Sample records for polarized light reflection

  1. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, W.J.

    1983-06-30

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument.

  2. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  3. Polarization selecting optical element using a porro prism incorporating a thin film polarizer in a single element

    DOEpatents

    Hendrix, James Lee

    2001-05-08

    A Porro prism and a light polarizer are combined in a single optical element termed a Hendrix Prism. The design provides retro-reflection of incoming light of a predetermined polarization in a direction anti-parallel to the direction of light incidence, while reflecting undesired light, i.e., that having a polarization orthogonal to the predetermined polarization, from the surface of the light polarizer. The undesired light is reflected in a direction that does not interfere with the intended operation of the device in which the Hendrix Prism is installed yet provides feedback to the system in which it is used.

  4. Front lighted optical tooling method and apparatus

    DOEpatents

    Stone, William J.

    1985-06-18

    An optical tooling method and apparatus uses a front lighted shadowgraphic technique to enhance visual contrast of reflected light. The apparatus includes an optical assembly including a fiducial mark, such as cross hairs, reflecting polarized light with a first polarization, a polarizing element backing the fiducial mark and a reflective surface backing the polarizing element for reflecting polarized light bypassing the fiducial mark and traveling through the polarizing element. The light reflected by the reflecting surface is directed through a second pass of the polarizing element toward the frontal direction with a polarization differing from the polarization of the light reflected by the fiducial mark. When used as a tooling target, the optical assembly may be mounted directly to a reference surface or may be secured in a mounting, such as a magnetic mounting. The optical assembly may also be mounted in a plane defining structure and used as a spherometer in conjunction with an optical depth measuring instrument. A method of measuring a radius of curvature of an unknown surface includes positioning the spherometer on a surface between the surface and a depth measuring optical instrument. As the spherometer is frontally illuminated, the distance from the depth measuring instrument to the fiducial mark and the underlying surface are alternately measured and the difference in these measurements is used as the sagittal height to calculate a radius of curvature.

  5. Polarization-sensitive color in butterfly scales: polarization conversion from ridges with reflecting elements.

    PubMed

    Zhang, Ke; Tang, Yiwen; Meng, Jinsong; Wang, Ge; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-11-03

    Polarization-sensitive color originates from polarization-dependent reflection or transmission, exhibiting abundant light information, including intensity, spectral distribution, and polarization. A wide range of butterflies are physiologically sensitive to polarized light, but the origins of polarized signal have not been fully understood. Here we systematically investigate the colorful scales of six species of butterfly to reveal the physical origins of polarization-sensitive color. Microscopic optical images under crossed polarizers exhibit their polarization-sensitive characteristic, and micro-structural characterizations clarify their structural commonality. In the case of the structural scales that have deep ridges, the polarization-sensitive color related with scale azimuth is remarkable. Periodic ridges lead to the anisotropic effective refractive indices in the parallel and perpendicular grating orientations, which achieves form-birefringence, resulting in the phase difference of two different component polarized lights. Simulated results show that ridge structures with reflecting elements reflect and rotate the incident p-polarized light into s-polarized light. The dimensional parameters and shapes of grating greatly affect the polarization conversion process, and the triangular deep grating extends the outstanding polarization conversion effect from the sub-wavelength period to the period comparable to visible light wavelength. The parameters of ridge structures in butterfly scales have been optimized to fulfill the polarization-dependent reflection for secret communication. The structural and physical origin of polarization conversion provides a more comprehensive perspective on the creation of polarization-sensitive color in butterfly wing scales. These findings show great potential in anti-counterfeiting technology and advanced optical material design.

  6. Polarizing optics in a spider eye.

    PubMed

    Mueller, Kaspar P; Labhart, Thomas

    2010-05-01

    Many arthropods including insects and spiders exploit skylight polarization for navigation. One of the four eye pairs of the spider Drassodes cupreus is dedicated to detect skylight polarization. These eyes are equipped with a tapetum that strongly plane-polarizes reflected light. This effectively enhances the polarization-sensitivity of the photoreceptors, improving orientation performance. With a multidisciplinary approach, we demonstrate that D. cupreus exploits reflective elements also present in non-polarizing tapetal eyes of other species such as Agelena labyrinthica. By approximately orthogonal arrangement of two multilayer reflectors consisting of reflecting guanine platelets, the tapetum uses the mechanism of polarization by reflection for polarizing reflected light.

  7. Polarized organic light-emitting device on a flexible giant birefringent optical reflecting polarizer substrate.

    PubMed

    Park, Byoungchoo; Park, Chan Hyuk; Kim, Mina; Han, Mi-Young

    2009-06-08

    We present the results of a study of highly linear polarized light emissions from an Organic Light-Emitting Device (OLED) that consisted of a flexible Giant Birefringent Optical (GBO) multilayer polymer reflecting polarizer substrate. Luminous Electroluminescent (EL) emissions over 4,500 cd/m(2) were produced from the polarized OLED with high peak efficiencies in excess of 6 cd/A and 2 lm/W at relatively low operating voltages. The direction of polarization for the emitted EL light corresponded to the passing (ordinary) axis of the GBO-reflecting polarizer. Furthermore, the estimated polarization ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis could be as high as 25 when measured over the whole emitted luminance range.

  8. [Study of hyperspectral polarized reflectance of vegetation canopy at nadir viewing direction].

    PubMed

    Lŭ, Yun-Feng

    2013-04-01

    In the present study, corn canopy is the objective. Firstly the polarization of corn canopy was analyzed based on polarization reflection mechanism; then, the polarization of canopy was measured in different growth period at nadir before heading. The result proved the theoretical derivation that the light reflected from corn canopy is polarized, and found that in the total reflection the polarization light accounts for up to 10%. This shows that polarization measurement provides auxiliary information for remote sensing, but also illustrates that the use of the polarization information retrieval of atmospheric parameters should be considered when the surface polarization affects on it.

  9. The effect of geometric and electric constraints on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Mitov, Michel

    2008-08-01

    Polymer-stabilized cholesteric liquid crystals (PSCLCs) with a double-handed circularly polarized reflection band are fabricated. The geometric and electric constraints appear to be relevant parameters in obtaining a single-layer CLC structure with a clear-cut double-handed circularly polarized reflection band since light scattering phenomena can alter the reflection properties when the PSCLC is cooled from the elaboration temperature to the operating one. A compromise needs to be found between the LC molecule populations, which are bound to the polymer network due to strong surface effects or not. Besides, a monodomain texture is preserved if the PSCLC is subjected to an electric field at the same time as the thermal process intrinsic to the elaboration process. As a consequence, the light scattering is reduced and both kinds of circularly polarized reflected light beams are put in evidence. Related potential applications are smart reflective windows for the solar light management or reflective polarizer-free displays with higher brightness.

  10. Potential Sources of Polarized Light from a Plant Canopy

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Field measurements have demonstrated that sunlight polarized during a first surface reflection by shiny leaves dominates the optical polarization of the light reflected by shiny-leafed plant canopies having approximately spherical leaf angle probability density functions ("Leaf Angle Distributions" - LAD). Yet for other canopies - specifically those without shiny leaves and/or spherical LADs - potential sources of optically polarized light may not always be obvious. Here we identify possible sources of polarized light within those other canopies and speculate on the ecologically important information polarization measurements of those sources might contain.

  11. [Polarization Modeling and Analysis of Light Scattering Properties of Multilayer Films on Slightly Rough Substrate].

    PubMed

    Gao, Hui; Gao, Jun; Wang, Ling-mei; Wang, Chi

    2016-03-01

    To satisfy the demand of multilayer films on polarization detection, polarized bidirectional reflectance distribution function of multilayer films on slightly rough substrate is established on the basis of first-order vector perturbation theory and polarization transfer matrix. Due to the function, light scattering polarization properties are studied under multi-factor impacts of two typical targets-monolayer anti-reflection film and multilayer high-reflection films. The result shows that for monolayer anti-reflection film, observing positions have a great influence on the degree of polarization, for the left of the peak increased and right decreased compared with the substrate target. Film target and bare substrate can be distinguished by the degree of polarization in different observation angles. For multilayer high-reflection films, the degree of polarization is significantly associated with the number and optical thickness of layers at different wavelengths of incident light and scattering angles. With the increase of the layer number, the degree of polarization near the mirror reflection area decreases. It reveals that the calculated results coincide with the experimental data, which validates the correctness and rationality of the model. This paper provides a theoretical method for polarization detection of multilayer films target and reflection stealth technology.

  12. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  13. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  14. Specular, diffuse and polarized imagery of an oat canopy

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.; De Venecia, Kurt J.

    1988-01-01

    Light, polarized by specular reflection, has been found to be an important part of the light scattered by several measured plant canopies. The authors investigate for one canopy the relative importance of specularly reflected sunlight, specularly reflected light from other sources including skylight, and diffusely upwelling light. Polarization images are used to gain increased understanding of the radiation transfer process in a plant canopy. Analysis of the results suggests that properly analyzed polarized remotely sensed data, acquired under specific atmospheric conditions by a specially designed sensor, potentially provide measures of physiological and morphological states of plants in a canopy.

  15. System for testing optical fibers

    DOEpatents

    Golob, John E. [Olathe, KS; Looney, Larry D. [Los Alamos, NM; Lyons, Peter B. [Los Alamos, NM; Nelson, Melvin A. [Santa Barbara, CA; Davies, Terence J. [Santa Barbara, CA

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector.

  16. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  17. Optical Polarization of Light from a Sorghum Canopy Measured Under Both a Clear and an Overcast Sky

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Biehl, Larry; Dahlgren, Robert

    2014-01-01

    Introduction: We tested the hypothesis that the optical polarization of the light reflected by a sorghum canopy is due to a Fresnel-type redirection, by sorghum leaf surfaces, of light from an unpolarized light source, the sun or overcast sky, toward the measuring sensor. If it can be shown that the source of the polarization of the light scattered by the sorghum canopy is a first surface, Fresnel-type reflection, then removing this surface reflected light from measurements of canopy reflectance presumably would allow better insight into the biochemical processes such as photosynthesis and metabolism that occur in the interiors of sorghum canopy leaves. Methods: We constructed a tower 5.9m tall in the center of a homogenous sorghum field. We equipped two Barnes MMR radiometers with polarization analyzers on the number 1, 3 and 7 Landsat TM wavelength bands. Positioning the radiometers atop the tower, we collected radiance data in 44 view directions on two days, one day with an overcast sky and the other, clear and sunlit. From the radiance data we calculated the linear polarization of the reflected light for each radiometer wavelength channel and view direction. Results and Discussion: Our experimental results support our hypothesis, showing that the amplitude of the linearly polarized portion of the light reflected by the sorghum canopy varied dramatically with view azimuth direction under a point source, the sun, but the amplitude varied little with view azimuth direction under the hemispherical source, the overcast sky. Under the clear sky, the angle of polarization depended upon the angle of incidence of the sunlight on the leaf, while under the overcast sky the angle of polarization depended upon the zenith view angle. These results support a polarized radiation transport model of the canopy that is based upon a first surface, Fresnel reflection from leaves in the sorghum canopy.

  18. Chiral mirror and optical resonator designs for circularly polarized light: suppression of cross-polarized reflectances and transmittances

    NASA Astrophysics Data System (ADS)

    Hodgkinson, Ian J.; Wu, Qi h.; Arnold, Matthew; McCall, Martin W.; Lakhtakia, Akhlesh

    2002-09-01

    A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry-Perot resonators, but the handed resonator is transparent to RCP light.

  19. No evidence for behavioral responses to circularly polarized light in four scarab beetle species with circularly polarizing exocuticle.

    PubMed

    Blahó, Miklós; Egri, Adám; Hegedüs, Ramón; Jósvai, Júlia; Tóth, Miklós; Kertész, Krisztián; Biró, László Péter; Kriska, György; Horváth, Gábor

    2012-02-28

    The strongest known circular polarization of biotic origin is the left-circularly polarized (LCP) light reflected from the metallic shiny exocuticle of certain beetles of the family Scarabaeidae. This phenomenon has been discovered by Michelson in 1911. Although since 1955 it has been known that the human eye perceives a visual illusion when stimulated by circularly polarized (CP) light, it was discovered only recently that a stomatopod shrimp is able to perceive circular polarization. It is pertinent to suppose that scarab beetles reflecting LCP light in an optical environment (vegetation) being deficient in CP signals may also perceive circular polarization and use it to find each other (mate/conspecifics) as until now it has been believed. We tested this hypothesis in six choice experiments with several hundred individuals of four scarab species: Anomala dubia, Anomala vitis (Coleoptera, Scarabaeidae, Rutelinae), and Cetonia aurata, Potosia cuprea (Coleoptera, Scarabaeidae, Cetoniinae), all possessing left-circularly polarizing exocuticle. From the results of our experiments we conclude that the studied four scarab species are not attracted to CP light when feeding or looking for mate or conspecifics. We demonstrated that the light reflected by host plants of the investigated scarabs is circularly unpolarized. Our results finally solve a puzzle raised over one hundred years ago, when Michaelson discovered that scarab beetles reflect circularly polarized light. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. A polarization sensitive hyperspectral imaging system for detection of differences in tissue properties

    NASA Astrophysics Data System (ADS)

    Peller, Joseph A.; Ceja, Nancy K.; Wawak, Amanda J.; Trammell, Susan R.

    2018-02-01

    Polarized light imaging and optical spectroscopy can be used to distinguish between healthy and diseased tissue. In this study, the design and testing of a single-pixel hyperspectral imaging system that uses differences in the polarization of light reflected from tissue to differentiate between healthy and thermally damaged tissue is discussed. Thermal lesions were created in porcine skin (n = 8) samples using an IR laser. The damaged regions were clearly visible in the polarized light hyperspectral images. Reflectance hyperspectral and white light imaging was also obtained for all tissue samples. Sizes of the thermally damaged regions as measured via polarized light hyperspectral imaging are compared to sizes of these regions as measured in the reflectance hyperspectral images and white light images. Good agreement between the sizes measured by all three imaging modalities was found. Hyperspectral polarized light imaging can differentiate between healthy and damaged tissue. Possible applications of this imaging system include determination of tumor margins during cancer surgery or pre-surgical biopsy.

  1. System for testing optical fibers

    DOEpatents

    Golob, J.E.; Looney, L.D.; Lyons, P.B.; Nelson, M.A.; Davies, T.J.

    1980-07-15

    A system for measuring a combination of optical transmission properties of fiber optic waveguides. A polarized light pulse probe is injected into one end of the optical fiber. Reflections from discontinuities within the fiber are unpolarized whereas reflections of the probe pulse incident to its injection remain polarized. The polarized reflections are prevented from reaching a light detector whereas reflections from the discontinuities reaches the detector. 2 figs.

  2. Full Field Photoelastic Stress Analysis

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    2000-01-01

    A structural specimen coated with or constructed of photoelastic material, when illuminated with circularly polarized light will, when stressed: reflect or transmit elliptically polarized light, the direction of the axes of the ellipse and variation of the elliptically light from illuminating circular light will correspond to and indicate the direction and magnitude of the shear stresses for each illuminated point on the specimen. The principles of this invention allow for several embodiments of stress analyzing apparatus, ranging from those involving multiple rotating optical elements, to those which require no moving parts at all. A simple polariscope may be constructed having two polarizing filters with a single one-quarter waveplate placed between the polarizing filters. Light is projected through the first polarizing filter and the one-quarter waveplate and is reflected from a sub-fringe birefringent coating on a structure under load. Reflected light from the structure is analyzed with a polarizing filter. The two polarizing filters and the one-quarter waveplate may be rotated together or the analyzer alone may be rotated. Computer analysis of the variation in light intensity yields shear stress magnitude and direction.

  3. Multi-pass amplifier architecture for high power laser systems

    DOEpatents

    Manes, Kenneth R; Spaeth, Mary L; Erlandson, Alvin C

    2014-04-01

    A main amplifier system includes a first reflector operable to receive input light through a first aperture and direct the input light along an optical path. The input light is characterized by a first polarization. The main amplifier system also includes a first polarizer operable to reflect light characterized by the first polarization state. The main amplifier system further includes a first and second set of amplifier modules. Each of the first and second set of amplifier modules includes an entrance window, a quarter wave plate, a plurality of amplifier slablets arrayed substantially parallel to each other, and an exit window. The main amplifier system additionally includes a set of mirrors operable to reflect light exiting the first set of amplifier modules to enter the second set of amplifier modules and a second polarizer operable to reflect light characterized by a second polarization state.

  4. Polarization and Color Filtering Applied to Enhance Photogrammetric Measurements of Reflective Surfaces

    NASA Technical Reports Server (NTRS)

    Wells, Jeffrey M.; Jones, Thomas W.; Danehy, Paul M.

    2005-01-01

    Techniques for enhancing photogrammetric measurement of reflective surfaces by reducing noise were developed utilizing principles of light polarization. Signal selectivity with polarized light was also compared to signal selectivity using chromatic filters. Combining principles of linear cross polarization and color selectivity enhanced signal-to-noise ratios by as much as 800 fold. More typical improvements with combining polarization and color selectivity were about 100 fold. We review polarization-based techniques and present experimental results comparing the performance of traditional retroreflective targeting materials, cornercube targets returning depolarized light, and color selectivity.

  5. Light reflection by the cuticle of C. aurigans scarabs: a biological broadband reflector of left handed circularly polarized light

    NASA Astrophysics Data System (ADS)

    Libby, E.; Azofeifa, D. E.; Hernández-Jiménez, M.; Barboza-Aguilar, C.; Solís, A.; García-Aguilar, I.; Arce-Marenco, L.; Hernández, A.; Vargas, W. E.

    2014-08-01

    Measured reflection spectra from elytra of Chrysina aurigans scarabs are reported. They show a broad reflection band for wavelengths from 0.525 to 1.0 μm with a sequence of maxima and minima reflection values superimposed on a mean value of around 40% for the high reflection band. Different mechanisms contributing to the reflection spectra have been considered, with the dominant effect, reflection of left handed circularly polarized light, being produced by a laminated left handed twisted structure whose pitch changes with depth through the procuticle in a more complex way than that characterizing broad band circular polarizers based on cholesteric liquid crystals.

  6. Bidirectional reflectance distribution function of Spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light.

    PubMed

    Bhandari, Anak; Hamre, Børge; Frette, Øvynd; Zhao, Lu; Stamnes, Jakob J; Kildemo, Morten

    2011-06-01

    A Lambert surface would appear equally bright from all observation directions regardless of the illumination direction. However, the reflection from a randomly scattering object generally has directional variation, which can be described in terms of the bidirectional reflectance distribution function (BRDF). We measured the BRDF of a Spectralon white reflectance standard for incoherent illumination at 405 and 680 nm with unpolarized and plane-polarized light from different directions of incidence. Our measurements show deviations of the BRDF for the Spectralon white reflectance standard from that of a Lambertian reflector that depend both on the angle of incidence and the polarization states of the incident light and detected light. The non-Lambertian reflection characteristics were found to increase more toward the direction of specular reflection as the angle of incidence gets larger.

  7. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum

    PubMed Central

    Proust, Julien; Fehrembach, Anne-Laure; Bedu, Frédéric; Ozerov, Igor; Bonod, Nicolas

    2016-01-01

    Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence. PMID:27109643

  8. Chirality-induced polarization effects in the cuticle of scarab beetles: 100 years after Michelson

    NASA Astrophysics Data System (ADS)

    Arwin, Hans; Magnusson, Roger; Landin, Jan; Järrendahl, Kenneth

    2012-04-01

    One hundred years ago Michelson discovered circular polarization in reflection from beetles. Today a novel Mueller-matrix ellipsometry setup allows unprecedented detailed characterization of the beetles' polarization properties. A formalism based on elliptical polarization for description of reflection from scarab beetles is here proposed and examples are given on four beetles of different character: Coptomia laevis - a simple dielectric mirror; Cetonia aurata - a left-hand narrow-band elliptical polarizer; Anoplognathus aureus - a broad-band elliptical polarizer; and Chrysina argenteola - a left-hand polarizer for visible light at small angles, whereas for larger angles, red reflected light is right-handed polarized. We confirm the conclusion of previous studies which showed that a detailed quantification of ellipticity and degree of polarization of cuticle reflection can be performed instead of only determining whether reflections are circularly polarized or not. We additionally investigate reflection as a function of incidence angle. This provides much richer information for understanding the behaviour of beetles and for structural analysis.

  9. The polarization patterns of skylight reflected off wave water surface.

    PubMed

    Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie

    2013-12-30

    In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.

  10. Optical detection dental disease using polarized light

    DOEpatents

    Everett, Matthew J.; Colston, Jr., Billy W.; Sathyam, Ujwal S.; Da Silva, Luiz B.; Fried, Daniel

    2003-01-01

    A polarization sensitive optical imaging system is used to detect changes in polarization in dental tissues to aid the diagnosis of dental disease such as caries. The degree of depolarization is measured by illuminating the dental tissue with polarized light and measuring the polarization state of the backscattered light. The polarization state of this reflected light is analyzed using optical polarimetric imaging techniques. A hand-held fiber optic dental probe is used in vivo to direct the incident beam to the dental tissue and collect the reflected light. To provide depth-resolved characterization of the dental tissue, the polarization diagnostics may be incorporated into optical coherence domain reflectometry and optical coherence tomography (OCDR/OCT) systems, which enables identification of subsurface depolarization sites associated with demineralization of enamel or bone.

  11. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  12. Polarization Of Light In The Natural Environment

    NASA Astrophysics Data System (ADS)

    Coulson, Kinsell L.

    1990-01-01

    This paper provides a characterization of the fields of light polarization with which the optical designer or user of optical devices in the natural environment must be concerned. After a brief historical outline of the principal developments in polarization theory and observations during the last two centuries, the main emphasis is on the two primary processes responsible for the polarization of light in nature--scattering of light by particles of the atmosphere and reflection from soils, vegetation, snow, and water at the earth's surface. Finally, a seven minute film on polarization effects which can be seen in everyday surroundings will be shown. Scattering by atmospheric particles is responsible for high values of polarization in various atmospheric conditions and at certain scattering geometries. Such scattering particles include molecules of the atmospheric gases, aerosols of dust, haze, and air pollution, water droplets of fog and clouds, and the ice crystals of cirrus. It is seen that development of the theory of scattering by such particles has outstripped the measurements necessary for validation of the theory, a fact which points up the importance of symposia such as the present one. The reverse is true, however, for the polarizing properties of natural surfaces. Only in the case of still water is the theory of reflection adequate to characterize in a quantitative fashion the polarizing effects produced by the reflection of light from such natural surfaces. Polarization of light by reflection from vegetation is of prime importance in a remote sensing context, but much further work is needed to characterize vegetative reflectance for the purpose. The short film on polarization effects provides a good visualization technique and training aid for students interested in the field.

  13. Polarization methods for diode laser excitation of solid state lasers

    DOEpatents

    Holtom, Gary R.

    2008-11-25

    A mode-locked laser employs a coupled-polarization scheme for efficient longitudinal pumping by reshaped laser diode bars. One or more dielectric polarizers are configured to reflect a pumping wavelength having a first polarization and to reflect a lasing wavelength having a second polarization. A Yb-doped gain medium can be used that absorbs light having a first polarization and emits light having a second polarization. Using such pumping with laser cavity dispersion control, pulse durations of less than 100 fs can be achieved.

  14. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  15. Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling

    NASA Astrophysics Data System (ADS)

    Kallel, Abdelaziz; Gastellu-Etchegorry, Jean Philippe

    2017-03-01

    Vector radiative transfer (VRT) has been largely used to simulate polarized reflectance of atmosphere and ocean. However it is still not properly used to describe vegetation cover polarized reflectance. In this study, we try to propose a 3-D VRT model based on a modified Monte Carlo (MC) forward ray tracing simulation to analyze vegetation canopy reflectance. Two kinds of leaf scattering are taken into account: (i) Lambertian diffuse reflectance and transmittance and (ii) specular reflection. A new method to estimate the condition on leaf orientation to produce reflection is proposed, and its probability to occur, Pl,max, is computed. It is then shown that Pl,max is low, but when reflection happens, the corresponding radiance Stokes vector, Io, is very high. Such a phenomenon dramatically increases the MC variance and yields to an irregular reflectance distribution function. For better regularization, we propose a non-stationary MC approach that simulates reflection for each sunny leaf assuming that its orientation is randomly chosen according to its angular distribution. It is shown in this case that the average canopy reflection is proportional to Pl,max ·Io which produces a smooth distribution. Two experiments are conducted: (i) assuming leaf light polarization is only due to the Fresnel reflection and (ii) the general polarization case. In the former experiment, our results confirm that in the forward direction, canopy polarizes horizontally light. In addition, they show that in inclined forward direction, diagonal polarization can be observed. In the latter experiment, polarization is produced in all orientations. It is particularly pointed out that specular polarization explains just a part of the forward polarization. Diffuse scattering polarizes light horizontally and vertically in forward and backward directions, respectively. Weak circular polarization signal is also observed near the backscattering direction. Finally, validation of the non-polarized reflectance using the ROMC tool is done, and our model shows good agreement with the ROMC reference.

  16. Imaging skeletal muscle with linearly polarized light

    NASA Astrophysics Data System (ADS)

    Li, X.; Ranasinghesagara, J.; Yao, G.

    2008-04-01

    We developed a polarization sensitive imaging system that can acquire reflectance images in turbid samples using incident light of different polarization states. Using this system, we studied polarization imaging on bovine sternomandibularis muscle strips using light of two orthogonal linearly polarized states. We found the obtained polarization sensitive reflectance images had interesting patterns depending on the polarization states. In addition, we computed four elements of the Mueller matrix from the acquired images. As a comparison, we also obtained polarization images of a 20% Intralipid"R" solution and compared the results with those from muscle samples. We found that the polarization imaging patterns from Intralipid solution can be described with a model based on single-scattering approximation. However, the polarization images in muscle had distinct patterns and can not be explained by this simple model. These results implied that the unique structural properties of skeletal muscle play important roles in modulating the propagation of polarized light.

  17. Visible and infrared polarization ratio spectroreflectometer

    NASA Technical Reports Server (NTRS)

    Batten, C. E. (Inventor)

    1980-01-01

    The instrument assists in determining the refractive index and absorption index, at different spectral frequencies, of a solid sample by illuminating the sample at various angles in incidence and measuring the corresponding reflected intensities at various spectral frequencies and polarization angles. The ratio of the intensity of the reflected light for parallel polarized light to that for perpendicular polarized light at two different angles of incidence can be used to determine the optical constants of the sample. The invention involves an apparatus for facilitating the utilization of a wide variety of angles of incidence. The light source and polarizing element are positioned on an outer platform; the sample is positioned on an inner platform. The two platforms rotate about a common axis and cooperate in their rotation such that the sample is rotated one degree for every two degrees of rotation of the light source. This maintains the impingement of the reflected light upon the detector for any angle of incidence without moving or adjusting the detector which allows a continuous change in the angle of incidence.

  18. Sub-wavelength efficient polarization filter (SWEP filter)

    DOEpatents

    Simpson, Marcus L.; Simpson, John T.

    2003-12-09

    A polarization sensitive filter includes a first sub-wavelength resonant grating structure (SWS) for receiving incident light, and a second SWS. The SWS are disposed relative to one another such that incident light which is transmitted by the first SWS passes through the second SWS. The filter has a polarization sensitive resonance, the polarization sensitive resonance substantially reflecting a first polarization component of incident light while substantially transmitting a second polarization component of the incident light, the polarization components being orthogonal to one another. A method for forming polarization filters includes the steps of forming first and second SWS, the first and second SWS disposed relative to one another such that a portion of incident light applied to the first SWS passes through the second SWS. A method for separating polarizations of light, includes the steps of providing a filter formed from a first and second SWS, shining incident light having orthogonal polarization components on the first SWS, and substantially reflecting one of the orthogonal polarization components while substantially transmitting the other orthogonal polarization component. A high Q narrowband filter includes a first and second SWS, the first and second SWS are spaced apart a distance being at least one half an optical wavelength.

  19. Is There Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  20. Is there Spectral Variation in the Polarized Reflectance of Leaves?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Biehl, L. L.

    2014-01-01

    The light scattered by plant canopies depends in part on the light scattering/absorbing properties of the leaves and is key to understanding the remote sensing process in the optical domain. Here we specifically looked for evidence of fine spectral detail in the polarized portion of the light reflected from the individual leaves of five species of plants measured at Brewsters angle over the wavelength range 450 to 2300nm. Our results show no strong, unambiguous evidence of narrow band spectral variation of the polarized portion of the reflectance factor.

  1. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces.

    PubMed

    Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor

    2012-05-01

    Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.

  2. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces

    NASA Astrophysics Data System (ADS)

    Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor

    2012-05-01

    Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.

  3. Fatigue zones in metals identified by polarized light photography

    NASA Technical Reports Server (NTRS)

    Walsh, F. D.

    1967-01-01

    Polarized light technique clearly defines the fatigue zones in metal for measuring and photographing. White light is passed through a vertical polarizing filter and then is reflected onto the surface of the fracture specimen.

  4. All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances.

    PubMed

    Ma, Zhijie; Hanham, Stephen M; Gong, Yandong; Hong, Minghui

    2018-02-15

    We present an all-dielectric metasurface that simultaneously supports electric and magnetic dipole resonances for orthogonal polarizations. At resonances, the metasurface reflects the incident light with nearly perfect efficiency and provides a phase difference of π in the two axes, making a low-loss half-wave plate in reflection mode. The polarization handedness of the incident circularly polarized light is preserved after reflection; this is different from either a pure electric mirror or magnetic mirror. With the features of high reflection and circular polarization conservation, the metamirror is an ideal platform for the geometric phase-based gradient metasurface functioning in reflection mode. Anomalous reflection with the planar meta-mirror is demonstrated as a proof of concept. The proposed meta-mirror can be a good alternative to plasmonic metasurfaces for future compact and high-efficiency metadevices for polarization and phase manipulation in reflection mode.

  5. A study of the polarization of light scattered by vegetation. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Woessner, P. N.

    1985-01-01

    This study was undertaken in order to better understand the factors that govern the polarization of light scattered from vegetation and soils. The intensity and polarization of light scattered by clover and grass in vivo and soil were measured at a number of different angles of incidence and reflectance. Both individual leaves and natural patches of leaves were measured. The light transmitted through the leaves was found to be negatively polarized. The light scattered from the upper leaf surface was found to be positively polarized in a manner which could be accounted for qualitatively but not quantitatively by the Fresnel reflection coefficients modified by a shadowing function of the form cos sup2 (g/2), where g is the phase angle. Findings indicate that the polarization of light scattered by vegetation is a more complex process than previously thought, and that besides the surface-scattered component of light, the volume-scattered and multiply-scattered components also contribute significantly to the polarization.

  6. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    NASA Astrophysics Data System (ADS)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  7. Simulation of a polarized laser beam reflected at the sea surface: modeling and validation

    NASA Astrophysics Data System (ADS)

    Schwenger, Frédéric

    2015-05-01

    A 3-D simulation of the polarization-dependent reflection of a Gaussian shaped laser beam on the dynamic sea surface is presented. The simulation considers polarized or unpolarized laser sources and calculates the polarization states upon reflection at the sea surface. It is suitable for the radiance calculation of the scene in different spectral wavebands (e.g. near-infrared, SWIR, etc.) not including the camera degradations. The simulation also considers a bistatic configuration of laser source and receiver as well as different atmospheric conditions. In the SWIR, the detected total power of reflected laser light is compared with data collected in a field trial. Our computer simulation combines the 3-D simulation of a maritime scene (open sea/clear sky) with the simulation of polarized or unpolarized laser light reflected at the sea surface. The basic sea surface geometry is modeled by a composition of smooth wind driven gravity waves. To predict the input of a camera equipped with a linear polarizer, the polarized sea surface radiance must be calculated for the specific waveband. The s- and p-polarization states are calculated for the emitted sea surface radiance and the specularly reflected sky radiance to determine the total polarized sea surface radiance of each component. The states of polarization and the radiance of laser light specularly reflected at the wind-roughened sea surface are calculated by considering the s- and p- components of the electric field of laser light with respect to the specular plane of incidence. This is done by using the formalism of their coherence matrices according to E. Wolf [1]. Additionally, an analytical statistical sea surface BRDF (bidirectional reflectance distribution function) is considered for the reflection of laser light radiances. Validation of the simulation results is required to ensure model credibility and applicability to maritime laser applications. For validation purposes, field measurement data (images and meteorological data) was analyzed. An infrared laser, with or without a mounted polarizer, produced laser beam reflection at the water surface and images were recorded by a camera equipped with a polarizer with horizontal or vertical alignment. The validation is done by numerical comparison of measured total laser power extracted from recorded images with the corresponding simulation results. The results of the comparison are presented for different incident (zenith/azimuth) angles of the laser beam and different alignment for the laser polarizers (vertical/horizontal/without) and the camera (vertical/horizontal).

  8. Broadening of effective photonic band gaps in biological chiral structures: From intrinsic narrow band gaps to broad band reflection spectra

    NASA Astrophysics Data System (ADS)

    Vargas, W. E.; Hernández-Jiménez, M.; Libby, E.; Azofeifa, D. E.; Solis, Á.; Barboza-Aguilar, C.

    2015-09-01

    Under normal illumination with non-polarized light, reflection spectra of the cuticle of golden-like and red Chrysina aurigans scarabs show a structured broad band of left-handed circularly polarized light. The polarization of the reflected light is attributed to a Bouligand-type left-handed chiral structure found through the scarab's cuticle. By considering these twisted structures as one-dimensional photonic crystals, a novel approach is developed from the dispersion relation of circularly polarized electromagnetic waves traveling through chiral media, to show how the broad band characterizing these spectra arises from an intrinsic narrow photonic band gap whose spectral position moves through visible and near-infrared wavelengths.

  9. Optical device for measuring a surface characteristic of an object by multi-color interferometry

    NASA Technical Reports Server (NTRS)

    Meyer, William V. (Inventor); Smart, Anthony E. (Inventor)

    2001-01-01

    An interferometer having a light beam source that produces a plurality of separate and distinct wavelengths of light. Optic fibers are used to transport the wavelengths of light toward an object surface and to allow light reflected from the object to pass through a polarizer to improve the polarization ratio of the reflected light to determine a characteristic of the object surface.

  10. Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    Chowdhary, Jacek; Cairns, Brian; Waquet, Fabien; Knobelspiesse, Kirk; Ottaviani, Matteo; Redemann, Jens; Travis, Larry; Mishchenko, Michael

    2012-01-01

    For remote sensing of aerosol over the ocean, there is a contribution from light scattered underwater. The brightness and spectrum of this light depends on the biomass content of the ocean, such that variations in the color of the ocean can be observed even from space. Rayleigh scattering by pure sea water, and Rayleigh-Gans type scattering by plankton, causes this light to be polarized with a distinctive angular distribution. To study the contribution of this underwater light polarization to multiangle, multispectral observations of polarized reflectance over ocean, we previously developed a hydrosol model for use in underwater light scattering computations that produces realistic variations of the ocean color and the underwater light polarization signature of pure sea water. In this work we review this hydrosol model, include a correction for the spectrum of the particulate scattering coefficient and backscattering efficiency, and discuss its sensitivity to variations in colored dissolved organic matter (CDOM) and in the scattering function of marine particulates. We then apply this model to measurements of total and polarized reflectance that were acquired over open ocean during the MILAGRO field campaign by the airborne Research Scanning Polarimeter (RSP). Analyses show that our hydrosol model faithfully reproduces the water-leaving contributions to RSP reflectance, and that the sensitivity of these contributions to Chlorophyll a concentration [Chl] in the ocean varies with the azimuth, height, and wavelength of observations. We also show that the impact of variations in CDOM on the polarized reflectance observed by the RSP at low altitude is comparable to or much less than the standard error of this reflectance whereas their effects in total reflectance may be substantial (i.e. up to >30%). Finally, we extend our study of polarized reflectance variations with [Chl] and CDOM to include results for simulated spaceborne observations.

  11. WhitebalPR: automatic white balance by polarized reflections

    NASA Astrophysics Data System (ADS)

    Fischer, Gregor; Kolbe, Karin; Sajjaa, Matthias

    2008-02-01

    This new color constancy method is based on the polarization degree of that light which is reflected at the surface of an object. The subtraction of at least two images taken under different polarization directions detects the polarization degree of the neutrally reflected portions and eliminates the remitted non-polarized colored portions. Two experiments have been designed to clarify the performance of the procedure, one to multicolored objects and another to objects of different surface characteristics. The results show that the mechanism of eliminating the remitted, non-polarized colored portions of light works very fine. Independent from its color, different color pigments seem to be suitable for measuring the color of the illumination. The intensity and also the polarization degree of the reflected light depend on the surface properties significantly. The results exhibit a high accuracy of measuring the color of the illumination for glossy and matt surfaces. Only strongly scattering surfaces account for a weak signal level of the difference image and a reduced accuracy. An embodiment is proposed to integrate the new method into digital cameras.

  12. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).

    PubMed

    Kriska, György; Bernáth, Balázs; Farkas, Róbert; Horváth, Gábor

    2009-12-01

    With few exceptions insects whose larvae develop in freshwater possess positive polarotaxis, i.e., are attracted to sources of horizontally polarized light, because they detect water by means of the horizontal polarization of light reflected from the water surface. These insects can be deceived by artificial surfaces (e.g. oil lakes, asphalt roads, black plastic sheets, dark-coloured cars, black gravestones, dark glass surfaces, solar panels) reflecting highly and horizontally polarized light. Apart from the surface characteristics, the extent of such a 'polarized light pollution' depends on the illumination conditions, direction of view, and the threshold p* of polarization sensitivity of a given aquatic insect species. p* means the minimum degree of linear polarization p of reflected light that can elicit positive polarotaxis from a given insect species. Earlier there were no quantitative data on p* in aquatic insects. The aim of this work is to provide such data. Using imaging polarimetry in the red, green and blue parts of the spectrum, in multiple-choice field experiments we measured the threshold p* of ventral polarization sensitivity in mayflies, dragonflies and tabanid flies, the positive polarotaxis of which has been shown earlier. In the blue (450nm) spectral range, for example, we obtained the following thresholds: dragonflies: Enallagma cyathigerum (0%

  13. Simulating polarized light scattering in terrestrial snow based on bicontinuous random medium and Monte Carlo ray tracing

    NASA Astrophysics Data System (ADS)

    Xiong, Chuan; Shi, Jiancheng

    2014-01-01

    To date, the light scattering models of snow consider very little about the real snow microstructures. The ideal spherical or other single shaped particle assumptions in previous snow light scattering models can cause error in light scattering modeling of snow and further cause errors in remote sensing inversion algorithms. This paper tries to build up a snow polarized reflectance model based on bicontinuous medium, with which the real snow microstructure is considered. The accurate specific surface area of bicontinuous medium can be analytically derived. The polarized Monte Carlo ray tracing technique is applied to the computer generated bicontinuous medium. With proper algorithms, the snow surface albedo, bidirectional reflectance distribution function (BRDF) and polarized BRDF can be simulated. The validation of model predicted spectral albedo and bidirectional reflectance factor (BRF) using experiment data shows good results. The relationship between snow surface albedo and snow specific surface area (SSA) were predicted, and this relationship can be used for future improvement of snow specific surface area (SSA) inversion algorithms. The model predicted polarized reflectance is validated and proved accurate, which can be further applied in polarized remote sensing.

  14. Metasurface integrated high energy efficient and high linearly polarized InGaN/GaN light emitting diode.

    PubMed

    Wang, Miao; Xu, Fuyang; Lin, Yu; Cao, Bing; Chen, Linghua; Wang, Chinhua; Wang, Jianfeng; Xu, Ke

    2017-07-06

    We proposed and demonstrated an integrated high energy efficient and high linearly polarized InGaN/GaN green LED grown on (0001) oriented sapphire with combined metasurface polarizing converter and polarizer system. It is different from those conventional polarized light emissions generated with plasmonic metallic grating in which at least 50% high energy loss occurs inherently due to high reflection of the transverse electric (TE) component of an electric field. A reflecting metasurface, with a two dimensional elliptic metal cylinder array (EMCA) that functions as a half-wave plate, was integrated at the bottom of a LED such that the back-reflected TE component, that is otherwise lost by a dielectric/metal bi-layered wire grids (DMBiWG) polarizer on the top emitting surface of the LED, can be converted to desired transverse magnetic (TM) polarized emission after reflecting from the metasurface. This significantly enhances the polarized light emission efficiency. Experimental results show that extraction efficiency of the polarized emission can be increased by 40% on average in a wide angle of ±60° compared to that with the naked bottom of sapphire substrate, or 20% compared to reflecting Al film on the bottom of a sapphire substrate. An extinction ratio (ER) of average value 20 dB within an angle of ±60° can be simultaneously obtained directly from an InGaN/GaN LED. Our results show the possibility of simultaneously achieving a high degree of polarization and high polarization extraction efficiency at the integrated device level. This advances the field of GaN LED toward energy efficiency, multi-functional applications in illumination, display, medicine, and light manipulation.

  15. The effects of surface structure mutations in Arabidopsis thaliana on the polarization of reflections from virus-infected leaves.

    PubMed

    Maxwell, D J; Partridge, J C; Roberts, N W; Boonham, N; Foster, G D

    2017-01-01

    The way in which light is polarized when reflected from leaves can be affected by infection with plant viruses. This has the potential to influence viral transmission by insect vectors due to altered visual attractiveness of infected plants. The optical and topological properties of cuticular waxes and trichomes are important determinants of how light is polarized upon reflection. Changes in expression of genes involved in the formation of surface structures have also been reported following viral infection. This paper investigates the role of altered surface structures in virus-induced changes to polarization reflection from leaves. The percentage polarization of reflections from Arabidopsis thaliana cer5, cer6 and cer8 wax synthesis mutants, and the gl1 leaf hair mutant, was compared to those from wild-type (WT) leaves. The cer5 mutant leaves were less polarizing than WT on the adaxial and abaxial surfaces; gl1 leaves were more polarizing than WT on the adaxial surfaces. The cer6 and cer8 mutations did not significantly affect polarization reflection. The impacts of Turnip vein clearing virus (TVCV) infection on the polarization of reflected light were significantly affected by cer5 mutation, with the reflections from cer5 mutants being higher than those from WT leaves, suggesting that changes in CER5 expression following infection could influence the polarization of the reflections. There was, however, no significant effect of the gl1 mutation on polarization following TVCV infection. The cer5 and gl1 mutations did not affect the changes in polarization following Cucumber mosaic virus (CMV) infection. The accumulation of TVCV and CMV did not differ significantly between mutant and WT leaves, suggesting that altered expression of surface structure genes does not significantly affect viral titres, raising the possibility that if such regulatory changes have any adaptive value it may possibly be through impacts on viral transmission.

  16. Near-Field Magneto-Optical Microscope

    DOEpatents

    Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.

    2005-12-06

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  17. Near Field Magneto-Optical Microscope

    DOEpatents

    Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.

    2005-12-06

    A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.

  18. Properties of light reflected from road signs in active imaging for driving safety

    NASA Astrophysics Data System (ADS)

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2007-10-01

    Night-vision systems in vehicles are a new emerging technology. A crucial problem in active (illumination-based) systems is distortion of images by saturation and blooming, due to strong retro-reflections from road signs. In this work we quantified this phenomenon. We measured the Mueller matrices and the polarization state of the reflected light from three different types of road signs commonly used. Measurements of the reflected intensity were taken also with respect to the angle of reflection. We found that different types of signs have different reflection properties. It is concluded from our measurements that the optimal solution for attenuating the retro-reflected intensity is using a linear horizontal polarized light source and a linear vertical polarizer. Unfortunately, while the performance of this solution is good for two types of road signs, it is less efficient for the third sign type.

  19. POlarized Light Angle Reflectance Instrument I Polarized Incidence (POLAR:I)

    NASA Technical Reports Server (NTRS)

    Sarto, Anthony W.; Woldemar, Christopher M.; Vanderbilt, V. C.

    1989-01-01

    The light scattering properties of leaves are used as input data for models which mathematically describe the transport of photons within plant canopies. Polarization measurements may aid in the investigation of these properties. This paper describes an instrument for rapidly determining the bidirectional light scattering properties of leaves illuminated by linearly polarized light. Results for one species, magnolia, show large differences in the bidirectional light scattering properties depending whether or not the electric vector E is parallel to the foliage surface.

  20. Active polarization imaging system based on optical heterodyne balanced receiver

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Zhou, Yu; Luan, Zhu; Hou, Peipei; Liu, liren

    2017-08-01

    Active polarization imaging technology has recently become the hot research field all over the world, which has great potential application value in the military and civil area. By introducing active light source, the Mueller matrix of the target can be calculated according to the incident light and the emitted or reflected light. Compared with conventional direct detection technology, optical heterodyne detection technology have higher receiving sensitivities, which can obtain the whole amplitude, frequency and phase information of the signal light. In this paper, an active polarization imaging system will be designed. Based on optical heterodyne balanced receiver, the system can acquire the horizontal and vertical polarization of reflected optical field simultaneously, which contain the polarization characteristic of the target. Besides, signal to noise ratio and imaging distance can be greatly improved.

  1. Polarized Light Corridor Demonstrations.

    ERIC Educational Resources Information Center

    Davies, G. R.

    1990-01-01

    Eleven demonstrations of light polarization are presented. Each includes a brief description of the apparatus and the effect demonstrated. Illustrated are strain patterns, reflection, scattering, the Faraday Effect, interference, double refraction, the polarizing microscope, and optical activity. (CW)

  2. Properties of light reflected from road signs in active imaging.

    PubMed

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2008-08-01

    Night vision systems in vehicles are a new emerging technology. A crucial problem in active (laser-based) systems is distortion of images by saturation and blooming due to strong retroreflections from road signs. We quantify this phenomenon. We measure the Mueller matrices and the polarization state of the reflected light from three different types of road sign commonly used. Measurements of the reflected intensity are also taken with respect to the angle of reflection. We find that different types of sign have different reflection properties. It is concluded that the optimal solution for attenuating the retroreflected intensity is using a linear polarized light source and a linear polarizer with perpendicular orientation (with regard to the source) at the detector. Unfortunately, while this solution performs well for two types of road sign, it is less efficient for the third sign type.

  3. Going beyond the reflectance limit of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Mitov, Michel; Dessaud, Nathalie

    2006-05-01

    Cholesteric liquid-crystalline states of matter are abundant in nature: atherosclerosis, arthropod cuticles, condensed phases of DNA, plant cell walls, human compact bone osteon, and chiral biopolymers. The self-organized helical structure produces unique optical properties. Light is reflected when the wavelength matches the pitch (twice periodicity); cholesteric liquid crystals are not only coloured filters, but also reflectors and polarizers. But, in theory, the reflectance is limited to 50% of the ambient (unpolarized) light because circularly polarized light of the same handedness as the helix is reflected. Here we give details of a cholesteric medium for which the reflectance limit is exceeded. Photopolymerizable monomers are introduced into a cholesteric medium exhibiting a thermally induced helicity inversion, and the blend is then cured with ultraviolet light when the helix is right-handed. Because of memory effects attributable to the polymer network, the reflectance exceeds 50% when measured at the temperature assigned for a cholesteric helix with the same pitch but a left-handed sense before the reaction. As cholesteric materials are used as tunable bandpass filters, reflectors or polarizers and temperature or pressure sensors, novel opportunities to modulate the reflection over the whole light flux range, instead of only 50%, are offered.

  4. Optical manifold

    DOEpatents

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  5. Deriving Polarization Properties of Desert-Reflected Solar Spectra with PARASOL Data

    NASA Technical Reports Server (NTRS)

    Sun, Wenbo; Baize, Rosemary R.; Lukashin, Constantine

    2015-01-01

    Reflected solar radiation from desert is strongly polarized by sand particles. To date, there is no reliable desert surface reflection model to calculate desert reflection matrix. In this study, the PARASOL data are used to retrieve physical properties of desert. These physical properties are then used in the ADRTM to calculate polarization of desert-reflected light for the whole solar spectra.

  6. Reducing the maladaptive attractiveness of solar panels to polarotactic insects.

    PubMed

    Horváth, Gábor; Blahó, Miklós; Egri, Adám; Kriska, György; Seres, István; Robertson, Bruce

    2010-12-01

    Human-made objects (e.g., buildings with glass surfaces) can reflect horizontally polarized light so strongly that they appear to aquatic insects to be bodies of water. Insects that lay eggs in water are especially attracted to such structures because these insects use horizontal polarization of light off bodies of water to find egg-laying sites. Thus, these sources of polarized light can become ecological traps associated with reproductive failure and mortality in organisms that are attracted to them and by extension with rapid population declines or collapse. Solar panels are a new source of polarized light pollution. Using imaging polarimetry, we measured the reflection-polarization characteristics of different solar panels and in multiple-choice experiments in the field we tested their attractiveness to mayflies, caddis flies, dolichopodids, and tabanids. At the Brewster angle, solar panels polarized reflected light almost completely (degree of polarization d ≈ 100%) and substantially exceeded typical polarization values for water (d ≈ 30-70%). Mayflies (Ephemeroptera), stoneflies (Trichoptera), dolichopodid dipterans, and tabanid flies (Tabanidae) were the most attracted to solar panels and exhibited oviposition behavior above solar panels more often than above surfaces with lower degrees of polarization (including water), but in general they avoided solar cells with nonpolarizing white borders and white grates. The highly and horizontally polarizing surfaces that had nonpolarizing, white cell borders were 10- to 26-fold less attractive to insects than the same panels without white partitions. Although solar panels can act as ecological traps, fragmenting their solar-active area does lessen their attractiveness to polarotactic insects. The design of solar panels and collectors and their placement relative to aquatic habitats will likely affect populations of aquatic insects that use polarized light as a behavioral cue. © 2010 Society for Conservation Biology.

  7. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  8. Angular Scattering Reflectance and Polarization Measurements of Candidate Regolith Materials Measured in the Laboratory

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Shkuratov, Yuriy; Vandervoort, Kurt; Vides, Christina L.

    2016-10-01

    The reflectance and polarization of light reflected from a solar system object indicates the chemical and textural state of the regolith. Remote sensing data are compared to laboratory angular scattering measurements and surface properties are determined.We use a Goniometric Photopolarimeter (GPP) to make angular reflectance and polarization measurements of particulate materials that simulate planetary regoliths. The GPP employs the Helmholtz Reciprocity Principle ( 2, 1) - the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces improving signal to noise. The lab data are physically equivalent to the astronomical data.Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our lab data exhibit polarization phase curves that are very similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials agree with the same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al.(3) report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data indicating Europa's regolith is fine-grained, high porous with void space exceeding 90%.1. Hapke, B. W. (2012). ISBN 978-0-521-88349-82. Minnaert, M. (1941).Asrophys. J., 93, 403-410.3. Nelson, R. M. et al. (1998). Icarus, 131, 223-230.4. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359.5. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.

