue "Elementary Processes with Atoms and Molecules in Isolated and Aggregated States", edited by Friedrich Aumayr, Bratislav Marinkovic, Štefan Matejčik, John Tanis and Kurt H. Becker.

  7. Polarized Atomic Hydrogen Beam Tests in the Michigan Ultra-Cold Jet Target

    NASA Astrophysics Data System (ADS)

    Kageya, T.; Blinov, B. B.; Denbow, J. M.; Kandes, M. C.; Krisch, A. D.; Kulkarni, D. A.; Lehman, M. A.; Luppov, V. G.; Morozov, V. S.; Murray, J. R.; Peters, C. C.; Raymond, R. S.; Ross, M. R.; Yonehara, K.; Borisov, N. S.; Fimushkin, V. V.; Kleppner, D.; Grishin, V. N.; Mysnik, A. L.

    2001-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Michigan Jet Target). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. The Jet produced, at the detector, a spin-polarized atomic hydrogen beam with a measured intensity of about 1.7 10^15 H s-1 and a FWHM area of less than 0.13 cm^2. This intensity corresponds to a free jet density of about 1.3 10^12 H cm-3 with a proton polarization of about 50%. When the transition RF unit is installed, we expect a proton polarization higher than 90%.

  8. Photofragment translational spectroscopy of three body dissociations and free radicals

    SciTech Connect

    North, S.W.

    1995-04-01

    This dissertation describes several three-body dissociations and the photodissociation of methyl radicals studied using photofragment translational spectroscopy. The first chapter provides an introduction to three body dissociation, examines current experimental methodology, and includes a discussion on the treatment of photofragment translational spectroscopy data arising from three-body fragmentation. The ultraviolet photodissociation of azomethane into two methyl radicals and nitrogen is discussed in chapter 2. Chapter 3 describes the photodissociation of acetone at 248 nm and 193 nm. At 248 nm the translational energy release from the initial C-C bond cleavage matches the exit barrier height and a comparison with results at 266 nm suggests that is invariant to the available energy. A fraction of the nascent CH{sub 3}CO radicals spontaneously dissociate following rotational averaging. The for the second C-C bond cleavage also matches the exit barrier height. At 193 nm the experimental data can be successfully fit assuming that the dynamics are analogous to those at 248 nm. A simplified model of energy partitioning which adequately describes the experimental results is discussed. Experiments on acetyl halides provide additional evidence to support the proposed acetone dissociation mechanism. A value of 17.0{+-}1.0 kcal/mole for the barrier height, CH{sub 3}CO decomposition has been determined. The photodissociation of methyl radical at 193 nm and 212.8 nm is discussed in the chapter 5. The formation of CH{sub 2} ({sup 1}A{sub l}) and H ({sup 2}S) was the only single photon dissociation pathway observed at both wavelengths.

  9. Optical Polarization From Aligned Atoms As A Diagnostic Of Interstellar And Circumstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Yan, H.; Lazarian, A.

    2005-12-01

    Population among sublevels of the ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a perspective tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We discuss the process of alignment that can be used to study magnetic fields in interplanetary medium, interstellar medium, circumstellar regions and quasars. To exemplify what atomic alignment can provide to the observers we consider synthetic data obtained with MHD simulations of comet wake.

  10. Storage and retrieval of continuous-variable polarization-entangled cluster states in atomic ensembles

    SciTech Connect

    Li Dachuang; Yuan Chunhua; Zhang Weiping; Cao Zhuoliang

    2011-08-15

    We present a proposal for storing and retrieving a continuous-variable quadripartite polarization-entangled cluster state, using macroscopic atomic ensembles in a magnetic field. The Larmor precession of the atomic spins leads to a symmetry between the atomic canonical operators. In this scheme, each of the four spatially separated pulses passes twice through the respective ensemble in order to map the polarization-entangled cluster state onto the long-lived atomic ensembles. The stored state can then be retrieved by another four read-out pulses, each crossing the respective ensemble twice. By calculating the variances, we analyzed the fidelities of the storage and retrieval, and our scheme is feasible under realistic experimental conditions.

  11. Gigahertz Dielectric Polarization of Substitutional Single Niobium Atoms in Defective Graphitic Layers.

    PubMed

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Qin, Gaowu; Pennycook, Stephen J

    2015-10-01

    We synthesize two Nb/C composites with an order of magnitude difference in the density of single niobium atoms substituted into defective graphitic layers. The concentration and sites of single Nb atoms are identified using aberration-corrected scanning transmission electron microscopy and density functional theory. Comparing the experimental complex permittivity spectra reveals that a representative dielectric resonance at ∼16  GHz originates from the intrinsic polarization of single Nb atom sites, which is confirmed by theoretical simulations. The single-atom dielectric resonance represents the physical limit of the electromagnetic response of condensed matter, and thus might open up a new avenue for designing electromagnetic wave absorption materials. Single-atom resonance also has important implications in understanding the correlation between the macroscopic dielectric behaviors and the atomic-scale structural origin. PMID:26551823

  12. Compression experiments with spin-polarized atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Sprik, R.; Walraven, J. T. M.; Silvera, Isaac F.

    1985-11-01

    Doubly polarized hydrogen has been produced up to densities of 2×1018 cm-3 with the use of a compression technique. Samples were compressed up to five orders of magnitude into small bubblelike volumes under a column of liquid helium. This technique enabled us to study the volume decay of a bubble at almost constant gas density for minutes. The analysis of the volume decay of such a bubble is discussed. A bulk three-body recombination process was observed with rate constant C3=[7(2)]×10-39 cm6 s-1, as well as bulk electronic b-->c relaxation with rate constant Gvbc↓=[12(4)]×10-16 cm3 s-1. The nature of the three-body process is analyzed with a set of extended rate equations. The samples were very delicate and rapid compressions could result in explosions.

  13. Giant molecules composed of polar molecules and atoms in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Qi, Ran; Tan, Shina

    2014-05-01

    Two or three polar molecules, confined to one or two dimensions, can form stable bound states with a single atom living in three dimensions, if the molecule and the atom can interact resonantly such that their mixed dimensional scattering length is large. We call these bound states ``giant molecules'' since it's a molecule composed of smaller molecules and atoms. We study their properties using techniques including exact numerical solution, exact qunatum diffusion Monte Carlo (QMC), Born-Oppenheimer approximation (BOA), and semiclassical approximation. These bound states have a hierarchical structure reminiscent of the celestial systems.

  14. Polarized Atomic Hydrogen Beam Tests in the Mark-II Ultra-Cold Jet Target.

    NASA Astrophysics Data System (ADS)

    Luppov, V. G.; Blinov, B. B.; Gladycheva, S. E.; Kageya, T.; Kantsyrev, D. Yu.; Krisch, A. D.; Murray, J. R.; Neumann, J. J.; Raymond, R. S.; Borisov, N. S.; Kleppner, D.; Davidenko, A. M.; Grishin, V. N.

    2000-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Mark-II). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. Recently, the Jet produced a measured electron-spin-polarized atomic hydrogen beam of about 10^15 H s-1 into a 0.3 cm^2 area at the detector. This intensity corresponds to the free jet density of about 10^11 H cm-3 with a proton polarization of about 50%. So far, the intensity is limited by the high insulation vacuum pressure due to the evaporation of the separation cell's helium film. The beam's angular and radial distributions were measured. A test of a new superfluid-^4He-coated parabolic mirror, attached to the separation cell, appeared to increase the beam intensity by a factor of about 3, as expected.

  15. Photoelectron momentum distributions of atomic and molecular systems in strong circularly or elliptically polarized laser fields

    NASA Astrophysics Data System (ADS)

    He, Pei-Lun; Takemoto, Norio; He, Feng

    2015-06-01

    Photoelectron momentum distributions of a hydrogen atom in an elliptically polarized laser field and a hydrogen molecular ion in a circularly polarized laser field are studied by simulating the time-dependent Schrödinger equation. We demonstrate that, in both systems, the Coulomb interaction between a liberated electron and its parent ion is essential for the photoelectron momentum angular drift in a laser polarization plane. By decomposing the wave packet into the rescattered and directly ionized components in the case of a hydrogen molecular ion, we reveal that the rescattered component drifts by a larger angle. The drift angle of the photoelectron of the hydrogen atom decreases monotonically with longer wavelength, while a nonmonotonic dependence is shown for H2+. We attribute such nonmonotonicity to the fluctuation of the instant of ionization for H2 + as the laser wavelength is changed.

  16. Spectroscopic evidence for spin-polarized silicon atoms on Si(553)-Au

    SciTech Connect

    Snijders, Paul C; Johnson, P.S.; Guisinger, Nathan; Erwin, S. C.; Himpsel, F.J.

    2012-01-01

    The stepped Si(553)-Au surface undergoes a $1\\times3$ reconstruction at low temperature which has recently been interpreted theoretically as the $\\times3$ ordering of spin-polarized silicon atoms along a step edge in each surface unit cell. This predicted magnetic ground state has a clear spectroscopic signature---a silicon step-edge state at $0.5$ eV above the Fermi level---that arises from strong exchange splitting and hence would not occur without spin polarization. Here we report spatially resolved scanning tunneling spectroscopy data for Si(553)-Au that reveal key differences in the unoccupied step-edge density of states between room temperature and $40$ K. At low temperature we find an unoccupied state at 0.55 eV above every third step-edge silicon atom, in excellent agreement with the spin-polarized ground state predicted theoretically.

  17. Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Douguet, Nicolas; Grum-Grzhimailo, Alexei N.; Gryzlova, Elena V.; Staroselskaya, Ekaterina I.; Venzke, Joel; Bartschat, Klaus

    2016-03-01

    We investigate two-pathway interferences between nonresonant one-photon and resonant two-photon ionization of atomic hydrogen. In particular, we analyze in detail the photoionization mediated by the fundamental frequency and the second harmonic of a femtosecond VUV pulse when the fundamental is tuned near an intermediate atomic state. Following our recent study [Phys. Rev. A 91, 063418 (2015), 10.1103/PhysRevA.91.063418] of such effects with linearly polarized light, we analyze a similar situation with circularly polarized radiation. As a consequence of the richer structure in circularly polarized light, characterized by its right-handed or left-handed helicity, we present and discuss various important features associated with the photoelectron angular distribution.

  18. Decomposing the First Absorption Band of OCS Using Photofragment Excitation Spectroscopy.

    PubMed

    Toulson, Benjamin W; Murray, Craig

    2016-09-01

    Photofragment excitation spectra of carbonyl sulfide (OCS) have been recorded from 212-260 nm by state-selectively probing either electronically excited S((1)D) or ground state S((3)P) photolysis products via 2 + 1 resonance-enhanced multiphoton ionization. Probing the major S((1)D) product results in a broad, unstructured action spectrum that reproduces the overall shape of the first absorption band. In contrast, spectra obtained probing S((3)P) products display prominent resonances superimposed on a broad continuum; the resonances correspond to the diffuse vibrational structure observed in the conventional absorption spectrum. The vibrational structure is assigned to four progressions, each dominated by the C-S stretch, ν1, following direct excitation to quasi-bound singlet and triplet states. The S((3)PJ) products are formed with a near-statistical population distribution over the J = 2, 1, and 0 spin-orbit levels across the wavelength range investigated. Although a minor contributor to the S atom yield near the peak of the absorption cross section, the relative yield of S((3)P) increases significantly at longer wavelengths. The experimental measurements validate recent theoretical work characterizing the electronic states responsible for the first absorption band by Schmidt and co-workers. PMID:27552402

  19. Switching surface polarization of atomic force microscopy probe utilizing photoisomerization of photochromic molecules

    SciTech Connect

    Aburaya, Yoshihiro; Nomura, Hikaru; Kageshima, Masami; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2011-03-15

    An attempt to develop an atomic force microscopy (AFM) probe with optically switchable polarization is described. Modification with a single molecular layer of photochromic molecules was attempted onto a Si substrate that is a prototype for a probe surface. Polarization switching caused by alternate irradiation of UV and visible lights were detected using the electrostatic force?>spectroscopy (EFS) technique. Si substrates modified with spiropyran and azobenzene exhibited reversible polarization switching that caused changes in CPD of about 100 and 50 mV, respectively. Modification with spiropyran was also attempted onto a Si probe and resulted in a CPD change of about 100 mV. It was confirmed that modification of an AFM probe or substrate with a single molecular layer of photochromic molecules can generate surface polarization switching of a mechanically detectable level.

  20. Nonlinear polarization response of a gaseous medium in the regime of atom stabilization in a strong radiation field

    SciTech Connect

    Volkova, E. A.; Popov, A. M. Tikhonova, O. V.

    2013-03-15

    The nonlinear polarization response of a quantum system modeling a silver atom in the field of high-intensity radiation in the IR and UV spectral ranges has been studied by direct numerical integration of a nonstationary Schroedinger equation. The domains of applicability of perturbation theory and polarization expansion in powers of the field intensity are determined. The contribution of excited atoms and electrons in a continuum to the atomic polarization response at the field frequency, which arises due to the radiation-induced excitation and photoionization processes, is analyzed. Features of the nonlinear response to an external field under conditions of atom stabilization are considered.

  1. Moøller polarimetry with polarized atomic hydrogen at MESA

    SciTech Connect

    Bartolomé, P. Aguar; Aulenbacher, K.; Tyukin, V.

    2013-11-07

    A new generation of parity violation (PV) electron scattering experiments are planned to be carried out at the Institut für Kernphysik in Mainz. These experiments will be performed at low energies of 100-200 MeV using the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator). One of the main challenges of such experiments is to achieve an accuracy in beam polarization measurements that must be below 0.5%. This very high accuracy can be reached using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Mo/ller scattering. Electron spin-polarized atomic hydrogen can be stored at high densities of 10{sup 16} cm{sup −2}, over relatively long time periods, in a high magnetic field (8T) and at low temperatures (0.3K). The gradient force splits the ground state of the hydrogen into four states with different energies. Atoms in the low energy states are trapped in the strong magnetic field region whereas the high energy states are repelled and pumped away. The physics of ultra-cold atomic hydrogen in magnetic traps and the status of the Mainz Hydro-Mo/ller project will be presented.

  2. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films.

    PubMed

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-01-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides. PMID:27090766

  3. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films.

    PubMed

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-01-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides.

  4. Atomic mechanism of polarization-controlled surface reconstruction in ferroelectric thin films

    PubMed Central

    Gao, Peng; Liu, Heng-Jui; Huang, Yen-Lin; Chu, Ying-Hao; Ishikawa, Ryo; Feng, Bin; Jiang, Ying; Shibata, Naoya; Wang, En-Ge; Ikuhara, Yuichi

    2016-01-01

    At the ferroelectric surface, the broken translational symmetry induced bound charge should significantly alter the local atomic configurations. Experimentally revealing the atomic structure of ferroelectric surface, however, is very challenging due to the strong spatial variety between nano-sized domains, and strong interactions between the polarization and other structural parameters. Here, we study surface structures of Pb(Zr0.2Ti0.8)O3 thin film by using the annular bright-field imaging. We find that six atomic layers with suppressed polarization and a charged 180° domain wall are at negatively poled surfaces, no reconstruction exists at positively poled surfaces, and seven atomic layers with suppressed polarization and a charged 90° domain wall exist at nominally neutral surfaces in ferroelastic domains. Our results provide critical insights into engineering ferroelectric thin films, fine grain ceramics and surface chemistry devices. The state-of-the-art methodology demonstrated here can greatly advance our understanding of surface science for oxides. PMID:27090766

  5. Moøller polarimetry with polarized atomic hydrogen at MESA

    NASA Astrophysics Data System (ADS)

    Bartolomé, P. Aguar; Aulenbacher, K.; Tyukin, V.

    2013-11-01

    A new generation of parity violation (PV) electron scattering experiments are planned to be carried out at the Institut für Kernphysik in Mainz. These experiments will be performed at low energies of 100-200 MeV using the new accelerator MESA (Mainz Energy recovering Superconducting Accelerator). One of the main challenges of such experiments is to achieve an accuracy in beam polarization measurements that must be below 0.5%. This very high accuracy can be reached using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Mo/ller scattering. Electron spin-polarized atomic hydrogen can be stored at high densities of 1016 cm-2, over relatively long time periods, in a high magnetic field (8T) and at low temperatures (0.3K). The gradient force splits the ground state of the hydrogen into four states with different energies. Atoms in the low energy states are trapped in the strong magnetic field region whereas the high energy states are repelled and pumped away. The physics of ultra-cold atomic hydrogen in magnetic traps and the status of the Mainz Hydro-Mo/ller project will be presented.

  6. Charge distributions and effective atomic charges in transition-metal complexes using generalized atomic polar tensors and topological analysis

    SciTech Connect

    Cioslowski, J.; Hay, P.J.; Ritchie, J.P. )

    1990-01-11

    Advantages and shortcomings of three different definitions of the atomic charges, namely, the Mulliken, the generalized atomic polar tensors (GAPT), and the topological ones, are judged by applying them to the results of ab initio calculations on the TiF{sub 4}, Ni(CO){sub 4}, and FeH{sub 6}{sup 4{minus}} molecules. In agreement with previous reports, we find that the Mulliken charges vary widely with the choice of basis sets and therefore their utilization for the analysis of electronic structure of the transition-metal complexes is of little practical importance. On the other hand, both the GAPT and Bader's charges show a remarkable insensitivity to the quality of the basis sets.

  7. Fluorescence Emission and Excitation Spectra of Photo-Fragmented Nitrobenzene.

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Tanjaroon, Chakree; Johnson, J. Bruce; Allen, Susan D.; Reeve, Scott W.

    2012-06-01

    Upon absorption of a UV photon, nitrobenzene readily dissociates into C_6H_5, NO_2, C_6H_5NO, O, C_6H_5O, and NO through three different channels. We have recorded high resolution emission and excitation spectra of the NO resulting from photo-fragmented nitrobenzene using a pulsed picosecond tunable laser and a nanosecond dye laser. Specifically, the lasers probed the A^2Σ^+→ X^2π(1/2,3/2) NO band system between 225-260 nm using an one or two color process. In a one color process, the same energy (wavelength) photon is used to dissociate nitrobenzene and excite NO. In a two color process, photons of a particular energy are used to dissociate the nitrobenzene while photons of a different energy are used to probe the resultant NO. We have determined the rotational and vibrational temperatures of the nascent NO. And, we have examined the effect of the relative timing of the two photons on the fluorescence spectra to extract information about the photodissociation dynamics. Lin, M.-F.; Lee, Y. T.; Ni, C.-K.; Xu, S. and Lin, M. C. J. Chem. Phys., AIP, 2007, 126.

  8. Photofragment image analysis using the Onion-Peeling Algorithm

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Loock, Hans-Peter

    2003-07-01

    With the growing popularity of the velocity map imaging technique, a need for the analysis of photoion and photoelectron images arose. Here, a computer program is presented that allows for the analysis of cylindrically symmetric images. It permits the inversion of the projection of the 3D charged particle distribution using the Onion Peeling Algorithm. Further analysis includes the determination of radial and angular distributions, from which velocity distributions and spatial anisotropy parameters are obtained. Identification and quantification of the different photolysis channels is therefore straightforward. In addition, the program features geometry correction, centering, and multi-Gaussian fitting routines, as well as a user-friendly graphical interface and the possibility of generating synthetic images using either the fitted or user-defined parameters. Program summaryTitle of program: Glass Onion Catalogue identifier: ADRY Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer: IBM PC Operating system under which the program has been tested: Windows 98, Windows 2000, Windows NT Programming language used: Delphi 4.0 Memory required to execute with typical data: 18 Mwords No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 9 911 434 Distribution format: zip file Keywords: Photofragment image, onion peeling, anisotropy parameters Nature of physical problem: Information about velocity and angular distributions of photofragments is the basis on which the analysis of the photolysis process resides. Reconstructing the three-dimensional distribution from the photofragment image is the first step, further processing involving angular and radial integration of the inverted image to obtain velocity and angular distributions. Provisions have to be made to correct for slight distortions of the image, and to

  9. H-atom ionization by elliptically polarized microwave fields: The overlap criterion

    SciTech Connect

    Sacha, K.; Zakrzewski, J.

    1997-07-01

    The threshold for H-atom ionization by elliptically polarized microwave fields is discussed within the classical-mechanics framework using the Chirikov overlap criterion. It is shown that the trends observed in the recent experiment [M. R. W. Bellermann {ital et al.} Phys. Rev. Lett. {bold 76}, 892 (1996)] are qualitatively reproduced by the theory; the origin of the remaining discrepancy is discussed. Increased stability of some orbits with respect to the perturbation due to the elliptically polarized microwaves has been related to vanishing widths of the corresponding resonance islands. Analytic Chirikov overlap prediction is compared with results of numerical simulations. {copyright} {ital 1997} {ital The American Physical Society}

  10. Optical lattice polarization effects on magnetically induced optical atomic clock transitions

    SciTech Connect

    Taichenachev, A. V.; Yudin, V. I.; Oates, C. W.

    2007-08-15

    We derive the frequency shift for a forbidden optical transition J=0{yields}J{sup '}=0 caused by the simultaneous actions of an elliptically polarized lattice field and a static magnetic field. We find that a simple configuration of lattice and magnetic fields leads to a cancellation of this shift to first order in lattice intensity and magnetic field. In this geometry, the second-order lattice intensity shift can be minimized as well by use of optimal lattice polarization. Suppression of these shifts could considerably enhance the performance of the next generation of atomic clocks.

  11. Rydberg-atom-mediated nondestructive readout of collective rotational states in polar-molecule arrays

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Elena; Rittenhouse, Seth T.; Sadeghpour, H. R.; Yelin, Susanne F.

    2016-09-01

    We analyze the possibility to exploit charge-dipole interaction between a single polar molecule or a one-dimensional (1D) molecular array and a single Rydberg atom to read out molecular rotational populations. We calculate the energy shift of a single Rb (60 s ) atom interacting with a single KRb or RbYb molecule in their lowest two rotational states. At atom-molecule distances, relevant to trapping of molecules in optical lattices, the Rydberg electron energy shifts conditioned on the rotational states, are of the order of several MHz. Atom excitation to a Rydberg state and detection of atomic fluorescence conditioned on a rotational state preserves the molecule, making our scheme a nondestructive measurement of the rotational state. Similarly, a 1D array of polar molecules can shift the electron energy of a blockaded Rydberg superatom. We consider a scheme to read out the molecular array collective rotational states using the conditioned Rydberg energy shifts, and numerically analyze a system with three and five KRb or RbYb molecules interacting with Rb (60 s ) superatom.

  12. Coherent-population-trapping resonances with linearly polarized light for all-optical miniature atomic clocks

    SciTech Connect

    Zibrov, Sergei A.; Velichansky, Vladimir L.; Novikova, Irina; Phillips, David F.; Walsworth, Ronald L.; Zibrov, Alexander S.; Taichenachev, Alexey V.; Yudin, Valery I.

    2010-01-15

    We present a joint theoretical and experimental characterization of the coherent population trapping (CPT) resonance excited on the D{sub 1} line of {sup 87}Rb atoms by bichromatic linearly polarized laser light. We observe high-contrast transmission resonances (up to approx =25%), which makes this excitation scheme promising for miniature all-optical atomic clock applications. We also demonstrate cancellation of the first-order light shift by proper choice of the frequencies and relative intensities of the two laser-field components. Our theoretical predictions are in good agreement with the experimental results.

  13. The spin polarized linear response from density functional theory: theory and application to atoms.

    PubMed

    Fias, Stijn; Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N(s)] and [N(α), N(β)] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N(α), N(β)] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r') to a quantity χ(r, r'), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ(αβ)(r, r'), χ(βα)(r, r'), and χ(SS)(r, r') plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α(αα), α(αβ), α(βα), and α(ββ) have been calculated. PMID:25399132

  14. The spin polarized linear response from density functional theory: Theory and application to atoms

    SciTech Connect

    Fias, Stijn Boisdenghien, Zino; De Proft, Frank; Geerlings, Paul

    2014-11-14

    Within the context of spin polarized conceptual density functional theory, the spin polarized linear response functions are introduced both in the [N, N{sub s}] and [N{sub α}, N{sub β}] representations. The mathematical relations between the spin polarized linear response functions in both representations are examined and an analytical expression for the spin polarized linear response functions in the [N{sub α}, N{sub β}] representation is derived. The spin polarized linear response functions were calculated for all atoms up to and including argon. To simplify the plotting of our results, we integrated χ(r, r′) to a quantity χ(r, r{sup ′}), circumventing the θ and ϕ dependence. This allows us to plot and to investigate the periodicity throughout the first three rows in the periodic table within the two different representations. For the first time, χ{sub αβ}(r, r{sup ′}), χ{sub βα}(r, r{sup ′}), and χ{sub SS}(r, r{sup ′}) plots have been calculated and discussed. By integration of the spin polarized linear response functions, different components to the polarisability, α{sub αα}, α{sub αβ}, α{sub βα}, and α{sub ββ} have been calculated.

  15. LETTER TO THE EDITOR: Electron impact excitation of spin-polarized sodium and potassium atoms

    NASA Astrophysics Data System (ADS)

    Verma, Surbhi; Srivastava, Rajesh

    1996-02-01

    A distorted-wave calculation is performed for the integrated Stokes parameters for the radiation emitted from the polarized sodium 0953-4075/29/4/003/img1 and potassium 0953-4075/29/4/003/img2 atoms. The results are obtained in the energy range of 5 - 200 eV and these, when compared with the recently reported experimental data of Bukhari et al, are found to show an overall good agreement.

  16. Polarization effects in the interaction between multi-level atoms and two optical fields

    NASA Astrophysics Data System (ADS)

    Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.

    2015-06-01

    Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.

  17. Ground-state atomic polarization relaxation-time measurement of Rb filled hypocycloidal core-shaped Kagome HC-PCF

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.

    2016-09-01

    We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.

  18. Estimating Bounds on Collisional Relaxation Rates of Spin-Polarized 87Rb Atoms at Ultracold Temperatures

    PubMed Central

    Mies, Frederick H.; Williams, Carl J.; Julienne, Paul S.; Krauss, Morris

    1996-01-01

    We present quantum scattering calculations for the collisional relaxation rate coefficient of spin-polarized 87Rb(f = 2,m = 2) atoms, which determines the loss rate of cold Rb atoms from a magnetic trap. Unlike the lighter alkali atoms, spin-polarized 87Rb atoms can undergo dipolar relaxation due to both the normal spin-spin dipole interaction and a second-order spin-orbit interaction with distant electronic states of the dimer. We present ab initio calculations for the second-order spin-orbit terms for both Rb2 and Cs2. The corrections lead to a reduction in the relaxation rate for 87Rb. Our primary concern is to analyze the sensitivity of the 87Rb trap loss to the uncertainties in the ground state molecular potentials. Since the scattering length for the a3Σ+u state is already known, the major uncertainties are associated with the X1Σ+g potential. After testing the effect of systematically modifying the short-range form of the molecular potentials over a reasonable range, and introducing our best estimate of the second-order spin-orbit interaction, we estimate that in the low temperature limit the rate coefficient for loss of Rb atoms from the f = 2,m = 2 state is between 0.4 × 10−15 cm3/s and 2.4 × 10−15 cm3/s (where this number counts two atoms lost per collision). In a pure condensate the rate coefficient would be reduced by 1/2.

  19. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    SciTech Connect

    Kobayashi, Atsushi; Ohta, Jitsuo; Ueno, Kohei; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-04

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on −R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of −c and m-faces on the −R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  20. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  1. Photofragment imaging of HNCO decomposition: Angular anisotropy and correlated distributions

    SciTech Connect

    Sanov, A.; Droz-Georget, T.; Zyrianov, M.; Reisler, H.

    1997-05-01

    Photodissociation of jet-cooled isocyanic acid has been examined by photofragment ion imaging of H(D) from H(D)NCO and CO from HNCO, and by laser induced fluorescence (LIF) of NH(a{sup 1}{Delta}) from HNCO. Only modest recoil anisotropy is observed in the H+NCO channel at 243.1 nm ({beta}={minus}0.13{plus_minus}0.05), while the D+NCO channel at approximately the same wavelength reveals no anisotropy ({beta}=0.00{plus_minus}0.05), confirming that the dissociation of H(D)NCO from the opening of the H(D) channel proceeds via vibrational predissociation on the S{sub 0}({sup 1}A) surface. In contrast, substantial anisotropy ({beta}={minus}0.66{plus_minus}0.08) is observed in the NH(a{sup 1}{Delta})+CO channel at 230.1 nm, but this value can correspond to dissociation on either S{sub 0} or S{sub 1}. The photolysis region between 243 and 230 nm thus appears important in providing clues to the dissociation mechanism and the competition between different potential energy surfaces. At 217.6 nm, product state distributions exhibit clear dynamical biases. CO is produced in both {nu}=0 and {nu}=1, while NH(a{sup 1}{Delta}) distributions correlated with different rovibrational levels of CO, although different in shape, are always cold, consistent with the global NH distribution measured by LIF. The NH distributions indicate dissociation on S{sub 1}({sup 1}A{sup {prime}{prime}}), and can be described by Franck{endash}Condon mapping of transition state wave functions in the HNC bending coordinate without additional torque, implying little anisotropy in the potential along that coordinate. On the other hand, a larger torque is manifest in the CO rotational distribution. Although at 217.6 nm the dissociation is likely to be dominated by decomposition on S{sub 1}, competition with radiationless decay is still manifest. The NH(a{sup 1}{Delta})+CO dissociation threshold is determined at 42765{plus_minus}25cm{sup {minus}1}. {copyright} {ital 1997 American Institute of Physics.}

  2. Photofragment Coincidence Imaging of Small I- (H2O)n Clusters Excited to the Charge-transfer-to-solvent State

    SciTech Connect

    Neumark, D. E. Szpunar, K. E. Kautzman, A. E. Faulhaber, and D. M.; Kautzman, K.E.; Faulhaber, A.E.; Faulhaber, A.E.

    2005-11-09

    The photodissociation dynamics of small I{sup -}(H{sub 2}O){sub n} (n = 2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel ({approx}90%) is a 2-body process forming neutral I + (H{sub 2}O){sub n} photofragments, and the minor channel is a 3-body process forming I + (H{sub 2}O){sub n-1} + H{sub 2}O fragments. Both process display translational energy (P(E{sub T})) distributions peaking at E{sub T} = 0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather than to the CTTS state display the same two channels with similar P(E{sub T}) distributions. The observation of similar P(E{sub T}) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited (I(H{sub 2}O){sub n}{sup -})* cluster, or, less probably, that the presence of the excess electron has little effect on the departing I atom.

  3. Nonadiabatic theory of strong-field atomic effects under elliptical polarization

    SciTech Connect

    Wang Xu; Eberly, J. H.

    2012-12-14

    Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.

  4. Photoelectron angular distributions from polarized Ne{sup *} atoms near threshold

    SciTech Connect

    O'Keeffe, P.; Bolognesi, P.; Mihelic, A.; Moise, A.; Richter, R.; Cautero, G.; Stebel, L.; Sergo, R.; Pravica, L.; Ovcharenko, E.; Decleva, P.; Avaldi, L.

    2010-11-15

    Photoelectron distributions of the polarized 2p{sup 5}3d Rydberg states of neon have been studied with a newly built velocity map imaging analyzer. The atoms were polarized by absorption of synchrotron radiation and ionized by an infrared laser. The asymmetry parameters {beta}{sub 2} and {beta}{sub 4} characterizing two-photon resonant ionization have been extracted from the measured images and compared with the results of a quantum defect treatment. To achieve a good theoretical description of the data, it is necessary to take into account the dependence of the dipole transition matrix elements and phases of the partial waves on the angular momentum quantum numbers pertaining to various continuum channels.

  5. Resonance overlap criterion for H atom ionization by circularly polarized microwave fields

    SciTech Connect

    Sacha, K.; Zakrzewski, J.

    1997-01-01

    The threshold for H atom ionization by circularly polarized microwave fields is discussed within the classical mechanics framework for high microwave frequencies. The Chirikov resonance overlap criterion predictions are compared with estimates obtained adopting the renormalization method. It is shown that the ionization threshold is highly sensitive to the helicity of microwaves. Among all possible initial electronic orbits, those of medium eccentricity are the first to ionize. The results obtained indicate that collisions with the nucleus play a negligible role for the onset of ionization. {copyright} {ital 1997} {ital The American Physical Society}

  6. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.; Neumark, Daniel M.

    2016-07-01

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS- anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  7. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy.

    PubMed

    Harrison, Aaron W; Ryazanov, Mikhail; Sullivan, Erin N; Neumark, Daniel M

    2016-07-14

    The photodissociation dynamics of the methyl perthiyl radical (CH3SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH3SS(-) anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH3S and S fragments, indicating that the dissociation occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S2 loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S2 and S atom products in several excited electronic states.

  8. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  9. Accessing the quantum Hall regime in cold atom traps using circularly polarized light

    NASA Astrophysics Data System (ADS)

    Wooten, Rachel; Yan, Bin; Greene, Chris H.

    2016-05-01

    There has been considerable interest in designing cold atom experiments to explore the quantum Hall effect with the extreme control allowed in such trapped atom systems. Many theoretical proposals and experimental attempts have been made in the effort to construct a cold atom fractional quantum Hall experiment, but so far, the fractional quantum Hall regime has proven difficult to achieve in experimental setups. One method for reaching the quantum Hall effect consists of rapidly rotating a cold atom system in a harmonic trap to near the centrifugal limit, where the system's Hamiltonian matches the two-dimensional magnetic field Hamiltonian. This condition could be reached in a few-body system through a scheme which increases the angular momentum of the particles in the trap through precision photon excitations. According to the hyperspherical framework from few-body theory, when particle interactions break the harmonic energy spectrum degeneracy, it becomes possible for circularly polarized light to excite the system selectively into the high angular momentum states required for the quantum Hall effect. We will discuss possible experimental systems where this technique could be applicable and challenges that these systems may face.

  10. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property. PMID:27410815

  11. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property.

  12. Effects of local sample bending on atom positions and polarization mapping in HAADF-STEM images

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Tao, Jing; Wu, Lijun; Zhu, Yimei

    Characterization of the structural distortion/reconstruction in the transition-metal oxide heterostructures play an important role in understanding their novel properties. In recent years, high-angle annular dark field (HAADF) in scanning transmission electron microscopy (STEM) has become a powerful technique to determine local atomic arrangements, particularly near interfaces and boundaries. However, sample bending, especially near the edge of a thin specimen, is often introduced during the TEM sample preparation process. Our recent studies reveal that small sample bending can affect significantly the measurement of atom positions in HAADF-STEM image as a result of channeling effect of the incident electron beam. Here we take SrTiO3 (STO) as an example to show how to remove sample bending induced artifact from its intrinsic structural distortions. A polar-related artifact in STO at different bending angles were reveled both in our experiments and imaging simulation. This artifact can be removed successfully by quantitative comparing experimental with simulated HAADF-STEM images under the same imaging condition. The bending angle and thickness of the sample can be determined using convergent beam electron diffraction. Our study provide a useful guidance for removing the sample bending-induced artifact in STEM images for the studies of local lattice structures, polarization and distortion of complex materials.

