Science.gov

Sample records for pole space water

  1. Lunar South Pole space water extraction and trucking system

    SciTech Connect

    Zuppero, A. |; Zupp, G.; Schnitzler, B.; Larson, T.K.; Rice, J.W.

    1998-03-01

    This concept proposes to use thermal processes alone to extract water from the lunar South Pole and launch payloads to low lunar orbit. Thermal steam rockets would use water propellant for space transportation. The estimated mass of a space water tanker powered by a nuclear heated steam rocket suggests it can be designed for launch in the Space Shuttle bay. The performance depends on the feasibility of a nuclear reactor rocket engine producing steam at 1,100 degrees Kelvin, with a power density of 150 Megawatts per ton of rocket, and operating for thousands of 20 minute cycles. An example uses reject heat from a small nuclear electric power supply to melt 17,800 tons per year of lunar ice. A nuclear heated steam rocket would use the propellant water to launch and deliver 3,800 tons of water per year to a 100 km low lunar orbit.

  2. Collecting Micrometeorites from the South Pole Water Well

    DTIC Science & Technology

    1997-05-01

    Susan Taylor, James H. Lever, Ralph P. Harvey, and May 1997 John Govoni C R R EL R EP O R T 9 7 -1 Collecting Micrometeorites from the South Pole ...Water Well Abstract: A collector was designed and built to retrieve micrometeorites from the floor of the South Pole Water Well. The large volume of...firn and ice being melted for the well and the low component of terrestrial material in Antarctic ice make the South Pole Water Well an ideal place to

  3. Pentachlorophenol contamination of private drinking water from treated utility poles.

    PubMed

    Karlsson, Lee; Cragin, Lori; Center, Gail; Giguere, Cary; Comstock, Jeff; Boccuzzo, Linda; Sumner, Austin

    2013-02-01

    In 2009, after resident calls regarding an odor, the Vermont Department of Health and state partners responded to 2 scenarios of private drinking water contamination from utility poles treated with pentachlorophenol (PCP), an organochlorine wood preservative used in the United States. Public health professionals should consider PCP contamination of private water if they receive calls about a chemical or gasoline-like odor with concurrent history of nearby utility pole replacement.

  4. Transient water vapor at Europa's south pole.

    PubMed

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-01-10

    In November and December 2012, the Hubble Space Telescope (HST) imaged Europa's ultraviolet emissions in the search for vapor plume activity. We report statistically significant coincident surpluses of hydrogen Lyman-α and oxygen OI 130.4-nanometer emissions above the southern hemisphere in December 2012. These emissions were persistently found in the same area over the 7 hours of the observation, suggesting atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of water vapor with line-of-sight column densities of about 10(20) per square meter. Nondetection in November 2012 and in previous HST images from 1999 suggests varying plume activity that might depend on changing surface stresses based on Europa's orbital phases. The plume was present when Europa was near apocenter and was not detected close to its pericenter, in agreement with tidal modeling predictions.

  5. 78 FR 15615 - Practice and Procedure; Pole Attachment Complaint Procedures; Allocation of Unusable Space Costs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... COMMISSION 47 CFR Part 1 Practice and Procedure; Pole Attachment Complaint Procedures; Allocation of Unusable... policies concerning a methodology for just and reasonable rates for pole attachments, conduits, and rights... sets forth the allocation of unusable space costs in the pole attachment rate formula for...

  6. Coordinated Ground and Space Measurements of Auroral Surge over South Pole.

    DTIC Science & Technology

    1988-02-01

    3y V. Coordinated Ground and Space Measurements of co an Auroral Surge over South Pole T. J. ROSENBERG and D. L. DETRICK Institute for Physical...Measurements of an Auroral Surge over South Pole 12. PERSONAL AUTHOR(S) Rosenberg, T. J., and DetrickD. L., University of Maryland; Mizera, Paul F., 13a. TYPE...premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a

  7. The effect of dc poling duration on space charge relaxation in virgin XLPE cable peelings

    NASA Astrophysics Data System (ADS)

    Tzimas, Antonios; Rowland, Simon M.; Dissado, Leonard A.; Fu, Mingli; Nilsson, Ulf H.

    2010-06-01

    The effect of dc poling time upon the time-dependent decay of space charge in insulation peelings of cross-linked polyethylene (XLPE) cable that had not previously experienced either electrical or thermal stressing is investigated. Two dc poling durations were used, 2 h and 26 h at an electric field of 50 kV mm-1 and at ambient temperature. Space charge was measured in the two samples investigated both during space charge accumulation and throughout its subsequent decay. The results show that the length of dc poling plays an important role in the subsequent decay. Despite the fact that both samples have had the same amount of space charge by the end of both short and long poling durations the time dependence of the space charge decay is different. Most of the charge stored in the sample that had experienced the short time poling decays rapidly after voltage removal. On the other hand, the charge that is stored in the sample with the long dc poling duration decays slowly and its decay occurs in two stages. The data, which are analysed by means of the de-trapping theory of space charge decay, imply that the charge stored in the material has occupied energy states with different trap depth ranges. The two poling durations lead to different relative amounts of charge in each of the two trap depth ranges. Possible reasons for this are discussed.

  8. Evidence of water ice near the lunar poles

    SciTech Connect

    Feldman, W. C.; Maurice, S.; Lawrence, David J. ,; Little, R. C.; Lawrence, S. L.; Gasnault, O. M.; Wiens, R. C.; Barraclough, B. L.; Elphic, Richard C.,; Prettyman, T. H.; Steinberg, John Tyree; Binder, A. B.

    2001-01-01

    the large sunlit polar craters and the relatively high [H] in neighboring inter-crater plains. A closer look at the 'inter-crater' plains near the poles, shows that they are covered by many small craters that harbor permanent shade [4]. The temperatures within many of these craters are low enough [5] that they can disable sublimation as a viable loss process of [H{sub 2}O]. It is therefore tempting to postulate that the enhanced hydrogen within most regions of permanent shade is in the form of water molecules. This postulate is certainly viable within the bottoms of several large, permanently shaded craters near the south pole. Predicted temperatures within them [5] fall well below the 100 K temperature that is needed to stabilize water ice for aeons. The picture is different near the north pole. Here, there are relatively few permanently-shaded craters that are large enough to harbor temperatures that are sufficiently low to stabilize water ice indefinitely against sublimation [5]. Instead, the 'inter-crater' polar plains are a jumble of many permanently-shaded craters that have diameters less than 10 km [4]. Although simulations of temperatures within this class of craters show they are only marginally cold enough to indefinitely stabilize water ice [5], this terrane appears to have the highest [H]. Nevertheless, predicted temperatures are close enough to that needed to permanently stabilize [H{sub 2}O] to suggest that sublimation is indeed the process that discriminates between polar terrane that contains enhanced [H] and those that do not (see, e.g., the temperature estimates for doubly-shaded craters [6]). If correct, then an important fraction of the hydrogen near the north pole must be in the form of H{sub 2}O, which then resides within these small craters. Estimates using our improved data set of [H] within craters near the south pole remain unchanged from those derived from our previous analysis [2], [H] = 1700{+-}900 ppm. This translates to [H{sub 2}O]=1

  9. A New Source of Micrometeorites: The South Pole Water Well

    NASA Astrophysics Data System (ADS)

    Taylor, S.; Lever, J.; Harvey, R.

    1996-03-01

    In 1995 we built, tested and deployed a collector to suction particulates from the bottom of the South Pole drinking water well (SPWW) in the hope of finding large numbers of micrometeorites. The SPWW, because it melts huge amounts of firn and ice, provides an efficient way of concentrating micrometeorites, which occur ubiquitously but in low concentrations in terrestrial environments. We made 5 separate collections, traversing an area of about 30 m^2 and collecting approximately 200 g of material. Microscopic examination of the 250-425 micrometer size fraction from 2 of the 5 collections suggests that 1 of every 1000 particles in this size fraction is a melted micrometeorite. There are also translucent and transparent spherules, similar to those described by Maurette et al., which are thought to be extraterrestrial and particles which appear to be unmelted micrometeorites. Dating of the ice brackets the depositional age of any micrometeorites collected between 1000-1500 AD.

  10. NASA's MESSENGER Finds New Evidence for Water Ice at Mercury's Poles

    NASA Image and Video Library

    2017-09-27

    New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters. Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA. These findings are presented in three papers published online today in Science Express. Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero — less than one degree — so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles. The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images. MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis. To read

  11. Evidence for Water Ice Near Mercury’s North Pole from MESSENGER Neutron Spectrometer Measurements

    NASA Astrophysics Data System (ADS)

    Lawrence, David J.; Feldman, William C.; Goldsten, John O.; Maurice, Sylvestre; Peplowski, Patrick N.; Anderson, Brian J.; Bazell, David; McNutt, Ralph L.; Nittler, Larry R.; Prettyman, Thomas H.; Rodgers, Douglas J.; Solomon, Sean C.; Weider, Shoshana Z.

    2013-01-01

    Measurements by the Neutron Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft show decreases in the flux of epithermal and fast neutrons from Mercury’s north polar region that are consistent with the presence of water ice in permanently shadowed regions. The neutron data indicate that Mercury’s radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 30 cm thick that is less rich in hydrogen. Combined neutron and radar data are best matched if the buried layer consists of nearly pure water ice. The upper layer contains less than 25 weight % water-equivalent hydrogen. The total mass of water at Mercury’s poles is inferred to be 2 × 1016 to 1018 grams and is consistent with delivery by comets or volatile-rich asteroids.

  12. Evidence for water ice near Mercury's north pole from MESSENGER Neutron Spectrometer measurements.

    PubMed

    Lawrence, David J; Feldman, William C; Goldsten, John O; Maurice, Sylvestre; Peplowski, Patrick N; Anderson, Brian J; Bazell, David; McNutt, Ralph L; Nittler, Larry R; Prettyman, Thomas H; Rodgers, Douglas J; Solomon, Sean C; Weider, Shoshana Z

    2013-01-18

    Measurements by the Neutron Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft show decreases in the flux of epithermal and fast neutrons from Mercury's north polar region that are consistent with the presence of water ice in permanently shadowed regions. The neutron data indicate that Mercury's radar-bright polar deposits contain, on average, a hydrogen-rich layer more than tens of centimeters thick beneath a surficial layer 10 to 30 cm thick that is less rich in hydrogen. Combined neutron and radar data are best matched if the buried layer consists of nearly pure water ice. The upper layer contains less than 25 weight % water-equivalent hydrogen. The total mass of water at Mercury's poles is inferred to be 2 × 10(16) to 10(18) grams and is consistent with delivery by comets or volatile-rich asteroids.

  13. The Learning of Visually Guided Action: An Information-Space Analysis of Pole Balancing

    ERIC Educational Resources Information Center

    Jacobs, David M.; Vaz, Daniela V.; Michaels, Claire F.