  9. Is There Ecological Information in Optical Polarization Data?

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2015-01-01

    Optical linear polarization? In remote sensing it's due to specular reflection. The first surface that incident light encounters - a smooth water surface or the waxy first surface of a leaf's cuticle, if it's even somewhat smooth (i.e. shiny) - will specularly reflect and linearly polarize the incident light. We provide three examples of the types of ecological information contained in remotely sensed optical linear polarization measurements. Remove the surface reflection to better see the interior. The linearly polarized light reflected by leaf surfaces contains no information about cellular pigments, metabolites, or water contained in the leaf interiors of a plant canopy, because it never enters the leaf interior to interact with them. Thus, for purposes of remotely sensing the leaf interiors of a plant canopy, the linearly polarized light should be subtracted from the total reflected light, because including it would add noise to the measurement. In particular 'minus specular' vegetation indices should allow improved monitoring of a plant canopy's physiological processes. Estimate plant development stage and yield. Wheat and sorghum grain heads, following emergence, rapidly extend upward and very quickly tower over nearby leaves, partially blocking our view of the sunlight reflected by those leaf surfaces. The resulting decrease in the amount of surface reflected and polarized sunlight, if monitored over time, potentially allows per-field estimates of the dates of the heading and flowering development stages to be interleaved with weather data in models, which is key to better estimating per-field grain yield. Similar polarization changes may occur in other grasses, such as oats, barley, corn and rice, each a crop so widely grown that it potentially affects climate at the regional scale. Wetlands Mapping. The sunlight specularly reflected by surface waters is blindingly bright, spectrally flat and polarized - all of which telegraphs that the ground area is inundated. Inundated soils exchange methane with the atmosphere; non-inundated soils, carbon dioxide. Aquatic plants growing through the water surface pipe the soil-produced methane via the stomata to the atmosphere, enhancing exchanges rates by factors of 10-20 compared to ebullition (bubbling) or diffusion through the water column to the atmosphere. Thus, mapping wetland areas into three community types - inundated areas with emergent vegetation, open water and uplands - provides potentially key information to water, carbon and energy budgets at landscape to global scales.

  10. Retinal Processing: Polarization Vision in Teleost Fishes

    DTIC Science & Technology

    2005-07-26

    conspecific visual communication network utilizing polarized light signals in the coral reef environment. These observations have provoked interest in the... visual communication net- reflection off non-metallic substrates produces predom- work utilizing polarized light signals in the coral reef inantly

  11. The Effect of Incident Light Polarization on Vegetation Bidirectional Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Thome, Kurt; Ranson, Kurtis J.; King, Michael D.; Butler, James J.

    2010-01-01

    The Laboratory-based Bidirectional Reflectance Factor (BRF) polarization study of vegetation is presented in this paper. The BRF was measured using a short-arc Xenon lamp/monochromator assembly producing an incoherent, tunable light source with a well-defined spectral bandpass at visible and near-infrared wavelengths of interest at 470 nm and 870 nm and coherent light source at 1.656 microns. All vegetation samples were measured using P and S linearly polarized incident light over a range of incident and scatter angles. By comparing these results, we quantitatively examine how the BRF of the samples depends on the polarization of the incident light. The differences are significant, depend strongly on the incident and scatter angles, and can be as high as 120% at 67 deg incident and 470nm. The global nature of Earth's processes requires consistent long-term calibration of all instruments involved in data retrieval. The BRF defines the reflection characteristics of Earth surface. It provides the reflectance of a target in a specific direction as a function of illumination and viewing geometry. The BRF is a function of wavelength and reflects the structural and optical properties of the surface. Various space and airborne radiometric and imaging remote sensing instruments are used in the remote sensing characterization of vegetation canopies and soils, oceans, or especially large pollution sources. The satellite data is validated through comparison with airborne, ground-based and laboratory-based data in an effort to fully understand the vegetation canopy reflectance, The Sun's light is assumed to be unpolarized at the top of the atmosphere; however it becomes polarized to some degree due to atmospheric effects by the time it reaches the vegetation canopy. Although there are numerous atmospheric correction models, laboratory data is needed for model verification and improvement.

  12. Robust reflective ghost imaging against different partially polarized thermal light

    NASA Astrophysics Data System (ADS)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  13. How Can Polarization States of Reflected Light from Snow Surfaces Inform Us on Surface Normals and Ultimately Snow Grain Size Measurements?

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.

    2016-12-01

    The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.

  14. Spectropolarimetric Imaging Observations

    NASA Astrophysics Data System (ADS)

    Bradley, Christine Lavella

    The capability to map anthropogenic aerosol quantities and properties over land can provide significant insights for climate and environmental studies on global and regional scales. One of the primary challenges in aerosol information monitoring is separating two signals measured by downward-viewing airborne or spaceborne instruments: the light scattered from the aerosols and light reflected from the Earth's surface. In order to study the aerosols independently, the surface signal needs to be subtracted out from the measurements. Some observational modalities, such as multispectral and multiangle, do not provide enough information to uniquely define the Earth's directional reflectance properties for this task due to the high magnitude and inhomogeneity of albedo for land surface types. Polarization, however, can provide additional information to define surface reflection. To improve upon current measurement capabilities of aerosols over urban areas, Jet Propulsion Laboratory developed the Multiangle SpectroPolarimetric Imager (MSPI) that can accurately measure the Degree of Linear Polarization to 0.5%. In particular, data acquired by the ground-based prototype, GroundMSPI, is used for directional reflectance studies of outdoor surfaces in this dissertation. This work expands upon an existing model, the microfacet model, to characterize the polarized bidirectional reflectance distribution function (pBRDF) of surfaces and validate an assumption, the Spectral Invariance Hypothesis, on the surface pBRDF that is used in aerosol retrieval algorithms. The microfacet model is commonly used to represent the pBRDF of Earth's surface types, such as ocean and land. It represents a roughened surface comprised of randomly oriented facets that specularly reflect incoming light into the upward hemisphere. The analytic form of the pBRDF for this model assumes only a single reflection of light from the microfaceted surface. If the incoming illumination is unpolarized, as it is with natural light from the Sun, the reflected light is linearly polarized perpendicular to the plane that contains the illumination and view directions, the scattering plane. However, previous work has shown that manmade objects, such as asphalt and brick, show a polarization signature that differs from the single reflection microfacet model. Using the polarization ray-tracing (PRT) program POLARIS-M, a numerical calculation for the pBRDF is made for a roughened surface to account for multiple reflections that light can experience between microfacets. Results from this numerical PRT method shows rays that experience two or more reflections with the microfacet surface can be polarized at an orientation that differs from the analytical single reflection microfacet model. This PRT method is compared against GroundMSPI data of manmade surfaces. An assumption made regarding the pBRDF for this microfacet model is verified with GroundMSPI data of urban areas. This is known as the Spectral Invariance Hypothesis and asserts that the magnitude and shape of the polarized bidirectional reflectance factor (pBRF) is the same for all wavelengths. This simplifies the microfacet model by assuming some surface parameters such as the index of refraction are spectrally neutral. GroundMSPI acquires the pBRF for five prominent region types, asphalt, brick, cement, dirt, and grass, for day-long measurements on clear sky conditions. Over the course of each day, changing solar position in the sky provides a large range of scattering angles for this study. The pBRF is measured for the three polarimetric wavelengths of GroundMSPI, 470, 660, and 865nm, and the best fit slope of the spectral correlation is reported. This investigation shows agreement to the Spectral Invariance Hypothesis within 10% for all region types excluding grass. Grass measurements show a large mean deviation of 31.1%. This motivated an angle of linear polarization (AoLP) analysis of cotton crops to isolate single reflection cases, or specular reflections, from multiple scattering cases of light in vegetation. Results from this AoLP method show that specular reflections off the top surface of leaves follow the Spectral Invariance Hypothesis.

  15. Imaging skin pathologies with polarized light: Empirical and theoretical studies

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.

    The use of polarized light imaging can facilitate the determination of skin cancer borders before a Mohs surgery procedure. Linearly polarized light that illuminates the skin is backscattered by superficial layers where cancer often arises and is randomized by the collagen fibers. The superficially backscattered light can be distinguished from the diffused reflected light using a detector analyzer that is sequentially oriented parallel and perpendicular to the source polarization. A polarized image pol = parallel - perpendicular / parallel + perpendicular is generated. This image has a higher contrast to the superficial skin layers than simple total reflectance images. Pilot clinical trials were conducted with a small hand-held device for the accumulation of a library of lesions to establish the efficacy of polarized light imaging in vivo. It was found that melanoma exhibits a high contrast to polarized light imaging as well as basal and sclerosing cell carcinoma. Mechanisms of polarized light scattering from different tissues and tissue phantoms were studied in vitro. Parameters such as depth of depolarization (DOD), retardance, and birefringence were studied in theory and experimentally. Polarized light traveling through different tissues (skin, muscle, and liver) depolarized after a few hundred microns. Highly birefringent materials such as skin (DOD = 300 mum 696nm) and muscle (DOD = 370 mum 696nm) depolarized light faster than less birefringent materials such as liver (DOD = 700 mum 696nm). Light depolarization can also be attributed to scattering. Three Monte Carlo programs for modeling polarized light transfer into scattering media were implemented to evaluate these mechanisms. Simulations conducted with the Monte Carlo programs showed that small diameter spheres have different mechanisms of depolarization than larger ones. The models also showed that the anisotropy parameter g strongly influences the depolarization mechanism. (Abstract shortened by UMI.)

  16. Light polarization measurements - A method to determine the specular and diffuse light-scattering properties of both leaves and plant canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1984-01-01

    The contributions of diffuse and specular reflection to the total canopy reflection of sunlight are determined experimentally for wheat at two stages of development using spectroradiometer measurements obtained at 13 wavelengths in the 480-720-nm range with a polarizing film in maximum and minimum signal-amplitude positions. The data and computation techniques are presented in tables, diagrams, and graphs, and the need to take specular reflection into account in constructing models of light/canopy interaction is stressed.

  17. [Analysis of Polarization Characteristics of Wheat and Maize Crops Using Land-Based Remote Sensing Measurements].

    PubMed

    Sid'ko, A F; Botvich, I Yu; Pisman, T I; Shevyrnogov, A P

    2015-01-01

    The paper presents analysis of a study of the polarized component of the reflectance factor (Rq) and the degree of polarization (P) of wheat and maize crops depending on the wavelength. Registration of polarization characteristics was carried out in the field from the elevated work platform at heights of 10 to 18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820-nm. The viewing angle was no greater than 20 degree with respect to the nadir. The reflection spectra of wheat and maize crops obtained using a polarizer adjusted to transmit the maximum and minimum amounts of light (R(max) and R(min)) were studied. Based on these reflection spectra polarization characteristics, which. differ in the visible and infrared spectral region, were determined and analyzed.

  18. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    NASA Astrophysics Data System (ADS)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  19. Polarization Signals of Common Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Gravseth, Ian; Culp, Robert D.; King, Nicole

    1996-01-01

    This is the final report documenting the results of the polarization testing of near-planar objects with various reflectance properties. The purpose of this investigation was to determine the portion of the reflected signal which is polarized for materials commonly used in space applications. Tests were conducted on several samples, with surface characteristics ranging from highly reflective to relatively dark. The measurements were obtained by suspending the test object in a beam of collimated light. The amount of light falling on the sample was controlled by a circular aperture placed in the light field. The polarized reflectance at various phase angles was then measured. A nonlinear least squares fitting program was used for analysis. For the specular test objects, the reflected signals were measured in one degree increments near the specular point. Otherwise, measurements were taken every five degrees in phase angle. Generally, the more diffuse surfaces had lower polarized reflectances than their more specular counterparts. The reflected signals for the more diffuse surfaces were spread over a larger phase angle range, while the signals from the more specular samples were reflected almost entirely within five degrees of angular deviation from the specular point. The method used to test all the surfaces is presented. The results of this study will be used to support the NASA Orbital Debris Optical Signature Tests. These tests are intended to help better understand the reflectance properties of materials often used in space applications. This data will then be used to improve the capabilities for identification and tracking of space debris.

  20. High-Reflectivity Coatings for a Vacuum Ultraviolet Spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Narukage, Noriyuki; Kubo, Masahito; Ishikawa, Ryohko; Ishikawa, Shin-nosuke; Katsukawa, Yukio; Kobiki, Toshihiko; Giono, Gabriel; Kano, Ryouhei; Bando, Takamasa; Tsuneta, Saku; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; McCandless, Jim; Chen, Jianrong; Choi, Joanne

    2017-03-01

    Precise polarization measurements in the vacuum ultraviolet (VUV) region are expected to be a new tool for inferring the magnetic fields in the upper atmosphere of the Sun. High-reflectivity coatings are key elements to achieving high-throughput optics for precise polarization measurements. We fabricated three types of high-reflectivity coatings for a solar spectropolarimeter in the hydrogen Lyman-α (Lyα; 121.567 nm) region and evaluated their performance. The first high-reflectivity mirror coating offers a reflectivity of more than 80 % in Lyα optics. The second is a reflective narrow-band filter coating that has a peak reflectivity of 57 % in Lyα, whereas its reflectivity in the visible light range is lower than 1/10 of the peak reflectivity (˜ 5 % on average). This coating can be used to easily realize a visible light rejection system, which is indispensable for a solar telescope, while maintaining high throughput in the Lyα line. The third is a high-efficiency reflective polarizing coating that almost exclusively reflects an s-polarized beam at its Brewster angle of 68° with a reflectivity of 55 %. This coating achieves both high polarizing power and high throughput. These coatings contributed to the high-throughput solar VUV spectropolarimeter called the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP), which was launched on 3 September, 2015.

  1. Geometrically distributed one-dimensional photonic crystals for light-reflection in all angles.

    PubMed

    Alagappan, G; Wu, P

    2009-07-06

    We demonstrate that a series of one-dimensional photonic crystals made of any dielectric materials, with the periods are distributed in a geometrical progression of a common ratio, r < rc (theta,P), where rc is a structural parameter that depends on the angle of incidence, theta, and polarization, P, is capable of blocking light of any spectral range. If an omni-directional reflection is desired for all polarizations and for all incident angles smaller than thetao, then r < rc (theta(o),p), where p is the polarization with the electric field parallel to the plane of incidence. We present simple and formula like expressions for rc, width of the bandgap, and minimum number of photonic crystals to achieve a perfect light reflection.

  2. Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady

    2017-03-01

    Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.

  3. Reflection of a polarized light cone

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Weiss, Daniel; Berland, Keith

    2013-01-01

    We introduce a visually appealing experimental demonstration of Fresnel reflection. In this simple optical experiment, a polarized light beam travels through a high numerical-aperture microscope objective, reflects off a glass slide, and travels back through the same objective lens. The return beam is sampled with a polarizing beam splitter and produces a surprising geometric pattern on an observation screen. Understanding the origin of this pattern requires careful attention to geometry and an understanding of the Fresnel coefficients for S and P polarized light. We demonstrate that in addition to a relatively simple experimental implementation, the shape of the observed pattern can be computed both analytically and by using optical modeling software. The experience of working through complex mathematical computations and demonstrating their agreement with a surprising experimental observation makes this a highly educational experiment for undergraduate optics or advanced-lab courses. It also provides a straightforward yet non-trivial system for teaching students how to use optical modeling software.

  4. Polarization Remote Sensing Physical Mechanism, Key Methods and Application

    NASA Astrophysics Data System (ADS)

    Yang, B.; Wu, T.; Chen, W.; Li, Y.; Knjazihhin, J.; Asundi, A.; Yan, L.

    2017-09-01

    China's long-term planning major projects "high-resolution earth observation system" has been invested nearly 100 billion and the satellites will reach 100 to 2020. As to 2/3 of China's area covered by mountains it has a higher demand for remote sensing. In addition to light intensity, frequency, phase, polarization is also the main physical characteristics of remote sensing electromagnetic waves. Polarization is an important component of the reflected information from the surface and the atmospheric information, and the polarization effect of the ground object reflection is the basis of the observation of polarization remote sensing. Therefore, the effect of eliminating the polarization effect is very important for remote sensing applications. The main innovations of this paper is as follows: (1) Remote sensing observation method. It is theoretically deduced and verified that the polarization can weaken the light in the strong light region, and then provide the polarization effective information. In turn, the polarization in the low light region can strengthen the weak light, the same can be obtained polarization effective information. (2) Polarization effect of vegetation. By analyzing the structure characteristics of vegetation, polarization information is obtained, then the vegetation structure information directly affects the absorption of biochemical components of leaves. (3) Atmospheric polarization neutral point observation method. It is proved to be effective to achieve the ground-gas separation, which can achieve the effect of eliminating the atmospheric polarization effect and enhancing the polarization effect of the object.

  5. Non-mechanical optical path switching and its application to dual beam spectroscopy including gas filter correlation radiometry

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)

    1992-01-01

    A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

  6. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals.

    PubMed

    Ha, Na Young; Ohtsuka, Youko; Jeong, Soon Moon; Nishimura, Suzushi; Suzaki, Goroh; Takanishi, Yoichi; Ishikawa, Ken; Takezoe, Hideo

    2008-01-01

    A cholesteric liquid crystal (CLC) is a self-assembled photonic crystal formed by rodlike molecules, including chiral molecules, that arrange themselves in a helical fashion. The CLC has a single photonic bandgap and an associated one-colour reflection band for circularly polarized light with the same handedness as the CLC helix (selective reflection). These optical characteristics, particularly the circular polarization of the reflected light, are attractive for applications in reflective colour displays without using a backlight, for use as polarizers or colour filters and for mirrorless lasing. Recently, we showed by numerical simulation that simultaneous multicolour reflection is possible by introducing fibonaccian phase defects. Here, we design and fabricate a CLC system consisting of thin isotropic films and of polymeric CLC films, and demonstrate experimentally simultaneous red, green and blue reflections (multiple photonic bandgaps) using the single-pitched polymeric CLC films. The experimental reflection spectra are well simulated by calculations. The presented system can extend applications of CLCs to a wide-band region and could give rise to new photonic devices, in which white or multicolour light is manipulated.

  7. Study on the measurement system of the target polarization characteristics and test

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Zhu, Yong; Zhang, Su; Duan, Jin; Yang, Di; Zhan, Juntong; Wang, Xiaoman; Jiang, Hui-Lin

    2015-10-01

    The polarization imaging detection technology increased the polarization information on the basis of the intensity imaging, which is extensive application in the military and civil and other fields, the research on the polarization characteristics of target is particularly important. The research of the polarization reflection model was introduced in this paper, which describes the scattering vector light energy distribution in reflecting hemisphere polarization characteristics, the target polarization characteristics test system solutions was put forward, by the irradiation light source, measuring turntable and camera, etc, which illuminate light source shall direct light source, with laser light sources and xenon lamp light source, light source can be replaced according to the test need; Hemispherical structure is used in measuring circumarotate placed near its base material sample, equipped with azimuth and pitching rotation mechanism, the manual in order to adjust the azimuth Angle and high Angle observation; Measuring camera pump works, through the different in the way of motor control polaroid polarization test, to ensure the accuracy of measurement and imaging resolution. The test platform has set up by existing laboratory equipment, the laser is 532 nm, line polaroid camera, at the same time also set the sending and receiving optical system. According to the different materials such as wood, metal, plastic, azimuth Angle and zenith Angle in different observation conditions, measurement of target in the polarization scattering properties of different exposure conditions, implementation of hemisphere space pBRDF measurement.

  8. A model of plant canopy polarization

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    1980-01-01

    A model for the amount of linearly polarized light reflected by the shiny leaves of grain crops is based on the morphological and phenological characteristics of the plant canopy and upon the Fresnel equations which describe the light reflection process at the smooth boundary separating two dielectrics. The theory used demonstrates that, potentially, measurements of the linearly polarized light from a crop canopy may be used as an additional feature to discriminate between crops such as wheat and barley, two crops which are so spectrally similar that they are misclassified with unacceptable frequency. Examination of the model suggests that, potentially, satellite polarization measurements may be used to monitor crop development stage, leaf water content, leaf area index, hail damage, and certain plant diseases. The information content of these measurements is needed to evaluate the proposed polarization sensor for the satellite-borne multispectral resource sampler.

  9. Unexpected Attraction of Polarotactic Water-Leaving Insects to Matt Black Car Surfaces: Mattness of Paintwork Cannot Eliminate the Polarized Light Pollution of Black Cars

    PubMed Central

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles. PMID:25076137

  10. Unexpected attraction of polarotactic water-leaving insects to matt black car surfaces: mattness of paintwork cannot eliminate the polarized light pollution of black cars.

    PubMed

    Blaho, Miklos; Herczeg, Tamas; Kriska, Gyorgy; Egri, Adam; Szaz, Denes; Farkas, Alexandra; Tarjanyi, Nikolett; Czinke, Laszlo; Barta, Andras; Horvath, Gabor

    2014-01-01

    The horizontally polarizing surface parts of shiny black cars (the reflection-polarization characteristics of which are similar to those of water surfaces) attract water-leaving polarotactic insects. Thus, shiny black cars are typical sources of polarized light pollution endangering water-leaving insects. A new fashion fad is to make car-bodies matt black or grey. Since rough (matt) surfaces depolarize the reflected light, one of the ways of reducing polarized light pollution is to make matt the concerned surface. Consequently, matt black/grey cars may not induce polarized light pollution, which would be an advantageous feature for environmental protection. To test this idea, we performed field experiments with horizontal shiny and matt black car-body surfaces laid on the ground. Using imaging polarimetry, in multiple-choice field experiments we investigated the attractiveness of these test surfaces to various water-leaving polarotactic insects and obtained the following results: (i) The attractiveness of black car-bodies to polarotactic insects depends in complex manner on the surface roughness (shiny, matt) and species (mayflies, dolichopodids, tabanids). (ii) Non-expectedly, the matt dark grey car finish is much more attractive to mayflies (being endangered and protected in many countries) than matt black finish. (iii) The polarized light pollution of shiny black cars usually cannot be reduced with the use of matt painting. On the basis of these, our two novel findings are that (a) matt car-paints are highly polarization reflecting, and (b) these matt paints are not suitable to repel polarotactic insects. Hence, the recent technology used to make matt the car-bodies cannot eliminate or even can enhance the attractiveness of black/grey cars to water-leaving insects. Thus, changing shiny black car painting to matt one is a disadvantageous fashion fad concerning the reduction of polarized light pollution of black vehicles.

  11. Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.

    PubMed

    Tyan, R C; Sun, P C; Scherer, A; Fainman, Y

    1996-05-15

    We introduce a novel polarizing beam splitter that uses the anisotropic spectral reflectivity (ASR) characteristic of a high-spatial-frequency multilayer binary grating. Such ASR effects allow us to design an optical element that is transparent for TM polarization and reflective for TE polarization. For normally incident light our element acts as a polarization-selective mirror. The properties of this polarizing beam splitter are investigated with rigorous coupled-wave analysis. The design results show that an ASR polarizing beam splitter can provide a high polarization extinction ratio for optical waves from a wide range of incident angles and a broad optical spectral bandwidth.

  12. Understanding Europa's Surface Texture from Remote Sensing Photopolarimetry

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Shkuratov, Y.; Vandervoort, K.; Vides, C. L.

    2016-12-01

    We use a Goniometric Photopolarimeter (GPP) to make angular scattering reflectance and polarization measurements of the light reflected from particulate materials that simulate a planetary regolith. We compare these laboratory results to astronomical remote sensing observations in an effort to understand the chemical and textural state of object's surface. The GPP employs the Helmholtz Reciprocity Principle (1,2) -the incident light is linearly polarized - the intensity of the reflected component is measured. The light encounters fewer optical surfaces, improving signal to noise. These lab data are physically equivalent to the astronomical data. Our reflectance and polarization phase curves of highly reflective, fine grained, media simulate the regolith of Jupiter's satellite Europa. Our laboratory data exhibit polarization phase curves that are remarkably similar to reports by experienced astronomers (4). Our previous reflectance phase curve data of the same materials also agree with the reflectance phase curves reported by same astronomical observers (5). We find these materials exhibit an increase in circular polarization ratio with decreasing phase angle (3). This suggests coherent backscattering (CB) of photons in the regolith (3). Shkuratov et al. report that the polarization properties of these particulate media are also consistent with the CB enhancement process (5). Our results replicate the astronomical data and indicate that Europa's regolith is fine-grained, highly porous with void space exceeding 90%. Future spacecraft missions to the Jovian system will enhance science return by incorporating angular scattering measurements of the reflectance and polarizatin of the surface. Minnaert, M. (1941).Asrophys. J., 93, 403-410. Hapke, B. W. (2012). ISBN 978-0-521-88349-8 Nelson, R. M. et al. (1998). Icarus, 131, 223-230. Rosenbush, V. et al. (2015). ISBN 978-1-107-04390-9, pp 340-359. Shkuratov, Yu. et al. (2002) Icarus 159, 396-416.

  13. Polarimetry of nacre in iridescent shells

    NASA Astrophysics Data System (ADS)

    Metzler, R. A.; Burgess, C.; Regan, B.; Spano, S.; Galvez, E. J.

    2014-09-01

    We investigate the light transmitted or reflected from nacre (mother of pearl) taken from the iridescent shell of the bivalve Pinctad a fucata. These nacre surfaces have a rich structure, composed of aragonite crystals arranged as tablets or bricks, 5 μm wide and 400-500 nm thick, surrounded by 30nm thick organic mortar. The light reflected from these shell surfaces, or transmitted through thin polished layers, is rich in its polarization content, exhibiting a space dependent variation in the state of polarization with a high density of polarization singularities. Our goal is to use the polarization information to infer the structure of the biominerals and the role of the organic layer in determining the orientation of the crystals. In the experiments we send the light from a laser with a uniform state of polarization onto the shell, and analyze the light that is either transmitted or reflected, depending on the type of experiment, imaging it after its passage through polarization filters. We use the images from distinct filters to obtain the Stokes parameters, and hence the state of polarization, of each image point. We also construct the Mueller matrix for each imaged point, via 36 measurements. We do this for distinct physical and chemical treatments of the shell sample. Preliminary data shows that the organic layer may be responsible for organizing a multi-crystalline arrangement of aragonite tablets.

  14. Polarimetric imaging of retinal disease by polarization sensitive SLO

    NASA Astrophysics Data System (ADS)

    Miura, Masahiro; Elsner, Ann E.; Iwasaki, Takuya; Goto, Hiroshi

    2015-03-01

    Polarimetry imaging is used to evaluate different features of the macular disease. Polarimetry images were recorded using a commercially- available polarization-sensitive scanning laser opthalmoscope at 780 nm (PS-SLO, GDx-N). From data sets of PS-SLO, we computed average reflectance image, depolarized light images, and ratio-depolarized light images. The average reflectance image is the grand mean of all input polarization states. The depolarized light image is the minimum of crossed channel. The ratio-depolarized light image is a ratio between the average reflectance image and depolarized light image, and was used to compensate for variation of brightness. Each polarimetry image is compared with the autofluorescence image at 800 nm (NIR-AF) and autofluorescence image at 500 nm (SW-AF). We evaluated four eyes with geographic atrophy in age related macular degeneration, one eye with retinal pigment epithelium hyperplasia, and two eyes with chronic central serous chorioretinopathy. Polarization analysis could selectively emphasize different features of the retina. Findings in ratio depolarized light image had similarities and differences with NIR-AF images. Area of hyper-AF in NIR-AF images showed high intensity areas in the ratio depolarized light image, representing melanin accumulation. Areas of hypo-AF in NIR-AF images showed low intensity areas in the ratio depolarized light images, representing melanin loss. Drusen were high-intensity areas in the ratio depolarized light image, but NIR-AF images was insensitive to the presence of drusen. Unlike NIR-AF images, SW-AF images showed completely different features from the ratio depolarized images. Polarization sensitive imaging is an effective tool as a non-invasive assessment of macular disease.

  15. Ellipsometry of single-layer antireflection coatings on transparent substrates

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.

    2017-11-01

    The complex reflection coefficients of p- and s-polarized light and ellipsometric parameters of a transparent substrate of refractive index n2, which is coated by a transparent thin film whose refractive index n1 =√{n2 } satisfies the anti-reflection condition at normal incidence, are considered as functions of film thickness d and angle of incidence ϕ. A unique coated surface, with n1 =√{n2 } and film thickness d equal to half of the film-thickness period Dϕ at angle ϕ and wavelength λ, reflects light of the same wavelength without change of polarization for all incident polarization states. (The reflection Jones matrix of such coated surface is the 2 × 2 identity matrix pre-multiplied by a scalar, hence tanΨ = 1,Δ = 0.) To monitor the deposition of an antireflection coating, the normalized Stokes parameters of obliquely reflected light (e.g. at ϕ =70∘) are measured until predetermined target values of those parameters are detected. This provides a more accurate means of film thickness control than is possible using a micro-balance technique or an intensity reflectance method.

  16. Dual light field and polarization imaging using CMOS diffractive image sensors.

    PubMed

    Jayasuriya, Suren; Sivaramakrishnan, Sriram; Chuang, Ellen; Guruaribam, Debashree; Wang, Albert; Molnar, Alyosha

    2015-05-15

    In this Letter we present, to the best of our knowledge, the first integrated CMOS image sensor that can simultaneously perform light field and polarization imaging without the use of external filters or additional optical elements. Previous work has shown how photodetectors with two stacks of integrated metal gratings above them (called angle sensitive pixels) diffract light in a Talbot pattern to capture four-dimensional light fields. We show, in addition to diffractive imaging, that these gratings polarize incoming light and characterize the response of these sensors to polarization and incidence angle. Finally, we show two applications of polarization imaging: imaging stress-induced birefringence and identifying specular reflections in scenes to improve light field algorithms for these scenes.

  17. Polarotactic tabanids find striped patterns with brightness and/or polarization modulation least attractive: an advantage of zebra stripes.

    PubMed

    Egri, Adám; Blahó, Miklós; Kriska, György; Farkas, Róbert; Gyurkovszky, Mónika; Akesson, Susanne; Horváth, Gábor

    2012-03-01

    The characteristic striped appearance of zebras has provoked much speculation about its function and why the pattern has evolved, but experimental evidence is scarce. Here, we demonstrate that a zebra-striped horse model attracts far fewer horseflies (tabanids) than either homogeneous black, brown, grey or white equivalents. Such biting flies are prevalent across Africa and have considerable fitness impact on potential mammalian hosts. Besides brightness, one of the likely mechanisms underlying this protection is the polarization of reflected light from the host animal. We show that the attractiveness of striped patterns to tabanids is also reduced if only polarization modulations (parallel stripes with alternating orthogonal directions of polarization) occur in horizontal or vertical homogeneous grey surfaces. Tabanids have been shown to respond strongly to linearly polarized light, and we demonstrate here that the light and dark stripes of a zebra's coat reflect very different polarizations of light in a way that disrupts the attractiveness to tabanids. We show that the attractiveness to tabanids decreases with decreasing stripe width, and that stripes below a certain size are effective in not attracting tabanids. Further, we demonstrate that the stripe widths of zebra coats fall in a range where the striped pattern is most disruptive to tabanids. The striped coat patterns of several other large mammals may also function in reducing exposure to tabanids by similar mechanisms of differential brightness and polarization of reflected light. This work provides an experimentally supported explanation for the underlying mechanism leading to the selective advantage of a black-and-white striped coat pattern.

  18. Linear polarization-discriminatory state inverter fabricated by oblique angle deposition.

    PubMed

    Park, Yong Jun; Sobahan, K M A; Kim, Jin Joo; Hwangbo, Chang Kwon

    2009-06-22

    In this paper, we report a linear polarization-discriminatory state inverter made of three-layer sculpture thin film fabricated by oblique angle deposition technique. The first and third layers are quarter-wave plates of zigzag structure and the middle of them is a circular Bragg reflector of left-handed helical structure. It is found that the normal incidence of P-polarized light on this polarization-discriminatory state inverter becomes the S-polarized light at output, while the incident S-polarized light of wavelength lying in the Bragg regime is reflected. The microstructure of the linear polarization-discriminatory state inverter is also investigated by using a scanning electron microscope.

  19. Polarimetric glucose sensing using Brewster reflection applying a rotating retarder analyzer

    NASA Astrophysics Data System (ADS)

    Boeckle, Stefan; Rovati, Luigi L.; Ansari, Rafat R.

    2003-10-01

    Previously, we proposed a polarimetric method, that exploits the Brewster-reflection with the final goal of application to the human eye (reflection off the eye lens) for non-invasive glucose sensing. The linearly polarized reflected light of this optical scheme is rotated by the glucose molecules present in the aqueous humor, thus carries the blood glucose concentration information. A proof-of-concept experimental bench-top setup is presented, applying a multi-wavelength true phase measurement approach and a rotating phase retarder as an analyzer to measure the very small rotation angles and the complete polarization state of the measurement light.

  20. Infrared reflectometry of skin: Analysis of backscattered light from different skin layers

    NASA Astrophysics Data System (ADS)

    Pleitez, Miguel A.; Hertzberg, Otto; Bauer, Alexander; Lieblein, Tobias; Glasmacher, Mathias; Tholl, Hans; Mäntele, Werner

    2017-09-01

    We have recently reported infrared spectroscopy of human skin in vivo using quantum cascade laser excitation and photoacoustic or photothermal detection for non-invasive glucose measurement . Here, we analyze the IR light diffusely reflected from skin layers for spectral contributions of glucose. Excitation of human skin by an external cavity tunable quantum cascade laser in the spectral region from 1000 to 1245 cm- 1, where glucose exhibits a fingerprint absorption, yields reflectance spectra with some contributions from glucose molecules. A simple three-layer model of skin was used to calculate the scattering intensities from the surface and from shallow and deeper layers using the Boltzmann radiation transfer equation. Backscattering of light at wavelengths around 10 μm from the living skin occurs mostly from the Stratum corneum top layers and the shallow layers of the living epidermis. The analysis of the polarization of the backscattered light confirms this calculation. Polarization is essentially unchanged; only a very small fraction (< 3%) is depolarized at 90° with respect to the laser polarization set at 0°. Based on these findings, we propose that the predominant part of the backscattered light is due to specular reflectance and to scattering from layers close to the surface. Diffusely reflected light from deeper layers undergoing one or more scattering processes would appear with significantly altered polarization. We thus conclude that a non-invasive glucose measurement based on backscattering of IR light from skin would have the drawback that only shallow layers containing some glucose at concentrations only weakly related to blood glucose are monitored.

  1. Brewster-angle 50%-50% beam splitter for p-polarized infrared light using a high-index quarter-wave layer deposited on a low-index prism.

    PubMed

    Azzam, R M A

    2017-08-10

    A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.

  2. Synthesis and Characterization of Thin Films.

    DTIC Science & Technology

    1987-07-10

    impossible in a cubic cell to have a (111) and a (020) plane only about 100 apart as is observed. Similarly, the (220) and (002) reflections cannot both lie...Representations of Polarized Light 3 1.1.1. The ellipse of polarizations 4 1.1.2. The Stokes vector and Poincare sphere 5 1.1.3. The Jones vector 7 1.2...polarized light. Three representations of polarization will be discussed: the ellipse of polarizations, the Stokes vector (and Poincare sphere), and

  3. Biological Response to the Dynamic Spectral-Polarized Underwater Light Field

    DTIC Science & Technology

    2010-01-01

    organic in nature (e.g. detrital flocs) and not re-suspended bottom sediments. 5 (v) (Dierssen) Benthic reflectance from the seagrass Thalassia ...Laboratory measurements of polarized reflectance over the leaves of the seagrass Thalassia testudinum. 15 Fig 14. Noon time

  4. Single-layer-coated surfaces with linearized reflectance versus angle of incidence: application to passive and active silicon rotation sensors

    NASA Astrophysics Data System (ADS)

    Azzam, R. M. A.; Howlader, M. M. K.; Georgiou, T. Y.

    1995-08-01

    A transparent or absorbing substrate can be coated with a transparent thin film to produce a linear reflectance-versus-angle-of-incidence response over a certain range of angles. Linearization at and near normal incidence is a special case that leads to a maximally flat response for p -polarized, s -polarized, or unpolarized light. For midrange and high-range linearization with moderate and high slopes, respectively, the best results are obtained when the incident light is s polarized. Application to a Si substrate that is coated with a SiO2 film leads to novel passive and active reflection rotation sensors. Experimental results and an error analysis of this rotation sensor are presented.

  5. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    NASA Astrophysics Data System (ADS)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  6. Assessment of tissue viability by polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  7. Micro-position sensor using faraday effect

    DOEpatents

    McElfresh, Michael [Livermore, CA; Lucas, Matthew [Pittsburgh, PA; Silveira, Joseph P [Tracy, CA; Groves, Scott E [Brentwood, CA

    2007-02-27

    A micro-position sensor and sensing system using the Faraday Effect. The sensor uses a permanent magnet to provide a magnetic field, and a magneto-optic material positioned in the magnetic field for rotating the plane of polarization of polarized light transmitted through the magneto-optic material. The magnet is independently movable relative to the magneto-optic material so as to rotate the plane of polarization of the polarized light as a function of the relative position of the magnet. In this manner, the position of the magnet relative to the magneto-optic material may be determined from the rotated polarized light. The sensing system also includes a light source, such as a laser or LED, for producing polarized light, and an optical fiber which is connected to the light source and to the magneto-optic material at a sensing end of the optical fiber. Processing electronics, such as a polarimeter, are also provided for determining the Faraday rotation of the plane of polarization of the back-reflected polarized light to determine the position of the magnet relative to the sensing end of the optical fiber.

  8. Scattering and polarization properties of the scarab beetle Cyphochilus insulanus cuticle.

    PubMed

    Åkerlind, Christina; Arwin, Hans; Hallberg, Tomas; Landin, Jan; Gustafsson, Johan; Kariis, Hans; Järrendahl, Kenneth

    2015-07-01

    Optical properties of natural photonic structures can inspire material developments in diversified areas, such as the spectral design of surfaces for camouflage. Here, reflectance, scattering, and polarization properties of the cuticle of the scarab beetle Cyphochilus insulanus are studied with spectral directional hemispherical reflectance, bidirectional reflection distribution function (BRDF) measurements, and Mueller-matrix spectroscopic ellipsometry (MMSE). At normal incidence, a reflectance (0.6-0.75) is found in the spectral range of 400-1600 nm and a weaker reflectance <0.2 in the UV range as well as for wavelengths >1600  nm. A whiteness of W=42 is observed for mainly the elytra of the beetle. Chitin is a major constituent of the insect cuticle which is verified by the close similarity of the measured IR spectrum to that of α-chitin. The BRDF signal shows close-to-Lambertian properties of the beetle for visible light at small angles of incidence. From the MMSE measurement it is found that the beetles appear as dielectric reflectors reflecting linearly polarized light at oblique incidence with low gloss and a low degree of polarization. The measured beetle properties are properties that can be beneficial in a camouflage material.

  9. Mueller matrix of a dicot leaf

    NASA Astrophysics Data System (ADS)

    Vanderbilt, Vern C.; Daughtry, Craig S. T.

    2012-06-01

    A better understanding of the information contained in the spectral, polarized bidirectional reflectance and transmittance of leaves may lead to improved techniques for identifying plant species in remotely sensed imagery as well as better estimates of plant moisture and nutritional status. Here we report an investigation of the optical polarizing properties of several leaves of one species, Cannabis sativa, represented by a 3x3 Mueller matrix measured over the wavelength region 400-2,400 nm. Our results support the hypothesis that the leaf surface alters the polarization of incident light - polarizing off nadir, unpolarized incident light, for example - while the leaf volume tends to depolarized incident polarized light.

  10. Silver nanocube aggregation gradient materials in search for total internal reflection with high phase sensitivity

    NASA Astrophysics Data System (ADS)

    König, Tobias A. F.; Ledin, Petr A.; Russell, Michael; Geldmeier, Jeffrey A.; Mahmoud, Mahmoud. A.; El-Sayed, Mostafa A.; Tsukruk, Vladimir V.

    2015-03-01

    We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging.We fabricated monolayer coatings of a silver nanocube aggregation to create a step-wise optical strip by applying different surface pressures during slow Langmuir-Blodgett deposition. The varying amount of randomly distributed nanocube aggregates with different surface coverages in gradient manner due to changes in surface pressure allows for continuous control of the polarization sensitive absorption of the incoming light over a broad optical spectrum. Optical characterization under total internal reflection conditions combined with electromagnetic simulations reveal that the broadband light absorption depends on the relative orientation of the nanoparticles to the polarization of the incoming light. By using computer simulations, we found that the electric field vector of the s-polarized light interacts with the different types of silver nanocube aggregations to excite different plasmonic resonances. The s-polarization shows dramatic changes of the plasmonic resonances at different angles of incidence (shift of 64 nm per 10° angle of incidence). With a low surface nanocube coverage (from 5% to 20%), we observed a polarization-selective high absorption of 80% (with an average 75%) of the incoming light over a broad optical range in the visible region from 400 nm to 700 nm. This large-area gradient material with location-dependent optical properties can be of particular interest for broadband light absorption, phase-sensitive sensors, and imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06430e

  11. Imaging Polarimetry in Central Serous Chorioretinopathy

    PubMed Central

    MIURA, MASAHIRO; ELSNER, ANN E.; WEBER, ANKE; CHENEY, MICHAEL C.; OSAKO, MASAHIRO; USUI, MASAHIKO; IWASAKI, TAKUYA

    2006-01-01

    PURPOSE To evaluate a noninvasive technique to detect the leakage point of central serous chorioretinopathy (CSR), using a polarimetry method. DESIGN Prospective cohort study. METHODS SETTING Institutional practice. PATIENTS We examined 30 eyes of 30 patients with CSR. MAIN OUTCOME MEASURES Polarimetry images were recorded using the GDx-N (Laser Diagnostic Technologies). We computed four images that differed in their polarization content: a depolarized light image, an average reflectance image, a parallel polarized light image, and a birefringence image. Each polarimetry image was compared with abnormalities seen on fluorescein angiography. RESULTS In all eyes, leakage area could be clearly visualized as a bright area in the depolarized light images. Michelson contrasts for the leakage areas were 0.58 ± 0.28 in the depolarized light images, 0.17 ± 0.11 in the average reflectance images, 0.09 ± 0.09 in the parallel polarized light images, and 0.11 ± 0.21 in the birefringence images from the same raw data. Michelson contrasts in depolarized light images were significantly higher than for the other three images (P < .0001, for all tests, paired t test). The fluid accumulated in the retina was well-visualized in the average and parallel polarized light images. CONCLUSIONS Polarization-sensitive imaging could readily localize the leakage point and area of fluid in CSR. This may assist with the rapid, noninvasive assessment of CSR. PMID:16376644

  12. Solar Lyman-Alpha Polarization Observation of the Chromosphere and Transition Region by the Sounding Rocket Experiment CLASP

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shinnosuke; Hara, Hiroshi; Suematsu, Yoshinori; Giono, Gabriel; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman a line (Ly(alpha) line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly(alpha) lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approx. 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly(alpha) line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly(alpha) line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (> 50%) in Lya line, visible light is a multilayer coating be kept to a low reflectance (<5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about s-polarized light. Other reflective optical elements (the secondary mirror, the diffraction gratingcollector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).

  13. Topologically trivial and nontrivial edge bands in graphene induced by irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Cai, Zhi-Jun; Wang, Rui-Qiang; Bai, Yan-Kui

    2016-08-01

    We proposed a minimal model to describe the Floquet band structure of two-dimensional materials with light-induced resonant inter-band transition. We applied it to graphene to study the band features caused by the light irradiation. Linearly polarized light induces pseudo gaps (gaps are functions of wavevector), and circularly polarized light causes real gaps on the quasi-energy spectrum. If the polarization of light is linear and along the longitudinal direction of zigzag ribbons, flat edge bands appear in the pseudo gaps, and if it is in the lateral direction of armchair ribbons, curved edge bands can be found. For the circularly polarized cases, edge bands arise and intersect in the gaps of both types of ribbons. The edge bands induced by the circularly polarized light are helical and those by linearly polarized light are topologically trivial ones. The Chern number of the Floquet band, which reflects the number of pairs of helical edge bands in graphene ribbons, can be reduced into the winding number at resonance.

  14. Coding and decoding in a point-to-point communication using the polarization of the light beam.

    PubMed

    Kavehvash, Z; Massoumian, F

    2008-05-10

    A new technique for coding and decoding of optical signals through the use of polarization is described. In this technique the concept of coding is translated to polarization. In other words, coding is done in such a way that each code represents a unique polarization. This is done by implementing a binary pattern on a spatial light modulator in such a way that the reflected light has the required polarization. Decoding is done by the detection of the received beam's polarization. By linking the concept of coding to polarization we can use each of these concepts in measuring the other one, attaining some gains. In this paper the construction of a simple point-to-point communication where coding and decoding is done through polarization will be discussed.

  15. Light modulating device

    DOEpatents

    Rauh, R. David; Goldner, Ronald B.

    1989-01-01

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

  16. Light modulating device

    DOEpatents

    Rauh, R.D.; Goldner, R.B.

    1989-12-26

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  17. Analysis of polarization characteristics of plant canopies using ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sid'ko, A. F.; Botvich, I. Yu.; Pisman, T. I.; Shevyrnogov, A. P.

    2014-09-01

    The paper presents results and analysis of a study on polarized characteristics of the reflectance factor of different plant canopies under field conditions, using optical remote sensing techniques. Polarization characteristics were recorded from the elevated work platform at heights of 10-18 m in June and July. Measurements were performed using a double-beam spectrophotometer with a polarized light filter attachment, within the spectral range from 400 to 820 nm. The viewing zenith angle was below 20 degree. Birch (Betila pubescens), pine (Pinus sylvestris L.), wheat (Triticum acstivum) [L.] crops, corn (Zea mays L. ssp. mays) crops, and various grass canopies were used in this study. The following polarization characteristics were studied: the reflectance factor of the canopy with the polarizer adjusted to transmit the maximum and minimum amounts of light (Rmax and Rmin), polarized component of the reflectance factor (Rq), and the degree of polarization (Р). Wheat, corn, and grass canopies have higher Rmax and Rmin values than forest plants. The Rq and P values are higher for the birch than for the pine within the wavelength range between 430 and 740 nm. The study shows that polarization characteristics of plant canopies may be used as an effective means of decoding remote sensing data.

  18. Spectroscopic ellipsometer based on direct measurement of polarization ellipticity.

    PubMed

    Watkins, Lionel R

    2011-06-20

    A polarizer-sample-Wollaston prism analyzer ellipsometer is described in which the ellipsometric angles ψ and Δ are determined by direct measurement of the elliptically polarized light reflected from the sample. With the Wollaston prism initially set to transmit p- and s-polarized light, the azimuthal angle P of the polarizer is adjusted until the two beams have equal intensity. This condition yields ψ=±P and ensures that the reflected elliptically polarized light has an azimuthal angle of ±45° and maximum ellipticity. Rotating the Wollaston prism through 45° and adjusting the analyzer azimuth until the two beams again have equal intensity yields the ellipticity that allows Δ to be determined via a simple linear relationship. The errors produced by nonideal components are analyzed. We show that the polarizer dominates these errors but that for most practical purposes, the error in ψ is negligible and the error in Δ may be corrected exactly. A native oxide layer on a silicon substrate was measured at a single wavelength and multiple angles of incidence and spectroscopically at a single angle of incidence. The best fit film thicknesses obtained were in excellent agreement with those determined using a traditional null ellipsometer.

  19. [Measurement and analysis of reflected information from crops canopy suffering from wind disaster influence].

    PubMed

    Bao, Yu-Long; Zhang, Ji-Quan; Liu, Xiao-Jing; Wang, Yong-Fang; Ma, Dong-Lai; Sun, Zhong-Qiu

    2013-04-01

    The corn in the grain filling stage fell over in the central region of Jilin province by the Typhoon Bolaven influence. In order to determine the impact of falling over corn canopy on the reflected information, the hyperspectral reflectance was detected at different viewing zenith angles, at the same time, the polarized reflection was also measured. The results from the analysis by combining the reflection and polarization from corn canopy showed that the reflection of falling over corn is low in visible, while increases in the near infrared wavelength. The reflection from falling over corn canopy was more anisotropic than stand-up corn canopy. The reflected light was highly polarized, the polarization of corn canopy provided the probability for distinguishing between falling over corn and stand-up corn. This research provides a basis for estimating the disaster area and lost units.

  20. Gap plasmon-based metasurfaces: fundamentals and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pors, Anders

    2016-04-01

    Plasmonic metasurfaces, which can be considered as the two-dimensional analog of metal-based metamaterials, have recently attracted considerable attention due to the possibility to fully control the reflected or transmitted light, while featuring relatively low losses even at optical wavelengths and being suitable for planar fabrication techniques. Among all the different design approaches, one particular configuration, consisting of a subwavelength thin dielectric spacer sandwiched between an optically thick metal film and an array of metal nanobricks (also known as nanopatches), has gained awareness from researchers working in practical any frequency regime as its realization only requires on step of lithography, yet with the possibility to fully control the amplitude and phase of the reflected light. At optical wavelengths, the full control of the reflected light is closely associated with gap surface plasmon (GSP) resonances and, hence, the configuration is also known as GSP-based metasurface. In this work, we highlight the connection between the properties of GSP modes and the optical response of GSP-based metasurfaces, particularly discussing the possibility to independently control either the reflection phases for two orthogonal polarizations or both the amplitude and phase of the reflected light for one polarization by proper choice of geometrical and material parameters [1]. Having obtained thorough insight into the optical response of GSP-based metasurfaces, we design and realize at optical and near-infrared wavelengths a broad range of inhomogeneous metasurfaces targeting different applications. For example, we exemplify the control of reflection amplitude by performing plasmonic color printing on a subwavelength scale [2], while full control of reflection phases for orthogonal polarizations are illustrated by the realization of unidirectional polarization-controlled surface plasmon polariton couplers [3] and compact polarimeters [4]. Finally, the simultaneous control of the amplitude and phase of reflected light allow us to perform calculus operations, such as differentiation and integration, on the incident light [5], which signifies the possibility to do optical signal processing using GSP-based metasurfaces. References: 1. A. Pors and S. I. Bozhevolnyi, "Gap plasmon-based phase-amplitude metasurfaces: material constraints", Opt. Mater. Express 5, 2448-2458 (2015). 2. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, "Subwavelength plasmonic color printing for ambient use", Nano Lett. 14, 783-787 (2014). 3. A. Pors, M. G. Nielsen, T. Bernardin, J.-C. Weeber, and S. I. Bozhevolnyi, "Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons", Light: Sci. Applications 3, e197 (2014). 4. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, "Plasmonic metagratings for simultaneous determination of Stokes parameters", Optica 2, 716-723 (2015). 5. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, "Analog computing using reflective plasmonic metasurfaces", Nano Lett. 15, 791-797 (2015).

  1. EFFECT OF CHERENKOV LIGHT POLARIZATION ON TOTAL REFLECTION COUNTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, J.D.; Duteil, P.; Leontic, B.

    1963-01-01

    A rugged total internal reflection counter with a 3- to 5cm thick compact radiator was used at the CERN proton synchrotron for beam analysis. The threshold behavior of this counter was compared when filled with glycerol and with turpentine. Turpentine is optically active and rotates the plane of polarization about 7 un. Concent 85% /cm. Figures illustrate the effect of this polarization rotation. (A.G.W.)