  13. Atomic origin of the spin-polarization of the Co2FeAl Heusler compound

    NASA Astrophysics Data System (ADS)

    Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh

    2016-02-01

    Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin)  →  B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half

  14. Controlled polarization of two-dimensional quantum turbulence in atomic Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cidrim, A.; dos Santos, F. E. A.; Galantucci, L.; Bagnato, V. S.; Barenghi, C. F.

    2016-03-01

    We propose a scheme for generating two-dimensional turbulence in harmonically trapped atomic condensates with the novelty of controlling the polarization (net rotation) of the turbulence. Our scheme is based on an initial giant (multicharged) vortex which induces a large-scale circular flow. Two thin obstacles, created by blue-detuned laser beams, speed up the decay of the giant vortex into many singly quantized vortices of the same circulation; at the same time, vortex-antivortex pairs are created by the decaying circular flow past the obstacles. Rotation of the obstacles against the circular flow controls the relative proportion of positive and negative vortices, from the limit of strongly anisotropic turbulence (almost all vortices having the same sign) to that of isotropic turbulence (equal number of vortices and antivortices). Using this scheme, we numerically study the decay of two-dimensional quantum turbulence as a function of the polarization. Finally, we present a model for the decay rate of the vortex number which fits our numerical experiment curves, with the novelty of taking into account polarization time dependence.

  15. Two-color stabilization of atomic hydrogen in circularly polarized laser fields

    SciTech Connect

    Bauer, D.; Ceccherini, F.

    2002-11-01

    The dynamic stabilization of atomic hydrogen against ionization in high-frequency single- and two-color, circularly polarized laser pulses is observed by numerically solving the three-dimensional, time-dependent Schroedinger equation. The single-color case is revisited and numerically determined ionization rates are compared with both, the exact and the approximate high-frequency Floquet rates. The positions of the peaks in the photoelectron spectra can be explained with the help of dressed initial states. In two-color laser fields of opposite circular polarization, the stabilized probability density may be shaped in various ways. For laser frequencies {omega}{sub 1} and {omega}{sub 2}=n{omega}{sub 1}, n=2,3,..., and sufficiently large excursion amplitudes (n+1) distinct probability density peaks are observed. This may be viewed as the generalization of the well-known 'dichotomy' in linearly polarized laser fields, i.e, as 'trichotomy', 'quatrochotomy', 'pentachotomy' etc. All those observed structures and their 'hula-hoop'-like dynamics can be understood with the help of high-frequency Floquet theory and the two-color Kramers-Henneberger transformation. The shaping of the probability density in the stabilization regime can be realized without additional loss in the survival probability, as compared to the corresponding single-color results.

  16. Valley polarization and coherence in atomically thin tungsten disulfide via optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Bairen; Zeng, Hualing; Dai, Junfeng; Gong, Zhirui; Cui, Xiaodong

    Atomically thin group-VI transition metal dichalcogenides (TMDC) has been emerging as a family of intrinsic 2-dimensional crystals with a sizeable bandgap, opening a potential avenue for ultimate electronics and optoelectronics. Besides, the characteristic structural inversion symmetry breaking in monolayers leads to non-zero but contrasting Berry curvatures and orbital magnetic moments at K/K' valleys. These features provide an opportunity to manipulate electrons' additional internal degrees of freedom, namely the valley degree of freedom, making monolayer TMDC a promising candidate for the conceptual valleytronics. Here, our experimental approach on valley dependent circular dichroism in monolayer and bilayer WS2 via optical spectroscopy are elaborated. Consequently, the polarization of photoluminescence inherits that of excitations, circularly and linearly polarized, confirming the valley dependent selectivity rule. However, the valley polarization and valley coherence in bilayer WS2 owing to the coupling of spin, valley and layer degrees of freedom, are anomalously robust compared with monolayer WS2. We propose potential mechanisms of the anomalous behavior in WS2 bilayers.

  17. Atomic structure of defects in GaN:Mg grown with Ga polarity

    SciTech Connect

    Liliental-Weber, Z.; Tomaszewicz, T.; Zakharov, D.; Jasinski, J.; O'Keefe, M.A.; Hautakangas, S.; Laakso, A.; Saarinen, K.

    2003-11-25

    Electron microscope phase images, produced by direct reconstruction of the scattered electron wave from a focal series of high-resolution images, were used to determine the nature of defects formed in GaN:Mg crystals. We studied bulk crystals grown from dilute solutions of atomic nitrogen in liquid gallium at high pressure and thin films grown by the MOCVD method. All the crystals were grown with Ga-polarity. In both types of samples the majority of defects were three dimensional Mg-rich hexagonal pyramids with bases on the (0001) plane and six walls on {l_brace}11{und 2}3{r_brace} planes seen in cross-section as triangulars. Some other defects appear in cross-section as trapezoidal (rectangular) defects as a result of presence of truncated pyramids. Both type of defects have hollow centers. They are decorated by Mg on all six side walls and a base. The GaN which grows inside on the defect walls shows polarity inversion. It is shown that change of polarity starts from the defect tip and propagates to the base, and that the stacking sequence changes from ab in the matrix to bc inside the defect. Exchange of the Ga sublattice with the N sublattice within the defect leads to 0.6 {+-} 0.2{angstrom} displacement between Ga sublattices outside and inside the defects. It is proposed that lateral overgrowth of the cavities formed within the defect takes place to restore matrix polarity on the defect base.

  18. Prospects for ultracold polar and magnetic chromium-closed-shell-atom molecules

    NASA Astrophysics Data System (ADS)

    Tomza, Michał

    2013-07-01

    The properties of the electronic ground state of the polar and paramagnetic chromium-closed-shell-atom molecules have been investigated. State-of-the-art ab initio techniques have been applied to compute the potential energy curves for the chromium-alkaline-earth-metal-atom, CrX (X=Be, Mg, Ca, Sr, Ba), and chromium-ytterbium, CrYb, molecules in the Born-Oppenheimer approximation for the high-spin X7Σ+ electronic ground state. The spin restricted open-shell coupled cluster method restricted to single, double, and noniterative triple excitations, RCCSD(T), was employed and the scalar relativistic effects within the Douglas-Kroll-Hess Hamiltonian or energy-consistent pseudopotentials were included. The permanent electric dipole moments and static electric dipole polarizabilities were computed. The leading long-range coefficients describing the dispersion interaction between the atoms at large interatomic distances C6 are also reported. The molecules under investigation are examples of species possessing both large magnetic and electric dipole moments making them potentially interesting candidates for ultracold many-body physics studies.

  19. Gradient-echo 3D imaging of Rb polarization in fiber-coupled atomic magnetometer.

    PubMed

    Savukov, I

    2015-07-01

    The analogy between atomic and nuclear spins is exploited to implement 3D imaging of polarization inside the cell of an atomic magnetometer. The resolution of 0.8mm×1.2mm×1.4mm has been demonstrated with the gradient-echo imaging method. The imaging can be used in many applications. One such an application is the evaluation of active volume of an atomic magnetometer for sensitivity analysis and optimization. It has been found that imaging resolution is limited due to de-phasing from spin-exchange collisions and diffusion in the presence of gradients, and for a given magnetometer operational parameters, the imaging sequence has been optimized. Diffusion decay of the signal in the presence of gradients has been modeled numerically and analytically, and the analytical results, which agreed with numerical simulations, have been used to fit the spin-echo gradient measurements to extract the diffusion coefficient. The diffusion coefficient was found in agreement with previous measurements.

  20. Ultraviolet photodissociation of C{sub 2}F{sub 5}I with a small and simple photofragment translational spectrometer

    SciTech Connect

    Yu Zijun; Xu Xiling; Cheng Min; Yu Dan; Du Yikui; Zhu Qihe

    2009-07-28

    Photodissociation dynamics of C{sub 2}F{sub 5}I near 280 and 304 nm has been investigated on a small and simple time-of-flight photofragment translational spectrometer (PTS). On this new PTS, the photolyzed and ionized fragments, not accelerated by electric field, travel freely for a short flight path (<50 mm) and are detected by microchannel plates. In the spectra of the I*({sup 2}P{sub 1/2}) channel at 281.73 and 304.02 nm, vibrational peaks with spacing of {approx}350 cm{sup -1} are partially resolved, indicating the preferential excitation of CF{sub 2} wag mode ({nu}{sub 11}=366 cm{sup -1}) of C{sub 2}F{sub 5} photofragment. The fraction of the available energy disposed into the internal energy is higher than 50% for both I{sup *} channel and I channel, showing the high excitation of vibration in the C{sub 2}F{sub 5} fragments. The fragment recoil anisotropy parameter {beta}(I{sup *}), determined to be 1.70 at 281.73 nm and 1.64 at 304.02 nm, reveals that I* atoms are produced predominantly from the parallel {sup 3}Q{sub 0}<-N transition. The anisotropy parameter {beta}(I), determined to be 1.25 at 279.71 nm and 0.88 at 304.67 nm, implies that I atoms are produced from two excited states, i.e., direct dissociation via the perpendicular {sup 3}Q{sub 1}(leftarrow)N transition, and indirect dissociation via the parallel {sup 3}Q{sub 0}(leftarrow)N transition then curve crossing to the {sup 1}Q{sub 1} potential energy surface. Analysis on the recent studies with vibrational state resolution in the photodissociation of alkyl iodides in the A band reveals that the ''symmetric bending'' mode on {alpha}-carbon of alkyl iodides is the preferential vibrational excitation mode, which can be explained by the classic impulsive model.

  1. Production of Excited Atomic Hydrogen and Deuterium from HD Photodissociation

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Bozek, J. D.; Furst, J. E.; Gay, T. J.; Gould, H.; Kilcoyne, A. L. D.; McLaughlin, K. W.

    2008-05-01

    We have measured the production of Lyα, Hα, and Hβ fluorescence from atomic H and D for the photodissociation of HD by linearly-polarized photons with energies between 20 and 66 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Theoretical calculation are not yet available for HD, but comparison between the relative cross sections for H2, D2 and HD targets and the available theory for H2 and D2 [1] allow for an estimate of the relative strength of each dissociation channel in this energy range. [1] J. D. Bozek et al., J. Phys. B 39, 4871 (2006). Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  2. Bose-Einstein condensation and heat capacity of two-dimensional spin-polarized atomic hydrogen

    SciTech Connect

    Al-Sugheir, M. K.; Ghassib, H. B.; Awawdeh, M.

    2011-07-15

    The static fluctuation approximation (SFA) is used to study the condensate fraction and the specific heat capacity of finite two-dimensional spin-polarized atomic hydrogen. It is found that Bose-Einstein condensation occurs in this system. The transition temperature at different densities decreases as the number of particles of the system increases. At low density, a sharp peak in the specific heat capacity is observed at the transition temperature. On the other hand, as the density of the system increases, the transition temperature becomes no longer well-defined, and a hump is observed in the specific heat capacity around the transition temperature. A qualitative comparison of our results to published results for finite Bose systems shows good agreement.

  3. Revisiting the integrated infrared intensities and atomic polar tensors of the boron trihalides.

    PubMed

    Richter, Wagner E; Bruns, Roy E

    2016-07-01

    Integrated infrared intensities obtained from spectra of the Pacific Northwest National Laboratory (PNNL) database are reported for BF3, BCl3 and BBr3. The BF3 and BCl3 intensities are compared with values reported much earlier whereas the asymmetric BBr3 stretching intensity is reported for the first time. Although agreement is good for the BF3 intensities, the result from the PNNL spectra for the asymmetric BCl3 stretching vibration is about three times larger than the one reported earlier. The intensities obtained from the PNNL spectra are in excellent agreement with results from QCISD/cc-pVTZ quantum chemical calculations having an rms error of only 32.9cm(-1) or 5.9% of the average intensity. Revised experimental atomic polar tensors and GAPT charges are reported for all these molecules.

  4. Revisiting the integrated infrared intensities and atomic polar tensors of the boron trihalides

    NASA Astrophysics Data System (ADS)

    Richter, Wagner E.; Bruns, Roy E.

    2016-07-01

    Integrated infrared intensities obtained from spectra of the Pacific Northwest National Laboratory (PNNL) database are reported for BF3, BCl3 and BBr3. The BF3 and BCl3 intensities are compared with values reported much earlier whereas the asymmetric BBr3 stretching intensity is reported for the first time. Although agreement is good for the BF3 intensities, the result from the PNNL spectra for the asymmetric BCl3 stretching vibration is about three times larger than the one reported earlier. The intensities obtained from the PNNL spectra are in excellent agreement with results from QCISD/cc-pVTZ quantum chemical calculations having an rms error of only 32.9 cm- 1 or 5.9% of the average intensity. Revised experimental atomic polar tensors and GAPT charges are reported for all these molecules.

  5. Revisiting the integrated infrared intensities and atomic polar tensors of the boron trihalides.

    PubMed

    Richter, Wagner E; Bruns, Roy E

    2016-07-01

    Integrated infrared intensities obtained from spectra of the Pacific Northwest National Laboratory (PNNL) database are reported for BF3, BCl3 and BBr3. The BF3 and BCl3 intensities are compared with values reported much earlier whereas the asymmetric BBr3 stretching intensity is reported for the first time. Although agreement is good for the BF3 intensities, the result from the PNNL spectra for the asymmetric BCl3 stretching vibration is about three times larger than the one reported earlier. The intensities obtained from the PNNL spectra are in excellent agreement with results from QCISD/cc-pVTZ quantum chemical calculations having an rms error of only 32.9cm(-1) or 5.9% of the average intensity. Revised experimental atomic polar tensors and GAPT charges are reported for all these molecules. PMID:27092735

  6. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    SciTech Connect

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu E-mail: tschu008@163.com

    2014-02-21

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom.

  7. Selective detection of angular-momentum-polarized Auger electrons by atomic stereography.

    PubMed

    Matsui, Fumihiko; Fujita, Masayoshi; Ohta, Takuya; Maejima, Naoyuki; Matsui, Hirosuke; Nishikawa, Hiroaki; Matsushita, Tomohiro; Daimon, Hiroshi

    2015-01-01

    When a core level is excited by circularly polarized light, the angular momentum of light is transferred to the emitted photoelectron, which can be confirmed by the parallax shift of the forward focusing peak (FFP) direction in a stereograph of atomic arrangement. No angular momentum has been believed to be transferred to normal Auger electrons resulting from the decay process filling core hole after photoelectron ejection. We succeeded in detecting a non-negligible circular dichroism contrast in a normal Auger electron diffraction from a nonmagnetic Cu(001) surface far off from the absorption threshold. Moreover, we detected angular-momentum-polarized Cu L(3)M(4,5)M(4,5) Auger electrons at the L(3) absorption threshold, where the excited core electron is trapped at the conduction band. From the kinetic energy dependence of the Auger electron FFP parallax shift, we found that the angular momentum is transferred to the Auger electron most effectively in the case of the (1)S(0) two-hole creation.

  8. Selective Detection of Angular-Momentum-Polarized Auger Electrons by Atomic Stereography

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Fujita, Masayoshi; Ohta, Takuya; Maejima, Naoyuki; Matsui, Hirosuke; Nishikawa, Hiroaki; Matsushita, Tomohiro; Daimon, Hiroshi

    2015-01-01

    When a core level is excited by circularly polarized light, the angular momentum of light is transferred to the emitted photoelectron, which can be confirmed by the parallax shift of the forward focusing peak (FFP) direction in a stereograph of atomic arrangement. No angular momentum has been believed to be transferred to normal Auger electrons resulting from the decay process filling core hole after photoelectron ejection. We succeeded in detecting a non-negligible circular dichroism contrast in a normal Auger electron diffraction from a nonmagnetic Cu(001) surface far off from the absorption threshold. Moreover, we detected angular-momentum-polarized Cu L3M4 ,5M4 ,5 Auger electrons at the L3 absorption threshold, where the excited core electron is trapped at the conduction band. From the kinetic energy dependence of the Auger electron FFP parallax shift, we found that the angular momentum is transferred to the Auger electron most effectively in the case of the 1S0 two-hole creation.

  9. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    PubMed Central

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  10. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    PubMed

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  11. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    PubMed Central

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-01-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622

  12. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.

    PubMed

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  13. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide

    NASA Astrophysics Data System (ADS)

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-08-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  14. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.

    PubMed

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman

    2016-01-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622

  15. Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled to the same linearly polarized laser in a four-level atomic system in the W scheme

    SciTech Connect

    Bahrim, Cristian; Nelson, Chris

    2011-03-15

    Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme using a linearly polarized optical field for simultaneously slowing down two {sigma}{sup +} and {sigma}{sup -} circularly polarized optical fields. This four-level atomic system can be set up with a |{sup 1}S{sub 0}> ground state and three Zeeman levels of the |{sup 1}P{sub 1}> excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after solving a density matrix master equation including radiative relaxations from Zeeman states of the |{sup 1}P{sub 1}> multiplet to the |{sup 1}S{sub 0}> ground state. The EIT feature is analyzed using the transit time between the normal dispersive region and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the excited Zeeman states.

  16. Spin-polarized hydrogen Rydberg time-of-flight: Experimental measurement of the velocity-dependent H atom spin-polarization

    SciTech Connect

    Broderick, Bernadette M.; Lee, Yumin; Doyle, Michael B.; Chernyak, Vladimir Y.; Suits, Arthur G.; Vasyutinskii, Oleg S.

    2014-05-15

    We have developed a new experimental method allowing direct detection of the velocity dependent spin-polarization of hydrogen atoms produced in photodissociation. The technique, which is a variation on the H atom Rydberg time-of-flight method, employs a double-resonance excitation scheme and experimental geometry that yields the two coherent orientation parameters as a function of recoil speed for scattering perpendicular to the laser propagation direction. The approach, apparatus, and optical layout we employ are described here in detail and demonstrated in application to HBr and DBr photolysis at 213 nm. We also discuss the theoretical foundation for the approach, as well as the resolution and sensitivity we achieve.

  17. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  18. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  19. Ground state of the polar alkali-metal-atom-strontium molecules: Potential energy curve and permanent dipole moment

    SciTech Connect

    Guerout, R.; Aymar, M.; Dulieu, O.

    2010-10-15

    In this study, we investigate the structure of the polar alkali-metal-atom-strontium diatomic molecules as possible candidates for the realization of samples of ultracold polar molecular species not yet investigated experimentally. Using a quantum chemistry approach based on effective core potentials and core polarization potentials, we model these systems as effective three-valence-electron systems, allowing for calculation of electronic properties with full configuration interaction. The potential curve and the permanent dipole moment of the {sup 2}{Sigma}{sup +} ground state are determined as functions of the internuclear distance for LiSr, NaSr, KSr, RbSr, and CsSr molecules. These molecules are found to exhibit a significant permanent dipole moment, though smaller than those of the alkali-metal-atom-Rb molecules.

  20. Measuring the spin polarization of alkali-metal atoms using nuclear magnetic resonance frequency shifts of noble gases

    SciTech Connect

    Liu, X. H.; Luo, H.; Qu, T. L. Yang, K. Y.; Ding, Z. C.

    2015-10-15

    We report a novel method of measuring the spin polarization of alkali-metal atoms by detecting the NMR frequency shifts of noble gases. We calculated the profile of {sup 87}Rb D1 line absorption cross sections. We then measured the absorption profile of the sample cell, from which we calculated the {sup 87}Rb number densities at different temperatures. Then we measured the frequency shifts resulted from the spin polarization of the {sup 87}Rb atoms and calculated its polarization degrees at different temperatures. The behavior of frequency shifts versus temperature in experiment was consistent with theoretical calculation, which may be used as compensative signal for the NMRG closed-loop control system.

  1. A dead-zone free ⁴He atomic magnetometer with intensity-modulated linearly polarized light and a liquid crystal polarization rotator.

    PubMed

    Wu, T; Peng, X; Lin, Z; Guo, H

    2015-10-01

    We demonstrate an all-optical (4)He atomic magnetometer experimental scheme based on an original Bell-Bloom configuration. A single intensity-modulated linearly polarized laser beam is used both for generating spin polarization within a single (4)He vapor and probing the spin precessing under a static magnetic field. The transmitted light signal from the vapor is then phase-sensitively detected at the modulation frequency and its harmonics, which lead to the atomic magnetic resonance signals. Based on this structure, a liquid crystal is added in our magnetometer system and constitutes a polarization rotator. By controlling the voltage applied on the liquid crystal, the light linear polarization vector can be kept perpendicular with the ambient magnetic field direction, which in turn provides the maximum resonance signal amplitude. Moreover, the system exhibits a magnetic-field noise floor of about 2pT/√Hz, which is not degraded due to the presence of the liquid crystal and varying magnetic field direction. The experiment results prove that our method can eliminate the dead-zone effect, improve the system spatial isotropy, and thus be suitable in mobile applications.

  2. Atomic structure and polarity compensation of BaTiO3 (1 1 1) surface.

    PubMed

    Li, Yueliang; Yu, Rong; Shi, Tao; Liao, Zhenyu; Song, Dongsheng; Zhou, Huihua; Cheng, Zhiying; Zhu, Jing

    2015-03-11

    Surfaces of perovskite-type oxides have been attracting increasing interest for their primary importance in various potential applications such as multiferroic thin films, interface electronics and catalysis. However, the (1 1 1) surface of BaTiO3, the most typical ferroelectric, is far from well understood. In this work, the atomic structure and polarity compensation of BaTiO3 (1 1 1) surface have been investigated combining aberration-corrected transmission electron microscopy and first-principle calculations. Depending on the density of oxygen vacancies, the surface shows different degrees of atomic relaxation and electronic charge transfer, which compensates the surface polarity together with the ionic charges associated with the oxygen vacancies. The atomic relaxation and charge transfer would have a direct impact on the ferroelectric and catalytic properties of low-dimensional BaTiO3.

  3. Atomic structure and polarity compensation of BaTiO3 (1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Li, Yueliang; Yu, Rong; Shi, Tao; Liao, Zhenyu; Song, Dongsheng; Zhou, Huihua; Cheng, Zhiying; Zhu, Jing

    2015-03-01

    Surfaces of perovskite-type oxides have been attracting increasing interest for their primary importance in various potential applications such as multiferroic thin films, interface electronics and catalysis. However, the (1 1 1) surface of BaTiO3, the most typical ferroelectric, is far from well understood. In this work, the atomic structure and polarity compensation of BaTiO3 (1 1 1) surface have been investigated combining aberration-corrected transmission electron microscopy and first-principle calculations. Depending on the density of oxygen vacancies, the surface shows different degrees of atomic relaxation and electronic charge transfer, which compensates the surface polarity together with the ionic charges associated with the oxygen vacancies. The atomic relaxation and charge transfer would have a direct impact on the ferroelectric and catalytic properties of low-dimensional BaTiO3.

  4. Strong-field atomic ionization in an elliptically polarized laser field and a constant magnetic field

    NASA Astrophysics Data System (ADS)

    Rylyuk, V. M.

    2016-05-01

    Within the framework of the quasistationary quasienergy state (QQES) formalism, the tunneling and multiphoton ionization of atoms and ions subjected to a perturbation by a high intense laser radiation field of an arbitrary polarization and a constant magnetic field are considered. On the basis of the exact solution of the Schrödinger equation and the Green's function for the electron moving in an arbitrary laser field and crossed constant electric and magnetic fields, the integral equation for the complex quasienergy and the energy spectrum of the ejected electron are derived. Using the "imaginary-time" method, the extremal subbarrier trajectory of the photoelectron moving in a nonstationary laser field and a constant magnetic field are considered. Within the framework of the QQES formalism and the quasiclassical perturbation theory, ionization rates when the Coulomb interaction of the photoelectron with the parent ion is taken into account at arbitrary values of the Keldysh parameter are derived. The high accuracy of rates is confirmed by comparison with the results of numerical calculations. Simple analytical expressions for the ionization rate with the Coulomb correction in the tunneling and multiphoton regimes in the case of an elliptically polarized laser beam propagating at an arbitrary angle to the constant magnetic field are derived and discussed. The limits of small and large magnetic fields and low and high frequency of a laser field are considered in details. It is shown that in the presence of a nonstationary laser field perturbation, the constant magnetic field may either decrease or increase the ionization rate. The analytical consideration and numerical calculations also showed that the difference between the ionization rates for an s electron in the case of right- and left-elliptically polarized laser fields is especially significant in the multiphoton regime for not-too-high magnetic fields and decreases as the magnetic field increases. The paper

  5. Energetic neutral atom imaging with the Polar CEPPAD/IPS instrument: Initial forward modeling results

    SciTech Connect

    Henderson, M.G.; Reeves, G.D.; Moore, K.R.; Spence, H.E.; Jorgensen, A.M.; Fennell, J.F.; Blake, J.B.; Roelof, E.C.

    1997-12-31

    Although the primary function of the CEP-PAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current, detailed modeling is required to extract the actual ion distributions. In this paper, the authors present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies.

  6. Energetic Neutral Atom Imaging with the POLAR CEPPAD/ IPS Instrument : Initial Forward Modeling Results

    NASA Technical Reports Server (NTRS)

    Henderson, M. G.; Reeves, G. D.; Moore, K. R.; Spence, H. E.; Jorgensen, A. M.; Fennell, J. F.; Blake, J. B.; Roelof, E. C.

    1999-01-01

    Although the primary function of the CEPPAD/IPS instrument on Polar is the measurement of energetic ions in-situ, it has also proven to be a very capable Energetic Neutral Atom (ENA) imager. Raw ENA images are currently being constructed on a routine basis with a temporal resolution of minutes during both active and quiet times. However, while analyses of these images by themselves provide much information on the spatial distribution and dynamics of the energetic ion population in the ring current. detailed modeling is required to extract the actual ion distributions. In this paper. we present the initial results of forward modeling an IPS ENA image obtained during a small geo-magnetic storm on June 9, 1997. The equatorial ion distribution inferred with this technique reproduces the expected large noon/midnight and dawn/dusk asymmetries. The limitations of the model are discussed and a number of modifications to the basic forward modeling technique are proposed which should significantly improve its performance in future studies.

  7. Polarization dependence of the direct two photon transitions of 87Rb atoms by erbium: Fiber laser frequency comb

    NASA Astrophysics Data System (ADS)

    Dai, Shaoyang; Xia, Wei; Zhang, Yin; Zhao, Jianye; Zhou, Dawei; Wang, Qing; Yu, Qi; Li, Kunqian; Qi, Xianghui; Chen, Xuzong

    2016-11-01

    The femtosecond fiber-based optical frequency combs have been proved to be powerful tools for investigating the energy levels of atoms and molecules. In this paper, an Er-doped fiber femtosecond optical frequency comb has been implemented for studying the polarization dependence of 5S-5D two-photon transitions in thermal gas of atomic rubidium 87 using an entirely symmetrical optical configuration. By changing the polarization states of the counter-propagating light beams, the polarization dependence of direct two photon transition spectrum is demonstrated, and a dramatic variation (up to 5.5 times) of the two-photon transitions strength has been observed. The theory for the polarization dependence of two photon transition based on the second-order perturbation was established, which is in good agreement with the experimental results. The measurement results indicate that the polarization state manipulation with the existing frequency comb is used for femtosecond optical frequency comb based two photon transition spectroscopic purposes, which will improve the precision measurement of the absolute transition frequency and related applications.

  8. Polarization squeezing of light by single passage through an atomic vapor

    SciTech Connect

    Barreiro, S.; Valente, P.; Failache, H.; Lezama, A.

    2011-09-15

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  9. Exploring conical intersections through high resolution photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ashfold, Michael

    2007-03-01

    High resolution measurements of the kinetic energies of H atom fragments formed during UV photolysis of gas phase imidazole, [1,2] pyrrole, [3] phenol [4] and thiophenol molecules show that: (i) X-H (X = N, O, S) bond fission is an important non-radiative decay process from the ^1πσ* excited states in each of these molecules, and (ii) that the respective co-fragments (imidazolyl, pyrrolyl, phenoxyl and thiophenoxyl) are formed in very limited sub-sets of their available vibrational states. Identification of these product states yields uniquely detailed insights into the vibronic couplings involved in the photo-induced evolution from parent molecule to ultimate fragments. [1] M.N.R. Ashfold, B. Cronin, A.L. Devine, R.N. Dixon and M.G.D. Nix, Science (2006), 312, 1637. [2] A.L. Devine, B. Cronin, M.G.D. Nix and M.N.R. Ashfold, J. Chem. Phys. (in press). [3] B. Cronin, M.G.D. Nix, R.H. Qadiri and M.N.R. Ashfold, Phys. Chem. Chem. Phys. (2004), 6, 5031. [4] M.G.D. Nix, A.L. Devine, B. Cronin, R.N. Dixon and M.N.R. Ashfold, J. Chem. Phys. (2006), 125, 133318.

  10. Production of Excited Atomic Hydrogen and Deuterium from H2, D2 and HD Photodissociation

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Andrianarijaona, V. M.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; McLaughlin, K. W.

    2009-10-01

    We have measured the production of Lyα and Hα fluorescence from atomic H and D resulting from the photodissociation of H2, D2 and HD by linearly-polarized photons with energies between 20 and 65 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Comparison between the relative cross sections of H2 and D2 and the available theory show only qualitative agreement. We will discuss the various systematic effects which affect this and other types of synchrotron-based measurements in this energy range. Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  11. Production of Atomic Hydrogen and Deuterium from H2, D2 and HD Photodissociation

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Andrianarijaona, V. A.; Furst, J. E.; Gay, T. J.; Kilcoyne, A. L. D.; Landers, A. L.; Litaker, E. T.; McLaughlin, K. W.

    2010-03-01

    We have measured the production of Lyα and Hα fluorescence from atomic H and D resulting from the photodissociation of H2, D2 and HD by linearly-polarized photons with energies between 22 and 64 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Comparison between the current relative cross section results, previous absolute and relative experimental results and the available theory show only qualitative agreement. We will discuss the various systematic effects which affect this and other types of synchrotron-based measurements in this energy range. Support provided by the NSF (Grant PHY-0653379), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  12. Improved sliced velocity map imaging apparatus optimized for H photofragments

    SciTech Connect

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of {approx}5 ns out of a cloud stretched to Greater-Than-Or-Slanted-Equal-To 50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H{sub 2}S, and the CH{sub 2}OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution Less-Than-Or-Equivalent-To 1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  13. Improved sliced velocity map imaging apparatus optimized for H photofragments.

    PubMed

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of ∼5 ns out of a cloud stretched to ⩾50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H2S, and the CH2OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution ≲1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  14. VARIATIONS IN THE HELIOSPHERIC POLAR ENERGETIC NEUTRAL ATOM FLUX OBSERVED BY THE INTERSTELLAR BOUNDARY EXPLORER

    SciTech Connect

    Reisenfeld, D. B.; Janzen, P. H.; Allegrini, F.; McComas, D. J. E-mail: paul.janzen@umontana.edu E-mail: dmccomas@swri.org; and others

    2012-03-10

    The ecliptic poles are observed continuously by the Interstellar Boundary Explorer (IBEX); thus, it is possible to discern temporal variations in the energetic neutral atoms (ENAs) from the outer heliosphere on timescales much shorter than the time it takes for IBEX to generate a full sky map (six months). Observations indicate that the ENA flux from the polar directions incident at Earth has been steadily decreasing for the two-year period from 2008 December through 2011 February. Over the IBEX-Hi energy range, the decrease in flux is energy dependent, varying at the south ecliptic pole from no drop at 0.71 keV, to 70% at 1.1 keV. At higher energies the drop ranges between 10% and 50%. The decline observed at the north ecliptic pole is as high as 48%, also at 1.1 keV. The trend correlates with the steady decline in solar wind dynamic pressure observed at 1 AU between 2005 and 2009, the likely period when solar wind protons that provide the source for ENAs observed by IBEX would have been outbound from the Sun. We propose a method by which the correlation between the 1 AU solar wind dynamic pressure and the ENA-derived pressure within the inner heliosheath (IHS) can be used to estimate the distance to the termination shock and the thickness of the IHS in the direction of the ecliptic poles. Our new analysis based on IBEX data shows the TS distances to be 110 AU and 134 AU at the south and north poles, respectively, and the corresponding IHS thicknesses to be 55 AU and 82 AU. Our analysis is consistent with the notion that the observed ENA fluxes originate in the IHS and their variations are driven by the solar wind as it evolves through the solar cycle.

  15. Polarization-stable vertical-cavity surface-emitting lasers with inverted grating relief for use in microscale atomic clocks

    NASA Astrophysics Data System (ADS)

    Al-Samaneh, A.; Bou Sanayeh, M.; Miah, M. J.; Schwarz, W.; Wahl, D.; Kern, A.; Michalzik, R.

    2012-10-01

    Vertical-cavity surface-emitting lasers (VCSELs) with single-mode, single-polarization emission at a wavelength of 894.6 nm have become attractive light sources for miniaturized Cs-based atomic clocks. So far, VCSELs used for these applications are single-mode because of small active diameters which has the drawbacks of increased ohmic resistance and reduced lifetime. By employing surface grating reliefs, enhanced fundamental-mode emission as well as polarization-stable laser oscillation are achieved. VCSELs with 5 μm active diameter show side-mode suppression ratios of 20 dB even at currents close to thermal roll-over with orthogonal polarization suppression ratios better than 20 dB at elevated ambient temperatures up to 100 °C.

  16. Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules.

    PubMed

    Farhangi, Shiva; Duhamel, Jean

    2016-02-01

    The fluorescent probe 1-pyrenemethoxyethanol (PyMeEGOH) was designed to replace commercially available 1-pyrenebutanol (PyButOH) as an alternative fluorescent label to probe the internal dynamics and interior polarity of macromolecules by steady-state and time-resolved fluorescence. While excimer formation and sensitivity to solvent polarity are two well-recognized properties of pyrene, much less known is that these properties are often mutually exclusive when a 1-pyrenebutyl derivative is used to prepare pyrene-labeled macromolecules (PyLMs). As the sensitivity of pyrene to solvent polarity is a result of its symmetry, attaching a butyl group to pyrene breaks the symmetry of pyrene, so that the 1-pyrenebutyl derivatives are much less sensitive to the polarity of their environment compared to unmodified pyrene. This report demonstrates that replacement of a methylene group in the β-position of PyButOH by an oxygen atom, such as in PyMeEGOH, restores the sensitivity of this pyrene derivative to the polarity of its local environment to the same level as that of molecular pyrene without impeding pyrene excimer formation upon incorporation into PyLMs.