    2012-01-01

    In cart-pole balancing, one moves a cart in 1 dimension so as to balance an attached inverted pendulum. We approached perception-action and learning in this task from an ecological perspective. This entailed identifying a space of informational variables that balancers use as they perform the task and demonstrating that they improve by traversing…

  14. The Learning of Visually Guided Action: An Information-Space Analysis of Pole Balancing

    ERIC Educational Resources Information Center

    Jacobs, David M.; Vaz, Daniela V.; Michaels, Claire F.

    2012-01-01

    In cart-pole balancing, one moves a cart in 1 dimension so as to balance an attached inverted pendulum. We approached perception-action and learning in this task from an ecological perspective. This entailed identifying a space of informational variables that balancers use as they perform the task and demonstrating that they improve by traversing…

  15. A Self-Contained Pole Syringe Array for Closed-Interval Water Sampling.

    DTIC Science & Technology

    1982-10-19

    L AD-R12l 265 R SELF-CONTAINED POLE SYRINGE ARRAY FOR CLOSDITRR Va WATER SANPLING4U) NAVAL RESEARCH LAB WASHINGTON DC I R E PELLENBARG ET AL. 19 OCT...PERIOD COVERED A SELF-CONTAINED POLE SYRINGE ARRAY FOR Interim report on one phase of CLOSED-INTERVAL WATER SAMPLING an NRL problem. 6. PERFORMING ORG...1473 EDITION OF I NOv ,, IS OMSOLCT S/N 0102-014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Wm Dle Et ere d A SELF-CONTAINED POLE SYRINGE ARRAY FOR

  16. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  17. Martian north pole summer temperatures: dirty water ice.

    PubMed

    Kieffer, H H; Chase, S C; Martin, T Z; Miner, E D; Palluconi, F D

    1976-12-11

    Broadband thermal and reflectance observations of the martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  18. Martian north pole summer temperatures - Dirty water ice

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.

    1976-01-01

    Broadband thermal and reflectance observations of the Martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  19. Martian north pole summer temperatures - Dirty water ice

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.

    1976-01-01

    Broadband thermal and reflectance observations of the Martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  20. Exposed water ice discovered near the south pole of Mars

    USGS Publications Warehouse

    Titus, T.N.; Kieffer, H.H.; Christensen, P.R.

    2003-01-01

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  1. Exposed water ice discovered near the south pole of Mars.

    PubMed

    Titus, Timothy N; Kieffer, Hugh H; Christensen, Phillip R

    2003-02-14

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  2. Combinations of Earth Orientation Measurements: SPACE2014, COMB2014, and POLE2014

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2015-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.

  3. Combinations of Earth Orientation Measurements: SPACE2011, COMB2011, and POLE2011

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2013-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2011, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to July 13, 2012, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2011 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2011, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to July 13, 2012, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2011, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 21, 2012, at 30.4375-day intervals.

  4. Combinations of Earth Orientation Measurements: SPACE2012, COMB2012, and POLE2012

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2013-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2012, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to April 26, 2013, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2012 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2012, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to April 26, 2013, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2012, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to May 22, 2013, at 30.4375-day intervals.

  5. Combinations of Earth Orientation Measurements: SPACE2005, COMB2005, and POLE2005

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2006-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, by very long baseline interferometry, and by the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2005, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 7, 2006, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2005 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2005, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 7, 2006, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon; and (2) POLE2005, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to December 21, 2005, at 30.4375-day intervals.

  6. Combinations of Earth Orientation Measurements: SPACE2005, COMB2005, and POLE2005

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2006-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, by very long baseline interferometry, and by the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2005, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 7, 2006, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2005 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2005, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 7, 2006, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon; and (2) POLE2005, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to December 21, 2005, at 30.4375-day intervals.

  7. Combinations of Earth Orientation Measurements: SPACE2001, COMB2001, and POLE2001

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2002-01-01

    Independent Earth-orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth-orientation series, SPACE2001, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28.0, 1976 to January 19.0, 2002 at daily intervals. The space-geodetic measurements used to generate SPACE2001 have been combined with optical astrometric measurements to form two additional combined Earth-orientation series: (1) COMB2001, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20.0, 1962 to January 15.0, 2002 at five-day intervals, and (2) POLE2001, consisting of values and uncertainties for polar motion and its rates that span from January 20, 1900 to December 21, 2001 at 30.4375-day intervals.

  8. Combinations of Earth Orientation Measurements: SPACE2004, COMB2004, and POLE2004

    NASA Technical Reports Server (NTRS)

    Gross, Richard R.

    2005-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2004, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 22, 2005, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2004 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2004, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 22, 2005, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon, and (2) POLE2004, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to January 20, 2005, at 30.4375-day intervals.

  9. Combinations of Earth Orientation Measurements: SPACE2003, COMB2003, and POLE2003

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2004-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2003, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28.0, 1976 to January 31.0, 2004 at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2003 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2003, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20.0, 1962 to January 31.0, 2004 at daily intervals and which is also available in versions whose epochs are given at either midnight or noon, and (2) POLE2003, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900 to January 21,2004 at 30.4375-day intervals.

  10. Combinations of Earth Orientation Measurements: SPACE2013, COMB2013, and POLE2013

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2015-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.

  11. Combinations of Earth Orientation Measurements: SPACE94, COMB94, and POLE94

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1996-01-01

    A Kalman filter has been used to combine independent measurements of the Earth's orientation taken by the space-geodetic observing techniques of lunar laser ranging, satellite laser ranging, very long baseline interferometry, and the Global Positioning System. Prior to their combination, the data series were adjusted to have the same bias and rate, the stated uncertainties of the measurements were adjusted, and data points considered to be outliers were deleted. The resulting combination, SPACE94, consists of smoothed, interpolated polar motion and UT1-UTC values spanning October 6, 1976, to January 27, 1995, at 1-day intervals. The Kalman filter was then used to combine the space-geodetic series comprising SPACE94 with two different, independent series of Earth orientation measurements taken by the technique of optical astrometry. Prior to their combination with SPACE94, the bias, rate and annual term of the optical astrometric series were corrected, the stated uncertainties of the measurements were adjusted, and data points considered to be outliers were deleted. The adjusted optical astrometric series were then combined with SPACE94 in two steps: (1) the Bureau International de l'Heure (BIH) optical astrometric series was combined with SPACE94 to form COMB94, a combined series of smoothed, interpolated polar motion and UT1-UTC values spanning January 20, 1962, to January 27, 1995, at 5-day intervals, and (2) the International Latitude Service (ILS) optical astrometric series was combined with COMB94 to form POLE94, a combined series of smoothed, interpolated polar motion values spanning January 20, 1900, to January 21, 1995, at 30.4375-day intervals.

  12. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles.

    PubMed

    Feldman, W C; Maurice, S; Binder, A B; Barraclough, B L; Elphic, R C; Lawrence, D J

    1998-09-04

    Maps of epithermal- and fast-neutron fluxes measured by Lunar Prospector were used to search for deposits enriched in hydrogen at both lunar poles. Depressions in epithermal fluxes were observed close to permanently shaded areas at both poles. The peak depression at the North Pole is 4.6 percent below the average epithermal flux intensity at lower latitudes, and that at the South Pole is 3.0 percent below the low-latitude average. No measurable depression in fast neutrons is seen at either pole. These data are consistent with deposits of hydrogen in the form of water ice that are covered by as much as 40 centimeters of desiccated regolith within permanently shaded craters near both poles.

  13. The thermal stability of water ice at the poles of Mercury

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Wood, Stephen E.; Vasavada, Ashwin R.

    1992-01-01

    Recent radar observations of Mercury have revealed the presence of anomalous radar reflectivity and polarization features near its north and south poles. Thermal model calculations show that, despite Mercury's proximity to the sun, the temperatures of flat, low-reflectivity surfaces at Mercury's poles are not expected to exceed 167 kelvin. The locations of the anomalous polar radar features appear to be correlated with the locations of large, high-latitude impact craters. Maximum surface temperatures in the permanently shadowed regions of these craters are expected to be significantly colder, as low as 60 kelvin in the largest craters. These results are consistent with the presence of water ice, because at temperatures lower than 112 kelvin, water ice should be stable to evaporation over time scales of billions of years.

  14. Design of the annular suspension and pointing system /ASPS/ through decoupling and pole placement. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Lin, W. C. W.

    1980-01-01

    A decoupling and pole-placement technique has been developed for the Annular Suspension and Pointing System (ASPS) of the Space Shuttle which uses bandwidths as performance criteria. The dynamics of the continuous-data ASPS allows the three degrees of freedom to be totally decoupled by state feedback through constant gains, so that the bandwidth of each degree of freedom can be independently specified without interaction. Although it is found that the digital ASPS cannot be completely decoupled, the bandwidth requirements are satisfied by pole placement and a trial-and-error method based on approximate decoupling.

  15. Searching for Water Ice at the Lunar North Pole Using High-Resolution Images and Radar

    NASA Technical Reports Server (NTRS)

    Mitchell, J. L.; Lawrence, S. J.; Robinson, M. S.; Speyerer, E. J.; Denevi, B. W.

    2017-01-01

    Permanently shadowed regions (PSRs) at the lunar poles are potential reservoirs of frozen volatiles, and are therefore high-priority exploration targets. PSRs trap water and other volatiles because their annual maximum temperatures (40-100K) are lower than the sublimation temperatures of these species (i.e. H2O approx.104K). Previous studies using various remote sensing techniques have not been able to definitively characterize the distribution or abundance of ice in lunar PSRs. The purpose of this study is to search for signs of ice in PSRs using two complimentary remote sensing techniques: radar and visible images.

  16. A search for transient water frost at the lunar poles using LOLA

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Song, E.; Paige, D. A.; Greenhagen, B. T.; Siegler, M. A.; Hayne, P. O.; Mazarico, E.; Neumann, G.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    The possibility of lunar polar ice has been considered since suggested by Harold Urey in the 1950's, and has likely been directly detected at the north pole of Mercury by MESSENGER. That detection was based on the presence of reflectance anomalies seen by the Mercury Laser Altimeter that occurred only where models of the surface temperature allow long-duration preservation of water ice against sublimation (Paige et al., 2013; Neumann et al., 2013). Similar characteristics are seen at the poles of the Moon, though the higher lunar albedo complicates the detection. In this study we seek evidence for transient water frost on polar surfaces using data from the Lunar Orbiter Laser Altimeter. The Lunar Orbiter Laser Altimeter (LOLA) measures the backscattered energy of the returning altimetric laser pulse at its wavelength of 1064 nm, and these data are used to map the reflectivity of the Moon at zero-phase angle with a photometrically uniform data set. Global maps have been produced at 4 pixels per degree (about 8 km at the equator) and 2 km resolution within 20° latitude of each pole. The zero-phase geometry is insensitive to lunar topography and enables the characterization of subtle variations in lunar albedo, even at high latitudes where such measurements are not possible with the Sun as the illumination source. We are currently searching the data set for evidence of transient surface frost by looking for changes in reflectance as a function of temperature based on the Diviner radiometer measurements and models. Thus far one candidate region has been identified, and we are refining the calibration to ensure that this and other detections are reliable.