  2. Polarized reflectance and transmittance properties of windblown sea surfaces.

    PubMed

    Mobley, Curtis D

    2015-05-20

    Generation of random sea surfaces using wave variance spectra and Fourier transforms is formulated in a way that guarantees conservation of wave energy and fully resolves wave height and slope variances. Monte Carlo polarized ray tracing, which accounts for multiple scattering between light rays and wave facets, is used to compute effective Mueller matrices for reflection and transmission of air- or water-incident polarized radiance. Irradiance reflectances computed using a Rayleigh sky radiance distribution, sea surfaces generated with Cox-Munk statistics, and unpolarized ray tracing differ by 10%-18% compared with values computed using elevation- and slope-resolving surfaces and polarized ray tracing. Radiance reflectance factors, as used to estimate water-leaving radiance from measured upwelling and sky radiances, are shown to depend on sky polarization, and improved values are given.

  3. Anisotropic Babinet-Invertible Metasurfaces to Realize Transmission-Reflection Switching for Orthogonal Polarizations of Light

    NASA Astrophysics Data System (ADS)

    Nakata, Yosuke; Urade, Yoshiro; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo Wada; Kitano, Masao

    2016-10-01

    The electromagnetic properties of an extremely thin metallic checkerboard drastically change from resonant reflection (transmission) to resonant transmission (reflection) when the local electrical conductivity at the interconnection points of the checkerboard is switched. To date, such critical transitions of metasurfaces have been applied only when they have fourfold rotational symmetry, and their application to polarization control, which requires anisotropy, has been unexplored. To overcome this applicability limitation and open up alternative pathways for dynamic deep-subwavelength polarization control by utilizing critical transitions of checkerboardlike metasurfaces, we introduce a universal class of anisotropic Babinet-invertible metasurfaces enabling transmission-reflection switching for each orthogonally polarized wave. As an application of anisotropic Babinet-invertible metasurfaces, we experimentally realize a reconfigurable terahertz polarizer whose transmitting axis can be dynamically rotated by 90°.

  4. Extended bidirectional reflectance distribution function for polarized light scattering from subsurface defects under a smooth surface.

    PubMed

    Shen, Jian; Deng, Degang; Kong, Weijin; Liu, Shijie; Shen, Zicai; Wei, Chaoyang; He, Hongbo; Shao, Jianda; Fan, Zhengxiu

    2006-11-01

    By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions.

  5. Spatial distribution of polarization over the disks of Venus, Jupiter, Saturn, and the moon

    NASA Technical Reports Server (NTRS)

    Fountain, J. W.

    1974-01-01

    The method of photographic subtraction, which superposes positive and negative photographs taken with the analyzer rotated through 90 deg, is used to analyze polarization photographs of Venus, Jupiter, Saturn, and the moon. For Venus, near 90 deg phase angle, variation in polarization in ultraviolet light appears to correspond generally with the position of the cloud markings. The northern hemisphere of Saturn shows higher polarization in blue light than does the rest of the planet. The polarization of the moon is shown to deviate significantly from Umov's law for reciprocity of polarization and reflectivity in certain regions.

  6. Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection–polarization signals

    PubMed Central

    Kriska, György; Csabai, Zoltán; Boda, Pál; Malik, Péter; Horváth, Gábor

    2006-01-01

    We reveal here the visual ecological reasons for the phenomenon that aquatic insects often land on red, black and dark-coloured cars. Monitoring the numbers of aquatic beetles and bugs attracted to shiny black, white, red and yellow horizontal plastic sheets, we found that red and black reflectors are equally highly attractive to water insects, while yellow and white reflectors are unattractive. The reflection–polarization patterns of black, white, red and yellow cars were measured in the red, green and blue parts of the spectrum. In the blue and green, the degree of linear polarization p of light reflected from red and black cars is high and the direction of polarization of light reflected from red and black car roofs, bonnets and boots is nearly horizontal. Thus, the horizontal surfaces of red and black cars are highly attractive to red-blind polarotactic water insects. The p of light reflected from the horizontal surfaces of yellow and white cars is low and its direction of polarization is usually not horizontal. Consequently, yellow and white cars are unattractive to polarotactic water insects. The visual deception of aquatic insects by cars can be explained solely by the reflection–polarizational characteristics of the car paintwork. PMID:16769639

  7. Interactions of light with rough dielectric surfaces - Spectral reflectance and polarimetric properties

    NASA Technical Reports Server (NTRS)

    Yon, S. A.; Pieters, C. M.

    1988-01-01

    The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.

  8. Omnidirectional narrow optical filters for circularly polarized light in a nanocomposite structurally chiral medium.

    PubMed

    Avendaño, Carlos G; Palomares, Laura O

    2018-04-20

    We consider the propagation of electromagnetic waves throughout a nanocomposite structurally chiral medium consisting of metallic nanoballs randomly dispersed in a structurally chiral material whose dielectric properties can be represented by a resonant effective uniaxial tensor. It is found that an omnidirectional narrow pass band and two omnidirectional narrow band gaps are created in the blue optical spectrum for right and left circularly polarized light, as well as narrow reflection bands for right circularly polarized light that can be controlled by varying the light incidence angle and the filling fraction of metallic inclusions.

  9. Exploiting passive polarimetric imagery for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Vimal Thilak Krishna, Thilakam

    Polarization is a property of light or electromagnetic radiation that conveys information about the orientation of the transverse electric and magnetic fields. The polarization of reflected light complements other electromagnetic radiation attributes such as intensity, frequency, or spectral characteristics. A passive polarization based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. The polarization due to surface reflections from such objects contains information about the targets that can be exploited in remote sensing applications such as target detection, target classification, object recognition and shape extraction/recognition. In recent years, there has been renewed interest in the use of passive polarization information in remote sensing applications. The goal of our research is to design image processing algorithms for remote sensing applications by utilizing physics-based models that describe the polarization imparted by optical scattering from an object. In this dissertation, we present a method to estimate the complex index of refraction and reflection angle from multiple polarization measurements. This method employs a polarimetric bidirectional reflectance distribution function (pBRDF) that accounts for polarization due to specular scattering. The parameters of interest are derived by utilizing a nonlinear least squares estimation algorithm, and computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Furthermore, laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle. We also study the use of extracted index of refraction as a feature vector in designing two important image processing applications, namely image segmentation and material classification so that the resulting systems are largely invariant to illumination source location. This is in contrast to most passive polarization-based image processing algorithms proposed in the literature that employ quantities such as Stokes vectors and the degree of polarization and which are not robust to changes in illumination conditions. The estimated index of refraction, on the other hand, is invariant to illumination conditions and hence can be used as an input to image processing algorithms. The proposed estimation framework also is extended to the case where the position of the observer (camera) moves between measurements while that of the source remains fixed. Finally, we explore briefly the topic of parameter estimation for a generalized model that accounts for both specular and volumetric scattering. A combination of simulation and experimental results are provided to evaluate the effectiveness of the above methods.

  10. A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Natraj, Vijay; Zhang, Xi; Swain, Mark R.; Wiktorowicz, Sloane J.; Yung, Yuk L.

    2016-01-01

    We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.

  11. Cavity-locked ring down spectroscopy

    DOEpatents

    Zare, Richard N.; Paldus, Barbara A.; Harb, Charles C.; Spence, Thomas

    2000-01-01

    Distinct locking and sampling light beams are used in a cavity ring-down spectroscopy (CRDS) system to perform multiple ring-down measurements while the laser and ring-down cavity are continuously locked. The sampling and locking light beams have different frequencies, to ensure that the sampling and locking light are decoupled within the cavity. Preferably, the ring-down cavity is ring-shaped, the sampling light is s-polarized, and the locking light is p-polarized. Transmitted sampling light is used for ring-down measurements, while reflected locking light is used for locking in a Pound-Drever scheme.

  12. Goos-Hänchen shift of partially coherent light fields in epsilon-near-zero metamaterials

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Qamar, Sajid; Lee, Ray-Kuang

    2016-05-01

    The Goos-Hänchen (GH) shifts in the reflected light are investigated both for p and s polarized partial coherent light beams incident on epsilon-near-zero (ENZ) metamaterials. In contrary to the coherent counterparts, the magnitude of GH shift becomes non-zero for p polarized partial coherent light beam; while GH shift can be relatively large with a small degree of spatial coherence for s polarized partial coherent beam. Dependence on the beam width and the permittivity of ENZ metamaterials is also revealed for partial coherent light fields. Our results on the GH shifts provide a direction on the applications for partial coherent light sources in ENZ metamaterials.

  13. Optical anisotropy and domain structure of multiferroic Ni-Mn-Ga and Co-Ni-Ga Heusler-type alloys

    NASA Astrophysics Data System (ADS)

    Ivanova, A. I.; Gasanov, O. V.; Kaplunova, E. I.; Kalimullina, E. T.; Zalyotov, A. B.; Grechishkin, R. M.

    2015-03-01

    A study is made of the reflectance anisotropy of martensitic and magnetic domains in ferromagnetic shape memory alloys (FSMA) Ni-Mn-Ga and Co-Ni-Ga. The reflectance of metallographic sections of these alloys was measured in the visible with the aid of standard inverted polarized light microscope with a 360° rotatable specimen stage. Calculations are presented for the estimation of image contrast values between neighboring martensite twins. Qualitative and quantitative observations and angular measurements in reflected polarized light proved to be useful for the analysis of specific features of the martensite microstructure of multiferroic materials.

  14. Mutual transformation of light waves by reflection holograms in photorefractive crystals of the 4-bar 3m symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naunyka, V. N.; Shepelevich, V. V., E-mail: vasshep@inbox.ru

    2011-05-15

    The mutual transformation of light waves in the case of their simultaneous diffraction from a bulk reflection phase hologram, which was formed in a cubic photorefractive crystal of the 4-bar 3m symmetry class, has been studied. The indicator surfaces of the polarization-optimized values of the relative intensity of the object wave, which make it possible to determine the amplification of this wave for any crystal cut, are constructed. The linear polarization azimuths at which the energy exchange between the light waves reaches a maximum are found numerically for crystals of different cuts.

  15. Polarization of Light by Leaves and Plant Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.

    2006-01-01

    This talk will focus first on the information contained in the surface-scattered light from leaves, plant canopies and surface waters. This light is in general polarized and depends upon surface roughness. Thus, for example, - The surface reflection from shiny green leaves measured in the specular direction shows no chlorophyll absorption bands, no 'red edge.' - Conversely, the degree of linear polarization of such light displays marked variation with wavelength having local maxima in the chlorophyll absorption bands and an inverted red edge. - Plant canopies with shiny leaves distributed in angle like the area on a sphere, specularly reflect sunlight in the subsolar or specular direction- but also in every other view direction. - Canopies of green plants may appear white not green when viewed obliquely toward the sun. - In a light to moderate wind, the often blindingly bright glitter of sunlight off smooth water surfaces provides a strong, angularly narrow signature reflection characteristic of inundated vegetated areas that are big sources of atmospheric methane, a climatically important greenhouse gas. (Conversely, a blindingly bright glitter-type reflection is uncharacteristic of upland or wind ruffled open water areas that are poor sources of atmospheric methane.) Because some of these results may be 'head scratchers,' it's always important to properly calibrate ones instruments. Indeed, as the second portion of the talk will show, the characteristics of the light measuring instrument, particularly its entrance aperture, may affect the results and should be taken into account during across-instrument data comparisons.

  16. Addition of Adapted Optics towards obtaining a quantitative detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Yust, Brian; Obregon, Isidro; Tsin, Andrew; Sardar, Dhiraj

    2009-04-01

    An adaptive optics system was assembled for correcting the aberrated wavefront of light reflected from the retina. The adaptive optics setup includes a superluminous diode light source, Hartmann-Shack wavefront sensor, deformable mirror, and imaging CCD camera. Aberrations found in the reflected wavefront are caused by changes in the index of refraction along the light path as the beam travels through the cornea, lens, and vitreous humour. The Hartmann-Shack sensor allows for detection of aberrations in the wavefront, which may then be corrected with the deformable mirror. It has been shown that there is a change in the polarization of light reflected from neovascularizations in the retina due to certain diseases, such as diabetic retinopathy. The adaptive optics system was assembled towards the goal of obtaining a quantitative measure of onset and progression of this ailment, as one does not currently exist. The study was done to show that the addition of adaptive optics results in a more accurate detection of neovascularization in the retina by measuring the expected changes in polarization of the corrected wavefront of reflected light.

  17. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C. (Principal Investigator)

    1985-01-01

    The specular reflection process is shown to be a key aspect of radiation transfer by plant canopies. Polarization measurements are demonstrated as the tool for determining the specular and diffuse portions of the canopy radiance. The magnitude of the specular fraction of the reflectance is significant compared to the magnitude of the diffuse fraction. Therefore, it is necessary to consider specularly reflected light in developing and evaluating light-canopy interaction models for wheat canopies. Models which assume leaves are diffuse reflectors correctly predict only the diffuse fraction of the canopy reflectance factor. The specular reflectance model, when coupled with a diffuse leaf model, would predict both the specular and diffuse portions of the reflectance factor. The specular model predicts and the data analysis confirms that the single variable, angle of incidence of specularly reflected sunlight on the leaf, explains much of variation in the polarization data as a function of view-illumination directions.

  18. Reduction of background clutter in structured lighting systems

    DOEpatents

    Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.

    2010-06-22

    Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.

  19. Interferometric apparatus for ultra-high precision displacement measurement

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2004-01-01

    A high-precision heterodyne interferometer measures relative displacement by creating a thermally-insensitive system generally not subject to polarization leakage. By using first and second light beams separated by a small frequency difference (.DELTA.f), beams of light at the first frequency (f.sub.0) are reflected by co-axial mirrors, the first mirror of which has a central aperture through which the light is transmitted to and reflected by the second mirror. Prior to detection, the light beams from the two mirrors are combined with light of the second and slightly different frequency. The combined light beams are separated according to the light from the mirrors. The change in phase (.DELTA..phi.) with respect to the two signals is proportional to the change in distance of Fiducial B by a factor of wavelength (.lambda.) divided by 4.pi. (.DELTA.L=.lambda..DELTA..phi.1/(4.pi.)). In a second embodiment, a polarizing beam splitting system can be used.

  20. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections.

    PubMed

    Thorman, A; Michael, C; De Bock, M; Howard, J

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  1. Optical detection of oil on water

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Arvesen, J. C.

    1973-01-01

    Three radiometric techniques utilizing sunlight reflected and backscattered from water bodies have potential application for remote sensing of oil spills. Oil on water can be detected by viewing perpendicular polarization component of reflected light or difference between polarization components. Best detection is performed in ultraviolet or far-red portions of spectrum and in azimuth directions toward or opposite sun.

  2. Near perfect light trapping in 2D metal nanotrench gratings and its application for sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Junpeng; Guo, Hong; Li, Zhitong

    2016-09-01

    In this work, a 2D metallic nano-trench array was fabricated on gold metal surface by using an e-beam lithography patterning and etching process. Optical reflectance from the device was measured at oblique angles of incidence for TE and TM polarization. Near perfect light trapping was observed at different wavelengths for TE and TM polarization at oblique angle of incidence. As angle of incidence increases, light trapping wavelength has a red-shift for TM polarization and blue shift for TE polarization. The fabricated nano-trench device was also investigated for chemical sensor application. It was found that by varying the angle of incidence, the sensitivity changes with opposite trends for TE and TM polarization. Sensor sensitivity increases for TM polarization and decreases for TE polarization with increase of the oblique incident angle.

  3. Polarization-based index of refraction and reflection angle estimation for remote sensing applications.

    PubMed

    Thilak, Vimal; Voelz, David G; Creusere, Charles D

    2007-10-20

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  4. Polarization-based index of refraction and reflection angle estimation for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Voelz, David G.; Creusere, Charles D.

    2007-10-01

    A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.

  5. Vector Sky Glint Corrections for Above Surface Retrieval of the Subsurface Polarized Light Field

    NASA Astrophysics Data System (ADS)

    Gilerson, A.; Foster, R.; McGilloway, A.; Ibrahim, A.; El-habashi, A.; Carrizo, C.; Ahmed, S.

    2016-02-01

    Knowledge of the underwater light field is fundamental to determining the health of the world's oceans and coastal regions. For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of marine ecosystem health. As the demand for retrieval accuracy rises, use of the polarized nature of light as an additional remote sensing tool is becoming necessary. In order to observe the underwater polarized light field from above the surface (for ship, shore, or satellite applications), a method of correcting the above water signal for the effects of polarized surface-reflected skylight is needed. For three weeks in July-August 2014, the NASA Ship Aircraft Bio-Optical Research (SABOR) cruise continuously observed the polarized radiance of the ocean and the sky using a HyperSAS-POL system. The system autonomously tracks the Sun position and the heading of the research vessel in order to maintain a fixed relative solar azimuth angle (i.e. ±90°) and therefore avoid the specular reflection of the sunlight. Additionally, in-situ inherent optical properties (IOPs) were continuously acquired using a set of instrument packages modified for underway measurement, hyperspectral radiometric measurements were taken manually at all stations, and an underwater polarimeter was deployed when conditions permitted. All measurements, above and below the sea surface, were combined and compared in an effort to first develop a glint (sky + Sun) correction scheme for the upwelling polarized signal from a wind-driven ocean surface and compare with one assuming that the ocean surface is flat. Accurate retrieval of the subsurface vector light field is demonstrated through comparisons with polarized radiative transfer codes and direct measurements made by the underwater polarimeter.

  6. Compact polarizing beam splitter based on a metal-insulator-metal inserted into multimode interference coupler.

    PubMed

    Chheang, Vuthy; Lee, Tae-Kyeong; Oh, Geum-Yoon; Kim, Hong-Seung; Lee, Byeong-Hyeon; Kim, Doo Gun; Choi, Young-Wan

    2013-09-09

    We propose and analyze a compact polarizing beam splitter (PBS) based on a metal-insulator-metal (MIM) structure inserted into a multimode interference coupler (MMI). Owing to the MIM structure, the TE polarized state is reflected by the cut-off condition while the TM polarized state is transmitted by the surface plasmon polariton, and the two polarized states can thus be separated. In this paper, the dependence of the reflected TE and transmitted TM field intensities on the MIM length and the gap thickness has been studied systematically. The proposed PBS structure, with a total size of 4 × 0.7 × 44 µm(3) is designed with MIM length, gap thickness, and metal thickness of 0.6 µm, 0.5 µm, and 0.05 µm, respectively. In the designed PBS, the transmittance for the TM polarized light, reflectance for the TE polarized light, extinction ratio, and insertion losses of the TE and TM modes are obtained using a 3D finite-difference time-domain method to be 0.9, 0.88, 12.55 dB, and 1.1 dB and 0.9 dB, respectively. The designed PBS has a much shorter length, 44 µm, compared to previous PBS devices.

  7. Fine tuning of the dichroic behavior of Bragg reflectors based on anisotropically nanostructured silicon

    NASA Astrophysics Data System (ADS)

    Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.

    2003-05-01

    Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.

  8. Polarization sensitivity testing of off-plane reflection gratings

    NASA Astrophysics Data System (ADS)

    Marlowe, Hannah; McEntaffer, Randal L.; DeRoo, Casey T.; Miles, Drew M.; Tutt, James H.; Laubis, Christian; Soltwisch, Victor

    2015-09-01

    Off-Plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  9. Polarization Imaging and Insect Vision

    ERIC Educational Resources Information Center

    Green, Adam S.; Ohmann, Paul R.; Leininger, Nick E.; Kavanaugh, James A.

    2010-01-01

    For several years we have included discussions about insect vision in the optics units of our introductory physics courses. This topic is a natural extension of demonstrations involving Brewster's reflection and Rayleigh scattering of polarized light because many insects heavily rely on optical polarization for navigation and communication.…

  10. Enhanced chiral response from the Fabry-Perot cavity coupled meta-surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Ze-Jian; Hu, De-Jiao; Gao, Fu-Hua; Hou, Yi-Dong

    2016-08-01

    The circular dichroism (CD) signal of a two-dimensional (2D) chiral meta-surface is usually weak, where the difference between the transmitted (or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry-Perot type resonance, which interacts with the localized surface plasmonic resonance (LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc. Project supported by the National Natural Science Foundation of China (Grant No. 61377054).

  11. Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures.

    PubMed

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-11-28

    Recent advances in nanofabrication techniques are opening new frontiers in holographic devices, with the capability to integrate various optical functions in a single device. However, while most efficient holograms are achieved in reflection-mode configurations, they are in general opaque because of the reflective substrate that must be used, and therefore, have limited applicability. Here, we present a semi-transparent, reflective computer-generated hologram that is circularly-polarization dependent, and reconstructs different wavefronts when viewed from different sides. The integrated functionality is realized using a single thin-film of liquid crystal with a self-organized helical structure that Bragg reflects circularly-polarized light over a certain band of wavelengths. Asymmetry depending on the viewing side is achieved by exploiting the limited penetration depth of light in the helical structure as well as the nature of liquid crystals to conform to different orientational patterns imprinted on the two substrates sandwiching the material. Also, because the operation wavelength is determined by the reflection band position, pseudo-color holograms can be made by simply stacking layers with different designs. The unique characteristics of this hologram may find applications in polarization-encoded security holograms and see-through holographic signage where different information need to be displayed depending on the viewing direction.

  12. Why `false' colours are seen by butterflies

    NASA Astrophysics Data System (ADS)

    Kelber, Almut

    1999-11-01

    Light can be described by its intensity, spectral distribution and polarization, and normally a visual system analyses these independently to extract the maximum amount of information. Here I present behavioural evidence that this does not happen in butterflies, whose choice of oviposition substrate on the basis of its colour appears to be strongly influenced by the direction of polarization of the light reflected from the substrate. To my knowledge, this is the first record of `false' colours being perceived as a result of light polarization. This detection of false colours may help butterflies to find optimal oviposition sites.

  13. Analysis methods for polarization state and energy transmission of rays propagating in optical systems

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Liu, Qiangsheng; Cen, Zhaofeng; Li, Xiaotong

    2010-11-01

    Polarization state of only completely polarized light can be analyzed by some software, ZEMAX for example. Based on principles of geometrical optics, novel descriptions of the light with different polarization state are provided in this paper. Differential calculus is well used for saving the polarization state and amplitudes of sampling rays when ray tracing. The polarization state changes are analyzed in terms of several typical circumstances, such as Brewster incidence, total reflection. Natural light and partially polarized light are discussed as an important aspect. Further more, a computing method including composition and decomposition of sampling rays at each surface is also set up to analyze the energy transmission of the rays for optical systems. Adopting these analysis methods mentioned, not only the polarization state changes of the incident rays can be obtained, but also the energy distributions can be calculated. Since the energy distributions are obtained, the surface with the most energy loss will be found in the optical system. The energy value and polarization state of light reaching the image surface will also be available. These analysis methods are very helpful for designing or analyzing optical systems, such as analyzing the energy of stray light in high power optical systems, researching the influences of optical surfaces to rays' polarization state in polarization imaging systems and so on.

  14. Double-use linear polarization convertor using hybrid metamaterial based on VO2 phase transition in the terahertz region

    NASA Astrophysics Data System (ADS)

    Zou, Huanling; Xiao, Zhongyin; Li, Wei; Li, Chuan

    2018-04-01

    A number of polarization convertors based on metamaterials(MMs) have been investigated recently, but no one has proposed a high-efficiency linear polarization transformer both in transmission and reflection modes. Here, a bilayered MM embedded with vanadium dioxide (VO2) composed of a pair of sloping gold patches, bottom hybrid layer and a dielectric spacer is proposed as a double-use linear polarization convertor. It has been demonstrated numerically that this device has advantages of switching between transmission polarization conversion and reflection polarization conversion based on the phase transition of the VO2 film in the terahertz (THz) regime and the polarization conversion ratios (PCR) in both cases are higher than 90% in wide bands. The simulated linear polarization transmission/reflection coefficients and the surface current distributions give insight into the mechanism of the linear polarization conversions. Moreover, the physical mechanism of polarization sensitivity of the designed structure is investigated by the distributions of electric field. The proposed double-use linear polarization convertor shows great prospects in polarization imaging, and polarized light communications.

  15. Reflectance and fast polarization dynamics of GaN/Si nanowire ensemble.

    PubMed

    Korona, Krzysztof Piotr; Zytkiewicz, Zbigniew R; Sobanska, Marta; Sosada, Florentyna; Dróżdż, Piotr Andrzej; Klosek, Kamil; Tchutchulashvili, Giorgi

    2018-06-25

    Optical phenomena in high-quality GaN nanowires (NWs) ensemble grown on Si substrate have been studied by reflectance and time-resolved luminescence. Such NWs form a structure that acts as a virtual layer that specifically reflects and polarizes light and can be characterized by an effective refractive index. In fact we have found that the NW ensembles of high NW density (high filling fraction) behave rather like a layer of effective medium described by Maxwell Garnett approximation. Moreover, light extinction and strong depolarization are observed that we assign to scattering and interference of light inside the NW ensemble. The wavelength range of high extinction and depolarization correlates well with transverse localization wavelength estimated for such ensemble of NWs, so we suppose that these effects are due to Anderson localization of light. We also report results of time-resolved measurements of polarization of individual emission centers including free and bound excitons (D0XA, 3.47 eV), inversion domain boundaries (IDB, 3.45eV) and stacking faults (SF, 3.42 eV). The emission of the D0XA and SF lines is polarized perpendicular to GaN c-axis while the 3.45 eV line is polarized along the c-axis what supports hypothesis that this line is emitted from IDBs. Time-dependent depolarization of luminescence is observed during the first 0.1 ns after excitation and is interpreted as the result of interaction of the emission centers with hot particles existing during short time after excitation. . © 2018 IOP Publishing Ltd.

  16. REFLECTION AND REFRACTION, VOLUME 2.

    ERIC Educational Resources Information Center

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  17. High-Reflectivity Multi-Layer Coatings for the CLASP Sounding Rocket Project

    NASA Technical Reports Server (NTRS)

    Narukage, Noriyuki; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Kubo, Masahito; Katsukawa, Yukio; Ishikawa, Shin-nosuke; Kobiki, Toshihiko; Giono, Gabriel; Auchere, Frederic; hide

    2015-01-01

    We are planning an international rocket experiment Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is (2015 planned) that Lyman alpha line (Ly alpha line) polarization spectroscopic observations from the sun. The purpose of this experiment, detected with high accuracy of the linear polarization of the Ly alpha lines to 0.1% by using a Hanle effect is to measure the magnetic field of the chromosphere-transition layer directly. For polarization photometric accuracy achieved that approximately 0.1% required for CLASP, it is necessary to realize the monitoring device with a high throughput. On the other hand, Ly alpha line (vacuum ultraviolet rays) have a sensitive characteristics that is absorbed by the material. We therefore set the optical system of the reflection system (transmission only the wavelength plate), each of the mirrors, subjected to high efficiency of the multilayer coating in accordance with the role. Primary mirror diameter of CLASP is about 30 cm, the amount of heat about 30,000 J is about 5 minutes of observation time is coming mainly in the visible light to the telescope. In addition, total flux of the sun visible light overwhelmingly large and about 200 000 times the Ly alpha line wavelength region. Therefore, in terms of thermal management and 0.1% of the photometric measurement accuracy achieved telescope, elimination of the visible light is essential. We therefore, has a high reflectivity (greater than 50%) in Ly alpha line, visible light is a multilayer coating be kept to a low reflectance (less than 5%) (cold mirror coating) was applied to the primary mirror. On the other hand, the efficiency of the polarization analyzer required chromospheric magnetic field measurement (the amount of light) Conventional (magnesium fluoride has long been known as a material for vacuum ultraviolet (MgF2) manufactured ellipsometer; Rs = 22%) about increased to 2.5 times were high efficiency reflective polarizing element analysis. This device, Bridou et al. (2011) is proposed "that is coated with a thin film of the substrate MgF2 and SiO2 fused silica." As a result of the measurement, Rs = 54.5%, to achieve a Rp = 0.3%, high efficiency, of course, capable of taking out only about spolarized light. Other reflective optical elements (the secondary mirror, the diffraction grating-collector mirror), subjected to high-reflection coating of Al + MgF2 (reflectance of about 80%), less than 5% in the entire optical system by these (CCD Science was achieved a high throughput as a device for a vacuum ultraviolet ray of the entire system less than 5% (CCD of QE is not included).

  18. Ultrasensitive biochemical sensing device and method of sensing analytes

    DOEpatents

    Pinchuk, Anatoliy

    2017-06-06

    Systems and methods biochemically sense a concentration of a ligand using a sensor having a substrate having a metallic nanoparticle array formed onto a surface of the substrate. A light source is incident on the surface. A matrix is deposited over the nanoparticle array and contains a protein adapted to binding the ligand. A detector detects s-polarized and p-polarized light from the reflective surface. Spacing of nanoparticles in the array and wavelength of light are selected such that plasmon resonance occurs with an isotropic point such that -s and -p polarizations of the incident light result in substantially identical surface Plasmon resonance, wherein binding of the ligand to the protein shifts the resonance such that differences between the -S and -P polarizations give in a signal indicative of presence of the ligand.

  19. Scanning Miniature Microscopes without Lenses

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2009-01-01

    The figure schematically depicts some alternative designs of proposed compact, lightweight optoelectronic microscopes that would contain no lenses and would generate magnified video images of specimens. Microscopes of this type were described previously in Miniature Microscope Without Lenses (NPO - 20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43 and Reflective Variants of Miniature Microscope Without Lenses (NPO 20610), NASA Tech Briefs, Vol. 26, No. 9 (September 1999), page 6a. To recapitulate: In the design and construction of a microscope of this type, the focusing optics of a conventional microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. Elimination of focusing optics reduces the size and weight of the instrument and eliminates the need for the time-consuming focusing operation. The microscopes described in the cited prior articles contained two-dimensional CCDs registered with two-dimensional arrays of microchannels and, as such, were designed to produce full two-dimensional images, without need for scanning. The microscopes of the present proposal would contain one-dimensional (line image) CCDs registered with linear arrays of microchannels. In the operation of such a microscope, one would scan a specimen along a line perpendicular to the array axis (in other words, one would scan in pushbroom fashion). One could then synthesize a full two-dimensional image of the specimen from the line-image data acquired at one-pixel increments of position along the scan. In one of the proposed microscopes, a beam of unpolarized light for illuminating the specimen would enter from the side. This light would be reflected down onto the specimen by a nonpolarizing beam splitter attached to the microchannels at their lower ends. A portion of the light incident on the specimen would be reflected upward, through the beam splitter and along the microchannels, to form an image on the CCD. If the nonpolarizing beam splitter were replaced by a polarizing one, then the specimen would be illuminated by s-polarized light. Upon reflection from the specimen, some of the s-polarized light would become p-polarized. Only the p-polarized light would contribute to the image on the CCD; in other words, the image would contain information on the polarization rotating characteristic of the specimen.

  20. Sheet-like chiro-optical material designs based C(Y) surfaces

    NASA Astrophysics Data System (ADS)

    Saba, M.; Robisch, A.-L.; Thiel, M.; Hess, O.; Schroeder-Turk, Gerd E.

    2017-04-01

    A spatial structure for which mirror reflection cannot be represented by rotations and translations is chiral. For photonic crystals and metamaterials, chirality implies the possibility of circular dichroism, that is, that the propagation of left-circularly polarized light may differ from that of right-circularly polarized light. Here we draw attention to chiral sheet- or surface-like geometries based on chiral triply-periodic minimal surfaces. Specifically we analyse two photonic crystal designs based on the C(Y) minimal surface, by band structure analysis and by scattering matrix calculations of the reflection coefficient, for high-dielectric contrasts.

  1. Polarized BRDF measurement of the type E235B low carbon structural steel

    NASA Astrophysics Data System (ADS)

    Liu, Yanlei; Yu, Kun; Zhang, Kaihua; Liu, Yufang

    2018-01-01

    Bidirectional reflectance distribution function (BRDF) offers complete description of the spectral and spatial characteristics of opaque materials. The polarized BRDF contains more information, especially for the painted objects and target recognition. In this letter, we measured the in plane polarized spectral BRDF for the steel E235B in the wavelength range of 450-600 nm. The reliability of our results is verified by comparing the experimental data of polytetrafluoroethylene with the reference data. The measuring results indicates that the wavelength of incident light has a positive effect on the BRDF near the specular direction, and has a negative influence for other direction. BRDF increases slowly with reflected zenith angle and decreases rapidly with peak occurs at specular direction, which may be attributed to the shadowing effect. In addition, the results presents that the polarization of incident light has a slight influence on the BRDF of the sample.

  2. Noninvasive assessment of articular cartilage surface damage using reflected polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Huynh, Ruby N.; Nehmetallah, George; Raub, Christopher B.

    2017-06-01

    Articular surface damage occurs to cartilage during normal aging, osteoarthritis, and in trauma. A noninvasive assessment of cartilage microstructural alterations is useful for studies involving cartilage explants. This study evaluates polarized reflectance microscopy as a tool to assess surface damage to cartilage explants caused by mechanical scraping and enzymatic degradation. Adult bovine articular cartilage explants were scraped, incubated in collagenase, or underwent scrape and collagenase treatments. In an additional experiment, cartilage explants were subject to scrapes at graduated levels of severity. Polarized reflectance parameters were compared with India ink surface staining, features of histological sections, changes in explant wet weight and thickness, and chondrocyte viability. The polarized reflectance signal was sensitive to surface scrape damage and revealed individual scrape features consistent with India ink marks. Following surface treatments, the reflectance contrast parameter was elevated and correlated with image area fraction of India ink. After extensive scraping, polarized reflectance contrast and chondrocyte viability were lower than that from untreated explants. As part of this work, a mathematical model was developed and confirmed the trend in the reflectance signal due to changes in surface scattering and subsurface birefringence. These results demonstrate the effectiveness of polarized reflectance microscopy to sensitively assess surface microstructural alterations in articular cartilage explants.

  3. Investigations of the polarization behavior of quantum cascade lasers by Stokes parameters.

    PubMed

    Janassek, Patrick; Hartmann, Sébastien; Molitor, Andreas; Michel, Florian; Elsäßer, Wolfgang

    2016-01-15

    We experimentally investigate the full polarization behavior of mid-infrared emitting quantum cascade lasers (QCLs) in terms of measuring the complete Stokes parameters, instead of only projecting them on a linear polarization basis. We demonstrate that besides the pre-dominant linear TM polarization of the emitted light as governed by the selection rules of the intersubband transition, small non-TM contributions, e.g., circularly polarized light, are present reflecting the birefringent behavior of the semiconductor quantum well waveguide. Surprisingly unique is the persistence of these polarization properties well below laser threshold. These investigations give further insight into understanding, manipulating, and exploiting the polarization properties of QCLs, both from a laser point of view and with respect toward applications.

  4. Modeling and empirical characterization of the polarization response of off-plane reflection gratings.

    PubMed

    Marlowe, Hannah; McEntaffer, Randall L; Tutt, James H; DeRoo, Casey T; Miles, Drew M; Goray, Leonid I; Soltwisch, Victor; Scholze, Frank; Herrero, Analia Fernandez; Laubis, Christian

    2016-07-20

    Off-plane reflection gratings were previously predicted to have different efficiencies when the incident light is polarized in the transverse-magnetic (TM) versus transverse-electric (TE) orientations with respect to the grating grooves. However, more recent theoretical calculations which rigorously account for finitely conducting, rather than perfectly conducting, grating materials no longer predict significant polarization sensitivity. We present the first empirical results for radially ruled, laminar groove profile gratings in the off-plane mount, which demonstrate no difference in TM versus TE efficiency across our entire 300-1500 eV bandpass. These measurements together with the recent theoretical results confirm that grazing incidence off-plane reflection gratings using real, not perfectly conducting, materials are not polarization sensitive.

  5. Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur

    2018-05-01

    A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.

  6. Low-reflective wire-grid polarizers with absorptive interference overlayers.

    PubMed

    Suzuki, Motofumi; Takada, Akio; Yamada, Takatoshi; Hayasaka, Takashi; Sasaki, Kouji; Takahashi, Eiji; Kumagai, Seiji

    2010-04-30

    Wire-grid (WG) polarizers with low reflectivity for visible light have been successfully developed. We theoretically consider the optical properties of simple sandwich structures of absorptive layer/transparent layer (gap layer)/high-reflective mirrors and found that it is possible to develop an antireflection (AR) coating owing to the interference along with the absorption in the absorptive layer. A wide variety of materials can be used for AR coatings by tuning the thicknesses of both the absorptive and the gap layers. This AR concept has been applied to reduce the reflectance of WG polarizers of Al. FeSi(2) as an absorptive layer has been deposited by the glancing angle deposition technique immediately on the top of Al wires covered with a thin SiO(2) layer as a gap layer. For the optimum combination of the thicknesses of FeSi(2) and SiO(2), the reflectance becomes lower than a few per cent, independent of the polarization, whereas the transmission polarization properties remain good. Because low-reflective (LR) WG polarizers are completely composed of inorganic materials, they are useful for applications requiring high-temperature durability such as liquid crystal projection displays.

  7. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization.

    PubMed

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  8. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization

    NASA Astrophysics Data System (ADS)

    Boda, Pál; Horváth, Gábor; Kriska, György; Blahó, Miklós; Csabai, Zoltán

    2014-05-01

    Based on an earlier observation in the field, we hypothesized that light intensity and horizontally polarized reflected light may strongly influence the flight behaviour of night-active aquatic insects. We assumed that phototaxis and polarotaxis together have a more harmful effect on the dispersal flight of these insects than they would have separately. We tested this hypothesis in a multiple-choice field experiment using horizontal test surfaces laid on the ground. We offered simultaneously the following visual stimuli for aerial aquatic insects: (1) lamplit matte black canvas inducing phototaxis alone, (2) unlit shiny black plastic sheet eliciting polarotaxis alone, (3) lamplit shiny black plastic sheet inducing simultaneously phototaxis and polarotaxis, and (4) unlit matte black canvas as a visually unattractive control. The unlit matte black canvas trapped only a negligible number (13) of water insects. The sum (16,432) of the total numbers of water beetles and bugs captured on the lamplit matte black canvas (7,922) and the unlit shiny black plastic sheet (8,510) was much smaller than the total catch (29,682) caught on the lamplit shiny black plastic sheet. This provides experimental evidence for the synergistic interaction of phototaxis (elicited by the unpolarized direct lamplight) and polarotaxis (induced by the strongly and horizontally polarized plastic-reflected light) in the investigated aquatic insects. Thus, horizontally polarizing artificial lamplit surfaces can function as an effective ecological trap due to this synergism of optical cues, especially in the urban environment.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battum, LJ van; Heukelom, S

    Purpose This study investigates the origin of lateral optical density (OD) variation for Gafchromic film (EBT and EBT2) scanned in transmission mode with Epson flatbed scanners (1680 Expression Pro and 10000XL). Effects investigated are: cross talk, optical path length and polarization. Methods Cross talk has been examined with triangular shaped light-transmission sheets with OD ranging from 0 to opaque. Optical path length has been studied with absorptive and reflective OD-filters (OD range 0.2 to 2.0). Dependency on light-polarization on the scanner read out has been investigated using linear polarizer sheets. All experiments have been performed at centre scanner position (normmore » point) and at several lateral scan positions, without and with (un)irradiated EBT-film. Dose values used ranged between 0.2 to 9 Gy, yielding an OD-range between 0.25 to 1.1. Results The lateral OD variation is dose dependent and increases up to 14% at most lateral position for dose up to 9 Gy. Cross talk effect contributes to 0.5% in clinical used OD ranges but equals 2% for extreme high dose gradients. Film induced optical path length will effect the lateral OD variation up to 3% at most lateral points. Light polarization is inherent present in these scanners due to multiple reflection on mirrors. In addition film induced polarization is the most important effect generating the observed lateral OD variation. Both Gafchromic film base and sensitive layer have polarizing capabilities; for the sensitive layer its influence is dose dependent. Conclusions Lateral OD variation origins from optical physics (i.e. polarization and reflection) related to scanner and film construction. Cross talk can be ignored in film dosimetry for clinical used dose values and gradients. Therefore it is recommended to determine the lateral OD variation per film type and scanner.« less

  10. Using the multiangle polarimetric measuring capabilities of the 2010 NASA/Glory mission to separate atmospheric scattering contributions from radiances emerging from open oceans in the visible part of the spectrum

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; Cairns, B.; Mishchenko, M. I.; Carlson, B. E.

    2009-12-01

    Answering the question of what measurements represent benchmarks for the state of the climate of the Earth is one that is of crucial importance for determining what remote sensing measurements will be made in the future. The Aerosol Polarimetry Sensor (APS), scheduled for launch into the A-train in 2010 onboard the NASA/Glory Mission, will provide multiangle, multispectral polarized reflectance measurements of sunlight reflected by the Earth’s atmosphere-surface system. The accuracy of aerosol retrievals from these measurements has already been demonstrated in field campaigns with data obtained by an airborne version of the APS, namely, the Research Scanning Polarimeter (RSP). There are several factors contributing to the success of these retrievals. One of these is the better tools available for the analyses of polarized reflectance than for the analyses of total reflectance which allows the atmospheric scattering contributions to be separated from reflection by the lower boundary whether the underlying surface be land, an ocean or lake, or even clouds. The one we focus on here is the capability to use polarization to separate atmospheric scattering from water- leaving radiances. We review a radiative transfer model for underwater light scattering that computes these radiances, and apply the results to analyses of data obtained by the RSP over the open ocean during the MILAGRO field campaign. We demonstrate that the sensitivity of remotely sensed polarized reflectances to variations in the ocean color is much smaller than that of total reflectances. Uncertainties in underwater light scattering properties that are difficult to quantify, such as absorption by colored dissolved organic materials, have a negligible effect on the polarized reflectances whereas the reflectances are substantially affected in the blue/UV part of the spectrum. This of course means that, while the polarized reflectances can be used to characterize the atmosphere, valuable information can be obtained about absorption and scattering in the ocean body from the reflectance. Polarimetric measurements are therefore far more valuable than purely radiometric measurements in simultaneously assessing the state of the atmosphere and the ocean.

  11. Imaging polarimetry and retinal blood vessel quantification at the epiretinal membrane

    PubMed Central

    Miura, Masahiro; Elsner, Ann E.; Cheney, Michael C.; Usui, Masahiko; Iwasaki, Takuya

    2007-01-01

    We evaluated a polarimetry method to enhance retinal blood vessels masked by the epiretinal membrane. Depolarized light images were computed by removing the polarization retaining light reaching the instrument and were compared with parallel polarized light images, average reflectance images, and the corresponding images at 514 nm. Contrasts were computed for retinal vessel profiles for arteries and veins. Contrasts were higher in the 514 nm images in normal eyes but higher in the depolarized light image in the eyes with epiretinal membranes. Depolarized light images were useful for examining the retinal vasculature in the presence of retinal disease. PMID:17429490

  12. The Potential Use of Polarized Reflected Light in the Remote Sensing of Soil Moisture

    DTIC Science & Technology

    to 89% for saturated soil, indicating that the polarization method may be viable as a remote sensing system for determining soil moistures. Background on the methods and implications of the results are presented.

  13. Use of polarization to improve signal to clutter ratio in an outdoor active imaging system

    NASA Astrophysics Data System (ADS)

    Fontoura, Patrick F.; Giles, Michael K.; Padilla, Denise D.

    2005-08-01

    This paper describes the methodology and presents the results of the design of a polarization-sensitive system used to increase the signal-to-clutter ratio in a robust outdoor structured lighting sensor that uses standard CCD camera technology. This lighting sensor is intended to be used on an autonomous vehicle, looking down to the ground and horizontal to obstacles in an 8 foot range. The kinds of surfaces to be imaged are natural and man-made, such as asphalt, concrete, dirt and grass. The main problem for an outdoor eye-safe laser imaging system is that the reflected energy from background clutter tends to be brighter than the reflected laser energy. A narrow-band optical filter does not reduce significantly the background clutter in bright sunlight, and problems also occur when the surface is highly absorptive, like asphalt. Therefore, most of applications are limited to indoor and controlled outdoor conditions. A series of measurements was made for each of the materials studied in order to find the best configuration for the polarizing system and also to find out the potential improvement in the signal-to-clutter ratio (STC). This process was divided into three parts: characterization of the reflected sunlight, characterization of the reflected laser light, and measurement of the improvement in the STC. The results show that by using polarization properties it is possible to design an optical system that is able to increase the signal-to-clutter ratio from approximately 30% to 100% in the imaging system, depending on the kind of surface and on the incidence angle of the sunlight. The technique was also analyzed for indoor use, with the background clutter being the room illumination. For this specific case, polarization did not improve the signal-to-clutter ratio.

  14. Performance comparison of polarized white light emitting diodes using wire-grid polarizers with polymeric and glass substrates

    NASA Astrophysics Data System (ADS)

    Su, Jung-Chieh; Chou, Shih-Chieh

    2018-03-01

    Polarized white light emitting diodes (WLEDs) packaged with reflective metal wire-grid polarizer of polymeric and glass substrates were investigated. The performance comparison of polymeric wire-grid polarizer film (WGF) and nano wire-grid polarizer (NWGP) with glass substrate was evaluated. The transverse electric field (TE) polarization transmittance of WGF is less than that of NWGP due to its smaller grid parameters. Despite of the higher duty cycle of WGF, the angular-dependent extinction ratio (ER) of the polarized WLEDs (PWLEDs) with WGF is higher than that of with NWGP. Regarding increasing drive currents, the PWLEDs with NWGP had better color stability than that with WGF due to better substrate thermal stability. In summary, linewidth, period and substrate material are the crucial factors for the PWLED packaging using wire grid polarizer.

  15. Polarization Imaging Apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin K.; Chen, Qiushui

    2010-01-01

    A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

  16. How can horseflies be captured by solar panels? A new concept of tabanid traps using light polarization and electricity produced by photovoltaics.

    PubMed

    Blahó, Miklós; Egri, Ádám; Barta, András; Antoni, Györgyi; Kriska, György; Horváth, Gábor

    2012-10-26

    Horseflies (Diptera: Tabanidae) can cause severe problems for humans and livestock because of the continuous annoyance performed and the diseases vectored by the haematophagous females. Therefore, effective horsefly traps are in large demand, especially for stock-breeders. To catch horseflies, several kinds of traps have been developed, many of them attracting these insects visually with the aid of a black ball. The recently discovered positive polarotaxis (attraction to horizontally polarized light) in several horsefly species can be used to design traps that capture female and male horseflies. The aim of this work is to present the concept of such a trap based on two novel principles: (1) the visual target of the trap is a horizontal solar panel (photovoltaics) attracting polarotactic horseflies by means of the highly and horizontally polarized light reflected from the photovoltaic surface. (2) The horseflies trying to touch or land on the photovoltaic trap surface are perished by the mechanical hit of a wire rotated quickly with an electromotor supplied by the photovoltaics-produced electricity. Thus, the photovoltaics is bifunctional: its horizontally polarized reflected light signal attracts water-seeking, polarotactic horseflies, and it produces the electricity necessary to rotate the wire. We describe here the concept and design of this new horsefly trap, the effectiveness of which was demonstrated in field experiments. The advantages and disadvantages of the trap are discussed. Using imaging polarimetry, we measured the reflection-polarization characteristics of the photovoltaic trap surface demonstrating the optical reason for the polarotactic attractiveness to horseflies. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

    NASA Technical Reports Server (NTRS)

    Cole, Benjamin H.; Yang, Ping; Baum, Bryan A.; Riedi, Jerome; Labonnote, Laurent C.; Thieuleux, Francois; Platnick, Steven

    2012-01-01

    Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.

  18. Method and apparatus for free-space quantum key distribution in daylight

    DOEpatents

    Hughes, Richard J.; Buttler, William T.; Lamoreaux, Steve K.; Morgan, George L.; Nordholt, Jane E.; Peterson, C. Glen; Kwiat, Paul G.

    2004-06-08

    A quantum cryptography apparatus securely generates a key to be used for secure transmission between a sender and a receiver connected by an atmospheric transmission link. A first laser outputs a timing bright light pulse; other lasers output polarized optical data pulses after having been enabled by a random bit generator. Output optics transmit output light from the lasers that is received by receiving optics. A first beam splitter receives light from the receiving optics, where a received timing bright light pulse is directed to a delay circuit for establishing a timing window for receiving light from the lasers and where an optical data pulse from one of the lasers has a probability of being either transmitted by the beam splitter or reflected by the beam splitter. A first polarizer receives transmitted optical data pulses to output one data bit value and a second polarizer receives reflected optical data pulses to output a second data bit value. A computer receives pulses representing receipt of a timing bright timing pulse and the first and second data bit values, where receipt of the first and second data bit values is indexed by the bright timing pulse.

  19. Broadband and Wide Field-of-view Plasmonic Metasurface-enabled Waveplates

    PubMed Central

    Jiang, Zhi Hao; Lin, Lan; Ma, Ding; Yun, Seokho; Werner, Douglas H.; Liu, Zhiwen; Mayer, Theresa S.

    2014-01-01

    Quasi two-dimensional metasurfaces composed of subwavelength nanoresonator arrays can dramatically alter the properties of light in an ultra-thin planar geometry, enabling new optical functions such as anomalous reflection and refraction, polarization filtering, and wavefront modulation. However, previous metasurface-based nanostructures suffer from low efficiency, narrow bandwidth and/or limited field-of-view due to their operation near the plasmonic resonance. Here we demonstrate plasmonic metasurface-based nanostructures for high-efficiency, angle-insensitive polarization transformation over a broad octave-spanning bandwidth. The structures are realized by optimizing the anisotropic response of an array of strongly coupled nanorod resonators to tailor the interference of light at the subwavelength scale. Nanofabricated reflective half-wave and quarter-wave plates designed using this approach have measured polarization conversion ratios and reflection magnitudes greater than 92% over a broad wavelength range from 640 to 1290 nm and a wide field-of-view up to ±40°. This work outlines a versatile strategy to create metasurface-based photonics with diverse optical functionalities. PMID:25524830

  20. Polarized Light Reflected and Transmitted by Thick Rayleigh Scattering Atmospheres

    NASA Astrophysics Data System (ADS)

    Natraj, Vijay; Hovenier, J. W.

    2012-03-01

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  1. High resolution Fourier interferometer-spectrophotopolarimeter

    NASA Technical Reports Server (NTRS)

    Fymat, A. L. (Inventor)

    1976-01-01

    A high-resolution Fourier interferometer-spectrophotopolarimeter is provided using a single linear polarizer-analyzer the transmission axis azimuth of which is positioned successively in the three orientations of 0 deg, 45 deg, and 90 deg, in front of a detector; four flat mirrors, three of which are switchable to either of two positions to direct an incoming beam from an interferometer to the polarizer-analyzer around a sample cell transmitted through a medium in a cell and reflected by medium in the cell; and four fixed focussing lenses, all located in a sample chamber attached at the exit side of the interferometer. This arrangement can provide the distribution of energy and complete polarization state across the spectrum of the reference light entering from the interferometer; the same light after a fixed-angle reflection from the sample cell containing a medium to be analyzed; and the same light after direct transmission through the same sample cell, with the spectral resolution provided by the interferometer.