  17. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  18. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  19. Doping, adsorption, and polarity of atomic-layer materials: A predictive theory from systematic first-principles study

    NASA Astrophysics Data System (ADS)

    Saito, Susumu; Fujimoto, Yoshitaka; Koretsune, Takashi

    2015-03-01

    Based on the extensive first-principles electronic-structure study of various doped hexagonal boron-nitride (h-BN) atomic layers as well as that of various doped graphene and carbon nanotubes, we propose a simple but predictive theory of polarity in doped atomic-layer materials. We first report the electronic structure of the pristine h-BN, h-BN layers with B and B3N vacancies which have been experimentally produced and observed frequently, and doped h-BN layers, and show that both p-type and n-type h-BN layers can be produced in a variety of ways. We next review the electronic structure of doped graphene and carbon nanotubes and the effect of the H adsorption which can even change the polarity of the system. Finally we propose a simple but predictive theory which is based on the number of valence electrons of each system, and can explain the polarities of all the h-BN, graphene, and nanotube-based systems studied so far. Supported by MEXT 25107005 and 25104711, JSPS 22740252 and 26390062, and MEST TIES project.

  20. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    PubMed

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  1. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour.

    PubMed

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-05-23

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green's function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias.

  2. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour.

    PubMed

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-01-01

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green's function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias. PMID:27211110

  3. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour

    PubMed Central

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-01-01

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green’s function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias. PMID:27211110

  4. Implementation of Outstanding Electronic Transport in Polar Covalent Boron Nitride Atomic Chains: another Extraordinary Odd-Even Behaviour

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Li, Weiqi; Liu, Linhua; Feng, Jikang; Jiang, Yongyuan; Tian, Wei Quan

    2016-05-01

    A theoretical investigation of the unique electronic transport properties of the junctions composed of boron nitride atomic chains bridging symmetric graphene electrodes with point-contacts is executed through non-equilibrium Green’s function technique in combination with density functional theory. Compared with carbon atomic chains, the boron nitride atomic chains have an alternative arrangement of polar covalent B-N bonds and different contacts coupling electrodes, showing some unusual properties in functional atomic electronic devices. Remarkably, they have an extraordinary odd-even behavior of conductivity with the length increase. The rectification character and negative differential resistance of nonlinear current-voltage characteristics can be achieved by manipulating the type of contacts between boron nitride atomic chains bridges and electrodes. The junctions with asymmetric contacts have an intrinsic rectification, caused by stronger coupling in the C-N contact than the C-B contact. On the other hand, for symmetric contact junctions, it is confirmed that the transport properties of the junctions primarily depend on the nature of contacts. The junctions with symmetric C-N contacts have higher conductivity than their C-B contacts counterparts. Furthermore, the negative differential resistances of the junctions with only C-N contacts is very conspicuous and can be achieved at lower bias.

  5. Spin polarization of 87Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    NASA Astrophysics Data System (ADS)

    Wang, Z. G.; Jiang, Q. Y.; Zhan, X.; Chen, Y. D.; Luo, H.

    2016-08-01

    In order to polarize 87Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At low pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.

  6. Alignment dependence of photoelectron momentum distributions of atomic and molecular targets probed by few-cycle circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Abu-samha, M.; Madsen, Lars Bojer

    2016-08-01

    We present theoretical photoelectron momentum distributions (PMDs) for ionization from Ar(3 p ) and H2+ (σg) orbitals by few-cycle, high-intensity, near-infrared laser fields circularly polarized in the x y plane. The three-dimensional time-dependent Schrödinger equation is solved numerically within the single-active-electron approximation for Ar and within the fixed nuclei approximation for H2+ . The PMDs are investigated for alignment of the probed target orbitals relative to the polarization plane of the laser field. In the atomic case, the PMDs in the polarization plane for aligned 3 p Ar orbitals are, up to an overall scaling factor, insensitive to alignment of the probed orbital, while the lateral PMDs show a signature of the orbital node when that node is sufficiently close to the polarization plane. For the molecular case of H2+ (σg), our results show a significant impact of alignment on the PMDs due to the anisotropic molecular potential and the alignment-dependent coupling between the ground state and excited states.

  7. Progress towards atomic vapor photonic microcells: Coherence and polarization relaxation measurements in coated and uncoated HC-PCF

    NASA Astrophysics Data System (ADS)

    Bradley, T. D.; McFerran, J. J.; Jouin, J.; Ilinova, E.; Thomas, P.; Benabid, F.

    2013-03-01

    We report a comparative study on dephasing mechanisms between inner core coated and uncoated sections of the same Kagome hypocycloid-shaped core hollow core photonic crystal fibers (HC-PCF) filled with rubidium vapor. The comparison is performed by measuring the atomic polarization relaxation and electromagnetically induced transparency (EIT) linewidth in Rb loaded polydimethylsiloxane (PDMS) inner wall coated and bare silica core Kagome HC-PCF. The measurements show a polarization relaxation time of 32μs in a PDMS coated Kagome HC-PCF and 24μs in uncoated Kagome HC-PCF. A minimum EIT linewidth of 6.2±0.8MHz is achieved in PDMS coated Kagome HC-PCF, and 8.3±0.9 MHz for the uncoated Kagome HC-PCF.

  8. Coherent manipulation of a single magnetic atom using polarized single electron transport in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Lai, Wenxi; Yang, Wen

    2015-10-01

    We consider theoretically a magnetic impurity spin driven by polarized electrons tunneling through a double-quantum-dot system. The spin-blockade effect and spin conservation in the system make the magnetic impurity sufficiently interact with each transferring electron. As a result, a single collected electron carries information about spin change of the magnetic impurity. The scheme may develop all-electrical manipulation of magnetic atoms by means of single electrons, which is significant for the implementation of scalable logical gates in information processing systems.

  9. [The Measuring Method of Atomic Polarization of Alkali Metal Vapor Based on Optical Rotation and the Analysis of the Influence Factors].

    PubMed

    Shang, Hui-ning; Quan, Wei; Chen, Yao; Li, Yang; Li, Hong

    2016-02-01

    High sensitivity measurements of inertia and magnetic field could be achieved by utilizing a category of devices, which manipulate the atomic spins in the spin-exchange-relaxation-free regime. The alkali cell which contains the alkali metal vapor is used to sense magnetic field and inertia. The atomic number density of alkali vapor and the polarization of alkali metal vapor are two of the most important parameters of the cell. They play an important role in the research on atomic spins in the spin-exchange-relaxation-free regime. Besides, optical polarization plays an important role in quantum computing and atomic physics. We propose a measurement of alkali vapor polarization and alkali number density by detecting the optical rotation in one system. This method simplifies existing experimental equipment and processes. A constant bias magnetic field is applied and the Faraday rotation angle is detected by a bunch of the probe beam to deduce alkali-metal density. Then the magnetic field is closed and a bunch of the pump laser is utilized to polarize alkali-metal. Again, the probe beam is utilized to obtain the polarization of alkali metal. The alkali density obtained at first is used to deduce the polarization. This paper applies a numerical method to analyze the Faraday rotation and the polarization rotation. According to the numerical method, the optimal wavelength for the experiment is given. Finally, the fluctuation of magnetic field and wavelength on signal analysis are analyzed. PMID:27209720

  10. High resolution kinetic energy by long time-delayed core-sampling photofragment translational spectroscopy

    SciTech Connect

    Li Guosheng; Hwang, Hyun Jin; Jung, Hyun Chai

    2005-02-01

    A pulsed core-sampling photofragment translational spectroscopy (PTS) method with a long time-delay, which allows an extremely high kinetic energy resolution, is presented in this article. More commonly applying a short time delay between laser and pulsed acceleration electric field leads to a low kinetic energy resolution for the pulsed core-sampling method. This low kinetic energy resolution problem was overcome by applying a longer time delay. An absolute recoil velocity resolution of {delta}v=8 m/s and a relative kinetic energy resolution of {delta}E/E=3.6% were obtained in this experiment, by applying a time-delay of 8 {mu}s between the laser and the acceleration electric field. The vibrational distributions of the CH{sub 3} radical for the I* and I channel of CH{sub 3}I photodissociation at 266 nm were directly resolved for first time to presented an improvement of the kinetic energy resolution.

  11. Asymmetric branching of dissociated photofragments of HD{sup +} in an intense femtosecond laser field

    SciTech Connect

    Chatterjee, Souvik; Bhattacharyya, S. S.; Dutta, Bibhas

    2011-06-15

    We have numerically explored the asymmetry in the branching ratio of the photofragments in the photodissociation of HD{sup +} (neutral D and neutral H), leading to the possibility of localization of the electron on a chosen nucleus by careful tuning of the laser parameters. For two different frequencies we show that, starting from an initial stationary wave function, proper tuning of the pulse duration (2{sigma}) and peak intensities (I{sup 0}) of the laser pulses can lead to very different branching ratios of the two reaction channels. The results are interpreted in terms of the propagation of the nonstationary wave packet through regions having dominant radiative or nonradiative interactions at different times. We also investigate what effect the choice of initial vibrational state has on the overall asymmetry in the branching ratio of the dissociation products.

  12. A cryogenically cooled photofragment fluorescence instrument for measuring stratospheric water vapor

    NASA Technical Reports Server (NTRS)

    Weinstock, Elliot M.; Schwab, James J.; Nee, Jan Bai; Schwab, M. J.; Anderson, James G.

    1990-01-01

    An instrument developed for high-resolution daytime measurements of water vapor in the stratosphere using the technique of photofragment fluorescence is examined. A detailed description of all aspects of the instrument, as well as the results of its first two flights, are presented. The main areas of concern were optical baffling, cryogen transfer, water vapor measurement without contamination, and a dual path absorption measurement. Results of the second flight test indicate that the problems of instrument and gondola contamination, identified in the first flight test, were solved. A signal-to-noise ratio of about 50:1 for 10 sec of averaging throughout the stratosphere is achieved, as well as an altitude resolution of better than 100 m.

  13. Production of the NO photofragment in the desorption of RDX and HMX from surfaces.

    PubMed

    White, Jason D; Akin, F Ahu; Oser, Harald; Crosley, David R

    2011-01-01

    A promising scheme for the remote detection of nitrate-based explosives, which have low vapor pressure, involves two lasers: the first to desorb, vaporize, and photofragment the explosive molecule and the second to create laser-induced fluorescence in the NO fragment. It is desirable to use for the first a powerful 532 nm frequency-doubled Nd:YAG laser. In this study, we investigate the degree of photofragmentation into NO resulting from the irradiation of the explosives RDX and HMX coated on a variety of surfaces. The desorption step is followed by femtosecond laser ionization and time-of-flight mass spectrometry to reveal the fragments produced in the first step. We find that modest laser power of 532 nm desorbs the explosive and produces adequate amounts of NO.

  14. Trichloroethene and tetrachloroethene: tropospheric probes for Cl- and Br-atom reactions during the polar sunrise

    NASA Astrophysics Data System (ADS)

    Ariya, P. A.; Catoire, V.; Sander, R.; Niki, H.; Harris, G. W.

    1997-11-01

    We report the results of laboratory and modeling investigations of the atmospheric fate of chlorinated ethenes and their rôle as indicators of halogen reactions in the springtime Arctic troposphere. The kinetics and mechanism of the gas-phase reactions of Cl- and Br-atoms with tetrachloroethene were studied using a Fourier transform infrared spectrometer (FTIR) in 93.3kPa air and T = 296± 2 K. Along with our previous study on Cl and Br atom reactions of trichloroethene, using the known rate of the Cl + ethane reaction as reference, the values of 7.2±0.2×10-11 and 3.8±0.2×10-11 cm3 molecule-1 s-1 were obtained for the Cl-atom reaction rate constants of tri- and tetrachloroethene, respectively. For the Br-atom reactions, using ethene and propane as the reference molecules, we report the absolute values of 1.1±0.1×10-13 and 9.0±0.1×10-17 cm3 molecule-1 s-1 for the rates of Br attack on tri- and tetrachloroethene. The major products were XCl2C-C(O)Cl (X = H in trichloroethene and X = Cl in tetrachloroethene) and XBrClC-C(O)Cl in Cl-atom and Br-atom initiated reactions, respectively. We also observed phosgene and formyl chloride in the reactions of trichloroethene and phosgene in the tetrachloroethene reactions and report the branching ratios for these

  15. Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation

    NASA Astrophysics Data System (ADS)

    Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.

    2013-04-01

    Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.

  16. Magnetic circular dichroism in the ion yield of polarized chromium atoms at the 2p edge

    SciTech Connect

    Pruemper, G.; Viefhaus, J.; Becker, U.; Kroeger, S.; Mueller, R.; Zimmermann, P.; Martins, M.

    2003-09-01

    The effect of magnetic dichroism in the partial and total ion yield of chromium, i.e., the absorption of polarized chromium vapor was observed in the gas phase. The measurements were performed at the 2p edge and at photon energies above the 2p edge. The structure of the dichroism at the 2p edge can be understood by including the coupling of the 2p hole with the 3d and 4s shells. Our experimental results for the dichroism at the 2p edge are similar to results of solid-state experiments. Implications for the sum rules used as a standard tool to calculate the spin and orbital momentum are discussed.

  17. Electron solvation by highly polar molecules: Density functional theory study of atomic sodium interaction with water, ammonia, and methanol

    NASA Astrophysics Data System (ADS)

    Ferro, Y.; Allouche, A.; Kempter, V.

    2004-05-01

    This study further extends the scope of a previous paper [Y. Ferro and A. Allouche, J. Chem. Phys. 118, 10461 (2003)] on the reactivity of atomic Na with water to some other highly polar molecules known for their solvation properties connected to efficient hydrogen bonding. The solvation mechanisms of ammonia and methanol are compared to the hydration mechanism. It is shown that in the case of ammonia, the stability of the solvated system is only ensured by electrostatic interactions, whereas the methanol action is more similar to that of water. More specific attention is given to the solvation process of the valence 3s Na electron. The consequences on the chemical reactivity are analyzed: Whereas ammonia is nonreactive when interacting with atomic sodium, two chemical reactions are proposed for methanol. The first process is dehydrogenation and yields methoxy species and hydrogen. The other one is dehydration and the final products are methoxy species, but also methyl radical and water. The respective roles of electron solvation and hydrogen bonds network are analyzed in detail in view of the density of states of the reactive systems.

  18. Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes.

    PubMed

    Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M

    2006-01-01

    The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.

  19. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils

    PubMed Central

    Watanabe-Nakayama, Takahiro; Itami, Masahiro; Kodera, Noriyuki; Ando, Toshio; Konno, Hiroki

    2016-01-01

    Bacterial collagenases involved in donor infection are widely applied in many fields due to their high activity and specificity; however, little is known regarding the mechanisms by which bacterial collagenases degrade insoluble collagen in host tissues. Using high-speed atomic force microscopy, we simultaneously visualized the hierarchical structure of collagen fibrils and the movement of a representative bacterial collagenase, Clostridium histolyticum type I collagenase (ColG), to determine the relationship between collagen structure and collagenase movement. Notably, ColG moved ~14.5 nm toward the collagen N terminus in ~3.8 s in a manner dependent on a catalytic zinc ion. While ColG was engaged, collagen molecules were not only degraded but also occasionally rearranged to thicken neighboring collagen fibrils. Importantly, we found a similarity of relationship between the enzyme-substrate interface structure and enzyme migration in collagen-collagenase and DNA-nuclease systems, which share a helical substrate structure, suggesting a common strategy in enzyme evolution. PMID:27373458

  20. Multiphoton ionization of the calcium atom by linearly and circularly polarized laser fields

    SciTech Connect

    Buica, Gabriela; Nakajima, Takashi

    2010-04-15

    We theoretically study multiphoton ionization of the Ca atom irradiated by the second (photon energy 3.1 eV) and third (photon energy 4.65 eV) harmonics of Ti:sapphire laser pulses (photon energy 1.55 eV). Because of the dense energy level structure the second and third harmonics of a Ti:sapphire laser are nearly single-photon resonant with the 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} states, respectively. Although two-photon ionization takes place through the near-resonant intermediate states with the same symmetry in both cases, it turns out that there are significant differences between them. The photoelectron energy spectra exhibit the absence or presence of substructures. More interestingly, the photoelectron angular distributions clearly show that the main contribution to the ionization processes by the third harmonic arises from the far-off-resonant 4s4p {sup 1}P{sup o} state rather than the near-resonant 4s5p {sup 1}P{sup o} state. These findings can be attributed to the fact that the dipole moment for the 4s{sup 2} {sup 1}S{sup e}-4s5p {sup 1}P{sup o} transition is much smaller than that for the 4s{sup 2} {sup 1}S{sup e}-4s4p {sup 1}P{sup o} transition.

  1. Spin-polarized /sup 3/He nuclear targets and metastable /sup 4/He atoms by optical pumping with a tunable, Nd:YAP laser

    SciTech Connect

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-04-15

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2/sup 3/S-2/sup 3/P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable /sup 4/He and /sup 3/He 2/sup 3/S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a /sup 3/He cell the polarization is transferred to the nuclear spin system. A /sup 3/He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics.

  2. Spin polarization and exchange coupling of Cu and Mn atoms in paramagnetic CuMn diluted alloys induced by a Co layer

    SciTech Connect

    Abes, M.; Arena, D.; Atkinson, D.; Tanner, B.K.; Charlton, T.R.; Langridge, S.; Hase, T.P.A.; Ali, M.; Marrows, C.H.; Hickey, B.J.; Neudert, Al; Hicken, R.J.; Wilkins, S.B.; Mirone, A.; Lebegue, S.

    2010-11-09

    Using the surface, interface, and element specificity of x-ray resonant magnetic scattering in combination with x-ray magnetic circular dichroism, we have spatially resolved the magnetic spin polarization, and the associated interface proximity effect, in a Mn-based high-susceptibility material close to a ferromagnetic Co layer. We have measured the magnetic polarization of Mn and Cu3d electrons in paramagnetic CuMn alloy layers in [Co/Cu(x)/CuMn/Cu(x)]{sub 20} multilayer samples with varying copper layer thicknesses from x=0 to 25 {angstrom}. The size of the Mn and CuL{sub 2,3} edge dichroism shows a decrease in the Mn-induced polarization for increasing copper thickness indicating the dominant interfacial nature of the Cu and Mn spin polarization. The Mn polarization is much higher than that of Cu. Evidently, the Mn moment is a useful probe of the local spin density. Mn atoms appear to be coupled antiferromagnetically with the Co layer below x = 10 {angstrom} and ferromagnetically coupled above. In contrast, the interfacial Cu atoms remain ferromagnetically aligned to the Co layer for all thicknesses studied.

  3. Atomic resolution tomography reconstruction of tilt series based on a GPU accelerated hybrid input-output algorithm using polar Fourier transform.

    PubMed

    Lu, Xiangwen; Gao, Wenpei; Zuo, Jian-Min; Yuan, Jiabin

    2015-02-01

    Advances in diffraction and transmission electron microscopy (TEM) have greatly improved the prospect of three-dimensional (3D) structure reconstruction from two-dimensional (2D) images or diffraction patterns recorded in a tilt series at atomic resolution. Here, we report a new graphics processing unit (GPU) accelerated iterative transformation algorithm (ITA) based on polar fast Fourier transform for reconstructing 3D structure from 2D diffraction patterns. The algorithm also applies to image tilt series by calculating diffraction patterns from the recorded images using the projection-slice theorem. A gold icosahedral nanoparticle of 309 atoms is used as the model to test the feasibility, performance and robustness of the developed algorithm using simulations. Atomic resolution in 3D is achieved for the 309 atoms Au nanoparticle using 75 diffraction patterns covering 150° rotation. The capability demonstrated here provides an opportunity to uncover the 3D structure of small objects of nanometers in size by electron diffraction.

  4. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  5. Determining polarity and dislocation core structures at atomic level for epitaxial AlN/(0001)6H-SiC from a single image in HRTEM.

    PubMed

    Cui, Y X; Wang, Y M; Wen, C; Ge, B H; Li, F H; Chen, Y; Chen, H

    2013-03-01

    The polarity of epitaxial AlN film grown on (0001)6H-SiC and dislocation core structures in the film have been studied using a 200 kV LaB6 high-resolution transmission electron microscope of point resolution about 0.2 nm. A posterior image processing technique, the image deconvolution, was utilized to transform a single [21¯1¯0] image that does not intuitively represent the structure into the projected structure map. The adjacent Al and N projected atomic columns with the interatomic distance 0.109 nm can be distinguished from each other by analyzing the image contrast change with the sample thickness based on the pseudo-weak phase object approximation. This makes possible to derive the polarity and core structures of partial dislocations in the epitaxial AlN film at atomic level from a single image without relying on any other additional structure information. The atomic configurations for two partial dislocations containing a 10-atom ring and a 12-atom ring, respectively, have been attained. The method is available for II-VI and other III-V compounds. Its principle and procedure are briefly introduced.

  6. Photofragment imaging study of the CH{sub 2}CCH{sub 2}OH radical intermediate of the OH+allene reaction

    SciTech Connect

    Raman, Arjun S.; Justine Bell, M.; Lau, K.-C.; Butler, Laurie J.

    2007-10-21

    These velocity map imaging experiments characterize the photolytic generation of one of the two radical intermediates formed when OH reacts via an addition mechanism with allene. The CH{sub 2}CCH{sub 2}OH radical intermediate is generated photolytically from the photodissociation of 2-chloro-2-propen-1-ol at 193 nm. Detecting the Cl atoms using [2+1] resonance-enhanced multiphoton ionization evidences an isotropic angular distribution for the Cl+CH{sub 2}CCH{sub 2}OH photofragments, a spin-orbit branching ratio for Cl({sup 2}P{sub 1/2}):Cl({sup 2}P{sub 3/2}) of 0.28, and a bimodal recoil kinetic energy distribution. Conservation of momentum and energy allows us to determine from this data the internal energy distribution of the nascent CH{sub 2}CCH{sub 2}OH radical cofragment. To assess the possible subsequent decomposition pathways of this highly vibrationally excited radical intermediate, we include electronic structure calculations at the G3//B3LYP level of theory. They predict the isomerization and dissociation transition states en route from the initial CH{sub 2}CCH{sub 2}OH radical intermediate to the three most important product channels for the OH+allene reaction expected from this radical intermediate: formaldehyde+C{sub 2}H{sub 3}, H+acrolein, and ethene+CHO. We also calculate the intermediates and transition states en route from the other radical adduct, formed by addition of the OH to the center carbon of allene, to the ketene+CH{sub 3} product channel. We compare our results to a previous theoretical study of the O+allyl reaction conducted at the CBS-QB3 level of theory, as the two reactions include several common intermediates.

  7. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    SciTech Connect

    Kolmogorov, A. Stupishin, N.; Atoian, G.; Ritter, J.; Zelenski, A.; Davydenko, V.; Ivanov, A.

    2014-02-15

    The RHIC polarized H{sup −} ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H{sub 2} gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce “geometrical” beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  8. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  9. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade

    NASA Astrophysics Data System (ADS)

    Kolmogorov, A.; Atoian, G.; Davydenko, V.; Ivanov, A.; Ritter, J.; Stupishin, N.; Zelenski, A.

    2014-02-01

    The RHIC polarized H- ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ˜0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  10. Predissociation in the A-tilde 2Ascript state of HNF (DNF): NH (ND) Photofragment excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Dagdigian, Paul J.

    1994-04-01

    Photofragment excitation spectra of room-temperature HNF and DNF have been measured by monitoring laser fluorescence of the NH(X 3Σ-) and ND(X 3Σ-) fragments, respectively. These fragments were observed upon the excitation of the following parent molecule à 2A' vibrational levels: HNF (0,v2',0), with v2' = 3-6; and DNF (0,v2',0), with v2' = 5-7, and (0,v2',1), with v2' = 3 and 4. With the exception of the highest levels, the photofragment excitation spectra were found to have complicated structures which were drastically different and more complicated than the K structure in the parent molecule absorption and fluorescence excitation spectra. The internal energy content of the fragments was also measured. For the lower HNF (DNF) levels the fragments possess very little rotational energy; for higher parent molecule levels the fragment rotational energy is correlated with the parent energy. The fragmentation of excited HNF (DNF) is complicated by the fact that there are three close-lying possible dissociation channels, to NH(X 3Σ-)+F(2P), NF(X 3Σ-)+H(2S), and HF(X 1Σ+)+N(2D). These results on the photofragmentation of excited HNF (DNF) and other observations from this laboratory on the parent laser fluorescence spectrum and measured decay lifetimes are discussed.

  11. Polarization of Lyman-Alpha Radiation from Atomic Hydrogen Excited by Electron Impact form Near Threshold to 1800 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Dziczek, D.; McConkey, J. W.; Bray, Igor

    1998-01-01

    The polarization of Lyman-a radiation, produced by electron-impact excitation of atomic hydrogen, has been measured over the extended energy range from near threshold to 1800 eV. Measurements were obtained in a crossed-beam experiment using a silica-reflection linear polarization analyzer in tandem with a vacuum-ultraviolet monochromator to isolate the emitted line radiation. Comparison with various theoretical calculations shows that the present experimental results are in good agreement with theory over the entire range of electron-impact energies and, in particular, are in excellent agreement with theoretical convergent-close-coupling (CCC) calculations performed in the present work. Our polarization data are significantly different from the previous experimental measurements of Ott, Kauppila, and Fite.

  12. The effect of atomic structure on interface spin-polarization of half-metallic spin valves: Co{sub 2}MnSi/Ag epitaxial interfaces

    SciTech Connect

    Nedelkoski, Zlatko; Hasnip, Philip J.; Kuerbanjiang, Balati; Higgins, Edward; Lazarov, Vlado K.; Sanchez, Ana M.; Bell, Gavin R.; Oogane, Mikihiko; Hirohata, Atsufumi

    2015-11-23

    Using density functional theory calculations motivated by aberration-corrected electron microscopy, we show how the atomic structure of a fully epitaxial Co{sub 2}MnSi/Ag interfaces controls the local spin-polarization. The calculations show clear difference in spin-polarization at Fermi level between the two main types: bulk-like terminated Co/Ag and Mn-Si/Ag interfaces. Co/Ag interface spin-polarization switches sign from positive to negative, while in the case of Mn-Si/Ag, it is still positive but reduced. Cross-sectional atomic structure analysis of Co{sub 2}MnSi/Ag interface, part of a spin-valve device, shows that the interface is determined by an additional layer of either Co or Mn. The presence of an additional Mn layer induces weak inverse spin-polarisation (−7%), while additional Co layer makes the interface region strongly inversely spin-polarized (−73%). In addition, we show that Ag diffusion from the spacer into the Co{sub 2}MnSi electrode does not have a significant effect on the overall Co{sub 2}MnSi /Ag performance.

  13. Lifetime determination of the long-lived B 1Π g state in He 2* by photofragment spectroscopy

    NASA Astrophysics Data System (ADS)

    Kristensen, Martin; Keiding, Søren R.; van der Zande, Wim J.

    1989-12-01

    In a photofragment spectroscopy experiment, several laser transitions from the B 1Π g to the fast decaying F 1Σ u+ state of He 2* have been observed. The lifetime of the B 1Π g state has been estimated to 1.3±0.5 μs for both the B 1Π g+ and B 1Π g- components. This lifetime allows for the preparation of fast beams of 1Π g He 2* molecules, which can form the basis of a detailed spectroscopic study of the singlet system in He 2*. Since the two parity components of the B 1Π g state can have different dissociation channels, the observation of equal lifetime for the + and - components allows us to give an upper limit on the ratio between dissociation induced by predissociation and radiative decay.

  14. Unravelling the role of quantum interference in the weak-field laser phase modulation control of photofragment distributions.

    PubMed

    García-Vela, Alberto; Henriksen, Niels E

    2016-02-14

    The role played by quantum interference in the laser phase modulation coherent control of photofragment distributions in the weak-field regime is investigated in detail in this work. The specific application involves realistic wave packet calculations of the transient vibrational populations of the Br2(B,vf) fragment produced upon predissociation of the Ne-Br2(B) complex, which is excited to a superposition of overlapping resonance states using different fixed bandwidth pulses where the linear chirps are varied. The postpulse transient phase modulation effects observed on fragment populations for a long time window are explained in terms of the mechanism of interference between overlapping resonances. A detailed description of how the interference mechanism affects the magnitude and the time window of the phase control effects is also provided. In the light of the results, the conditions to maximize phase modulation control on fragment distributions are discussed.

  15. An analysis of the effects of semicore polarization on the dielectric and electronic structure properties of closed shell atoms, molecules and solids

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep

    Understanding the effect of semicore polarization is crucial in order to get a good description of the dielectric properties and electronic structure of several systems. We study the effect of semicore polarization by employing several core-valence partitions in the description of the pseudopotentials (PPs). We propose a new approach to identifying and rationalizing the contribution of core electron polarization to the dielectric screening, based on ab initio calculations of the dielectric matrix in its eigenpotential basis. We also present calculations of phonon frequencies, dielectric constants, electronic band structures, Born-effective charges and quasi-particle energies of several systems, and we discuss the quantitative effect of including core polarization. One of our findings illustrate the need to include semicore electrons in the valence to accurately describe electronic structure properties for some systems. Another of our findings also illustrate efficient ways of approximating the spectral decomposition of dielectric matrices used, e.g., in many-body perturbation theory and dielectric constant calculations, with substantial computational gains for large systems composed of heavy atoms.

  16. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations.

    PubMed

    Valla, Maxence; Rossini, Aaron J; Caillot, Maxime; Chizallet, Céline; Raybaud, Pascal; Digne, Mathieu; Chaumonnot, Alexandra; Lesage, Anne; Emsley, Lyndon; van Bokhoven, Jeroen A; Copéret, Christophe

    2015-08-26

    Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively.

  17. Circularly polarized high harmonics generated by a bicircular field from inert atomic gases in the p state: A tool for exploring chirality-sensitive processes

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.

    2015-10-01

    S -matrix theory of high-order harmonic generation (HHG) is generalized to multielectron atoms. In the multielectron case the harmonic power is expressed via a coherent sum of the time-dependent dipoles, while for the one-electron models a corresponding incoherent sum appears. This difference is important for the inert atomic gases having a p ground state as used in a recent HHG experiment with a bicircular field [Nat. Photonics 9, 99 (2015), 10.1038/nphoton.2014.293]. We investigate HHG by such a bicircular field, which consists of two coplanar counter-rotating circularly polarized fields of frequency r ω and s ω . Selection rules for HHG by a bicircular field are analyzed from the aspects of dynamical symmetry of the system, conservation of the projection of the angular momentum on a fixed quantization axis, and the quantum number of the initial and final atomic ground states. A distinction is made between the selection rules for atoms with closed [J. Phys. B 48, 171001 (2015), 10.1088/0953-4075/48/17/171001] and nonclosed shells. An asymmetry in emission of the left- and right-circularly polarized harmonics is found and explained by using a semiclassical model and the electron probability currents which are related to a nonzero magnetic quantum number. This asymmetry can be important for the application of such harmonics to the exploration of chirality-sensitive processes and for generation of elliptic or even circular attosecond pulse trains. Such attosecond pulse trains are analyzed for longer wavelengths than in Opt. Lett. 40, 2381 (2015), 10.1364/OL.40.002381, and for various field-component intensities.

  18. Collisional properties of cold spin-polarized nitrogen gas: Theory, experiment, and prospects as a sympathetic coolant for trapped atoms and molecules

    SciTech Connect

    Tscherbul, T. V.; Dalgarno, A.; Klos, J.; Zygelman, B.; Pavlovic, Z.; Hummon, M. T.; Lu, H.-I.; Tsikata, E.; Doyle, J. M.

    2010-10-15

    We report a combined experimental and theoretical study of collision-induced dipolar relaxation in a cold spin-polarized gas of atomic nitrogen (N). We use buffer gas cooling to create trapped samples of {sup 14}N and {sup 15}N atoms with densities (5{+-}2)x10{sup 12} cm{sup -3} and measure their magnetic relaxation rates at milli-Kelvin temperatures. These measurements, together with rigorous quantum scattering calculations based on accurate ab initio interaction potentials for the {sup 7}{Sigma}{sub u}{sup +} electronic state of N{sub 2} demonstrate that dipolar relaxation in N+N collisions occurs at a slow rate of {approx}10{sup -13} cm{sup 3}/s over a wide range of temperatures (1 mK to 1 K) and magnetic fields (10 mT to 2 T). The calculated dipolar relaxation rates are insensitive to small variations of the interaction potential and to the magnitude of the spin-exchange interaction, enabling the accurate calibration of the measured N atom density. We find consistency between the calculated and experimentally determined rates. Our results suggest that N atoms are promising candidates for future experiments on sympathetic cooling of molecules.

  19. Production of Excited Atomic Hydrogen and Deuterium from H2 and D2 Photodissociation

    NASA Astrophysics Data System (ADS)

    Gay, T. J.; Bozek, J. D.; Furst, J. E.; Gould, H.; Kilcoyne, A. L. D.; Machacek, J. R.; Martin, F.; McLaughlin, K. W.; Sanz-Vicario, J. L.

    2007-06-01

    We have measured the production of both Lyα and Hα fluorescence from atomic H and D for the photodissociation of H2 and D2 by linearly-polarized photons with energies between 24 and 60 eV. In this energy range, excited photofragments result primarily from the production of doubly-excited molecular species which promptly autoionize or dissociate into two neutrals. Our data are compared with ab initio calculations of the dissociation process, in which both doubly-excited state production and prompt ionization through non-resonant channels are considered. Agreement between our experimental data and that of earlier work [1], and with our theoretical calculations, is qualitative at best. [1] E.Melero Garc'ia, J.'Alvarez Ruiz, S.Menmuir, E.Rachlew, P.Erman, A.Kivim"aki, M.Glass-Maujean, R.Richter, and M.Coreno, J.Phys.B 39, 205 (2006). Support provided by the NSF (Grant PHY-0354946), DOE (LBNL/ALS) and ANSTO (Access to Major Research Facilities Programme).

  20. Noncontact atomic force microscopy imaging of atomic structure and cation defects of the polar MgAl2O4 (100) surface: Experiments and first-principles simulations

    NASA Astrophysics Data System (ADS)

    Rasmussen, Morten K.; Foster, Adam S.; Canova, Filippo F.; Hinnemann, Berit; Helveg, Stig; Meinander, Kristoffer; Besenbacher, Flemming; Lauritsen, Jeppe V.