  17. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  18. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  19. Study on the distortion of apparent resistivity curves caused by the 'infinite' electrode space of a Pole-Pole array and its correction

    NASA Astrophysics Data System (ADS)

    Xiao, Le-Le; Wei, Jiu-Chuan; Niu, Chao; Shi, Long-Qing; Zhai, Pei-He; Yin, Hui-Yong; Xie, Dao-Lei

    2015-07-01

    The Pole-Pole (PP) array is widely used for measurements that incorporate two-dimensional (2-D) and three-dimensional (3-D) multi-electrode electrical resistivity surveys, although an effective equilibrium has not yet been achieved between two factors, the location of 'infinite' electrodes and the data utilisation of the effective resistivity, which affects the detection accuracy; thus, the data collected under the conditions of 'infinite' electrodes that are as finite as possible are maximally effective. Studies have shown that the optimum 'infinite' electrode distance must be greater than 20 times the current-potential electrode distance AM; this value is much greater than the currently used value of 5 to 10 times AM. However, limitations imposed by landforms and topographic conditions, such as mountainous areas and coal mine roadways, often prevent the 'infinite' condition from being satisfied. In this study, a field test was designed and performed by adopting a particular PP array to collect sounding data under different 'infinite' electrode distances, and the differences were analysed in the apparent resistivity curves calculated with different geometric coefficients. The results reveal that when the 'infinite' electrode space is finite relative to AM, significant distortion may occur, and a minimum inflection point may appear in the sounding curve of apparent resistivity that is calculated with the geometric coefficient Kpp. Although the data past the minimum inflection point of ρs-mpp curve lose their value for the sounding application, a portion of the first segment of the distorted curve can be used, therefore, a correction formula under the condition of non-infinite electrode (Bing and Greenhalgh, 1998) space in a PP array is derived based on traditional electric field theories and formulas of apparent resistivity under different electrode arrays. The error analysis after correction indicates that the data utilisation ratio in the corrected effective

  20. Water recovery in space.

    PubMed

    Tamponnet, C; Savage, C J; Amblard, P; Lasserre, J C; Personne, J C; Germain, J C

    1999-03-01

    In the absence of recycling, water represents over 90% of the life-support consumables for a manned spacecraft. In addition, over 90% of the waste water generated can be classified as moderately or slightly contaminated (e.g. shower water, condensate from the air-conditioning system, etc.). The ability to recover potable water from moderately contaminated waste water hence enables significant savings to be made in resupply costs. A development model of such a water-recovery system, based on membrane technology has been produced and tested using "real waste water" based on used shower water Results indicate some 95% recovery of potable water meeting ESA standards, with total elimination of microbial contaminants such as bacteria, spores and viruses.

  1. Water Ice Permafrost at Lunar Poles: Observational Evidence from Lend Instrument Onboard Lro

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I.; Sanin, A.; Litvak, M.; Boynton, W. V.; Chin, G.; Evans, L. G.; Garvin, J.; Harshman, K.; McClanahan, T. R.; Milikh, G. M.; Sagdeev, R.; Starr, R. D.

    2012-12-01

    Lunar Exploration Neutron Detector (LEND) of LRO measured the flux of epithermal neutrons with high spatial resolution of 10 km for the amplitude of 50 km. The LEND data from the polar caps above 80degree latitude were tested for the presence of local spots of epithermal Neutron Suppression Regions (NSRs) [1, 2]. Six such spots have been found, five at South pole and one at North pole. One of them, NSR S4 in the Cabeus crater, has been suggested, as the best impact site for direct evaluation of the content of lunar volatiles, including the water, by LCROSS instruments [3]. And indeed, a lot of water has been found in the plume, corresponding to 5.6 +/- 2.4 weight % [4]. Another interesting spot NSR S1 is identified with the crater Shoemaker, which PSR perfectly coincides with the contour of the strong neutron suppression. It was shown [5] that there is very good agreement between the profile of the crater depth and the decrease of the flux of epithermal neutrons. Concluding the LEND data analysis of NSRs, one may present two main results: (1) Only two of NSRs are associated with PSRs (Cabeus and Shoemaker), another large PSRs do not manifest a signature of local neutron suppression. (2) There are several NSRs, which have surface illuminated by Sun light. These results could be interpreted by the model of water ice perma-frost, which suggest that NSRs are associated with spots with permanently cold regolith with stable water ice in the porosity volume. In PSRs, the ice bearing layer is the upper most one. If the surface of NSR is periodically illuminated, the ice bearing layer should lie below the top layer of ice-free regolith. During a night, the cold top layer absorbs water molecules from the exosphere (still illuminated nearby hills could be source of these molecules). During a day, the top layer is heated, and water molecules diffuse from the porosity volume into the both directions: upward to exosphere, and downward to the cold layer of permafrost. Such

  2. Coordinated ground and space measurements of auroral surge over South Pole. Technical report

    SciTech Connect

    Rosenberg, T.J.; Detrick, D.L.; Mizera, P.F.; Gorney, D.J.; Berkey, F.T.

    1988-02-01

    Coincident ground-based and satellite observations are presented of a premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a more-quantitative understanding of the nature of premidnight substorm activity at high geomagnetic latitudes. The surge produced a rapid onset of cosmic radio noise absorption at the station. On the polar-orbiting DMSP-F6 spacecraft, intense x-ray emissions with E > 2-keV energy were imaged 1 to 2 deg magnetically equatorward of the South Pole approximately 1 min prior to the peak of the absorption event. The precipitating electron spectrum determined from the x-ray measurements could be characterized by an e-folding energy of approx. 11 keV and is found to be adequate to account for the cosmic noise absorption and maximum auroral luminosity recorded at South Pole. Photometer, all-sky camera, riometer, and magnetometer data are used to estimate the velocity of motion and spatial extent of the auroral precipitation and the ionospheric currents associated with the surge.

  3. Coordinated ground and space measurements of an auroral surge over South Pole

    SciTech Connect

    Rosenberg, T.J.; Detrick, D.L.; Mizera, P.F.; Gorney, D.J.; Berkey, F.T.; Eather, R.H.; Lanzerotti, L.J.

    1987-10-01

    Coincident ground-based and satellite observations are presented of a premidnight auroral surge over Amundsen-Scott South Pole station. The set of near-simultaneous measurements provides an excellent opportunity to gain a more quantitative understanding of the nature of premidnight substorm activity at high geomagnetic latitudes. The surge produced a rapid onset of cosmic radio noise absorption at the station. On the polar-orbiting DMSP F6 spacecraft, intense X ray emissions with E>2 keV energy were imaged 1/sup 0/ to 2/sup 0/ magnetically equatorward of South Pole approximately 1 min prior to the peak of the absorption event. The spectrum of precipitating electrons determined from the X ray measurements could be characterized by an e-folding energy of approx.11 keV and is found to be adequate to account for the cosmic noise absorption and maximum auroral luminosity recorded at South Pole. Photometer, all-sky camera, riometer, and magnetometer data are used to estimate the velocity of motion and spatial extent of the auroral precipitation and the ionospheric currents associated with the surge. The electron precipitation region is deduced to have a latitudinal scale size of <100 km and to move poleward with a speed of approx.1--2 km/s coincident with the movement of a westward electrojet.

  4. South Pole

    NASA Image and Video Library

    2012-11-02

    As spring progresses at the south pole, the surface reacts to the change of season. This image from NASA 2001 Mars Odyssey spacecraft shows a region of the south pole that is monitored throughout spring, summer, and fall at the south pole.

  5. Pole pulling apparatus and method

    DOEpatents

    McIntire, Gary L.

    1989-01-01

    An apparatus for removal of embedded utility-type poles which removes the poles quickly and efficiently from their embedded position without damage to the pole or surrounding structures. The apparatus includes at least 2 piston/cylinder members equally spaced about the pole, and a head member affixed to the top of each piston. Elongation of the piston induces rotation of the head into the pole to increase the gripping action and reduce slippage. Repeated actuation and retraction of the piston and head member will "jack" the pole from its embedded position.

  6. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without

  7. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  8. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  9. Simulation study of poled low-water ionomers with different architectures

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2011-11-01

    The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.

  10. Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Čadek, O.; Sotin, C.

    2008-08-01

    Earth, Jupiter's moon Io and Saturn's tiny moon Enceladus are the only solid objects in the Solar System to be sufficiently geologically active for their internal heat to be detected by remote sensing. Interestingly, the endogenic activity on Enceladus is only located on a specific region at the south pole, from which jets of water vapor and ice particles have been observed [Spencer, J.R., and 9 colleagues, 2006. Science 311, 1401-1405; Porco, C.C., and 24 colleagues, 2006. Science 311, 1393-1401]. The current polar location of the thermal anomaly can possibly be explained by diapir-induced reorientation of the satellite [Nimmo, F., Pappalardo, R.T., 2006. Nature 441, 614-616], but the thermal anomaly triggering and the heat power required to sustain it over geological timescales remain problematic. Using a three-dimensional viscoelastic numerical model simulating the response of Enceladus to tidal forcing, we explore the effect of a low-viscosity anomaly in the ice shell, localized to the south polar region, on the tidal dissipation patterns. We demonstrate that only interior models with a liquid water layer at depth can explain the observed magnitude of dissipation rate and its particular location at the south pole. Moreover, we show that tidally-induced heat must be generated over a relatively broad region in the southern hemisphere, and it is then transferred toward the south pole where it is episodically released during relatively short resurfacing events. As large tidal dissipation and internal melting cannot be induced in the south polar region in the absence of a pre-existing liquid decoupling layer, we propose that liquid water must have been present in the interior for a very long period of time, and possibly since the satellite formation. Owing to the orbital equilibrium requirement [Meyer, J., Wisdom, J., 2007. Icarus 188, 535-539], sustaining some liquid water at depth is impossible if heat is continuously emitted at a rate of 4-8 GW at the south pole

  11. Physical deterioration of preservative treated poles and pilings exposed to salt water

    Treesearch

    Grant T. Kirker; Jessie Glaeser; Stan T. Lebow; Frederick Green III; Carol A. Clausen

    2011-01-01

    This report details the results of laboratory analyses of wooden pilings sent to the USDA Forest Products Laboratory in March 2011. These samples were removed from coastal wooden posts, poles, piles, and deck boards. A total of 22 samples, consisting of either core borings or surface fiber samples, were removed from four installations along the South Carolina coast....