  2. Optical switch based on the electrically controlled liquid crystal interface.

    PubMed

    Komar, Andrei A; Tolstik, Alexei L; Melnikova, Elena A; Muravsky, Alexander A

    2015-06-01

    The peculiarities of the linearly polarized light beam reflection at the interface within the bulk of a nematic liquid crystal (NLC) cell with different orientations of the director are analyzed. Two methods to create the interface are considered. Combination of the planar and homeotropic orientations of the NLC director is realized by means of a spatially structured electrode under the applied voltage. In-plane patterned azimuthal alignment of the NLC director is created by the patterned rubbing alignment technique. All possible orthogonal orientations of the LC director are considered; the configurations for realization of total internal reflection are determined. The revealed relationship between the propagation of optical beams in a liquid crystal material and polarization of laser radiation has enabled realization of the spatial separation for the orthogonally polarized light beams at the interface between two regions of NLC with different director orientations (domains). Owing to variations in the applied voltage and, hence, in the refractive index gradient, the light beam propagation directions may be controlled electrically.

  3. Roadway Marking Optics for Autonomous Vehicle Guidance and Other Machine Vision Applications

    NASA Astrophysics Data System (ADS)

    Konopka, Anthony T.

    This work determines optimal planar geometric light source and optical imager configurations and electromagnetic wavelengths for maximizing the reflected signal intensity when using machine vision technology to image roadway markings with embedded spherical glass beads. It is found through a first set of experiments that roadway marking samples exhibiting little or no bead rolling effects are uniformly reflective with respect to the azimuthal angle of observation when measured for retroreflectivity within industry standard 30-meter geometry. A second set of experiments indicate that white roadway markings exhibit higher reflectivity throughout the visible spectrum than yellow roadway markings. A roadway marking optical model capable of being used to determine optimal geometric light source and optical imager configurations for maximizing the reflected signal intensities of roadway marking targets is constructed and simulated using optical engineering software. It is found through a third set of experiments that high signal intensities can be measured when the polar angles of the light source and optical imager along a plane normal to a roadway marking are equal, with the maximum signal intensity being measured when the polar angles of both the light source and optical imager are 90°.

  4. Broadband reflective liquid crystalline gels due to the ultraviolet light screening made by the liquid crystal

    NASA Astrophysics Data System (ADS)

    Relaix, Sabrina; Bourgerette, Christian; Mitov, Michel

    2006-12-01

    It is shown that the natural ultraviolet light absorbing properties of the liquid crystal constituent during the photoinduced elaboration of a liquid crystalline gel induce the broadening of the reflection bandwidth. The polymer component is then included in a resin by preserving its spatial distribution, and transmission electron microscopy investigations of cross sections show the existence of a structure gradient, which is at the origin of the broadening phenomenon. Such reflectors may be of interest for reflective polarizer-free displays or smart windows for the control of solar light for which a broadband reflection is required.

  5. Optical Polarization in the Nearshore

    NASA Astrophysics Data System (ADS)

    Holman, R.

    2008-12-01

    A recent addition to the suite of optical remote sensing methods that have been used to study nearshore processes is the use of imaging polarimetric cameras. Both the degree of polarization and the azimuth of polarized light contain information about the imaged surfaces from which light has been reflected or scattered. In 2007, a polarimetric Argus camera was installed atop the tower at Duck, NC. This talk will examine the various polarization signatures that can be exploited, including the potential for measuring the sea surface slope spectrum of nearshore surf zone waves, the slope of the foreshore beach, water content of foreshore sediments and bubble signatures of dissipating waves.

  6. Polar phonons in β-Ga2O3 studied by IR reflectance spectroscopy and first-principle calculations

    NASA Astrophysics Data System (ADS)

    Azuhata, Takashi; Shimada, Kazuhiro

    2017-08-01

    IR reflectance spectra of β-Ga2O3 are measured in the range from 400 to 1100 cm-1 using the (\\bar{2}01) and (010) planes for pure transverse Au- and Bu-mode phonons, respectively. The spectra measured using the (010) plane depend remarkably on the polarization direction of the incident light because of the monoclinic symmetry. Reflectance spectra simulated using parameters obtained from first-principle calculations are in good agreement with the experimental spectra. By adjusting the calculated phonon parameters so as to reproduce the experimental spectra, the polar phonon parameters were determined for six modes above 400 cm-1.

  7. New optical scheme for a polarimetric-based glucose sensor

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Bockle, Stefan; Rovati, Luigi

    2004-01-01

    A new optical scheme to detect glucose concentration in the aqueous humor of the eye is presented. The ultimate aim is to apply this technique in designing a new instrument for, routinely and frequently, noninvasively monitoring blood glucose levels in diabetic patients without contact (no index matching) between the eye and the instrument. The optical scheme exploits the Brewster reflection of circularly polarized light off of the lens of the eye. Theoretically, this reflected linearly polarized light on its way to the detector is expected to rotate its state of polarization, owing to the presence of glucose molecules in the aqueous humor of a patient's eye. An experimental laboratory setup based on this scheme was designed and tested by measuring a range of known concentrations of glucose solutions dissolved in water. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  8. Polarization vision seldom increases the sighting distance of silvery fish.

    PubMed

    Johnsen, Sönke; Gagnon, Yakir L; Marshall, N Justin; Cronin, Thomas W; Gruev, Viktor; Powell, Samuel

    2016-08-22

    Although the function of polarization vision, the ability to discern the polarization characteristics of light, is well established in many terrestrial and benthic species, its purpose in pelagic species (squid and certain fish and crustaceans) is poorly understood [1]. A long-held hypothesis is that polarization vision in open water is used to break the mirror camouflage of silvery fish, as biological mirrors can change the polarization of reflected light [2,3]. Although, the addition of polarization information may increase the conspicuousness of silvery fish at close range, direct evidence that silvery fish - or indeed any pelagic animal - are visible at longer distances using polarization vision rather than using radiance (i.e. brightness) vision is lacking. Here we show, using in situ polarization imagery and a new visual detection model, that polarization vision does not in fact appear to allow viewers to see silvery fish at greater distances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Veiling glare reduction methods compared for ophthalmic applications

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1981-01-01

    Veiling glare in ocular viewing was simulated by viewing the retina of an eye model through a sheet of light-scattering material lit from the front. Four methods of glare reduction were compared, namely, optical scanning, polarized light, viewing and illumination paths either coaxial or intersecting at the object, and closed circuit TV. Photographs show the effect of these methods on visibility. Polarized light was required to eliminate light specularly reflected from the instrument optics. The greatest glare reduction was obtained when the first three methods were utilized together. Glare reduction using TV was limited by nonuniform distribution of scattered light over the image.

  10. Unpolarized resonance grating reflectors with 44% fractional bandwidth.

    PubMed

    Niraula, Manoj; Magnusson, Robert

    2016-06-01

    There is immense scientific interest in the properties of resonant thin films embroidered with periodic nanoscale features. This device class possesses considerable innovation potential. Accordingly, we report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with numerical methods, our elemental gratings consist of a partially etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band that exceeds those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500 nm wide wavelength band. This wideband represents a ∼44% fractional band in the near infrared. Moreover, the resonant unpolarized broadband accommodates an ultra-high reflection band spanning ∼85  nm and exceeding 99.9% in efficiency. The elemental polarization-sensitive reflectors based on one-dimensional (1D) resonant gratings have a simple design and robust performance, and are straightforward to fabricate. Hence, this technology is a promising alternative to traditional multilayer thin-film reflectors, especially at longer wavelengths of light where multilayer deposition may be infeasible or impractical.

  11. [Modeling and Simulation of Spectral Polarimetric BRDF].

    PubMed

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  12. Development and field testing of a Light Aircraft Oil Surveillance System (LAOSS)

    NASA Technical Reports Server (NTRS)

    Burns, W.; Herz, M. J.

    1976-01-01

    An experimental device consisting of a conventional TV camera with a low light level photo image tube and motor driven polarized filter arrangement was constructed to provide a remote means of discriminating the presence of oil on water surfaces. This polarized light filtering system permitted a series of successive, rapid changes between the vertical and horizontal components of reflected polarized skylight and caused the oil based substances to be more easily observed and identified as a flashing image against a relatively static water surface background. This instrument was flight tested, and the results, with targets of opportunity and more systematic test site data, indicate the potential usefulness of this airborne remote sensing instrument.

  13. Depth-resolved measurements with elliptically polarized reflectance spectroscopy

    PubMed Central

    Bailey, Maria J.; Sokolov, Konstantin

    2016-01-01

    The ability of elliptical polarized reflectance spectroscopy (EPRS) to detect spectroscopic alterations in tissue mimicking phantoms and in biological tissue in situ is demonstrated. It is shown that there is a linear relationship between light penetration depth and ellipticity. This dependence is used to demonstrate the feasibility of a depth-resolved spectroscopic imaging using EPRS. The advantages and drawbacks of EPRS in evaluation of biological tissue are analyzed and discussed. PMID:27446712

  14. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus

    NASA Astrophysics Data System (ADS)

    Fernández del Río, Lía; Arwin, Hans; Järrendahl, Kenneth

    2016-07-01

    The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.

  15. Coherent Detector for Near-Angle Scattering and Polarization Characterization of Telescope Mirror Coatings

    NASA Technical Reports Server (NTRS)

    Macenka, Steven A.; Chipman, Russell A.; Daugherty, Brian J.; McClain, Stephen C.

    2012-01-01

    A report discusses the difficulty of measuring scattering properties of coated mirrors extremely close to the specular reflection peak. A prototype Optical Hetero dyne Near-angle Scatterometer (OHNS) was developed. Light from a long-coherence-length (>150 m) 532-nm laser is split into two arms. Acousto-optic modulators frequency shift the sample and reference beams, establishing a fixed beat frequency between the beams. The sample beam is directed at very high f/# onto a mirror sample, and the point spread function (PSF) formed after the mirror sample is scanned with a pinhole. This light is recombined by a non-polarizing beam splitter and measured through heterodyne detection with a spectrum analyzer. Polarizers control the illuminated and analyzed polarization states, allowing the polarization dependent scatter to be measured. The bidirectional reflective or scattering distribution function is normally measured through use of a scattering goniometer instrument. The instrumental beam width (collection angle span) over which the scatterometer responds is typically many degrees. The OHNS enables measurement at angles as small as the first Airy disk diameter.

  16. Estimation of optical properties of aerosols and bidirectional reflectance from PARASOL/POLDER data over land

    NASA Astrophysics Data System (ADS)

    Kusaka, Takashi; Miyazaki, Go

    2014-10-01

    When monitoring target areas covered with vegetation from a satellite, it is very useful to estimate the vegetation index using the surface anisotropic reflectance, which is dependent on both solar and viewing geometries, from satellite data. In this study, the algorithm for estimating optical properties of atmospheric aerosols such as the optical thickness (τ), the refractive index (Nr), the mixing ratio of small particles in the bimodal log-normal distribution function (C) and the bidirectional reflectance (R) from only the radiance and polarization at the 865nm channel received by the PARASOL/POLDER is described. Parameters of the bimodal log-normal distribution function: mean radius, r1, standard deviation, σ1, of fine aerosols, and r2, σ2 of coarse aerosols were fixed, and these values were estimated from monthly averaged size distribution at AERONET sites managed by NASA near the target area. Moreover, it is assumed that the contribution of the surface reflectance with directional anisotropy to the polarized radiance received by the satellite is small because it is shown from our ground-based polarization measurements of light ray reflected by the grassland that degrees of polarization of the reflected light by the grassland are very low values at the 865nm channel. First aerosol properties were estimated from only the polarized radiance and then the bidirectional reflectance given by the Ross-Li BRDF model was estimated from only the total radiance at target areas in PARASOL/POLDER data over the Japanese islands taken on April 28, 2012 and April 25, 2010. The estimated optical thickness of aerosols was checked with those given in AERONET sites and the estimated parameters of BRDF were compared with those of vegetation measured from the radio-controlled helicopter. Consequently, it is shown that the algorithm described in the present study provides reasonable values for aerosol properties and surface bidirectional reflectance.

  17. Measurement of anchoring coefficient of homeotropically aligned nematic liquid crystal using a polarizing optical microscope in reflective mode

    NASA Astrophysics Data System (ADS)

    Baek, Sang-In; Kim, Sung-Jo; Kim, Jong-Hyun

    2015-09-01

    Although the homeotropic alignment of liquid crystals is widely used in LCD TVs, no easy method exists to measure its anchoring coefficient. In this study, we propose an easy and convenient measurement technique in which a polarizing optical microscope is used in the reflective mode with an objective lens having a low depth of focus. All measurements focus on the reflection of light near the interface between the liquid crystal and alignment layer. The change in the reflected light is measured by applying an electric field. We model the response of the director of the liquid crystal to the electric field and, thus, the change in reflectance. By adjusting the extrapolation length in the calculation, we match the experimental and calculated results and obtain the anchoring coefficient. In our experiment, the extrapolation lengths were 0.31 ± 0.04 μm, 0.32 ± 0.08 μm, and 0.23 ± 0.05 μm for lecithin, AL-64168, and SE-5662, respectively.

  18. About Jupiter's Reflectance Function in JunoCam Images

    NASA Astrophysics Data System (ADS)

    Eichstaedt, G.; Orton, G. S.; Momary, T.; Hansen, C. J.; Caplinger, M.

    2017-09-01

    NASA's Juno spacecraft has successfully completed several perijove passes. JunoCam is Juno's visible light and infrared camera. It was added to the instrument complement to investigate Jupiter's polar regions, and for education and public outreach purposes. Images of Jupiter taken by JunoCam have been revealing effects that can be interpreted as caused by a haze layer. This presumed haze layer appears to be structured, and it partially obscures Jupiter's cloud top. With empirical investigation of Jupiter's reflectance function we intend to separate light contributed by haze from light reflected off Jupiter's cloud tops, enabling both layers to be investigated separately.

  19. Validation of space-based polarization measurements by use of a single-scattering approximation, with application to the global ozone monitoring experiment.

    PubMed

    Aben, Ilse; Tanzi, Cristina P; Hartmann, Wouter; Stam, Daphne M; Stammes, Piet

    2003-06-20

    A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME's three broadband polarization measurements appears to be approximately 1%.

  20. Experiencing Light's Properties within Your Own Eye

    ERIC Educational Resources Information Center

    Mauser, Michael

    2011-01-01

    Seeing the reflection, refraction, dispersion, absorption, polarization, and scattering or diffraction of light within your own eye makes these properties of light truly personal. There are practical aspects of these within the eye phenomena, such as eye tracking for computer interfaces. They also offer some intriguing diversions, for example,…

  1. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  2. A Photomicrography Primer.

    ERIC Educational Resources Information Center

    Davidson, Michael W.

    1991-01-01

    Describes techniques and equipment which allows school microscopes to perform crossed-polarized light microscopy, reflected light microscopy, and photomicrography. Provides information on using chemicals from a high school stockroom to view crystals, viewing integrated circuits, and capturing images on film. Lists possible independent student…

  3. Multispectral near-infrared reflectance and transillumination imaging of occlusal carious lesions: variations in lesion contrast with lesion depth

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Curtis, Donald A.; Darling, Cynthia L.; Fried, Daniel

    2018-02-01

    In vivo and in vitro studies have demonstrated that near-infrared (NIR) light at λ=1300-1700-nm can be used to acquire high contrast images of enamel demineralization without interference of stains. The objective of this study was to determine if a relationship exists between the NIR image contrast of occlusal lesions and the depth of the lesion. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system which captures λ=1300-nm occlusal transillumination, and λ=1500-1700-nm cross-polarized reflectance images. Image analysis software was used to calculate the lesion contrast detected in both images from matched positions of each imaging modality. Samples were serially sectioned across the lesion with a precision saw, and polarized light microscopy was used to measure the respective lesion depth relative to the dentinoenamel junction. Lesion contrast measured from NIR crosspolarized reflectance images positively correlated (p<0.05) with increasing lesion depth and a statistically significant difference between inner enamel and dentin lesions was observed. The lateral width of pit and fissures lesions measured in both NIR cross-polarized reflectance and NIR transillumination positively correlated with lesion depth.

  4. A design of a high speed dual spectrometer by single line scan camera

    NASA Astrophysics Data System (ADS)

    Palawong, Kunakorn; Meemon, Panomsak

    2018-03-01

    A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.

  5. Modelling the circular polarisation of Earth-like exoplanets: constraints on detecting homochirality

    NASA Astrophysics Data System (ADS)

    Hogenboom, Michael; Stam, Daphne; Rossi, Loic; Snik, Frans

    2016-04-01

    The circular polarisation of light is a property of electromagnetic radiation from which extensive information can be extracted. It is oft-neglected due to its small signal relative to linear polarisation and the need for advanced instrumentation in measuring it. Additionally, numerical modelling is complex as the full Stokes vector must always be computed. Circular polarisation is commonly induced through the multiple scattering of light by aerosols te{hansen} and multiple reflections of light by rough surfaces te{circplanets}. Most interestingly, distinctive spectral circular polarimetric behaviour is exhibited by light reflected by organisms due to the homochiral molecular structure of all known organisms te{chiralbailey}. Especially fascinating is the unique circular polarimetric behaviour of light reflected by photosynthesising organisms at the absorption wavelength of the chlorophyll pigment te{circpolchar}. This presents the previously unexplored possibility of circular polarimetry as a method for identifying and characterising the presence of organisms, a method which could be applied in the hunt for extraterrestrial life. To date, few telescopes exist that measure circular polarisation and none that have been deployed in space. Observations of the circular polarisation reflected by other planets in the solar system have been made with ground-based telescopes, with significant results te{circplanets}. However, none of these observations have been made at the phase angles at which exoplanets will be observed. Also, none have been made of the Earth, which is the logical starting point for the study of biologically induced circular polarisation signals. This introduces the need for numerical modelling to determine the extent to which circular polarisation is present in light reflected by exoplanets or the Earth. In this study, we model the multiple scattering and reflection of light using the doubling-adding method te{dehaan}. We will present circular polarisation signals for both spatially resolved and spatially unresolved planets, using various atmospheric and surface properties and across a range of phase angles. As a test, the calculated degree of circular polarisation resulting from the multiple scattering of light in an atmosphere with varying properties was compared with results presented by Kawata te{circatmos} and was found to be in agreement. Initial modelling of the atmospheric scattering of light by a planetary disk has shown a presence of degree of circular polarisation in the order of 10-4. This represents a static case with one cloudy hemisphere, one cloudless hemisphere and a Lambertian surface. Results containing varied patchy cloud patterns shall also be presented in a bid to reflect the random nature of planetary cloud cover. We will also present the calculated degree of circular polarisation of planets with various cloud coverage and a circularly polarising surface in order to discover the influence of organisms on the numerical results. {1} {hansen} J. E. {Hansen} and L. D. {Travis}. {Light scattering in planetary atmospheres}. {Space Science Reviews}, 16:527-610, October 1974. {circplanets} J. C. {Kemp} and R. D. {Wolstencroft}. {Circular Polarization: Jupiter and Other Planets}. {Nature}, 232:165-168, July 1971. {chiralbailey} J. {Bailey}. {Circular Polarization and the Origin of Biomolecular Homochirality}. In G. {Lemarchand} and K. {Meech}, editors, {Bioastronomy 99}, volume 213 of {Astronomical Society of the Pacific Conference Series}, 2000. {circpolchar} L. {Nagdimunov}, L. {Kolokolova}, and D. {Mackowski}. {Characterization and remote sensing of biological particles using circular polarization}. {Journal of Quantitative Spectroscopy and Radiative Transfer}, 131:59-65, December 2013. dehaan} J. F. {de Haan}, P. B. {Bosma}, and J. W. {Hovenier}. {The adding method for multiple scattering calculations of polarized light}. {Astronomy and Astrophysics}, 183:371-391, September 1987. {circatmos} Y. {Kawata}. {Circular polarization of sunlight reflected by planetary atmospheres}. {Icarus}, 33:217-232, January 1978.

  6. Exploring the Effects of Cloud Vertical Structure on Cloud Microphysical Retrievals based on Polarized Reflectances

    NASA Astrophysics Data System (ADS)

    Miller, D. J.; Zhang, Z.; Platnick, S. E.; Ackerman, A. S.; Cornet, C.; Baum, B. A.

    2013-12-01

    A polarized cloud reflectance simulator was developed by coupling an LES cloud model with a polarized radiative transfer model to assess the capabilities of polarimetric cloud retrievals. With future remote sensing campaigns like NASA's Aerosols/Clouds/Ecosystems (ACE) planning to feature advanced polarimetric instruments it is important for the cloud remote sensing community to understand the retrievable information available and the related systematic/methodical limitations. The cloud retrieval simulator we have developed allows us to probe these important questions in a realistically relevant test bed. Our simulator utilizes a polarized adding-doubling radiative transfer model and an LES cloud field from a DHARMA simulation (Ackerman et al. 2004) with cloud properties based on the stratocumulus clouds observed during the DYCOMS-II field campaign. In this study we will focus on how the vertical structure of cloud microphysics can influence polarized cloud effective radius retrievals. Numerous previous studies have explored how retrievals based on total reflectance are affected by cloud vertical structure (Platnick 2000, Chang and Li 2002) but no such studies about the effects of vertical structure on polarized retrievals exist. Unlike the total cloud reflectance, which is predominantly multiply scattered light, the polarized reflectance is primarily the result of singly scattered photons. Thus the polarized reflectance is sensitive to only the uppermost region of the cloud (tau~<1) where photons can scatter once and still escape before being scattered again. This means that retrievals based on polarized reflectance have the potential to reveal behaviors specific to the cloud top. For example cloud top entrainment of dry air, a major influencer on the microphysical development of cloud droplets, can be potentially studied with polarimetric retrievals.

  7. Polarized edge emission from GaN-based light-emitting diodes sandwiched by dielectric/metal hybrid reflectors

    NASA Astrophysics Data System (ADS)

    Yan, L. J.; Sheu, J. K.; Huang, F. W.; Lee, M. L.

    2010-12-01

    Edge-emitting c-plane GaN/sapphire-based light-emitting diodes (LEDs) sandwiched by two dielectric/metal hybrid reflectors on both sapphire and GaN surfaces were studied to determine their light emission polarization. The hybrid reflectors comprised dielectric multiple thin films and a metal layer. The metal layers of Au or Ag used in this study were designed to enhance the polarization ratio from S-polarization (transverse electric wave, TE) to P-polarization (transverse magnetic wave, TM). The two sets of optimized dielectric multi thin films served as matching layers for wide-angle incident light on both sapphire and GaN surfaces. To determine which reflector scheme would achieve a higher polarization ratio, simulations of the reflectance at the hybrid reflectors on sapphire (or GaN) interface were performed before the fabrication of experimental LEDs. Compared with conventional c-plane InGaN/GaN/sapphire LEDs without dielectric/metal hybrid reflectors, the experimental LEDs exhibited higher polarization ratio (ITE-max/ITM-max) with r=2.174 (˜3.37 dB) at a wavelength of 460 nm. In contrast, the original polarized light (without dielectric/metal hybrid reflectors) was partially contributed (r=1.398) by C-HH or C-LH (C band to the heavy-hole sub-band or C band to the crystal-field split-off sub-band) transitions along the a-plane or m-plane direction.

  8. Polaro–cryptic mirror of the lookdown as a biological model for open ocean camouflage

    PubMed Central

    Brady, Parrish C.; Travis, Kort A.; Maginnis, Tara; Cummings, Molly E.

    2013-01-01

    With no object to hide behind in 3D space, the open ocean represents a challenging environment for camouflage. Conventional strategies for reflective crypsis (e.g., standard mirror) are effective against axially symmetric radiance fields associated with high solar altitudes, yet ineffective against asymmetric polarized radiance fields associated with low solar inclinations. Here we identify a biological model for polaro–crypsis. We measured the surface-reflectance Mueller matrix of live open ocean fish (lookdown, Selene vomer) and seagrass-dwelling fish (pinfish, Lagodon rhomboides) using polarization-imaging and modeling polarization camouflage for the open ocean. Lookdowns occupy the minimization basin of our polarization-contrast space, while pinfish and standard mirror measurements exhibit higher contrast values than optimal. The lookdown reflective strategy achieves significant gains in polaro–crypsis (up to 80%) in comparison with nonpolarization sensitive strategies, such as a vertical mirror. Lookdowns achieve polaro–crypsis across solar altitudes by varying reflective properties (described by 16 Mueller matrix elements mij) with incident illumination. Lookdowns preserve reflected polarization aligned with principle axes (dorsal–ventral and anterior–posterior, m22 = 0.64), while randomizing incident polarization 45° from principle axes (m33 = –0.05). These reflectance properties allow lookdowns to reflect the uniform degree and angle of polarization associated with high-noon conditions due to alignment of the principle axes and the sun, and reflect a more complex polarization pattern at asymmetrical light fields associated with lower solar elevations. Our results suggest that polaro–cryptic strategies vary by habitat, and require context-specific depolarization and angle alteration for effective concealment in the complex open ocean environment. PMID:23716701

  9. Light propagation in nanorod arrays

    NASA Astrophysics Data System (ADS)

    Rahachou, A. I.; Zozoulenko, I. V.

    2007-03-01

    We study the propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as the weak influence of their fluctuating diameter. For TM modes we outline the importance of the skin effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.

  10. Assessment of Terra MODIS On-Orbit Polarization Sensitivity Using Pseudoinvariant Desert Sites

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Geng, Xu; Wald, Andrew; Angal, Amit; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is currently flying on NASA's Earth Observing System Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS reflective solar bands in the visible wavelength range are known to be sensitive to polarized light based on prelaunch polarization sensitivity tests. After about five years of on-orbit operations, it was discovered that the polarization sensitivity at short wavelengths had shown a noticeable increase. In this paper, we examine the impact of polarization on measured top-of-atmosphere (TOA) reflectance based on MODIS Collection-6 L1B over pseudo invariant desert sites. The standard polarization correction equation is used in combination with simulated at-sensor radiances using the second simulation of a satellite signal in the Solar Spectrum, Vector Radiative Transfer Code (6SV). We ignore the polarization contribution from the surface and a ratio approach is used for both 6SV-derived in put parameters and observed TOA reflectance. Results indicate that significant gain corrections up to 25% are required near the end of scan for the 412 and 443 nm bands. The polarization correction reduces the seasonal fluctuations in reflectance trends and mirror side ratios from 30% and 12% to 10% and 5%, respectively, for the two bands. Comparison of the effectiveness of the polarization correction with the results from the NASA Ocean Biology Processing Group shows a good agreement in the corrected reflectance trending results and their seasonal fluctuations.

  11. Reflecting metallic metasurfaces designed with stochastic optimization as waveplates for manipulating light polarization

    NASA Astrophysics Data System (ADS)

    Haberko, Jakub; Wasylczyk, Piotr

    2018-03-01

    We demonstrate that a stochastic optimization algorithm with a properly chosen, weighted fitness function, following a global variation of parameters upon each step can be used to effectively design reflective polarizing optical elements. Two sub-wavelength metallic metasurfaces, corresponding to broadband half- and quarter-waveplates are demonstrated with simple structure topology, a uniform metallic coating and with the design suited for the currently available microfabrication techniques, such as ion milling or 3D printing.

  12. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    NASA Astrophysics Data System (ADS)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  13. In Situ Infrared Spectroelectrochemistry.

    DTIC Science & Technology

    1986-07-30

    The serious if the solvent is water , which staLe of the incident light, mechanism of absorption involves in- absorbs strongly throughout most of In...reflection uses a 3b shows spectra taken with the same thin-layer cell. where bulk electrolyses potentials as in 3a (this time using a of solution species...away from tion of both s-polarized and p-polar- ing neutral species and the highly con- the regions of strong water absorpt ion. ized light, and thought

  14. Effect of atmospheric refraction on radiative transfer in visible and near-infrared band: Model development, validation, and applications

    NASA Astrophysics Data System (ADS)

    Hu, Shuai; Gao, Tai-chang; Li, Hao; Liu, Lei; Liu, Xi-chuan; Zhang, Ting; Cheng, Tian-ji; Li, Wan-tong; Dai, Zhong-hua; Su, Xiaojian

    2016-03-01

    Refraction is an important factor influencing radiative transfer since it can modify the propagation trajectory and polarization states of lights; therefore, it is necessary to quantitively evaluate the effect of atmospheric refraction on radiative transfer process. To this end, a new atmospheric radiative transfer model including refraction process is proposed. The model accuracy is validated against benchmark results, literature results, and well-tested radiative transfer models such as discrete coordinate method and RT3/PolRadtran. The impact of atmospheric refraction on both polarized radiance and fluxes is discussed for pure Rayleigh scattering atmosphere, atmosphere with aerosol, and cloud. The results show that atmospheric refraction has a significant influence on both the radiance and polarization states of diffuse light, where the relative change of the radiance of reflected light and transmitted light due to refraction can achieve 6.3% and 7.4% for Rayleigh scattering atmosphere, 7.2% and 7.8% for atmosphere with aerosol, and 6.2% and 6.8% for cloudy atmosphere, respectively. The relative change of the degree of polarization ranges from near zero in the horizon to 9.5% near neutral points. The angular distribution pattern of the relative change of the radiance for atmosphere with aerosol and cloud is very similar to that for pure Rayleigh scattering case, where its magnitude decreases gradually with the increasing of zenith angle for reflected light; but for transmitted light, the variation characteristics is opposite. The impact of refraction is gradually enhanced with the increasing of solar zenith angles and the optical depth of aerosol and cloud. As the wavelength of incident light increases, the impact declines rapidly for Rayleigh scattering medium. The relative change of the fluxes due to refraction is most notable for Middle Latitude Winter profile (about 8.2043% and 7.3225% for the transmitted and reflected light, respectively, at 0.35 µm). With increasing the optical depth of aerosol, the influence of refraction on the fluxes is gradually enhanced. For cloudy atmosphere, the relative changes of the fluxes due to refraction are not very sensitive to the variation of cloud optical depth and effective radius of cloud drops.

  15. Spottier targets are less attractive to tabanid flies: on the tabanid-repellency of spotty fur patterns.

    PubMed

    Blaho, Miklos; Egri, Adam; Bahidszki, Lea; Kriska, Gyorgy; Hegedus, Ramon; Akesson, Susanne; Horvath, Gabor

    2012-01-01

    During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts.

  16. Spottier Targets Are Less Attractive to Tabanid Flies: On the Tabanid-Repellency of Spotty Fur Patterns

    PubMed Central

    Blaho, Miklos; Egri, Adam; Bahidszki, Lea; Kriska, Gyorgy; Hegedus, Ramon; Åkesson, Susanne; Horvath, Gabor

    2012-01-01

    During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts. PMID:22876282

  17. VIIRS ZEMAX and FORTRAN Polarization Models

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Meister, Gerhard; Voss, Kenneth; Moyer, David

    2007-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) collects visible/infrared imagery and radiometric data. The radiometric requirements are such that the instrument's polarization sensitivity must be very well understood. This paper presents the ZEMAX and FORTRAN polarization ray trace models of the instrument's visible light path. This will include the measured optical surface reflectance data, the bandpass shapes and a comparison of the results of the two models.

  18. The Effect of Polarized Light on the Growth of a Transparent Cell

    PubMed Central

    Jaffe, L. F.

    1960-01-01

    It is shown that light lost by reflection before entering a clear and homogeneous sphere or infinite cylinder is precisely compensated by light retained within these bodies by internal reflection; compensation means that the total rate of light absorption by infinitely dilute photoreceptors as integrated through the whole of these bodies or even through any concentric or coaxial shell making them up is independent of surface reflection. In the Phycomyces sporangiophore this theorem precludes a reflection explanation of R, the polarization dependence of the light growth response. An alternative explanation based upon anisotropic absorption by the receptors is explored and found tenable. Formulae are derived for R in any transparent cylindrical cell as a function of the constants of anisotropic absorption by the photoreceptors taken as a group (CH' and CL'), of the radial position of the receptors, and of the refractive indices of the cell (n) and of the medium (N). It is inferred that the photoreceptors in the Phycomyces sporangiophore are most absorbent for light vibrating in the direction of a hoop around a barrel. Orientation of the receptors by linkage to the cell wall is then shown to be a plausible explanation of the inferred anisotropy. On the basis of anisotropic reception, it is predicted that R should be constant for any N > n, and it is shown how CH', C,L' and the radial position of the receptors may all be obtained from a careful determination of R as a function of N. PMID:14406508

  19. Excitonic and band-band transitions of Cu2ZnSiS4 determined from reflectivity spectra

    NASA Astrophysics Data System (ADS)

    Guc, M.; Levcenko, S.; Dermenji, L.; Gurieva, G.; Schorr, S.; Syrbu, N. N.; Arushanov, E.

    2014-07-01

    Exciton spectra of Cu2ZnSiS4 single crystals are investigated by reflection spectroscopy at 10 and 300 K for light polarized perpendicular (E⊥c) and parallel (E∥c) to the optical axis. The parameters of the excitons and dielectric constant are determined. The free carriers effective masses have been estimated. The room temperature reflectivity spectra at photon energies higher than the fundamental band gap in the polarization Е⊥с and E∥с were measured and related to the electronic band structure of Cu2ZnSiS4.

  20. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    NASA Astrophysics Data System (ADS)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  1. Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits.

    PubMed

    Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F

    2018-01-01

    The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the "Dorsal Rim Area" (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster , we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision.

  2. Character of the opposition effect and negative polarization

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Shkuratov, Yu. G.; Stankevich, D. G.

    1991-01-01

    Photometric and polarimetric properties at small phase angles were measured for silicates with controlled surface properties in order to distinguish properties that are associated with surface reflection from those that are associated with multiple scattering from internal grain boundaries. These data provide insight into the causes and conditions of photometric properties observed at small phase angles for dark bodies of the solar system. Obsidian was chosen to represent a silicate dielectric with no internal scattering boundaries. Because obsidian is free of internal scatterers, light reflected from both the rough and smooth obsidian samples is almost entirely single and multiple Fresnel reflections form surface facets with no body component. Surface structure alone cannot produce an opposition effect. Comparison of the obsidian and basalt results indicates that for an opposition effect to occur, surface texture must be both rough and contain internal scattering interfaces. Although the negative polarization observed for the obsidian samples indicates single and multiple reflections are part of negative polarization, the longer inversion angle of the multigrain inversion samples implies that internal reflections must also contribute a significant negative polarization component.

  3. The polarization of light in coastal and open oceans: Reflection and transmission by the air-sea interface and application for the retrieval of water optical properties

    NASA Astrophysics Data System (ADS)

    Foster, Robert

    For decades, traditional remote sensing retrieval methods that rely solely on the spectral intensity of the water-leaving light have provided indicators of aquatic ecosystem health. With the increasing demand for new water quality indicators and improved accuracy of existing ones, the limits of traditional remote sensing approaches are becoming apparent. Use of the additional information intrinsic to the polarization state of light is therefore receiving more attention. One of the major challenges inherent in any above-surface determination of the water-leaving radiance, scalar or vector, is the removal of extraneous light which has not interacted with the water body and is therefore not useful for remote sensing of the water itself. Due in-part to the lack of a proven alternative, existing polarimeter installations have thus far assumed that such light was reflected by a flat sea surface, which can lead to large inaccuracies in the water-leaving polarization signal. This dissertation rigorously determines the full Mueller matrices for both surface-reflected skylight and upwardly transmitted light by a wind-driven ocean surface. A Monte Carlo code models the surface in 3D and performs polarized ray-tracing, while a vector radiative transfer (VRT) simulation generates polarized light distributions from which the initial Stokes vector for each ray is inferred. Matrices are computed for the observable range of surface wind speeds, viewing and solar geometries, and atmospheric aerosol loads. Radiometer field-of-view effects are also assessed. Validation of the results is achieved using comprehensive VRT simulations of the atmosphere-ocean system based on several oceanographic research cruises and specially designed polarimeters developed by the City College of New York: one submerged beneath the surface and one mounted on a research vessel. When available, additional comparisons are made at 9 km altitude with the NASA Research Scanning Polarimeter (RSP). Excellent agreement is achieved between all instrumentation, demonstrating the accuracy of the modeling approach and validating the computed Mueller matrices. Further, the results are used to demonstrate the feasibility for polarimetric retrieval of the total attenuation coefficient for Case II waters, a feat which is not possible using scalar remote sensing methods.

  4. Analysis of polarization characteristics of plant canopies using land-based remote sensing measurements for development of ground truth methods

    NASA Astrophysics Data System (ADS)

    Sidko, Aleksandr; Pisman, Tamara; Botvich, Irina; Shevyrnogov, Anatoly

    In order to develop satellite technology for monitoring of terrestrial plant canopies and land-based optical remote sensing techniques, one should employ new approaches to identifying farmlands and determining the plant species composition. The results present a study on polarized characteristics of spectral reflection factor of plant canopies (forests and farm crop canopies) under field conditions, using optical remote sensing techniques. The polarized components of the reflectance factor and the degree of polarization were calculated. Measurements were performed using a spectrophotometer with a polarized light filter attachment. Measurements were done within the spectral range from 400 to 840 nm. The viewing angle was no greater than 200 with respect to the nadir. Measurements of the polarization characteristics of the vegetation on the test ranges were conducted during June-July month when the height of the sun was at its zenith. Different wavelength dependences of the spectral reflection factor polarized component (Rq) and degree of polarization (P) were found both for the coniferous and broadleaf forests (pine and birch) and for farm crops (wheat and corn) and grass canopies. These differences can be used to determine species composition of plant canopies.

  5. Compensation for Phase Anisotropy of a Metal Reflector

    NASA Technical Reports Server (NTRS)

    Hong, John

    2007-01-01

    A method of compensation for the polarization- dependent phase anisotropy of a metal reflector has been proposed. The essence of the method is to coat the reflector with multiple thin alternating layers of two dielectrics that have different indices of refraction, so as to introduce an opposing polarization-dependent phase anisotropy. The anisotropy in question is a phenomenon that occurs in reflection of light at other than normal incidence: For a given plane wave having components polarized parallel (p) and perpendicular (s) to the plane of incidence, the phase of s-polarized reflected light differs from the phase p-polarized light by an amount that depends on the angle of incidence and the complex index of refraction of the metal. The magnitude of the phase difference is zero at zero angle of incidence (normal incidence) and increases with the angle of incidence. This anisotropy is analogous to a phase anisotropy that occurs in propagation of light through a uniaxial dielectric crystal. In such a case, another uniaxial crystal that has the same orientation but opposite birefringence can be used to cancel the phase anisotropy. Although it would be difficult to prepare a birefringent material in a form suitable for application to the curved surface of a typical metal reflector in an optical instrument, it should be possible to effect the desired cancellation of phase anisotropy by exploiting the form birefringence of multiple thin dielectric layers. (The term "form birefringence" can be defined loosely as birefringence arising, in part, from a regular array of alternating subwavelength regions having different indices of refraction.)

  6. Circular polarization beam splitter that uses frustrated total internal reflection by an embedded symmetric achiral multilayer coating.

    PubMed

    Azzam, R M A; De, A

    2003-03-01

    A symmetric achiral trilayer structure, which consists of a high-index center layer sandwiched between two identical low-index films and embedded in a high-index prism, is designed to produce equal and opposite quarter-wave retardation in reflection and transmission and equal throughput for the p and s polarization at oblique incidence. Such a device splits a beam of incident linearly polarized light into two orthogonally circularly polarized components of equal power that travel in different directions. A visible (633-nm) design that operates at a 60 degree angle of incidence and an infrared (10.6-microm) 45 degree cube design are presented. The spectral and angular sensitivities of the device are also considered.

  7. Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine

    NASA Astrophysics Data System (ADS)

    Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano

    2017-08-01

    Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2A band feature in the observations.

  8. Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Boryta, Mark D.; Hapke, Bruce W.; Manatt, Kenneth S.; Shkuratov, Yuriy; Psarev, V.; Vandervoort, Kurt; Kroner, Desire; Nebedum, Adaze; Vides, Christina L.; Quiñones, John

    2018-03-01

    We present reflectance and polarization phase curve measurements of highly reflective planetary regolith analogues having physical characteristics expected on atmosphereless solar system bodies (ASSBs) such as a eucritic asteroids or icy satellites. We used a goniometric photopolarimeter (GPP) of novel design to study thirteen well-sorted particle size fractions of aluminum oxide (Al2O3). The sample suite included particle sizes larger than, approximately equal to, and smaller than the wavelength of the incident monochromatic radiation (λ = 635 nm). The observed phase angle, α, was 0.056 o < α < 15°. These Al2O3 particulate samples have very high normal reflectance (> ∼95%). The incident radiation has a very high probability of being multiply scattered before being backscattered toward the incident direction or ultimately absorbed. The five smallest particle sizes exhibited extremely high void space (> ∼95%). The reflectance phase curves for all particle size fractions show a pronounced non-linear reflectance increase with decreasing phase angle at α∼ < 3°. Our earlier studies suggest that the cause of this non-linear reflectance increase is constructive interference of counter-propagating waves in the medium by coherent backscattering (CB), a photonic analog of Anderson localization of electrons in solid state media. The polarization phase curves for particle size fractions with size parameter (particle radius/wavelength) r/λ < ∼1, show that the linear polarization rapidly decreases as α increases from 0°; it reaches a minimum near α = ∼2°. Longward of ∼2°, the negative polarization decreases as phase angle increases, becoming positive between 12° and at least 15°, (probably ∼20°) depending on particle size. For size parameters r/λ > ∼1 we detect no polarization. This polarization behavior is distinct from that observed in low albedo solar system objects such as the Moon and asteroids and for absorbing materials in the laboratory. We suggest this behavior arises because photons that are backscattered have a high probability of having interacted with two or more particles, thus giving rise to the CB process. These results may explain the unusual negative polarization behavior observed near small phase angles reported for several decades on highly reflective ASSBs such as the asteroids 44 Nysa, 64 Angelina and the Galilean satellites Io, Europa and Ganymede. Our results suggest these ASSB regoliths scatter electromagnetic radiation as if they were extremely fine grained with void space > ∼95%, and grain sizes of the order < = λ. This portends consequences for efforts to deploy landers on high ASSBs such as Europa. These results are also germane to the field of terrestrial geo-engineering, particularly to suggestions that earth's radiation balance can be modified by injecting Al2O3 particulates into the stratosphere thereby offsetting the effect of anthropogenic greenhouse gas emissions. The GPP used in this study was modified from our previous design so that the sample is presented with light that is alternatingly polarized perpendicular to and parallel to the scattering plane. There are no analyzers before the detector. This optical arrangement, following the Helmholtz Reciprocity Principle (HRP), produces a physically identical result to the traditional laboratory reflectance polarization measurements in which the incident light is unpolarized and the analyzers are placed before the detector. The results are identical in samples measured by both methods. We believe that ours is the first experimental demonstration of the HRP for polarized light, first proposed by Helmholtz in 1856.

  9. Angular intensity and polarization dependence of diffuse transmission through random media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Rosenbluh, M.; Feund, I.

    1993-03-01

    A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.

  10. Nondestructive monitoring of the repair of natural occlusal lesions using cross polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kang, Hobin; Darling, Cynthia L.; Fried, Daniel

    2012-01-01

    Previous remineralization studies employing cross polarization sensitive optical coherence tomography (CP-OCT), have been limited to the repair of artificial enamel-like lesions. In this study we attempted to remineralize existing occlusal lesions on extracted teeth. Lesions were imaged before and after exposure to an acidic remineralization regimen and the integrated reflectivity and lesion depth was calculated. Automated integration routines worked well for assessing the integrated reflectivity for the lesion areas after remineralization. Polarized light microscopy was also used to examine the lesions areas after sectioning the teeth. An acidic remineralization solution was used to remineralize the lesions. The integrated reflectivity significantly increased after exposure to the remineralization solution which suggests that the acidic solution caused additional demineralization as opposed to the desired remineralization.

  11. A polarization measurement method for the quantification of retardation in optic nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko

    2008-02-01

    The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.

  12. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber

    DOE PAGES

    Yang, Yuanmu; Kelley, Kyle; Sachet, Edward; ...

    2017-05-01

    Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance frommore » 1.0 to 86.3%. As a result, by combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.« less

  13. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yuanmu; Kelley, Kyle; Sachet, Edward

    Ultrafast control of the polarization state of light may enable a plethora of applications in optics, chemistry and biology. However, conventional polarizing elements, such as polarizers and waveplates, are either static or possess only gigahertz switching speeds. Here, with the aid of high-mobility indium-doped cadmium oxide (CdO) as the gateway plasmonic material, we realize a high-quality factor Berreman-type perfect absorber at a wavelength of 2.08 μm. On sub-bandgap optical pumping, the perfect absorption resonance strongly redshifts because of the transient increase of the ensemble-averaged effective electron mass of CdO, which leads to an absolute change in the p-polarized reflectance frommore » 1.0 to 86.3%. As a result, by combining the exceedingly high modulation depth with the polarization selectivity of the perfect absorber, we experimentally demonstrate a reflective polarizer with a polarization extinction ratio of 91 that can be switched on and off within 800 fs.« less

  14. Design technique for all-dielectric non-polarizing beam splitter plate

    NASA Astrophysics Data System (ADS)

    Rizea, A.

    2012-03-01

    There are many situations when, for the proper working, an opto-electronic device requiring optical components does not change the polarization state of light after a reflection, splitting or filtering. In this paper, a design for a non-polarizing beam splitter plate is proposed. Based on certain optical properties of homogeneous dielectric materials we will establish a reliable thin film package formula, excellent for the start of optimization to obtain a 20-nm bandwidth non-polarizing beam splitter.

  15. APC: A New Code for Atmospheric Polarization Computations

    NASA Technical Reports Server (NTRS)

    Korkin, Sergey V.; Lyapustin, Alexei I.; Rozanov, Vladimir V.

    2014-01-01

    A new polarized radiative transfer code Atmospheric Polarization Computations (APC) is described. The code is based on separation of the diffuse light field into anisotropic and smooth (regular) parts. The anisotropic part is computed analytically. The smooth regular part is computed numerically using the discrete ordinates method. Vertical stratification of the atmosphere, common types of bidirectional surface reflection and scattering by spherical particles or spheroids are included. A particular consideration is given to computation of the bidirectional polarization distribution function (BPDF) of the waved ocean surface.

  16. Mechanisms and behavioural functions of structural coloration in cephalopods

    PubMed Central

    Mäthger, Lydia M.; Denton, Eric J.; Marshall, N. Justin; Hanlon, Roger T.

    2008-01-01

    Octopus, squid and cuttlefish are renowned for rapid adaptive coloration that is used for a wide range of communication and camouflage. Structural coloration plays a key role in augmenting the skin patterning that is produced largely by neurally controlled pigmented chromatophore organs. While most iridescence and white scattering is produced by passive reflectance or diffusion, some iridophores in squid are actively controlled via a unique cholinergic, non-synaptic neural system. We review the recent anatomical and experimental evidence regarding the mechanisms of reflection and diffusion of light by the different cell types (iridophores and leucophores) of various cephalopod species. The structures that are responsible for the optical effects of some iridophores and leucophores have recently been shown to be proteins. Optical interactions with the overlying pigmented chromatophores are complex, and the recent measurements are presented and synthesized. Polarized light reflected from iridophores can be passed through the chromatophores, thus enabling the use of a discrete communication channel, because cephalopods are especially sensitive to polarized light. We illustrate how structural coloration contributes to the overall appearance of the cephalopods during intra- and interspecific behavioural interactions including camouflage. PMID:19091688

  17. Optical Sensing of Polarization States Changes in Meat due to the Ageing

    NASA Astrophysics Data System (ADS)

    Tománek, Pavel; Mikláš, Jan; Abubaker, Hamed Mohamed; Grmela, Lubomír

    2010-11-01

    Food materials or biological materials display large compositional variations, inhomogeneities, and anisotropic structures. The biological tissues consist of cells which dimensions are bigger than a wavelength of visible light, therefore Mie scattering of transmitted and reflected light occurs and different polarization states arise. The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. The minor importance is still given to the food quality control and inspection during processing operations or storing conditions. The paper presents a quite simple optical method allowing measure the freshness or ageing of products. The principle is to study temporal characteristics of polarization states of forward or backward scattered laser light in the samples in function of meat ageing.

  18. Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor

    NASA Astrophysics Data System (ADS)

    Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui

    2018-05-01

    At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.

  19. Specimen illumination apparatus with optical cavity for dark field illumination

    DOEpatents

    Pinkel, Daniel; Sudar, Damir; Albertson, Donna

    1999-01-01

    An illumination apparatus with a specimen slide holder, an illumination source, an optical cavity producing multiple reflection of illumination light to a specimen comprising a first and a second reflective surface arranged to achieve multiple reflections of light to a specimen is provided. The apparatus can further include additional reflective surfaces to achieve the optical cavity, a slide for mounting the specimen, a coverslip which is a reflective component of the optical cavity, one or more prisms for directing light within the optical cavity, antifading solutions for improving the viewing properties of the specimen, an array of materials for analysis, fluorescent components, curved reflective surfaces as components of the optical cavity, specimen detection apparatus, optical detection equipment, computers for analysis of optical images, a plane polarizer, fiberoptics, light transmission apertures, microscopic components, lenses for viewing the specimen, and upper and lower mirrors above and below the specimen slide as components of the optical cavity. Methods of using the apparatus are also provided.

  20. Polarization sensitive camera for the in vitro diagnostic and monitoring of dental erosion

    NASA Astrophysics Data System (ADS)

    Bossen, Anke; Rakhmatullina, Ekaterina; Lussi, Adrian; Meier, Christoph

    Due to a frequent consumption of acidic food and beverages, the prevalence of dental erosion increases worldwide. In an initial erosion stage, the hard dental tissue is softened due to acidic demineralization. As erosion progresses, a gradual tissue wear occurs resulting in thinning of the enamel. Complete loss of the enamel tissue can be observed in severe clinical cases. Therefore, it is essential to provide a diagnosis tool for an accurate detection and monitoring of dental erosion already at early stages. In this manuscript, we present the development of a polarization sensitive imaging camera for the visualization and quantification of dental erosion. The system consists of two CMOS cameras mounted on two sides of a polarizing beamsplitter. A horizontal linearly polarized light source is positioned orthogonal to the camera to ensure an incidence illumination and detection angles of 45°. The specular reflected light from the enamel surface is collected with an objective lens mounted on the beam splitter and divided into horizontal (H) and vertical (V) components on each associate camera. Images of non-eroded and eroded enamel surfaces at different erosion degrees were recorded and assessed with diagnostic software. The software was designed to generate and display two types of images: distribution of the reflection intensity (V) and a polarization ratio (H-V)/(H+V) throughout the analyzed tissue area. The measurements and visualization of these two optical parameters, i.e. specular reflection intensity and the polarization ratio, allowed detection and quantification of enamel erosion at early stages in vitro.