    2011-12-01

    Atom-resolved noncontact atomic force microscopy (NC-AFM) was recently used to reveal that the insulating spinel MgAl2O4(100) surface, when prepared under vacuum conditions, adopts a structurally well-defined Al and O-rich structure (Al4-O4-Al4 termination) consisting of alternating Al and double-O rows, which are, however, interrupted by defects identified as interchanged Mg in the surface layers (so-called antisite defects). From an interplay of futher NC-AFM experiments and first-principles NC-AFM image simulations, we present here a detailed analysis of the NC-AFM contrast on the MgAl2O4(100) surface. Experiments show that the contrast on MgAl2O4(100) in atom-resolved NC-AFM is dominated by two distinctly different types of contrast modes, reflecting two oppositely charged tip-apex terminations. In this paper, we analyze the contrast associated with these imaging modes and show that a positively charged tip-apex (presumably Mg2+) interacts most strongly with the oxygen atoms, thus imaging the oxygen lattice, whereas a negatively charged tip-apex (O2-) will reveal the cation sublattice on MgAl2O4. The analysis of force-vs-distance calculations for the two tips shows that this qualitative picture, developed in our previous study, holds for all realistic tip-surface imaging parameters, but the detailed resolution on the O double rows and Al rows changes as a function of tip-surface distance, which is also observed experimentally. We also provide an analysis of the tip dependency and tip-surface distance dependency for the NC-AFM contrast associated with single Al vacancies and Mg-Al antisite defects on the MgAl2O4(100) surface and show that it is possible on the basis of NC-AFM image simulations to discriminate between the Al3+ and Mg2+ species in antisite defects and hypothetical Al vacancies.

  1. The method of local increments for the calculation of adsorption energies of atoms and small molecules on solid surfaces. Part I. A single Cu atom on the polar surfaces of ZnO.

    PubMed

    Schmitt, Ilka; Fink, Karin; Staemmler, Volker

    2009-12-21

    The method of local increments is used in connection with the supermolecule approach and an embedded cluster model to calculate the adsorption energy of single Cu atoms at different adsorption sites at the polar surfaces of ZnO. Hartree-Fock calculations for the full system, adsorbed atom and solid surface, and for the fragments are the first step in this approach. In the present study, restricted open-shell Hartree-Fock (ROHF) calculations are performed since the Cu atom possesses a singly-occupied 4s orbital. The occupied Hartree-Fock orbitals are then localized by means of the Foster-Boys localization procedure. The correlation energies are expanded into a series of many-body increments which are evaluated separately and independently. In this way, the very time-consuming treatment of large systems is replaced with a series of much faster calculations for small subunits. In the present application, these subunits consist of the orbitals localized at the different atoms. Three adsorption situations with rather different bonding characteristics have been studied: a Cu atom atop a threefold-coordinated O atom of an embedded Zn(4)O(4) cluster, a Cu atom in an O vacancy site at the O-terminated ZnO(000-1) surface, and a Cu atom in a Zn vacancy site at the Zn-terminated ZnO(0001) surface. The following properties are analyzed in detail: convergence of the many-body expansion, contributions of the different n-body increments to the adsorption energy, treatment of the singly-occupied orbital as "localized" or "delocalized". Big savings in computer time can be achieved by this approach, particularly if only the localized orbitals in the individual increment under consideration are described by a large correlation adapted basis set, while all other orbitals are treated by a medium-size Hartree-Fock-type basis set. In this way, the method of local increments is a powerful alternative to the widely used methods like DFT or RI-MP2. PMID:20024388

  2. Relativistic effects on the nuclear magnetic shieldings of rare-gas atoms and halogen in hydrogen halides within relativistic polarization propagator theory

    NASA Astrophysics Data System (ADS)

    Gomez, Sergio S.; Maldonado, Alejandro; Aucar, Gustavo A.

    2005-12-01

    In this work an analysis of the electronic origin of relativistic effects on the isotropic dia- and paramagnetic contributions to the nuclear magnetic shielding σ(X ) for noble gases and heavy atoms of hydrogen halides is presented. All results were obtained within the 4-component polarization propagator formalism at different level of approach [random-phase approximation (RPA) and pure zeroth-order approximation (PZOA)], by using a local version of the DIRAC code. From the fact that calculations of diamagnetic contributions to σ within RPA and PZOA approaches for HX(X =Br,I,At) and rare-gas atoms are quite close each to other and the finding that the diamagnetic part of the principal propagator at the PZOA level can be developed as a series [S(Δ)], it was found that there is a branch of negative-energy "virtual" excitations that contribute with more than 98% of the total diamagnetic value even for the heavier elements, namely, Xe, Rn, I, and At. It contains virtual negative-energy molecular-orbital states with energies between -2mc2 and -4mc2. This fact can explain the excellent performance of the linear response elimination of small component (LR-ESC) scheme for elements up to the fifth row in the Periodic Table. An analysis of the convergency of S(Δ ) and its physical implications is given. It is also shown that the total contribution to relativistic effects of the innermost orbital (1s1/2) is by far the largest. For the paramagnetic contributions results at the RPA and PZOA approximations are similar only for rare-gas atoms. On the other hand, if the mass-correction contributions to σp are expressed in terms of atomic orbitals, a different pattern is found for 1s1/2 orbital contributions compared with all other s-type orbitals when the whole set of rare-gas atoms is considered.

  3. Uptake of Fe, Na and K atoms on low-temperature ice: implications for metal atom scavenging in the vicinity of polar mesospheric clouds.

    PubMed

    Murray, Benjamin J; Plane, John M C

    2005-12-01

    Ice clouds form in the mesosphere between 80 and 90 km, at high latitudes during summer when the temperature falls below 150 K. There is strong evidence that the water-ice particles in these clouds scavenge metal atoms that are produced in the mesosphere by meteoric ablation. In the present study the uptake of Fe, Na and K on an ice film was studied in a fast flow tube over a temperature range of 80-150 K, covering the temperatures over which ice clouds form in the upper mesosphere. The uptake was found to be highly efficient and mostly in the diffusion-limited regime, requiring accurate measurements of the diffusion coefficients of the metal atoms in He: DFeHe = 366 (+/- 17) (T/296 K)(1.85 +/- 0.07), DNaHe 286 (+/- 13) (T/296 K)(1.68 +/- 0.04) and DKHe = 247 (+/- 15) (T/296 K)(1.69 +/- 0.07) Torr cm2 s(-1). Measured values of the diffusion coefficients in N2 are 112 (+/- 4), 125 (+/- 4) and 88 (+/- 4) Torr cm2 s(-1) at 293 K for Fe, Na and K, respectively. The uptake of Na and K was observed to be extremely efficient from 80-150 K, with lower limits of gamma Na > 0.09 and gamma K > 0.05, although it is likely that gamma is much closer to unity. The uptake of Fe on cubic ice is close to unity efficiency above 135 K, but gamma Fe decreases to only 3 x 10(-3) at 80 K. Uptake of Fe on amorphous ice films is much more efficient than on cubic ice films below 130 K. These results are interpreted using quantum calculations of the metal atoms adsorbed onto a 12-H2O model ice surface. Finally, it is shown that the uptake of Fe, Na and K on low-temperature ice is sufficiently fast to explain the substantial depletions in the mesospheric metal layers that are observed in the presence of mesospheric ice clouds.

  4. Effects of nitrogen dopants on the atomic step kinetics and electronic structures of O-polar ZnO.

    PubMed

    Wang, Hao; Zhan, Huahan; Zhou, Yinghui; Wu, Yaping; Chen, Xiaohang; Wang, Huiqiong; Kang, Junyong

    2016-02-21

    Oxygen-polar ZnO films are grown in step flow mode by molecular beam epitaxy. Driven by the step flow anisotropy, the growth leads to the occurrence of specific hexagonal pits in the surface. The specific pits are formed by interlacing steps of the {10̄1̄4} facets, thus quenching the macroscopic dipole moment along the c-axis and satisfying the stabilization principles. Nitrogen (N) doping trials are then performed on the basis of the stable surface. In doping, growth remains in step flow mode but the step flow anisotropy vanishes, resulting in an obvious change of the surface morphology. Besides, a distinct acceptor state appears by in situ scanning tunneling spectroscopy analysis. First-principles calculations reveal that N readily substitutes for step-edge Zn and acts as NO2 adsorbed at the step edge. Desorption of the NO2 facilitates the formation of NO-VZn shallow acceptor complexes, which contributes to the appearance of the acceptor state. According to the peculiarities of N dopants on the O-polar surface, vicinal O-polar substrates (e.g., {10̄1̄4} substrate) are promising in ZnO : N due to the easily achieved step flow growth and high density of step edges for N incorporation.

  5. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  6. Doppler spectroscopy of hydrogen atoms from the photodissociation of saturated hydrocarbons and methyl halides at 157 nm

    SciTech Connect

    Tonokura, K.; Matsumi, Y.; Kawasaki, M. ); Kasatani, K. )

    1991-10-01

    Hydrocarbons (C{sub {ital n}}H{sub 2{ital n}+2}, {ital n}=3, 4, and 6) and methyl halides (CH{sub 3}{ital X}, {ital X}=Cl, Br, I) are photodissociated at 157 nm. The hydrogen atom photofragments are detected by a resonance-enhanced multiphoton ionization technique. The Doppler profiles of the hydrogen atoms from hydrocarbons are well represented by a Gaussian profile, while those from methyl halides by a mixture of a Gaussian and a non-Gaussian profiles. These Doppler profiles are interpreted assuming that (a) hot ethyl photofragments from hydrocarbons result in the formation of hydrogen atoms and (b) methyl halides undergo both direct and indirect photolytic scissions of the C---H bonds at 157 nm.

  7. Intermediate photofragment distributions as probes of non-adiabatic dynamics at conical intersections: application to the Hartley band of ozone.

    PubMed

    Picconi, David; Grebenshchikov, Sergy Yu

    2015-11-21

    Quantum dynamics at a reactive two-state conical intersection lying outside the Franck-Condon zone is studied for a prototypical reaction of ultraviolet photodissociation of ozone in the Hartley band. The focus is on the vibrational distributions in the two electronic states at intermediate interfragment distances near the intersection. Such intermediate distributions of strongly interacting photofragments contain unique information on the location and shape of the conical intersection. Multidimensional Landau-Zener modeling provides a framework to reverse engineer the molecular geometry-dependent Massey parameter of the intersection from the intermediate distributions. The conceptual approach is demonstrated for the intermediate O-O bond stretch distributions which become strongly inverted on adiabatic passage through the intersection. It is further demonstrated that intermediate distributions can be reconstructed from the photoemission spectrum of the dissociating molecule. The illustration, given using quantum mechanical calculations of resonance Raman profiles for ozone, completes a practicable cycle of conversion of intermediate distributions into topographic features of the conical intersection.

  8. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  9. Dipole moments of HDO in highly excited vibrational states measured by Stark induced photofragment quantum beat spectroscopy.

    PubMed

    Theulé, Patrice; Callegari, Andrea; Rizzo, Thomas R; Muenter, John S

    2005-03-22

    We report here a measurement of electric dipole moments in highly vibrationally excited HDO molecules. We use photofragment yield detected quantum beat spectroscopy to determine electric field induced splittings of the J=1 rotational levels of HDO excited with 4, 5, and 8 quanta of vibration in the OH stretching mode. The splittings allow us to deduce mua and mub, the projections of dipole moment onto the molecular rotation inertial axes. We compare the measured HDO dipole moment components with the results of quantitative calculations based on Morse oscillator wave functions and an ab initio dipole moment surface. The vibrational dependence of the dipole moment components reflect both structural and electronic changes in HDO upon vibrational excitation; principally the vibrational dependence of the O-H bond length and bond angle, and the resulting change in orientation of the principal inertial coordinate system. The dipole moment data also provide a sensitive test of theoretical dipole moment and potential energy surfaces, particularly for molecular configurations far from equilibrium.

  10. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations

    PubMed Central

    2015-01-01

    Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively. PMID:26244620

  11. Analysis of the alignment in Na2 + rotational angular momentum arising from associative-ionization collisions between polarized Na(3p) atoms

    NASA Astrophysics Data System (ADS)

    Wang, M.-X.; de Vries, M. S.; Weiner, J.

    1986-09-01

    We present a semiclassical model to analyze a recent experimental study on the polarization dependence of associative-ionization (AI) collisions between two Na(3p 2P3/2) atoms and the resulting spatial distribution of product rotational angular-momentum vectors. The theory is based on the idea of a ``locking radius'' at which the quantization axis changes from space-fixed coordinates to the molecular frame, and the total AI yield is a sum of the contributions from different collision orbital configurations. The model calculation shows the consistency between the measurements of our earlier study and that of Kircz, Morgenstern, and Nienhuis. We also derive a theoretical expression for the spatial distribution of Na2 + rotational angular-momentum vectors which reproduces the experimentally determined features. We conclude that the σ2 orbital configuration approach is favored over π2 by a factor of about 6, and locking takes place at R larger than 25 Å.

  12. Atomic Description of the Interface between Silica and Alumina in Aluminosilicates through Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy and First-Principles Calculations.

    PubMed

    Valla, Maxence; Rossini, Aaron J; Caillot, Maxime; Chizallet, Céline; Raybaud, Pascal; Digne, Mathieu; Chaumonnot, Alexandra; Lesage, Anne; Emsley, Lyndon; van Bokhoven, Jeroen A; Copéret, Christophe

    2015-08-26

    Despite the widespread use of amorphous aluminosilicates (ASA) in various industrial catalysts, the nature of the interface between silica and alumina and the atomic structure of the catalytically active sites are still subject to debate. Here, by the use of dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS) and density functional theory (DFT) calculations, we show that on silica and alumina surfaces, molecular aluminum and silicon precursors are, respectively, preferentially grafted on sites that enable the formation of Al(IV) and Si(IV) interfacial sites. We also link the genesis of Brønsted acidity to the surface coverage of aluminum and silicon on silica and alumina, respectively. PMID:26244620

  13. Current mapping of nonpolar a-plane and polar c-plane GaN films by conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Shengrui; Jiang, Teng; Lin, Zhiyu; Zhao, Ying; Yang, Linan; Zhang, Jincheng; Li, Peixian; Hao, Yue

    2016-10-01

    Nonpolar (11-20) a-plane GaN and polar (0001) c-plane GaN films have been grown by metal organic chemical vapor deposition on r-plane (1-102) and c-plane (0001) sapphire substrates, respectively. Conductive atomic force microscopy (C-AFM) has been used to investigate the local conductivity of the films. C-AFM shows enhanced current conduction within the etch pits of c-plane GaN and triangular pits of a-plane GaN. The results indicate that the off-axis planes are more electrically active than c-plane and a-plane. Surprisingly, the C-AFM values in triangular pit of the a-plane GaN are much smaller than that in etch pits of the c-plane GaN. The dislocations type related current leakage mechanism is revealed for polar c-plane and nonpolar a-plane GaN films.

  14. Energetics of nonpolar and polar compounds in cationic, anionic, and nonionic micelles studied by all-atom molecular dynamics simulation combined with a theory of solutions.

    PubMed

    Date, Atsushi; Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-05-21

    Energetic analysis was conducted for nonpolar and polar solutes bound in a cationic micelle of dodecyl trimethyl ammonium bromide (DTAB), an anionic micelle of sodium dodecyl sulfate (SDS), and a nonionic micelle of tetraethylene glycol monododecyl ether (Brij30). All-atom molecular dynamics simulation was performed, and the free energies of binding the solutes in the hydrophobic-core and headgroup regions of the micelles were computed using the energy-representation method. It was found in all the micelles examined that aromatic naphthalene is preferably located more outward than aliphatic propane and that the polar solutes are localized at the interface of the hydrophobic and hydrophilic regions. The roles of the surfactant and water were then elucidated by decomposing the free energy into the contributions from the respective species. Water was observed to play a decisive role in determining the binding location of the solute, while the surfactant was found to be more important for the overall stabilization of the solute within the micelle. The effects of attractive and repulsive interactions of the solute with the surfactant and water were further examined, and their competition was analyzed in connection with the preferable location of the solute in the micellar system.

  15. Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detection of non-polar small molecular species.

    PubMed

    Lee, Joohyung; Jo, Minjoung; Kim, Tae Hyun; Ahn, Ji-Young; Lee, Dong-ki; Kim, Soyoun; Hong, Seunghun

    2011-01-01

    A portable sensor platform for the detection of small molecular species is crucial for the on-site monitoring of environmental pollutants, food toxicants, and disease-related metabolites. However, it is still extremely difficult to find highly selective and sensitive sensor platforms for general small molecular detection. Herein, we report aptamer sandwich-based carbon nanotube sensor strategy for small molecular detection, where aptamers were utilized to capture target molecules as well as to enhance the sensor signals. We successfully demonstrated the detection of non-polar bisphenol A molecules with a 1 pM sensitivity. Significantly, our sensors were able to distinguish between similar small molecular species with single-carbon-atomic resolution. Furthermore, using the additional biotin modification on labeling aptamer, we enhanced the detection limit of our sensors down to 10 fM. This strategy allowed us to detect non-polar small molecular species using carbon nanotube transistors, thus overcoming the fundamental limitation of field effect transistor-based sensors. Considering the extensive applications of sandwich assay for the detection of rather large biomolecules, our results should open up completely new dimension in small molecular detection technology and should enable a broad range of applications such as environmental protection and food safety.

  16. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  17. Analysis of the polarization-dependent rate of associative ionization of radiatively excited Na(3p) atoms

    NASA Astrophysics Data System (ADS)

    Jones, Dumont M.; Dahler, John S.

    1985-01-01

    Kircz, Morgenstern, and Nienhuis [Phys. Rev. Lett. 48, 610 (1982)] have measured the cross section for the associative ionization of partially oriented pairs of excited [(3p) 2P3/2] sodium atoms. Here, we extract information from these data about the identities of the participating adiabatic Born-Oppenheimer states of Na2. It is definitely established that more than one of these states is involved. The greatest contributor is the X 1Σ+g state with the dominant molecular-orbital configuration σ2g (at small internuclear separations). It is highly probable that only one other state (either the 1Σ+g or 3Σ-g state with the dominant molecular-orbital configuration π2u) is involved, but a small contribution from one state (1Πu or 3Πu) with the configuration σgπu cannot be unequivocally dismissed.

  18. Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCl in the region of the T1(13A″) ←S0(11A') transition. Fragment rotational distributions and thermal averages

    NASA Astrophysics Data System (ADS)

    Grinberg, Horacio; Freed, Karl F.; Williams, Carl J.

    1997-08-01

    The analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation, developed in paper I, is applied to study the indirect photodissociation of NOCl through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum functions. The transition is taken as polarized in the plane of the molecule; symmetric top wave functions are used for both the initial and intermediate bound states; and simple semiempirical model potentials are employed for each state. The theory provides analytical expressions for the photofragment yield spectrum for producing particular final fragment ro-vibrational states as a function of the photon excitation energy. Computations are made of the photofragment excitation spectrum of NOCl in the region of the T1(13A″)←S0(11A') transition for producing the NO fragment in the vibrational states nNO=0, 1, and 2. The computed spectra for the unexcited nNO==0 and excited nNO=2 states are in reasonable agreement with experiment. However, some discrepancies are observed for the singly excited nNO=1 vibrational state, indicating deficiencies in the semiempirical potential energy surface. Computations for two different orientations of the in-plane transition dipole moment produce very similar excitation spectra. Calculations of fragment rotational distributions are performed for high values of the total angular momentum J, a feature that would be very difficult to perform with close-coupled methods. Computations are also made of the thermally averaged rotational energy distributions to simulate the conditions in actual supersonic jet experiments.

  19. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  20. State and velocity distributions of Cl atoms produced in the photodissociation of ICI at 237 nm

    NASA Astrophysics Data System (ADS)

    Ni, Chi-Kung; Flynn, George W.

    1993-07-01

    Photofragment spectroscopy of ICI molecules photodissociated at 237 nm is studied by 2 + 1 resonance-enhanced multi-photon ionization and time of flight techniques. Doppler profiles of the chlorine atom fragments in two spin—orbit states show that chlorine atoms in the ground state, 2P 3/2, are produced from a perpendicular dissociative transition, and chlorine atoms in the excited state, 2P 1/2, arise from a parallel transition. The possible electronically excited states leading to dissociation in both the perpendicular and parallel cases are considered.

  1. Spin-polarized Rb2 interacting with bosonic He atoms: potential energy surface and quantum structures of small clusters.

    PubMed

    Rodríguez-Cantano, R; López-Durán, David; González-Lezana, T; Delgado-Barrio, G; Villarreal, P; Yurtsever, E; Gianturco, F A

    2012-03-15

    A new full-dimension potential energy surface of the three-body He-Rb₂(³Σ(u)(+)) complex and a quantum study of small (⁴He)(N)-Rb₂(³Σ(u)(+)) clusters, 1 ≤ N ≤ 4, are presented. We have accurately fitted the ab initio points of the interaction to an analytical form and addressed the dopant's vibration, which is found to be negligible. A Variational approach and a Diffusion Monte Carlo technique have been applied to yield energy and geometric properties of the selected species. Our quantum structure calculations show a transition in the arrangements of the helium atoms from N = 2, where they tend to be separated across the diatomic bond, to N = 4, in which a closer packing of the rare gas particles is reached, guided by the dominance of the He-He potential over the weaker interaction of the latter adatoms with the doping dimer. The deepest well of the He-Rb₂ interaction is placed at the T-shape configuration, a feature which causes the dopant to be located as parallel to the helium "minidroplet". Our results are shown to agree with previous findings on this and on similar systems.

  2. Polarized Electron Source Developments

    SciTech Connect

    Charles K. Sinclair

    1990-02-23

    Presently, only two methods of producing beams of polarized electrons for injection into linear accelerators are in use. Each of these methods uses optical pumping by circularly polarized light to produce electron polarization. In one case, electron polarization is established in metastable helium atoms, while in the other case, the polarized electrons are produced in the conduction band of appropriate semiconductors. The polarized electrons are liberated from the helium metastable by chemi-ionization, and from the semiconductors by lowering the work function at the surface of the material. Developments with each of these sources since the 1988 Spin Physics Conference are reviewed, and the prospects for further improvements discussed.

  3. Polar catastrophe and the structure of KTa1-xNbxO₃ surfaces: Results from elastic and inelastic helium atom scattering

    SciTech Connect

    Flaherty, F. A.; Trelenberg, T. W.; Li, J. A.; Fatema, R.; Skofronick, J. G.; Van Winkle, D. H.; Safron, S. A.; Boatner, L. A.

    2015-07-13

    The structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa1-xNbxO₃ (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14 meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areas of KO and TaO₂/NbO₂ terraces. The data, however, suggest that K⁺ and O²⁻ ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K⁺ ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO₂/NbO₂(+1) layers and avoids a “polar catastrophe.” This behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF₃ with its electrically neutral KF and MnF₂ layers.

  4. Polar catastrophe and the structure of KTa1-xNbxO₃ surfaces: Results from elastic and inelastic helium atom scattering

    DOE PAGES

    Flaherty, F. A.; Trelenberg, T. W.; Li, J. A.; Fatema, R.; Skofronick, J. G.; Van Winkle, D. H.; Safron, S. A.; Boatner, L. A.

    2015-07-13

    The structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa1-xNbxO₃ (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14 meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areas of KO and TaO₂/NbO₂ terraces.more » The data, however, suggest that K⁺ and O²⁻ ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K⁺ ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO₂/NbO₂(+1) layers and avoids a “polar catastrophe.” This behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF₃ with its electrically neutral KF and MnF₂ layers.« less

  5. Quantum Switching of Magnetic Fields by Circularly Polarized Re-Optimized π Laser Pulses: From One-Electron Atomic Ions to Molecules

    NASA Astrophysics Data System (ADS)

    Barth, Ingo; Manz, Jörn

    Circularly polarized re-optimized π laser pulses may induce electronic and/or nuclear ring currents in model systems, from one-electron atomic ions till molecules which should have three-, four-, or higher-fold axes of rotations or reflection-rotations, in order to support doubly or more degenerate, complex-valued eigenstates which support these ring currents. The ring currents in turn induce magnetic fields. The effects are about two orders of magnitude larger than for traditional ring currents which are induced by external magnetic fields. Moreover, the laser pulses allow to control the strengths and shapes of the ring currents and, therefore, also the induced magnetic fields. We present a survey of the development of the field, together with new quantum simulations which document ultrafast switchings of magnetic fields. We discuss various criteria such as strong ring currents with small radii, in order to generate huge magnetic fields, approaching 1,000T, in accord with the Biot-Savart law. Moreover, we consider various methods for monitoring the fields, and for applications, in particular ultrafast deflections of neutrons by means of quantum switching of the ring currents and induced magnetic fields.

  6. Electrons per atom ratio determination and Hume-Rothery electron concentration rule for P-based polar compounds studied by FLAPW-fourier calculations.

    PubMed

    Mizutani, Uichiro; Sato, Hirokazu; Inukai, Manabu; Nishino, Yoichi; Zijlstra, Eeuwe Sieds

    2015-02-01

    The extent to which reliable electrons per atom ratio, e/a, are determined and the validity of the Hume-Rothery stabilization mechanism are ensured upon increasing ionicity are studied by applying first-principles full potential linearized augmented plane wave (FLAPW)-Fourier band calculations to as many as 59 binary compounds formed by adding elements from periods 2-6 to phosphorus in group 15 of the Periodic Table. Van Arkel-Ketelaar triangle maps were constructed both by using the Allen electronegativity data and by using an energy difference between the center-of-gravity energies of FLAPW-derived s and p partial densities of states (DOSs) for the equiatomic compounds studied. The determination of e/a and the test of the interference condition, both of which play a key role in the Hume-Rothery stabilization mechanism, were reliably made for all intermetallic compounds, as long as the ionicity is less than 50%. In the A-P (A = Li, Na, K, Rb, and Cs) compounds with ionicity exceeding 50%, however, e/a determination becomes unstable, as reflected in its P concentration dependence. New Hume-Rothery electron concentration rules were theoretically found in two families of polar compounds: skutterudite compounds TMP(3), TMAs(3), and TMSb(3) (TM = Co, Ni, Rh, and Ir; cI32) with e/a = 4.34 and TM(3)P (TM = Cr, Mn, Fe, and Ni; tI32) with e/a = 2.20.

  7. Electrons per atom ratio determination and Hume-Rothery electron concentration rule for P-based polar compounds studied by FLAPW-fourier calculations.

    PubMed

    Mizutani, Uichiro; Sato, Hirokazu; Inukai, Manabu; Nishino, Yoichi; Zijlstra, Eeuwe Sieds

    2015-02-01

    The extent to which reliable electrons per atom ratio, e/a, are determined and the validity of the Hume-Rothery stabilization mechanism are ensured upon increasing ionicity are studied by applying first-principles full potential linearized augmented plane wave (FLAPW)-Fourier band calculations to as many as 59 binary compounds formed by adding elements from periods 2-6 to phosphorus in group 15 of the Periodic Table. Van Arkel-Ketelaar triangle maps were constructed both by using the Allen electronegativity data and by using an energy difference between the center-of-gravity energies of FLAPW-derived s and p partial densities of states (DOSs) for the equiatomic compounds studied. The determination of e/a and the test of the interference condition, both of which play a key role in the Hume-Rothery stabilization mechanism, were reliably made for all intermetallic compounds, as long as the ionicity is less than 50%. In the A-P (A = Li, Na, K, Rb, and Cs) compounds with ionicity exceeding 50%, however, e/a determination becomes unstable, as reflected in its P concentration dependence. New Hume-Rothery electron concentration rules were theoretically found in two families of polar compounds: skutterudite compounds TMP(3), TMAs(3), and TMSb(3) (TM = Co, Ni, Rh, and Ir; cI32) with e/a = 4.34 and TM(3)P (TM = Cr, Mn, Fe, and Ni; tI32) with e/a = 2.20. PMID:25531024

  8. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media.

    PubMed

    Ithurria, Sandrine; Talapin, Dmitri V

    2012-11-14

    Atomic layer deposition (ALD) is widely used for gas-phase deposition of high-quality dielectric, semiconducting, or metallic films on various substrates. In this contribution we propose the concept of colloidal ALD (c-ALD) for synthesis of colloidal nanostructures. During the c-ALD process, either nanoparticles or molecular precursors are sequentially transferred between polar and nonpolar phases to prevent accumulation of unreacted precursors and byproducts in the reaction mixture. We show that binding of inorganic ligands (e.g., S(2-)) to the nanocrystal surface can be used as a half-reaction in c-ALD process. The utility of this approach has been demonstrated by growing CdS layers on colloidal CdSe nanocrystals, nanoplatelets, and CdS nanorods. The CdS/CdSe/CdS nanoplatelets represent a new example of colloidal nanoheterostructures with mixed confinement regimes for electrons and holes. In these materials holes are confined to a thin (∼1.8 nm) two-dimensional CdSe quantum well, while the electron confinement can be gradually relaxed in all three dimensions by growing epitaxial CdS layers on both sides of the quantum well. The relaxation of the electron confinement energy caused a shift of the emission band from 510 to 665 nm with unusually small inhomogeneous broadening of the emission spectra.

  9. PREFACE: International Symposium on (e,2e), Double Photoionization and Related Topics & 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas L. S.; deHarak, Bruno A.

    2010-01-01

    From 30 July to 1 August 2009, over a hundred scientists from 18 countries attended the International Symposium on (e,2e), Double Photoionization and Related Topics and the 15th International Symposium on Polarization and Correlation in Electronic and Atomic Collisions which were held at the W T Young Library of the University of Kentucky, USA. Both conferences were satellite meetings of the XXVI International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC) held in Kalamazoo, Michigan, USA, 21-28 July 2009. These symposia covered a broad range of experimental and theoretical topics involving excitation, ionization (single and multiple), and molecular fragmentation, of a wide range of targets by photons and charged particles (polarized and unpolarized). Atomic targets ranged from hydrogen to the heavy elements and ions, while molecular targets ranged from H2 to large molecules of biological interest. On the experimental front, cold target recoil ion momentum spectroscopy (COLTRIMS), also known as the Reaction Microscope because of the complete information it gives about a wide variety of reactions, is becoming commonplace and has greatly expanded the ability of researchers to perform previously inaccessible coincidence experiments. Meanwhile, more conventional spectrometers are also advancing and have been used for increasingly sophisticated and exacting measurements. On the theoretical front great progress has been made in the description of target states, and in the scattering calculations used to describe both simple and complex reactions. The international nature of collaborations between theorists and experimentalists is exemplified by, for example, the paper by Ren et al which has a total of 13 authors of whom the experimental group of six is from Heidelberg, Germany, one theoretical group is from Australia, with the remainder of the theoreticians coming from several different institutions in the United States. A total of 52 invited talks and

  10. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  11. Atomic quantum state teleportation and swapping.

    PubMed

    Kuzmich, A; Polzik, E S

    2000-12-25

    A set of protocols for atoms-photons and atoms-atoms quantum state teleportation and swapping utilizing Einstein-Podolsky-Rosen light is proposed. The protocols work for polarization quantum states of multiphoton light pulses and macroscopic samples of atoms, i.e., for continuous quantum variables. A simple free space interaction of polarized light with a spin polarized atomic ensemble is shown to suffice for these protocols. Feasibility of experimental realization using gas samples of atoms is analyzed.

  12. Optical atomic magnetometer

    SciTech Connect

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  13. Atomic magnetometer

    DOEpatents

    Schwindt, Peter; Johnson, Cort N.

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  14. ATOMIC AND MOLECULAR PHYSICS: High order correlation-polarization potential for vibrational excitation scattering of diatomic molecules by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Sun, Wei-Guo; Zeng, Yang-Yang

    2009-11-01

    This paper introduces a correlation-polarization potential with high order terms for vibrational excitation in electron-molecule scattering. The new polarization potential generalizes the two-term approximation so that it can better reflect the dependence of correlation and polarization effects on the position coordinate of the scattering electron. It applies the new potential on the vibrational excitation scattering from N2 in an energy range which includes the 2Πg shape resonance. The good agreement of theoretical resonant peaks with experiments shows that polarization potentials with high order terms are important and should be included in vibrational excitation scattering.

  15. Measurements of Excitation Functions and Line Polarizations for Electron Impact Excitation of the n = 2, 3 States of Atomic Hydrogen in the Energy Range 11 - 2000 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.

    1993-01-01

    The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...

  16. Fluorescence Excitation Spectra of Photo-Fragmented Nitrobenzene Using a Picosecond Laser: Potential Evidence for no Produced by Two Distinct Channels.

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Tanjaroon, Chakree; Johnson, J. Bruce; Reeve, Scott W.; Allen, Susan D.

    2013-06-01

    Upon absorption of a UV photon, nitrobenzene can dissociate into C_6H_5O and NO through two different mechanisms. Evidence for these mechanisms was obtained from velocity map imaging (VMI) studies and theoretical calculations. VMI experiments showed NO produced with two distinct rotational distributions, which the calculations explained as a fast and a slow channel for NO production. We have recorded high resolution fluorescence excitation spectra of the NO resulting from photo-fragmented nitrobenzene using a pulsed picosecond tunable laser (pulse width ≈ 15 ps) by means of a two-color process. In the two-color process, photons of a particular energy dissociated the nitrobenzene while photons of a different energy probed the A^2Σ^+← X^2Π_{(1/2,3/2)} NO band system between 225-260 nm. This laser system allowed us to vary the delay between the photolysis and excitation pulses. At longer delays (>1 ns), we observed an increase in the population of NO, which may be evidence that at least two photolysis channels produce NO. We present the spectra we recorded at various photolysis/probe delays ranging from 0.025 to 1.5 ns. The spectral subtraction method we used to observe the production increase is introduced. Hause, M. L.; Herath, N.; Zhu, R.; Lin, M. C. and Suits, A. G. Nat Chem, Nature Publishing Group, 2011, 3, 932-937

  17. Giant light enhancement in atomic clusters

    SciTech Connect

    Gadomsky, O. N. Gadomskaya, I. V.; Altunin, K. K.

    2009-07-15

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  18. Polarization effects in the ionization cross section of Ar, Kr, and Xe by laser-excited Ne sup ** ((2 p ) sup 5 (3 p ); J =3, M ) atoms

    SciTech Connect

    Driessen, J.P.J.; van de Weijer, F.J.M.; Zonneveld, M.J.; Somers, L.M.T.; Janssens, M.F.M.; Beijerinck, H.C.W.; Verhaar, B.J. )

    1990-10-01

    In a crossed-beam experiment the total ionization cross section for the title systems has been investigated in the range 0.1{le}{ital E} (eV) {lt}=4 of collision energies. The population of the short-lived Ne{sup **}((3{ital p});{ital J}=3) state is produced by saturated optical pumping of the Ne{sup *}((3{ital s});{ital J}=2){leftrightarrow}Ne{sup **}((3{ital p});{ital J}=3) two-level system with a polarized laser beam, resulting in a well-determined distribution of the magnetic substates {vert bar}{ital J},{ital M}{r angle} with respect to the relative velocity {bold g}. By measuring the ion yield in the scattering center at five different orientations of the laser polarization (linear and circular) with respect to {bold g}, the data can be analyzed in terms of pure-state total ionization cross sections {sup 3}{ital Q{vert bar}{ital M}{vert bar}} corresponding to a single asymptotic state {vert bar}{ital J},{ital M}{r angle}.