  12. Regeneration of water at space stations

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Sinyak, Yu. E.; Samsonov, N. M.; Bobe, L. S.; Protasov, N. N.; Andreychuk, P. O.

    2011-05-01

    The history, current status and future prospects of water recovery at space stations are discussed. Due to energy, space and mass limitations physical/chemical processes have been used and will be used in water recovery systems of space stations in the near future. Based on the experience in operation of Russian space stations Salut, Mir and International space station (ISS) the systems for water recovery from humidity condensate and urine are described. A perspective physical/chemical system for water supply will be composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. Innovative processes and new water recovery systems intended for Lunar and Mars missions have to be tested on the international space station.

  13. Combinations of Earth Orientation Observations: SPACE94, COMB94, and POLE94

    NASA Technical Reports Server (NTRS)

    Gross, R. S.

    1995-01-01

    A Kalman filter has been used to combine all publicly available, independently determined measurements of the Earth's orientation taken by the modern, space-geodetic techniques of very long baseline interferometry, satellite laser ranging, lunar laser ranging, and the global positioning system. Prior to combining the data, tidal terms were removed from the UT1 measurements, outlying data points were deleted, series-specific corrections were applied for bias and rate, and the stated uncertainties of the measurements were adjusted by multiplying them by series-specific scale factors. Values for these bias- rate corrections and uncertainty scale factors were determined by an iterative, round-robin procedure wherein each data set is compared, in turn, to a combination of all other data sets. When applied to the measurements, the bias-rate corrections thus determined make the data sets agree with each other in bias and rate, and the uncertainty scale factors thus determined make the residual of each series (when differenced with a combination of all others) have a reduced chi-square of one. The corrected and adjusted series are then placed within an IERS reference frame by aligning them with the IERS Earth orientation series EOP (IERS)90C04. The result of combining these corrected, adjusted and aligned series is designated SPCE94 and spans October 6.0, 1976 to January 27.0, 1995 at daily intervals.

  14. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  15. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  16. Inflatable Pole

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1995-01-01

    Lightweight, portable tool reaches object at height or across gap. Extends reach up to 20 feet (6 meters). When not in use, tool collapses to 3 to 5 percent of its inflated length. Developed for use as self-rescue device by astronaut who becomes untethered outside spacecraft: astronaut uses pole to reach grapple on spacecraft and pull to it. Useful on Earth as rescue device or in performing routine tasks like changing high light bulb without ladder. When task with inflatable pole completed, operator opens vent valve to deflate tube. Operator then opens gun, removes fabric cover, and repacks tube.

  17. Space-bandwidth product enhancement of a monostatic, multiaperture infrared image upconversion ladar receiver incorporating periodically poled LiNbO3

    NASA Astrophysics Data System (ADS)

    Brewer, Christopher D.; Duncan, Bradley D.; Maciejewski, Phillip S.; Kirkpatrick, Sean M.; Watson, Edward A.

    2002-04-01

    We investigate the space-bandwidth product of a ladar system incorporating an upconversion receiver. After illuminating a target with an eye-safe beam, we direct the return into a piece of periodically poled LiNbO3 where it is upconverted into the visible spectrum and detected with a CCD camera. The theoretical and experimental transfer functions are then found. We show that the angular acceptance of the upconversion process severely limits the receiver field of regard for macroscopic coupling optics. This limitation is overcome with a pair of microlens arrays, and a 43% increase in the system's measured space-bandwidth product is demonstrated.

  18. How To Recycle Water in Space

    NASA Image and Video Library

    2017-06-13

    Nature has been recycling water on Earth for eons, and NASA is perfecting how to do it in space right now on the International Space Station. In constant operation for several years already, the Water Recovery System draws moisture from a number of sources to continuously provide astronauts with safe, clean drinking water. Follow the entire process in this video and learn how engineers are successfully turning yesterday’s coffee into tomorrow’s for these brave explorers! _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  19. Water Innovations and Lessons Learned From Water Recycling in Space

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2013-01-01

    This Presentation will cover technology and knowledge transfers from space exploration to earth and the tourism industry, for example, water and air preservation, green buildings and sustainable cities.

  20. Using the Community Firn Model to investigate the water isotope record in an ice core from the South Pole

    NASA Astrophysics Data System (ADS)

    Kahle, Emma; Steig, Eric; Waddington, Edwin; Stevens, C. Max

    2017-04-01

    Firn models can be used to replicate conditions at ice core sites and investigate the past climate histories that resulted in the ice core record. The diffusion of water isotope ratios in ice cores can provide information about past firn conditions. We use the Community Firn Model (CFM) to compare theoretical and observational estimates of isotope diffusion in firn. We use the CFM to simulate possible past climate conditions at the South Pole, and compare the results with observational data from SPICEcore, the recently completed, 1751-meter ice core drilled at 90 degrees S. The CFM incorporates a collection of firn models into a single model framework, to facilitate comparison among different formulations of the densification process. We have incorporated water isotope diffusion into the CFM, following the well-established method of Johnsen. We produce vertical profiles of water isotope ratios using a range of reasonable temperature and accumulation rate histories for the site. Water isotope spectra of the model output are compared with those of the ice core data, with the ultimate goal of finding the optimal combination of climate parameters that best reproduces the observed spectra.

  1. Water vent design for Space Station Freedom

    NASA Astrophysics Data System (ADS)

    Miernik, Janie H.; Worden, Edson A.; Bedard, John E.; Lieu, Bing H.

    1992-07-01

    Space Stadon Freedom (SSF) will be required to vent water during non-quiescent periods. During Man Tended Configuration (MTC), before the Environmental Control and Life Support System (ECLSS) water loop is closed, humidity condensate will be periodically vented. At Permanently Manned Configuration (PMC), water will be vented on contingency if there is excess water on SSF. The thrust due to venting must be minimized to be considered non-propulsive. Also, ice formation and clogging of the vent nozzle must be avoided. Many aspects of the Space Shuttle water vent design were utilized in development of the preliminary SSF water vent design presented in this paper. Design modifications which improved the shuttle vent as well as those necessary for SSF are discussed. The exterior vent location, direction and environment on SSF are unique compared to previous space water vent designs. From data collected in the vent tests and analyses, a finalized SSF water vent design will be developed.

  2. Water: A Critical Material Enabling Space Exploration

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  3. Microbiology of the Space Shuttle water system.

    PubMed

    Koenig, D W; Pierson, D L

    1997-01-01

    The Space Shuttle has a once-through water system that is initially filled on the ground, partially drained before launch and then refilled with fuel-cell generated water on orbit. The microbiological standard for the Space Shuttle potable water system during this study period allowed only 1 microbe of any kind per l00mL and no detectable coliforms. Contamination episodes in more than 15 years of Shuttle operation have been rare; however, for the past 24 missions, bacterial contamination has been detected in 33% of the samples collected 3d before launch. These samples have had on average 55CFU/100mL of bacteria, with the median less than 1CFU/100mL. Burkholderia cepacia has been the primary contaminant of the Shuttle water supply system both before and after flight. Water samples assessed during the STS-70 mission aboard the Space Shuttle Discovery were found to be contaminated (<20CFU/100mL) with B. cepacia and B. pickettii. In 1991, waste and water lines were removed from the Space Shuttle Columbia and the waste lines were found to harbor biofilms containing Bacillus spp. Nevertheless, the water systems of the four Space Shuttle vehicles provide extremely pure water.

  4. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  5. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  6. Solar Energy for Space Heating & Hot Water.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  7. Water sprays in space retrieval operations

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  8. Space shuttle galley water system test program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and septum. The needle configuration was developed and the flow characteristics measured. The interface between the food package and the water system, oven, and food tray was determined.

  9. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  10. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  11. Space water electrolysis: Space Station through advance missions

    NASA Astrophysics Data System (ADS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-09-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  12. Water and sodium balance in space.

    PubMed

    Drummer, C; Norsk, P; Heer, M

    2001-09-01

    We have previously shown that fluid balances and body fluid regulation in microgravity (microG) differ from those on Earth (Drummer et al, Eur J Physiol 441:R66-R72, 2000). Arriving in microG leads to a redistribution of body fluid-composed of a shift of fluid to the upper part of the body and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless, cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary sodium excretion is diminished and a considerable amount of sodium is retained-without accumulating in the intravascular space. An enormous storage capacity for sodium in the extravascular space and a mechanism that allows the dissociation between water and sodium handling likely contribute to the fluid balance adaptation in weightlessness.

  13. Estimation of specific hepatic arterial water space.

    PubMed

    Sahin, S; Rowland, M

    1998-08-01

    The aim of this study was to estimate the specific arterial water space and associated blood flow using statistical moments of the frequency versus time outflow profile, with a model with specific spaces for hepatic arterial (HA) and portal venous (PV) flows in parallel with a common space. Studies were performed in the in situ dual-perfused rat liver (n = 6-10), using Krebs-bicarbonate buffer with constant PV flow (12 ml/min) and various HA flow rates (3-6 ml/min). An impulse input-output technique was employed, varying the route of input, using [14C]urea as the reference indicator. Regardless of flow conditions, the frequency outflow profile after HA input was flatter and broader and the mean transit time longer than after PV input. Excellent recovery of marker was obtained in all cases. Applying the above model, the specific arterial space was estimated to be 9.7 +/- 2.3 of total water space and receives approximately 17% of the HA flow, with the remainder mixing with portal blood in the common space. The estimated total water content of liver (0.67-0.72 ml/g liver) agrees well with that determined by desiccation (0.72 +/- 0.01 ml/g liver).

  14. Taper of wood poles

    Treesearch

    Billy Bohannan; Hermann Habermann; Joan E. Lengel

    1974-01-01

    Round wood pole use has changed without accompanying advancement in engineering design data. Previous pole design was based on the assumption that maximum stress occurred at the groundline but, with the larger poles that are now being used, maximum stress may occur along the pole length. For accurate engineering analysis the shape or taper of a pole must be known. Both...

  15. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  16. Rad Pole Cam Development

    SciTech Connect

    Heckendorn, F. M.; Odell, D. M. C; Harpring, L. J.; Peterson, K. D.

    2005-10-05

    The RadPoleCam was developed to provide Department Of Energy (DOE) first responders the capability to assess the radiological and visual condition of remote or inaccessible locations. Real time gamma isotopic identification is provided to the first responder in the form of audio feedback (i.e. spoken through head phones) from a gamma detector mounted on a collapsible pole that can extend from 1 to 9 meters (6 to 29 feet). Simultaneously, selectable direct and side looking visual images are provided from the 5cm (2in) diameter, waterproof probe tip. The lightweight, self contained, ruggedized, system will provide a rapidly deployable field system for visual and radiological search and assessment of confined spaces and extended reach locations.