  1. Superstructures of chiral nematic microspheres as all-optical switchable distributors of light

    PubMed Central

    Aβhoff, Sarah J.; Sukas, Sertan; Yamaguchi, Tadatsugu; Hommersom, Catharina A.; Le Gac, Séverine; Katsonis, Nathalie

    2015-01-01

    Light technology is based on generating, detecting and controlling the wavelength, polarization and direction of light. Emerging applications range from electronics and telecommunication to health, defence and security. In particular, data transmission and communication technologies are currently asking for increasingly complex and fast devices, and therefore there is a growing interest in materials that can be used to transmit light and also to control the distribution of light in space and time. Here, we design chiral nematic microspheres whose shape enables them to reflect light of different wavelengths and handedness in all directions. Assembled in organized hexagonal superstructures, these microspheres of well-defined sizes communicate optically with high selectivity for the colour and chirality of light. Importantly, when the microspheres are doped with photo-responsive molecular switches, their chiroptical communication can be tuned, both gradually in wavelength and reversibly in polarization. Since the kinetics of the “on” and “off” switching can be adjusted by molecular engineering of the dopants and because the photonic cross-communication is selective with respect to the chirality of the incoming light, these photo-responsive microspheres show potential for chiroptical all-optical distributors and switches, in which wavelength, chirality and direction of the reflected light can be controlled independently and reversibly. PMID:26400584

  2. Neural coding underlying the cue preference for celestial orientation

    PubMed Central

    el Jundi, Basil; Warrant, Eric J.; Byrne, Marcus J.; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie

    2015-01-01

    Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity. PMID:26305929

  3. Neural coding underlying the cue preference for celestial orientation.

    PubMed

    el Jundi, Basil; Warrant, Eric J; Byrne, Marcus J; Khaldy, Lana; Baird, Emily; Smolka, Jochen; Dacke, Marie

    2015-09-08

    Diurnal and nocturnal African dung beetles use celestial cues, such as the sun, the moon, and the polarization pattern, to roll dung balls along straight paths across the savanna. Although nocturnal beetles move in the same manner through the same environment as their diurnal relatives, they do so when light conditions are at least 1 million-fold dimmer. Here, we show, for the first time to our knowledge, that the celestial cue preference differs between nocturnal and diurnal beetles in a manner that reflects their contrasting visual ecologies. We also demonstrate how these cue preferences are reflected in the activity of compass neurons in the brain. At night, polarized skylight is the dominant orientation cue for nocturnal beetles. However, if we coerce them to roll during the day, they instead use a celestial body (the sun) as their primary orientation cue. Diurnal beetles, however, persist in using a celestial body for their compass, day or night. Compass neurons in the central complex of diurnal beetles are tuned only to the sun, whereas the same neurons in the nocturnal species switch exclusively to polarized light at lunar light intensities. Thus, these neurons encode the preferences for particular celestial cues and alter their weighting according to ambient light conditions. This flexible encoding of celestial cue preferences relative to the prevailing visual scenery provides a simple, yet effective, mechanism for enabling visual orientation at any light intensity.

  4. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm.

    PubMed

    Wu, J; Fried, D

    2009-03-01

    Sound enamel manifests peak transparency in the near-IR (NIR) at 1310-nm, therefore the near-IR is ideally suited for high contrast imaging of dental caries. The purpose of this study was to acquire images of early demineralized enamel on the buccal and occlusal surfaces of extracted human teeth using NIR reflectance imaging and compare the contrast of those images with the contrast of images taken using other methods. Fifteen human molars were used in this in vitro study. Teeth were painted with a clear acid-resistant varnish, leaving two 2 mm x 2 mm windows on the buccal and occlusal surfaces of each tooth for demineralization. Artificial lesions were produced in the exposed windows after a 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR transillumination, NIR and visible light reflectance, and fluorescence imaging methods. Crossed polarizers were used where appropriate to improve contrast. Polarization sensitive optical coherence tomography (PS-OCT) was also used to non-destructively assess the depth and severity of demineralization in each sample window. NIR reflectance imaging had the highest image contrast for both the buccal and occlusal groups and it was significantly higher contrast than visible light reflectance (P < 0.05). The results of the study suggest that NIR reflectance imaging is a promising new method for acquiring high contrast images of early demineralization on tooth surfaces. Copyright 2009 Wiley-Liss, Inc.

  5. Polarized light imaging specifies the anisotropy of light scattering in the superficial layer of a tissue

    PubMed Central

    Jacques, Steven L.; Roussel, Stéphane; Samatham, Ravikant

    2016-01-01

    Abstract. This report describes how optical images acquired using linearly polarized light can specify the anisotropy of scattering (g) and the ratio of reduced scattering [μs′=μs(1−g)] to absorption (μa), i.e., N′=μs′/μa. A camera acquired copolarized (HH) and crosspolarized (HV) reflectance images of a tissue (skin), which yielded images based on the intensity (I=HH+HV) and difference (Q=HH−HV) of reflectance images. Monte Carlo simulations generated an analysis grid (or lookup table), which mapped Q and I into a grid of g versus N′, i.e., g(Q,I) and N′(Q,I). The anisotropy g is interesting because it is sensitive to the submicrometer structure of biological tissues. Hence, polarized light imaging can monitor shifts in the submicrometer (50 to 1000 nm) structure of tissues. The Q values for forearm skin on two subjects (one Caucasian, one pigmented) were in the range of 0.046±0.007 (24), which is the mean±SD for 24 measurements on 8 skin sites×3 visible wavelengths, 470, 524, and 625 nm, which indicated g values of 0.67±0.07 (24). PMID:27165546

  6. Analysis and Application of the Bi-Directional Scatter Distribution Function of Photonic Crystals

    DTIC Science & Technology

    2009-03-01

    and reflected light ..................17 10. A CASI source box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear...off of a semi-reflective beam chopper , shown in Figure 10. Any variation in the output of the laser is detected by it, and the incident power is...box, showing the beam path, chopper , scaling photodetector, half-wave plate, and linear polarizers. 20 The CASI is not sensitive to ambient light

  7. Insect Responses to Linearly Polarized Reflections: Orphan Behaviors Without Neural Circuits

    PubMed Central

    Heinloth, Tanja; Uhlhorn, Juliane; Wernet, Mathias F.

    2018-01-01

    The e-vector orientation of linearly polarized light represents an important visual stimulus for many insects. Especially the detection of polarized skylight by many navigating insect species is known to improve their orientation skills. While great progress has been made towards describing both the anatomy and function of neural circuit elements mediating behaviors related to navigation, relatively little is known about how insects perceive non-celestial polarized light stimuli, like reflections off water, leaves, or shiny body surfaces. Work on different species suggests that these behaviors are not mediated by the “Dorsal Rim Area” (DRA), a specialized region in the dorsal periphery of the adult compound eye, where ommatidia contain highly polarization-sensitive photoreceptor cells whose receptive fields point towards the sky. So far, only few cases of polarization-sensitive photoreceptors have been described in the ventral periphery of the insect retina. Furthermore, both the structure and function of those neural circuits connecting to these photoreceptor inputs remain largely uncharacterized. Here we review the known data on non-celestial polarization vision from different insect species (dragonflies, butterflies, beetles, bugs and flies) and present three well-characterized examples for functionally specialized non-DRA detectors from different insects that seem perfectly suited for mediating such behaviors. Finally, using recent advances from circuit dissection in Drosophila melanogaster, we discuss what types of potential candidate neurons could be involved in forming the underlying neural circuitry mediating non-celestial polarization vision. PMID:29615868

  8. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-11-01

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

  9. Enhanced optical rotation and diminished depolarization in diffusive scattering from a chiral liquid

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.; Strange, Wayne; Badoz, J.; Vitkin, I. A.

    1996-02-01

    Optical rotation and degree of polarization of linearly polarized light were observed by forward, lateral, and back scattering from solutions of D-glucose containing a dispersion of micron-size polystyrene spheres. Rotations increased linearly with glucose concentration at a rate determined by the microsphere concentration and were large even at optical thicknesses sufficiently great to extinguish transmission of the incident beam. Depolarization of light with increasing microsphere concentration occurred at a much slower rate in chiral glucose solution than in pure water. These experiments suggest new possibilities for studying turbid chiral media for which light transmission and specular reflection techniques are inappropriate.

  10. Determination of the refractive index and thickness of holographic silver halide materials by use of polarized reflectances.

    PubMed

    Beléndez, Augusto; Beléndez, Tarsicio; Neipp, Cristian; Pascual, Inmaculada

    2002-11-10

    A method to determine the refractive index and thickness of silver halide emulsions used in holography is presented. The emulsions are in the form of a layer of film deposited on a thick glass plate. The experimental reflectances of p-polarized light are measured as a function of the incident angles, and the values of refractive index, thickness, and extinction coefficient of the emulsion are obtained by using the theoretical equation for reflectance. As examples, five commercial holographic silver halide emulsions are analyzed. The procedure to obtain the measurements and the numerical analysis of the experimental data are simple, and agreement of the calculated reflectances, by use of the thickness and refractive index obtained, with the measured reflectances is satisfactory.

  11. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint

    PubMed Central

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-01-01

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465

  12. The polarization modulation and fabrication method of two dimensional silica photonic crystals based on UV nanoimprint lithography and hot imprint.

    PubMed

    Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin

    2016-10-04

    Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.

  13. Optical Thin Film Modeling: Using FTG's FilmStar Software

    NASA Technical Reports Server (NTRS)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  14. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens.

    PubMed

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2013-12-15

    We report a new optical arrangement that creates high-efficiency, high-quality Fresnel incoherent correlation holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs a reflective spatial light modulator (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixilated, and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere and create a hologram and resultant super resolution image.

  15. Light scattering by randomly oriented cubes and parallelepipeds. [for interpretation of observed data from planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Liou, K. N.; Cai, Q.; Pollack, J. B.; Cuzzi, J. N.

    1983-01-01

    In this paper, the geometric ray tracing theory for the scattering of light by hexagonal cylinders to cubes and parallelepipeds has been modified. Effects of the real and imaginary parts of the refractive index and aspect ratio of the particle on the scattering phase function and the degree of linear polarization are investigated. Causes of the physical features in the scattering polarization patterns are identified in terms of the scattering contribution due to geometric reflections and refractions. The single-scattering phase function and polarization data presented in this paper should be of some use for the interpretation of observed scattering and polarization data from planetary atmospheres and for the physical understanding of the transfer of radiation in an atmosphere containing nonspherical particles.

  16. Influence of polarization characteristic of targets on synthetic aperture imaging ladar

    NASA Astrophysics Data System (ADS)

    Xu, Qian; Sun, Jianfeng; Lu, Zhiyong; Wang, Lijuan; Hou, Peipei; Lu, Wei; Liu, Liren

    2017-09-01

    Synthetic aperture imaging ladar (SAIL) is one of the most possible optical active imaging methods to break the diffraction limit and achieve super-resolution in a long distance. Nevertheless, two-dimensional reconstructed images of the natural targets have not been achieved. Polarization state change of the backscattered light, which is always determined by the interaction of the light and the materials on the target plane, will affect the imaging of SAIL. The Mueller matrices can describe the complex polarization features of the target reflection and treat this interaction. In this paper, a measurement of the Mueller matrices for different target materials will be designed, and the influences of polarization characteristic of targets on resolution element imaging in side-looking and down-looking SAILs will be theoretically analyzed.

  17. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light

    NASA Astrophysics Data System (ADS)

    Horváth, Gábor; Majer, József; Horváth, Loránd; Szivák, Ildikó; Kriska, György

    2008-11-01

    Adult tabanid flies (horseflies and deerflies) are terrestrial and lay their eggs onto marsh plants near bodies of fresh water because the larvae develop in water or mud. To know how tabanids locate their host animals, terrestrial rendezvous sites and egg-laying places would be very useful for control measures against them, because the hematophagous females are primary/secondary vectors of some severe animal/human diseases/parasites. Thus, in choice experiments performed in the field we studied the behavior of tabanids governed by linearly polarized light. We present here evidence for positive polarotaxis, i.e., attraction to horizontally polarized light stimulating the ventral eye region, in both males and females of 27 tabanid species. The novelty of our findings is that positive polarotaxis has been described earlier only in connection with the water detection of some aquatic insects ovipositing directly into water. A further particularity of our discovery is that in the order Diptera and among blood-sucking insects the studied tabanids are the first known species possessing ventral polarization vision and definite polarization-sensitive behavior with known functions. The polarotaxis in tabanid flies makes it possible to develop new optically luring traps being more efficient than the existing ones based on the attraction of tabanids by the intensity and/or color of reflected light.

  18. Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: Tabanidae) are attracted to horizontally polarized light.

    PubMed

    Horváth, Gábor; Majer, József; Horváth, Loránd; Szivák, Ildikó; Kriska, György

    2008-11-01

    Adult tabanid flies (horseflies and deerflies) are terrestrial and lay their eggs onto marsh plants near bodies of fresh water because the larvae develop in water or mud. To know how tabanids locate their host animals, terrestrial rendezvous sites and egg-laying places would be very useful for control measures against them, because the hematophagous females are primary/secondary vectors of some severe animal/human diseases/parasites. Thus, in choice experiments performed in the field we studied the behavior of tabanids governed by linearly polarized light. We present here evidence for positive polarotaxis, i.e., attraction to horizontally polarized light stimulating the ventral eye region, in both males and females of 27 tabanid species. The novelty of our findings is that positive polarotaxis has been described earlier only in connection with the water detection of some aquatic insects ovipositing directly into water. A further particularity of our discovery is that in the order Diptera and among blood-sucking insects the studied tabanids are the first known species possessing ventral polarization vision and definite polarization-sensitive behavior with known functions. The polarotaxis in tabanid flies makes it possible to develop new optically luring traps being more efficient than the existing ones based on the attraction of tabanids by the intensity and/or color of reflected light.

  19. In vitro near-infrared imaging of natural secondary caries.

    PubMed

    Simon, Jacob C; Lucas, Seth; Lee, Robert; Darling, Cynthia L; Staninec, Michal; Vanderhobli, Ram; Pelzner, Roger; Fried, Daniel

    2015-02-24

    Secondary caries stands as the leading reason for the failure of composite restorations and dentists spend more time replacing existing restorations than placing new ones. Current clinical strategies, and even modern visible light methods designed to detect decay, lack the sensitivity to distinguish incipient lesions, are confounded by staining on the surface and within the tooth, or are limited to detecting decay on the tooth surface. Near-IR (NIR) imaging methods, such as NIR reflectance and transillumination imaging, and optical coherence tomography are promising strategies for imaging secondary caries. Wavelengths longer than 1300-nm avoid interference from stain and exploit the greater transparency of sound enamel and dental composites, to provide increased contrast with demineralized tissues and improved imaging depth. The purpose of this study was to determine whether NIR transillumination (λ=1300-nm) and NIR cross-polarized reflectance (λ=1500-1700-nm) images can serve as reliable indicators of demineralization surrounding composite restorations. Twelve composite margins (n=12) consisting of class I, II & V restorations were chosen from ten extracted teeth. The samples were imaged in vitro using NIR transillumination and reflectance, polarization sensitive optical coherence tomography (PS-OCT) and a high-magnification digital visible light microscope. Samples were serially sectioned into 200- μ m slices for histological analysis using polarized light microscopy (PLM) and transverse microradiography (TMR). The results presented demonstrate the utility of NIR light for detecting recurrent decay and suggest that NIR images could be a reliable screening tool used in conjunction with PS-OCT for the detection and diagnosis of secondary caries.

  20. Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components.

    PubMed

    Park, B Hyle; Pierce, Mark C; Cense, Barry; de Boer, Johannes F

    2004-11-01

    We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.

  1. Rayleigh and Wood anomalies in the diffraction of light from a perfectly conducting reflection grating

    NASA Astrophysics Data System (ADS)

    Maradudin, A. A.; Simonsen, I.; Polanco, J.; Fitzgerald, R. M.

    2016-02-01

    By means of a modal method we have calculated the angular dependence of the reflectivity and the efficiencies of several other diffracted orders of a perfectly conducting lamellar reflection grating illuminated by p-polarized light. These dependencies display the signatures of Rayleigh and Wood anomalies, usually associated with diffraction from a metallic grating. The Wood anomalies here are caused by the excitation of the surface electromagnetic waves supported by a periodically corrugated perfectly conducting surface, whose dispersion curves in both the nonradiative and radiative regions of the frequency-wavenumber plane are calculated.

  2. Metasurface polarization splitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovick, Brian A.; Zhou, You; Yu, Zhi Gang

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less

  3. Metasurface polarization splitter

    DOE PAGES

    Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; ...

    2017-02-20

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less

  4. An All-Dielectric Coaxial Waveguide.

    PubMed

    Ibanescu; Fink; Fan; Thomas; Joannopoulos

    2000-07-21

    An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.

  5. Relative Water Content, Bidirectional Reflectance and Bidirectional Transmittance of the Interior of Detached Leaves During Dry Down.

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2015-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research [1]. Estimates of canopy water content commonly involve measurements in the 900nm to 2000nm portion of the optical spectrum [1]. We have used optical polarization techniques to remove leaf surface reflection and to demonstrate that the visible light reflected by the interior of green healthy corn leaves measured in situ inversely depends upon the leaf relative water content (RWC) [2]. In the research reported here, we again used optical polarization techniques in order to remove the leaf surface reflection from our measurements. This allowed us to monitor the interiors of detached corn leaf samples during leaf dry down measuring for each sample the RWC, bidirectional spectral reflectance and bidirectional spectral transmittance over the wavelength range 450nm to 2,500nm. Our new results like our earlier results show light scattered by the leaf interior measured in the visible wavelength region generally increased as leaf RWC decreased. However, the spectral character and the much improved signal noise of our new results shows the RWC-linked visible light scattering changes are due to leaf structural changes. Our new results show that scattering changes that occur with changing leaf RWC are not attributable to molecular configuration changes in cellular pigments.

  6. Electrically switchable photonic liquid crystal devices for routing of a polarized light wave

    NASA Astrophysics Data System (ADS)

    Rushnova, Irina I.; Melnikova, Elena A.; Tolstik, Alexei L.; Muravsky, Alexander A.

    2018-04-01

    The new mode of LC alignment based on photoalignment AtA-2 azo dye where the refractive interface between orthogonal orientations of the LC director exists without voltage and disappeared or changed with critical voltage has been proposed. The technology to fabricate electrically controlled liquid crystal elements for spatial separation and switching of linearly polarized light beams on the basis of the total internal reflection effect has been significantly improved. Its distinctive feature is the application of a composite alignment material comprising two sublayers of Nylon-6 and AtA-2 photoalignment azo dye offering patterned liquid crystal director orientation with high alignment quality value q = 0 . 998. The fabricated electrically controlled spatially structured liquid crystal devices enable implementation of propagation directions separation for orthogonally polarized light beams and their switching with minimal crosstalk.

  7. Optical Anisotropy of Photonic Crystals of Cubic Symmetry Induced by Multiple Diffraction of Light

    NASA Astrophysics Data System (ADS)

    Ukleev, T. A.; Shevchenko, N. N.; Iurasova, D. I.; Sel'kin, A. V.

    2018-05-01

    The optical spectra of Bragg reflection from opal-like photonic crystals under conditions of the resonant enhancement of the multiple diffraction of light have been studied experimentally and theoretically using the photonic crystal structures prepared of monodisperse polystyrene globules. It is shown that the reflection signal registered in mutually orthogonal configurations of the polarizer and analyzer is related to the intrinsic optical anisotropy of the crystals and is a specific manifestation of the multiple Bragg diffraction in three-dimensional photonic crystals.

  8. Illumination system for a projector composed of three LCD panels

    NASA Astrophysics Data System (ADS)

    Ho, Fang C.; Chu, Cheng-Wei; Lee, William

    2004-10-01

    A novel compound prism device consisting of a cubic polarizing beam splitter (PBS) and a non-polarizing dichroic prism is configured as the core component of the illumination unit of a full color projection display system of three pieces of reflective type liquid crystal imaging panels. When the in-coming light beam impinging on the PBS at 45 deg. of incidence, the beam component polarized perpendicularly to the plane of incidence is reflected and directed toward a LCD panel of red-image signal addressed after transmitted through a red-passing dichroic filter. The beam component polarized in parallel with the plane of incidence of the PBS is transmitted and passing through a red-cut dichroic filter. The rest portion of the light beam is then got the blue and green color bands separated by the dichroic filter at 30 deg. of incidence and directed to a blue and green signal addressed LCD panel respectively. All the dichroic filters are designed polarization independent and the PBS has a high contrast ratio of 1000 for the on/off states of teh addressed pixels of the image panels. The color separation and re-combination prism unit will provide a screen uniformity of d(u',v') <0.01 when it is accomodated in the projector with a projection lens assembly of F/#2.4.

  9. Polarimetric infrared imaging simulation of a synthetic sea surface with Mie scattering.

    PubMed

    He, Si; Wang, Xia; Xia, Runqiu; Jin, Weiqi; Liang, Jian'an

    2018-03-01

    A novel method to simulate the polarimetric infrared imaging of a synthetic sea surface with atmospheric Mie scattering effects is presented. The infrared emission, multiple reflections, and infrared polarization of the sea surface and the Mie scattering of aerosols are all included for the first time. At first, a new approach to retrieving the radiative characteristics of a wind-roughened sea surface is introduced. A two-scale method of sea surface realization and the inverse ray tracing of light transfer calculation are combined and executed simultaneously, decreasing the consumption of time and memory dramatically. Then the scattering process that the infrared light emits from the sea surface and propagates in the aerosol particles is simulated with a polarized light Monte Carlo model. Transformations of the polarization state of the light are calculated with the Mie theory. Finally, the polarimetric infrared images of the sea surface of different environmental conditions and detection parameters are generated based on the scattered light detected by the infrared imaging polarimeter. The results of simulation examples show that our polarimetric infrared imaging simulation can be applied to predict the infrared polarization characteristics of the sea surface, model the oceanic scene, and guide the detection in the oceanic environment.

  10. Biaxial thin-film coated-plate polarizing beam splitters.

    PubMed

    Hodgkinson, Ian; Wu, Qi Hong; Arnold, Matthew; De Silva, Lakshman; Beydaghyan, Gisia; Kaminska, Kate; Robbie, Kevin

    2006-03-01

    We present a design for a biaxial thin-film coated-plate polarizing beam splitter that transmits the p-polarized component of a beam of light without change of direction and reflects the s-polarized component. The beam splitter has a periodic structure and is planned for fabrication by serial bideposition in mutually orthogonal planes. Recent experimental data for form-birefringent silicon is used to establish the feasibility of the design for a beam splitter to be used at 1310 nm and at an angle of 45 degrees in air.

  11. The Critical Angle Can Override the Brewster Angle

    ERIC Educational Resources Information Center

    Froehle, Peter H.

    2009-01-01

    As a culminating activity in their study of optics, my students investigate polarized light and the Brewster angle. In this exercise they encounter a situation in which it is impossible to measure the Brewster angle for light reflecting from a particular surface. This paper describes the activity and explains the students' observations.

  12. Giant cross polarization in a nanoimprinted metamaterial combining a fishnet with its Babinet complement.

    PubMed

    Dong, Lin; Haslinger, Michael J; Danzberger, Jürgen; Bergmair, Iris; Hingerl, Kurt; Hrelescu, Calin; Klar, Thomas A

    2015-07-27

    We present a large area (1 cm2) nanoimprinted metamaterial comprising a fishnet structure and its Babinet complement, which shows giant cross polarization. When illuminated with s-polarized light, the reflected beam can be p-polarized up to 96%, depending on the azimuthal orientation of the sample. This experimental result is close to the result of numerical simulations, which predict 98.7% of cross-polarization. It is further shown, that 95-100% cross polarization is only achieved in the case when the fishnet is combined with its Babinet complement. Each structure alone (either an ordinary fishnet or a plane with metallic rectangles only) shows substantially less polarization conversion.

  13. Creation of vector beams from a polarization diffraction grating using a programmable liquid crystal spatial light modulator and a q-plate

    NASA Astrophysics Data System (ADS)

    Badham, Katherine Emily

    This thesis presents the ability of complete polarization control of light to create a polarization diffraction grating (PDG). This system has the ability to create diffracted light with each order having a separate high-order polarization state in one location on the optical axis. First, an external Excel program is used to create a grating phase profile from userspecified target diffraction orders. High-order vector beams in this PDG are created using a combination of two devices---a liquid crystal spatial light modulator (LC-SLM) manufactured by Seiko Epson, and a tunable q -plate from Citizen Holdings Co. The transmissive SLM is positioned in an optical setup with a reflective architecture allowing control over both the horizontal and vertical components of the laser beam. The SLM has its LC director oriented vertically only affecting the vertically polarized state, however, the optical setup allows modulation of both vertical and horizontal components by the use of a quarter-wave plate (QWP) and a mirror to rotate the polarizations 90 degrees. Each half of the SLM is encoded with an anisotropic phase-only diffraction grating which are superimposed to create a select number of orders with the desired polarization states and equally distributed intensity. The technique of polarimetry is used to confirm the polarization state of each diffraction order. The q-plate is an inhomogeneous birefringent waveplate which has the ability to convert zero-order vector beams into first-order vector beams. The physical placement of this device into the system converts the orders with zero-order polarization states to first-order polarization states. The light vector patterns of each diffraction order confirm which first-order polarization state of is produced. A specially made PDG sextuplicator is encoded onto the SLM to generate six diffraction orders with separate states of polarization.

  14. Parallel detecting, spectroscopic ellipsometers/polarimeters

    DOEpatents

    Furtak, Thomas E.

    2002-01-01

    The parallel detecting spectroscopic ellipsometer/polarimeter sensor has no moving parts and operates in real-time for in-situ monitoring of the thin film surface properties of a sample within a processing chamber. It includes a multi-spectral source of radiation for producing a collimated beam of radiation directed towards the surface of the sample through a polarizer. The thus polarized collimated beam of radiation impacts and is reflected from the surface of the sample, thereby changing its polarization state due to the intrinsic material properties of the sample. The light reflected from the sample is separated into four separate polarized filtered beams, each having individual spectral intensities. Data about said four individual spectral intensities is collected within the processing chamber, and is transmitted into one or more spectrometers. The data of all four individual spectral intensities is then analyzed using transformation algorithms, in real-time.

  15. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    PubMed Central

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-01-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611

  16. Optical Reflectance Measurements for Commonly Used Reflectors

    NASA Astrophysics Data System (ADS)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  17. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geoCARB depolarizer or polarizer. Enabled by measurement of the geoCARB grating efficiencies the simulated intensities Ism include the slow polarization induced spectral change across the band. These Ism are input to the retrieval SW that was used in the original study. There is no significant change to the very positive previous results for the mission objective of gas column retrieval.

  18. Metasurface polarization splitter

    PubMed Central

    Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I.; Briggs, Dayrl P.; Moitra, Parikshit; Krishnamurthy, Srini

    2017-01-01

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits. This article is part of the themed issue ‘New horizons for nanophotonics’. PMID:28220002

  19. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    DOEpatents

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  20. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary: comment.

    PubMed

    Andersen, Torben B

    2016-05-01

    In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.

  1. Tunable reflecting terahertz filter based on chirped metamaterial structure

    PubMed Central

    Yang, Jing; Gong, Cheng; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-01-01

    Tunable reflecting terahertz bandstop filter based on chirped metamaterial structure is demonstrated by numerical simulation. In the metamaterial, the metal bars are concatenated to silicon bars with different lengths. By varying the conductivity of the silicon bars, the reflectivity, central frequency and bandwidth of the metamaterial could be tuned. Light illumination could be introduced to change the conductivity of the silicon bars. Numerical simulations also show that the chirped metamaterial structure is insensitive to the incident angle and polarization-dependent. The proposed chirped metamaterial structure can be operated as a tunable bandstop filter whose modulation depth, bandwidth, shape factor and center frequency can be controlled by light pumping. PMID:27941833

  2. Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres

    NASA Technical Reports Server (NTRS)

    Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.

    1994-01-01

    Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.

  3. Self-collimating photonic crystal polarization beam splitter.

    PubMed

    Zabelin, V; Dunbar, L A; Le Thomas, N; Houdré, R; Kotlyar, M V; O'Faolain, L; Krauss, T F

    2007-03-01

    We present theoretical and experimental results of a polarization splitter device that consists of a photonic crystal (PhC) slab, which exhibits a large reflection coefficient for TE and a high transmission coefficient for TM polarization. The slab is embedded in a PhC tile operating in the self-collimation mode. Embedding the polarization-discriminating slab in a PhC with identical lattice symmetry suppresses the in-plane diffraction losses at the PhC-non-PhC interface. The optimization of the PhC-non-PhC interface is thereby decoupled from the optimization of the polarizing function. Transmissions as high as 35% for TM- and 30% for TE-polarized light are reported.

  4. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Outer Solar System" included the following reports:New Data About Seasonal Variations of the North-South Asymmetry of Polarized Light of Jupiter; Appearance of Second Harmonic in the Jupiter Spectrum; Dynamics of Confined Liquid Mass, Spreading on Planet Surface; "Cassini" will Discover 116 New Satellites of Saturn!; Jupiter's Light Reflection Law;and Internal Structure Modelling of Europa.

  5. Magneto-Optic Kerr Effect in a Magnetized Electron Gun

    NASA Astrophysics Data System (ADS)

    Hardy, Benjamin; Grames, Joseph; CenterInjectors; Sources Team

    2016-09-01

    Magnetized electron sources have the potential to improve ion beam cooling efficiency. At the Gun Test Stand at Jefferson Lab, a solenoid magnet will be installed adjacent to the photogun to magnetize the electron beam. Due to the photocathode operating in a vacuum chamber, measuring and monitoring the magnetic field at the beam source location with conventional probes is impractical. The Magneto-Optical Kerr Effect (MOKE) describes the change on polarized light by reflection from a magnetized surface. The reflection from the surface may alter the polarization direction, ellipticity, or intensity, and depends linearly upon the surface magnetization of the sample. By replacing the photocathode with a magnetized sample and reflecting polarized light from the sample surface, the magnetic field at the beam source is inferred. A controlled MOKE system has been assembled to test the magnetic field. Calibration of the solenoid magnet is performed by comparing the MOKE signal with magnetic field measurements. The apparatus will provide a description of the field at electron beam source. The report summarizes the method and results of controlled tests and calibration of the MOKE sample with the solenoid magnet field measurements. This work is supported by the National Science Foundation, Research Experience for Undergraduates Award 1359026 and the Department of Energy, Laboratory Directed Research and Development Contract DE-AC05-06OR23177.

  6. Reflectance Spectra of Peacock Feathers and the Turning Angles of Melanin Rods in Barbules.

    PubMed

    Okazaki, Toshio

    2018-02-01

    I analyzed the association between the reflectance spectra and melanin rod arrangement in barbules of the eyespot of peacock feathers. The reflectance spectra from the yellow-green feather of the eyespot indicated double peaks of 430 and 540 nm. The maximum reflectance spectrum of the blue feather was 480 nm, and that of the dark blue feather was 420 nm. The reflectance spectra from brown feathers indicated double peaks of 490 and 610 nm. Transmission electron microscopic analysis confirmed that melanin rods were arranged fanwise in the outer layer toward the barbule tips. In addition, using polarized light microscope, I attempted to determine whether the turning angles of melanin rods in the barbules reflected different colors. The turning angle of the polarizing axis of the barbules was supported by that of the melanin rods, observed using transmission electron microscopic images. To compare the turning angle of melanin rods in the respective barbules, I calculated the opening width of the fanwise melanin rods by dividing the width of the barbules by the turning angle of the polarizing axis of barbules and obtained a positive correlation between the reflectance spectra and opening width of the fanwise melanin rods. Moreover, the widely spreading reflection from the barbules may occur because of the fanwise melanin rod arrangement.

  7. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples

    PubMed Central

    Yang, Bin; Knyazikhin, Yuri; Lin, Yi; Yan, Kai; Chen, Chi; Park, Taejin; Choi, Sungho; Mõttus, Matti; Rautiainen, Miina; Myneni, Ranga B.; Yan, Lei

    2017-01-01

    Leaf scattering spectrum is the key optical variable that conveys information about leaf absorbing constituents from remote sensing. It cannot be directly measured from space because the radiation scattered from leaves is affected by the 3D canopy structure. In addition, some radiation is specularly reflected at the surface of leaves. This portion of reflected radiation is partly polarized, does not interact with pigments inside the leaf and therefore contains no information about its interior. Very little empirical data are available on the spectral and angular scattering properties of leaf surfaces. Whereas canopy-structure effects are well understood, the impact of the leaf surface reflectance on estimation of leaf absorption spectra remains uncertain. This paper presents empirical and theoretical analyses of angular, spectral, and polarimetric measurements of light reflected by needles and shoots of Pinus koraiensis and Picea koraiensis species. Our results suggest that ignoring the leaf surface reflected radiation can result in an inaccurate estimation of the leaf absorption spectrum. Polarization measurements may be useful to account for leaf surface effects because radiation reflected from the leaf surface is partly polarized, whereas that from the leaf interior is not. PMID:28868160

  8. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  9. Plant canopy specular reflectance model

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1985-01-01

    A model is derived for the amount of light specularly reflected and polarized by a plant canopy. The model is based on the morphological and phenological characteristics of the canopy and upon the Fresnel equations of optics. The theory demonstrates that the specular reflectance of the plant canopy is a function of the angle of incidence and potentially contains information to help discriminate between species. The theory relates the specular reflectance to botanical condition of the canopy - to factors such as development stage, plant vigor, and leaf area index (LAI).

  10. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  11. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.

  12. Chiral photonic crystals with an anisotropic defect layer.

    PubMed

    Gevorgyan, A H; Harutyunyan, M Z

    2007-09-01

    In the present paper we consider some properties of defect modes in chiral photonic crystals with an anisotropic defect layer. We solved the problem by Ambartsumian's layer addition method. We investigated the influence of the defect layer thickness variation and its location in the chiral photonic crystal (CPC) and also its optical axes orientation, as well as of CPC thickness variation on defect mode properties. Variations of the optical thickness of the defect layer have its impact on the defect mode linewidth and the light accumulation in the defect. We obtain that CPCs lose their base property at certain defect layer thicknesses; namely, they lose their diffraction reflection dependence on light polarization. We also show that the circular polarization handedness changes from right-handed to left-handed if the defect layer location is changed, and therefore, such systems can be used to create sources of elliptically polarized light with tunable ellipticity. Some nonreciprocity properties of such systems are investigated, too. In particular, it is also shown that such a system can work as a practically ideal wide band optical diode for circularly polarized incident light provided the defect layer thickness is properly chosen, and it can work as a narrow band diode at small defect layer thicknesses.

  13. Hybrid reflection type metasurface of nano-antennas designed for optical needle field generation

    NASA Astrophysics Data System (ADS)

    Wang, Shiyi; Zhan, Qiwen

    2015-03-01

    We propose a reflection type metal-insulator-metal (MIM) metasurface composed of hybrid optical antennas for comprehensive spatial engineering the properties of optical fields. Its capability is illustrated with an example to create a radially polarized vectorial beam for optical needle field generation. Functioning as local quarter-wave-plates (QWP), the MIM metasurface is designed to convert circularly polarized incident into local linear polarization to create an overall radial polarization with corresponding binary phases and desired normalized amplitude modulation ranged from 0.07 to 1. To obtain enough degrees of freedom, the optical-antenna layer comprises periodic arrangements of double metallic nano-bars with perpendicular placement and single nano-bars respectively for different amplitude modulation requirements. Both of the antennas enable to introduce π/2 retardation while reaching the desired modulation range both for phase and amplitude. Through adjusting the antennas' geometry and array carefully, we shift the gap-surface plasmon resonances facilitated by optical antennas to realize the manipulation of vectorial properties. Designed at 1064 nm wavelength, the particularly generated vectorial light output can be further tightly focused by a high numerical aperture objective to obtain longitudinally polarized flat-top focal field. The so-called optical needle field is a promising candidate for novel applications that transcend disciplinary boundaries. The proposed metasurface establishes a new class of compact optical components based on nano-scale structures, leading to compound functions for vectorial light generation.

  14. Zebras and Biting Flies: Quantitative Analysis of Reflected Light from Zebra Coats in Their Natural Habitat

    PubMed Central

    Britten, Kenneth H.; Thatcher, Timothy D.; Caro, Tim

    2016-01-01

    Experimental and comparative evidence suggests that the striped coats of zebras deter biting fly attack, but the mechanisms by which flies fail to target black-and-white mammals are still opaque. Two hypotheses have been proposed: stripes might serve either to defeat polarotaxis or to obscure the form of the animal. To test these hypotheses, we systematically photographed free-living plains zebras in Africa. We found that black and white stripes both have moderate polarization signatures with a similar angle, though the degree (magnitude) of polarization in white stripes is lower. When we modeled the visibility of these signals from different distances, we found that polarization differences between stripes are invisible to flies more than 10 m away because they are averaged out by the flies’ low visual resolution. At any distance, however, a positively polarotactic insect would have a distinct signal to guide its visual approach to a zebra because we found that polarization of light reflecting from zebras is higher than from surrounding dry grasses. We also found that the stripes themselves are visible to flies at somewhat greater distances (up to 20 m) than the polarization contrast between stripes. Together, these observations support hypotheses in which zebra stripes defeat visually guided orienting behavior in flies by a mechanism independent of polarotaxis. PMID:27223616

  15. Metal/dielectric/metal sandwich film for broadband reflection reduction

    PubMed Central

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Lin, Meng-Jie; Wang, Wei-Hao; Wu, Huang-Ming; Liao, Hung-Sheng

    2013-01-01

    A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon. PMID:23591704

  16. Multilayer Thin Film Polarizer Design for Far Ultraviolet using Induced Transmission and Absorption Technique

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Wilson, Michele M.; Park, Jung Ho; Torr, Douglas G.

    1994-01-01

    Good theoretical designs of far ultraviolet polarizers have been reported using a MgF2/Al/MgF2 three layer structure on a thick Al layer as a substrate. The thicknesses were determined to induce transmission and absorption of p-polarized light. In these designs Al optical constants were used from films produced in ultrahigh vacuum (UHV: 10(exp -10) torr). Reflectance values for polarizers fabricated in a conventional high vacuum (p approx. 10(exp -6 torr)) using the UHV design parameters differed dramatically from the design predictions. Al is a highly reactive material and is oxidized even in a high vacuum chamber. In order to solve the problem other metals have been studied. It is found that a larger reflectance difference is closely related to higher amplitude and larger phase difference of Fresnel reflection coefficients between two polarizations at the boundary of MgF2/metal. It is also found that for one material a larger angle of incidence from the surface normal brings larger amplitude and phase difference. Be and Mo are found good materials to replace Al. Polarizers designed for 121.6 nm with Be at 60 deg and with Mo at 70 deg are shown as examples.

  17. Generalized Brewster effect in dielectric metasurfaces

    PubMed Central

    Paniagua-Domínguez, Ramón; Yu, Ye Feng; Miroshnichenko, Andrey E.; Krivitsky, Leonid A.; Fu, Yuan Hsing; Valuckas, Vytautas; Gonzaga, Leonard; Toh, Yeow Teck; Kay, Anthony Yew Seng; Luk'yanchuk, Boris; Kuznetsov, Arseniy I.

    2016-01-01

    Polarization is a key property defining the state of light. It was discovered by Brewster, while studying light reflected from materials at different angles. This led to the first polarizers, based on Brewster's effect. Now, one of the trends in photonics is the study of miniaturized devices exhibiting similar, or improved, functionalities compared with bulk optical elements. In this work, it is theoretically predicted that a properly designed all-dielectric metasurface exhibits a generalized Brewster's effect potentially for any angle, wavelength and polarization of choice. The effect is experimentally demonstrated for an array of silicon nanodisks at visible wavelengths. The underlying physics is related to the suppressed scattering at certain angles due to the interference between the electric and magnetic dipole resonances excited in the nanoparticles. These findings open doors for Brewster phenomenon to new applications in photonics, which are not bonded to a specific polarization or angle of incidence. PMID:26783075

  18. Transmittance tuning by particle chain polarization in electrowetting-driven droplets

    PubMed Central

    Fan, Shih-Kang; Chiu, Cheng-Pu; Huang, Po-Wen

    2010-01-01

    A tiny droplet containing nano∕microparticles commonly handled in digital microfluidic lab-on-a-chip is regarded as a micro-optical component with tunable transmittance at programmable positions for the application of micro-opto-fluidic-systems. Cross-scale electric manipulations of droplets on a millimeter scale as well as suspended particles on a micrometer scale are demonstrated by electrowetting-on-dielectric (EWOD) and particle chain polarization, respectively. By applying electric fields at proper frequency ranges, EWOD and polarization can be selectively achieved in designed and fabricated parallel plate devices. At low frequencies, the applied signal generates EWOD to pump suspension droplets. The evenly dispersed particles reflect and∕or absorb the incident light to exhibit a reflective or dark droplet. When sufficiently high frequencies are used on to the nonsegmented parallel electrodes, a uniform electric field is established across the liquid to polarize the dispersed neutral particles. The induced dipole moments attract the particles each other to form particle chains and increase the transmittance of the suspension, demonstrating a transmissive or bright droplet. In addition, the reflectance of the droplet is measured at various frequencies with different amplitudes. PMID:21267088

  19. Broadband and polarization reflectors in the lookdown, Selene vomer

    PubMed Central

    Zhao, Shulei; Brady, Parrish Clawson; Gao, Meng; Etheredge, Robert Ian; Kattawar, George W.; Cummings, Molly E.

    2015-01-01

    Predator evasion in the open ocean is difficult because there are no objects to hide behind. The silvery surface of fish plays an important role in open water camouflage. Various models have been proposed to account for the broadband reflectance by the fish skin that involve one-dimensional variations in the arrangement of guanine crystal reflectors, yet the three-dimensional organization of these guanine platelets have not been well characterized. Here, we report the three-dimensional organization and the optical properties of integumentary guanine platelets in a silvery marine fish, the lookdown (Selene vomer). Our structural analysis and computational modelling show that stacks of guanine platelets with random yaw angles in the fish skin produce broadband reflectance via colour mixing. Optical axes of the guanine platelets and the collagen layer are aligned closely and provide bulk birefringence properties that influence the polarization reflectance by the skin. These data demonstrate how the lookdown preserves or alters polarization states at different incident polarization angles. These optical properties resulted from the organization of these guanine platelets and the collagen layer may have implications for open ocean camouflage in varying light fields. PMID:25673301

  20. Color change of the snapper (Pagrus auratus) and Gurnard (Chelidonichthys kumu) skin and eyes during storage: effect of light polarization and contact with ice.

    PubMed

    Balaban, Murat O; Stewart, Kelsie; Fletcher, Graham C; Alçiçek, Zayde

    2014-12-01

    Ten gurnard and 10 snapper were stored on ice. One side always contacted the ice; the other side was always exposed to air. At different intervals for up to 12 d, the fish were placed in a light box, and the images of both sides were taken using polarized and nonpolarized illumination. Image analysis resulted in average L*, a*, and b* values of skin, and average L* values of the eyes. The skin L* value of gurnard changed significantly over time while that of snapper was substantially constant. The a* and b* values of both fish decreased over time. The L* values of eyes were significantly lower for polarized images, and significantly lower for the side of fish exposed to air only. This may be a concern in quality evaluation methods such as QIM. The difference of colors between the polarized and nonpolarized images was calculated to quantify the reflection off the surface of fish. For accurate measurement of surface color and eye color, use of polarized light is recommended. © 2014 Institute of Food Technologists®

  1. Optical humidity sensor

    DOEpatents

    Tarvin, Jeffrey A.

    1987-01-01

    An optical dielectric humidity sensor which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors.

  2. Optical humidity sensor

    DOEpatents

    Tarvin, J.A.

    1987-02-10

    An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.

  3. Explanation of Europa's Unusual Polarization Properties: The Regolith is Sub-micron, Fine-Grained, High Porosity Material

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Nebedum, A.; Kroner, D. O.; Shkuratov, Y.; Psarev, V.; Vanderoort, K.; Smythe, W. D.

    2015-12-01

    For several decades, unusual reflectance and polarization phase curves have been reported on Europa by experienced ground based astronomers (Rosenbush et al., 1997, 2015). The observed reflectance phase curve is consistent with the phase curves reported in the laboratory in fine grained particulate media (Nelson et al., 2000, 2002, Shkuratov et al., 2002). Shkuratov et al. (2002) also measured polarization properties of fine grained media showing that they relate to the coherent backscatter enhancement phenomenon and are consistent with the astronomical data. We have reconfigured a goniometric photopolarimeter (GPP) (Nelson et al., 2000, 2002) to measure in the laboratory the polarization phase curves of highly reflective particulate materials that simulate the Europa's predominately water ice regolith. We apply the Helmholtz Reciprocity Principle - we present our samples with linearly polarized light and measure the change in the intensity of the reflected component with phase angle from 0.05 to 15 degrees. This is physically equivalent to the astronomical polarization measurements. We report here the polarization phase curves for a suite of high albedo particulates of size 0.1

  4. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    PubMed

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  5. Birefringence Bragg Binary (3B) grating, quasi-Bragg grating and immersion gratings

    NASA Astrophysics Data System (ADS)

    Ebizuka, Noboru; Morita, Shin-ya; Yamagata, Yutaka; Sasaki, Minoru; Bianco, Andorea; Tanabe, Ayano; Hashimoto, Nobuyuki; Hirahara, Yasuhiro; Aoki, Wako

    2014-07-01

    A volume phase holographic (VPH) grating achieves high angular dispersion and very high diffraction efficiency for the first diffraction order and for S or P polarization. However the VPH grating could not achieve high diffraction efficiency for non-polarized light at a large diffraction angle because properties of diffraction efficiencies for S and P polarizations are different. Furthermore diffraction efficiency of the VPH grating extinguishes toward a higher diffraction order. A birefringence binary Bragg (3B) grating is a thick transmission grating with optically anisotropic material such as lithium niobate or liquid crystal. The 3B grating achieves diffraction efficiency up to 100% for non-polarized light by tuning of refractive indices for S and P polarizations, even in higher diffraction orders. We fabricated 3B grating with liquid crystal and evaluated the performance of the liquid crystal grating. A quasi-Bragg (QB) grating, which consists long rectangle mirrors aligned in parallel precisely such as a window shade, also achieves high diffraction efficiency toward higher orders. We fabricated QB grating by laminating of silica glass substrates and glued by pressure fusion of gold films. A quasi-Bragg immersion (QBI) grating has smooth mirror hypotenuse and reflector array inside the hypotenuse, instead of step-like grooves of a conventional immersion grating. An incident beam of the QBI grating reflects obliquely at a reflector, then reflects vertically at the mirror surface and reflects again at the same reflector. We are going to fabricate QBI gratings by laminating of mirror plates as similar to fabrication of the QB grating. We will also fabricate silicon and germanium immersion gratings with conventional step-like grooves by means of the latest diamond machining methods. We introduce characteristics and performance of these gratings.

  6. A polar grid estimator of forest canopy structure metrics using airborne laser scanning data

    Treesearch

    Nicholas R. Vaughn; Greg P. Asner; Christian P. Giardina

    2013-01-01

    The structure of a forest canopy is the key determinant of light transmission, use and understory availability. Airborne light detection and ranging (LiDAR) has been used successfully to measure multiple canopy structural properties, thereby greatly reducing the fieldwork required to map spatial variation in structure. However, lidar metrics to date do not reflect the...

  7. Anisotropic electrodynamics of type-II Weyl semimetal candidate WTe 2

    DOE PAGES

    Frenzel, A. J.; Homes, C. C.; Gibson, Q. D.; ...

    2017-06-30

    We investigated the ab-plane optical properties of single crystals of WTe 2 for light polarized parallel and perpendicular to the W-chain axis over a broad range of frequency and temperature. At far-infrared frequencies, we observed a striking dependence of the reflectance edge on light polarization, corresponding to anisotropy of the carrier effective masses. We quantitatively studied the temperature dependence of the plasma frequency, revealing a modest increase of the effective mass anisotropy in the ab plane upon cooling. We also found strongly anisotropic interband transitions persisting to high photon energies. These results were analyzed by comparison with ab initio calculations.more » The calculated and measured plasma frequencies agree to within 10% for both polarizations, while the calculated interband conductivity shows excellent agreement with experiment.« less

  8. Investigation of superelastic electron scattering by laser-excited Ba - Experimental procedures and results

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Fineman, M. A.; Poe, R. T.; Csanak, G.; Jensen, S. W.

    1983-01-01

    Differential (in angle) electron scattering experiments on laser-excited Ba-138 1P were carried out at 30- and 100-eV impact energies. The laser light was linearly polarized and located in the scattering plane. The superelastic scattering signal was measured as a function of polarization direction of the laser light with respect to the scattering plane. It was found at low electron scattering angles that the superelastic scattering signal was asymmetric to reflection of the polarization vector with respect to the scattering plane. This is in contradiction with theoretical predictions. An attempt was made to pinpoint the reason for this observation, and a detailed investigation of the influence of experimental conditions on the superelastic scattering was undertaken. No explanation for the asymmetry has as yet been found.

  9. Aerial secure display by use of polarization-processing display with retarder film and retro-reflector

    NASA Astrophysics Data System (ADS)

    Ito, Shusei; Uchida, Keitaro; Mizushina, Haruki; Suyama, Shiro; Yamamoto, Hirotsugu

    2017-02-01

    Security is one of the big issues in automated teller machine (ATM). In ATM, two types of security have to be maintained. One is to secure displayed information. The other is to secure screen contamination. This paper gives a solution for these two security issues. In order to secure information against peeping at the screen, we utilize visual cryptography for displayed information and limit the viewing zone. Furthermore, an aerial information screen with aerial imaging by retro-reflection, named AIRR enables users to avoid direct touch on the information screen. The purpose of this paper is to propose an aerial secure display technique that ensures security of displayed information as well as security against contamination problem on screen touch. We have developed a polarization-processing display that is composed of a backlight, a polarizer, a background LCD panel, a gap, a half-wave retarder, and a foreground LCD panel. Polarization angle is rotated with the LCD panels. We have constructed a polarization encryption code set. Size of displayed images are designed to limit the viewing position. Furthermore, this polarization-processing display has been introduced into our aerial imaging optics, which employs a reflective polarizer and a retro-reflector covered with a quarter-wave retarder. Polarization-modulated light forms the real image over the reflective polarizer. We have successfully formed aerial information screen that shows the secret image with a limited viewing position. This is the first realization of aerial secure display by use of polarization-processing display with retarder-film and retro-reflector.

  10. Creating photorealistic virtual model with polarization-based vision system

    NASA Astrophysics Data System (ADS)

    Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi

    2005-08-01

    Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.

  11. Interference Thin Films for Spectral Filtering, Polarizing, Phase Retarding, and Intensity Splitting of FUV Radiation.