  19. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator

    NASA Astrophysics Data System (ADS)

    Lefrancois, Daniel; Rehn, Dirk R.; Dreuw, Andreas

    2016-08-01

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references.

  20. Accurate adiabatic singlet-triplet gaps in atoms and molecules employing the third-order spin-flip algebraic diagrammatic construction scheme for the polarization propagator.

    PubMed

    Lefrancois, Daniel; Rehn, Dirk R; Dreuw, Andreas

    2016-08-28

    For the calculation of adiabatic singlet-triplet gaps (STG) in diradicaloid systems the spin-flip (SF) variant of the algebraic diagrammatic construction (ADC) scheme for the polarization propagator in third order perturbation theory (SF-ADC(3)) has been applied. Due to the methodology of the SF approach the singlet and triplet states are treated on an equal footing since they are part of the same determinant subspace. This leads to a systematically more accurate description of, e.g., diradicaloid systems than with the corresponding non-SF single-reference methods. Furthermore, using analytical excited state gradients at ADC(3) level, geometry optimizations of the singlet and triplet states were performed leading to a fully consistent description of the systems, leading to only small errors in the calculated STGs ranging between 0.6 and 2.4 kcal/mol with respect to experimental references. PMID:27586899

  1. Development of a hydrogen and deuterium polarized gas target for application in storage rings

    SciTech Connect

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  2. Development of a hydrogen and deuterium polarized gas target for application in storage rings. Progress report

    SciTech Connect

    Haeberli, W.

    1992-02-01

    Polarized gas targets of atomic hydrogen and deuterium have significant advantages over conventional polarized targets, e.g. chemical and isotopic purity, large polarization including deuteron tensor polarization, absence of strong magnetic fields, rapid polarization reversal. While in principle the beam of polarized atoms from an atomic beam source (Stern-Gerlach spin separation) can be used as a polarized target, the target thickness achieved is too small for most applications. We propose to increase the target thickness by injecting the polarized atoms into a storage cell. Provided the atoms survive several hundred wall collisions without losing their polarization, it will be possible to achieve a target thickness of 10{sup 13} to 10{sup 14} atoms/cm{sup 2} by injection of polarized atoms from an atomic-beam source into suitable cells. Such targets are very attractive as internal targets in storage rings.

  3. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    PubMed

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  4. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  5. Resonance Radiation and Excited Atoms

    NASA Astrophysics Data System (ADS)

    Mitchell, Allan C. G.; Zemansky, Mark W.

    2009-06-01

    1. Introduction; 2. Physical and chemical effects connected with resonance radiation; 3. Absorption lines and measurements of the lifetime of the resonance state; 4. Collision processes involving excited atoms; 5. The polarization of resonance radiation; Appendix; Index.

  6. The RHIC polarized H- ion source

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  7. Polarization developments

    SciTech Connect

    Prescott, C.Y.

    1993-07-01

    Recent developments in laser-driven photoemission sources of polarized electrons have made prospects for highly polarized electron beams in a future linear collider very promising. This talk discusses the experiences with the SLC polarized electron source, the recent progress with research into gallium arsenide and strained gallium arsenide as a photocathode material, and the suitability of these cathode materials for a future linear collider based on the parameters of the several linear collider designs that exist.

  8. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    SciTech Connect

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10/sup 15/ atoms/cm/sup 2/) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures.

  9. Neuronal polarization.

    PubMed

    Takano, Tetsuya; Xu, Chundi; Funahashi, Yasuhiro; Namba, Takashi; Kaibuchi, Kozo

    2015-06-15

    Neurons are highly polarized cells with structurally and functionally distinct processes called axons and dendrites. This polarization underlies the directional flow of information in the central nervous system, so the establishment and maintenance of neuronal polarization is crucial for correct development and function. Great progress in our understanding of how neurons establish their polarity has been made through the use of cultured hippocampal neurons, while recent technological advances have enabled in vivo analysis of axon specification and elongation. This short review and accompanying poster highlight recent advances in this fascinating field, with an emphasis on the signaling mechanisms underlying axon and dendrite specification in vitro and in vivo.

  10. Moller Polarimetry with Atomic Hydrogen Targets

    SciTech Connect

    Eugene Chudakov; Vladimir Luppov

    2003-10-19

    A novel proposal of using polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap, as the target for electron beam polarimetry based on Moller scattering is discussed. Such a target of practically 100% polarized electrons could provide a superb systematic accuracy of about 0.5% for beam polarization measurements. The feasibility studies for the CEBAF electron beam have been performed.

  11. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  12. Polarized rainbow.

    PubMed

    Können, G P; de Boer, J H

    1979-06-15

    The Airy theory of the rainbow is extended to polarized light. For both polarization directions a simple analytic expression is obtained for the intensity distribution as a function of the scattering angle in terms of the Airy function and its derivative. This approach is valid at least down to droplet diameters of 0.3 mm in visible light. The degree of polarization of the rainbow is less than expected from geometrical optics; it increases with droplet size. For a droplet diameter >1 mm the locations of the supernumerary rainbows are equal for both polarization directions, but for a diameter <1 mm the supernumerary rainbows of the weaker polarization component are located between those in the strong component. PMID:20212586

  13. Atomic orientation following predissociation of the C {sup 3}{Pi}{sub g} Rydberg state of molecular oxygen

    SciTech Connect

    Gilchrist, A. J.; Ritchie, G. A. D.

    2013-06-07

    (2 + 1) resonance enhanced multiphoton ionization in combination with time-of-flight mass spectroscopy (TOF-MS) has been used to detect both the O({sup 3}P) and O({sup 1}D) fragments produced as a result of predissociation of the C {sup 3}{Pi}{sub g} (v= 0) and (v= 1) Rydberg states of O{sub 2}, accessed via two-photon absorption from the ground X {sup 3}{Sigma}{sub g}{sup -} state. In particular, TOF profiles have been recorded at various fixed two-photon absorption wavelengths within the two bands, with circular polarized probe laser light used to probe the angular momentum orientation of these photofragments. All photofragments are found to display coherent orientation resulting from interference between two possible two-photon absorption pathways. The measured orientation is affected by rotational depolarization due to the long lifetime of the excited C state; once this effect is accounted for the orientation is found to be nearly constant over all dissociation wavelengths. The origin of the coherent orientation is attributed to two-photon absorption to different spin-orbit components of the C state.

  14. Voltage linearity modulation and polarity dependent conduction in metal-insulator-metal capacitors with atomic-layer-deposited Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} nano-stacks

    SciTech Connect

    Zhu, Bao; Liu, Wen-Jun; Wei, Lei; Zhang, David Wei; Jiang, Anquan; Ding, Shi-Jin

    2015-07-07

    Excellent voltage linearity of metal-insulator-metal (MIM) capacitors is highly required for next generation radio frequency integration circuits. In this work, employing atomic layer deposition technique, we demonstrated how the voltage linearity of MIM capacitors was modulated by adding different thickness of SiO{sub 2} layer to the nano-stack of Al{sub 2}O{sub 3}/ZrO{sub 2}. It was found that the quadratic voltage coefficient of capacitance (α) can be effectively reduced from 1279 to −75 ppm/V{sup 2} with increasing the thickness of SiO{sub 2} from zero to 4 nm, which is more powerful than increasing the thickness of ZrO{sub 2} in the Al{sub 2}O{sub 3}/ZrO{sub 2} stack. This is attributed to counteraction between the positive α for Al{sub 2}O{sub 3}/ZrO{sub 2} and the negative one for SiO{sub 2} in the MIM capacitors with Al{sub 2}O{sub 3}/ZrO{sub 2}/SiO{sub 2} stacks. Interestingly, voltage-polarity dependent conduction behaviors in the MIM capacitors were observed. For electron bottom-injection, the addition of SiO{sub 2} obviously suppressed the leakage current; however, it abnormally increased the leakage current for electron top-injection. These are ascribed to the co-existence of shallow and deep traps in ZrO{sub 2}, and the former is in favor of the field-assisted tunnelling conduction and the latter contributes to the trap-assisted tunnelling process. The above findings will be beneficial to device design and process optimization for high performance MIM capacitors.

  15. Scattering Polarization in the Chromosphere

    NASA Technical Reports Server (NTRS)

    Keller, C. U.; Sheeley, N. R., Jr.

    1999-01-01

    Scattering polarization from the photosphere observed close to the solar limb has recently become of interest to study turbulent magnetic fields, abundances, and radiative transfer effects. We extend these studies by measuring the scattering polarization off the limb, i.e. in the chromosphere. However, instrumental effects are much more pronounced and more complicated than those affecting on-disk measurements. In particular, scattered light from the telescope mirrors leads to a new type of instrumental polarization that we describe in detail. The differences between the linearly polarized spectra on the disk and off the limb are often very substantial. Here we show the profiles of HeI D(sub 3), the OI triplet at 777 nm, and the Nal D lines. The change in the latter is in reasonable agreement with the recent modeling efforts of atomic polarization in the lower level by Landi Degl'Innocenti (1998).

  16. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  17. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  18. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  19. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  20. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues. PMID:22400143

  1. Creation of polarization gradients from superposition of counter propagating vector LG beams.

    PubMed

    Vyas, Sunil; Kozawa, Yuichi; Miyamoto, Yoko

    2015-12-28

    We present a detailed theoretical analysis of the formation of standing waves using cylindrically polarized vector Laguerre-Gaussian (LG) beams. It is shown that complex interplay between the radial and azimuthal polarization state can be used to realize different kinds of polarization gradients with cylindrically symmetric polarization distribution. Expressions for four different cases are presented and local dynamics of spatial polarization distribution is studied. We show cylindrically symmetric Sisyphus and corkscrew type polarization gradients can be obtained from vector LG beams. The optical landscape presented here with spatially periodic polarization patterns may find important applications in the field of atom optics, atom interferometry, atom lithography, and optical trapping.

  2. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  3. Application of Zeeman graphite furnace atomic absorption spectrometry with high-frequency modulation polarization for the direct determination of aluminum, beryllium, cadmium, chromium, mercury, manganese, nickel, lead, and thallium in human blood.

    PubMed

    Ivanenko, Natalya B; Solovyev, Nikolay D; Ivanenko, Anatoly A; Ganeev, Alexander A

    2012-10-01

    Determination of aluminum (Al), beryllium (Be), cadmium (Cd), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and thallium (Tl) concentrations in human blood using high-frequency modulation polarization Zeeman graphite furnace atomic absorption spectrometry (GFAAS) was performed. No sample digestion was used in the current study. Blood samples were diluted with deionized water or 0.1 % (m/v) Triton X-100 solution for Tl. Dilution factors ranged from 1/5 per volume for Be and Tl to 1/20 per volume for Cd and Pb. For Tl, Cd, and Hg, noble metals (gold, platinum, rhodium, etc.) were applied as surface modifiers. To mitigate chloride interference, 2 % (m/v) solution of NH(4)NO(3) was used as matrix modifier for Tl and Ni assessment. The use of Pd(NO(3))(2) as oxidative modifier was necessary for blood Hg and Tl measurement. Validation of the methods was performed by analyzing two-level reference material Seronorm. The precision of the designed methods as relative SD was between 4 and 12 % (middle of a dynamic range) depending on the element. For additional validation, spiked blood samples were analyzed. Limits of detection (LoDs, 3σ, n = 10) for undiluted blood samples were 2.0 μg L(-1) for Al, 0.08 μg L(-1) for Be, 0.10 μg L(-1) for Cd, 2.2 μg L(-1) for Cr, 7 μg L(-1) for Hg, 0.4 μg L(-1) for Mn, 2.3 μg L(-1) for Ni, 3.4 μg L(-1) for Pb, and 0.5 μg L(-1) for Tl. The LoDs achieved allowed determination of Al, Cd, Cr, Mn, Ni, and Pb at both toxic and background levels. Be, Hg, and Tl could be reliably measured at toxic levels only. The methods developed are used for clinical diagnostics and biological monitoring of work-related exposure.

  4. Polarization Considerations

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene

    1998-01-01

    As light passes through a optical system the reflections and refractions will in general change the polarization state of the light. If we assume that all of the materials in the thin film coatings and substrate are isotropic and homogeneous then calculating the amount of "instrumental" polarization is a relatively straight forward task. In the following sections we will present a of the steps required to perform a 'polarization ray trace' calculation for a single ray and monochromatic and hence polarized light. The thin film portion of the calculation is also shown. The reason for explicitly showing the thin film equations is that there are sign conventions imposed on the boundary value equations by the orientation and handedness of the various coordinate frames which are attached to the geometric rays. The attenuation of light through a optical system, is relatively simple, and requires at the very least a lens (average) reflectivity or transmissivity. Determining the polarization sensitivity of a optical system is still relatively straight forward requiring at least a knowledge of the behavior of the "s" and "p" components at each interface for the chief ray. Determining the thin film induced aberrations of a optical system are somewhat more demanding. Questions about the arithmetic sign of the phase factors and how this relates to the overall "OPD" of a ray are ubiquitous. Many rays are required to construct a wavefront. Thin film codes which modify the OPD's of rays are a requirement for this last mentioned computation. This requires a consistent scheme of coordinate frames and sign conventions and is probably the most demanding task of a polarization ray trace. Only the electric field will used in the discussion. This is not a restriction as the Stokes parameters are functions of the electric field. The following does not attempt to explain, but only to present all of the required concepts and formulas.

  5. Polarization properties of the “photon pistol”

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2012-10-01

    The deterministic single-photon emission by means of STIRAP through the atoms with degenerate levels is studied. The expression for the polarization matrix of the emitted photon is obtained and its dependence on the polarization of the driving laser field and on the initial atomic state is examined.

  6. Intense polarized /sup 3/He ion source

    SciTech Connect

    Slobodrian, R.J.; Bertrand, R.; Grioux, J.; Labrie, R.; Lapainte, R.; Meunier, J.F.; Pigeon, G.; Pouliot, L.; Rioux, C.; Roy, R.

    1985-10-01

    This source is based on the atomic polarization of the 2/sup 3/S/sub 1/ metastable state of the neutral atom. A version suitable for operation on the high voltage terminal of a CN Van de Graaff has been constructed, bench tested and installed in the terminal of a 7.5 MV machine. The polarization of the atomic beam is higher than 90%. It is now fully operational and a current of /sup 3/He/sup +/ of 300 nA has been measured after acceleration.

  7. Toward real-time charged-particle image reconstruction using polar onion-peeling

    NASA Astrophysics Data System (ADS)

    Roberts, G. M.; Nixon, J. L.; Lecointre, J.; Wrede, E.; Verlet, J. R. R.

    2009-05-01

    A method to reconstruct full three-dimensional photofragment distributions from their two-dimensional (2D) projection onto a detection plane is presented, for processes in which the expanding Newton sphere has cylindrical symmetry around an axis parallel to the projection plane. The method is based on: (1) onion-peeling in polar coordinates [Zhao et al., Rev. Sci. Instrum. 73, 3044 (2002)] in which the contribution to the 2D projection from events outside the plane bisecting the Newton sphere are subtracted in polar coordinates at incrementally decreasing radii; and (2) ideas borrowed from the basis set expansion (pBASEX) method in polar coordinates [Garcia et al., Rev. Sci. Instrum. 75, 4989 (2004)], which we use to generate 2D projections at each incremental radius for the subtraction. Our method is as good as the pBASEX method in terms of accuracy, is devoid of centerline noise common to reconstruction methods employing Cartesian coordinates; and it is computationally cheap allowing images to be reconstructed as they are being acquired in a typical imaging experiment.

  8. Birefringence lens effects of an atom ensemble enhanced by an electromagnetically induced transparency

    SciTech Connect

    Zhang, H. R.; Sun, C. P.; Zhou Lan

    2009-07-15

    We study the optical control for birefringence of a polarized light by an atomic ensemble with a tripod configuration, which is mediated by the electromagnetically induced transparency with a spatially inhomogeneous laser. The atomic ensemble splits the linearly polarized light ray into two orthogonally polarized components, whose polarizations depend on quantum superposition of the initial states of the atomic ensemble. Accompanied with this splitting, the atomic ensemble behaves as a birefringent lens, which allows one polarized light ray passing through straightly while focuses the other light of vertical polarization with finite aberration of focus.

  9. Probing Rotational Motion in 4-tert-Butylcatechol through H Atom Photofragmentation: Deviations from Axial Recoil.

    PubMed

    Staniforth, M; Young, J D; Stavros, V G

    2015-12-17

    The time-resolved photofragmentation dynamics of 4-tert-butylcatechol were studied following one photon excitation to the S1 (1(1)ππ*) state with ultraviolet radiation in the range 260 ≤ λ ≤ 286 nm. The preparation of an aligned molecular ensemble via photoexcitation leads to anisotropy in the H atom photofragments. These H atoms originate from the decay of the S1 state through coupling onto the S2 ((1)πσ*) state, which is dissociative along the nonintramolecular hydrogen bonded "free" O-H bond. The degree of anisotropy of these photogenerated H atoms decreases with increasing pump-probe time delay. This is attributed to rotational dephasing of the initially aligned molecular ensemble. The measured dephasing occurs on a time scale akin to the appearance time of these H atoms, which likely places an intrinsic lower bound on the dephasing lifetime. The present work demonstrates how a careful balance between the appearance time of the H atoms, determined by the S1 lifetime, and the rotational dephasing in 4-tert-butylcatechol provides an opportune window to probe rotational motion in real time.

  10. Surface spin polarization induced ferromagnetic Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Shih, Po-Hsun; Li, Wen-Hsien; Wu, Sheng Yun

    2016-05-01

    We report on the observation of ferromagnetic spin polarized moments in 4.5 nm Ag nanoparticles. Both ferromagnetic and diamagnetic responses to an applied magnetic field were detected. The spin polarized moments shown under non-linear thermoinduced magnetization appeared on the surface atoms, rather than on all the atoms in particles. The saturation magnetization departed substantially from the Bloch T3/2-law, showing the existence of magnetic anisotropy. The Heisenberg ferromagnetic spin wave model for Ha-aligned moments was then employed to identify the magnetic anisotropic energy gap of ~0.12 meV. Our results may be understood by assuming the surface magnetism model, in which the surface atoms give rise to polarized moments while the core atoms produce diamagnetic responses.

  11. Polar metals by geometric design.

    PubMed

    Kim, T H; Puggioni, D; Yuan, Y; Xie, L; Zhou, H; Campbell, N; Ryan, P J; Choi, Y; Kim, J-W; Patzner, J R; Ryu, S; Podkaminer, J P; Irwin, J; Ma, Y; Fennie, C J; Rzchowski, M S; Pan, X Q; Gopalan, V; Rondinelli, J M; Eom, C B

    2016-05-01

    Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals--it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedral--the structural signatures of perovskites--owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties. PMID:27096369

  12. Polar metals by geometric design

    NASA Astrophysics Data System (ADS)

    Kim, T. H.; Puggioni, D.; Yuan, Y.; Xie, L.; Zhou, H.; Campbell, N.; Ryan, P. J.; Choi, Y.; Kim, J.-W.; Patzner, J. R.; Ryu, S.; Podkaminer, J. P.; Irwin, J.; Ma, Y.; Fennie, C. J.; Rzchowski, M. S.; Pan, X. Q.; Gopalan, V.; Rondinelli, J. M.; Eom, C. B.

    2016-05-01

    Gauss’s law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals—it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra—the structural signatures of perovskites—owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  13. Polar metals by geometric design.

    PubMed

    Kim, T H; Puggioni, D; Yuan, Y; Xie, L; Zhou, H; Campbell, N; Ryan, P J; Choi, Y; Kim, J-W; Patzner, J R; Ryu, S; Podkaminer, J P; Irwin, J; Ma, Y; Fennie, C J; Rzchowski, M S; Pan, X Q; Gopalan, V; Rondinelli, J M; Eom, C B

    2016-05-01

    Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions. Quantum physics supports this view, demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals--it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases. Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO3 perovskite nickelates using a strategy based on atomic-scale control of inversion-preserving (centric) displacements. We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedral--the structural signatures of perovskites--owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported, non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.

  14. Polarization Labeling Spectroscopy of Hollow Lithium

    NASA Astrophysics Data System (ADS)

    Huang, M.-T.; Wehlitz, R.; Cherepkov, N. A.; Azuma, Y.; Depaola, B. D.; Nagata, T.; Hasegawa, S.; Levin, J. C.; Sellin, I. A.

    1998-05-01

    Utilization of polarized or aligned targets can provide valuable information on atomic photoionization and excitation processes. (M. Meyer et al.), Phys. Rev. Lett. 59, 2963 (1987) We measured numerous even-parity doubly core excited ``hollow lithium'' resonances using monchromatized synchrotron radiation derived from an undulator, and laser excited lithium targets. The excited 1s^22p ^2Po targets, were aligned or polarized by laser pumping, and measurements were made with various combinations with the polarization of synchrotron radiation. The intensity pattern of the photoion spectrum shows clear polarization dependence and provides useful clues to the analysis.

  15. Prospect of polarized targets in electron rings

    SciTech Connect

    Holt, R.J.

    1984-01-01

    The feasibility of performing electron scattering experiments with polarized targets in electron storage rings is discussed. Three examples of the physics which would be accessible with this novel method are given. It is noted that this new method is compatible with recent proposals for linac-stretcher-ring accelerator designs. A new method for producing a polarized hydrogen or deuterium target is proposed and some preliminary results are described. A brief summary of laser-driven polarized targets as well as conventionally-produced polarized atomic beams is included.

  16. Cell polarity

    PubMed Central

    Romereim, Sarah M

    2011-01-01

    Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form. PMID:22064549

  17. Polar Diving

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers exposed by erosion in a trough within the north polar residual cap of Mars, diving beneath a younger covering of polar materials. The layers have, since the Mariner 9 mission in 1972, been interpreted to be composed of a combination of dust and ice in unknown proportions. In this scene, a layer of solid carbon dioxide, which was deposited during the previous autumn and winter, blankets the trough as well as the adjacent terrain. Throughout northern spring, the carbon dioxide will be removed; by summer, the layers will be frost-free.

    Location near: 81.4oN, 352.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  18. Polar Summer

    NASA Technical Reports Server (NTRS)

    2005-01-01

    30 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroding mesas of frozen carbon dioxide in the martian south polar residual cap. During the summer season, the scarps that bound each pit and mesa in the south polar region become dark as carbon dioxide sublimes away. The darkening might result from the roughening of the surfaces from which ice is subliming, or from the concentration of trace amounts of dust on these slopes, or both.

    Location near: 84.7oS, 48.2oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  19. POLARIZED HYDROGEN JET TARGET FOR MEASUREMENT OF RHIC PROTON BEAM POLARIZATION.

    SciTech Connect

    MAKDISI,Y.; WISE,T.; CHAPMAN,M.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; NASS,A.; RITTER,J.

    2005-01-28

    The performance and unique features of the RHIC polarized jet target and our solutions to the important design constraints imposed on the jet by the RHIC environment are described. The target polarization and thickness were measured to be 0.924 {+-} 2% and 1.3 {+-} 0.2 x 10{sup 12} atoms/cm{sup 2} respectively.

  20. Photoelectron-photofragment coincidence studies of the tert-butoxide anion (CH3)3CO((-)), the carbanion isomer (CH3)2CH2COH((-)), and corresponding radicals.

    PubMed

    Shen, Ben B; Poad, Berwyck L J; Continetti, Robert E

    2014-11-01

    A study of the photodetachment and dissociative photodetachment (DPD) of the C(4)H(9)O(-) isomers tert-butoxide, (CH(3))(3)CO(-), and the α-hydroxy carbanion (CH(3))(2)C(CH(2))OH(-) is reported. Photoelectron-photofragment coincidence spectroscopy was used to study these anions at 387, 537, and 600 nm. Supported by CBS-QB3 ab initio calculations, the product mass and translational energy distributions were found to be consistent with dissociation of either highly excited (CH3)(3)CO radicals or (CH(3))(2)C(CH2)OH alkylhydroxy radicals. Vibrationally resolved photoelectron spectra of stable radicals at 537 and 600 nm in conjunction with Franck-Condon simulations were used to assign the dominant channel to tert-butoxide ((CH(3)3)CO(-)) anions thermalized to a vibrational temperature of 550 K. DPD is assigned to highly vibrationally excited radicals produced by photodetachment of unrelaxed tert-butoxide products formed at an effective source temperature of 1400 K. The higher energy carbanion was found to be a minor channel and was not observed to dissociate. Calculated energetics for photodetachment and DPD of (CH(3))(3)CO(-) and (CH(3))(2)C(CH(2))OH(-) are discussed and compared with the experimental results.

  1. Coherent population trapping with polarization modulation

    NASA Astrophysics Data System (ADS)

    Yun, Peter; Guérandel, Stéphane; de Clercq, Emeric

    2016-06-01

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization. The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.

  2. Formation of Ultracold Polar Molecules

    NASA Astrophysics Data System (ADS)

    Taylor-Juarros, E.; Côté, R.; Kirby, K.

    2002-05-01

    A variety of experimental techniques have been employed to create a number of ultracold molecules, including CaH, Na_2, K_2, Cs_2, Rb2 and CO. Novel effects are predicted to occur in samples of ultracold polar molecules.(L. Santos et al.), Phys. Rev. Lett. 85, 1791 (2000). We present calculations of the formation rate of ultracold hydrides (LiH, NaH, KH, RbH, and CsH), using the most accurate molecular potentials and dipole moments available. We show that these polar molecules can be produced in selected vibrational and rotational states by stimulated radiative association in a mixture of ultracold hydrogen and alkali metal atoms. We study the properties of these atomic mixtures as well as those of the hydrides, and explore the effect of shape resonances on the formation rates. [2ex] *Supported by NSF

  3. Polar Landforms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    10 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows eroded remnants of carbon dioxide ice in the south polar residual cap of Mars. The scarps that outline each small mesa have retreated about 3 meters (10 feet) per Mars year since MGS began orbiting the red planet in 1997.

    Location near: 87.0oS, 31.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  4. Polar Layers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a slope upon which are exposed some of the layered materials that underlie the south polar cap of Mars. The layers are generally considered to be sediments--perhaps dust--that may have been cemented by water ice.

    Location near: 84.1oS, 343.9oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  5. Polar Markings

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02155 Polar Markings

    These bright and dark markings occurred near the end of summer in the south polar region. The dark material is likely dust that has been freed of frost cover.

    Image information: VIS instrument. Latitude -76.3N, Longitude 84.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Polar Layers

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02153 Polar Layers

    This image of the south polar region shows layered material. It is not known if the layers are formed yearly or if they form over the period of 10s to 100s of years or more.

    Image information: VIS instrument. Latitude -80.3N, Longitude 296.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Polar Ridges

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03662 Polar Ridges

    This ridge system is located in the south polar region.

    Image information: VIS instrument. Latitude -81.7N, Longitude 296.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Polar Textures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03638 Polar Textures

    This image illustrates the variety of textures that appear in the south polar region during late summer.

    Image information: VIS instrument. Latitude 80.5S, Longitude 57.9E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  10. Polar Terrains

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03577 Polar Terrains

    The region surrounding the South Polar Cap contains many different terrain types. This image shows both etched terrain and a region of 'mounds'.

    Image information: VIS instrument. Latitude 75S, Longitude 286.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Polarized tritium target development

    SciTech Connect

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-08-01

    Work began on the development of a completely sealed polarized tritium target for experiments at CEBAF. Because of the similarities between optical pumping of tritium and hydrogen, all prototype work is done with hydrogen. We constructed a test station for filling glassware with hydrogen, where we can dissociate molecular hydrogen and monitor the purity of the gas. A simple two-cell glass system was constructed, consisting of a region in which the molecular hydrogen is dissociated with an RF discharge and a region where the atoms can be optically pumped. So far, a clean discharge was obtained in the glassware. With this system, we plan to investigate ways to eliminate the discharge from the optical pumping region and test the quality of the discharge once the pumping cell is coated with drifilm.

  12. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  13. Atomic Calligraphy

    NASA Astrophysics Data System (ADS)

    Imboden, Matthias; Pardo, Flavio; Bolle, Cristian; Han, Han; Tareen, Ammar; Chang, Jackson; Christopher, Jason; Corman, Benjamin; Bishop, David

    2013-03-01

    Here we present a MEMS based method to fabricate devices with a small number of atoms. In standard semiconductor fabrication, a large amount of material is deposited, after which etching removes what is not wanted. This technique breaks down for structures that approach the single atom limit, as it is inconceivable to etch away all but one atom. What is needed is a bottom up method with single or near single atom precision. We demonstrate a MEMS device that enables nanometer position controlled deposition of gold atoms. A digitally driven plate is swept as a flux of gold atoms passes through an aperture. Appling voltages on four comb capacitors connected to the central plate by tethers enable nanometer lateral precision in the xy plane over 15x15 sq. microns. Typical MEMS structures have manufacturing resolutions on the order of a micron. Using a FIB it is possible to mill apertures as small as 10 nm in diameter. Assuming a low incident atomic flux, as well as an integrated MEMS based shutter with microsecond response time, it becomes possible to deposit single atoms. Due to their small size and low power consumption, such nano-printers can be mounted directly in a cryogenic system at ultrahigh vacuum to deposit clean quench condensed metallic structures.

  14. Polar Layers

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03581 Polar Layers

    This image shows just one example of the bright and dark markings that appear during summer time. The marks are related to the polar layers. If you happen to see a wild-eyed guy sticking his tongue out at you, you'll know why this image qualifies for the old 'art' category of THEMIS releases.

    Image information: VIS instrument. Latitude 80.6S, Longitude 34.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  15. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  16. Spin-polarized dark state free CPT state preparation with co-propagating left and right circularly polarized lasers.

    PubMed

    Zhang, Yi; Qu, Suping; Gu, Sihong

    2012-03-12

    We have developed and experimentally studied a coherent population trapping (CPT) state preparation scheme for atomic clock application with co-propagating left and right circularly polarized lasers. With realization of constructive interference and spin-polarized dark state free in CPT state preparation, we have obtained CPT resonance signal 3 times larger than that of the conventional scheme used in atomic clock. Polarization fluctuations and CPT signal sensitivity to laser power behaviors are both improved with the scheme. Our study reveals that it is a promising candidate for both normal-size and chip-scale CPT atomic clocks. PMID:22418521

  17. Production and Trapping of Ultracold Polar Molecules

    SciTech Connect

    David, DeMille

    2015-04-21

    We report a set of experiments aimed at the production and trapping of ultracold polar molecules. We begin with samples of laser-cooled and trapped Rb and Cs atoms, and bind them together to form polar RbCs molecules. The binding is accomplished via photoassociation, which uses a laser to catalyze the sticking process. We report results from investigation of a new pathway for photoassociation that can produce molecules in their absolute ground state of vibrational and rotational motion. We also report preliminary observations of collisions between these ground-state molecules and co-trapped atoms.

  18. Hydrogen atom formation from the photodissociation of water ice at 193 nm.

    PubMed

    Yabushita, Akihiro; Hashikawa, Yuichi; Ikeda, Atsushi; Kawasaki, Masahiro; Tachikawa, Hiroto

    2004-03-15

    The TOF spectra of photofragment hydrogen atoms from the 193 nm photodissociation of amorphous ice at 90-140 K have been measured. The spectra consist of both a fast and a slow components that are characterized by average translational energies of 2k(B)T(trans)=0.39+/-0.04 eV (2300+/-200 K) and 0.02 eV (120+/-20 K), respectively. The incident laser power dependency of the hydrogen atom production suggests one-photon process. The electronic excitation energy of a branched cluster, (H(2)O)(6+1), has been theoretically calculated, where (H(2)O)(6+1) is a (H(2)O)(6) cyclic cluster attached by a water molecule with the hydrogen bond. The photoabsorption of this branched cluster is expected to appear at around 200 nm. The source of the hydrogen atoms is attributed to the photodissociation of the ice surface that is attached by water molecules with the hydrogen bond. Atmospheric implications are estimated for the photodissociation of the ice particles (Noctilucent clouds) at 190-230 nm in the region between 80 and 85 km altitude.

  19. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  20. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  1. Probing absolute spin polarization at the nanoscale.

    PubMed

    Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

    2014-12-10

    Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

  2. Four complete turns of a curved 3₁₀-helix at atomic resolution: the crystal structure of the peptaibol trichovirin I-4A in a polar environment suggests a transition to α-helix for membrane function.

    PubMed

    Gessmann, Renate; Axford, Danny; Owen, Robin L; Brückner, Hans; Petratos, Kyriacos

    2012-02-01

    The first crystal structure of a member of peptaibol antibiotic subfamily 4, trichovirin I-4A (14 residues), has been determined by direct methods and refined at atomic resolution. The monoclinic unit cell has two molecules in the asymmetric unit. Both molecules assume a 3₁₀ right-handed helical conformation and are significantly bent. The molecules pack loosely along the crystallographic twofold axis, forming two large tunnels between symmetry-related molecules in which no ordered solvent could be located. Carbonyl O atoms which are not involved in intramolecular hydrogen bonding participate in close van der Waals interactions with apolar groups. The necessary amphipathicity for biological activity of peptaibols is not realised in the crystal structure. Hence, a structural change of trichovirin to an α-helical conformation is proposed for membrane integration and efficient water/ion transportation across the lipid bilayer.

  3. Proceedings of the workshop on polarized targets in storage rings

    SciTech Connect

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  4. Polarity continuation and frustration in ZnSe nanospirals

    PubMed Central

    Li, Luying; Tu, Fanfan; Jin, Lei; Choy, Wallace C. H.; Gao, Yihua; Wang, Jianbo

    2014-01-01

    ZnSe nanospirals including structures with polarity continuation and polarity frustration are simultaneously observed at atomic resolution. Through careful analysis of polarity within each dumbbell based on aberration-corrected high-angle annular-dark-field imaging, polarity continuation across parallel polytype interfaces as well as the surrounding Z-shape faulted dipoles is verified. Moreover, polarity frustration across regions with different stacking sequence, which would lead to accumulations of boundary interface charges in the triangular-shaped mixed regions with potential optoelectronic applications, is carefully studied. PMID:25502957

  5. Polar Color

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 3 May 2004 This nighttime visible color image was collected on January 1, 2003 during the Northern Summer season near the North Polar Troughs.

    This daytime visible color image was collected on September 4, 2002 during the Northern Spring season in Vastitas Borealis. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    Image information: VIS instrument. Latitude 79, Longitude 346 East (14 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with

  6. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  7. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  8. Quantum teleportation with atoms trapped in cavities

    SciTech Connect

    Cho, Jaeyoon; Lee, Hai-Woong

    2004-09-01

    We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.