  17. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Houser, Paul; Schlosser, C. Adam

    2003-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. The goal of the paper is to explore the concept of using a sensor-web of satellites to observe the global water cycle. The details of the required measurements and observation systems are therefore only an initial approach and will undergo future refinement, as their details will be highly important. Key elements include observation and evaluation of all components of the water cycle in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers-and in terms of the global fluxes of water between these reservoirs. For each component of the water cycle that must be observed, the appropriate temporal and spatial scales of measurement are estimated, along with the some of the frequencies that have been used for active and passive microwave observations of the quantities. The suggested types of microwave observations are based on the heritage for such measurements, and some aspects of the recent heritage of these measurement algorithms are listed. The observational requirements are based on present observational systems, as modified by expectations for future needs. Approaches to the development of space systems for measuring the global water cycle can be based on these observational requirements.

  18. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers

  19. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, H.S.

    1984-07-31

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  20. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  1. Water Vapor Over Europa

    NASA Image and Video Library

    2013-12-12

    This graphic shows the location of water vapor detected over Europa south pole in observations taken by NASA Hubble Space Telescope in December 2012. This is the first strong evidence of water plumes erupting off Europa surface.

  2. Challenges of Rover Navigation at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan; Allan, Mark; Furlong, Michael

    2015-01-01

    Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.

  3. Single phase four pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils.

  4. Single phase four pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-10-09

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils. 10 figs.

  5. [Water-salt metabolism in space flights].

    PubMed

    Noskov, V B

    2013-01-01

    The article centres on the water-salt metabolism properties in space flights of varying duration. To assess the water and mineral turnover, renal function and their hormonal regulation in flight, a series of experiments was carried out with participation of Russian and international cosmonauts. These experiments and ground model investigations shed light on the mechanisms of osmotic and volumetric regulation in microgravity and guided the development of countermeasures and methods for correcting the negative shifts as a result of body adaptation to the novel environment.

  6. Tracer ages along a section between Ellesmere Island and the North Pole: Implications for circulation and mean residence times of the upper water colum

    NASA Astrophysics Data System (ADS)

    Schlosser, P.; Smethie, W. M., Jr.; Newton, R.; Friedrich, R.

    2014-12-01

    We present age tracer distributions (Tritium/He-3 and SF6) from a section between Ellesmere Island and the North Pole as part of the Switchyard project. The sections cover the period between 2008 and 2013. The tracers are interpreted in the context of circulation patterns and mean residence times of the main water masses. Mixed layer tracer ages range from close to zero to ca. 5 years with most of the ages grouping around 2.5 years. The tracer ages increase rapidly through the halocline waters (roughly 10 years at about 100 and 20 years close to 200 meters depth, respectively) and typically reach their maximum values close to the depth of the core of the Atlantic Water (up to 35 years). Within the AW there are large lateral gradients with higher ages found in the boundary current along the slope of the Canadian Archipelago, and lower ages prevalent close to the North Pole. We also observe temporal variability in the age tracer distributions, mainly in the lateral gradient of the ages in the AW layer. We discuss the age tracer results in the context of the circulation and mean residence times of waters in the Switchyard region of the Arctic Ocean and their variability. We also discuss possible systematic differences between the Tritium/He-3 and SF6 ages and their relevance for our main conclusions.

  7. In-Space Propellant Production Using Water

    NASA Technical Reports Server (NTRS)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  8. The South Pole and the Ross Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image shows a rare clear view of the South Pole (lower right) and the Ross Sea, Antarctica. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) acquired the scene on December 26, 2001. The geographic South Pole is located in the center of Antarctica, at an altitude of 2,900 meters (9,300 feet). It rests on a continent-wide ice sheet that is 2,870 m thick, with the underlying bedrock only 30 m (98 feet) above sea level. The ice underlying the South Pole is as much as 140,000 years old, and is currently accumulating at about 82 cm (32 inches) per year. Roughly 2,500 km (1,550 miles) away is the green water of the Ross Sea, which indicates the presence of large numbers of phytoplankton. This is a highly productive part of the world's oceans. Also note the ice gathered around McMurdo Sound, seen toward the lefthand shoreline of the Ross Sea, at the edge of the Ross Ice Shelf. According to National Science Foundation researchers, this ice is making it difficult for penguins to reach their food supply. Separating the continental Antarctic ice sheet from the Ross Sea are the Queen Maud Mountains and the Ross Ice Shelf. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  9. The South Pole and the Ross Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image shows a rare clear view of the South Pole (lower right) and the Ross Sea, Antarctica. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) acquired the scene on December 26, 2001. The geographic South Pole is located in the center of Antarctica, at an altitude of 2,900 meters (9,300 feet). It rests on a continent-wide ice sheet that is 2,870 m thick, with the underlying bedrock only 30 m (98 feet) above sea level. The ice underlying the South Pole is as much as 140,000 years old, and is currently accumulating at about 82 cm (32 inches) per year. Roughly 2,500 km (1,550 miles) away is the green water of the Ross Sea, which indicates the presence of large numbers of phytoplankton. This is a highly productive part of the world's oceans. Also note the ice gathered around McMurdo Sound, seen toward the lefthand shoreline of the Ross Sea, at the edge of the Ross Ice Shelf. According to National Science Foundation researchers, this ice is making it difficult for penguins to reach their food supply. Separating the continental Antarctic ice sheet from the Ross Sea are the Queen Maud Mountains and the Ross Ice Shelf. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  10. Macro Fiber Piezocomposite Actuator Poling Study

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis

    2002-01-01

    The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.

  11. Water Ice and Life's Roots in Space

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic

  12. Lunar South Pole Illumination

    NASA Image and Video Library

    Simulated illumination conditions over the lunar South Pole region, from ~80°S to the pole. The movie runs for 28 days, centered on the LCROSS impact date on October 9th, 2009. The illumination ca...

  13. Moon - North Pole

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the north polar region of the Moon was obtained by Galileo's camera during the spacecraft's flyby of the Earth-Moon system on December 7 and 8, 1992. The north pole is to the lower right of the image. The view in the upper left is toward the horizon across the volcanic lava plains of Mare Imbrium. The prominent crater with the central peak is Pythagoras, an impact crater some 130 kilometers (80 miles) in diameter. The image was taken at a distance of 121,000 kilometers (75,000 miles) from the Moon through the violet filter of Galileo's imaging system. According to team scientists, the viewing geometry provided by the spacecraft's pass over the north pole and the low sun-angle illumination provide a unique opportunity to assess the geologic relationships among the smooth plains, cratered terrain and impact ejecta deposits in this region of the Moon. JPL manages the Galileo Project for NASA's Office of Space Science and Applications.

  14. Space Station Freedom regenerative water recovery system configuration selection

    NASA Technical Reports Server (NTRS)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  15. MODIS Views North Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway

  16. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  17. The science of the lunar poles

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.

    2011-12-01

    It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct

  18. A Conventional Mean Pole

    NASA Astrophysics Data System (ADS)

    Stamatakos, N. G.; McCarthy, D. D.

    2016-12-01

    A CONVENTIONAL MEAN POLE PATH The gradual drift of the pole associated with the rotational axis of the Earth in a terrestrial reference frame is characterized by the motion of a "mean pole." The IERS Conventions (2010) does not provide a formal definition of such a "mean pole." In its glossary it defines the terminology "mean pole" in the celestial frame by using the definition "the position on the celestial sphere towards which the Earth's axis points at a particular epoch, with the oscillations due to precession-nutation removed." The need for a terrestrial mean pole is mentioned in Section 7.1.4 of the IERS Conventions, which outlines the procedure to account for the variation in terrestrial site coordinates caused by the pole tide. It states, that an estimate of the wander of the mean pole to within about 10 milliarc-seconds is needed to ensure that the geopotential field is aligned to the long term mean pole. Historically the angular coordinates of this "mean pole" were calculated by averaging the observed angular coordinates of the rotational pole over six years, the beat period of the annual and approximately 14-month Chandler motions of the rotational pole. The IERS Conventions (2010) realization of the mean pole is composed of a cubic fit of the polar coordinates valid over 1976-2010 and a linear model for extrapolation after 2010.0. Further it notes that in the future, the IERS conventional mean pole will be revised as needed with sufficient advance notice. However, this document leaves open the formal definition of a conventional terrestrial mean pole, the spectral frequency content to be expected in such a definition and a procedure to be used to realize the coordinates of the path for users. Background is provided regarding past realizations of a "mean pole," and the requirements for a realization of a mean pole path are reviewed. Possible definitions and potential mathematical models to provide mean pole coordinates in the future are outlined. In

  19. Pre-recessional (Ls 160-200) Polar Water Ice Clouds at the Martian South Pole: Potential Tracers of East-West Asymmetry?

    NASA Astrophysics Data System (ADS)

    Brown, A. J.; Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.

    2008-12-01

    CRISM observations of the south polar region during the pre-spring recession period (Ls 160-200) show tenuous water ice signatures mixed with CO2 ice signatures over the polar cap between latitudes [1]. Water ice has been identified using the 1.5 micron absorption band, which is discernable within the CO2 1.435 micron band complex due to the narrow nature of the CO2 ice absorptions [2, 3]. A surface deposit of water ice is not favored due to the apparent fine grained nature of the water ice, which is indicated by the weak 1.5 micron absorption band, and the disappearance of the clouds prior to retreat of the south polar CO2 ice beneath them. CRISM observations show the pre-recessional water ice clouds appear to go through a steady growth phase from Ls 160-190 and have a short terminal phase from Ls 200-205 [1, 2]. The clouds never quite encircle the whole pole, and never penetrate the 80 degree latitude line. They are strongest at, and appear to originate from, the 90-150 degree meridian range. From Mars GCM simulations, similar patterns appear to originate from east-west asymmetries in the early spring circulation and low-level thermal environments of the high-latitude/polar regions of the southern hemisphere that arise due to asymmetries of large-scale orography and its effects on the atmosphere and climate. We are currently investigating the optical thickness of the water ice clouds using CRISM full resolution emission phase function observations and intend to examine the H2O absorption bands at 3.2 microns to further elucidate the cloud properties. The potential to trace asymmetric polar atmospheric fluxes using these water ice clouds as tracers may lead to a better understanding of the enigmatic cryptic region and the displacement of the south pole residual cap [5]. [1] Brown, A.J. (2007) Fall AGU abstract P33A-1016 [2] Brown, A.J. and Calvin, W. JGR in preparation [3] Langevin, Y. et al. (2006) JGR 112 doi:10.1029/2006JE002841 [4] Hollingsworth, J.L. et al

  20. Kids in Space Water Absorption Flight Procedures 40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014993 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  1. Kids in Space Water Absorption Flight Procedures #40 Demo

    NASA Image and Video Library

    2010-09-15

    ISS024-E-014988 (15 Sept. 2010) --- NASA astronaut Tracy Caldwell Dyson, Expedition 24 flight engineer, conducts a demonstration for the "Kids in Space" session for Water Absorption Flight Procedures #40 in the Columbus laboratory of the International Space Station.