    NASA Astrophysics Data System (ADS)

    Kim, Jongmin

    The development of thin film technology for the far ultraviolet (FUV: 120~220 nm) has not progressed as rapidly as in the visible and infrared regions because substrate and thin film materials exhibit absorption characteristics that complicate the design process. Mathematically, these absorbing materials can be treated in the same manner as non-absorbing materials if a complex representation of the optical constants is used. Realization of higher throughput can be achieved by operating in a reflective rather than a transmissive mode. The spectral filter II -stack design method obtains a high reflectance by minimizing absorptance in the high refractive index layer while maintaining the constructive interference between reflected waves at the boundary of HL pairs. Reflective polarizers are designed by inducing transmission and absorption of the p-polarized light. Utilizing a MgF_2/Al/MgF _2 three layer structure on a thick Al layer as a substrate, high s-polarization reflectance (>88%) and a high degree of polarization (>99%) are obtained. Out-of-band rejection in the spectral filter and the degree of polarization in the polarizer are significantly improved by combining multiple reflectors in tandem. The high-low absorbing material boundaries in the MgF_2/Al/MgF_2 structure are also useful for obtaining phase retardance between s and p-polarized reflected fields. Two equations established by the ideal quarterwave retarder (QWR) requirement and electric field relations are used to determine the MgF_2 layer thicknesses to achieve excellent QWR performances. Calculated results show that a high reflectance for both polarizations (>80%) and almost 90^circ of phase retardance are possible. Discrepancies between the designed and measured polarizer performance are mainly caused by Al layer oxidation during fabrication in a conventional high vacuum chamber. XPS depth profiling is used to analyze the oxidation and the results show that oxidized layer thicknesses are greater than typically reported from optical techniques. A method is established to predict the maximum oxygen concentration at each Al interface based only on the pressure to rate ratio during film deposition. Along with polarizers and retarders, beam-splitters are also difficult to make due to absorption; and transparent conductive coatings have not been studied in the FUV region. A beam-splitter with improved TR product (transmittance times reflectance: TR = 0.20, 0.18) is designed with a dielectric multilayer. It is found that Cr is a significantly better film material for transparent conductive coatings than indium-tin-oxide (ITO) in the FUV region.

  12. Polarized vacuum ultraviolet and X-radiation

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    The most intense source of polarized vacuum UV and X radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarization of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect of monochromators (i.e., diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. Experimental evidence is presented which shows that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization.

  13. Stokes-Doppler coherence imaging for ITER boundary tomography.

    PubMed

    Howard, J; Kocan, M; Lisgo, S; Reichle, R

    2016-11-01

    An optical coherence imaging system is presently being designed for impurity transport studies and other applications on ITER. The wide variation in magnetic field strength and pitch angle (assumed known) across the field of view generates additional Zeeman-polarization-weighting information that can improve the reliability of tomographic reconstructions. Because background reflected light will be somewhat depolarized analysis of only the polarized fraction may be enough to provide a level of background suppression. We present the principles behind these ideas and some simulations that demonstrate how the approach might work on ITER. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

  14. Polarization-independent high-speed photodetector based on a two-dimensional focusing grating

    NASA Astrophysics Data System (ADS)

    Duan, Xiaofeng; Chen, Hailang; Huang, Yongqing; Liu, Kai; Cai, Shiwei; Ren, Xiaomin

    2018-01-01

    We demonstrate a reflection-enhanced high-speed photodetector, which integrated a mushroom-mesa p-i-n structure on a two-dimensional (2D) nonperiodic focusing grating. Mushroom-mesa p-i-n photodetectors exhibit a high frequency response owing to their low resistance capacity (RC) time constant. 2D nonperiodic focusing gratings not only can increase the external quantum efficiency of the device owing to their reflecting and focusing abilities, but also are not sensitive to the polarization of the incident light. The external quantum efficiency of this device is 44.71% and the measured 3 dB bandwidth is up to 32 GHz.

  15. In silico analysis of decomposed reflectances of C3 and C4 plants aiming at the effective assessment of crop needs

    NASA Astrophysics Data System (ADS)

    Baranoski, Gladimir V. G.; Van Leeuwen, Spencer; Chen, Tenn F.

    2017-04-01

    By separating the surface and subsurface components of foliar hyperspectral signatures using polarization optics, it is possible to enhance the remote discrimination of different plant species and optimize the assessment of different factors associated with their health status. These initiatives, in turn, can lead to higher crop yield and lower environmental impact. It is important to consider, however, that the main varieties of crops, represented by C3 (e.g., soy) and C4 (e.g., maize) plants, have markedly distinct morphological characteristics. Accordingly, the influence of these characteristics on their interactions with impinging light may affect the selection of optimal probe wavelengths for specific applications making use of combined hyperspectral and polarization measurements. In this paper, we compare the sensitivity of the total (including surface and subsurface components) and subsurface reflectance responses of C3 and C4 plants to different spectral and geometrical light incidence conditions. This investigation is supported by measured biophysical data and predictive light transport simulations. The results of our comparisons indicate that the total and subsurface reflectance responses of C3 and C4 plants depict well-defined patterns of sensitivity for varying illumination conditions. We believe that these patterns should be considered in the design of high-fidelity crop discrimination and monitoring procedures.

  16. Refractive index profilometry using the total internally reflected light field.

    PubMed

    Das, Tania; Bhattacharya, K

    2017-11-20

    A full-field polarization-based technique is presented for quantitative evaluation of the spatial distribution of the refractive index in macro and micro samples. The sample is mounted on a glass-air interface of a prism, illuminated by a linearly polarized collimated light beam, and two intensity frames are digitally recorded with specific orientations of an analyzer. The pair of intensity data frames captured with this simple setup is combined through an algorithm specially developed for the purpose, to yield the phase difference between the transverse electric and transverse magnetic components of the total internally reflected light field. The phase difference is then related to the refractive index of the sample. Experimental results for refractive index variations in a laser-etched glass plate and red blood corpuscles are presented. One of the salient features of the proposed technique is that the depth of measurement is dependent on the penetration depth of the sample's evanescent field, which is typically of the order of a few hundred nanometers, thereby facilitating refractive index measurements along a thin section of the sample.

  17. Nonlinear electromagnetic interactions in energetic materials

    DOE PAGES

    Wood, Mitchell Anthony; Dalvit, Diego Alejandro; Moore, David Steven

    2016-01-12

    We study the scattering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-matter interactions in molecular crystals result in frequency-conversion and polarization changes. Applied electromagnetic fields of moderate intensity can induce these nonlinear effects without triggering chemical decomposition, offering a mechanism for the nonionizing identification of explosives. We use molecular-dynamics simulations to compute such two-dimensional THz spectra for planar slabs made of pentaerythritol tetranitrate and ammonium nitrate. Finally, we discuss third-harmonic generation and polarization-conversion processes in such materials. These observed far-field spectral features of the reflected or transmitted light may serve as an alternative tool for standoff explosive detection.

  18. Vanadium dioxide as a material to control light polarization in the visible and near infrared

    NASA Astrophysics Data System (ADS)

    Cormier, Patrick; Son, Tran Vinh; Thibodeau, Jacques; Doucet, Alexandre; Truong, Vo-Van; Haché, Alain

    2017-01-01

    We report on the possible use of vanadium dioxide to produce ultrathin (<100 nm) adjustable phase retarders working over a wide spectral range. The refractive index of vanadium dioxide undergoes large changes when the material undergoes a phase transition from semiconductor to metal at a temperature of 68 °C. In a thin film, the resulting optical phase shift is different for s- and p-polarizations in both reflection and transmission, and under certain conditions the polarization state changes between linear or circular or between linear polarizations oriented differently when the material phase transitions. Specific ultrathin modulators are proposed based on the results.

  19. Dual Telecentric Lens System For Projection Onto Tilted Toroidal Screen

    NASA Technical Reports Server (NTRS)

    Gold, Ronald S.; Hudyma, Russell M.

    1995-01-01

    System of two optical assemblies for projecting image onto tilted toroidal screen. One projection lens optimized for red and green spectral region; other for blue. Dual-channel approach offers several advantages which include: simplified color filtering, simplified chromatic aberration corrections, less complex polarizing prism arrangement, and increased throughput of blue light energy. Used in conjunction with any source of imagery, designed especially to project images formed by reflection of light from liquid-crystal light valve (LCLV).

  20. Interaction of Polarized Light with Chalcogenide Glasses

    DTIC Science & Technology

    2001-06-01

    simultaneous measurement of the laser radiation transmitted through the bulk sample and radiation scattered by the sample to various angles up to 230...fixed in the central part of the lens, reflected the transmitted light beam to a second photodiode. He-Ne laser radiation (), = 633 nm) which was sub...band-gap radiation for the studied bulk glass samples (As 2S3 glass) played in this installation, by turns, a role of inducing or probing light. This

  1. Plasma-based polarizer and waveplate at large laser intensity

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2018-06-01

    A plasma photonic crystal consists of a plasma density grating which is created in underdense plasma by counterpropagating laser beams. When a high-power laser pulse impinges the crystal, it might be reflected or transmitted. So far only one type of pulse polarization, namely the so-called s wave (or TE mode) was investigated (when the electric field vector is perpendicular to the plane of incidence). Here, when investigating also so-called p waves (or TM modes, where the magnetic field vector is perpendicular to the plane of incidence), it is detected that the transmission and reflection properties of the plasma photonic crystal depend on polarization. A simple analytic model of the crystal allows one to make precise predictions. The first conclusion is that in some operational regime the crystal can act as a plasma polarizer for high-intensity laser pulses. Also, differences in phase velocities for grazing incidence between s and p polarization are found. Thus, secondly, the crystal can be utilized as a waveplate, e.g., transforming linearly polarized laser light into circular polarization. All these processes extend to laser intensities beyond the damage intensities of so far used solid state devices.

  2. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment.

    PubMed

    Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne

    2017-11-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.

  3. Influence of Solid Target Reflectivity and Incident Angle on Depolarization Ratio and Reflected Energy from Polarized Lights: Experimental Results of the May 2008 Field Trial

    DTIC Science & Technology

    2009-11-01

    enviromental targets . . . . . . . . . . . . 45 Figure 25: Relative reectivity of environmental targets . . . . . . . . . . . . 46 Figure 26: Relationship...Environmental targets and position of the center . . . . . . . . . . 41 Table 11: Depolarization ratio of enviromental targets...42 Table 12: Relative reectivity results of enviromental targets . . . . . . . . . 42 Table 13: Sand papers and position of the center

  4. A simple method to measure critical angles for high-sensitivity differential refractometry.

    PubMed

    Zilio, S C

    2012-01-16

    A total internal reflection-based differencial refractometer, capable of measuring the real and imaginary parts of the complex refractive index in real time, is presented. The device takes advantage of the phase difference acquired by s- and p-polarized light to generate an easily detectable minimum at the reflected profile. The method allows to sensitively measuring transparent and turbid liquid samples.

  5. Practical Application of Polarization and Light Control for Reduction of Reflected Glare.

    ERIC Educational Resources Information Center

    Crouch, C. L.; Kaufman, J. E.

    1963-01-01

    The role of reflected glare and visual viewing angles in near task performance is discussed, and following statements are reported--(1) a worker at a desk normally assumes a position in which his eyes traverse an area of work extending from a point approximately vertically below his eyes to a point not more than 40 degrees from the vertical, (2) a…

  6. Analysis of Electric Field Propagation in Anisotropically Absorbing and Reflecting Waveplates

    NASA Astrophysics Data System (ADS)

    Carnio, B. N.; Elezzabi, A. Y.

    2018-04-01

    Analytical expressions are derived for half-wave plates (HWPs) and quarter-wave plates (QWPs) based on uniaxial crystals. This general analysis describes the behavior of anisotropically absorbing and reflecting waveplates across the electromagnetic spectrum, which allows for correction to the commonly used equations determined assuming isotropic absorptions and reflections. This analysis is crucial to the design and implementation of HWPs and QWPs in the terahertz regime, where uniaxial crystals used for waveplates are highly birefringent and anisotropically absorbing. The derived HWP equations describe the rotation of linearly polarized light by an arbitrary angle, whereas the QWP analysis focuses on manipulating a linearly polarized electric field to obtain any ellipticity. The HWP and QWP losses are characterized by determining equations for the total electric field magnitude transmitted through these phase-retarding elements.

  7. Coherent Light at the Interface Between Two Media

    NASA Astrophysics Data System (ADS)

    Kundikova, N. D.

    2016-02-01

    Reflection and refraction of coherent polarized radiation at the interface between two media are considered. It is shown that deviations from the well-known laws of geometrical optics are possible under certain conditions. The causes of such a deviation are considered.

  8. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed

    Cohen, Jonathan H; Berge, Jørgen; Moline, Mark A; Sørensen, Asgeir J; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E; Leu, Eva S; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1-1.5 x 10-5 μmol photons m-2 s-1 (400-700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20-30m depth during the Arctic polar night.

  9. Is Ambient Light during the High Arctic Polar Night Sufficient to Act as a Visual Cue for Zooplankton?

    PubMed Central

    Cohen, Jonathan H.; Berge, Jørgen; Moline, Mark A.; Sørensen, Asgeir J.; Last, Kim; Falk-Petersen, Stig; Renaud, Paul E.; Leu, Eva S.; Grenvald, Julie; Cottier, Finlo; Cronin, Heather; Menze, Sebastian; Norgren, Petter; Varpe, Øystein; Daase, Malin; Darnis, Gerald; Johnsen, Geir

    2015-01-01

    The light regime is an ecologically important factor in pelagic habitats, influencing a range of biological processes. However, the availability and importance of light to these processes in high Arctic zooplankton communities during periods of 'complete' darkness (polar night) are poorly studied. Here we characterized the ambient light regime throughout the diel cycle during the high Arctic polar night, and ask whether visual systems of Arctic zooplankton can detect the low levels of irradiance available at this time. To this end, light measurements with a purpose-built irradiance sensor and coupled all-sky digital photographs were used to characterize diel skylight irradiance patterns over 24 hours at 79°N in January 2014 and 2015. Subsequent skylight spectral irradiance and in-water optical property measurements were used to model the underwater light field as a function of depth, which was then weighted by the electrophysiologically determined visual spectral sensitivity of a dominant high Arctic zooplankter, Thysanoessa inermis. Irradiance in air ranged between 1–1.5 x 10-5 μmol photons m-2 s-1 (400–700 nm) in clear weather conditions at noon and with the moon below the horizon, hence values reflect only solar illumination. Radiative transfer modelling generated underwater light fields with peak transmission at blue-green wavelengths, with a 465 nm transmission maximum in shallow water shifting to 485 nm with depth. To the eye of a zooplankter, light from the surface to 75 m exhibits a maximum at 485 nm, with longer wavelengths (>600 nm) being of little visual significance. Our data are the first quantitative characterisation, including absolute intensities, spectral composition and photoperiod of biologically relevant solar ambient light in the high Arctic during the polar night, and indicate that some species of Arctic zooplankton are able to detect and utilize ambient light down to 20–30m depth during the Arctic polar night. PMID:26039111

  10. Laser-scanned fluorescence of nonlased/normal, lased/normal, nonlased/carious, and lased/carious enamel

    NASA Astrophysics Data System (ADS)

    Zakariasen, Kenneth L.; Barron, Joseph R.; Paton, Barry E.

    1992-06-01

    Research has shown that low levels of CO2 laser irradiation raise enamel resistance to sub-surface demineralization. Additionally, laser scanned fluorescence analysis of enamel, as well a laser and white light reflection studies, have potential for both clinical diagnosis and comparative research investigations of the caries process. This study was designed to compare laser fluorescence and laser/white light reflection of (1) non-lased/normal with lased/normal enamel and (2) non-lased/normal with non-lased/carious and lased/carious enamel. Specimens were buccal surfaces of extracted third molars, coated with acid resistant varnish except for either two or three 2.25 mm2 windows (two window specimens: non-lased/normal, lased/normal--three window specimens: non-lased/normal, non-lased carious, lased/carious). Teeth exhibiting carious windows were immersed in a demineralizing solution for twelve days. Non-carious windows were covered with wax during immersion. Following immersion, the wax was removed, and fluorescence and laser/white light reflection analyses were performed on all windows utilizing a custom scanning laser fluorescence spectrometer which focuses light from a 25 mWatt He-Cd laser at 442 nm through an objective lens onto a cross-section >= 3 (mu) in diameter. For laser/white light reflection analyses, reflected light intensities were measured. A HeNe laser was used for laser light reflection studies. Following analyses, the teeth are sectioned bucco-lingually into 80 micrometers sections, examined under polarized light microscopy, and the lesions photographed. This permits comparison between fluorescence/reflected light values and the visualized decalcification areas for each section, and thus comparisons between various enamel treatments and normal enamel. The enamel specimens are currently being analyzed.

  11. Reflective-emissive liquid-crystal displays constructed from AIE luminogens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Tang, Ben Zhong; Zhao, Dongyu; Qin, Anjun

    2015-10-01

    The chiral nematic liquid crystal (N*-LC) has plenty of prospective applications in LC display (LCD) owing to the selective reflection and circular dichroism. The molecules in the N*-LC are aligned forming a helically twisted structure and the specific wavelength of incident light is reflected by the periodically varying refractive index in the N*-LC plane without the aid of a polarizer or color filter. However, N*-LC do not emit light which restricts its application in the dark environment. Moreover, the view angle of N*-LC display device was severe limited due to the strong viewing angle dependence of the structure color of the one dimensional photonic crystal of a N*-LC. In order to overcome these weaknesses, we have synthesized a luminescent liquid crystalline compound consisting of a tetraphenylethene (TPE) core, TPE-PPE, as a luminogen with mesogenic moieties. TPE-PPE exhibits both the aggregate-induced emission (AIE) and thermotropic liquid crystalline characteristics. By dissolving a little amount of TPE-PPE into N*-LC host, a circular polarized emission was obtained on the unidirectional orientated LC cell. Utilizing the circular polarized luminescence property of the LC mixture, we fabricated a photoluminescent liquid crystal display (PL-LCD) device which can work under both dark and sunlit conditions. This approach has simplified the device design, lowered the energy consumption and increased brightness and application of the LCD.

  12. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata,Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor's accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  13. Fiber-Optic Sensor for Aircraft Lightning Current Measurement

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George G.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.

    2012-01-01

    An electric current sensor based on Faraday rotation effect in optical fiber was developed for measuring aircraft lightning current. Compared to traditional sensors, the design has many advantages including the ability to measure total current and to conform to structure geometries. The sensor is also small, light weight, non-conducting, safe from interference, and free of hysteresis and saturation. Potential applications include characterization of lightning current waveforms, parameters and paths, and providing environmental data for aircraft certifications. In an optical fiber as the sensing medium, light polarization rotates when exposed to a magnetic field in the direction of light propagation. By forming closed fiber loops around a conductor and applying Ampere s law, measuring the total light rotation yields the enclosed current. A reflective polarimetric scheme is used, where polarization change is measured after the polarized light travels round-trip through the sensing fiber. The sensor system was evaluated measuring rocket-triggered lightning over the 2011 summer. Early results compared very well against a reference current shunt resistor, demonstrating the sensor s accuracy and feasibility in a lightning environment. While later comparisons show gradually increasing amplitude deviations for an undetermined cause, the overall waveforms still compared very well.

  14. Resonant scattering of light from a glass/Ag/MgF2/air system with rough interfaces and supporting guided modes in attenuated total reflection.

    PubMed

    Ramírez-Duverger, Aldo S; Gaspar-Armenta, Jorge A; García-Llamas, Raúl

    2003-08-01

    We report experimental results of the resonant scattering of light from a prism-glass/Ag/MgF2/air system with use of the attenuated total reflection technique for p and s polarized light. Two MgF2 film thicknesses were used. The system with the thinner dielectric layer supports two transverse magnetic (TM) and two transverse electric (TE) guided modes at a wavelength of 632.8 nm, and the system with the thicker dielectric layer supports three TM and three TE guided modes. In both cases we found dips in the specular reflection as a function of incident angle that is due to excitation of guided modes in the MgF2 film. The scattered light shows peaks at angles corresponding to the measured excitation of the guided modes. These peaks are due to single-order scattering and occur for any angle of the incident light. All features in the scattering response are enhanced in resonance conditions, and the efficiency of injecting light into the guide is reduced.

  15. Discharge lamp with reflective jacket

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  16. Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands

    NASA Astrophysics Data System (ADS)

    Lavigne, Daniel A.; Breton, Mélanie; Fournier, Georges; Charette, Jean-François; Pichette, Mario; Rivet, Vincent; Bernier, Anne-Pier

    2011-10-01

    Surveillance operations and search and rescue missions regularly exploit electro-optic imaging systems to detect targets of interest in both the civilian and military communities. By incorporating the polarization of light as supplementary information to such electro-optic imaging systems, it is possible to increase their target discrimination capabilities, considering that man-made objects are known to depolarized light in different manner than natural backgrounds. As it is known that electro-magnetic radiation emitted and reflected from a smooth surface observed near a grazing angle becomes partially polarized in the visible and infrared wavelength bands, additional information about the shape, roughness, shading, and surface temperatures of difficult targets can be extracted by processing effectively such reflected/emitted polarized signatures. This paper presents a set of polarimetric image processing algorithms devised to extract meaningful information from a broad range of man-made objects. Passive polarimetric signatures are acquired in the visible, shortwave infrared, midwave infrared, and longwave infrared bands using a fully automated imaging system developed at DRDC Valcartier. A fusion algorithm is used to enable the discrimination of some objects lying in shadowed areas. Performance metrics, derived from the computed Stokes parameters, characterize the degree of polarization of man-made objects. Field experiments conducted during winter and summer time demonstrate: 1) the utility of the imaging system to collect polarized signatures of different objects in the visible and infrared spectral bands, and 2) the enhanced performance of target discrimination and fusion algorithms to exploit the polarized signatures of man-made objects against cluttered backgrounds.

  17. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets.

    PubMed

    Fan, Jing; Li, Yannian; Bisoyi, Hari Krishna; Zola, Rafael S; Yang, Deng-Ke; Bunning, Timothy J; Weitz, David A; Li, Quan

    2015-02-09

    Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  19. Partial polarization: a comprehensive student exercise

    NASA Astrophysics Data System (ADS)

    Topasna, Gregory A.; Topasna, Daniela M.

    2015-10-01

    We present a comprehensive student exercise in partial polarization. Students are first introduced to the concept of partial polarization using Fresnel Equations. Next, MATHCAD is used to compute and graph the reflectance for dielectrics materials. The students then design and construct a simple, easy to use collimated light source for their experiment, which is performed on an optical breadboard using optical components typically found in an optics lab above the introductory level. The students obtain reflection data that is compared with their model by a nonlinear least square fit using EXCEL. Sources of error and uncertainty are discussed and students present a final written report. In this one exercise students learn how an experiment is constructed "from the ground up". They gain practical experience on data modeling and analysis, working with optical equipment, machining and construction, and preparing a final presentation.

  20. A compensation method for the full phase retardance nonuniformity in phase-only liquid crystal on silicon spatial light modulators.

    PubMed

    Teng, Long; Pivnenko, Mike; Robertson, Brian; Zhang, Rong; Chu, Daping

    2014-10-20

    A simple and efficient compensation method for the full correction of both the anisotropic and isotropic nonuniformity of the light phase retardance in a liquid crystal (LC) layer is presented. This is achieved by accurate measurement of the spatial variation of the LC layer's thickness with the help of a calibrated liquid crystal wedge, rather than solely relying on the light intensity profile recorded using two crossed polarizers. Local phase retardance as a function of the applied voltage is calculated with its LC thickness and a set of reference data measured from the intensity of the reflected light using two crossed polarizers. Compensation of the corresponding phase nonuniformity is realized by applying adjusted local voltage signals for different grey levels. To demonstrate its effectiveness, the proposed method is applied to improve the performance of a phase-only liquid crystal on silicon (LCOS) spatial light modulator (SLM). The power of the first diffraction order measured with the binary phase gratings compensated by this method is compared with that compensated by the conventional crossed-polarizer method. The results show that the phase compensation method proposed here can increase the dynamic range of the first order diffraction power significantly from 15~21 dB to over 38 dB, while the crossed-polarizer method can only increase it to 23 dB.

  1. Trapping of light by metal arrays

    NASA Astrophysics Data System (ADS)

    Khardikov, Vyacheslav V.; Iarko, Ekaterina O.; Prosvirnin, Sergey L.

    2010-04-01

    The problem of the near-IR light reflection from and transmittance through a planar 2D periodic metal-dielectric structure with a square periodic cell of two complex-shaped asymmetric metal elements has been solved. Conditions of the light confinement by excitation of the trapped mode resonances in certain structures, both polarization-sensitive and polarization-insensitive, were studied. For the first time, the existence of a high-order trapped mode resonance with the greater quality factor than that of the lowest one has been shown. It was ascertained that the Babinet principle provides a good prediction of the resonance properties of the complementary structures, despite the very high Joule losses in the metal strips in near-IR, a finite thickness of the metal elements and the presence of a dielectric substrate.

  2. Plasmonic active spectral filter in VIS-NIR region using metal-insulator-metal (MIM) structure on glass plate

    NASA Astrophysics Data System (ADS)

    Oshikane, Yasushi; Murai, Kensuke; Higashi, Takaya; Yamamoto, Fumihiko; Nakano, Motohiro; Inoue, Haruyuki

    2012-10-01

    Interaction between surface plasmons at two interfaces inside a meta-insulator-metal (MIM) structure is one of the interesting physical phenomena in nanophotonics. We have started to create a plasmonic active spectral filter based on the MIM structure for a developing white light-emitting diode (LED) visible-light communication. An optical active filter at visible region assisted by surface plasmon resonance (SPR) in MIM structure of vacuum-deposited thin films on glass substrate has been studied both experimentally and theoretically. Interface between the first thin silver layer (M1, around 50 nm-thick) and bulk glass slide is appropriate for excitation of SPR at particular wavelength and incident angle of illumination light. And spatial extension of the SPR wave may cause an effective propagating mode confined in the insulator layer (I, around 150 nm-thick) by both M1 and the second thick silver layer (M2, around 200 nm-thick). Such an energy conversion from the illuminating light to the propagating SPR modes corresponds to an evident absorption dip on spectral reflectance curve of the MIM structure, and the shape of dip may vary widely in response to material and configuration of the MIM. The spectral and angular reflectance of the prototypical MIM structure has been measured by spectrophotometer for P- and S-polarized light because the plasmonic effect inside the MIM structure depends strongly on the polarization of light. Such the characteristic reflection feature has also been studied by using both the usual transfer matrix method and 2D electromagnetic simulation based on the finite element method. In this talk, several striking and preliminary MIM prototypes will be introduced and discussed.

  3. Laser heterodyne surface profiler

    DOEpatents

    Sommargren, G.E.

    1980-06-16

    A method and apparatus are disclosed for testing the deviation of the face of an object from a flat smooth surface using a beam of coherent light of two plane-polarized components, one of a frequency constantly greater than the other by a fixed amount to produce a difference frequency with a constant phase to be used as a reference, and splitting the beam into its two components. The separate components are directed onto spaced apart points on the face of the object to be tested for smoothness while the face of the object is rotated on an axis normal to one point, thereby passing the other component over a circular track on the face of the object. The two components are recombined after reflection to produce a reflected frequency difference of a phase proportional to the difference in path length of one component reflected from one point to the other component reflected from the other point. The phase of the reflected frequency difference is compared with the reference phase to produce a signal proportional to the deviation of the height of the surface along the circular track with respect to the fixed point at the center, thereby to produce a signal that is plotted as a profile of the surface along the circular track. The phase detector includes a quarter-wave plate to convert the components of the reference beam into circularly polarized components, a half-wave plate to shift the phase of the circularly polarized components, and a polarizer to produce a signal of a shifted phase for comparison with the phase of the frequency difference of the reflected components detected through a second polarizer. Rotation of the half-wave plate can be used for phase adjustment over a full 360/sup 0/ range.

  4. High-reflective colorful films fabricated by all-solid multi-layer cholesteric structures

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luo, D.

    2018-02-01

    We demonstrate all-solid-state film with high-reflectivity based on cholesteric template. The adhesive (NOA81) is both filler and an adhesive, which can be avoids interfacial losses. The reflected right- and left-circularly polarized light has been developed by roll-to-roll method, and the reflectance of the films is more than 78%. Here, the all-solid film was used in distribute feedback laser with dye-doped. In addition, this films also used in include flexible reflective display, color pixels in digital photographs, printing and colored cladding of variety of objects.

  5. On-sky performance evaluation and calibration of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran; Brock, Neal; West, Ray

    2016-07-01

    The advent of pixelated micropolarizer arrays (MPAs) has facilitated the development of polarization-sensitive focal plane arrays (FPAs) based on charge-coupled devices (CCDs) and active pixel sensors (APSs), which are otherwise only able to measure the intensity of light. Polarization sensors based on MPAs are extremely compact, light-weight, mechanically robust devices with no moving parts, capable of measuring the degree and angle of polarization of light in a single snapshot. Furthermore, micropolarizer arrays based on wire grid polarizers (so called micro-grid polarizers) offer extremely broadband performance, across the optical and infrared regimes. These devices have potential for a wide array of commercial and research applications, where measurements of polarization can provide critical information, but where conventional polarimeters could be practically implemented. To date, the most successful commercial applications of these devices are 4D Technology's PhaseCam laser interferometers and PolarCam imaging polarimeters. Recently, MPA-based polarimeters have been identified as a potential solution for space-based telescopes, where the small size, snapshot capability and low power consumption (offered by these devices) are extremely desirable. In this work, we investigated the performance of MPA-based polarimeters designed for astronomical polarimetry using the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). We deployed RITPIC on the 0.9 meter SMARTS telescope at the Cerro Tololo Inter-American Observatory and observed a variety of astronomical objects (calibration stars, variable stars, reflection nebulae and planetary nebulae). We use our observations to develop calibration procedures that are unique to these devices and provide an estimate for polarimetric precision that is achievable.

  6. Flux and polarization signals of spatially inhomogeneous gaseous exoplanets

    NASA Astrophysics Data System (ADS)

    Karalidi, T.; Stam, D. M.; Guirado, D.

    2013-07-01

    Aims: We present numerically calculated, disk-integrated, spectropolarimetric signals of starlight that is reflected by vertically and horizontally inhomogeneous gaseous exoplanets. We include various spatial features that are present on Solar System's gaseous planets: belts and zones, cyclonic spots, and polar hazes, to test whether such features leave traces in the disk-integrated fux and polarization signals. Methods: Broadband flux and polarization signals of starlight that is reflected by gaseous exoplanets are calculated using an efficient, adding-doubling radiative transfer code, that fully includes single and multiple scattering and polarization. The planetary model atmospheres are vertically inhomogeneous and can be horizontally inhomogeneous, and contain gas molecules and/or cloud and/or aerosol particles. Results: The broadband flux and polarization signals are sensitive to cloud top pressures, although in the presence of local pressure differences, such as in belts and clouds, the flux and polarization phase functions have similar shapes as those of horizontally homogeneous planets. Fitting flux phase functions of a planet with belts and zones using a horizontally homogeneous planet could theoretically yield cloud top pressures that differ by a few hundred mbar from those derived from fitting polarization phase functions. In practice, however, observational errors and uncertainties in cloud properties would make such a fit unreliable. A cyclonic spot like Jupiter's Great Red Spot, covering a few percent of the disk, located in equatorial regions, and rotating in and out of the observer's view yields a temporal variation of a few percent in the broadband flux and a few percent in the degree of polarization. Polar hazes leave strong traces in the polarization of reflected starlight in spatially resolved observations, especially seen at phase angles near 90°. Integrated across the planetary disk, polar hazes that cover only part of the planetary disk, change the broadband degree of polarization of the reflected light by a few percent. Such hazes have only small effects on locally reflected broadband fluxes and negligible effects on disk-integrated broadband fluxes. Conclusions: Deriving the presence of belts and zones in the atmospheres of gaseous exoplanets from broadband flux and polarization observations will be extremely difficult. Cyclonic spots could leave temporal changes in the broadband flux and polarization signals of a few percent. Polar hazes that cover a fraction of the planetary disk, and that are composed of small, Rayleigh scattering particles, change the broadband degree of polarization by at most a few percent.

  7. Radiance and polarization of multiple scattered light from haze and clouds.

    PubMed

    Kattawar, G W; Plass, G N

    1968-08-01

    The radiance and polarization of multiple scattered light is calculated from the Stokes' vectors by a Monte Carlo method. The exact scattering matrix for a typical haze and for a cloud whose spherical drops have an average radius of 12 mu is calculated from the Mie theory. The Stokes' vector is transformed in a collision by this scattering matrix and the rotation matrix. The two angles that define the photon direction after scattering are chosen by a random process that correctly simulates the actual distribution functions for both angles. The Monte Carlo results for Rayleigh scattering compare favorably with well known tabulated results. Curves are given of the reflected and transmitted radiances and polarizations for both the haze and cloud models and for several solar angles, optical thicknesses, and surface albedos. The dependence on these various parameters is discussed.

  8. Light trapping and circularly polarization at a Dirac point in 2D plasma photonic crystals

    NASA Astrophysics Data System (ADS)

    Li, Qian; Hu, Lei; Mao, Qiuping; Jiang, Haiming; Hu, Zhijia; Xie, Kang; Wei, Zhang

    2018-03-01

    Light trapping at the Dirac point in 2D plasma photonic crystal has been obtained. The new localized mode, Dirac mode, is attributable to neither photonic bandgap nor total internal reflection. It exhibits a unique algebraic profile and possesses a high-Q factor resonator of about 105. The Dirac point could be modulated by tuning the filling factor, plasma frequency and plasma cyclotron frequency, respectively. When a magnetic field parallel to the wave vector is applied, Dirac modes for right circularly polarized and left circularly polarized waves could be obtained at different frequencies, and the Q factor could be tuned. This property will add more controllability and flexibility to the design and modulation of novel photonic devices. It is also valuable for the possibilities of Dirac modes in photonic crystal containing other kinds of metamaterials.

  9. NCAP projection displays

    NASA Astrophysics Data System (ADS)

    Havens, John R.; Ishioka, J.; Jones, Philip J.; Lau, Aldrich; Tomita, Akira; Asano, A.; Konuma, Nobuhiro; Sato, Kazuhiko; Takemoto, Iwao

    1997-05-01

    Projectors based on polymer-eNCAPsulated liquid crystals can provide bright displays suitable for use in conference rooms with normal lighting. Contrast is generated by light scattering among the droplets, rather than by light absorption with crossed polarizers. We have demonstrated a full-color, compact projector showing 1200 ANSI lumens with 200 watts of lamp power - a light efficiency of 6 lumens/watt. This projector is based on low-voltage NCAP material, highly reflective CMOS die, and matched illumination and projection optics. We will review each of these areas and discuss the integrated system performance.

  10. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram.

    PubMed

    Liu, Hong-Chao; Yang, Biao; Guo, Qinghua; Shi, Jinhui; Guan, Chunying; Zheng, Guoxing; Mühlenbernd, Holger; Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2017-09-01

    Different optical imaging techniques are based on different characteristics of light. By controlling the abrupt phase discontinuities with different polarized incident light, a metasurface can host a phase-only and helicity-dependent hologram. In contrast, ghost imaging (GI) is an indirect imaging modality to retrieve the object information from the correlation of the light intensity fluctuations. We report single-pixel computational GI with a high-efficiency reflective metasurface in both simulations and experiments. Playing a fascinating role in switching the GI target with different polarized light, the metasurface hologram generates helicity-dependent reconstructed ghost images and successfully introduces an additional security lock in a proposed optical encryption scheme based on the GI. The robustness of our encryption scheme is further verified with the vulnerability test. Building the first bridge between the metasurface hologram and the GI, our work paves the way to integrate their applications in the fields of optical communications, imaging technology, and security.

  11. Single-pixel computational ghost imaging with helicity-dependent metasurface hologram

    PubMed Central

    Liu, Hong-Chao; Yang, Biao; Guo, Qinghua; Shi, Jinhui; Guan, Chunying; Zheng, Guoxing; Mühlenbernd, Holger; Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2017-01-01

    Different optical imaging techniques are based on different characteristics of light. By controlling the abrupt phase discontinuities with different polarized incident light, a metasurface can host a phase-only and helicity-dependent hologram. In contrast, ghost imaging (GI) is an indirect imaging modality to retrieve the object information from the correlation of the light intensity fluctuations. We report single-pixel computational GI with a high-efficiency reflective metasurface in both simulations and experiments. Playing a fascinating role in switching the GI target with different polarized light, the metasurface hologram generates helicity-dependent reconstructed ghost images and successfully introduces an additional security lock in a proposed optical encryption scheme based on the GI. The robustness of our encryption scheme is further verified with the vulnerability test. Building the first bridge between the metasurface hologram and the GI, our work paves the way to integrate their applications in the fields of optical communications, imaging technology, and security. PMID:28913433

  12. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  13. Broadband and polarization reflectors in the lookdown, Selene vomer.

    PubMed

    Zhao, Shulei; Brady, Parrish Clawson; Gao, Meng; Etheredge, Robert Ian; Kattawar, George W; Cummings, Molly E

    2015-03-06

    Predator evasion in the open ocean is difficult because there are no objects to hide behind. The silvery surface of fish plays an important role in open water camouflage. Various models have been proposed to account for the broadband reflectance by the fish skin that involve one-dimensional variations in the arrangement of guanine crystal reflectors, yet the three-dimensional organization of these guanine platelets have not been well characterized. Here, we report the three-dimensional organization and the optical properties of integumentary guanine platelets in a silvery marine fish, the lookdown (Selene vomer). Our structural analysis and computational modelling show that stacks of guanine platelets with random yaw angles in the fish skin produce broadband reflectance via colour mixing. Optical axes of the guanine platelets and the collagen layer are aligned closely and provide bulk birefringence properties that influence the polarization reflectance by the skin. These data demonstrate how the lookdown preserves or alters polarization states at different incident polarization angles. These optical properties resulted from the organization of these guanine platelets and the collagen layer may have implications for open ocean camouflage in varying light fields. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Research on infrared non-polarizing beam splitters

    NASA Astrophysics Data System (ADS)

    Wang, Zheng P.; Shi, Jin H.; Huang, Zongjun

    2006-02-01

    When used at oblique angles of incidence, the reflectance and transmittance of thin films exhibit strong polarization effects, particularly for the films inside a glass cube, which result from the fact that the tangential components of the electric and magnetic fields are continuous across each layer interface. However, for many applications, the polarization effects are undesirable and should be reduced. Therefore, the concept of non-polarizing beam splitter is proposed. Up to now, however, most of the reports of non-polarizing beam splitters are suitable for visible light. Therefore, it is necessary to find out some methods to reduce the polarization effects for infrared applications. A design method of infrared non-polarizing beam splitter in a cube is proposed, the theoretical analysis is given, designs for different substrates are demonstrated and the simulations of their optical properties are presented in this paper.

  15. Non-periodic high-index contrast gratings reflector with large-angle beam forming ability

    NASA Astrophysics Data System (ADS)

    Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min

    2016-05-01

    A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.

  16. Polarization-multiplexing ghost imaging

    NASA Astrophysics Data System (ADS)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  17. 2nd Generation Airborne Precipitation Radar (APR-2)

    NASA Technical Reports Server (NTRS)

    Durden, S.; Tanelli, S.; Haddad, Z.; Im, E.

    2012-01-01

    Dual-frequency operation with Ku-band (13.4 GHz) and Ka-band (35.6 GHz). Geometry and frequencies chosen to simulate GPM radar. Measures reflectivity at co- and cross-polarizations, and Doppler. Range resolution is approx. 60 m. Horizontal resolution at surface is approx. 1 km. Reflectivity calibration is within 1.5 dB, based on 10 deg sigmaO at Ku-band and Mie scattering calculations in light rain at Ka-band. LDR measurements are OK to near -20 dB; LDR lower than this is likely contaminated by system cross-polarization isolation. Velocity is motion-corrected total Doppler, including particle fall speed. Aliasing can be seen in some places; can usually be dealiased with an algorithm. .

  18. Angularly symmetric splitting of a light beam upon reflection and refraction at an air-dielectric plane boundary.

    PubMed

    Azzam, R M A

    2015-12-01

    Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.

  19. Measurement and Modeling of the Optical Scattering Properties of Crop Canopies

    NASA Technical Reports Server (NTRS)

    Vanderbilt, V. C.; Grant, L.

    1984-01-01

    Efforts in measuring, analyzing, and mathematically modeling the specular, polarized, and diffuse light scattering properties of several plant canopies and their component parts (leaves, stems, fruit, soil) as a function of view angle and illumination angle are reported. Specific objectives were: (1) to demonstrate a technique for determining the specular and diffuse components of the reflectance factor of plant canopies; (2) to acquire the measurements and begin assembling a data set for developing and testing canopy reflectance models; (3) to design and build a new optical instrument to measure the light scattering properties of individual leaves; and (4) to use this instrument to survey and investigate the information in the light scattering properties of individual leaves of crops, forests, weeds, and horticulture.

  20. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  1. Fresnel's original interpretation of complex numbers in 19th century optics

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo

    2018-04-01

    In 1823, Fresnel published an original (physical) interpretation of complex numbers in his investigations of refraction and reflection of polarized light. This is arguably the first time that complex numbers were given a physical interpretation, which led to a better understanding of elliptical and circular polarizations. This rather unknown episode of the history of physics is described in this work, and some of the pedagogical lessons that can be extracted from it are discussed.

  2. Multichannel tunable omnidirectional photonic band gaps of 1D ternary photonic crystal containing magnetized cold plasma

    NASA Astrophysics Data System (ADS)

    Awasthi, Suneet Kumar; Panda, Ranjita; Chauhan, Prashant Kumar; Shiveshwari, Laxmi

    2018-05-01

    By using the transfer matrix method, theoretical investigations have been carried out in the microwave region to study the reflection properties of multichannel tunable omnidirectional photonic bandgaps (OPBGs) based on the magneto-optic Faraday effect. The proposed one dimensional ternary plasma photonic crystal consists of alternate layers of quartz, magnetized cold plasma (MCP), and air. In the absence of an external magnetic field, the proposed structure possesses two OPBGs induced by Bragg scattering and is strongly dependent on the incident angle, the polarization of the incident light, and the lattice constant unlike to the single-negative gap and zero- n ¯ gap. Next, the reflection properties of OPBGs have been made tunable by the application of external magnetic field under right hand and left hand polarization configurations. The results of this manuscript may be utilized for the development of a new kind of tunable omnidirectional band stop filter with ability to completely stop single to multiple bands (called channels) of microwave frequencies in the presence of external static magnetic field under left-hand polarization and right-hand polarization configurations, respectively. Moreover, outcomes of this study open a promising way to design tunable magneto-optical devices, omnidirectional total reflectors, and planar waveguides of high Q microcavities as a result of evanescent fields in the MCP layer to allow propagation of light.

  3. Observation of strain effect on the suspended graphene by polarized Raman spectroscopy

    PubMed Central

    2012-01-01

    We report the strain effect of suspended graphene prepared by micromechanical method. Under a fixed measurement orientation of scattered light, the position of the 2D peaks changes with incident polarization directions. This phenomenon is explained by a proposed mode in which the peak is effectively contributed by an unstrained and two uniaxial-strained sub-areas. The two axes are tensile strain. Compared to the unstrained sub-mode frequency of 2,672 cm−1, the tension causes a red shift. The 2D peak variation originates in that the three effective sub-modes correlate with the light polarization through different relations. We develop a method to quantitatively analyze the positions, intensities, and polarization dependences of the three sub-peaks. The analysis reflects the local strain, which changes with detected area of the graphene film. The measurement can be extended to detect the strain distribution of the film and, thus, is a promising technology on graphene characterization. PMID:23013616

  4. EDITORIAL: Polarization Optics

    NASA Astrophysics Data System (ADS)

    Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.

    2004-03-01

    This special issue on Polarization Optics contains one review article and 23 research papers, many of which are based on presentations at the International Commission for Optics Topical Meeting on Polarization Optics, held in Polvijärvi, Finland, between 30 June and 3 July 2003. While this issue should not in any sense be considered as a `proceedings' of this meeting, the possibility of submitting papers to it was widely advertised during the meeting, which was attended by a large fraction of prominent scientists in the field of polarization optics. Thus the quality of papers in this special issue is high. In announcing both the meeting and this special issue, we emphasized that the concept of `polarization optics' should be understood in a wide sense. In fact, all contributions dealing with the vectorial nature of light were welcome. As a result, the papers included here cover a wide range of different aspects of linear and nonlinear polarization optics. Both theoretical and experimental features are discussed. We are pleased to see that the conference and this special issue both reflect the wide diversity of important and novel polarization phenomena in optics. The papers in this special issue, and other recently published works, demonstrate that even though polarization is a fundamental property of electromagnetic fields, interest in it is rapidly increasing. The fundamental relations between partial coherence and partial polarization are currently under vigorous research in electromagnetic coherence theory. In diffractive optics it has been found that the exploitation of the vectorial nature of light can be of great benefit. Fabrication of sophisticated, spatially variable polarization-control elements is becoming possible with the aid of nanolithography. Polarization singularities and the interplay of bulk properties and topology in nanoscale systems have created much enthusiasm. In nonlinear optics, the second harmonic waves generated on reflection and transmission of intense light enable research into the chirality of nanogratings. Pump-probe techniques allow one to visualize the effects of the nanostructure topology on the surface mode excitation. In quantum optics the coherent control of polarization may lead to new and fascinating applications. Some authors of invited papers at the conference have written review-type introductory sections—they were encouraged to do so—but all contributions are genuine research papers with original results, and were judged according to the normal publication criteria of the journal. It is our pleasure to thank all authors for making this a splendid special issue of Journal of Optics A: Pure and Applied Optics.

  5. Transillumination and reflectance probes for in vivo near-IR imaging of dental caries

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Lucas, Seth A.; Staninec, Michal; Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-02-01

    Previous studies have demonstrated the utility of near infrared (NIR) imaging for caries detection employing transillumination and reflectance imaging geometries. Three intra-oral NIR imaging probes were fabricated for the acquisition of in vivo, real time videos using a high definition InGaAs SWIR camera and near-IR broadband light sources. Two transillumination probes provide occlusal and interproximal images using 1300-nm light where water absorption is low and enamel manifests the highest transparency. A third reflectance probe utilizes cross polarization and operates at >1500-nm, where water absorption is higher which reduces the reflectivity of sound tissues, significantly increasing lesion contrast. These probes are being used in an ongoing clinical study to assess the diagnostic performance of NIR imaging for the detection of caries lesions in teeth scheduled for extraction for orthodontic reasons.

  6. Transparent binary-thickness coatings on metal substrates that produce binary patterns of orthogonal elliptical polarization states in reflected light

    NASA Astrophysics Data System (ADS)

    Azzam, Rasheed M. A.; Angel, Wade W.

    1992-12-01

    A reflective division-of-wavefront polarizing beam splitter is described that uses a dual- thickness transparent thin-film coating on a metal substrate. A previous design that used a partially clad substrate at the principal angle of the metal [Azzam, JOSA A 5, 1576 (1988)] is replaced by a more general one in which the substrate is coated throughout and the film thickness alternates between two non-zero levels. The incident linear polarization azimuth is chosen near, but not restricted to, 45 degree(s) (measured from the plane of incidence), and the angle of incidence may be selected over a range of values. The design procedure, which uses the two-dimensional Newton-Raphson method, is applied to the SiO2-Au film- substrate system at 633 nm wavelength, as an example, and the characteristics of the various possible coatings are presented.

  7. 1993 CAT workshop on beamline optical designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following thesemore » presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.« less

  8. Biosignatures as revealed by spectropolarimetry of Earthshine.

    PubMed

    Sterzik, Michael F; Bagnulo, Stefano; Palle, Enric

    2012-02-29

    Low-resolution intensity spectra of Earth's atmosphere obtained from space reveal strong signatures of life ('biosignatures'), such as molecular oxygen and methane with abundances far from chemical equilibrium, as well as the presence of a 'red edge' (a sharp increase of albedo for wavelengths longer than 700 nm) caused by surface vegetation. Light passing through the atmosphere is strongly linearly polarized by scattering (from air molecules, aerosols and cloud particles) and by reflection (from oceans and land). Spectropolarimetric observations of local patches of Earth's sky light from the ground contain signatures of oxygen, ozone and water, and are used to characterize the properties of clouds and aerosols. When applied to exoplanets, ground-based spectropolarimetry can better constrain properties of atmospheres and surfaces than can standard intensity spectroscopy. Here we report disk-integrated linear polarization spectra of Earthshine, which is sunlight that has been first reflected by Earth and then reflected back to Earth by the Moon. The observations allow us to determine the fractional contribution of clouds and ocean surface, and are sensitive to visible areas of vegetation as small as 10 per cent. They represent a benchmark for the diagnostics of the atmospheric composition, mean cloud height and surfaces of exoplanets.

  9. Disordered animal multilayer reflectors and the localization of light

    PubMed Central

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2014-01-01

    Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688

  10. PRIMORDIAL GRAVITATIONAL WAVES AND RESCATTERED ELECTROMAGNETIC RADIATION IN THE COSMIC MICROWAVE BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Hoon; Trippe, Sascha, E-mail: ki13130@gmail.com, E-mail: trippe@astro.snu.ac.kr

    Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered bymore » a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.« less

  11. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic sleep disturbances could push the vasculature to critical limits, leading to metabolic deficit and the potential for tissue trauma.

  12. Highly anisotropic metasurface: a polarized beam splitter and hologram.

    PubMed

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D; Zhang, Jie

    2014-09-29

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications.

  13. Highly anisotropic metasurface: a polarized beam splitter and hologram

    PubMed Central

    Zheng, Jun; Ye, Zhi-Cheng; Sun, Nan-Ling; Zhang, Rui; Sheng, Zheng-Ming; Shieh, Han-Ping D.; Zhang, Jie

    2014-01-01

    Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. PMID:25262791

  14. Comparisons between conventional optical imaging and parametric indirect microscopic imaging on human skin detection

    NASA Astrophysics Data System (ADS)

    Liu, Guoyan; Gao, Kun; Liu, Xuefeng; Ni, Guoqiang

    2016-10-01

    We report a new method, polarization parameters indirect microscopic imaging with a high transmission infrared light source, to detect the morphology and component of human skin. A conventional reflection microscopic system is used as the basic optical system, into which a polarization-modulation mechanics is inserted and a high transmission infrared light source is utilized. The near-field structural characteristics of human skin can be delivered by infrared waves and material coupling. According to coupling and conduction physics, changes of the optical wave parameters can be calculated and curves of the intensity of the image can be obtained. By analyzing the near-field polarization parameters in nanoscale, we can finally get the inversion images of human skin. Compared with the conventional direct optical microscope, this method can break diffraction limit and achieve a super resolution of sub-100nm. Besides, the method is more sensitive to the edges, wrinkles, boundaries and impurity particles.

  15. Angular-dependent polarization-insensitive filter fashioned with zero-contrast grating.

    PubMed

    Gao, Xumin; Wu, Tong; Xu, Yin; Li, Xin; Bai, Dan; Zhu, Gangyi; Zhu, Hongbo; Wang, Yongjin

    2015-06-15

    We report here an angular-dependent polarization-insensitive filter fashioned with a free-standing zero-contrast grating (ZCG), which is implemented on an HfO(2)/Silicon platform. The spectral characteristics are investigated by rigorous coupled-wave analysis method and measured on angular-resolved micro-reflectance system. The proposed ZCG structure experimentally shows that the polarization-insensitive resonances occur at 595nm for the incidence angle θ of 12.8° and 500nm for the incidence angle θ of 14.2°. When the incident light is normal to the grating surface, the ZCG device generates yellow and red colors for p- and s-polarization, respectively. The experimental results are in good agreement with the simulations, which indicate that the free-standing ZCG device is promising for polarization-insensitive filter and polarization-controlled tunable color filter.