  9. Non-coherent continuum scattering as a line polarization mechanism

    SciTech Connect

    Del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J. E-mail: rsainz@iac.es

    2014-03-20

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  10. Inducing electric polarization in ultrathin insulating layers

    NASA Astrophysics Data System (ADS)

    Martinez-Castro, Jose; Piantek, Marten; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    Studies of ultrathin polar oxide films have attracted the interest of researchers for a long time due to their different properties compared to bulk materials. However they present several challenges such as the difficulty in the stabilization of the polar surfaces and the limited success in tailoring their properties. Moreover, recently developed Van der Waals materials have shown that the stacking of 2D-layers trigger new collective states thanks to the interaction between layers. Similarly, interface phenomena emerge in polar oxides, like induced ferroelectricity. This represents a promising way for the creation of new materials with customized properties that differ from those of the isolated layers. Here we present a new approach for the fabrication and study of atomically thin insulating films. We show that the properties of insulating polar layers of sodium chloride (NaCl) can be engineered when they are placed on top of a charge modulated template of copper nitride (Cu2N). STM studies carried out in ultra-high vacuum and at low temperatures over NaCl/Cu2N/Cu(001) show that we are able to build up and stabilize interfaces of polar surface at the limit of one atomic layer showing new properties not present before at the atomic scale.

  11. Polarization dependence of double-resonance optical pumping and electromagnetically induced transparency in the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition of {sup 87}Rb atoms

    SciTech Connect

    Moon, Han Seb; Noh, Heung-Ryoul

    2011-09-15

    The polarization dependence of double-resonance optical pumping (DROP) in the ladder-type electromagnetically induced transparency (EIT) of the 5S{sub 1/2}-5P{sub 3/2}-5D{sub 5/2} transition of {sup 87}Rb atoms is studied. The transmittance spectra in the 5S{sub 1/2}(F=2)-5P{sub 3/2}(F'=3)-5D{sub 5/2}(F''=2,3,4) transition were observed as caused by EIT, DROP, and saturation effects in the various polarization combinations between the probe and coupling lasers. The features of the double-structure transmittance spectra in the 5S{sub 1/2}(F=2)-5P{sub 3/2}(F'=3)-5D{sub 5/2}(F''=4) cycling transition were attributed to the difference in saturation effect according to the transition routes between the Zeeman sublevels and the EIT according to the two-photon transition probability.

  12. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  13. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  14. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  15. Linearly polarized fiber amplifier

    SciTech Connect

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.

  16. Nondiffracting transversally polarized beam.

    PubMed

    Yuan, G H; Wei, S B; Yuan, X-C

    2011-09-01

    Generation of a nondiffracting transversally polarized beam by means of transmitting an azimuthally polarized beam through a multibelt spiral phase hologram and then highly focusing by a high-NA lens is presented. A relatively long depth of focus (∼4.84λ) of the electric field with only radial and azimuthal components is achieved. The polarization of the wavefront near the focal plane is analyzed in detail by calculating the Stokes polarization parameters. It is found that the polarization is spatially varying and entirely transversally polarized, and the polarization singularity disappears at the beam center, which makes the central bright channel possible. PMID:21886250

  17. The impacts of surface polarity on the solubility of nanoparticle.

    PubMed

    Zhu, Jianzhuo; Ou, Xinwen; Su, Jiguo; Li, Jingyuan

    2016-07-28

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (qM), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such qM is comparable with atomic partial charge of a variety of functional groups. The hydration behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.

  18. The impacts of surface polarity on the solubility of nanoparticle.

    PubMed

    Zhu, Jianzhuo; Ou, Xinwen; Su, Jiguo; Li, Jingyuan

    2016-07-28

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (qM), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such qM is comparable with atomic partial charge of a variety of functional groups. The hydration behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility. PMID:27475378

  19. The impacts of surface polarity on the solubility of nanoparticle

    NASA Astrophysics Data System (ADS)

    Zhu, Jianzhuo; Ou, Xinwen; Su, Jiguo; Li, Jingyuan

    2016-07-01

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (qM), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such qM is comparable with atomic partial charge of a variety of functional groups. The hydration behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.

  20. Crossed elliptical polarization undulator

    SciTech Connect

    Sasaki, Shigemi

    1997-05-01

    The first switching of polarization direction is possible by installing two identical helical undulators in series in a same straight section in a storage ring. By setting each undulator in a circular polarization mode in opposite handedness, one can obtain linearly polarized radiation with any required polarization direction depending on the modulator setting between two undulators. This scheme can be used without any major degradation of polarization degree in any low energy low emittance storage ring.

  1. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  2. Polarization-balanced beamsplitter

    DOEpatents

    Decker, Derek E.

    1998-01-01

    A beamsplitter assembly that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting.

  3. Polarization spectroscopy and photodissociation studies of nitroaromatic compounds in the gas phase

    NASA Astrophysics Data System (ADS)

    Abbott, James E., Jr.

    The central purpose of this dissertation was to explore and expand the use of an uniform electric field for orientation and for subsequent spectroscopic investigation of asymmetric polar molecules in the gas phase. The systems of study were nitrobenzene (NB) and the nitrotoluene (NT) isomers. We were able to quantitatively determine the direction of the electronic transition dipole relative to the permanent dipole for these molecules, thus providing quantitative information on the symmetry of the second and third singlet excited electronic states. Transition to the second singlet excited state (S 2) was shown to have a dipole predominantly perpendicular to the permanent dipole, consistent with a localized excitation of the -NO2 moiety. The transition dipole to the S3 state for the meta and para isomers was almost completely parallel to the permanent dipole, opposite to that observed for the S2 transition. The success of these experiments has demonstrated the ability of the Brute Force Orientation technique to quantitatively characterize the transition dipole properties of large molecules. The importance of this technique lies in the fact that most large molecules undergo rapid internal conversion and slow dissociation after absorption, therefore information on the symmetry properties of these systems is otherwise unattainable. In addition to the determination of the transition dipole direction, we were able to characterize many details of the dissociation process by analyzing the internal energy distribution of the Nitric Oxide (NO) photofragment. The Resonantly Enhanced Multi Photon Ionization spectrum of NO has revealed that the methyl group causes significant perturbation in the dissociation process, while it seems to have minimal effect on the transition dipole direction among NB and NT. All NT isomers showed significantly more vibrational excitation than previously reported for NB. Additionally, the meta and para isomers were observed to have a vibrational

  4. Polarized EMC Effect in Nuclei

    SciTech Connect

    Ian Cloet; A. W. Thomas; W. Bentz

    2006-06-05

    The discovery of the EMC effect and the proton spin crisis by the European Muon Collaboration are two of the standout experiments of the last 25 years. It is therefore surprising that there has been no experimental and little theoretical investigation of the spin structure functions of atomic nuclei. To address this we present results for the spin-dependent structure functions of nuclei. The quark degrees of freedom in nuclei are accessed via the convolution formalism. Where the nucleon bound state is obtained by solving the relativistic Faddeev equation, and a relativistic shell model is used to model the atomic nucleus. We find the important result that the medium modifications to the polarized structure functions are about twice that of the unpolarized case.

  5. Beam transport of low temperature atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Kaufman, W. A.

    1993-12-01

    Analytic calculations and particle tracking simulations are presented for a polarized atomic hydrogen beam produced by extraction from an ultra-cold (T=300 mK) helium film coated cell in a large solenoidal magnetic field (12 T). Initial focusing of states 1 and 2 by the solenoidal field and subsequent focusing by a sextupole are examined within the constraints imposed by the requirements of the polarized jet for the experiments NEPTUN and NEPTUN-A at UNK.

  6. Studies of Interstellar and Circumstellar Magnetic Field with Aligned Atoms

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Yan, H.

    2004-12-01

    Population of levels of the hyperfine and fine split ground state of an atom is affected by radiative transitions induced by anisotropic radiation flux. Such aligned atoms precess in the external magnetic field and this affects properties of polarized radiation arising from both scattering and absorption by atoms. As the result the degree of light polarization depends on the direction of the magnetic field. This provides a new tool for studies of astrophysical magnetic fields using optical and UV polarimetry. We provide calculations for several atoms and ions that can be used to study magnetic fields in interplanetary medium, interstellar medius, circumstellar regions and quasars.

  7. Magnetic measurements with atomic-plane resolution.

    PubMed

    Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E; Oppeneer, Peter M; Schneider, Claus M

    2016-01-01

    Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide. PMID:27578421

  8. Magnetic measurements with atomic-plane resolution

    NASA Astrophysics Data System (ADS)

    Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E.; Oppeneer, Peter M.; Schneider, Claus M.

    2016-08-01

    Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide.

  9. Magnetic measurements with atomic-plane resolution

    PubMed Central

    Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E.; Oppeneer, Peter M.; Schneider, Claus M.

    2016-01-01

    Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide. PMID:27578421

  10. Atomic Magnetometry for fetal Magnetocardiography

    NASA Astrophysics Data System (ADS)

    Sulai, Ibrahim; Walker, Thad; Wakai, Ronald

    2013-05-01

    We present results of using an array of atomic magnetometers in detecting fetal Magnetocardiograms(fMCG). The array consists of four 87-Rb atomic magnetometers operating in the spin exchange relaxation free (SERF) regime. They have a demonstrated sensitivity of 5 - 10 fT /√{ Hz } -limited by the Johnson noise of the magnetic shielding. We report measurements of fMCG on gestational ages as small as 21 weeks and describe the technical challenges and design features that make the measurements possible. We present a method for minimizing the impact of AC Stark Shifts on the magnetometer array performance by relying on diffusion to transport polarized atoms from a pumping region to an AC Stark shift free active region. This work was supported by the NIH.

  11. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  12. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  13. Atomic oxygen transport in the thermosphere.

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Gottlieb, B.

    1973-01-01

    The photodissociation of oxygen in the lower thermosphere is evaluated to obtain its global average value and the hemispheric imbalance. The observed concentrations of atomic oxygen do not reflect this imbalance in production due to the effect of seasonal wind patterns redistributing the atomic oxygen. The wind system necessary to compensate for the imbalance in solar thermal input into the lower thermosphere is found to transport an amount of atomic oxygen sufficient to compensate for the hemispheric imbalance in production. Ionospheric data indicate a winter enhancement in atomic oxygen concentration; to produce this, a higher degree of oxygen dissociation than that normally accepted (i.e., higher than an atomic to molecular oxygen ratio of unity at 120 km) is needed. The concept that the concentrations of atomic oxygen observed over the winter polar region are maintained by transport from lower latitudes requires that eddy diffusion coefficients derived from vertical transport at low latitudes (ignoring horizontal transport) be reduced by about 25%.

  14. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  15. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  16. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  17. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  18. Scattering of electrons from neon atoms

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Bhatia, A. K.

    1984-01-01

    Scattering of electrons from neon atoms is investigated by the polarized-orbital method. The perturbed orbitals calculated with use of the Sternheimer approximation lead to the polarizability 2.803 a(0)-cube in fairly good agreement with the experimental value 2.66 a(0)-cube. Phase shifts for various partial waves are calculated in the exchange, exchange-adiabatic, and polarized-orbital approximations. They are compared with the previous results. The calculated elastic differential, total, and momentum-transfer cross sections are compared with the experimental results. The polarized-orbital approximation yields results which show general improvement over the exchange-adiabatic approximation.

  19. Constructive polarization modulation for coherent population trapping clock

    SciTech Connect

    Yun, Peter Danet, Jean-Marie; Holleville, David; Clercq, Emeric de; Guérandel, Stéphane

    2014-12-08

    We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potential of this scheme for applications to high performance atomic clocks.

  20. Atomic-scale control of graphene magnetism by using hydrogen atoms.

    PubMed

    González-Herrero, Héctor; Gómez-Rodríguez, José M; Mallet, Pierre; Moaied, Mohamed; Palacios, Juan José; Salgado, Carlos; Ugeda, Miguel M; Veuillen, Jean-Yves; Yndurain, Félix; Brihuega, Iván

    2016-04-22

    Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20-millielectron volt spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice opposite to the one where the hydrogen atom is chemisorbed. This atomically modulated spin texture, which extends several nanometers away from the hydrogen atom, drives the direct coupling between the magnetic moments at unusually long distances. By using the STM tip to manipulate hydrogen atoms with atomic precision, it is possible to tailor the magnetism of selected graphene regions.

  1. Detection of J-coupling using atomic magnetometer

    DOEpatents

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  2. Diffusive suppression of AC-Stark shifts in atomic magnetometers

    PubMed Central

    Sulai, I. A.; Wyllie, R.; Kauer, M.; Smetana, G. S.; Wakai, R. T.; Walker, T. G.

    2016-01-01

    In atomic magnetometers, the vector AC-Stark shift associated with circularly polarized light generates spatially varying effective magnetic fields, which limit the magnetometer response and serve as sources of noise. We describe a scheme whereby optically pumping a small subvolume of the magnetometer cell and relying on diffusion to transport polarized atoms allows a magnetometer to be operated with minimal sensitivity to the AC-Stark field. © 2013 Optical Society of America PMID:23503278

  3. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  4. Polarization at SLAC

    SciTech Connect

    Woods, M.

    1995-01-01

    A highly polarized electron beam is a key feature. for the Current physics program at SLAC. An electron beam polarization of 80% can now be routinely achieved for typically 5000 hours of machine operation per year. Two main Physics programs utilize the polarized beam. Fixed target experiments in End Station A study the collision of polarized electrons with polarized nuclear targets to elucidate the spin structure of the nucleon and to provide an important test of QCD. Using the SLAC Linear Collider, collisions of polarized electrons with unpolarized positrons allow precise measurements of parity violation in the Z-fermion couplings and provide a very precise measurement of tile weak mixing angle. This paper discusses polarized beam operation at SLAC, and gives an overview of the polarized physics program.

  5. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  6. Graphing Polar Curves

    ERIC Educational Resources Information Center

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  7. Polarity at Many Levels

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2004-01-01

    An attempt is made to find how polarity arises and is maintained, which is a central issue in development. It is a fundamental attribute of living things and cellular polarity is also important in the development of multicellular organisms and controversial new work indicates that polarization in mammals may occur much earlier than previously…

  8. Polarization feedback laser stabilization

    DOEpatents

    Esherick, Peter; Owyoung, Adelbert

    1988-01-01

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other.

  9. Bumblebees Learn Polarization Patterns

    PubMed Central

    Foster, James J.; Sharkey, Camilla R.; Gaworska, Alicia V.A.; Roberts, Nicholas W.; Whitney, Heather M.; Partridge, Julian C.

    2014-01-01

    Summary Foraging insect pollinators such as bees must find and identify flowers in a complex visual environment. Bees use skylight polarization patterns for navigation [1–3], a capacity mediated by the polarization-sensitive dorsal rim area (DRA) of their eye [4, 5]. While other insects use polarization sensitivity to identify appropriate habitats [6], oviposition sites, and food sources [7], to date no nonnavigational functions of polarization vision have been identified in bees. Here we investigated the ability of bumblebees (Bombus terrestris) to learn polarization patterns on artificial “flowers” in order to obtain a food reward. We show that foraging bumblebees can learn to discriminate between two differently polarized targets, but only when the target artificial “flower” is viewed from below. A context for these results is provided by polarization imaging of bee-pollinated flowers, revealing the potential for polarization patterns in real flowers. Bees may therefore have the ability to use polarization vision, possibly mediated by their polarization-sensitive DRA, both for navigation and to learn polarization patterns on flowers, the latter being the first nonnavigational function for bee polarization vision to be identified. PMID:24909321

  10. Calculation of polarization effects

    SciTech Connect

    Chao, A.W.

    1983-09-01

    Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful.

  11. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  12. Polarization spectroscopy in rubidium and cesium

    SciTech Connect

    Harris, M. L.; Adams, C. S.; Cornish, S. L.; McLeod, I. C.; Tarleton, E.; Hughes, I. G.

    2006-06-15

    We develop a theoretical treatment of polarization spectroscopy and use it to make predictions about the general form of polarization spectra in the alkali-metal atoms. Using our model, we generate theoretical spectra for the D2 transitions in {sup 87}Rb, {sup 85}Rb, and {sup 133}Cs. Experiments demonstrate that the model accurately reproduces spectra of transitions from the upper hyperfine level of the ground state only. Among these, the closed transition F{yields}F{sup '}=F+1 dominates, with a steep gradient through line center ideally suited for use as a reference in laser locking.

  13. The H-atom resource on Mars

    NASA Astrophysics Data System (ADS)

    Clark, B. C.

    The hydrogen atom is considered to be the key to the chemical manufacturing and the agricultural endeavors to be undertaken on the surface of Mars. The only apparent abundant supply of H-atoms on Mars is the oxidized form, H2O. Water may be obtained at various penalties on the limited energy resources, depending on the source from which it is extracted atmospheric vapor, soil minerals, soil ice, or polar cap block ice. H-atoms may be stockpiled in several forms, e.g., H2O ice, food molecules, and chemical hydrides.

  14. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  15. Atom scattering from metals

    NASA Astrophysics Data System (ADS)

    Hayes, W. W.

    In the initial portion of this dissertation studies of Ar scattering from Ru(0001) at thermal and hyperthermal energies are compared to calculations with classical scattering theory. These data exhibited a number of characteristics that are unusual in comparison to other systems for which atomic beam experiments have been carried out under similar conditions. The measured energy losses were unusually small. Some of the angular distributions exhibited an anomalous shoulder feature in addition to a broad peak near the specular direction and quantum mechanical diffraction was observed under conditions for which it was not expected. Many of the unusual features observed in the measurements are explained, but only upon using an effective surface mass of 2.3 Ru atomic masses, which implies collective effects in the Ru crystal. The large effective mass, because it leads to substantially larger Debye-Waller factors, explains and confirms the observations of diffraction features. It also leads to the interesting conclusion that Ru is a metal for which atomic beam scattering measurements in the purely quantum mechanical regime, where diffraction and single-phonon creation are dominant, should be possible not only with He atoms, but with many other atomic species with larger masses. A useful theoretical expression for interpreting and analyzing observed scattering intensity spectra for atomic and molecular collisions with surfaces is the differential reflection coefficient for a smooth, vibrating surface. This differential reflection coefficient depends on a parameter, usually expressed in dimensions of velocity, that arises due to correlated motions of neighboring regions of the surface and can be evaluated if the polarization vectors of the phonons near the surface are known. As a part of this dissertation experimental conditions are suggested under which this velocity paramenter may be more precisely measured than it has been in the past. Experimental data for scattering

  16. Hybrid polarity SAR architecture

    NASA Astrophysics Data System (ADS)

    Raney, R. Keith

    2009-05-01

    A space-based synthetic aperture radar (SAR) designed to provide quantitative information on a global scale implies severe requirements to maximize coverage and to sustain reliable operational calibration. These requirements are best served by the hybrid-polarity architecture, in which the radar transmits in circular polarization, and receives on two orthogonal linear polarizations, coherently, retaining their relative phase. This paper summarizes key attributes of hybrid-polarity dual- and quadrature-polarized SARs, reviews the associated advantages, formalizes conditions under which the signal-to-noise ratio is conserved, and describes the evolution of this architecture from first principles.

  17. Viewing minerals, atom by atom

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    With state-of-the-art technology supported by scissors and bungy cords, Earth scientists are beginning to look at mineral surfaces and mineral-fluid interactions on an atomic scale.The instrument that can provide such a detailed view is the scanning tunneling microscope (STM), which made a great theoretical and practical splash when it was introduced in 1981 by Gerd Binnig and Heinrich Rohrer, physicists at IBM's laboratory in Zurich. They won a Nobel Prize in Physics for their work 5 years later.

  18. Polarization in remote sensing

    NASA Astrophysics Data System (ADS)

    Egan, Walter G.

    1992-12-01

    A review of the experimental and theoretical aspects of optical polarization is presented with definitions of the observed polarization characteristics and relationship to the Stokes parameters. A typical terrestrial soil polarization curve is characterized and related to the current theoretical knowledge. This polarization relationship is extended to cover planetary surfaces, such as the Moon, and Mars and terrestrial surfaces composed of farm areas and water surfaces. Instrumentation for imaging and non-imaging polarimetry are described including the use of focal plane arrays. Recent Space Shuttle polarimetric observations of the region around the Island of Hawaii and New Madrid, Missouri are described, as well as concurrent cloud and haze observations. Polarization is a sensitive indicator of cloud particle size distributions, soil texture, farm crops, sea state and atmospheric aerosols and haze. Cloud particle size distributions are uniquely characterized by polarization, and this cannot be achieved with photometry. An extensive bibliography of polarization in remote sensing is appended.

  19. Polarity inversion in polar-nonpolar-polar heterostructures.

    PubMed

    Cho, S; Youn, S J; Kim, Y; DiVenere, A; Wong, G K; Freeman, A J; Ketterson, J B

    2001-09-17

    We have observed an epilayer-thickness-dependent polarity inversion for the growth of CdTe on Sb(Bi)/CdTe(111)B. For films with Sb(Bi) thicknesses of less than 40 A (15 A), the CdTe layer shows a B (Te-terminated) face, but it switches to an A (Cd-terminated) face for thicker layers. On the other hand, a CdTe layer grown on Bi(Sb)/CdTe(111)A always shows the A face regardless of Sb or Bi layer thicknesses. In order to address the observations we have performed ab initio calculations, which suggest that the polarity of a polar material on a nonpolar one results from the binding energy difference between the two possible surface configurations.

  20. Study of a polarized hydrogen ion source with deuterium plasma ionizer

    SciTech Connect

    Belov, A.S.; Derevyankin, G.E.; Dudnikov, V.G.; Klenov, V.S.; Nechaeva, L.P.; Plohinsky, Y.V.; Vasil`ev, G.A.; Yakushev, V.P.

    1995-07-15

    A description of the atomic beam polarized hydrogen ion source developed at the INR in Moscow is given. It is capable of producing polarized 100 {mu}sec long H{sup +} beams with currents up to 6 {mu}A. The beam is 85% polarized and has a normal emittance of 2{pi} mm mrad. Additionally polarized H{sup {minus}} beams have currents up to 200 {mu}A and normalized emittance 2.2 {pi} mm mrad. (AIP)

  1. Spin polarization of the split Kondo state.

    PubMed

    von Bergmann, Kirsten; Ternes, Markus; Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J

    2015-02-20

    Spin-resolved scanning tunneling microscopy is employed to quantitatively determine the spin polarization of the magnetic field-split Kondo state. Tunneling conductance spectra of a Kondo-screened magnetic atom are evaluated within a simple model taking into account inelastic tunneling due to spin excitations and two Kondo peaks positioned symmetrically around the Fermi energy. We fit the spin state of the Kondo-screened atom with a spin Hamiltonian independent of the Kondo effect and account for Zeeman splitting of the Kondo peak in the magnetic field. We find that the width and the height of the Kondo peaks scales with the Zeeman energy. Our observations are consistent with full spin polarization of the Kondo peaks, i.e., a majority spin peak below the Fermi energy and a minority spin peak above. PMID:25763966

  2. Interface control of bulk ferroelectric polarization

    SciTech Connect

    Yu, P; Luo, Weidong; Yi, D.; Zhang, J.-X.; Rossell, M.D.; Yang, C.-H.; You, L.; Singh-Bhalla, G. B.; Yang, S.Y; He, Q; Ramasse, Q. M.; Erni, R.; Martin, L. W.; Chu, Y. H.; Pantelides, Sokrates T; Pennycook, Stephen J; Ramesh, R.

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectric hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.

  3. Plasmonic metasurface for simultaneous detection of polarization and spectrum.

    PubMed

    Pelzman, Charles; Cho, Sang-Yeon

    2016-03-15

    We present a new plasmonic metasurface for simultaneous detection of polarization and spectrum of incident light. The demonstrated metasurface is a rationally designed cluster of artificial atoms that are engineered to exhibit polarization and wavelength-selective optical transmission. The fundamental building block of this structure is periodically coupled subwavelength aperture arrays with different orientations and lattice constants. When integrated with pixelated photodetectors, the metasurface can be used to measure the polarization and spectral information of an optical input. In this Letter, simultaneous detection of the polarization and spectrum of polarized light was experimentally demonstrated by analyzing the transmitted intensity distribution through the metasurface. The demonstrated metasurface offers great potential for many applications, such as polarimetric multispectral imaging and polarization-division multiplexing in optical communications. PMID:26977672

  4. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS) . In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  5. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS). In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  6. Velocity distributions of hydrogen atoms and hydroxyl radicals produced through solar photodissociation of water

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Chen, F. Z.

    1993-01-01

    The velocity distributions of H and OH fragments produced through solar photodissociation of gaseous H2O molecules under collisionless conditions are presented. The calculations are carried out using: the most recently available absolute partial cross sections for the production of H and OH through photodissociation of H2O from its absorption onset at 1860 A down to 500 A; the newly available vibrational and rotational energy distributions of both the excited and ground state OH photofragments; the calculated cross sections for the total dissociation processes; and the integrated solar flux in 10 A increments from 500 to 1860 A in the continuum regions and the specific wavelength and flux at the bright solar lines. The calculated results show that the H atoms and the OH radicals produced exhibit multiple velocity groups. Since most current cometary modeling uses a single velocity of 20 km/sec associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of the H Lyman alpha and H alpha of comets.

  7. Atomic displacements in ferroelectric trigonal and orthorhombic boracite structures

    USGS Publications Warehouse

    Dowty, Eric; Clark, J.R.

    1972-01-01

    New crystal-structure refinements of Pca21 boracite, Mg3ClB7O13, and R??{lunate}c ericaite, Fe2.4Mg0.6ClB7O13, show that some boron and oxygen atoms are involved in the 'ferro' transitions as well as the metal and halogen atoms. The atomic displacements associated with the polarity changes are as large as 0.6A??. ?? 1972.

  8. [Review] Polarization and Polarimetry

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  9. Automatic Bayesian polarity determination

    NASA Astrophysics Data System (ADS)

    Pugh, D. J.; White, R. S.; Christie, P. A. F.

    2016-07-01

    The polarity of the first motion of a seismic signal from an earthquake is an important constraint in earthquake source inversion. Microseismic events often have low signal-to-noise ratios, which may lead to difficulties estimating the correct first-motion polarities of the arrivals. This paper describes a probabilistic approach to polarity picking that can be both automated and combined with manual picking. This approach includes a quantitative estimate of the uncertainty of the polarity, improving calculation of the polarity probability density function for source inversion. It is sufficiently fast to be incorporated into an automatic processing workflow. When used in source inversion, the results are consistent with those from manual observations. In some cases, they produce a clearer constraint on the range of high-probability source mechanisms, and are better constrained than source mechanisms determined using a uniform probability of an incorrect polarity pick.

  10. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    SciTech Connect

    Dave, Mudra R.; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  11. Polarized Line Formation with Lower-level Polarization and Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.; Stenflo, J. O.; Ravindra, B.

    2016-09-01

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarized line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J a = 1, J b = 0 and J a = J b = 1, where J a and J b represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.

  12. Polarization feedback laser stabilization

    DOEpatents

    Esherick, P.; Owyoung, A.

    1987-09-28

    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  13. Optically-pumped spin-exchange polarized electron source

    NASA Astrophysics Data System (ADS)

    Pirbhai, Munir Hussein

    Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.

  14. Polarization at SLC

    SciTech Connect

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs.

  15. Excess optical quantum noise in atomic sensors

    NASA Astrophysics Data System (ADS)

    Novikova, Irina; Mikhailov, Eugeniy; Xiao, Yanhong

    2015-05-01

    Enhanced nonlinear optical response of a coherent atomic medium is the basis for many atomic sensors, and their performance is ultimately limited by the quantum fluctuations of the optical read-out. Here we demonstrate that off-resonant interactions can significantly modify the quantum noise of the optical field, even when their effect on the mean signal is negligible. We illustrate this concept by using an atomic magnetometer based on the nonlinear Faraday effect: the rotation of the light polarization is mainly determined by the resonant light-induced spin alignment, which alone does not change the photon statistics of the optical probe. Yet, we found that the minimum noise of output polarization rotation measurements is above the expected shot noise limit. This excess quantum noise is due to off-resonant coupling and grows with atomic density. We also show that the detection scheme can be modified to reduce the measured quantum noise (even below the shot-noise limit) but only at the expense of the reduced rotational sensitivity. These results show the existence of previously unnoticed factors in fundamental limitations in atomic magnetometry and could have impacts in many other atom-light based precision measurements. We acknowledge the support from AFOSR (grant FA9550-13-1-0098), NSF (grant PHY-1308281), NBRPC(973 Program Grant 2012CB921604 and 2011CB921604), and NNSFC (Grants No. 11322436).

  16. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror.

    PubMed

    Cui, Jianhua; Huang, Cheng; Pan, Wenbo; Pu, Mingbo; Guo, Yinghui; Luo, Xiangang

    2016-01-01

    Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phase difference between two orthogonal polarization modes. Through switching the operating state of the PIN diodes, the meta-mirror is expected to achieve three polarization states which are left-handed, right-handed circular polarizations and linear polarization, respectively. We fabricated this active meta-mirror and validated its polarization conversion performance by measurement. The linearly polarized incident wave can be dynamically converted to right-handed or left-handed circular polarization in the frequency range between 3.4 and 8.8 GHz with the average loss of 1 dB. Furthermore, it also can keep its initial linear polarization state. PMID:27469028

  17. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror

    NASA Astrophysics Data System (ADS)

    Cui, Jianhua; Huang, Cheng; Pan, Wenbo; Pu, Mingbo; Guo, Yinghui; Luo, Xiangang

    2016-07-01

    Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phase difference between two orthogonal polarization modes. Through switching the operating state of the PIN diodes, the meta-mirror is expected to achieve three polarization states which are left-handed, right-handed circular polarizations and linear polarization, respectively. We fabricated this active meta-mirror and validated its polarization conversion performance by measurement. The linearly polarized incident wave can be dynamically converted to right-handed or left-handed circular polarization in the frequency range between 3.4 and 8.8 GHz with the average loss of 1 dB. Furthermore, it also can keep its initial linear polarization state.

  18. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror

    PubMed Central

    Cui, Jianhua; Huang, Cheng; Pan, Wenbo; Pu, Mingbo; Guo, Yinghui; Luo, Xiangang

    2016-01-01

    Polarization control of electromagnetic wave is very important in many fields. Here, we propose an active meta-mirror to dynamically manipulate electromagnetic polarization state at a broad band. This meta-mirror is composed of a double-layered metallic pattern backed by a metallic flat plate, and the active elements of PIN diodes are integrated into the meta-atom to control the reflection phase difference between two orthogonal polarization modes. Through switching the operating state of the PIN diodes, the meta-mirror is expected to achieve three polarization states which are left-handed, right-handed circular polarizations and linear polarization, respectively. We fabricated this active meta-mirror and validated its polarization conversion performance by measurement. The linearly polarized incident wave can be dynamically converted to right-handed or left-handed circular polarization in the frequency range between 3.4 and 8.8 GHz with the average loss of 1 dB. Furthermore, it also can keep its initial linear polarization state. PMID:27469028

  19. The atomic orbitals of the topological atom.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-01

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  20. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  1. Extending classical molecular theory with polarization.

    PubMed

    Keyes, Tom; Napoleon, Raeanne L

    2011-01-27

    A classical, polarizable, electrostatic theory of short-ranged atom-atom interactions, incorporating the smeared nature of atomic partial charges, is presented. Detailed models are constructed for CO monomer and for CO interacting with an iron atom, as a first step toward heme proteins. A good representation is obtained of the bond-length-dependent dipole of CO monomer from fitting at the equilibrium distance only. Essential features of the binding of CO to myoglobin (Mb) and model heme compounds, including the binding energy, the position of the minimum in the Fe-C potential, the Fe-C frequency, the bending energy, the linear geometry of FeCO, and the increase of the Stark tuning rate and IR intensity, are obtained, suggesting that a substantial part of the Fe-CO interaction consists of a classical, noncovalent, "electrostatic bond ". The binding energy is primarily polarization energy, and the polarization energy of an OH pair in water is shown to be comparable to the experimental hydrogen bond energy.

  2. Laser-driven polarized hydrogen and deuterium internal targets

    SciTech Connect

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-08-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy {sup 3}H(d,n){sup 4}He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration.

  3. Polarized electron scattering, new physics and dark parity violation

    SciTech Connect

    Marciano, William J.

    2013-11-07

    'New Physics' sensitivities of polarized electron scattering asymmetries, atomic parity violation, m{sub W} and sin{sup 2} θ{sub W} (Z pole measurements) are compared. The utility of low Q{sup 2} polarized electron scattering for probing parity violating 'dark boson' effects is discussed. A possible determination of the weak charge Q{sub w}({sup 12}C) to about ±0.3% via elastic e-Carbon scattering is advocated.

  4. RHIC Polarized proton operation

    SciTech Connect

    Huang, H.; Ahrens, L.; Alekseev, I.G.; Aschenauer, E.; Atoian, G.; Bai, M.; Bazilevsky, A.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; Dion, A.; D'Ottavio, T.; Drees, K.A.; Fischer, W.; Gardner, C.; Glenn, J.W.; Gu, X.; Harvey, M.; Hayes, T.; Hoff, L.; Hulsart, R.L.; Laster, J.; Liu, C.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Marr, G.J.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R,; Minty, M.; Montag, C.; Morris, J.; Nemesure, S.; Poblaguev, A.; Ptitsyn, V.; Ranjibar, V.; Robert-Demolaize, G.; Roser, T.; J.; Severino, F.; Schmidke, B.; Schoefer, V.; Severino, F.; Smirnov, D.; Smith, K.; Steski, D.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J. Wang, G.; Wilinski, M.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    The Relativistic Heavy Ion Collider (RHIC) operation as the polarized proton collider presents unique challenges since both luminosity(L) and spin polarization(P) are important. With longitudinally polarized beams at the experiments, the figure of merit is LP{sup 4}. A lot of upgrades and modifications have been made since last polarized proton operation. A 9 MHz rf system is installed to improve longitudinal match at injection and to increase luminosity. The beam dump was upgraded to increase bunch intensity. A vertical survey of RHIC was performed before the run to get better magnet alignment. The orbit control is also improved this year. Additional efforts are put in to improve source polarization and AGS polarization transfer efficiency. To preserve polarization on the ramp, a new working point is chosen such that the vertical tune is near a third order resonance. The overview of the changes and the operation results are presented in this paper. Siberian snakes are essential tools to preserve polarization when accelerating polarized beams to higher energy. At the same time, the higher order resonances still can cause polarization loss. As seen in RHIC, the betatron tune has to be carefully set and maintained on the ramp and during the store to avoid polarization loss. In addition, the orbit control is also critical to preserve polarization. The higher polarization during this run comes from several improvements over last run. First we have a much better orbit on the ramp. The orbit feedback brings down the vertical rms orbit error to 0.1mm, much better than the 0.5mm last run. With correct BPM offset and vertical realignment, this rms orbit error is indeed small. Second, the jump quads in the AGS improved input polarization for RHIC. Third, the vertical tune was pushed further away from 7/10 snake resonance. The tune feedback maintained the tune at the desired value through the ramp. To calibrate the analyzing power of RHIC polarimeters at any energy above

  5. Dressed spin of polarized {sup 3}He in a cell

    SciTech Connect

    Chu, P.-H.; Esler, A. M.; Peng, J. C.; Beck, D. H.; Chandler, D. E.; Clayton, S.; Williamson, S.; Yoder, J.; Hu, B.-Z.; Ngan, S. Y.; Sham, C. H.; So, L. H.