  2. Enhanced Hydrogen Abundances Near Both Lunar Poles

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Maurice, S.; Lawrence, D. J.; Getenay, I.; Elphic, R. C.; Barraclough, B. L.; Binder, A. B.

    1999-01-01

    Chemical analyses of all samples of the Moon returned to Earth show that the lunar surface is highly depleted in volatiles. Specifically, the H content of lunar soils averages only 50 ppm, which can be explained in terms of surface implantation of solar-wind H. We note that all returned samples come from near-equatorial latitudes where daytime temperatures are sufficiently high that water is not stable to evaporation, photo dissociation, ionization, and eventual loss to space through pickup by the solar wind. However, it has long been postulated that a significant fraction of water delivered to the Moon by comets, meteoroids, and interplanetary dust can be stably trapped within the permanently shaded floors of polar craters where temperatures are sufficiently low so that sublimation times can be longer than several billion years. Recent results from analysis of the high-altitude (100 +/- 20 km) portion of the Lunar Prospector Neutron Spectrometer (LPNS) dataset have revealed that H abundances near both lunar poles are enhanced relative to that which exist at equatorial latitudes. Because this average enhancement is not much larger than the near-equatorial average of 50 ppm, it is reasonable to ask how much of the polar-H enhancement comes from the solar wind and how much comes from lunar impacts by solid interplanetary materials. Perhaps the low temperatures at polar latitudes could reduce loss rates of solar-wind-implanted H sufficiently to account for the inferred difference between average polar and equatorial H abundances. Although the foregoing suggestion is plausible, neither laboratory simulations on returned soil samples nor numerical simulations of H loss rates from the radiation-damaged surfaces of soil grains have been performed to prove its feasibility. We try to address this question by analyzing the low-altitude (30 +/- 15 km) portion of LPNS data to search for relatively small spatial-scale enhancements in H data to search for relatively small

  3. Subdivision of phase space for anisotropically interacting water molecules

    NASA Astrophysics Data System (ADS)

    Epifanov, S. Yu.; Vigasin, A. A.

    An efficient numerical algorithm is employed which enables one to perform multidimensional integrations of complicated integrands. Temperature dependence of the second virial coefficient for water is reproduced using the Matsuoka Clementi Yoshimine intermolecular water water potential. Metastable states are shown to occupy significant domain in the water dimer phase space.

  4. The Benefits of Past and Current Regional Hydroclimate Projects to the Third Pole Environment (TPE) Water and Energy Exchanges Studies

    NASA Astrophysics Data System (ADS)

    Benedict, Sam; van Oevelen, Peter

    2014-05-01

    To improve understanding of the various processes at work on spatial and temporal scales from regional to global the Regional Hydroclimate Projects (RHP's) are established as part of the Global Energy and Water Exchanges (GEWEX)Project to link the regional observations and process understanding to the global scale. This is done through exchange of observations, data, modeling, transferability studies etc. In this presentation the series of RHP's that were underway over North and South America, Europe and Asia continuously from the early 1990's up to the present will be examined, the reasons they were established, how they evolved and how they are evolving or are likely to evolve in the future, with an emphasis on where they can and should benefit similar work proposed for the TPE. The results will be presented in the context of the World Climate Research Programme (WCRP) Grand Challenge related to the development of a water strategy that addresses the issue of past and future changes in Water, in general, and the GEWEX science question on global water resource systems, in particular. This material will address issues associated with how changes in land surface and hydrology influence past and future changes in water availability and security, how new observations lead to improvements in water management and how models become better in global and regional climate predictions and projections of precipitation and how these outcomes relate to the TPE Water and Energy Exchanges Studies.

  5. Landsat: A Space Age Water Gauge

    NASA Image and Video Library

    Water specialists Rick Allen, Bill Kramber and Tony Morse use Landsat thermal band data to measure the amount of water evaporating from the soil and transpiring from plants’ leaves – a process call...

  6. Space Station Environmental Health System water quality monitoring

    NASA Technical Reports Server (NTRS)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  7. Space Station Environmental Health System water quality monitoring

    NASA Technical Reports Server (NTRS)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  8. Effect of water on the space charge formation in XLPE

    SciTech Connect

    Miyata, Hiroyuki; Yokoyama, Ayako; Takahashi, Tohru; Yamamaoto, Syuji

    1996-12-31

    In this paper, the authors describe the effect of water on the space charge in crosslinked polyethylene (XLPE). In order to study the effects of water and by-products of crosslinking, they prepared two types of samples. The water in the first one (Type A) is controlled by immersing in water after removing the by-products, and the water in the other type (Type B) of samples is controlled by the water from the decomposition of cumyl-alcohol by heating. The authors measured the space charge formation by pulsed electro-acoustic (PEA) method. A large difference was observed between Type A and Type B. In Type A samples (containing only water) the space charge distribution changes from homogeneous to heterogeneous as the water content increases, whereas in Type B (containing water and by-product) all samples exhibit heterogeneous space charge distribution. However, merely the effect of water for both types was almost the same, including peculiar space charge behavior near the water solubility limit.

  9. Laser Provides First 3-D View of Mars' North Pole

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This first three-dimensional picture of Mars' north pole enables scientists to estimate the volume of its water ice cap with unprecedented precision, and to study its surface variations and the heights of clouds in the region for the first time.

    Approximately 2.6 million of these laser pulse measurements were assembled into a topographic grid of the north pole with a spatial resolution of 0.6 miles (one kilometer) and a vertical accuracy of 15-90 feet (5-30 meters).

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  10. Space Station Water Processor Mostly Liquid Separator (MLS)

    NASA Technical Reports Server (NTRS)

    Lanzarone, Anthony

    1995-01-01

    This report presents the results of the development testing conducted under this contract to the Space Station Water Processor (WP) Mostly Liquid Separator (MLS). The MLS units built and modified during this testing demonstrated acceptable air/water separation results in a variety of water conditions with inlet flow rates ranging from 60 - 960 LB/hr.

  11. Clouds Over the North Pole

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 29 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Like yesterday's image, the linear 'ripples' are water-ice clouds. As spring is deepening at the North Pole these clouds are becoming more prevalent.

    Image information: VIS instrument. Latitude 68.9, Longitude 135.5 East (224.5 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter

  12. Clouds Over the North Pole

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 29 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Like yesterday's image, the linear 'ripples' are water-ice clouds. As spring is deepening at the North Pole these clouds are becoming more prevalent.

    Image information: VIS instrument. Latitude 68.9, Longitude 135.5 East (224.5 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter

  13. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  14. Acetylene around Jupiter Poles

    NASA Image and Video Library

    2010-12-29

    This graphic shows the distribution of the organic molecule acetylene at the north and south poles of Jupiter, based on data obtained by NASA Cassini spacecraft in early January 2001. Movie is available at the Photojournal.

  15. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  16. South Pole Lorentz Invariance Test

    NASA Astrophysics Data System (ADS)

    Hedges, Morgan; Smiciklas, Marc; Romalis, Michael

    2015-05-01

    Searches for Lorentz and CPT violation play an important role in testing current theories of space-time. To test one of the consequences of local Lorentz invariance we have performed a precision test of spatial isotropy at the Amundsen-Scott station near the geographic South Pole. This location provides the most isotropic environment available on Earth. The experiment is a rotating atomic-spin co-magnetometer which compares energy levels of 21Ne and Rubidium atoms as a function of direction. The experimental sensitivity obtained is more than an order of magnitude better than in previous such measurements, known as Hughes-Drever experiments. By operating the experiment at the Pole we are able to eliminate background signals due to the gyroscopic interactions of spins with Earth's rotation as well as diurnal environmental effects. Here we will present final results from the experiment's 2-year data collection period. This is the first precision atomic physics experiment performed at the Pole, and we will discuss the potential for future such measurements.

  17. Advances in water resources monitoring from space

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    Nimbus-5 observations indicate that over the oceans the total precipitable water in a column of atmosphere can be estimated to within + or - 10%, the liquid water content of clouds can be estimated to within + or - 25%, areas of precipitation can be delineated, and broad estimates of the precipitation rate obtained. ERTS-1 observations permit the measurement of snow covered area to within a few percent of drainage basin area and snowline altitudes can be estimated to within 60 meters. Surface water areas as small as 1 hectare can be inventoried over large regions such as playa lakes region of West Texas and Eastern New Mexico. In addition, changes in land use on water-sheds occurring as a result of forest fires, urban development, clear cutting, or strip mining can be rapidly obtained.

  18. KENNEDY SPACE CENTER, FLA. -- A breeding osprey occupies a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.

    NASA Image and Video Library

    2004-01-14

    KENNEDY SPACE CENTER, FLA. -- A breeding osprey occupies a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.

  19. Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment (CEOP-TPE)

    NASA Astrophysics Data System (ADS)

    Su, Bob; Ma, Yaoming; Menenti, Massimo; Wen, Jun; Sobrino, Jose; He, Yanbo; Li, Zhao-Liang; Tang, Bohui; Sneeuw, Nico; Zhong, Lei; Zeng, Yijian; van der Veld, Rogier; Chen, Xuelong; Zheng, Donghai; Huang, Ying; Lv, Shaoning; Wang, Lichun

    2016-08-01

    The achievements made in Dragon III in 2014-2016 are listed below:1. Maintaining the Tibetan Plateau Soil Moisture and Soil Temperature Observatory (Tibet-Obs) [1-3] and developing a method and data product by blending SM product over Tibetan Plateau and evaluating other available SM products [4].2. Developing a new algorithm for representing the effective soil temperature in microwave radiometry [5-7].3. Developing data sets to study the regional and plateau scale land-atmosphere interactions in TPE [8-11].4. Identifying and developing improved land surface processes [12-15].5. Developing a method for the quantification of water cycle components based on earth observation data and a comparison to reanalysis data [16-17].6. Investigating and revealing the mechanism of surface and tropospheric heatings on the Tibetan plateau [18].7. Proposing a validation framework for the generationof climate data records [19].8. Graduating seven young scientists with their doctorates during the last two years of Dragon III programme.9. Making the datasets and algorithms accessible to the scientific community.

  20. CEOP-TPE-Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ma, Y.; Van der Velde, R.; Dente, L.; Wang, L.; Zeng, Y.; Chen, X.; Huang, Y.; Menenti, M.; Sobrino, J.; Li, Z.-L.; Sneeuw, N.; Wen, J.; He, Y.; Tang, B.; Zhong, L.