  16. Asteroid selection for mission opportunities. Appendix: Asteroid data sheets

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics of asteroids selected as possible space mission objectives are presented. The asteroids are described according to: (1) magnitude, (2) spectral reflectivity; (3) phase factors, (4) polarization, (5) light curve, and (6) physical parameters. The data are tabulated on specific formats for each asteroid considered.

  17. RGB imaging system for monitoring of skin vascular malformation's laser therapy

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Kuzmina, Ilona; Berzina, Anna; Spigulis, Janis

    2012-06-01

    A prototype RGB imaging system for mapping of skin chromophores consists of a commercial RGB CMOS sensor, RGB LEDs ring-light illuminator and orthogonally orientated polarizers for reducing specular reflectance. The system was used for monitoring of vascular malformations (hemagiomas and telangiectasias) therapy.

  18. The Effects of Optical Feedback on Polarization of Vertical Cavity Surface Emitting Lasers

    DTIC Science & Technology

    1993-12-01

    Beam Mode TEMN Dichroic Beam Splitters (2) Manufacturer CVI Maximum Reflectance 375 mrn, 950 un Maximum Transmission 830 rnm, 910 mn Design Angle 5... beam splitter (DBS). The DBS reflects the majority of the light at the VCSEL wavelength (and passes most of the pump wavelength). A normal beamsplitter...degrees Beam Splitters Manufacturer Melles Griot Reflectancetrransnittance -50/50 Filters (2) Manufacturer Ealing Center Wavelength 880 urn, 940 mun

  19. Nanoporous distributed Bragg reflectors on free-standing nonpolar m-plane GaN

    NASA Astrophysics Data System (ADS)

    Mishkat-Ul-Masabih, Saadat; Luk, Ting Shan; Rishinaramangalam, Ashwin; Monavarian, Morteza; Nami, Mohsen; Feezell, Daniel

    2018-01-01

    We report the fabrication of m-plane nanoporous distributed Bragg reflectors (DBRs) on free-standing GaN substrates. The DBRs consist of 15 pairs of alternating undoped and highly doped n-type ([Si] = ˜3.7 × 1019 cm-3) GaN. Electrochemical (EC) etching was performed to convert the highly doped regions into a porous material, consequently reducing the effective refractive index of the layers. We demonstrate a DBR with peak reflectance greater than 98% at 450 nm with a stopband width of ˜72 nm. The polarization ratio of an incident polarized light source remains identical after reflection from the DBR, verifying that there is no drop in the polarization ratio due to the interfaces between the porous layers. We also quantify the porosity under various EC bias conditions for layers with different doping concentrations. The bias voltage controls the average pore diameter, while the pore density is primarily determined by the doping concentration. The results show that nanoporous DBRs on nonpolar free-standing GaN are promising candidates for high-reflectance, lattice-matched DBR mirrors for GaN-based resonant cavity devices.

  20. Manipulation of Micro Scale Particles in Optical Traps Using Programmable Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Seibel, Robin E.; Decker, Arthur J. (Technical Monitor)

    2003-01-01

    1064 nm light, from an Nd:YAG laser, was polarized and incident upon a programmable parallel aligned liquid crystal spatial light modulator (PAL-SLM), where it was phase modulated according to the program controlling the PAL-SLM. Light reflected from the PAL-SLM was injected into a microscope and focused. At the focus, multiple optical traps were formed in which 9.975 m spheres were captured. The traps and the spheres were moved by changing the program of the PAL-SLM. The motion of ordered groups of micro particles was clearly demonstrated.

  1. Optical coatings for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Lowdermilk, W. H.; Milam, D.; Rainer, F.

    1980-04-01

    Lasers for fusion experiments use thin-film dielectric coatings for reflecting antireflecting and polarizing surface elements. Coatings are most important to the Nd:glass laser application. The most important requirements of these coatings are accuracy of the average value of reflectance and transmission, uniformity of amplitude and phase front of the reflected or transmitted light, and laser damage threshold. Damage resistance strongly affects the laser's design and performance. The success of advanced lasers for future experiments and for reactor applications requires significant developments in damage resistant coatings for ultraviolet laser radiation.

  2. A Fiber-Optic Aircraft Lightning Current Measurement Sensor

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2013-01-01

    A fiber-optic current sensor based on the Faraday Effect is developed for aircraft installations. It can measure total lightning current amplitudes and waveforms, including continuing current. Additional benefits include being small, lightweight, non-conducting, safe from electromagnetic interference, and free of hysteresis and saturation. The Faraday Effect causes light polarization to rotate in presence of magnetic field in the direction of light propagation. Measuring the total induced light polarization change yields the total current enclosed. The system operates at 1310nm laser wavelength and can measure approximately 300 A - 300 kA, a 60 dB range. A reflective polarimetric scheme is used, where the light polarization change is measured after a round-trip propagation through the fiber. A two-detector setup measures the two orthogonal polarizations for noise subtraction and improved dynamic range. The current response curve is non-linear and requires a simple spline-fit correction. Effects of high current were achieved in laboratory using combinations of multiple fiber and wire loops. Good result comparisons against reference sensors were achieved up to 300 kA. Accurate measurements on a simulated aircraft fuselage and an internal structure illustrate capabilities that maybe difficult with traditional sensors. Also tested at a commercial lightning test facility from 20 kA to 200 kA, accuracy within 3-10% was achieved even with non-optimum setups.

  3. In-vitro near-infrared imaging of natural secondary caries

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Lucas, Seth; Lee, Robert; Darling, Cynthia L.; Staninec, Michal; Vanderhobli, Ram; Pelzner, Roger; Fried, Daniel

    2015-02-01

    Secondary caries stands as the leading reason for the failure of composite restorations and dentists spend more time replacing existing restorations than placing new ones. Current clinical strategies, and even modern visible light methods designed to detect decay, lack the sensitivity to distinguish incipient lesions, are confounded by staining on the surface and within the tooth, or are limited to detecting decay on the tooth surface. Near-IR (NIR) imaging methods, such as NIR reflectance and transillumination imaging, and optical coherence tomography are promising strategies for imaging secondary caries. Wavelengths longer than 1300-nm avoid interference from stain and exploit the greater transparency of sound enamel and dental composites, to provide increased contrast with demineralized tissues and improved imaging depth. The purpose of this study was to determine whether NIR transillumination (λ=1300-nm) and NIR crosspolarized reflectance (λ=1500-1700-nm) images can serve as reliable indicators of demineralization surrounding composite restorations. Twelve composite margins (n=12) consisting of class I, II and V restorations were chosen from ten extracted teeth. The samples were imaged in vitro using NIR transillumination and reflectance, polarization sensitive optical coherence tomography (PS-OCT) and a high-magnification digital visible light microscope. Samples were serially sectioned into 200-μm slices for histological analysis using polarized light microscopy (PLM) and transverse microradiography (TMR). The results presented demonstrate the utility of NIR light for detecting recurrent decay and suggest that NIR images could be a reliable screening tool used in conjunction with PS-OCT for the detection and diagnosis of secondary caries.

  4. Design, simulation and experimental analysis of an anti-stray-light illumination system of fundus camera

    NASA Astrophysics Data System (ADS)

    Ma, Chen; Cheng, Dewen; Xu, Chen; Wang, Yongtian

    2014-11-01

    Fundus camera is a complex optical system for retinal photography, involving illumination and imaging of the retina. Stray light is one of the most significant problems of fundus camera because the retina is so minimally reflective that back reflections from the cornea and any other optical surface are likely to be significantly greater than the light reflected from the retina. To provide maximum illumination to the retina while eliminating back reflections, a novel design of illumination system used in portable fundus camera is proposed. Internal illumination, in which eyepiece is shared by both the illumination system and the imaging system but the condenser and the objective are separated by a beam splitter, is adopted for its high efficiency. To eliminate the strong stray light caused by corneal center and make full use of light energy, the annular stop in conventional illumination systems is replaced by a fiber-coupled, ring-shaped light source that forms an annular beam. Parameters including size and divergence angle of the light source are specially designed. To weaken the stray light, a polarized light source is used, and an analyzer plate is placed after beam splitter in the imaging system. Simulation results show that the illumination uniformity at the fundus exceeds 90%, and the stray light is within 1%. Finally, a proof-of-concept prototype is developed and retinal photos of an ophthalmophantom are captured. The experimental results show that ghost images and stray light have been greatly reduced to a level that professional diagnostic will not be interfered with.

  5. Design of crossed planar phase grating for metrology

    NASA Astrophysics Data System (ADS)

    Tang, Yu; Chen, Xinrong; Li, Chaoming; Wang, Rui; Xu, Haiyan; Cheng, Yushui

    2018-01-01

    Crossed-grating is widely used as the standard element for metrology in two-dimensional precision positioning system. It has many advantages such as high resolution, compact structure, good environmental adaptability and less Abbe error. In this paper, the design of crossed planar reflecting phase grating used under the Littrow condition with circularly polarized light at 780nm wavelength has been carried out. The aim of the design is to find out the range of structure parameters of crossed-grating that has higher -1st order diffraction efficiency and good efficiency equilibrium for both of TE- and TM-polarized incident lights. By adoption of the Fourier modal method (FMM), the microstructure parameters of the 1200lines/mm crossed grating with the duty cycle range of 10% to 50% and the profile depth of 150nm to 350nm have been searched exactly. The calculation results show that: When the duty cycle range of the grating is 42% to 44% and profile depth is 210nm to 220nm, the -1st diffraction efficiencies of TE- and TM-polarized lights are both above 60% and the efficiency equilibrium is better than 80%.

  6. Biological dinitrogen fixation by selected soil cyanobacteria as affected by strain origin, morphotype, and light conditions.

    PubMed

    Hrčková, K; Simek, M; Hrouzek, P; Lukešová, A

    2010-09-01

    The potential for N(2) fixation by heterocystous cyanobacteria isolated from soils of different geographical areas was determined as nitrogenase activity (NA) using the acetylene reduction assay. Morphology of cyanobacteria had the largest influence on NA determined under light conditions. NA was generally higher in species lacking thick slime sheaths. The highest value (1446 nmol/h C(2)H(4) per g fresh biomass) was found in the strain of branched cyanobacterium Hassalia (A Has1) from the polar region. A quadratic relationship between NA and biomass was detected in the Tolypothrix group under light conditions. The decline of NA in dark relative to light conditions ranged from 37 to 100 % and differed among strains from distinct geographical areas. Unlike the NA of temperate and tropical strains, whose decline in dark relative to light was 24 and 17 %, respectively, the NA of polar strains declined to 1 % in the dark. This difference was explained by adaptation to different light conditions in temperate, tropical, and polar habitats. NA was not related to the frequency of heterocysts in strains of the colony-forming cyanobacterium Nostoc. Colony morphology and life cycle are therefore more important for NA then heterocyst frequency. NA values probably reflect the environmental conditions where the cyanobacterium was isolated and the physiological and morphological state of the strain.

  7. Polarization of skylight in the O(2)A band: effects of aerosol properties.

    PubMed

    Boesche, Eyk; Stammes, Piet; Preusker, Réne; Bennartz, Ralf; Knap, Wouter; Fischer, Juergen

    2008-07-01

    Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness. The polarization of the O(2)A band can be larger than the polarization of the continuum, which typically occurs for strongly polarizing aerosols in an elevated layer, or smaller, which typically occurs for depolarizing aerosols or cirrus clouds in an elevated layer. We show that in the case of a single aerosol layer in the atmosphere a determination of the aerosol layer altitude may be obtained. Furthermore, we show limitations of the aerosol layer altitude determination in case of multiple aerosol layers. To perform these simulations we developed a fast method for multiple scattering radiative transfer calculations in gaseous absorption bands including polarization. The method is a combination of doubling-adding and k-binning methods. We present an error estimation of this method by comparing with accurate line-by-line radiative transfer simulations. For the O(2)A band, the errors in the degree of linear polarization are less than 0.11% for transmitted light, and less than 0.31% for reflected light. band, the errors in the degree of linear polarization are less than 0.11% for transmitted light, and less than 0.31% for reflected light.

  8. Generation of elliptical and circular vector hollow beams with different polarizations by a Mach-Zehnder-type optical path

    NASA Astrophysics Data System (ADS)

    Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping

    2018-01-01

    We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.

  9. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi 2Sr 2CaCu 2O 8+ δ superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Junfeng; Mion, Thomas R.; Gao, Shang

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circularmore » dichroism.« less

  10. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  11. Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials

    NASA Astrophysics Data System (ADS)

    De Nicola, Francesco; Hines, Peter; De Crescenzi, Maurizio; Motta, Nunzio

    2017-07-01

    Ultrablack metamaterials are artificial materials able to harvest all the incident light regardless of wavelength, angle, or polarization. Here, we show the ultrablack properties of randomly aligned hierarchical carbon nanotube arrays with thicknesses below 200 nm. The thin coatings are realized by solution processing and dry-transfer deposition on different substrates. The hierarchical surface morphology of the coatings is biomimetic and provides a large effective area that improves the film optical absorption. Also, such a morphology is responsible for the moth-eye effect, which leads to the omnidirectional and polarization-independent suppression of optical reflection. The films exhibit an emissivity up to 99.36% typical of an ideal black body, resulting in the thinnest ultrablack metamaterial ever reported. Such a material may be exploited for thermal, optical, and optoelectronic devices such as heat sinks, optical shields, solar cells, light and thermal sensors, and light-emitting diodes.

  12. Valley-Selective Exciton Bistability in a Suspended Monolayer Semiconductor.

    PubMed

    Xie, Hongchao; Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-09

    We demonstrate robust optical bistability, the phenomenon of two well-discriminated stable states depending upon the history of the optical input, in fully suspended monolayers of WSe 2 at low temperatures near the exciton resonance. Optical bistability has been achieved under continuous-wave optical excitation that is red-detuned from the exciton resonance at an intensity level of 10 3 W/cm 2 . The observed bistability is originated from a photothermal mechanism, which provides both optical nonlinearity and passive feedback, two essential elements for optical bistability. The low thermal conductance of suspended samples is primarily responsible for the low excitation intensities required for optical bistability. Under a finite out-of-plane magnetic field, the exciton bistability becomes helicity dependent due to the exciton valley Zeeman effect, which enables repeatable switching of the sample reflectance by light polarization. Our study has opened up exciting opportunities in controlling light with light, including its wavelength, power, and polarization, using monolayer semiconductors.

  13. Polarized scattered light from self-luminous exoplanets. Three-dimensional scattering radiative transfer with ARTES

    NASA Astrophysics Data System (ADS)

    Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.

    2017-11-01

    Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.

  14. Degree and Direction of Polarization of Multiple Scattered Light. 2: Earth's Atmosphere with Aerosols.

    PubMed

    Plass, G N; Kattawar, G W

    1972-12-01

    The degree of polarization as well as the direction of the polarization are calculated by a Monte Carlo method for the reflected and transmitted photons from the earth's atmosphere. The solar photons are followed through multiple collisions with the aerosols and the Rayleigh scattering centers in the atmosphere. The aerosol number density as well as the ratio of aerosol to Rayleigh scattering vary with height. The aerosol index of refraction is assumed to be 1.55. The proportion of aerosol to Rayleigh scattering is appropriately chosen at each wavelength (lambda = 0.4 micro and 0.7 micro); ozone absorption is included where appropriate. Three different aerosol number densities are used to study the effects of aerosol variations. Results are given for a solar zenith angle of 81.37 degrees and various surface albedos. The radiance and polarization of the reflected and transmitted photons is particularly sensitive to the amount of aerosols in the atmosphere at certain angles of observation. The direction of pola ization shows little dependence on the surface albedo.

  15. Using polarimetry to retrieve the cloud coverage of Earth-like exoplanets

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Stam, D. M.

    2017-11-01

    Context. Clouds have already been detected in exoplanetary atmospheres. They play crucial roles in a planet's atmosphere and climate and can also create ambiguities in the determination of atmospheric parameters such as trace gas mixing ratios. Knowledge of cloud properties is required when assessing the habitability of a planet. Aims: We aim to show that various types of cloud cover such as polar cusps, subsolar clouds, and patchy clouds on Earth-like exoplanets can be distinguished from each other using the polarization and flux of light that is reflected by the planet. Methods: We have computed the flux and polarization of reflected starlight for different types of (liquid water) cloud covers on Earth-like model planets using the adding-doubling method, that fully includes multiple scattering and polarization. Variations in cloud-top altitudes and planet-wide cloud cover percentages were taken into account. Results: We find that the different types of cloud cover (polar cusps, subsolar clouds, and patchy clouds) can be distinguished from each other and that the percentage of cloud cover can be estimated within 10%. Conclusions: Using our proposed observational strategy, one should be able to determine basic orbital parameters of a planet such as orbital inclination and estimate cloud coverage with reduced ambiguities from the planet's polarization signals along its orbit.

  16. Parallel Polarization State Generation

    NASA Astrophysics Data System (ADS)

    She, Alan; Capasso, Federico

    2016-05-01

    The control of polarization, an essential property of light, is of wide scientific and technological interest. The general problem of generating arbitrary time-varying states of polarization (SOP) has always been mathematically formulated by a series of linear transformations, i.e. a product of matrices, imposing a serial architecture. Here we show a parallel architecture described by a sum of matrices. The theory is experimentally demonstrated by modulating spatially-separated polarization components of a laser using a digital micromirror device that are subsequently beam combined. This method greatly expands the parameter space for engineering devices that control polarization. Consequently, performance characteristics, such as speed, stability, and spectral range, are entirely dictated by the technologies of optical intensity modulation, including absorption, reflection, emission, and scattering. This opens up important prospects for polarization state generation (PSG) with unique performance characteristics with applications in spectroscopic ellipsometry, spectropolarimetry, communications, imaging, and security.

  17. Vector Beam Polarization State Spectrum Analyzer.

    PubMed

    Moreno, Ignacio; Davis, Jeffrey A; Badham, Katherine; Sánchez-López, María M; Holland, Joseph E; Cottrell, Don M

    2017-05-22

    We present a proof of concept for a vector beam polarization state spectrum analyzer based on the combination of a polarization diffraction grating (PDG) and an encoded harmonic q-plate grating (QPG). As a result, a two-dimensional polarization diffraction grating is formed that generates six different q-plate channels with topological charges from -3 to +3 in the horizontal direction, and each is split in the vertical direction into the six polarization channels at the cardinal points of the corresponding higher-order Poincaré sphere. Consequently, 36 different channels are generated in parallel. This special polarization diffractive element is experimentally demonstrated using a single phase-only spatial light modulator in a reflective optical architecture. Finally, we show that this system can be used as a vector beam polarization state spectrum analyzer, where both the topological charge and the state of polarization of an input vector beam can be simultaneously determined in a single experiment. We expect that these results would be useful for applications in optical communications.

  18. Image acquisition device of inspection robot based on adaptive rotation regulation of polarizer

    NASA Astrophysics Data System (ADS)

    Dong, Maoqi; Wang, Xingguang; Liang, Tao; Yang, Guoqing; Zhang, Chuangyou; Gao, Faqin

    2017-12-01

    An image processing device of inspection robot with adaptive polarization adjustment is proposed, that the device includes the inspection robot body, the image collecting mechanism, the polarizer and the polarizer automatic actuating device. Where, the image acquisition mechanism is arranged at the front of the inspection robot body for collecting equipment image data in the substation. Polarizer is fixed on the automatic actuating device of polarizer, and installed in front of the image acquisition mechanism, and that the optical axis of the camera vertically goes through the polarizer and the polarizer rotates with the optical axis of the visible camera as the central axis. The simulation results show that the system solves the fuzzy problems of the equipment that are caused by glare, reflection of light and shadow, and the robot can observe details of the running status of electrical equipment. And the full coverage of the substation equipment inspection robot observation target is achieved, which ensures the safe operation of the substation equipment.

  19. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  20. Fourier Transform-Plasmon Waveguide Spectroscopy: A Nondestructive Multifrequency Method for Simultaneously Determining Polymer Thickness and Apparent Index of Refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [ Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an averagemore » percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).« less

  1. Fourier transform-plasmon waveguide spectroscopy: a nondestructive multifrequency method for simultaneously determining polymer thickness and apparent index of refraction.

    PubMed

    Bobbitt, Jonathan M; Weibel, Stephen C; Elshobaki, Moneim; Chaudhary, Sumit; Smith, Emily A

    2014-12-16

    Fourier transform (FT)-plasmon waveguide resonance (PWR) spectroscopy measures light reflectivity at a waveguide interface as the incident frequency and angle are scanned. Under conditions of total internal reflection, the reflected light intensity is attenuated when the incident frequency and angle satisfy conditions for exciting surface plasmon modes in the metal as well as guided modes within the waveguide. Expanding upon the concept of two-frequency surface plasmon resonance developed by Peterlinz and Georgiadis [Opt. Commun. 1996, 130, 260], the apparent index of refraction and the thickness of a waveguide can be measured precisely and simultaneously by FT-PWR with an average percent relative error of 0.4%. Measuring reflectivity for a range of frequencies extends the analysis to a wide variety of sample compositions and thicknesses since frequencies with the maximum attenuation can be selected to optimize the analysis. Additionally, the ability to measure reflectivity curves with both p- and s-polarized light provides anisotropic indices of refraction. FT-PWR is demonstrated using polystyrene waveguides of varying thickness, and the validity of FT-PWR measurements are verified by comparing the results to data from profilometry and atomic force microscopy (AFM).

  2. Effects of stray lights on Faraday rotation measurement for polarimeter-interferometer system on EAST.

    PubMed

    Zou, Z Y; Liu, H Q; Ding, W X; Chen, J; Brower, D L; Lian, H; Wang, S X; Li, W M; Yao, Y; Zeng, L; Jie, Y X

    2018-01-01

    A double-pass radially view 11 chords polarimeter-interferometer system has been operated on the experimental advanced superconducting tokamak and provides important current profile information for plasma control. Stray light originating from spurious reflections along the optical path (unwanted reflections from various optical components/mounts and transmissive optical elements such as windows, waveplates, and lens as well as the detectors) and also direct feedback from the retro-reflector used to realize the double-pass configuration can both contribute to contamination of the Faraday rotation measurement accuracy. Modulation of the Faraday rotation signal due to the interference from multiple reflections is observable when the interferometer phase (plasma density) varies with time. Direct reflection from the detector itself can be suppressed by employing an optical isolator consisting of a λ/4-waveplate and polarizer positioned in front of the mixer. A Faraday angle oscillation during the density ramping up (or down) can be reduced from 5°-10° to 1°-2° by eliminating reflections from the detector. Residual modulation arising from misalignment and stray light from other sources must be minimized to achieve accurate measurements of Faraday rotation.

  3. Imaging Polarimetry in Age-Related Macular Degeneration

    PubMed Central

    Miura, Masahiro; Yamanari, Masahiro; Iwasaki, Takuya; Elsner, Ann E.; Makita, Shuichi; Yatagai, Toyohiko; Yasuno, Yoshiaki

    2010-01-01

    PURPOSE To evaluate the birefringence properties of eyes with age-related macular degeneration (AMD). To compare the information from two techniques—scanning laser polarimetry (GDx) and polarization-sensitive spectral-domain optical coherence tomography (OCT)—and investigate how they complement each other. METHODS The authors prospectively examined the eyes of two healthy subjects and 13 patients with exudative AMD. Using scanning laser polarimetry, they computed phase-retardation maps, average reflectance images, and depolarized light images. To obtain polarimetry information with improved axial resolution, they developed a fiber-based, polarization-sensitive, spectral-domain OCT system and measured the phase retardation associated with birefringence in the same eyes. RESULTS Both GDx and polarization-sensitive spectral-domain optical coherence tomography detected abnormal birefringence at the locus of exudative lesions. Polarization-sensitive, spectral-domain OCT showed that in the old lesions with fibrosis, phase-retardation values were significantly larger than in the new lesions (P = 0.020). Increased scattered light and altered polarization scramble were associated with portions of the lesions. CONCLUSIONS GDx and polarization-sensitive spectral-domain OCT are complementary in probing birefringence properties in exudative AMD. Polarimetry findings in exudative AMD emphasized different features and were related to the progression of the disease, potentially providing a noninvasive tool for microstructure in exudative AMD. PMID:18515594

  4. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator.

    PubMed

    Liu, Jun; Wang, Jian

    2015-07-06

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.

  5. Method for Balancing Detector Output to a Desired Level of Balance at a Frequency

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor)

    2003-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination elements, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  6. Multi-Gas Sensor

    NASA Technical Reports Server (NTRS)

    Sachse, Glenn W. (Inventor); Wang, Liang-Guo (Inventor); LeBel, Peter J. (Inventor); Steele, Tommy C. (Inventor); Rana, Mauro (Inventor)

    1999-01-01

    A multi-gas sensor is provided which modulates a polarized light beam over a broadband of wavelengths between two alternating orthogonal polarization components. The two orthogonal polarization components of the polarization modulated beam are directed along two distinct optical paths. At least one optical path contains one or more spectral discrimination element, with each spectral discrimination element having spectral absorption features of one or more gases of interest being measured. The two optical paths then intersect, and one orthogonal component of the intersected components is transmitted and the other orthogonal component is reflected. The combined polarization modulated beam is partitioned into one or more smaller spectral regions of interest where one or more gases of interest has an absorption band. The difference in intensity between the two orthogonal polarization components is then determined in each partitioned spectral region of interest as an indication of the spectral emission/absorption of the light beam by the gases of interest in the measurement path. The spectral emission/absorption is indicative of the concentration of the one or more gases of interest in the measurement path. More specifically, one embodiment of the present invention is a gas filter correlation radiometer which comprises a polarizer, a polarization modulator, a polarization beam splitter, a beam combiner, wavelength partitioning element, and detection element. The gases of interest are measured simultaneously and, further, can be measured independently or non-independently. Furthermore, optical or electronic element are provided to balance optical intensities between the two optical paths.

  7. The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    NASA Astrophysics Data System (ADS)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    2017-06-01

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.

  8. Ly-alpha polarimeter design for CLASP rocket experiment

    NASA Astrophysics Data System (ADS)

    Kubo, M.; Watanabe, H.; Narukage, N.; Ishikawa, R.; Bando, T.; Kano, R.; Tsuneta, S.; Kobayashi, K.; Ichimoto, K.; Trujillo Bueno, J.; Song, D.

    2011-12-01

    A sounding-rocket program called the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is proposed to be launched in the Summer of 2014. CLASP will observe the upper solar chromosphere in Ly-alpha (121.567 nm), aiming to detect the linear polarization signal produced by scattering processes and the Hanle effect for the first time. The CLASP needs a rotating half-waveplate and a polarization analyzer working at the Ly-alpha wavelength to measure the linear polarization signal. We select Magnesium Fluoride (MgF2) as a material of the optical components because of its birefringent property and high transparency at UV wavelength. We have confirmed that the reflection at the Brewster's Angle of MgF2 plate is a good polarization analyzer for the Ly-alpha line by deriving its ordinary refractive index and extinction coefficient along the ordinary and extraordinary axes. These optical parameters are calculated with a least-square fitting in such a way that the reflectance and transmittance satisfy the Kramers-Kronig relation. The reflectance and transmittance against oblique incident angles for the s-polarized and the p-polarized light are measured using the synchrotron beamline at the Ultraviolet Synchrotron Orbital Radiation Facility (UVSOR). We have also measured a retardation of a zeroth-order waveplate made of MgF2. The thickness difference of the waveplate is 14.57 um.This waveplate works as a half-waveplate at 121.74 nm. From this measurement, we estimate that a waveplate with the thickness difference of 15.71 um will work as a half-waveplate at the Ly-alpha wavelength. We have developed a rotating waveplate - polarization analyzer system called a prototype of CLASP polarimeter, and input the perfect Stokes Q and U signals. The modulation patterns that are consistent with the theoretical prediction are successfully obtained in both cases.

  9. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator

    PubMed Central

    Liu, Jun; Wang, Jian

    2015-01-01

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032

  10. Positronium Annihilation Gamma Ray Laser

    DTIC Science & Technology

    2009-07-01

    polarized light since the reflection from the surface of a pellin broca prism mounted at Brewsters angle was nearly diminished, so as a result a fair...19 Figure 10 Simion simulation of the grid lens focus. The initial...21 Figure 12 Image simulation of the bunched beam before and after going through the grid lens

  11. Experimental light scattering by ultrasonically controlled small particles - Implications for Planetary Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Markkanen, J.; Martikainen, J.; Väisänen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-09-01

    We present the results obtained with our newly developed 3D scatterometer - a setup for precise multi-angular measurements of light scattered by mm- to µm-sized samples held in place by sound. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques. We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples which facilitates research on highly valuable planetary materials, such as samples returned from space missions or rare meteorites.

  12. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Astrophysics Data System (ADS)

    Lutes, G. F.; Primas, L. E.

    1989-05-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  13. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    NASA Astrophysics Data System (ADS)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  14. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  15. Spectral-domain low-coherence interferometry for phase-sensitive measurement of Faraday rotation at multiple depths.

    PubMed

    Yeh, Yi-Jou; Black, Adam J; Akkin, Taner

    2013-10-10

    We describe a method for differential phase measurement of Faraday rotation from multiple depth locations simultaneously. A polarization-maintaining fiber-based spectral-domain interferometer that utilizes a low-coherent light source and a single camera is developed. Light decorrelated by the orthogonal channels of the fiber is launched on a sample as two oppositely polarized circular states. These states reflect from sample surfaces and interfere with the corresponding states of the reference arm. A custom spectrometer, which is designed to simplify camera alignment, separates the orthogonal channels and records the interference-related oscillations on both spectra. Inverse Fourier transform of the spectral oscillations in k-space yields complex depth profiles, whose amplitudes and phase difference are related to reflectivity and Faraday rotation within the sample, respectively. Information along a full depth profile is produced at the camera speed without performing an axial scan for a multisurface sample. System sensitivity for the Faraday rotation measurement is 0.86 min of arc. Verdet constants of clear liquids and turbid media are measured at 687 nm.

  16. InxAl1-xN chiral nanorods mimicking the polarization features of scarab beetles

    NASA Astrophysics Data System (ADS)

    Magnusson, R.; Birch, J.; Hsiao, C.-L.; Sandström, P.; Arwin, H.; Järrendahl, K.

    2015-03-01

    The scarab beetle Cetonia aurata is known to reflect light with brilliant colors and a high degree of circular polarization. Both color and polarization effects originate from the beetles exoskeleton and have been attributed to a Bragg reflection of the incident light due to a twisted laminar structure. Our strategy for mimicking the optical properties of the Cetonia aurata was therefore to design and fabricate transparent, chiral films. A series of films with tailored transparent structures of helicoidal InxAl1-xN nanorods were grown on sapphire substrates using UHV magnetron sputtering. The value of x is tailored to gradually decrease from one side to the other in each nanorod normal to its growth direction. This introduces an in-plane anisotropy with different refractive indices in the direction of the gradient and perpendicular to it. By rotating the sample during film growth the in-plane optical axis will be rotated from bottom to top and thereby creating a chiral film. Based on Muellermatrix ellipsometry, optical modeling has been done suggesting that both the exoskeleton of Cetonia aurata and our artificial material can be modeled by an anisotropic film made up of a stack of thin layers, each one with its in-plane optical axis slightly rotated with respect to the previous layer. Simulations based on the optical modeling were used to investigate how pitch and thickness of the film together with the optical properties of the constitutive materials affects the width and spectral position of the Bragg reflection band.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orenstein, Joseph W

    Rotation of the plane of polarization of reflected light (Kerr effect) is a direct manifestation of broken time reversal symmetry and is generally associated with the appearance of a ferromagnetic moment. Here I identify magnetic structures that may arise within the unit cell of cuprate superconductors that generate polarization rotation despite the absence of a net moment. For these magnetic symmetries the Kerr effect is mediated by magnetoelectric coupling, which can arise when antiferromagnetic order breaks inversion symmetry. The structures identifed are candidates for a time-reversal breaking phase in the pseudogap regime of the cuprates.

  18. Optical anisotropy in micromechanically rolled carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Razib, Mohd Asyraf bin Mohd; Rana, Masud; Saleh, Tanveer; Fan, Harrison; Koch, Andrew; Nojeh, Alireza; Takahata, Kenichi; Muthalif, Asan Gani Bin Abdul

    2017-09-01

    The bulk appearance of arrays of vertically aligned carbon nanotubes (VACNT arrays or CNT forests) is dark as they absorb most of the incident light. In this paper, two postprocessing techniques have been described where the CNT forest can be patterned by selective bending of the tips of the nanotubes using a rigid cylindrical tool. A tungsten tool was used to bend the vertical structure of CNTs with predefined parameters in two different ways as stated above: bending using the bottom surface of the tool (micromechanical bending (M2B)) and rolling using the side of the tool (micromechanical rolling (M2R)). The processed zone was investigated using a Field Emission Scanning Electron Microscope (FESEM) and optical setup to reveal the surface morphology and optical characteristics of the patterned CNTs on the substrate. Interestingly, the polarized optical reflection from the micromechanical rolled (M2R) sample was found to be significantly influenced by the rotation of the sample. It was observed that, if the polarization of the light is parallel to the alignment of the CNTs, the reflectance is at least 2 x higher than for the perpendicular direction. Furthermore, the reflectance varied almost linearly with good repeatability ( 10%) as the processed CNT forest sample was rotated from 0° to 90°. [Figure not available: see fulltext.

  19. Terahertz Brewster lenses.

    PubMed

    Wichmann, Matthias; Scherger, Benedikt; Schumann, Steffen; Lippert, Sina; Scheller, Maik; Busch, Stefan F; Jansen, Christian; Koch, Martin

    2011-12-05

    Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.

  20. ELLIPSOMETRY OF ELECTROCHEMICAL SURFACE LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, R.H.

    1977-06-01

    Ellipsometry is concerned with the analysis and interpretation of changes in the state of polarization caused by reflection. The technique has found increasing interest in recent years for the measurement of thin films because it is unusually sensitive, disturbs the object minimally and can be applied to surfaces contained in any optically transparent medium. Film thicknesses amenable to measurement range from fractional monoatomic coverage to microscopic thicknesses. The measurement of changes in the state of polarization of light due to reflection provides an unusually sensitive tool for observing surface layers in any optically transparent environment. A fast, self-compensating ellipsometer hasmore » been used to observe the electrochemical formation of reacted surface layers. The optical effect of mass-transport boundary layers and component imperfections have been taken into account in the interpretation of results.« less

  1. Independent Manipulation of Topological Charges and Polarization Patterns of Optical Vortices

    PubMed Central

    Yang, Ching-Han; Chen, Yuan-Di; Wu, Shing-Trong; Fuh, Andy Ying-Guey

    2016-01-01

    We present a simple and flexible method to generate various vectorial vortex beams (VVBs) with a Pancharatnam phase based on the scheme of double reflections from a single liquid crystal spatial light modulator (SLM). In this configuration, VVBs are constructed by the superposition of two orthogonally polarized orbital angular momentum (OAM) eigenstates. To verify the optical properties of the generated beams, Stokes polarimetry is developed to measure the states of polarization (SOP) over the transverse plane, while a Shack–Hartmann wavefront sensor is used to measure the OAM charge of beams. It is shown that both the simulated and the experimental results are in good qualitative agreement. In addition, polarization patterns and OAM charges of generated beams can be controlled independently using the proposed method. PMID:27526858

  2. Estimation of photosynthetic capacity using MODIS polarization: 1988 proposal to NASA Headquarters

    NASA Technical Reports Server (NTRS)

    Vanderbilt, Vern C.

    1992-01-01

    The remote sensing community has clearly identified the utility of NDVI (normalized difference vegetation index) and SR (simple ratio) and other vegetation indices for estimating such metrics of landscape ecology as green foliar biomass, photosynthetic capacity, and net primary production. Both theoretical and empirical investigations have established cause and effect relationships between the photosynthetic process in plant canopies and these combinations of remotely sensed data. Yet it has also been established that the relationships exhibit considerable variability that appears to be ecosystem-dependent and may represent a source of ecologically important information. The overall hypothesis of this proposal is that the ecosystem-dependent variability in the various vegetation indices is in part attributable to the effects of specular reflection. The polarization channels on MODIS provide the potential to estimate this specularly reflected light and allow the modification of the vegetation indices to better measure the photosynthetic process in plant canopies. In addition, these polarization channels potentially provide additional ecologically important information about the plant canopy.

  3. A head-mounted compressive three-dimensional display system with polarization-dependent focus switching

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho

    2016-10-01

    A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.

  4. Polarization study about a telescope-based transmitter for quantum communication.

    PubMed

    Wu, Jincai; He, Zhiping; Zhang, Liang; Yuan, Liyin; Wang, Tianhong; Jia, Jianjun; Shu, Rong; Wang, Jianyu

    2017-10-20

    We studied the polarization evolution of a reflective telescope designed for the quantum satellite Micius. The change in polarization extinction ratio (PER) of quantum light was derived and calculated. The PER deterioration caused by increase of incidence angle was calculated to determine the boundary conditions for the system design. The performance of the Micius prototype was evaluated both theoretically and experimentally to verify the viability of our optical design. Minimum and maximum PERs of 38 and 55 dB, respectively, were recorded, which were mostly in good agreement with the numerical calculations. Our investigations have contributed to the success of Micius, which is a significant milestone for building a global security network.

  5. Spectral sea surface reflectance of skylight.

    PubMed

    Zhang, Xiaodong; He, Shuangyan; Shabani, Afshin; Zhai, Peng-Wang; Du, Keping

    2017-02-20

    In examining the dependence of the sea surface reflectance of skylight ρs on sky conditions, wind speed, solar zenith angle, and viewing geometry, Mobley [Appl. Opt.38, 7442 (1999).10.1364/AO.38.007442] assumed ρs is independent of wavelength. Lee et al. [Opt. Express18, 26313 (2010).10.1364/OE.18.026313] showed experimentally that ρs does vary spectrally due to the spectral difference of sky radiance coming from different directions, which was ignored in Mobley's study. We simulated ρs from 350 nm to 1000 nm by explicitly accounting for spectral variations of skylight distribution and Fresnel reflectance. Furthermore, we separated sun glint from sky glint because of significant differences in magnitude, spectrum and polarization state between direct sun light and skylight light. The results confirm that spectral variation of ρs(λ) mainly arises from the spectral distribution of skylight and would vary from slightly blueish due to normal dispersion of the refractive index of water, to neutral and then to reddish with increasing wind speeds and decreasing solar zenith angles. Polarization moderately increases sky glint by 8 - 20% at 400 nm but only by 0 - 10% at 1000 nm. Sun glint is inherently reddish and becomes significant (>10% of sky glint) when the sun is at the zenith with moderate winds or when the sea is roughened (wind speeds > 10 m s-1) with solar zenith angles < 20°. We recommend a two-step procedure by first correcting the glint due to direct sun light, which is unpolarized, followed by removing the glint due to diffused and polarized skylight. The simulated ρs(λ) as a function of wind speeds, sun angles and aerosol concentrations for currently recommended sensor-sun geometry, i.e., zenith angle = 40° and azimuthal angle relative to the sun = 45°, is available upon request.

  6. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures.

    PubMed

    Huang, Yi-Fan; Chattopadhyay, Surojit; Jen, Yi-Jun; Peng, Cheng-Yu; Liu, Tze-An; Hsu, Yu-Kuei; Pan, Ci-Ling; Lo, Hung-Chun; Hsu, Chih-Hsun; Chang, Yuan-Huei; Lee, Chih-Shan; Chen, Kuei-Hsien; Chen, Li-Chyong

    2007-12-01

    Nature routinely produces nanostructured surfaces with useful properties, such as the self-cleaning lotus leaf, the colour of the butterfly wing, the photoreceptor in brittlestar and the anti-reflection observed in the moth eye. Scientists and engineers have been able to mimic some of these natural structures in the laboratory and in real-world applications. Here, we report a simple aperiodic array of silicon nanotips on a 6-inch wafer with a sub-wavelength structure that can suppress the reflection of light at a range of wavelengths from the ultraviolet, through the visible part of the spectrum, to the terahertz region. Reflection is suppressed for a wide range of angles of incidence and for both s- and p-polarized light. The antireflection properties of the silicon result from changes in the refractive index caused by variations in the height of the silicon nanotips, and can be simulated with models that have been used to explain the low reflection from moth eyes. The improved anti-reflection properties of the surfaces could have applications in renewable energy and electro-optical devices for the military.

  7. UV-Vis reflection spectroscopy under variable angle incidence at the air-liquid interface.

    PubMed

    Roldán-Carmona, Cristina; Rubia-Payá, Carlos; Pérez-Morales, Marta; Martín-Romero, María T; Giner-Casares, Juan J; Camacho, Luis

    2014-03-07

    The UV-Vis reflection spectroscopy (UV-Vis-RS) in situ at the air-liquid interface provides information about tilt and aggregation of chromophores in Langmuir monolayers. This information is particularly important given in most cases the chromophore is located at the polar region of the Langmuir monolayer. This region of the Langmuir monolayers has been hardly accessible by other experimental techniques. In spite of its enormous potential, the application of UV-Vis-RS has been limited mainly to reflection measurements under light normal incidence or at lower incidence angles than the Brewster angle. Remarkably, this technique is quite sensitive to the tilt of the chromophores at values of incidence angles close to or larger than the Brewster angle. Therefore, a novel method to obtain the order parameter of the chromophores at the air-liquid interface by using s- and p-polarized radiation at different incidence angles is proposed. This method allowed for the first time the experimental observation of the two components with different polarization properties of a single UV-Vis band at the air-liquid interface. The method of UV-Vis spectroscopy under variable angle incidence is presented as a new tool for obtaining rich detailed information on Langmuir monolayers.

  8. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  9. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  10. Exogenous attentional capture by subliminal abrupt-onset cues: evidence from contrast-polarity independent cueing effects.

    PubMed

    Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich

    2013-08-01

    In the present study, we tested whether subliminal abrupt-onset cues capture attention in a bottom-up or top-down controlled manner. For our tests, we varied the searched-for target-contrast polarity (i.e., dark or light targets against a gray background) over four experiments. In line with the bottom-up hypothesis, our results indicate that subliminal-onset cues capture attention independently of the searched-for target-contrast polarity (Experiment 1), and this effect is not stronger for targets that matched the searched-for target-contrast polarity (Experiment 2). In fact, even to-be-ignored cues associated with a no-go response captured attention in a salience-driven way (Experiment 3). For supraliminal cues, we found attentional capture only by cues with a matching contrast polarity, reflecting contingent capture (Experiment 4). The results point toward a specific role of subliminal abrupt onsets for attentional capture. 2013 APA, all rights reserved

  11. Functional Reflective Polarizer for Augmented Reality and Color Vision Deficiency

    DTIC Science & Technology

    2016-03-03

    Functional reflective polarizer for augmented reality and color vision deficiency Ruidong Zhu, Guanjun Tan, Jiamin Yuan, and Shin-Tson Wu* College...polarizer that can be incorporated into a compact augmented reality system. The design principle of the functional reflective polarizer is explained and...augment reality system is relatively high as compared to a polarizing beam splitter or a conventional reflective polarizer. Such a functional reflective

  12. Wide-band tunable photonic bandgap device and laser in dye-doped liquid crystal refilled cholesteric liquid crystal polymer template system

    NASA Astrophysics Data System (ADS)

    Lin, Jia-De; Lin, Hong-Lin; Lin, Hsin-Yu; Wei, Guan-Jhong; Lee, Chia-Rong

    2017-02-01

    The scientists in the field of liquid crystal (LC) have paid significant attention in the exploration of novel cholesteric LC (CLC) polymer template (simply called template) in recent years. The self-assembling nanostructural template with chirality can effectively overcome the limitation in the optical features of traditional CLCs, such as enhancement of reflectivity over 50%, multiple photonic bandgaps (PBGs), and changeable optical characteristics by flexibly replacing the refilling LC materials, and so on. This work fabricates two gradient-pitched CLC templates with two opposite handednesses, which are then merged as a spatially tunable and highly reflective CLC template sample. This sample can simultaneously reflect right- and left-circularly polarized lights and the tunable spectral range includes the entire visible region. By increasing the temperature of the template sample exceeding the clearing point of the refilling LC, the light scattering significantly decreases and the reflectance effectively increase to exceed 50% in the entire visible region. This device has a maximum reflectance over 85% and a wide-band spatial tunability in PBG between 400 nm and 800 nm which covers the entire visible region. Not only the sample can be employed as a wide-band spatially tunable filter, but also the system doping with two suitable laser dyes which emitted fluorescence can cover entire visible region can develop a low-threshold, mirror-less laser with a spatial tunability at spectral regions including blue to red region (from 484 nm to 634 nm) and simultaneous lasing emission of left- and right-circular polarizations.

  13. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.

    PubMed

    Laborde-Boutet, Cedric; McCaffrey, William C

    2017-02-21

    To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

  14. Air-suspended TiO2-based HCG reflectors for visible spectral range

    NASA Astrophysics Data System (ADS)

    Hashemi, Ehsan; Bengtsson, Jörgen; Gustavsson, Johan; Carlsson, Stefan; Rossbach, Georg; Haglund, Åsa

    2015-02-01

    For GaN-based microcavity light emitters, such as vertical-cavity surface-emitting lasers (VCSELs) and resonant cavity light emitting diodes (RCLEDs) in the blue-green wavelength regime, achieving a high reflectivity wide bandwidth feedback mirror is truly challenging. The material properties of the III-nitride alloys are hardly compatible with the conventional distributed Bragg reflectors (DBRs) and the newly proposed high-contrast gratings (HCGs). Alternatively, at least for the top outcoupling mirror, dielectric materials offer more suitable material combinations not only for the DBRs but also for the HCGs. HCGs may offer advantages such as transverse mode and polarization control, a broader reflectivity spectrum than epitaxially grown DBRs, and the possibility to set the resonance wavelength after epitaxial growth by the grating parameters. In this work we have realized an air-suspended TiO2 grating with the help of a SiO2 sacrificial layer. The deposition processes for the dielectric layers were fine-tuned to minimize the residual stress. To achieve an accurate control of the grating duty cycle, a newly developed lift-off process, using hydrogen silesquioxan (HSQ) and sacrificial polymethyl-methacrylate (PMMA) resists, was applied to deposit the hard mask, providing sub-10 nm resolution. The finally obtained TiO2/air HCGs were characterized in a micro-reflectance measurement setup. A peak power reflectivity in excess of 95% was achieved for TM polarization at the center wavelength of 435 nm, with a reflectivity stopband width of about 80 nm (FWHM). The measured HCG reflectance spectra were compared to corresponding simulations obtained from rigorous coupled-wave analysis and very good agreement was found.

  15. Study of the oxidation of uranium by external and diffuse reflectance FTIR spectroscopy using remote-sensing and evacuable cell techniques

    NASA Astrophysics Data System (ADS)

    Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan

    1994-01-01

    This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.

  16. Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings.

    PubMed

    Kanamori, Yoshiaki; Ozaki, Toshikazu; Hane, Kazuhiro

    2014-10-20

    We fabricated reflection color filters of the three primary colors with wide viewing angles using silicon two-dimensional subwavelength gratings on the same quartz substrate. The grating periods were 400, 340, and 300 nm for red, green, and blue filters, respectively. All of the color filters had the same grating thickness of 100 nm, which enabled simple fabrication of a color filter array. Reflected colors from the red, green, and blue filters under s-polarized white-light irradiation appeared in the respective colors at incident angles from 0 to 50°. By rigorous coupled-wave analysis, the dimensions of each color filter were designed, and the calculated reflectivity was compared with the measured reflectivity.

  17. The development of optical microscopy techniques for the advancement of single-particle studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchuk, Kyle

    2013-05-15

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-fieldmore » imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.« less

  18. The development of optical microscopy techniques for the advancement of single-particle studies

    NASA Astrophysics Data System (ADS)

    Marchuk, Kyle

    Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

  19. Disturbance Detection in Snow Using Polarimetric Imagery of the Visible Spectrum

    DTIC Science & Technology

    2010-12-01

    37 1. Wide- Angle Image .............................................................................37 2. Telephoto Lens Image...known qualitative results regarding polarization is that of Brewster’s angle . Sir David Brewster , a self-taught scientist and inventor, was deeply...refractive indices of materials in which they traversed ( Brewster , 1815). Coulson accurately defines Brewster’s angle : Light which is reflected at a

  20. Use of the Polarized Radiance Distribution Camera System in the RADYO Program

    DTIC Science & Technology

    2011-01-28

    characterization and validation of a high dynamic range radiance camera", Ocean Optics XX, Anchorage, Ak., October 2010. POSTER G. Zibordi and K. J. Voss...on light in the ocean", Submitted to Physics Today, Dec 2010. H. Zhang and K. J. Voss, "On Hapke photometric model predictions on reflectance of

  1. The lizard celestial compass detects linearly polarized light in the blue.

    PubMed

    Beltrami, Giulia; Parretta, Antonio; Petrucci, Ferruccio; Buttini, Paola; Bertolucci, Cristiano; Foà, Augusto

    2012-09-15

    The present study first examined whether ruin lizards, Podarcis sicula, are able to orientate using plane-polarized light produced by an LCD screen. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze positioned under an LCD screen producing white polarized light with a single E-vector, which provided an axial cue. White polarized light did not include wavelengths in the UV. Lizards orientated correctly either when tested with E-vector parallel to the training axis or after 90 deg rotation of the E-vector direction, thus validating the apparatus. Further experiments examined whether there is a preferential region of the light spectrum to perceive the E-vector direction of polarized light. For this purpose, lizards reaching learning criteria under white polarized light were subdivided into four experimental groups. Each group was tested for orientation under a different spectrum of plane-polarized light (red, green, cyan and blue) with equalized photon flux density. Lizards tested under blue polarized light orientated correctly, whereas lizards tested under red polarized light were completely disoriented. Green polarized light was barely discernible by lizards, and thus insufficient for a correct functioning of their compass. When exposed to cyan polarized light, lizard orientation performances were optimal, indistinguishable from lizards detecting blue polarized light. Overall, the present results demonstrate that perception of linear polarization in the blue is necessary - and sufficient - for a proper functioning of the sky polarization compass of ruin lizards. This may be adaptively important, as detection of polarized light in the blue improves functioning of the polarization compass under cloudy skies, i.e. when the alternative celestial compass based on detection of the sun disk is rendered useless because the sun is obscured by clouds.

  2. Polaradiometric pyrometer in which the parallel and perpendicular components of radiation reflected from an unpolarized light source are equalized with the thermal radiation emitted from a measured object to determine its true temperature

    NASA Technical Reports Server (NTRS)

    Abtahi, Ali A. (Inventor)

    1995-01-01

    A radiation pyrometer for measuring the true temperature of a body is provided by detecting and measuring thermal radiation from the body based on the principle that the effects of angular emission I(sub 1) and reflection I(sub 2) on the polarization states p and s of radiation are complementary such that upon detecting the combined partial polarization state components I(sub p) =I(sub 1p) + I(sub 2p) and I(sub s)=I(sub 1s) + I(sub 2s) and adjusting the intensity of the variable radiation source of the reflected radiation I(sub 2) until the combined partial radiation components I(sub p) and I(sub s) are equal, the effects of emissivity as well as diffusivity of the surface of the body are eliminated, thus obviating the need for any post processing of brightness temperature data.