    2011-08-15

    We report a measurement of the modification of the effective precession frequency of polarized {sup 3}He atoms in response to a dressing field in a room-temperature cell. The {sup 3}He atoms were polarized using the metastability spin-exchange method. An oscillating dressing field was then applied perpendicular to the constant magnetic field. Modification of the {sup 3}He effective precession frequency was observed over a broad range of the amplitude and frequency of the dressing field. The observed effects are compared with calculations based on quantum optics formalism.

  6. Our Polar Past

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2009-01-01

    The study of polar exploration is fascinating and offers students insights into the history, culture, and politics that affect the developing sciences at the farthest ends of Earth. Therefore, the authors think there is value in incorporating polar exploration accounts within modern science classrooms, and so they conducted research to test their…

  7. The Polar Insulation Investigation

    ERIC Educational Resources Information Center

    Urban-Rich, Juanita

    2006-01-01

    In this article, the author developed an activity called "The Polar Insulation Investigation." This activity builds on students' natural interest in "things polar" and introduces them to animal adaptations in a unique way. The aim of the exploration is to determine the role of animal coverings (e.g., blubber, fur, and feathers) and to see which is…

  8. Polar Science Is Cool!

    ERIC Educational Resources Information Center

    Weeks, Sophie

    2012-01-01

    Children are fascinated by the fact that polar scientists do research in extremely cold and dangerous places. In the Arctic they might be viewed as lunch by a polar bear. In the Antarctic, they could lose toes and fingers to frostbite and the wind is so fast it can rip skin off. They camp on ice in continuous daylight, weeks from any form of…

  9. Nomenclature of polarized light - Elliptical polarization

    NASA Technical Reports Server (NTRS)

    Clarke, D.

    1974-01-01

    Alternative handedness and sign conventions for relating the orientation of elliptical polarization are discussed. The discussion proceeds under two headings: (1) snapshot picture, where the emphasis for the convention is contained in the concept of handedness; and (2) angular momentum consideration, where the emphasis for the convention is strongly associated with mathematical convention and the sign of the fourth Stokes parameter.

  10. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  11. Switchable polarization in an unzipped graphene oxide monolayer.

    PubMed

    Noor-A-Alam, Mohammad; Shin, Young-Han

    2016-08-14

    Ferroelectricity in low-dimensional oxide materials is generally suppressed at the scale of a few nanometers, and has attracted considerable attention from both fundamental and technological aspects. Graphene is one of the thinnest materials (one atom thick). Therefore, engineering switchable polarization in non-polar pristine graphene could potentially lead to two-dimensional (2D) ferroelectric materials. In the present study, based on density functional theory, we show that an unzipped graphene oxide (UGO) monolayer can exhibit switchable polarization due to its foldable bonds between the oxygen atom and two carbon atoms underneath the oxygen. We find that a free standing UGO monolayer exhibits antiferroelectric switchable polarization. A UGO monolayer can be obtained as an intermediate product during the chemical exfoliation process of graphene. Interestingly, despite its dimensionality, our estimated polarization in a UGO monolayer is comparable to that in bulk ferroelectric materials (e.g., ferroelectric polymers). Our calculations could help realize antiferroelectric switchable polarization in 2D materials, which could find various potential applications in nanoscale devices such as sensors, actuators, and capacitors with high energy-storage density. PMID:27401944

  12. Design for an optical cw atom laser

    PubMed Central

    Ashkin, Arthur

    2004-01-01

    A new type of optical cw atom laser design is proposed that should operate at high intensity and high coherence and possibly record low temperatures. It is based on an “optical-shepherd” technique, in which far-off-resonance blue-detuned swept sheet laser beams are used to make new types of high-density traps, atom waveguides, and other components for achieving very efficient Bose–Einstein condensation and cw atom laser operation. A shepherd-enhanced trap is proposed that should be superior to conventional magneto-optic traps for the initial collection of molasses-cooled atoms. A type of dark-spot optical trap is devised that can cool large numbers of atoms to polarization-gradient temperatures at densities limited only by three-body collisional loss. A scheme is designed to use shepherd beams to capture and recycle essentially all of the escaped atoms in evaporative cooling, thereby increasing the condensate output by several orders of magnitude. Condensate atoms are stored in a shepherd trap, protected from absorbing light, under effectively zero-gravity conditions, and coupled out directly into an optical waveguide. Many experiments and devices may be possible with this cw atom laser. PMID:15302937

  13. Light scattering from dense cold atomic media

    NASA Astrophysics Data System (ADS)

    Zhu, Bihui; Cooper, John; Ye, Jun; Rey, Ana Maria

    2016-08-01

    We theoretically study the propagation of light through a cold atomic medium, where the effects of motion, laser intensity, atomic density, and polarization can all modify the properties of the scattered light. We present two different microscopic models: the "coherent dipole model" and the "random-walk model", both suitable for modeling recent experimental work done in large atomic arrays in the low-light-intensity regime. We use them to compute relevant observables such as the linewidth, peak intensity, and line center of the emitted light. We further develop generalized models that explicitly take into account atomic motion. Those are relevant for hotter atoms and beyond the low-intensity regime. We show that atomic motion can lead to drastic dephasing and to a reduction of collective effects, together with a distortion of the line shape. Our results are applicable to model a full gamut of quantum systems that rely on atom-light interactions, including atomic clocks, quantum simulators, and nanophotonic systems.

  14. Polarization and polarization fatigue in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng

    This thesis addresses some fundamental issues in ferroelectricity and its applications through a computational and experimental effort. It focuses on a variety of perovskite-type ferroelectric oxides and investigates the physical basis for spontaneous polarization, domain wall dynamics, and texture development in thin film applications. The dipole-dipole interactions between ionic species in perovskite-type materials have been calculated to determine the local field and the lattice instability. Different ferroelectric and anti-ferroelectric polarization transitions can be realized by taking into account the structure distortion of the parent perovskites. We find the local field is enhanced by short range disorder and its nature varies from disorder to disorder, causing polarization transitions in non-(100) directions. The molecular field theory has also been extended to layered perovskites, which favors in-plane polarization over c-polarization. These theoretical predictions are in agreement with the experimental observations of various perovskites and layered perovskites in both single crystal and thin film forms. Domain switching in PZT has been studied by probing the frequency dependency of polarization hysteresis. A picture of thermally activated domain wall movement is established from the frequency spectra of coercive field. The field dependence of domain wall bulging and the nature of the binding between pinning obstacles and the walls are inferred from such a study. Consistent with this picture, polarization fatigue can be defined as a process of increasing the resistance from pinning defects to domain wall motion. The chemical species that act as pinning defects have been identified through model experiments that control carrier injection, electrode interfaces, and film compositions. Based on these observations, a methodology is proposed to evaluate and predict the fatigue damage of both PZT and layered perovskite thin films. Processing of layered

  15. Coherent Control of Collective Atomic Spins

    NASA Astrophysics Data System (ADS)

    Trail, Collin M.

    2011-12-01

    In this thesis I explore the use of collective spin angular momentum as a platform for quantum information processing. In the limit of a large number of atoms, the collective variables of atomic systems have a natural connection to the bosonic algebra of light (known as the Holstein-Primakoff or HP approximation) where components of the collective spin angular momentum effectively act as quadratures, making them natural systems for coupling to light. I have sought to improve previous schemes for the spin squeezing of atomic ensembles, such as the proposal of Takeuchi et. al. based on coherent quantum feedback [39]. In this scheme a beam of linearly polarized light passes through the atomic ensemble (prepared in a coherent state), coupling to the atoms through a state-dependent index of refraction (the Faraday effect). The light is then passed through a wave-plate and reflected back through the atoms for a second pass. This double-pass scheme leads to an effective nonlinearity as the atomic fluctuations are mapped onto the light on the first pass and then back on to the atoms in the second pass. The light acts as a bus coupling each atom to each of the others. This nonlinear interaction forms a shearing of the atomic coherent state that results in squeezing. The light is entangled to the atoms through these interactions, and remains entangled as it escapes the system. This leads to decoherence of the atoms as the light is lost to the environment, reducing the amount of spin squeezing achieved. The first step towards improving the double-pass scheme was to add a quantum eraser step in which the light is disentangled from the squeezed atoms. By first measuring one quadrature of the light, and then performing a measurement-dependent rotation on the atomic ensemble, it is possible to decouple the atoms and light so that the loss of the light does not reduce the atomic squeezing. This results in an improvement of the rate of atomic spin squeezing. A complete model

  16. Parallel Polarization State Generation

    PubMed Central

    She, Alan; Capasso, Federico

    2016-01-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security. PMID:27184813

  17. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  18. Polarization of clouds

    NASA Astrophysics Data System (ADS)

    Goloub, Philippe; Herman, Maurice; Parol, Frederic

    1995-12-01

    This paper reports the main results concerning polarization by clouds derived from POLDER (polarization and directionality of earth's reflectances) airborne version. These results tend to confirm the high information content in the polarization (phase, altimetry). The preliminary results of EUCREX'94 (European Cloud Radiation Experiment) evidenced the drastically different polarized signatures for ice crystals and water droplets. Here we report systematic and statistically significative observations over the whole EUCREX data set. The results show that the cirrus exhibit their own signature. Preliminary observations performed during CLEOPATRA'91 (Cloud Experiment Ober Pfaffenhofen And Transport) and EUCREX'94 campaigns have shown the feasibility of cloud altimetry using spectral information (443 nm and 865 nm) of the polarized light over liquid water droplets clouds. Altimetry technique has been generalized on ASTEX-SOFIA'92 and EUCREX'94 data sets. All these results are presented and discussed in this paper.

  19. Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37K

    NASA Astrophysics Data System (ADS)

    Fenker, B.; Behr, J. A.; Melconian, D.; Anderson, R. M. A.; Anholm, M.; Ashery, D.; Behling, R. S.; Cohen, I.; Craiciu, I.; Donohue, J. M.; Farfan, C.; Friesen, D.; Gorelov, A.; McNeil, J.; Mehlman, M.; Norton, H.; Olchanski, K.; Smale, S.; Thériault, O.; Vantyghem, A. N.; Warner, C. L.

    2016-07-01

    We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in the {β }+-decay of the same atoms. These results will be used to test the V - A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of \\bar{P}=0.9913+/- 0.0009, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has 0.2 % statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to \\lt 0.1 % , allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.

  20. Atomic environment energies in proteins defined from statistics of accessible and contact surface areas.

    PubMed

    Delarue, M; Koehl, P

    1995-06-01

    Atomic contact potentials are derived by statistical analysis of atomic surface contact areas versus atom type in a database of non-homologous protein structures. The atomic environment is characterized by the surface area accessible to solvent and the surface of contacts with polar and non-polar atoms. Four types of atoms are considered, namely neutral polar atoms from protein backbones and from protein side-chains, non-polar atoms and charged atoms. Potential energies delta Ej(E) are defined from the preference for an atom of type j to be in a given environment E compared to the expected value if everything was random; Boltzmann's law is then used to transform these preferences into energies. These new potentials very clearly discriminate misfolded from correct structural models. The performance of these potentials are critically assessed by monitoring the recognition of the native fold among a large number of alternative structural folding types (the hide-and-seek procedure), as well as by testing if the native sequence can be recovered from a large number of randomly shuffled sequences for a given 3D fold (a procedure similar to the inverse folding problem). We suggest that these potentials reflect the atomic short range non-local interactions in proteins. To characterise atomic solvation alone, similar potentials were derived as a function of the percentage of solvent-accessible area alone. These energies were found to agree reasonably well with the solvation formalism of Eisenberg and McLachlan.

  1. Intense, narrow atomic-clock resonances.

    PubMed

    Jau, Y-Y; Post, A B; Kuzma, N N; Braun, A M; Romalis, M V; Happer, W

    2004-03-19

    We present experimental and theoretical results showing that magnetic resonance transitions from the "end" sublevels of maximum or minimum spin in alkali-metal vapors are a promising alternative to the conventional 0-0 transition for small-size gas-cell atomic clocks. For these "end resonances," collisional spin-exchange broadening, which often dominates the linewidth of the 0-0 resonance, decreases with increasing spin polarization and vanishes for 100% polarization. The end resonances also have much stronger signals than the 0-0 resonance, and are readily detectable in cells with high buffer-gas pressure.

  2. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    PubMed

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  3. Onset of Ferrielectricity and the Hidden Nature of Nanoscale Polarization

    SciTech Connect

    Nunez, Matias

    2008-01-01

    Using calculations from first principles and the concept of layer polarization, we have elucidated the nanoscale organization and local polarization in ferroelectric thin films between metallic contacts. The profile of the local polarization for different film thicknesses unveils a peculiar spatial pattern of atomic layers with uncompensated dipoles in what was originally thought to be a ferroelectric domain. This effectively ferrielectric behavior is induced by the dominant roles of the interfaces at such reduced dimensionality and can be interpreted using a simple classical model where the latter are explicitly taken into account.

  4. Note: Electrode polarization of Galinstan electrodes for liquid impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mellor, Brett L.; Kellis, Nathan A.; Mazzeo, Brian A.

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  5. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    In order to infer the interplanetary sector polarity from polar geomagnetic field diurnal variations, measurements were carried out at Godhavn and Thule (Denmark) Geomagnetic Observatories. The inferred interplanetary sector polarity was compared with the polarity observed at the same time by Explorer 33 and 35 magnetometers. It is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar cap geomagnetic fields.

  6. Neutron Polarizers Based on Polarized 3He

    SciTech Connect

    William M. Snow

    2005-05-01

    The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest

  7. Magnetic exchange force microscopy with atomic resolution.

    PubMed

    Kaiser, Uwe; Schwarz, Alexander; Wiesendanger, Roland

    2007-03-29

    The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding of magnetism on the nanometre scale therefore calls for information on the arrangement of spins in real space and with atomic resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force microscopy can be used on any sample independent of its conductivity. In particular, magnetic force microscopy is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Magnetic exchange force microscopy has been proposed for overcoming this limitation: by using an atomic force microscope with a magnetic tip, it should be possible to detect the short-range magnetic exchange force between tip and sample spins. Here we show for a prototypical antiferromagnetic insulator, the (001) surface of nickel oxide, that magnetic exchange force microscopy can indeed reveal the arrangement of both surface atoms and their spins simultaneously. In contrast with previous attempts to implement this method, we use an external magnetic field to align the magnetic polarization at the tip apex so as to optimize the interaction between tip and sample spins. This allows us to observe the direct magnetic exchange coupling between the spins of the tip atom and sample atom that are closest to each other, and thereby demonstrate the potential of magnetic exchange force microscopy for investigations of inter-spin interactions at the atomic level.

  8. Simultaneous magneto-optical trapping of a boson-fermion mixture of metastable helium atoms.

    PubMed

    Stas, R J W; McNamara, J M; Hogervorst, W; Vassen, W

    2004-07-30

    We simultaneously confine fermionic metastable 3He atoms and bosonic metastable 4He atoms in a magneto-optical trap. The trapped clouds, containing up to 1.5 x 10(8) atoms of each isotope, are characterized by measuring ions and metastable helium atoms escaping from the trap. Optical pumping of 3He atoms to a nontrapped hyperfine state is investigated and it is shown that large atom numbers can be confined without additional repumping lasers. Unique possibilities for quantum degeneracy experiments with mixtures of spin-polarized metastable 3He and 4He atoms are indicated.

  9. Polarization at the SLC

    SciTech Connect

    Moffeit, K.C.

    1988-10-01

    The Stanford Linear collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z/sup 0/ mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Moller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. 8 refs., 16 figs., 1 tab.

  10. Compton Polarization with Nustar

    NASA Astrophysics Data System (ADS)

    Lotti, Simone; Natalucci, Lorenzo; Harrison, Fiona A.; Madsen, Kristin; Perri, Matteo; Puccetti, Simonetta

    In this study we assess the NuSTAR capabilities to detect polarized signals in the Compton regime, through the use of Monte Carlo simulations and comparison with observational data. Both NuSTAR focal plane detectors are equipped with high resolution pixilated CZT arrays, sensitive in the energy range 2.5-80 keV. These units have intrinsic polarization capabilities due to their high quality factor, very low background and scattering angles of ~90°, which is ideal for incident photon energies below 100 keV. However the sensitivity is limited by the very low efficiency of the CZT for Compton interactions and by intrinsic readout systematics, such as charge sharing between pixels. An additional source of degradation is the incompleteness of double events information in the science telemetry. We estimated the Minimum Detectable Polarization of cosmic sources as a function of intensity, and the results obtained were validated through the comparison with the first actual data from the Crab Nebula and Cygnus X-1. We also evaluated the count rate and the background expected for polarization measurements, comparing our estimates with the data measured in flight. Our simulations reproduce well the actual NuSTAR data, showing that the focal plane detectors should be able to detect polarization from highly polarized sources like the Crab and other potential bright sources, dominated by synchrotron and/or SSC emission. The background for polarization measurements was found to be negligible.

  11. Polarization Control of VCSELs

    NASA Astrophysics Data System (ADS)

    Ostermann, Johannes Michael; Michalzik, Rainer

    In most types of VCSELs, the light output polarization is inherently unstable. While, in case of single-mode oscillation, the emitted light is mainly linearly polarized, its orientation is not well defined. This is because both the resonator and the gain medium are quasi isotropic in the plane of the active layers. Since a stable polarization is required for almost all sensing and some datacom applications, extensive and in-depth investigations have been undertaken during the last twenty years in order to stabilize the polarization of VCSELs without affecting their favorable operation parameters. Polarization control of VCSELs can be achieved by introducing a polarization-dependent gain, an asymmetric resonator, or mirrors with a polarization-dependent reflectivity. It has turned out that the last approach is most promising. It can be realized by incorporating a shallow surface grating in the upper mirror of a top-emitting VCSEL. Several million grating VCSELs are in reliable operation meanwhile, mainly in optical computer mice.

  12. Polarization at the SLC

    NASA Astrophysics Data System (ADS)

    Moffeit, Kenneth C.

    1989-05-01

    The Stanford Linear Collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z0 mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Mo/ller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses.

  13. GUIDE FOR POLARIZED NEUTRONS

    DOEpatents

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  14. Polarized noble gas MRI

    SciTech Connect

    Brookeman, James R.; Mugler, John P. III; Lange, Eduard E. de; Knight-Scott, Jack; Maier, Therese; Bogorad, Paul; Driehuys, Bastiaan; Cates, Gordon; Happer, William; Daniel, Thomas M.; Truwit, Jonathon D.

    1998-01-20

    The development of convenient methods to polarize liter quantities of the noble gases helium-3 and xenon-129 has provided the opportunity for a new MRI method to visualize the internal air spaces of the human lung. These spaces are usually poorly seen with hydrogen-based MRI, because of the limited water content of the lung and the low thermal polarization of the water protons achieved in conventional magnets. In addition, xenon, which has a relatively high solubility and a sufficiently persistent polarization level in blood and biological tissue, offers the prospect of providing perfusion images of the lung, brain and other organs.

  15. North Polar Dunes

    NASA Technical Reports Server (NTRS)

    2006-01-01

    23 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark sand dunes in the north polar region of Mars. Surrounding much of the north polar ice cap are fields of sand dunes. In this case, the strongest winds responsible for the dunes blew off the polar cap (not seen here), from the north-northwest (upper left).

    Location near: 76.5oN, 63.7oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  16. ATOMIC BEAM STUDIES IN THE RHIC H-JET POLARIMETER.

    SciTech Connect

    MAKDISI,Y.; ZELENSKI,A.; GRAHAM,D.; KOKHANOVSKI,S.; MAHLER,G.; NASS,A.; RITTER,J.; ZUBETS,V.; ET AL.

    2005-01-28

    The results of atomic beam production studies are presented. Improved cooling of the atoms before jet formation in the dissociator cold nozzle apparently reduces the atomic beam velocity spread and improves beam focusing conditions. A carefully designed sextupole separating (and focusing) magnet system takes advantage of the high brightness source. As a result a record beam intensity of a 12.4 {center_dot} 10{sup 16} atoms/s was obtained within 10 mm acceptance at the collision point. The results of the polarization dilution factor measurements (by the hydrogen molecules at the collision point) are also presented.

  17. Ultracold-Atom Accelerometers

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1995-01-01

    Proposed class of accelerometers and related motion sensors based on use of ultracold atoms as inertial components of motion transducers. Ultracold atoms supplant spring-and-mass components of older accelerometers. As used here, "ultracold atoms" means atoms with kinetic energies equivalent to temperatures equal to or less than 20 mK. Acclerometers essentially frictionless. Primary advantage high sensitivity.

  18. Polarization effects in silver delafossite systems

    NASA Astrophysics Data System (ADS)

    Panapitiya, Gihan; Lewis, James P.

    Delafossites are a promising class of materials which has applications in catalysis and optoelectronic devices. Even though much work has been carried out on the cuprate family of delafossites, little is known about the structural and electronic properties of it's silver counterpart. In this work, we present a computational study for two delafossite oxides of the form AgB1 - x FexO2 (For B = Al,Ga). A large number of structures are studied by varying the Fe alloying percentage(x) from 0 to 5 and by choosing the impurity sites randomly. We find that the local structural changes occurring at the vicinity of Fe atoms in these two systems have opposite trends with regard to the O-O distance. The reason for this difference in the trends is identified as the polarization effects on the inter-atomic distances caused by the displacements in O atoms resulting from the incorporation of Fe in sites, previously occupied by either Al or Ga. We believe that these effects are mediated by the differences in the atomic radii of Fe, Al and Ga. Higher alloying levels coupled with nearest neighbor Fe atoms can intensify these distortions in the structure creating deformations in the O-Ag-O bonds, which are directly related to the formation of the conduction band edge in these systems.

  19. Polar Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Schulteis, A. C.

    1979-01-01

    The present and projected benefits of the polar regions were reviewed and then translated into information needs in order to support the array of polar activities anticipated. These needs included measurement sensitivities for polar environmental data (ice/snow, atmosphere, and ocean data for integrated support) and the processing and delivery requirements which determine the effectiveness of environmental services. An assessment was made of how well electromagnetic signals can be converted into polar environmental information. The array of sensor developments in process or proposed were also evaluated as to the spectral diversity, aperture sizes, and swathing capabilities available to provide these measurements from spacecraft, aircraft, or in situ platforms. Global coverage and local coverage densification options were studied in terms of alternative spacecraft trajectories and aircraft flight paths.

  20. Mercury's South Polar Region

    NASA Video Gallery

    This animation shows 89 wide-angle camera (WAC) images of Mercury’s south polar region acquired by the Mercury Dual Imaging System (MDIS) over one complete Mercury solar day (176 Earth days). Thi...

  1. EDITORIAL: Polarization Optics

    NASA Astrophysics Data System (ADS)

    Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.

    2004-03-01

    This special issue on Polarization Optics contains one review article and 23 research papers, many of which are based on presentations at the International Commission for Optics Topical Meeting on Polarization Optics, held in Polvijärvi, Finland, between 30 June and 3 July 2003. While this issue should not in any sense be considered as a `proceedings' of this meeting, the possibility of submitting papers to it was widely advertised during the meeting, which was attended by a large fraction of prominent scientists in the field of polarization optics. Thus the quality of papers in this special issue is high. In announcing both the meeting and this special issue, we emphasized that the concept of `polarization optics' should be understood in a wide sense. In fact, all contributions dealing with the vectorial nature of light were welcome. As a result, the papers included here cover a wide range of different aspects of linear and nonlinear polarization optics. Both theoretical and experimental features are discussed. We are pleased to see that the conference and this special issue both reflect the wide diversity of important and novel polarization phenomena in optics. The papers in this special issue, and other recently published works, demonstrate that even though polarization is a fundamental property of electromagnetic fields, interest in it is rapidly increasing. The fundamental relations between partial coherence and partial polarization are currently under vigorous research in electromagnetic coherence theory. In diffractive optics it has been found that the exploitation of the vectorial nature of light can be of great benefit. Fabrication of sophisticated, spatially variable polarization-control elements is becoming possible with the aid of nanolithography. Polarization singularities and the interplay of bulk properties and topology in nanoscale systems have created much enthusiasm. In nonlinear optics, the second harmonic waves generated on reflection and

  2. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  3. Polar Warming Drivers

    NASA Astrophysics Data System (ADS)

    McDunn, T. L.; Bougher, S. W.; Mischna, M. A.; Murphy, J. R.

    2012-12-01

    Polar warming is a dynamically induced temperature enhancement over mid-to-high latitudes that results in a reversed (poleward) meridional temperature gradient. This phenomenon was recently characterized over the 40-90 km altitude region [1] based on nearly three martian years of Mars Climate Sounder observations [2, 3]. Here we investigate which forcing mechanisms affect the magnitude and distribution of the observed polar warming by conducting simulations with the Mars Weather Research and Forecasting General Circulation Model [4, 5]. We present simulations confirming the influence topography [6] and dust loading [e.g., 7] have upon polar warming. We then present simulations illustrating the modulating influence gravity wave momentum deposition exerts upon polar warming, consistent with previous modeling studies [e.g., 8]. The results of this investigation suggest the magnitude and distribution of polar warming in the martian middle atmosphere is modified by gravity wave activity and that the characteristics of the gravity waves that most significantly affect polar warming vary with season. References: [1] McDunn, et al., 2012 (JGR), [2]Kleinböhl, et al., 2009 (JGR), [3] Kleinböhl, et al., 2011 (JQSRT), [4] Richardson, et al., 2007 (JGR), [5] Mischna, et al., 2011 (Planet. Space Sci.), [6] Richardson and Wilson, 2002 (Nature), [7] Haberle, et al., 1982 (Icarus), [8] Barnes, 1990 (JGR).

  4. Polarization Imaging Apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin K.; Chen, Qiushui

    2010-01-01

    A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

  5. Polarization properties of linearly polarized parabolic scaling Bessel beams

    NASA Astrophysics Data System (ADS)

    Guo, Mengwen; Zhao, Daomu

    2016-10-01

    The intensity profiles for the dominant polarization, cross polarization, and longitudinal components of modified parabolic scaling Bessel beams with linear polarization are investigated theoretically. The transverse intensity distributions of the three electric components are intimately connected to the topological charge. In particular, the intensity patterns of the cross polarization and longitudinal components near the apodization plane reflect the sign of the topological charge.

  6. Design and Development of a Microscopic Model for Polarization

    ERIC Educational Resources Information Center

    Petridou, E.; Psillos, D.; Hatzikraniotis, E.; Viiri, J.

    2009-01-01

    As research shows that the knowledge and use of models and modelling by teachers is limited, particularly for predicting phenomena, we developed and applied a sequence of three representations of a simulated model focusing on polarization and specifically showing the behaviour of an atom, and forces exerted on a dipole and an insulator, when a…

  7. Collisional Properties of a Polarized Fermi Gas with Resonant Interactions

    SciTech Connect

    Bruun, G. M.; Recati, A.; Stringari, S.; Pethick, C. J.; Smith, H.

    2008-06-20

    Highly polarized mixtures of atomic Fermi gases constitute a novel Fermi liquid. We demonstrate how information on thermodynamic properties may be used to calculate quasiparticle scattering amplitudes even when the interaction is resonant and apply the results to evaluate the damping of the spin dipole mode. We estimate that under current experimental conditions the mode would be intermediate between the hydrodynamic and collisionless limits.

  8. Sub-kilohertz laser linewidth narrowing using polarization spectroscopy.

    PubMed

    Torrance, Joshua S; Sparkes, Ben M; Turner, Lincoln D; Scholten, Robert E

    2016-05-30

    We identify several beneficial characteristics of polarization spectroscopy as an absolute atomic reference for frequency stabilization of lasers, and demonstrate sub-kilohertz laser spectral linewidth narrowing using polarization spectroscopy with high-bandwidth feedback. Polarization spectroscopy provides a highly dispersive velocity-selective absolute atomic reference based on frequency-dependent birefringence in an optically pumped atomic gas. The pumping process leads to dominance of the primary closed transition, suppressing closely-spaced subsidiary resonances which reduce the effective capture range for conventional atomic references. The locking signal is based on subtraction of two orthogonal polarization signals, reducing the effect of laser intensity noise to the shot noise limit. We measure noise-limited servo bandwidth comparable to that of a high-finesse optical cavity without the frequency limit or complexity imposed by optical modulation normally associated with high bandwidth laser frequency stabilization. We demonstrate narrowing to 600±100 Hz laser linewidth using the beatnote between two similarly locked external cavity diode lasers. PMID:27410068

  9. Rectilinear lattices of polarization vortices with various spatial polarization distributions.

    PubMed

    Fu, Shiyao; Zhang, Shikun; Wang, Tonglu; Gao, Chunqing

    2016-08-01

    In this paper, we propose a type of rectilinear lattices of polarization vortices, each spot in which has mutually independent, and controllable spatial polarization distributions. The lattices are generated by two holograms under special design. In the experiment, the holograms are encoded on two spatial light modulators, and the results fit very well with theory. Our scheme makes it possible to generate multiple polarization vortices with various polarization distributions simultaneously, for instance, radially and azimuthally polarized beams, and can be used in the domains as polarization-based data transmission system, optical manufacture, polarization detection and so on. PMID:27505812

  10. Studies on Beam Formation in an Atomic Beam Source

    SciTech Connect

    Nass, A.; Steffens, E.; Stancari, M.

    2009-08-04

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC)[2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  11. Polarized Continuum Radiation from Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrington, J. Patrick

    2015-10-01

    Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.

  12. Microwave electric field sensing with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Stack, Daniel T.; Kunz, Paul D.; Meyer, David H.; Solmeyer, Neal

    2016-05-01

    Atoms form the basis of precise measurement for many quantities (time, acceleration, rotation, magnetic field, etc.). Measurements of microwave frequency electric fields by traditional methods (i.e. engineered antennas) have limited sensitivity and can be difficult to calibrate properly. Highly-excited (Rydberg) neutral atoms have very large electric-dipole moments and many dipole allowed transitions in the range of 1 - 500 GHz. It is possible to sensitively probe the electric field in this range using the combination of two quantum interference phenomena: electromagnetically induced transparency and the Autler-Townes effect. This technique allows for very sensitive field amplitude, polarization, and sub-wavelength imaging measurements. These quantities can be extracted by measuring properties of a probe laser beam as it passes through a warm rubidium vapor cell. Thus far, Rydberg microwave electrometry has relied upon the absorption of the probe laser. We report on our use of polarization rotation, which corresponds to the real part of the susceptibility, for measuring the properties of microwave frequency electric fields. Our simulations show that when a magnetic field is present and directed along the optical propagation direction a polarization rotation signal exists and can be used for microwave electrometry. One central advantage in using the polarization rotation signal rather than the absorption signal is that common mode laser noise is naturally eliminated leading to a potentially dramatic increase in signal-to-noise ratio.

  13. Surface structures of polar and non-polar metal oxides

    NASA Astrophysics Data System (ADS)

    Chamberlin, Sara E.

    Metal oxides have long been a challenge to surface science since many traditional surface techniques are often affected by their insulating nature. In particular, high current electron beams can cause charging effects in addition to potentially desorbing surface species and damaging the surface. The development of a low current, low energy electron diffraction (LEED) system has allowed us to investigate metal oxide surfaces while significantly limiting the above mentioned complications. This low current LEED system has been used to perform a structural LEED-IV study of the reconstructed TiO2(011)-(2x1) surface. This surface is known to experience significant oxygen desorption when exposed to high current electron beams. The low current LEED system was crucial to maintain confidence in the structure found, which generally agreed with recently published models, but did not confirm one key feature. The oxygen atoms at the surface were not found to be asymmetrically bonded, which has been thought to be the cause of this surface's enhanced photocatalytic activity. We have also used the low current LEED system to investigate the polar oxide surfaces of ZnO(000 1¯) and MgO(111)-(✓3x✓3)R30°. For Zn0(000 1¯) LEED-IV structural study was combined with Density Functional Theory (DFT) calculations to investigate the impact of hydrogen on the surface. Our results support a disordered, fractional coverage of hydrogen terminating the surface. MgO(111)-(✓3x✓3)R30° has proven to be a challenging reconstructed surface. Both LEED-IV and surface x-ray diffraction (SXRD) find that previously proposed models for the surface are not a good fit to the data, so other models have been explored. The SXRD data in particular suggest that the reconstruction is more than one atomic layer deep.

  14. Polarized nuclear target based on parahydrogen induced polarization

    NASA Astrophysics Data System (ADS)

    Budker, D.; Ledbetter, M. P.; Appelt, S.; Bouchard, L. S.; Wojtsekhowski, B.

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast (˜100 Hz) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  15. Polarized nuclear target based on parahydrogen induced polarization

    SciTech Connect

    D. Budker, M.P. Ledbetter, S. Appelt, L.S. Bouchard, B. Wojtsekhowski

    2012-12-01

    We discuss a novel concept of a polarized nuclear target for accelerator fixed-target scattering experiments, which is based on parahydrogen induced polarization (PHIP). One may be able to reach a 33% free-proton polarization in the ethane molecule. The potential advantages of such a target include operation at zero magnetic field, fast ({approx}100 HZ) polarization oscillation (akin to polarization reversal), and operation with large intensity of an electron beam.