    2014-11-01

    In the past two years of the CEOP-TPE project, a number of progresses have been made.1. The Tibetan Plateau SM & ST Observatory [1-3] has been further maintained and upgraded.2. An assessment of ECMWF land surface analysis over the Tibetan plateau [4] has been conducted.3. A blended soil moisture product over the Tibetan Plateau [5] has been generated.4. A 10-year (2001-2010) land surface energy balance product for climate and ecohydrological studies has been developed [6,7] and on the basis of this data set it is concluded that the Tibetan plateau is a heating source for the atmosphere in particular in winter months.5. A method for the quantification of water cycle components based on earth observation data and a comparison to reanalysis data has been developed. Ananalysis of the Yangtze river basin is preliminarily carried out and concluded that human influences are important in shorter terms, but climate influences seem dominate over direct human influences over longer terms.

  1. CEOP-TPE- Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ma, Y.; van der Velde, R.; Dente, L.; Wang, L.; Zeng, Y.; Chen, X.; Huang, Y.; Menenti, M.; Sobrino, J.; Li, Z.-L.; Sneeuw, N.; Wen, J.; He, Y.; Tang, B.; Zhong, L.

    2014-11-01

    In the past two years of the CEOP-TPE project, a number of progresses have been made. 1. The Tibetan Plateau SM & ST Observatory [1-3] has been further maintained and upgraded. 2. An assessment of ECMWF land surface analysis over the Tibetan plateau [4] has been conducted. 3. A blended soil moisture product over the Tibetan Plateau [5] has been generated. 4. A 10-year (2001-2010) land surface energy balance product for climate and ecohydrological studies has been developed [6,7] and on the basis of this data set it is concluded that the Tibetan plateau is a heating source for the atmosphere in particular in winter months. 5. A method for the quantification of water cycle components based on earth observation data and a comparison to reanalysis data has been developed. An analysis of the Yangtze river basin is preliminarily carried out and concluded that human influences are important in shorter terms, but climate influences seem dominate over direct human influences over longer terms.

  2. Using Field Observations and Satellite Data for the Energy and Water Cycle Study over Heterogeneous Landscape of the Third Pole Region

    NASA Astrophysics Data System (ADS)

    Ma, Y.

    2014-12-01

    The exchange of energy and water vapor transportation between land surface and atmosphere over the Tibetan Plateau area play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Supported by the Chinese Academy of Sciences and some international organizations, a Third Pole Environment (TPE) Research Platform (TPEP) is now implementing over the Tibetan Plateau and surrounding region. The background of the establishment of the TPEP, the establishing and monitoring plan of long-term scale (5-10 years) of the TPEP will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes and evapotranspiration (ET) partitioning (diurnal variation, inter-monthly variation and vertical variation etc), the characteristics of atmospheric and soil variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this study. The study on the regional distribution of land surface heat fluxes and ET are of paramount importance over heterogeneous landscape of the Tibetan Plateau. The parameterization methods based on satellite data (AVHRR and MODIS) and Atmospheric Boundary Layer (ABL) observations have been proposed and tested for deriving surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux, latent heat flux and ET over heterogeneous landscape. As cases study, the methods were applied to the whole Tibetan Plateau area. Four scenes of AVHRR data and eight scenes of MODIS data were used in this study. And the results showed that the proposed methodology is reasonable for the deriving surface heat fluxes and ET over heterogeneous landscape.

  3. Space Station Freedom Water Recovery test total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary

    1991-01-01

    Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.

  4. Analyzers Provide Water Security in Space and on Earth

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Resourcefulness is a key quality for living in space, and on the International Space Station (ISS), that means making the most of water supplies. In 2008, the installation of the Water Processing Assembly (WPA) onboard the ISS allowed the space station s crew to do just that. The WPA purifies moisture from nearly every possible source - sweat, water vapor, wastewater, and even urine - for drinking and oxygen generation. Capable of producing 35 gallons of potable, recycled water a day, the system has reduced the need for water delivered to the ISS by over 1,000 gallons a year, saving significant payload costs in the process. As with any drinking water, quality is a concern, particularly when that water has been recycled. This is an issue of particular interest in space, where ISS crewmembers would have to deal with any illness far from the nearest medical personnel and facilities. The WPA employs sensors that monitor water quality by measuring its conductivity, and rounding out the system s quality assurance methods is a device developed for NASA by a private industry partner. That company has now made the technology available for ensuring the purity of water for consumption and industrial uses on Earth.

  5. Big Hydrophobic Capillary Fluidics; Basically Water Ping Pong in Space

    NASA Astrophysics Data System (ADS)

    Weislogel, Mark; Attari, Babak; Wollman, Andrew; Cardin, Karl; Geile, John; Lindner, Thomas

    2016-11-01

    Capillary surfaces can be enormous in environments where the effects of gravity are small. In this presentation we review a number of interesting examples from demonstrative experiments performed in drop towers and aboard the International Space Station. The topic then focuses on large length scale hydrophobic phenomena including puddle jumping, spontaneous particle ejections, and large drop rebounds akin to water ping pong in space. Unseen footage of NASA Astronaut Scott Kelly playing water ping pong in space will be shown. Quantitative and qualitative results are offered to assist in the design of experiments for ongoing research. NASA NNX12A047A.

  6. Supercritical water oxidation - Concept analysis for evolutionary Space Station application

    NASA Technical Reports Server (NTRS)

    Hall, John B., Jr.; Brewer, Dana A.

    1986-01-01

    The ability of a supercritical water oxidation (SCWO) concept to reduce the number of processes needed in an evolutionary Space Station design's Environmental Control and Life Support System (ECLSS), while reducing resupply requirements and enhancing the integration of separate ECLSS functions into a single Supercritical Water Oxidation process, is evaluated. While not feasible for an initial operational capability Space Station, the SCWO's application to the evolutionary Space Station configuration would aid the integration of eight ECLSS functions into a single one, thereby significantly reducing program costs.

  7. SpaceX Water Deluge Test at Pad 39A

    NASA Image and Video Library

    2017-02-08

    Water sprays onto Launch Complex 39A during a test by SpaceX of the sound suppression system at the launch pad. The water deluge diminishes vibration at the pad during a liftoff to protect the pad structures and rocket itself from excessive shaking. Photo credit: NASA/Kim Shiflett

  8. Experimental study of the constituents of space wash water

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.; Colombo, G. V.

    1975-01-01

    This report presents experimental data, obtained under controlled conditions, which quantify the various constituents of human origin that may be expected in space wash water. The experiments were conducted with a simulated crew of two male and two female subjects. The data show that the expected wash water contaminants originating from human secretions are substantially lower than theoretical projections indicated. The data presented are immediately useful and may have considerable impact on the tradeoff comparisons among various unit processes and systems under consideration by NASA for recycling space wash water.

  9. Recovery of hygiene water by multifiltration. [in space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Putnam, David F.; Jolly, Clifford D.; Colombo, Gerald V.; Price, Don

    1989-01-01

    A multifiltration hygiene water reclamation process that utilizes adsorption and particulate filtration techniques is described and evaluated. The applicability of the process is tested using a simulation of a 4-man subsystem operation for 240 days. It is proposed the process has a 10 year life, weighs 236 kg, and uses 88 kg of expendable filters and adsorption beds to process 8424 kg of water. The data reveal that the multifiltration is an efficient nonphase change technique for hygiene water recovery and that the chemical and microbiological purity of the product water is within the standards specified for the Space Station hygiene water.

  10. Recovery of hygiene water by multifiltration. [in space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Putnam, David F.; Jolly, Clifford D.; Colombo, Gerald V.; Price, Don

    1989-01-01

    A multifiltration hygiene water reclamation process that utilizes adsorption and particulate filtration techniques is described and evaluated. The applicability of the process is tested using a simulation of a 4-man subsystem operation for 240 days. It is proposed the process has a 10 year life, weighs 236 kg, and uses 88 kg of expendable filters and adsorption beds to process 8424 kg of water. The data reveal that the multifiltration is an efficient nonphase change technique for hygiene water recovery and that the chemical and microbiological purity of the product water is within the standards specified for the Space Station hygiene water.

  11. Bioburden control for Space Station Freedom's Ultrapure Water System

    NASA Technical Reports Server (NTRS)

    Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim

    1991-01-01

    Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.

  12. Bioburden control for Space Station Freedom's Ultrapure Water System

    NASA Technical Reports Server (NTRS)

    Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim

    1991-01-01

    Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.

  13. SpeedyTime-5_Water_In_Space

    NASA Image and Video Library

    2017-08-10

    The International Space Station is a one-of-a-kind spot for scientists who want to do experiments where there’s no gravity, to find out how other natural forces function without gravity’s influence. In this “SpeedyTime” segment, Expedition 52 flight engineer Jack Fischer uses a few simple tools to demonstrate what happens to water in space when there’s no pull of gravity. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  14. An automated water iodinating subsystem for manned space flight

    NASA Technical Reports Server (NTRS)

    Houck, O. K.; Wynveen, R. A.

    1974-01-01

    Controlling microbial growth by injecting iodine (l2) into water supplies is a widely acceptable technique, but requires a specialized injection method for space flight. An electrochemical l2 injection method and l2 level monitor are discussed in this paper, which also describe iodination practices previously used in the manned space program and major l2 biocidal characteristics. The development and design of the injector and monitor are described, and results of subsequent experiments are presented. Also presented are expected vehicle penalties for utilizing the l2 injector in certain space missions, especially the Space Shuttle, and possible injector failure modes and their criticality.

  15. An automated water iodinating subsystem for manned space flight

    NASA Technical Reports Server (NTRS)

    Houck, O. K.; Wynveen, R. A.

    1974-01-01

    Controlling microbial growth by injecting iodine (l2) into water supplies is a widely acceptable technique, but requires a specialized injection method for space flight. An electrochemical l2 injection method and l2 level monitor are discussed in this paper, which also describe iodination practices previously used in the manned space program and major l2 biocidal characteristics. The development and design of the injector and monitor are described, and results of subsequent experiments are presented. Also presented are expected vehicle penalties for utilizing the l2 injector in certain space missions, especially the Space Shuttle, and possible injector failure modes and their criticality.

  16. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  17. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  18. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  19. Using in-situ and satellite data for the energy and water cycle study over heterogeneous landscape of the Third Pole region

    NASA Astrophysics Data System (ADS)

    Ma, Y.

    2015-12-01

    The exchange of energy and water vapor between land surface and atmosphere over the Tibetan Plateau area play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Supported by the Chinese Academy of Sciences and some international organizations, a Third Pole Environment (TPE) Research Platform (TPEP) is now implementing over the Tibetan Plateau and surrounding area. The background of the establishment of the TPEP, the establishing and monitoring plan of long-term scale (5-10 years) of the TPEP will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes, and evapotranspiration (ET) partitioning, the characteristics of atmospheric variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this study. The study on the regional distribution of land surface heat fluxes and ET are of paramount importance over heterogeneous landscape of the Tibetan Plateau. The parameterization method based on satellite data and the ABL observations has been proposed and tested for deriving regional distribution and their ten years variations of land surface variables, land surface heat fluxes and ET over heterogeneous landscape of the whole Tibetan Plateau area. To validate the proposed method, the ground-measured s land surface variables and surface heat fluxes in the TPEP are compared to satellite derived values. The results show that the derived land surface variables, land surface heat fluxes and ET over the study area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features. The sensible heat flux is decreasing while the latent heat flux is increasing from 2001 to 2010 over the whole Tibetan Plateau. And the estimated land surface variables and land surface heat fluxes are in

  20. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  1. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  2. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  3. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  4. Photometric analysis of a space shuttle water venting

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.