  3. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities

    PubMed Central

    Miller, Steven D.; Mills, Stephen P.; Elvidge, Christopher D.; Lindsey, Daniel T.; Lee, Thomas F.; Hawkins, Jeffrey D.

    2012-01-01

    Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights. PMID:22984179

  4. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less

  5. Ultra-sensing with slit-enhanced infrared spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Knipper, Richard; Hübner, Uwe; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2017-02-01

    Infrared spectroscopy enables the label-free detection of structure specific fingerprints of analytes. The sensitivity of corresponding methods can strongly be enhanced by attaching analytes on plasmonic active surfaces. We introduce a slit array metamaterial perfect absorber (SAMPA) [1] consisting of a dielectric layer sandwiched between two Au layers of which the upper layer is perforated with a periodic array of slits. This structure combines the principle of Extraordinary Optical Transmission (more light is transmitted through a hole than is incident on its surface) with that of Perfect Absorption (reflectance and transmittance are virtually zero). Accordingly, within the slights the electric fields are strongly enhanced and light-matter interaction is correspondingly greatly amplified. Thus, already small concentrations of analytes down to a monolayer can be detected and identified by their spectral fingerprints with a standard mid-infrared spectrometer. Closely related to the SAMPAs are plasmonic slit absorbers, which simply consist of slit arrays in thin gold layers deposited on a layer of Si3N4.[2] These slit arrays operate like unstructured gold layers if the incident light is polarized parallel to the long slit axes. In contrast, for light polarized perpendicular to the long slit axis, the plasmon is excited. By the introduction of a second slit, which is rotated relative to the first slit, both principal polarization states excite plasmon resonances which can be made to differ in wavelength. As a consequence, the operating wavelength range of this slit array can be tuned by adjusting the polarization state of the incoming light. [1] Mayerhöfer, T.G., et al.. ACS Photonics, 2015. 2(11): p. 1567-1575. [2] Knipper, R., et. al., in preparation.

  6. High ambient contrast ratio OLED and QLED without a circular polarizer

    NASA Astrophysics Data System (ADS)

    Tan, Guanjun; Zhu, Ruidong; Tsai, Yi-Shou; Lee, Kuo-Chang; Luo, Zhenyue; Lee, Yuh-Zheng; Wu, Shin-Tson

    2016-08-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized.

  7. Light: A Spectrum of Utility, the 2014-2015 Society of Physics Students Science Outreach Catalyst Kit

    NASA Astrophysics Data System (ADS)

    Sellers, Mark; Louis-Jean, Kearns; Society of Physics Students Collaboration; National Institute of Standards; Technology Collaboration

    2015-03-01

    The Science Outreach Catalyst Kit (SOCK) is a set of activities and demonstrations designed to bolster the outreach programs of undergraduate Society of Physics Students (SPS) chapters, creating the framework for a lasting outreach program. Targeted for students ranging from kindergarten to high school, the SOCK allows students to actively engage in hands-on activities that teach them scientific skills and allow them to exercise their natural curiosity. The 2014-2015 SOCK united themes from the 2014 International Year of Crystallography and the 2015 International Year of Light to explore how light is used as a tool every day. This presentation will discuss the contents of the SOCK, which contains a large assortment of materials, such as diffraction glasses, polarizers, ultraviolet flashlights, etc. and describe the research and development of the activities. Each activity explores a different light phenomenon, such as diffraction, polarization, reflection, or fluorescence. These activities will promote critical thinking and analysis of data. This work was supported by the Society of Physics Students summer intern program and by the National Institute of Standards and Technology.

  8. Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization.

    PubMed

    Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J

    2008-02-04

    In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

  9. Electrically Addressable Optical Devices Using A System Of Composite Layered Flakes Suspended In A Fluid Host To Obtain Angularly Depende

    DOEpatents

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.

    2004-12-07

    Composite or layered flakes having a plurality of layers of different materials, which may be dielectric materials, conductive materials, or liquid crystalline materials suspended in a fluid host and subjected to an electric field, provide optical effects dependent upon the angle or orientation of the flakes in the applied electric field. The optical effects depend upon the composition and thickness of the layers, producing reflectance, interference, additive and/or subtractive color effects. The composition of layered flakes may also be selected to enhance and/or alter the dielectric properties of flakes, whereby flake motion in an electric field is also enhanced and/or altered. The devices are useful as active electro-optical displays, polarizers, filters, light modulators, and wherever controllable polarizing, reflecting and transmissive optical properties are desired.

  10. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter.

    PubMed

    Khorasaninejad, Mohammadreza; Crozier, Kenneth B

    2014-11-12

    The polarization of light plays a central role in its interaction with matter, in situations ranging from familiar (for example, reflection and transmission at an interface) to sophisticated (for example, nonlinear optics). Polarization control is therefore pivotal for many optical systems, and achieved using bulk devices such as wave-plates and beam-splitters. The move towards optical system miniaturization therefore motivates the development of micro- and nanostructures for polarization control. For such control to be complete, one must distinguish not only between linear polarizations, but also between left- and right-circular polarizations. Some previous works used surface plasmons to this end, but these are inherently lossy. Other works used complex-layered structures. Here we demonstrate a planar dielectric chirality-distinguishing beam-splitter. The beam-splitter consists of amorphous silicon nanofins on a glass substrate and deflects left- and right-circularly polarized beams into different directions. Contrary to intuitive expectations, we utilize an achiral architecture to realize a chiral beam-splitting functionality.

  11. Bright high-order harmonic generation with controllable polarization from a relativistic plasma mirror

    PubMed Central

    Chen, Zi-Yu; Pukhov, Alexander

    2016-01-01

    Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047

  12. Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method.

    PubMed

    Vermeulen, A; Devaux, C; Herman, M

    2000-11-20

    A method has been developed for retrieving the scattering and microphysical properties of atmospheric aerosol from measurements of solar transmission, aureole, and angular distribution of the scattered and polarized sky light in the solar principal plane. Numerical simulations of measurements have been used to investigate the feasibility of the method and to test the algorithm's performance. It is shown that the absorption and scattering properties of an aerosol, i.e., the single-scattering albedo, the phase function, and the polarization for single scattering of incident unpolarized light, can be obtained by use of radiative transfer calculations to correct the values of scattered radiance and polarized radiance for multiple scattering, Rayleigh scattering, and the influence of ground. The method requires only measurement of the aerosol's optical thickness and an estimate of the ground's reflectance and does not need any specific assumption about properties of the aerosol. The accuracy of the retrieved phase function and polarization of the aerosols is examined at near-infrared wavelengths (e.g., 0.870 mum). The aerosol's microphysical properties (size distribution and complex refractive index) are derived in a second step. The real part of the refractive index is a strong function of the polarization, whereas the imaginary part is strongly dependent on the sky's radiance and the retrieved single-scattering albedo. It is demonstrated that inclusion of polarization data yields the real part of the refractive index.

  13. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    PubMed

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  14. Walking Drosophila align with the e-vector of linearly polarized light through directed modulation of angular acceleration

    PubMed Central

    Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.

    2014-01-01

    Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784

  15. Polarized radiative transfer considering thermal emission in semitransparent media

    NASA Astrophysics Data System (ADS)

    Ben, Xun; Yi, Hong-Liang; Tan, He-Ping

    2014-09-01

    The characteristics of the polarization must be considered for a complete and correct description of radiation transfer in a scattering medium. Observing and identifying the polarizition characteristics of the thermal emission of a hot semitransparent medium have a major significance to analyze the optical responses of the medium for different temperatures. In this paper, a Monte Carlo method is developed for polarzied radiative transfer in a semitransparent medium. There are mainly two kinds of mechanisms leading to polarization of light: specular reflection on the Fresnel boundary and scattering by particles. The determination of scattering direction is the key to solve polarized radiative transfer problem using the Monte Carlo method. An optimized rejection method is used to calculate the scattering angles. In the model, the treatment of specular reflection is also considered, and in the process of tracing photons, the normalization must be applied to the Stokes vector when scattering, reflection, or transmission occurs. The vector radiative transfer matrix (VRTM) is defined and solved using Monte Carlo strategy, by which all four Stokes elements can be determined. Our results for Rayleigh scattering and Mie scattering are compared well with published data. The accuracy of the developed Monte Carlo method is shown to be good enough for the solution to vector radiative transfer. Polarization characteristics of thermal emission in a hot semitransparent medium is investigated, and results show that the U and V parameters of Stokes vector are equal to zero, an obvious peak always appear in the Q curve instead of the I curve, and refractive index has a completely different effect on I from Q.

  16. Science Drivers for Polarimetric Exploration

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma

    2017-04-01

    The versatility of polarimetric exploration is exploited to address: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Linear polarization of reflected light by solar system objects provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects, circular polarization and related chirality (or handedness, a property of molecules that exhibit mirror-image symmetry, similar to right and left hands) can serve as diagnostic of biological activity. Atmospheric phenomena such as rainbows, clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. Polarimetry is also utilized in the exploration of comets, asteroids, dust/regoliths. Renewed efforts for ground-based polarimetry are emerging, from probing planetary atmospheres to the study of magnetic field lines and taxonomy of asteroids. While imaging and spectroscopy are routinely performed by amateurs, there is growing interest and progress in developing polarimetric exploration amongst the amateur community, with encouraging results.I will present a review of these efforts and the goal to create a global " PACA* Polarimetry Network" of observers, modelers and instrument experts to fully utilize polarimetric exploration of planetary systems, and identify potential partnerships. * PACA stands for Pro-Am Collaborative Astronomy

  17. Buried anti resonant reflecting optical waveguide based on porous silicon material for an integrated Mach Zehnder structure

    NASA Astrophysics Data System (ADS)

    Hiraoui, M.; Guendouz, M.; Lorrain, N.; Haji, L.; Oueslati, M.

    2012-11-01

    A buried anti resonant reflecting optical waveguide for an integrated Mach Zehnder structure based on porous silicon material is achieved using a classical photolithography process. Three distinct porous silicon layers are then elaborated in a single step, by varying the porosity (thus the refractive index) and the thickness while respecting the anti-resonance conditions. Simulations and experimental results clearly show the antiresonant character of the buried waveguides. Significant variation of the reflectance and light propagation with different behavior depending on the polarization and the Mach Zehnder dimensions is obtained. Finally, we confirm the feasibility of this structure for sensing applications.

  18. Soil texture and granulometry at the surface of Mars

    NASA Technical Reports Server (NTRS)

    Dollfus, Audouin; Deschamps, Marc; Zimbelman, James R.

    1993-01-01

    Attention is given to a characterization of the physical behavior of the Martian upper surface in its first few decimeters on the basis of mutual relationships between three parameters: the linear polarization of the reflected light, the visual albedo, and the thermal inertia. Polarimetric scans raked a strip covering two contrasting regions, the dark-hued Mare Erythraeum, and the light-hued Thaumasia. Erythraeum is characterized everywhere by a uniform polarization response, despite the large geomorphological diversity of the surface. A ubiquitous coating or mantling with small dark grains of albedo 12.7 percent, with a radius of 10 to 20 microns, is indicated. Thaumasia exhibits a large variety of soil properties. A typical location with albedo of 16.3 percent has a surface covered with orange grains, probably very dispersed in size, for which the largest grains are 20 to 40 microns.

  19. A Fiber-Optic Current Sensor for Lightning Measurement Applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-01-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  20. A fiber-optic current sensor for lightning measurement applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.

    2015-05-01

    An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.

  1. Extended Malus Law with metallic linear polarizers in terahertz and microwave domains

    NASA Astrophysics Data System (ADS)

    Romain, Xavier; Baida, Fadi; Boyer, Philippe

    2016-04-01

    An extended Malus' Law for the well-known Polarizer-Analyzer Mounting (PAM) is analytically obtained and investigated. The PAM is composed of two perfectly parallel Metallic Linear Polarizers (MLP), with subwavelength periodic pattern composed of rectangular holes. Our analytical theory especially highlights the influence of multiple reflections between the two MLPs which leads to an extended and tunable Malus Law. We demonstrate that the classical Malus Law (obtained for dichroic polarizers) is modulated by a factor which also depends on the angular difference between both MLP axes. In our analysis, the Malus' law is studied at the resonance wavelengths. Due to the interactions between the two MLP, the modulation factor is tuned by the optical distance between them which makes substantial variations of the Malus Law. We mention that, for each reflections, the light is re-polarized according to the orientation of the MLP. This tunable Malus' Law provides an original tool for ultrasensitive detection in the terahertz or microwave regime. For example, one can use an ultra-narrow angle Malus' Law as a hyper-sensitive device to analyze with a high accuracy the electro-optical response of a material sandwiched between polarizer and analyzer. We theoretically propose one PAM designed to detect a refractive index variation as small as 10-5. Finally, we extend the theory, which takes the form of an extended Jones formalism, to a large number of stacked MLP. It is applied to achieve many polarization manipulation processes as total polarization conversion with tunable spectral bandwidth, for instance.

  2. Polarized Radiative Transfer of a Cirrus Cloud Consisting of Randomly Oriented Hexagonal Ice Crystals: The 3 x 3 Approximation for Non-Spherical Particles

    NASA Technical Reports Server (NTRS)

    Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.

    2016-01-01

    The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.

  3. Polarized radiative transfer of a cirrus cloud consisting of randomly oriented hexagonal ice crystals: The 3×3 approximation for non-spherical particles

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K. N.; Stamnes, K.

    2017-05-01

    The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 ×103 so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling-adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5% for I and within 1.5% for Q for all viewing angles. In 1971 Hansen [1] showed that for scattering by spherical particles the 3×3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3×3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3×3 approximation leads to an absolute error < 2 ×10-6 for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.

  4. How to use a phase-only spatial light modulator as a color display.

    PubMed

    Harm, Walter; Jesacher, Alexander; Thalhammer, Gregor; Bernet, Stefan; Ritsch-Marte, Monika

    2015-02-15

    We demonstrate that a parallel aligned liquid crystal on silicon (PA-LCOS) spatial light modulator (SLM) without any attached color mask can be used as a full color display with white light illumination. The method is based on the wavelength dependence of the (voltage controlled) birefringence of the liquid crystal pixels. Modern SLMs offer a wide range over which the birefringence can be modulated, leading (in combination with a linear polarizer) to several intensity modulation periods of a reflected light wave as a function of the applied voltage. Because of dispersion, the oscillation period strongly depends on the wavelength. Thus each voltage applied to an SLM pixel corresponds to another reflected color spectrum. For SLMs with a sufficiently broad tuning range, one obtains a color palette (i.e., a "color lookup-table"), which allows one to display color images. An advantage over standard liquid crystal displays (LCDs), which use color masks in front of the individual pixels, is that the light efficiency and the display resolution are increased by a factor of three.

  5. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  6. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  7. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-12-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth.

  8. Multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces

    PubMed Central

    Ma, Hui Feng; Liu, Yan Qing; Luan, Kang; Cui, Tie Jun

    2016-01-01

    We propose a method to convert linearly polarized incident electromagnetic waves fed by a single source into multi-beam reflections with independent control of polarizations based on anisotropic metasurface at microwave frequencies. The metasurface is composed of Jerusalem Cross structures and grounded plane spaced by a dielectric substrate. By designing the reflection-phase distributions of the anisotropic metasurface along the x and y directions, the x- and y-polarized incident waves can be manipulated independently to realize multi-beam reflections. When the x- and y-polarized reflected beams are designed to the same direction with equal amplitude, the polarization state of the beam will be only controlled by the phase difference between the x- and y-polarized reflected waves. Three examples are presented to show the multi-beam reflections with flexible control of polarizations by using anisotropic metasurfaces and excellent performance. Particularly, we designed, fabricated, and measured an anisotropic metasurface for two reflected beams with one linearly polarized and the other circularly polarized. The measurement results have good agreement with the simulations in a broad bandwidth. PMID:28000734

  9. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au.

    PubMed

    Capelli, R; Mahne, N; Koshmak, K; Giglia, A; Doyle, B P; Mukherjee, S; Nannarone, S; Pasquali, L

    2016-07-14

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of the film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.

  10. Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capelli, R.; Koshmak, K.; Giglia, A.

    Resonant soft X-ray reflectivity at the carbon K edge, with linearly polarized light, was used to derive quantitative information of film morphology, molecular arrangement, and electronic orbital anisotropies of an ultrathin 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) film on Au(111). The experimental spectra were simulated by computing the propagation of the electromagnetic field in a trilayer system (vacuum/PTCDA/Au), where the organic film was treated as an anisotropic medium. Optical constants were derived from the calculated (through density functional theory) absorption cross sections of the single molecule along the three principal molecular axes. These were used to construct the dielectric tensor of themore » film, assuming the molecules to be lying flat with respect to the substrate and with a herringbone arrangement parallel to the substrate plane. Resonant soft X-ray reflectivity proved to be extremely sensitive to film thickness, down to the single molecular layer. The best agreement between simulation and experiment was found for a film of 1.6 nm, with flat laying configuration of the molecules. The high sensitivity to experimental geometries in terms of beam incidence and light polarization was also clarified through simulations. The optical anisotropies of the organic film were experimentally determined and through the comparison with calculations, it was possible to relate them to the orbital symmetry of the empty electronic states.« less

  11. Polarized light modulates light-dependent magnetic compass orientation in birds

    PubMed Central

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-01-01

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm “plus” maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth’s magnetic field. PMID:26811473

  12. Polarized light modulates light-dependent magnetic compass orientation in birds.

    PubMed

    Muheim, Rachel; Sjöberg, Sissel; Pinzon-Rodriguez, Atticus

    2016-02-09

    Magnetoreception of the light-dependent magnetic compass in birds is suggested to be mediated by a radical-pair mechanism taking place in the avian retina. Biophysical models on magnetic field effects on radical pairs generally assume that the light activating the magnetoreceptor molecules is nondirectional and unpolarized, and that light absorption is isotropic. However, natural skylight enters the avian retina unidirectionally, through the cornea and the lens, and is often partially polarized. In addition, cryptochromes, the putative magnetoreceptor molecules, absorb light anisotropically, i.e., they preferentially absorb light of a specific direction and polarization, implying that the light-dependent magnetic compass is intrinsically polarization sensitive. To test putative interactions between the avian magnetic compass and polarized light, we developed a spatial orientation assay and trained zebra finches to magnetic and/or overhead polarized light cues in a four-arm "plus" maze. The birds did not use overhead polarized light near the zenith for sky compass orientation. Instead, overhead polarized light modulated light-dependent magnetic compass orientation, i.e., how the birds perceive the magnetic field. Birds were well oriented when tested with the polarized light axis aligned parallel to the magnetic field. When the polarized light axis was aligned perpendicular to the magnetic field, the birds became disoriented. These findings are the first behavioral evidence to our knowledge for a direct interaction between polarized light and the light-dependent magnetic compass in an animal. They reveal a fundamentally new property of the radical pair-based magnetoreceptor with key implications for how birds and other animals perceive the Earth's magnetic field.

  13. Results of Observations over Jupiter's Galilean Satellites

    NASA Astrophysics Data System (ADS)

    Chigladze, Revaz; Tateshvili, Maia

    The work describes the polarization properties of the light reflected from the surfaces of Galileo Jupiter's satellites, with their physical characteristics studied based on their analysis. Europe turned out to have the most homogeneous, and Callisto has the least homogeneous. Time variations are the most typical to satellite Io what must be the result of the volcanic actions on the satellite surface.

  14. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  15. Overview on grating developments at ESA

    NASA Astrophysics Data System (ADS)

    Guldimann, B.; Deep, A.; Vink, R.; Harnisch, B.; Kraft, S.; Sierk, B.; Bazalgette, G.; Bézy, J.-L.

    2017-11-01

    In the frame of recent studies and missions, ESA has been performing various pre-developments of optical gratings for instruments operating at wavelengths from the UV up to the SWIR. The instrument requirements of Sentinel-4, Sentinel-5, CarbonSat and FLEX are driving the need for advanced designs and technologies leading to gratings with high efficiency, high spectral resolution, low stray light and low polarization sensitivities. Typical ESA instruments (e.g. Sciamachy, GOME, MERIS, OLCI, NIRSpec) were and are based on ruled gratings or gratings manufactured with one holographic photoresist mask layer which is transferred to an optical substrate (e.g. glass, glass ceramic) with dry etching methods and subsequently either coated with a reflective coating or used as a mold for replication. These manufacturing methods lead to blazed grating profiles with a metallic reflective surface. The vast majority of spectrometers on ground are still based on such gratings. In general, gratings based on grooved metallic surfaces tend for instance to polarize the incoming light significantly and are therefore not always suitable for ESA's needs of today. Gratings made for space therefore evolved to many other designs and concepts which will be reported in this paper.

  16. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  17. High-reflectivity high-contrast grating focusing reflector on silicon-on-insulator wafer

    NASA Astrophysics Data System (ADS)

    Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Liu, Kai; Fei, Jiarui; Ren, Xiaomin

    2016-11-01

    A high-contrast grating (HCG) focusing reflector providing phase front control of reflected light and high reflectivity is proposed and fabricated. Basic design rules to engineer this category of structures are given in detail. A 1550 nm TM polarized incident light of 11.86 mm in focal length and 0.8320 in reflectivity is obtained in experiment. The wavelength dependence of the fabricated HCGs from 1530 nm to 1580 nm is also tested. The test results show that the focal length is in the range of 11.81-12 mm, which is close to the designed focal length of 15 mm. The reflectivity is almost above 0.56 within a bandwidth of 50 nm. At a distance of 11.86 mm, the light is focused to a round spot with the highest concentration, which is much smaller than the size of the incident beam. The FWHM of the reflected light beam decreases to 120 nm, and the intensity increases to 1.18. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274044, 61574019 and 61020106007), the National Basic Research Program of China (Grant No. 2010CB327600), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130005130001), the Natural Science Foundation of Beijing, China (Grant No. 4132069), the Key International Science and Technology Cooperation Project of China (Grant No. 2011RR000100), the 111 Project of China (Grant No. B07005), and the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT0609).

  18. Anisotropic reflectance from turbid media. II. Measurements.

    PubMed

    Neuman, Magnus; Edström, Per

    2010-05-01

    The anisotropic reflectance from turbid media predicted using the radiative transfer based DORT2002 model is experimentally verified through goniophotometric measurements. A set of paper samples with varying amounts of dye and thickness is prepared, and their angle resolved reflectance is measured. An alleged perfect diffusor is also included. The corresponding simulations are performed. A complete agreement between the measurements and model predictions is seen regarding the characteristics of the anisotropy. They show that relatively more light is reflected at large polar angles when the absorption or illumination angle is increased or when the medium thickness is decreased. This is due to the relative amount of near-surface bulk scattering increasing in these cases. This affects the application of the Kubelka-Munk model as well as standards for reflectance measurements and calibration routines.

  19. Photonic gaps in cholesteric elastomers under deformation

    NASA Astrophysics Data System (ADS)

    Cicuta, P.; Tajbakhsh, A. R.; Terentjev, E. M.

    2004-07-01

    Cholesteric liquid crystal elastomers have interesting and potentially very useful photonic properties. In an ideal monodomain configuration of these materials, one finds a Bragg reflection of light in a narrow wavelength range and a particular circular polarization. This is due to the periodic structure of the material along one dimension. In many practical cases, the cholesteric rubber possesses a sufficient degree of quenched disorder, which makes the selective reflection broadband. We investigate experimentally the problem of how the transmittance of light is affected by mechanical deformation of the elastomer, and the relation to changes in liquid crystalline structure. We explore a series of samples which have been synthesized with photonic stop gaps across the visible range. This allows us to compare results with detailed theoretical predictions regarding the evolution of stop gaps in cholesteric elastomers.

  20. Polarization modeling and predictions for Daniel K. Inouye Solar Telescope part 1: telescope and example instrument configurations

    NASA Astrophysics Data System (ADS)

    Harrington, David M.; Sueoka, Stacey R.

    2017-01-01

    We outline polarization performance calculations and predictions for the Daniel K. Inouye Solar Telescope (DKIST) optics and show Mueller matrices for two of the first light instruments. Telescope polarization is due to polarization-dependent mirror reflectivity and rotations between groups of mirrors as the telescope moves in altitude and azimuth. The Zemax optical modeling software has polarization ray-trace capabilities and predicts system performance given a coating prescription. We develop a model coating formula that approximates measured witness sample polarization properties. Estimates show the DKIST telescope Mueller matrix as functions of wavelength, azimuth, elevation, and field angle for the cryogenic near infra-red spectro-polarimeter (CryoNIRSP) and visible spectro-polarimeter. Footprint variation is substantial and shows vignetted field points will have strong polarization effects. We estimate 2% variation of some Mueller matrix elements over the 5-arc min CryoNIRSP field. We validate the Zemax model by showing limiting cases for flat mirrors in collimated and powered designs that compare well with theoretical approximations and are testable with lab ellipsometers.

  1. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  2. Analysis of JPSS J1 VIIRS Polarization Sensitivity Using the NIST T-SIRCUS

    NASA Technical Reports Server (NTRS)

    McIntire, Jeffrey W.; Young, James B.; Moyer, David; Waluschka, Eugene; Oudrari, Hassan; Xiong, Xiaoxiong

    2015-01-01

    The polarization sensitivity of the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) measured pre-launch using a broadband source was observed to be larger than expected for many reflective bands. Ray trace modeling predicted that the observed polarization sensitivity was the result of larger diattenuation at the edges of the focal plane filter spectral bandpass. Additional ground measurements were performed using a monochromatic source (the NIST T-SIRCUS) to input linearly polarized light at a number of wavelengths across the bandpass of two VIIRS spectral bands and two scan angles. This work describes the data processing, analysis, and results derived from the T-SIRCUS measurements, comparing them with broadband measurements. Results have shown that the observed degree of linear polarization, when weighted by the sensor's spectral response function, is generally larger on the edges and smaller in the center of the spectral bandpass, as predicted. However, phase angle changes in the center of the bandpass differ between model and measurement. Integration of the monochromatic polarization sensitivity over wavelength produced results consistent with the broadband source measurements, for all cases considered.

  3. Topics in polarization ray tracing for image projectors

    NASA Astrophysics Data System (ADS)

    Rosenbluth, Alan E.; Gallatin, Gregg; Lai, Kafai; Seong, Nakgeuon; Singh, Rama N.

    2005-08-01

    Many subtle effects arise when tracing polarization along rays that converge or diverge to form an image. This paper concentrates on a few examples that are notable for the challenges they pose in properly analyzing vector imaging problems. A striking example is the Federov-Imbert shift, in which coating phase-shifts cause a reflected beam to actually be deviated "sideways" out of the plane of incidence. A second example involving groups of coated surfaces is the correction of contrast loss from skew-angle depolarization in the optics of data projectors that use reflective polarization-modulating light valves. We show that phase-controlled coatings can collectively correct the contrast loss by exploiting a symmetry that arises when the coatings are operated in double-pass (due to use of reflective light valves). In lowest order, this symmetry causes any ellipticity that the coatings may introduce in the polarization of illuminating skew-rays to cancel in the return pass from the light valve back through the optics. Even beyond this first order reversibility result, we have shown elsewhere that, for NA less than about 0.2, the computation involved in calculating beam contrast can be reduced to the equivalent of tracing a single ray. We show here that the Federov-Imbert shift can be derived in a straightforward way using this formalism. Even a non-polarizing system will show vector effects when the numerical aperture is sufficiently high, as in photolithographic lenses. Wavefront quality in these deep-UV lenses is of order λ/100, and simulations to account for the complexities of the image transfer steps during IC manufacture must be accurate to better than a part in 1E2 or 1E3; hence small polarization distortions in the superposed image rays become very significant. An interesting source of such distortions is spatial dispersion in CaF2 lens elements, which gives rise to intrinsic birefringence at the ppm level. Polarization ray tracing must then contend with the phenomenon of double refraction, wherein a given ray splits into two rays each time it passes through an element, giving rise in principle to an exponentially extended family of rays in the exit pupil. However, we show that it is possible to merge each coherent family of rays into a single plane-wave component of the image. (This is joint work with colleagues at Carl Zeiss SMT.1) Generalizing beyond the analysis of birefringence, such a plane-wave component can be identified with the particular subset of rays that are converged through a common pupil point and transferred to the image after diffracting from the object points within an isoplanatic patch. Thin-film amplitude transfer coefficients implicitly take into account the prismatic change in beam-width that occurs when such a ray bundle refracts through a lens surface, but these coefficients do not include the focusing effect arising from power in the surfaces; hence polarization ray-tracing by sequential application of thin-film transfer coefficients does not by itself provide the correct amplitude distribution over the pupil.

  4. A TV Camera System Which Extracts Feature Points For Non-Contact Eye Movement Detection

    NASA Astrophysics Data System (ADS)

    Tomono, Akira; Iida, Muneo; Kobayashi, Yukio

    1990-04-01

    This paper proposes a highly efficient camera system which extracts, irrespective of background, feature points such as the pupil, corneal reflection image and dot-marks pasted on a human face in order to detect human eye movement by image processing. Two eye movement detection methods are sugested: One utilizing face orientation as well as pupil position, The other utilizing pupil and corneal reflection images. A method of extracting these feature points using LEDs as illumination devices and a new TV camera system designed to record eye movement are proposed. Two kinds of infra-red LEDs are used. These LEDs are set up a short distance apart and emit polarized light of different wavelengths. One light source beams from near the optical axis of the lens and the other is some distance from the optical axis. The LEDs are operated in synchronization with the camera. The camera includes 3 CCD image pick-up sensors and a prism system with 2 boundary layers. Incident rays are separated into 2 wavelengths by the first boundary layer of the prism. One set of rays forms an image on CCD-3. The other set is split by the half-mirror layer of the prism and forms an image including the regularly reflected component by placing a polarizing filter in front of CCD-1 or another image not including the component by not placing a polarizing filter in front of CCD-2. Thus, three images with different reflection characteristics are obtained by three CCDs. Through the experiment, it is shown that two kinds of subtraction operations between the three images output from CCDs accentuate three kinds of feature points: the pupil and corneal reflection images and the dot-marks. Since the S/N ratio of the subtracted image is extremely high, the thresholding process is simple and allows reducting the intensity of the infra-red illumination. A high speed image processing apparatus using this camera system is decribed. Realtime processing of the subtraction, thresholding and gravity position calculation of the feature points is possible.

  5. Relativistic theory of the falling retroreflector gravimeter

    NASA Astrophysics Data System (ADS)

    Ashby, Neil

    2018-02-01

    We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.

  6. Polarized and non-polarized leaf reflectances of Coleus blumei

    NASA Technical Reports Server (NTRS)

    Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.

    1987-01-01

    A polarization photometer has been used to measure the reflectance of three variegated portions of Coleus blumei, Benth. in five wavelength bands of the visible and near-infrared spectrum. The polarized component of the reflectance factor was found to be independent of wavelength, indicating that the polarized reflectance arises from the leaf surface. It is suggested that differences in the polarized component result from variations in surface features. The nonpolarized component of the reflectance factor is shown to be related to the internal leaf structure. The variation of the degree of polarization with wavelength was found to be greatest in the regions of the spectrum where absorption occurs.

  7. A Theoretical Understanding of Circular Polarization Memory in Random Media

    NASA Astrophysics Data System (ADS)

    Dark, Julia

    Radiative transport theory describes the propagation of light in random media that absorb, scatter, and emit radiation. To describe the propagation of light, the full polarization state is quantified using the Stokes parameters. For the sake of mathematical convenience, the polarization state of light is often neglected leading to the scalar radiative transport equation for the intensity only. For scalar transport theory, there is a well-established body of literature on numerical and analytic approximations to the radiative transport equation. We extend the scalar theory to the vector radiative transport equation (vRTE). In particular, we are interested in the theoretical basis for a phenomena called circular polarization memory. Circular polarization memory is the physical phenomena whereby circular polarization retains its ellipticity and handedness when propagating in random media. This is in contrast to the propagation of linear polarization in random media, which depolarizes at a faster rate, and specular reflection of circular polarization, whereby the circular polarization handedness flips. We investigate two limits that are of known interest in the phenomena of circular polarization memory. The first limit we investigate is that of forward-peaked scattering, i.e. the limit where most scattering events occur in the forward or near-forward directions. The second limit we consider is that of strong scattering and weak absorption. In the forward-peaked scattering limit we approximate the vRTE by a system of partial differential equations motivated by the scalar Fokker-Planck approximation. We call the leading order approximation the vector Fokker-Planck approximation. The vector Fokker Planck approximation predicts that strongly forward-peaked media exhibit circular polarization memory where the strength of the effect can be calculated from the expansion of the scattering matrix in special functions. In addition, we find in this limit that total intensity, linear polarization, and circular polarization decouple. From this result we conclude, that in the Fokker-Planck limit the scalar approximation is an appropriate leading order approximation. In the strong scattering and weak absorbing limit the vector radiative transport equation can be analyzed using boundary layer theory. In this case, the problem of light scattering in an optically thick medium is reduced to a 1D vRTE near the boundary and a 3D diffusion equation in the interior. We develop and implement a numerical solver for the boundary layer problem by using a discrete ordinate solver in the boundary layer and a spectral method to solve the diffusion approximation in the interior. We implement the method in Fortran 95 with external dependencies on BLAS, LAPACK, and FFTW. By analyzing the spectrum of the discretized vRTE in the boundary layer, we are able to predict the presence of circular polarization memory in a given medium.

  8. Analysis of Polder Polarization Measurements During Astex and Eucrex Experiments

    NASA Technical Reports Server (NTRS)

    Chen, Hui; Han, Qingyuan; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Polarization is more sensitive than intensity to cloud microstructure such as the particle size and shape, and multiple scattering does not wash out features in polarization as effectively as it does in the intensity. Polarization measurements, particularly in the near IR, are potentially a valuable tool for cloud identification and for studies of the microphysics of clouds. The POLDER instrument is designed to provide wide field of view bidirectional images in polarized light. During the ASTEX-SOFIA campaign on June 12th, 1992, over the Atlantic Ocean (near the Azores Islands), images of homogeneous thick stratocumulus cloud fields were acquired. During the EUCREX'94 (April, 1994) campaign, the POLDER instrument was flying over the region of Brittany (France), taking observations of cirrus clouds. This study involves model studies and data analysis of POLDER observations. Both models and data analysis show that POLDER can be used to detect cloud thermodynamic phases. Model results show that polarized reflection in the Lamda =0.86 micron band is sensitive to cloud droplet sizes but not to cloud optical thickness. Comparison between model and data analysis reveals that cloud droplet sizes during ASTEX are about 5 microns, which agrees very well with the results of in situ measurements (4-5 microns). Knowing the retrieved cloud droplet sizes, the total reflected intensity of the POLDER measurements then can be used to retrieve cloud optical thickness. The close agreement between data analysis and model results during ASTEX also suggests the homogeneity of the cloud layer during that campaign.

  9. Polarization sensitivity of ordered and random antireflective surface structures in silica and spinel

    NASA Astrophysics Data System (ADS)

    Frantz, J. A.; Selby, J.; Busse, L. E.; Shaw, L. B.; Aggarwal, I. D.; Sanghera, J. S.

    2018-02-01

    Both ordered and random anti-reflective surface structures (ARSS) have been shown to increase the transmission of an optical surface to >99.9%. These structures are of great interest as an alternative to traditional thin film anti-reflection (AR) coatings for a variety of reasons. Unlike traditional AR coatings, they are patterned directly into the surface of an optic rather than deposited on its surface and are thus not prone to the delamination under thermal cycling that can occur with thin film coatings. Their laser-induced damage thresholds can also be considerably higher. In addition, they provide AR performance over a larger spectral and angular range. It has been previously demonstrated that random ARSSs in silica are remarkably insensitive to incident polarization, with nearly zero variation in transmittance with respect to polarization of the incident beam at fixed wavelength for angles of incidence up to at least 30°. In this work, we evaluate polarization sensitivity of ARSS as a function of wavelength for both random and ordered ARSS. We demonstrate that ordered ARSS is significantly more sensitive to polarization than random ARSS and explain the reason for this difference. In the case of ordered ARSS, we observe significant differences as a function of wavelength, with the transmittance of s- and p-polarized light diverging near the diffraction edge. We present results for both silica and spinel samples and discuss differences observed for these two sets of samples.

  10. A synchrotron-radiation-based variable angle ellipsometer for the visible to vacuum ultraviolet spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, M. D., E-mail: maciej.neumann@isas.de; Cobet, C.; Esser, N.

    2014-05-15

    A rotating analyzer spectroscopic polarimeter and ellipsometer with a wide-range θ-2θ goniometer installed at the Insertion Device Beamline of the Metrology Light Source in Berlin is presented. With a combination of transmission- and reflection-based polarizing elements and the inherent degree of polarization of the undulator radiation, this ellipsometer is able to cover photon energies from about 2 eV up to 40 eV. Additionally, a new compensator design based on a CaF{sub 2} Fresnel rhomb is presented. This compensator allows ellipsometric measurements with circular polarization in the vacuum ultraviolet spectral range and thus, for example, the characterization of depolarizing samples. The new instrumentmore » was initially used for the characterization of the polarization of the beamline. The technical capabilities of the ellipsometer are demonstrated by a cohesive wide-range measurement of the dielectric function of epitaxially grown ZnO.« less

  11. DUV phase mask for 100 nm period grating printing

    NASA Astrophysics Data System (ADS)

    Jourlin, Y.; Bourgin, Y.; Reynaud, S.; Parriaux, O.; Talneau, A.; Karvinen, P.; Passilly, N.; Zain, A. Md.; De La Rue, R. M.

    2008-04-01

    Whereas microelectronic lithography is heading to the 32 nm node and discussing immersion and double-patterning strategies, there is much which can be done with the 45 nm node in microoptics for white light processing. For instance, one of the most demanding applications in terms of achievable period is the LCD lossless polarizer, which can transmit the TM polarization and reflect the TE polarization evenly all through the visible spectrum - provided that a 1D metal grid of 100 nm period can be fabricated. The manufacture of such polarizing panels cannot resort to the step & repeat cameras of microelectronics since the substrates are too large, too thin, too wavy and full of contaminants. There is therefore a need for specific fabrication techniques. It is one of these techniques that a subgroup of partners belonging to two of the Networks of Excellence of the European Community, NEMO and ePIXnet, have decided to explore together.

  12. Determination of the pathological state of skin samples by optical polarimetry parameters

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Ortega-Quijano, N.; Buelta, L.; Arce-Diego, J. L.

    2008-11-01

    Polarimetry is widely known to involve a series of powerful optical techniques that characterize the polarization behaviour of a sample. In this work, we propose a method for applying polarimetric procedures to the characterization of biological tissues, in order to differentiate between healthy and pathologic tissues on a polarimetric basis. Usually, medical morphology diseases are diagnosed based on histological alterations of the tissue. The fact that these alterations will be reflected in polarization information highlights the suitability of polarimetric procedures for diagnostic purposes. The analysis is mainly focused on the depolarization properties of the media, as long as the internal structure strongly affects the polarization state of the light that interacts with the sample. Therefore, a method is developed in order to determine the correlation between pathological ultraestructural characteristics and the subsequent variations in the polarimetric parameters of the backscattered light. This study is applied to three samples of porcine skin corresponding to a healthy region, a mole, and a cancerous region. The results show that the method proposed is indeed an adequate technique in order to achieve an early, accurate and effective cancer detection.

  13. Covert linear polarization signatures from brilliant white two-dimensional disordered wing structures of the phoenix damselfly.

    PubMed

    Nixon, M R; Orr, A G; Vukusic, P

    2017-05-01

    The damselfly Pseudolestes mirabilis reflects brilliant white on the ventral side of its hindwings and a copper-gold colour on the dorsal side. Unlike many previous investigations of odonate wings, in which colour appearances arise either from multilayer interference or from wing-membrane pigmentation, the whiteness on the wings of P. mirabilis results from light scattered by a specialized arrangement of flattened waxy fibres and the copper-gold colour is produced by pigment-based filtering of this light scatter. The waxy fibres responsible for this optical signature effectively form a structure that is disordered in two dimensions and this also gives rise to distinct optical linear polarization. It is a structure that provides a mechanism enabling P. mirabilis to display its bright wing colours efficiently for territorial signalling, both passively while perched, in which the sunlit copper-gold upperside is presented against a highly contrasting background of foliage, and actively in territorial contests in which the white underside is also presented. It also offers a template for biomimetic high-intensity broadband reflectors that have a pronounced polarization signature. © 2017 The Author(s).

  14. Advances in Instrumental Techniques for Investigating Planetary Regolith Microstructure

    NASA Astrophysics Data System (ADS)

    Smythe, W. D.; Nelson, R. M.; Hapke, B. W.; Mannatt, K. S.; Eady, J.

    2005-05-01

    Introduction: The Opposition Effect (OE) is the non-linear increase in the intensity of light scattered from a surface as phase angle approaches 0o. It is seen in laboratory experiments and in remote sensing observations of planetary surfaces. Understanding the OE is a requirement to fitting photometric models which will produce meaningful results about regolith texture. Previously we have reported measurements from the JPL long arm goniometer and we have shown that this instrument enables us to distinguish between two distinct processes which create the opposition surges, Shadow Hiding (SHOE) and Coherent Backscattering (CBOE)(Hapke et al., 1993; Nelson, et al. 2000; 2002). SHOE arises because, as phase angle approaches zero, shadows cast by regolith grains on other grains become invisible to the observer. CBOE results from constructive interference between rays traveling the same path but in opposite directions. Our instrument was able to measure the phase curve using linearly and circularly polarized light which enabled us to distinguish between the singly and multiply scattered components in the reflected radiation. We were able to measure to angles as small at 0.05 degrees but our results were limited to maximum measurements of only 5 degrees. In the last year, we have extensively renovated the instrument so that measurements can be made from phase angles as small at 0.05 degrees to 20 degrees. This permits us to study the reflectance phase curve and the linear and circular polarization phase curves for phase angles at which important changes occur depending principally on the albedo, the particle size and the single scattering phase function of the material under investigation. We report the results from the first series of measurements of the refurbished instrument. The Experiment: We measured the angular scattering properties of 13 mixtures of Aluminum Oxide powders of the different particle size (0.1 to 30 microns). Along with the reflectance phase curve we measured the circular polarization ratio (CPR)-the ratio of the intensity of the light returned with the same helicity as the incident light to that with the opposite helicity. An increase in CPR with decreasing phase angle indicates increased multiple scattering and is consistent with CBOE (Hapke, 1993). Our results extended to a phase angle of 20 degrees are consistent with our earlier investigations which were limited to phase angles less than 5 degrees. We are also able to measure important parts of the linear and circular polarization phase curve which we had previously been unable to measure. Acknowledgement: This work was done at JPL and Pitt and was supported by NASA's PGG program. References: Hapke, 1993, Theory of Reflectance and Emittance Spectroscopy, Cambridge Hapke, B.W., R.M. Nelson, and W.D. Smythe, 1993, Science, 260, 509-511. Nelson, et al. 2000. Icarus, 147, 545-558. Nelson, et al., 2002, Planetary and Space Science, 50, 849-856.

  15. Theory and analysis of a large field polarization imaging system with obliquely incident light.

    PubMed

    Lu, Xiaotian; Jin, Weiqi; Li, Li; Wang, Xia; Qiu, Su; Liu, Jing

    2018-02-05

    Polarization imaging technology provides information about not only the irradiance of a target but also the polarization degree and angle of polarization, which indicates extensive application potential. However, polarization imaging theory is based on paraxial optics. When a beam of obliquely incident light passes an analyser, the direction of light propagation is not perpendicular to the surface of the analyser and the applicability of the traditional paraxial optical polarization imaging theory is challenged. This paper investigates a theoretical model of a polarization imaging system with obliquely incident light and establishes a polarization imaging transmission model with a large field of obliquely incident light. In an imaging experiment with an integrating sphere light source and rotatable polarizer, the polarization imaging transmission model is verified and analysed for two cases of natural light and linearly polarized light incidence. Although the results indicate that the theoretical model is consistent with the experimental results, the theoretical model distinctly differs from the traditional paraxial approximation model. The results prove the accuracy and necessity of the theoretical model and the theoretical guiding significance for theoretical and systematic research of large field polarization imaging.

  16. Effect of light polarization on the efficiency of photodynamic therapy of basal cell carcinomas: an in vitro cellular study.

    PubMed

    JalalKamali, M; Nematollahi-Mahani, S N; Shojaei, M; Shamsoddini, A; Arabpour, N

    2018-02-01

    In an in vitro study, the effect of light polarization on the efficiency of 5-aminolaevulinic acid (ALA) photodynamic therapy (PDT) of basal cell carcinoma (BCC) was investigated. Three states of light polarization (non-polarized, linearly polarized, and circularly polarized) were considered. Cells were exposed to green (532 pm 20 nm) irradiation from light emitting diodes. Cell survival was measured by the colorimetric assay (WST-1) and Trypan blue staining. The colorimetric assay showed a pronounced decrease in the cell viability (up to 30%) using polarized light compared to the non-polarized one in the wavelength region used. Similar results were obtained by the cell counting method (20-30% increase in cell death). The observed effect was dependent on the concentration of photosensitizer. The effect is more expressed in the case of linearly polarized light compared to the circularly polarized one. Results show that the use of polarized light increases the efficiency of in vitro ALA-PDT of BCC. Utilizing polarized light, it is possible to obtain the same effect from PDT by lower concentrations of photosensitizer. Additionally, the concentration dependency of PDT response and photo-bleaching is also reduced.

  17. Manipulation of visible-light polarization with dendritic cell-cluster metasurfaces.

    PubMed

    Fang, Zhen-Hua; Chen, Huan; An, Di; Luo, Chun-Rong; Zhao, Xiao-Peng

    2018-06-26

    Cross-polarization conversion plays an important role in visible light manipulation. Metasurface with asymmetric structure can be used to achieve polarization conversion of linearly polarized light. Based on this, we design a quasi-periodic dendritic metasurface model composed of asymmetric dendritic cells. The simulation indicates that the asymmetric dendritic structure can vertically rotate the polarization direction of the linear polarization wave in visible light. Silver dendritic cell-cluster metasurface samples were prepared by the bottom-up electrochemical deposition. It experimentally proved that they could realize the cross - polarization conversion in visible light. Cross-polarized propagating light is deflected into anomalous refraction channels. Dendritic cell-cluster metasurface with asymmetric quasi-periodic structure conveys significance in cross-polarization conversion research and features extensive practical application prospect and development potential.

  18. Spectralon solar diffuser BRDF variation for NPP, JPSS J1 and J2

    NASA Astrophysics Data System (ADS)

    Murgai, Vijay; Johnson, Lindsay; Klein, Staci

    2017-09-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is a key sensor on the Suomi National Polar-orbiting Partnership (NPP) satellite as well as the upcoming Joint Polar Satellite System (JPSS). VIIRS collects Earth radiometric and imagery data in 22 spectral bands from 0.4 to 12.5 μm. Radiometric calibration of the reflective bands in the 0.4 to 2.5 μm wavelength range is performed by measuring the sunlight reflectance from Spectralon®. Reflected sun light is directly proportional to the Bidirectional Reflectance Distribution Function (BRDF) of the Spectralon. This paper presents the BRDF measurements of the Spectralon for JPSS J2 in the 0.4 - 1.63 μm wavelength using PASCAL (Polarization And Scatter Characterization Analysis of Lambertian materials) with an uncertainty better than 1.2%. PASCAL makes absolute measurements of the BRDF in an analogous fashion to the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reflectance Reflectometer (STARR) facility. Unique additional features of this instrument include the ability to vary the sample elevation and roll / clock the sample about its normal, allowing measurement of BRDF in the as used geometry. Comparison of BRDF in the as used configuration for NPP, J1, and J2 shows variation of up to 3%. The sign of the change from panel to panel depends on the angle of incidence and view angle. The results demonstrate lot to lot variability in Spectralon and emphasize the necessity of characterizing each panel. A pattern in the BRDF variation is also presented.

  19. Biophotonic applications of eigenchannels in a scattering medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Moonseok; Choi, Wonjun; Choi, Youngwoon; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    When waves travel through disordered media such as ground glass and skin tissues, they are scattered multiple times. Most of the incoming energy bounces back at the superficial layers and only a small fraction can penetrate deep inside. This has been a limiting factor for the working depth of various optical techniques. We present a systematic method to enhance wave penetration to the scattering media. Specifically, we measured the reflection matrix of a disordered medium with wide angular coverage for each orthogonal polarization states. From the reflection matrix, we identified reflection eigenchannels of the medium, and shaped the incident wave into the reflection eigenchannel with smallest eigenvalue, which we call anti-reflection mode. This makes reflectance reduced and wave penetration increased as a result of the energy conservation. We demonstrated transmission enhancement by more than a factor of 3 by the coupling of the incident waves to the anti-reflection modes. Based on the uneven distribution of eigenvalues of reflection eigenchannels, we further developed an iterative feedback control method for finding and coupling light to anti-reflection modes. Since this adaptive control method can keep up with sample perturbation, it promotes the applicability of exploiting reflection eigenchannels. Our approach of delivering light deep into the scattering media will contribute to enhancing the sensitivity of detecting objects hidden under scattering layers, which is universal problem ranging from geology to life science.

  20. Gold reflective metallic gratings with high absorption efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaojian; Liang, Linmei; Yang, Junbo

    2017-10-01

    Electromagnetic (EM) wave absorbers are devices in which the incident radiation at the operating wavelengths can be efficiently absorbed and then transformed into ohmic heat or other forms of energy. Especially, EM absorbers based on metallic structures have distinct advantages in comparison with the traditional counterparts. Thus, they have different potential applications at different frequency ranges such as absorbing devices in solar energy harvesting systems. The reflective metallic grating is a kind of metallic EM absorbers and has the fascinating property of efficiently absorbing the incident light due to the excitation of surface plasmon polaritons (SPPs), consequently drawing more and more attention. In this paper, the absorption effect of a reflective metallic grating made of gold is studied by changing grating parameters such as the period, polarization direction of the incident light and so on. We use finite difference time-domain (FDTD) method to design the grating, and simulate the process and detect the absorption spectrum. In our design, the grating has rectangular shaped grooves and has the absorption efficiency 99% for the vertically incident transverse magnetic (TM) light at the wavelength of 818nm with the period of 800 nm, the width of 365 nm and the height of 34 nm. And then we find that the absorption spectrum is blue-shifted about 87 nm with decreasing period from 800 nm to700 nm and red-shifted about 14 nm with increasing the width of the block from 305 nm to 405 nm. The absorption becomes gradually weaker from 98% to almost zero with the polarization angle from 0° to 90°. Finally, we make a theoretical explanation to these phenomena in details. It is believed that the results may provide useful guidance for the design of EM wave absorbers with high absorption efficiency.

Top