  16. Photonic, Electronic and Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.

    2006-11-01

    Plenary. Electron collisions - past, present and future / J. W. McConkey. Collisions of slow highly charged ions with surfaces / J. Burgdörfer ... [et al.]. Atomic collisions studied with "reaction-microscopes" / R. Moshammer ... [et al.]. Rydberg atoms: a microscale laboratory for studying electron-molecule tnteractions / F. B. Dunning -- Collisions involvintg photons. Quantum control of photochemical reaction dynamics and molecular functions / M. Yamaki ... [et al.]. Manipulating and viewing Rydberg wavepackets / R. R. Jones. Angle-resolved photoelectrons as a probe of strong-field interactions / M. Vrakking. Ultracold Rydberg atoms in a structured environment / I. C. H. Liu and J. M. Rost. Synchrotron-radiation-based recoil ion momentum spectroscopy of laser cooled and trapped cesium atoms / L. H. Coutinho. Reconstruction of attosecond pulse trains / Y. Mairesse ... [et al.]. Selective excitation of metastable atomic states by Femto- and attosecond laser pulses / A. D. Kondorskiy. Accurate calculations of triple differential cross sections for double photoionization of the hygrogen molecule / W. Vanroose ... [et al.]. Double and triple photoionization of Li and Be / J. Colgan, M. S. Pindzola and F. Robicheaux. Few/many body dynamics in strong laser fields / J. Zanghellini and T. Brabec. Rescattering-induced effects in electron-atom scattering in the presence of a circularly polarized laser field / A. V. Flegel ... [et al.]. Multidimensional photoelectron spectroscopy / P. Lablanquie ... [et al.]. Few photon and strongly driven transitions in the XUV and beyond / P. Lambropoulos, L. A. A. Nikolopoulos and S. I. Themelis. Ionization dynamics of atomic clusters in intense laser pulses / U. Saalmann and J. M. Rost. On the second order autocorrelation of an XUV attosecond pulse train / E. P. Benis ... [et al.]. Evidence for rescattering in molecular dissociation / I. D. Williams ... [et al.]. Photoionizing ions using synchrotron radiation / R. Phaneuf. Photo double

  17. X-ray line polarization spectroscopy of Li-like satellite line spectra

    SciTech Connect

    Sherrill, Manolo Edgar; Abdallah, Joseph; Zhang, Honglin; Hakel, Peter; Mancini, Roberto C

    2008-01-01

    We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of plasma anisotropy due to anisotropy in the electron distribution function. We also discuss the utility and limitations of ur current theoretical approach and point out possible future improvements and directions.

  18. The Hanle and Zeeman Polarization Signals of the Solar Ca II 8542 Å Line

    NASA Astrophysics Data System (ADS)

    Štěpán, Jiří; Trujillo Bueno, Javier

    2016-07-01

    We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the joint action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.

  19. Polar low dynamics

    SciTech Connect

    Montgomery, M.T.; Farrell, B.F. )

    1992-12-15

    Polar lows are intense subsynoptic-scale cyclones that form over high-latitude oceans in association with deep cumulus convection and strong ambient baroclinicity. Recent observations indicate that polar lows are generally initiated by a nonaxisymmetric interaction between a surface disturbance and an upper-level mobile trough. Extant theories of polar low formation preclude study of such a process since they either constrain their models to be axisymmetric, or do not explicitly account for his transient interaction. In this work the physics of interacting upper- and lower-level potential vorticity structures is studied as an initial-value problem using a three-dimensional nonlinear geostrophic momentum model that incorporates moist processes and includes strong baroclinic dynamics. Model results illustrate the rapid formation of an intense small-scale cyclone whose structure is consistent with observations of mature polar lows. A conceptual model of polar low development is proposed. In the first stage of development, called induced self-development, a mobile upper trough initiates a rapid low-level spinup due to the enhanced omega response in a conditionally neutral baroclinic atmosphere. A secondary development follows, called diabatic destabilization, that is associated with the production of low-level potential vorticity by diabatic processes. Diabatic destabilization represents a simple mechanism for maintaining the intensity of polar lows until they reach land. In exceptional instances of negligible upper-level forcing, the latter may also describe the gradual intensification of small-scale cyclones in regions of sustained neutrality and surface baroclinicity. Ideas regarding polar low equilibration and prospects for a unified theory of arctic and midlatitude cyclones are discussed. 75 refs., 4 figs., 1 tab.

  20. Atoms, Light, and Lasers

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    Up to now, the spatial properties of quantum particles played no more than a secondary role: we only needed the de Broglie relation (1.4) which gives the quantum particles wavelength, and our discussion of the quantum properties of photons was based mainly on their polarization, which is an internal degree of freedom of the photon. The probability amplitudes which we used did not involve the positions or velocities of the particles, which are spatial, or external degrees of freedom. In the present chapter, we shall introduce spatial dependence by defining probability amplitudes a(ěc r) that are functions of the position ěc r. In full generality, a(ěc r) is a complex number, but we shall avoid this complication and discuss only cases where the probability amplitudes may be taken real. For simplicity, we also limit ourselves to particles propagating along a straight line, which we take as the Ox axis: x will define the position of the particle and the corresponding probability amplitude will be a function of x, a(x). In our discussion, we shall need to introduce the so-called potential well, where a particle travels back and forth between two points on the straight line. One important particular case is the infinite well, where the particle is confined between two infinitely high walls over which it cannot pass. This example is not at all academic, and we shall meet it again in Chapter 6 when explaining the design of a laser diode! Furthermore, it will allow us to introduce the notion of energy level, to write down the Heisenberg inequalities, to understand the interaction of a light wave with an atom and finally to explain schematically the principles of the laser.

  1. Applications of Elliptically Polarized, Few-Cycle Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.

    2016-05-01

    Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents two new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically polarized attosecond pulses. For double ionization of He by an intense elliptically polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse. For single ionization of He by two oppositely circularly polarized, time-delayed attosecond pulses we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness. Both of these effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the six-dimensional two-electron time-dependent Schrödinger equation for the case of elliptically polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes. This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646.

  2. Sequential Polarity-Reversing Circuit

    NASA Technical Reports Server (NTRS)

    Labaw, Clayton C.

    1994-01-01

    Proposed circuit reverses polarity of electric power supplied to bidirectional dc motor, reversible electro-mechanical actuator, or other device operating in direction depending on polarity. Circuit reverses polarity each time power turned on, without need for additional polarity-reversing or direction signals and circuitry to process them.

  3. Dynamic atomic contributions to infrared intensities of fundamental bands.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Bassi, Adalberto B M S; Bruns, Roy E

    2015-11-11

    Dynamic atomic intensity contributions to fundamental infrared intensities are defined as the scalar products of dipole moment derivative vectors for atomic displacements and the total dipole derivative vector of the normal mode. Intensities of functional group vibrations of the fluorochloromethanes can be estimated within 6.5 km mol(-1) by displacing only the functional group atoms rather than all the atoms in the molecules. The asymmetric CF2 stretching intensity, calculated to be 126.5 km mol(-1) higher than the symmetric one, is accounted for by an 81.7 km mol(-1) difference owing to the carbon atom displacement and 40.6 km mol(-1) for both fluorine displacements. Within the Quantum Theory of Atoms in Molecules (QTAIM) model differences in atomic polarizations are found to be the most important for explaining the difference in these carbon dynamic intensity contributions. Carbon atom displacements almost completely account for the differences in the symmetric and asymmetric CCl2 stretching intensities of dichloromethane, 103.9 of the total calculated value of 105.2 km mol(-1). Contrary to that found for the CF2 vibrations intramolecular charge transfer provoked by the carbon atom displacement almost exclusively explains this difference. The very similar intensity values of the symmetric and asymmetric CH2 stretching intensities in CH2F2 arise from nearly equal carbon and hydrogen atom contributions for these vibrations. All atomic contributions to the intensities for these vibrations in CH2Cl2 are very small. Sums of dynamic contributions of the individual intensities for all vibrational modes of the molecule are shown to be equal to mass weighted atomic effective charges that can be determined from atomic polar tensors evaluated from experimental infrared intensities and frequencies. Dynamic contributions for individual intensities can also be determined solely from experimental data.

  4. A thin-walled metallic hollow cathode as an atomizer for Zeeman atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Ganeyev, A. A.; Sholupov, S. E.

    1998-03-01

    A new kind of glow discharge atomizer, a thin-walled metallic hollow cathode (TMHC) combined with Zeeman atomic absorption spectrometry using high frequency modulated light polarization (ZAAS-HFM), is studied. A theoretically suggested, and experimentally confirmed, model of the atom confinement in the TMHC yields the appearance of the diffusion traps for atoms at both ends of the cathode, which increases the residence time of the analyte atoms in the analysis volume. The high atomization efficiency in the glow discharge atomizer (caused by the ionic-thermal mechanism of sputtering) and the high selectivity of ZAAS-HFM are demonstrated in the analysis of complex matrix samples such as whole blood and urine. The analytical system TMHC + ZAAS-HFM is characterized by low detection limits, which are comparable to those of graphite furnace atomic absorption spectrometry (GFAAS). Owing to its rather low average power consumption (30-50 W) the TMHC can be used in a portable and mobile spectrometer, and is therefore suitable for the in situ analysis of various sample materials.

  5. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  6. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor Fuel…

  7. Polar low monitoring

    NASA Astrophysics Data System (ADS)

    Bobylev, Leonid; Zabolotskikh, Elizaveta; Mitnik, Leonid

    2010-05-01

    Polar lows are intense mesoscale atmospheric low pressure weather systems, developing poleward of the main baroclinic zone and associated with high surface wind speeds. Small size and short lifetime, sparse in-situ observations in the regions of their development complicate polar low study. Our knowledge of polar lows and mesocyclones has come almost entirely during the period of satellite remote sensing since, by virtue of their small horizontal scale, it was rarely possible to analyse these lows on conventional weather charts using only the data from the synoptic observing network. However, the effects of intense polar lows have been felt by coastal communities and seafarers since the earliest times. These weather systems are thought to be responsible for the loss of many small vessels over the centuries, although the nature of the storms was not understood and their arrival could not be predicted. The actuality of the polar low research is stipulated by their high destructive power: they are a threat to such businesses as oil and gas exploration, fisheries and shipping. They could worsen because of global warming: a shrinking of sea ice around the North Pole, which thawed to its record minimum in the summer of 2007, is likely to give rise to more powerful storms that form only over open water and can cause hurricane-strength winds. Therefore, study of polar lows, their timely detection, tracking and forecasting represents a challenge for today meteorology. Satellite passive microwave data, starting from Special Sensor Microwave Imager (SSM/I) onboard Defense Meteorological Satellite Program (DMSP) satellite, remain invaluable source of regularly available remotely sensed data to study polar lows. The sounding in this spectral range has several advantages in comparison with observations in visible and infrared ranges and Synthetic Aperture Radar (SAR) data: independence on day time and clouds, regularity and high temporal resolution in Polar Regions. Satellite

  8. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  9. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-09-02

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms.

  10. Polarization twist in perovskite ferrielectrics.

    PubMed

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of 'polarization twist', which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  11. PHYSICS: Toward Atom Chips.

    PubMed

    Fortágh, József; Zimmermann, Claus

    2005-02-11

    As a novel approach for turning the peculiar features of quantum mechanics into practical devices, researchers are investigating the use of ultracold atomic clouds above microchips. Such "atom chips" may find use as sensitive probes for gravity, acceleration, rotation, and tiny magnetic forces. In their Perspective, Fortagh and Zimmermann discuss recent advances toward creating atom chips, in which current-carrying conductors in the chips create magnetic microtraps that confine the atomic clouds. Despite some intrinsic limits to the performance of atom chips, existing technologies are capable of producing atom chips, and many possibilities for their construction remain to be explored.

  12. Atom probe tomography

    SciTech Connect

    Miller, M.K.; Forbes, R.G.

    2009-06-15

    This introductory tutorial describes the technique of atom probe tomography for materials characterization at the atomic level. The evolution of the technique from the initial atom probe field ion microscope to today's state-of-the-art three dimensional atom probe is outlined. An introduction is presented on the basic physics behind the technique, the operation of the instrument, and the reconstruction of the three-dimensional data. The common methods for analyzing the three-dimensional atom probe data, including atom maps, isoconcentration surfaces, proximity histograms, maximum separation methods, and concentration frequency distributions, are described.

  13. Three axis vector atomic magnetometer utilizing polarimetric technique

    NASA Astrophysics Data System (ADS)

    Pradhan, Swarupananda

    2016-09-01

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity field gradient measurement as required for biomedical application.

  14. A Compact Polarization Imager

    NASA Technical Reports Server (NTRS)

    Thompson, Karl E.; Rust, David M.; Chen, Hua

    1995-01-01

    A new type of image detector has been designed to analyze the polarization of light simultaneously at all picture elements (pixels) in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a custom-designed charge-coupled device with signal-analysis circuitry, all integrated on a silicon chip. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Other applications include environmental monitoring and robot vision. Innovations in the IDID include two interleaved 512 x 1024 pixel imaging arrays (one for each polarization plane), large dynamic range (well depth of 10(exp 6) electrons per pixel), simultaneous readout and display of both images at 10(exp 6) pixels per second, and on-chip analog signal processing to produce polarization maps in real time. When used with a lithium niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can reveal tiny differences between simultaneous images at two wavelengths.

  15. POLARBEAR CMB Polarization Experiment

    NASA Astrophysics Data System (ADS)

    Nishino, H.; Ade, P.; Akiba, Y.; Anthony, A.; Arnold, K.; Barron, D.; Boettger, D.; Borrill, J.; Chapmann, S.; Chinone, Y.; Dobbs, M. A.; Errard, J.; Fabbian, G.; Feng, C.; Flanigan, D.; Fuller, G.; Ghribi, A.; Grainger, W.; Halverson, N.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Holzapfel, W. L.; Howard, J.; Hyland, P.; Inoue, Y.; Jaffe, A.; Jaehnig, G.; Kaneko, Y.; Katayama, N.; Keating, B.; Kermish, Z.; Kimura, N.; Kisner, T.; Lee, A. T.; Le Jeune, M.; Linder, E.; Lungu, M.; Matsuda, F.; Matsumura, T.; Miller, N. J.; Morii, H.; Moyerman, S.; Myers, M. J.; O'Brient, R.; Okamura, T.; Paar, H.; Peloton, J.; Quealy, E.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Shimizu, A.; Shimon, M.; Shimmin, C.; Sholl, M.; Siritanasak, P.; Spieler, H.; Stebor, N.; Steinbach, B.; Stompor, R.; Suzuki, A.; Suzuki, J.; Tanaka, K.; Tomaru, T.; Tucker, C.; Yadav, A.; Zahn, O.

    POLARBEAR is a ground-based experiment in the Atacama desert in hile, measuring the polarization of the Cosmic Microwave Background (CMB) radiation. One of the science goals of POLARBEAR is to detect the B-mode polarization pattern of the CMB produced by primordial gravitational waves from the epoch of inflation. The detection of the B-mode polarization provides strong evidence for inflationary cosmological models. POLARBEAR is expected to reach a sensitivity to the tensor-to-scalar ratio r = 0.025 at 95% confidence level, using the data from two years of observation. With a beam size of 3.5 arcminutes, POLARBEAR is also sensitive to B-mode polarization signals at small-angular scales produced by weak gravitational lensing of large-scale structure. POLARBEAR is expected to provide a constraint on the sum of neutrino masses because of their effect on the large-scale structure. POLARBEAR was deployed in late 2011 and started observing in early 2012 at 150 GHz with an array of 1,274 polarization sensitive antenna-coupled Transition Edge Sensor (TES) bolometers. The current status of the POLARBEAR experiment is reported.

  16. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  17. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  18. Artificial polarization components

    NASA Astrophysics Data System (ADS)

    Cescato, L.; Gluch, Ekkehard; Stork, Wilhelm; Streibl, Norbert

    1990-07-01

    High frequency surface relief structures are optically anisotropic and show interesting polarisation properties 1 . These properties can be used to produce polarizations components such as wave plates polarizers. polarizing beamsplitters etc. Our experimental results show that even gratings with relatively low spatial frequency ( periods A ) exhibit a strong phase retardation and can be used as quarter-wave plates. k INTRODUC11ON The artificial birefringence exhibited by ultrahigh frequency gratings of dielectric materials can be used to produce various polarization components2 . Such components have applications in integrated optics as well as in free space optics. In order to produce the high spatial frequencies complex processes such as electron-beam lithography and reactive ion etching are needed. We show in this paper that sinusoidal holographic gratings in photoresist exhibit also a strong phase ret even at relatively long periods. L EXPERIMENTAL MEASUREMENTS To obtain the phase retardation of a lower frequency ( period A ) grating a simple setup as used by Enger and 2 can be applied. In our case however there are three measurements necessary to obtain the phase retardation because transmission of the two perpendicularly polarized beams is different from each other. I GRATING PRODUCTION grating 2 3 4 5 6 7 8 9 period (pmj 0. 74 0. 74 0. 61 0. 54 0. 46 0. 32 0. 54 0. 54 0. 54 ne (sec) 60

  19. Metastability in spin-polarized Fermi gases.

    PubMed

    Liao, Y A; Revelle, M; Paprotta, T; Rittner, A S C; Li, Wenhui; Partridge, G B; Hulet, R G

    2011-09-30

    We study the role of particle transport and evaporation on the phase separation of an ultracold, spin-polarized atomic Fermi gas. We show that the previously observed deformation of the superfluid paired core is a result of evaporative depolarization of the superfluid due to a combination of enhanced evaporation at the center of the trap and the inhibition of spin transport at the normal-superfluid phase boundary. These factors contribute to a nonequilibrium jump in the chemical potentials at the phase boundary. Once formed, the deformed state is highly metastable, persisting for times of up to 2 s. PMID:22107209

  20. Imaging ambipolar two-dimensional carriers induced by the spontaneous electric polarization of a polar semiconductor BiTeI

    NASA Astrophysics Data System (ADS)

    Kohsaka, Y.; Kanou, M.; Takagi, H.; Hanaguri, T.; Sasagawa, T.

    2015-06-01

    Two-dimensional (2D) mobile carriers are a wellspring of quantum phenomena. Among various 2D-carrier systems, such as field effect transistors and heterostructures, polar materials hold a unique potential; the spontaneous electric polarization in the bulk could generate positive and negative 2D carriers at the surface. Although several experiments have shown ambipolar carriers at the surface of a polar semiconductor BiTeI, their origin is yet to be specified. Here we provide compelling experimental evidences that the ambipolar 2D carriers at the surface of BiTeI are induced by the spontaneous electric polarization. By imaging electron standing waves with spectroscopic imaging scanning tunneling microscopy, we find that positive or negative carriers with Rashba-type spin splitting emerge at the surface corresponding to the polar directions in the bulk. The electron densities at the surface are constant independently of those in the bulk, corroborating that the 2D carriers are induced by the spontaneous electric polarization. We also successfully image that lateral p -n junctions are formed along the boundaries of submicron-scale domains with opposite polar directions. Our study presents a means to endow nonvolatile, spin-polarized, and ambipolar 2D carriers as well as, without elaborate fabrication, lateral p -n junctions of those carriers at atomically sharp interfaces.

  1. Polarization analysis of optical systems

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1989-01-01

    For most optical systems it is typically assumed that the transmitted wavefront has uniform (or Gaussian) amplitude and constant polarization state. This is the default assumption of geometrical optics. This paper considers methods suitable for analyzing systems for which this assumption is not valid. Such methods of polarization analysis include polarization ray tracing and polarization aberration theory. Definitions of the basic classes of polarization phenomena and a review of the Jones calculus are included to form a basis for the discussion.

  2. Spontaneous emission of “polarized” V-type three-level atoms strongly coupled with an optical cavity

    NASA Astrophysics Data System (ADS)

    Xue, Yan-Li; Zhu, Shi-Deng; Li, Jia-Fang; Ding, Wei; Feng, Bao-Hua; Li, Zhi-Yuan

    2015-03-01

    Polarization, an intrinsic ingredient of photon, plays a critical role in its interaction with matter. A general polarization state can be an appropriate superposition of two basic polarization states, say, the vertical and horizontal linear polarized state. Here we study spontaneous emission of a V-type three-level atom (with two upper states close in energy level) strongly coupled with a single-mode damped optical cavity. By defining a general polarization state of atom as a specific superposition of the two upper quantum states, we can prepare atoms with linear polarization at arbitrary direction, left and right circular polarization, and left and right elliptical polarization, similar to photons. We find that the spontaneous emission of light from these “polarized” three-level atoms shows very different profiles of side and axis spectra. This means that the polarization state of three-level atoms can become an active ingredient to manipulate its interaction with light and control the quantum interference effect. Exploitation of the coherent superposition and interference of quantum states in “polarized” atoms would allow one to deeply explore new frontiers of light-matter interaction. Project supported by the National Basic Research Foundation of China (Grant No. 2011CB922002).

  3. Motion-induced magnetic resonance of Rb atoms in a periodic magnetostatic field.

    PubMed

    Hatakeyama, A; Enomoto, Y; Komaki, K; Yamazaki, Y

    2005-12-16

    We demonstrate that transitions between Zeeman-split sublevels of Rb atoms are resonantly induced by the motion of the atoms (velocity: approximately 100 m/s) in a periodic magnetostatic field (period: 1 mm) when the Zeeman splitting corresponds to the frequency of the magnetic field experienced by the moving atoms. A circularly polarized laser beam polarizes Rb atoms with a velocity selected using the Doppler effect and detects their magnetic resonance in a thin cell, to which the periodic field is applied with the arrays of parallel current-carrying wires.

  4. Magnetospheric polar cap

    NASA Astrophysics Data System (ADS)

    Akasofu, S. I.; Kan, J. R.

    Mount Denali (McKinley), the Alaska Range, and countless glaciers welcomed all 86 participants of the Chapman Conference on the Magnetospheric Polar Cap, which was held on the University of Alaska, Fairbanks campus (UAF), on August 6-9, 1984. The magnetospheric polar cap is the highest latitude region of the earth which is surrounded by the ring of auroras (the auroral oval). This particular region of the earth has become a focus of magnetospheric physicists during the last several years. This is because a number of upper atmospheric phenomena in the polar cap are found to be crucial in understanding the solar wind—magnetosphere interaction. The conference was opened by J. G. Roederer, who was followed by the UAF Chancellor, P. J. O'Rourke, who officially welcomed the participants.

  5. A lunar polar expedition

    NASA Technical Reports Server (NTRS)

    Dowling, Richard; Staehle, Robert L.; Svitek, Tomas

    1992-01-01

    Advanced exploration and development in harsh environments require mastery of basic human survival skill. Expeditions into the lethal climates of Earth's polar regions offer useful lessons for tommorrow's lunar pioneers. In Arctic and Antarctic exploration, 'wintering over' was a crucial milestone. The ability to establish a supply base and survive months of polar cold and darkness made extensive travel and exploration possible. Because of the possibility of near-constant solar illumination, the lunar polar regions, unlike Earth's may offer the most hospitable site for habitation. The World Space Foundation is examining a scenario for establishing a five-person expeditionary team on the lunar north pole for one year. This paper is a status report on a point design addressing site selection, transportation, power, and life support requirements.

  6. Polarized electron sources

    SciTech Connect

    Clendenin, J.E.

    1995-05-01

    Polarized electron sources for high energy accelerators took a significant step forward with the introduction of a new laser-driven photocathode source for the SLC in 1992. With an electron beam polarization of >80% and with {approximately}99% uptime during continuous operation, this source is a key factor in the success of the current SLC high-energy physics program. The SLC source performance is used to illustrate both the capabilities and the limitations of solid-state sources. The beam requirements for future colliders are similar to that of the SLC with the addition in most cases of multiple-bunch operation. A design for the next generation accelerator source that can improve the operational characteristics and at least minimize some of the inherent limitations of present sources is presented. Finally, the possibilities for producing highly polarized electron beams for high-duty-factor accelerators are discussed.

  7. South Polar Scarps

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-438, 31 July 2003

    The terrain of the south polar residual ice cap, made up mostly of frozen carbon dioxide, has come to be known by many as 'swiss cheese terrain,' because many areas of the cap resemble slices of swiss cheese. However, not all of the south polar cap looks like a tasty lunch food. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a series of curving scarps formed by erosion and sublimation of carbon dioxide from the south polar cap. This area is located near 86.3oS, 51.2oW. The image is illuminated by sunlight from the upper left; the area is about 1.5 km (0.9 mi) wide.

  8. North Polar Cap

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a 1.4 m/pixel (5 ft/pixel) view of a typical martian north polar ice cap texture. The surface is pitted and rough at the scale of several meters. The north polar residual cap of Mars consists mainly of water ice, while the south polar residual cap is mostly carbon dioxide. This picture is located near 85.2oN, 283.2oW. The image covers an area approximately 1 km wide by 1.4 km high (0.62 by 0.87 miles). Sunlight illuminates this scene from the lower left.

  9. North Polar Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    3 December 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an exposure of finely-detailed layers in the martian north polar region. The polar ice cap, which is made up of frozen water (whereas the south polar cap is mostly frozen carbon dioxide), is underlain by a thick sequence of layers. Some have speculated that these layers may record the history of changes in martian climate during the past few hundreds of millions of years. This picture is located near 86.0oN, 30.2oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  10. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  11. Estimating atomic sizes with Raman spectroscopy.

    PubMed

    Wang, Dingdi; Guo, Wenhao; Hu, Juanmei; Liu, Fang; Chen, Lisheng; Du, Shengwang; Tang, Zikang

    2013-01-01

    We demonstrate a technique to determine the Van der Waals radius of iodine atoms using Raman spectroscopy. The iodine diatomic molecules are diffused into the nano-scale channels of a zeolite single crystal. We found their polarized Raman spectroscopy, which corresponds to iodine molecule's vibrational motion along the direction of molecular axis, is significantly modified by the interaction between the iodine molecules and the rigid frame of the crystal's nano-channels. From the number of excitable vibration quantum states of the confined iodine molecules determined from Raman spectra and the size of the nano-channels, we estimate the iodine atomic radius to be 2.10±0.05 Å. It is the first time that atomic sizes, which are far beyond the optical diffraction limit, have be resolved optically using Raman spectroscopy with the help of nano-scale structures.

  12. POLARIZED NEUTRONS IN RHIC

    SciTech Connect

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  13. Size-dependent alternation of magnetoresistive properties in atomic chains.

    PubMed

    Durgun, E; Senger, R T; Mehrez, H; Sevinçli, H; Ciraci, S

    2006-09-28

    Spin-polarized electronic and transport properties of carbon atomic chains are investigated when they are capped with magnetic transition-metal (TM) atoms like Cr or Co. The magnetic ground state of the TM-C(n)-TM chains alternates between the ferromagnetic (F) and antiferromagnetic (AF) spin configurations as a function of n. In view of the nanoscale spintronic device applications the desirable AF state is obtained for only even-n chains with Cr; conversely only odd-n chains with Co have AF ground states. When connected to appropriate metallic electrodes these atomic chains display a strong spin-valve effect. Analysis of structural, electronic, and magnetic properties of these atomic chains, as well as the indirect exchange coupling of the TM atoms through non-magnetic carbon atoms are presented.

  14. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control.

  15. Microwave Frequency Polarizers

    NASA Technical Reports Server (NTRS)

    Ha, Vien The; Mirel, Paul; Kogut, Alan J.

    2013-01-01

    This article describes the fabrication and analysis of microwave frequency polarizing grids. The grids are designed to measure polarization from the cosmic microwave background. It is effective in the range of 500 to 1500 micron wavelength. It is cryogenic compatible and highly robust to high load impacts. Each grid is fabricated using an array of different assembly processes which vary in the types of tension mechanisms to the shape and size of the grids. We provide a comprehensive study on the analysis of the grids' wire heights, diameters, and spacing.

  16. Polarization encoded color camera.

    PubMed

    Schonbrun, Ethan; Möller, Guðfríður; Di Caprio, Giuseppe

    2014-03-15

    Digital cameras would be colorblind if they did not have pixelated color filters integrated into their image sensors. Integration of conventional fixed filters, however, comes at the expense of an inability to modify the camera's spectral properties. Instead, we demonstrate a micropolarizer-based camera that can reconfigure its spectral response. Color is encoded into a linear polarization state by a chiral dispersive element and then read out in a single exposure. The polarization encoded color camera is capable of capturing three-color images at wavelengths spanning the visible to the near infrared. PMID:24690806

  17. Linking ultracold polar molecules.

    PubMed

    Avdeenkov, A V; Bohn, John L

    2003-01-31

    We predict that pairs of polar molecules can be weakly bound together in an ultracold environment, provided that a dc electric field is present. The field that links the molecules together also strongly influences the basic properties of the resulting dimer, such as its binding energy and predissociation lifetime. Because of their long-range character, these dimers will be useful in disentangling cold collision dynamics of polar molecules. As an example, we estimate the microwave photoassociation yield for OH-OH cold collisions.

  18. Physics with Polarized Antiprotons

    SciTech Connect

    Lenisa, Paolo

    2008-04-30

    Polarized antiprotons will provide access to a wealth of double- (and single-) spin observables, thereby opening a window to physics uniquely accessible with the HESR at FAIR. This include a first direct measurement of the transversity distribution of the valence quarks in the proton and a first measurement of the moduli and phase of the time-like electric and magnetic form factors G{sub E,M} of the proton. Additional applications of a polarized antiproton beam can be forseen in hadron spectroscopy, and nucleon-antinucleon scattering.

  19. South Polar Variety

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a view of linear troughs and mesas formed in the frozen carbon dioxide of the martian south polar residual cap. This image, obtained in May 2005, is a reminder that not all of the south polar cap landscapes resemble 'swiss cheese.'

    Location near: 86.7oS, 24.8oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  20. Polar Ozone Losses

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Since the discovery of the Antarctic ozone hole, a great deal of attention has been focused on the polar regions to both identify the chemistry and physics of the large losses, and to provide an understanding of the future of polar ozone. In this review talk, I will discuss the secular trends of ozone in both the Antarctic and Arctic regions, and I will review some of the principal research results of the last few years. In particular, I will emphasize some of the results from the SOLVE-THESEO 2000 campaign that occurred over the course of the winter of 1999-2000.

  1. North Polar Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-334, 18 April 2003

    This composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle daily global images shows a north polar dust storm on March 7, 2003. Similar late summer storms occurred nearly every day from late February well into April 2003; these were also seen in late summer in 1999 and 2001. The white features at the top of the image are the water ice surfaces of the north polar residual cap. Sunlight illuminates the scene from the lower left.

  2. North Polar Layer Exposure

    NASA Technical Reports Server (NTRS)

    2004-01-01

    20 November 2004 Both the north and south polar ice caps overlie a thick accumulation of layered material. For more than three decades, these deposits have been assumed to consist of a mixture of dust and ice. This October 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the north polar layers exposed on a slope located near 79.1oN, 348.4oW. The image covers an area approximately 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  3. North Polar Scarp

    NASA Technical Reports Server (NTRS)

    2004-01-01

    3 March 2004 The north polar cap of Mars overlies a series of layered materials. The upper-most layers are light-toned and may include ice and perhaps dust. The lower layers may be less icy and contain some amount of dark sand. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an exposure of north polar layers located near 83.9oN, 237.9oW. This view covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  4. South Polar Cap

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows landforms created by sublimation processes on the south polar residual cap of Mars. The bulk of the ice in the south polar residual cap is frozen carbon dioxide.

    Location near: 86.6oS, 342.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  5. Femtosecond polarization pulse shaping.

    PubMed

    Brixner, T; Gerber, G

    2001-04-15

    We report computer-controlled femtosecond polarization pulse shaping where intensity, momentary frequency, and light polarization are varied as functions of time. For the first time to our knowledge, a pulse shaper is used to modulate the degree of ellipticity as well as the orientation of the elliptical principal axes within a single laser pulse by use of a 256-pixel two-layer liquid-crystal display inside a zero-dispersion compressor. Interferometric stability of the setup is not required. Complete pulse characterization is achieved by dual-channel spectral interferometry. This technology has a large range of applications, especially in the field of quantum control. PMID:18040384

  6. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  7. Resonance fluorescence from an atom in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  8. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  9. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  10. Atomizing nozzle and process

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  11. A 0.63 micrometers polarization maintaining optical fiber cable

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Kikuchi, Y.; Tamaki, Y.

    1986-11-01

    Polarization maintaining single mode optical fiber cable was developed with negligible small loss increase and high crosstalk for optical interferometric measuring system of JT-60 (Japan Atomic Energy Research Institute TOKAMAK-60). Optical interferometric measuring system is required for high precise non-contact measurement of distance or vibration. Polarization maintaining optical fiber enabled to measure them in extremely high electromagnetic field of JT-60. Developed cable is flame-resistant non-metallic type complex 16 fiber cable for 0.6 micron use, that has 8 polarization maintaining optical fibers (stress applying, called PANDA fiber) and 8 single mode optical fibers. This paper shows the experimental result and the possibility of manufacturing polarization maintaining single mode optical fiber cable for 0.63 micron use.

  12. Adaptive atom-optics in atom interferometry

    NASA Astrophysics Data System (ADS)

    Marable, M. L.; Savard, T. A.; Thomas, J. E.

    1997-02-01

    We suggest a general technique for creating virtual atom-optical elements which are adaptive. The shape and position of these elements is determined by the frequency distribution for optical fields which induce transitions in a high gradient potential. This adaptive method is demonstrated in an all-optical atom interferometer, by creating either a variable optical slit or a variable optical grating which is scanned across the atomic spatial patterns to measure the fringes. This method renders mechanical motion of the interferometer elements unnecessary.

  13. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  14. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  15. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  16. Phase-Controlled Polarization Modulators

    NASA Technical Reports Server (NTRS)

    Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.

    2012-01-01

    We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.

  17. Optical neutron polarizers

    SciTech Connect

    Hayter, J.B.

    1990-01-01

    A neutron wave will be refracted by an appropriately varying potential. Optical neutron polarizers use spatially varying, spin- dependent potentials to refract neutrons of opposite spin states into different directions, so that an unpolarized beam will be split into two beams of complementary polarization by such a device. This paper will concentrate on two methods of producing spin-dependent potentials which are particularly well-suited to polarizing cold neutron beams, namely thin-film structures and field-gradient techniques. Thin-film optical devices, such as supermirror multilayer structures, are usually designed to deviate only one spin-state, so that they offer the possibility of making insertion (transmission) polarizers. Very good supermirrors may now be designed and fabricated, but it is not always straightforward to design mirror-based devices which are useful in real (divergent beam) applications, and some practical configurations will be discussed. Field-gradient devices, which are usually based on multipolar magnets, have tended to be too expensive for general use, but this may change with new developments in superconductivity. Dipolar and hexapolar configurations will be considered, with emphasis on the focusing characteristics of the latter. 21 refs., 7 figs.

  18. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  19. Optical polarizer material

    DOEpatents

    Ebbers, Christopher A.

    1999-01-01

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.

  20. Optical polarizer material

    DOEpatents

    Ebbers, C.A.

    1999-08-31

    Several crystals have been identified which can be grown using standard single crystals growth techniques and which have a high birefringence. The identified crystals include Li.sub.2 CO.sub.3, LiNaCO.sub.3, LiKCO.sub.3, LiRbCO.sub.3 and LiCsCO.sub.3. The condition of high birefringence leads to their application as optical polarizer materials. In one embodiment of the invention, the crystal has the chemical formula LiK.sub.(1-w-x-y) Na.sub.(1-w-x-z) Rb.sub.(1-w-y-z) Cs.sub.(1-x-y-z) CO.sub.3, where w+x+y+z=1. In another embodiment, the crystalline material may be selected from a an alkali metal carbonate and a double salt of alkali metal carbonates, where the polarizer has a Wollaston configuration, a Glan-Thompson configuration or a Glan-Taylor configuration. A method of making an LiNaCO.sub.3 optical polarizer is described. A similar method is shown for making an LiKCO.sub.3 optical polarizer.