    1991-01-01

    Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.

  5. Moon - North Pole Mosaic

    NASA Image and Video Library

    1996-02-05

    This view of the Moon north pole is a mosaic assembled from 18 images taken by NASA's Galileo imaging system through a green filter as the spacecraft flew by on December 7, 1992. http://photojournal.jpl.nasa.gov/catalog/PIA00130

  6. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  7. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  8. Neptune Hot South Pole

    NASA Image and Video Library

    2007-09-18

    These thermal images show a hot south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere. The images were obtained with the Very Large Telescope in Chile Sept. 1 and 2, 2006.

  9. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  10. A LINE POLE 20, STUBBED HISTORIC POLE WITH ORIGINAL GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 20, STUBBED HISTORIC POLE WITH ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM. VIEW TO WEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  11. A LINE POLE 3, HISTORIC POLE WITH ORIGINAL GLASS PINTYPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 3, HISTORIC POLE WITH ORIGINAL GLASS PIN-TYPE INSULATORS. VIEW TO NORTHEAST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  12. Land water storage from space and the geodetic infrastructure

    NASA Astrophysics Data System (ADS)

    Cazenave, A.; Larson, K.; Wahr, J.

    2009-04-01

    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  13. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  14. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  15. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  16. Adaptivity in space and time for shallow water equations

    NASA Astrophysics Data System (ADS)

    Morandi Cecchi, M.; Marcuzzi, F.

    1999-09-01

    In this paper, adaptive algorithms for time and space discretizations are added to an existing solution method previously applied to the Venice Lagoon Tidal Circulation problem. An analysis of the interactions between space and time discretizations adaptation algorithms is presented. In particular, it turns out that both error estimations in space and time must be present for maintaining the adaptation efficiency. Several advantages, for adaptivity and for time decoupling of the equations, offered by the operator-splitting adopted for shallow water equations solution are presented. Copyright

  17. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Debrah K.; Schultz, John R..; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include US Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The Water and Food Analytical Laboratory at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced an anticipated temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight Total Organic Carbon Analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation action.

  18. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include U.S. Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The former Water and Food Analytical Laboratory (now Toxicology and Evironmental Chemistry Laboratory) at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced a third temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for the previous comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight total organic carbon analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation.

  19. Combined Space and Water Heating: Next Steps to Improved Performance

    SciTech Connect

    Schoenbauer, B.; Bohac, D.; Huelman, P.

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%-4.3% (20-40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes.

  20. Understanding catchment dynamics through a Space-Society-Water trialectic

    NASA Astrophysics Data System (ADS)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  1. Solar Space and Water Heating for School -- Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  2. Wire Frame Holds Water-Soap Film in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition 6 astronaut Dr. Don Pettit photographed a cube shaped wire frame supporting a thin film made from a water-soap solution during his Saturday Morning Science aboard the International Space Station's (ISS) Destiny Laboratory. Food coloring was added to several faces to observe the effects of diffusion within the film.

  3. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  4. Wire Frame Holds Water-Soap Film in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition 6 astronaut Dr. Don Pettit photographed a cube shaped wire frame supporting a thin film made from a water-soap solution during his Saturday Morning Science aboard the International Space Station's (ISS) Destiny Laboratory. Food coloring was added to several faces to observe the effects of diffusion within the film.

  5. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  6. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  7. The wintertime South Pole tropospheric water vapor column: Comparisons of radiosonde and recent terahertz radiometry, use of the saturated column as a proxy measurement, and inference of decadal trends

    NASA Astrophysics Data System (ADS)

    Chamberlin, R. A.; Grossman, E. N.

    2012-07-01

    We use a fifty-year record of wintertime radiosonde observations at the South Pole to estimate the precipitable water vapor column (PWV) over the entire period. Humidity data from older radiosondes is of limited reliability; however, we think an estimation of PWV is possible using temperature data because the wintertime lower troposphere is very close to saturated. From temperature data we derived PWVSAT which is the PWV if the troposphere was saturated over the entire column. Comparisons to recent radiosonde humidity data indicate that PWV ≃ 0.88PWVSAT. Since 1998 a CMU/NRAO 860 GHz atmospheric radiometer has been operating at the South Pole producing zenith opacity data, τo. It is expected that τo ∝ PWV, and also τo ∝ PWVSAT, since the lower atmospheric column is near to saturation. We compare trends in τo, PWVSAT, and PWV. PWV and PWVSAT showed little trend in the last fifty years, 1961 to 2010, except perhaps in the last two decades, when PWVSAT was below average, followed by an increasing trend to above average. This increasing trend in the last decade was also observed in τo, except for the final two years when it appears that something changed in the instrument response. PWVSAT is a useful metric for estimating PWV in the earlier years of wintertime South Pole radiosonde, and it is generally useful for evaluating the wintertime performance of radiosonde humidity and atmospheric opacity instrumentation.

  8. Moon - North Pole Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the Moon's north pole is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter as the spacecraft flew by on December 7, 1992. The left part of the Moon is visible from Earth; this region includes the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left); Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region.

  9. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  10. International Space Station (ISS) Water Transfer Hardware Logistics

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne D.

    2006-01-01

    Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.

  11. Atmosphere and water quality monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  12. International Space Station (ISS) Water Transfer Hardware Logistics

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne D.

    2006-01-01

    Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.

  13. Wandering Poles of Enceladus

    NASA Image and Video Library

    2017-05-30

    Working with image data from NASA's Cassini mission, researchers have found evidence that Saturn's moon Enceladus may have tipped over, reorienting itself so that terrain closer to its original equator was relocated to the poles. This phenomenon is known as true polar wander. Researchers discovered a chain of basins across the surface of Enceladus along with a pair of depressions that line up with an equator and poles, respectively, if the moon's axis of rotation was reoriented by about 55 degrees of latitude. These maps look toward the icy moon's southern hemisphere, with colors representing highs and lows. Purple represents the lowest elevations, while red represents the highest. The map at left shows the surface of Enceladus in its possible ancient orientation, millions of years ago. The chain of basins representing topographic lows can be seen in blue and purple, running along the equator, with an additional low region around the original south pole. The region that encloses the moon's currently active south polar terrain, with its long, linear "tiger stripe" fractures, would have been at middle latitudes just south of the equator. The map at right shows the current orientation of Enceladus. https://photojournal.jpl.nasa.gov/catalog/PIA21612

  14. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity

    USDA-ARS?s Scientific Manuscript database

    Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the United States Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribut...

  15. Intelligent Space Tube Optimization for speeding ground water remedial design.

    PubMed

    Kalwij, Ineke M; Peralta, Richard C

    2008-01-01

    An innovative Intelligent Space Tube Optimization (ISTO) two-stage approach facilitates solving complex nonlinear flow and contaminant transport management problems. It reduces computational effort of designing optimal ground water remediation systems and strategies for an assumed set of wells. ISTO's stage 1 defines an adaptive mobile space tube that lengthens toward the optimal solution. The space tube has overlapping multidimensional subspaces. Stage 1 generates several strategies within the space tube, trains neural surrogate simulators (NSS) using the limited space tube data, and optimizes using an advanced genetic algorithm (AGA) with NSS. Stage 1 speeds evaluating assumed well locations and combinations. For a large complex plume of solvents and explosives, ISTO stage 1 reaches within 10% of the optimal solution 25% faster than an efficient AGA coupled with comprehensive tabu search (AGCT) does by itself. ISTO input parameters include space tube radius and number of strategies used to train NSS per cycle. Larger radii can speed convergence to optimality for optimizations that achieve it but might increase the number of optimizations reaching it. ISTO stage 2 automatically refines the NSS-AGA stage 1 optimal strategy using heuristic optimization (we used AGCT), without using NSS surrogates. Stage 2 explores the entire solution space. ISTO is applicable for many heuristic optimization settings in which the numerical simulator is computationally intensive, and one would like to reduce that burden.

  16. Video- Water Droplet Demonstration on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates a spilling phenomenon with films of water. After drawing a 100-200 micron thick film of pure water, which is impossible to do on Earth, Dr. Pettit oscillates the film back and forth like a drum head, forcing the water droplets to spill off. He observes that although the phenomenon looks much like drops of water that are ejected from the surface of a pool when a rock is dropped in, the underlying physics are very different.

  17. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  18. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  19. Potable water supply in U.S. manned space missions

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  20. Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.

    2012-01-01

    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.

  1. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate.

  2. A Fractured Pole

    NASA Image and Video Library

    2015-10-15

    NASA's Cassini spacecraft zoomed by Saturn's icy moon Enceladus on Oct. 14, 2015, capturing this stunning image of the moon's north pole. A companion view from the wide-angle camera (PIA20010) shows a zoomed out view of the same region for context. Scientists expected the north polar region of Enceladus to be heavily cratered, based on low-resolution images from the Voyager mission, but high-resolution Cassini images show a landscape of stark contrasts. Thin cracks cross over the pole -- the northernmost extent of a global system of such fractures. Before this Cassini flyby, scientists did not know if the fractures extended so far north on Enceladus. North on Enceladus is up. The image was taken in visible green light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 4,000 miles (6,000 kilometers) from Enceladus and at a Sun-Enceladus-spacecraft, or phase, angle of 9 degrees. Image scale is 115 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19660

  3. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  4. Combined Space and Water Heating: Next Steps to Improved Performance

    SciTech Connect

    B. Schoenbauer; Bohac, D.; Huelman, P.

    2016-07-13

    A combined space- and water-heating (combi) system uses a high-efficiency direct-vent burner that eliminates safety issues associated with natural draft appliances. Past research with these systems shows that using condensing water heaters or boilers with hydronic air handling units can provide both space and water heating with efficiencies of 90% or higher. Improved controls have the potential to reduce complexity and improve upon the measured performance. This project demonstrates that controls can significantly benefit these first-generation systems. Laboratory tests and daily load/performance models showed that the set point temperature reset control produced a 2.1%–4.3% (20–40 therms/year) savings for storage and hybrid water heater combi systems operated in moderate-load homes. The full modulation control showed additional savings over set point control (in high-load homes almost doubling the savings: 4%–5% over the no-control case). At the time of installation the reset control can be implemented for $200–$400, which would provide paybacks of 6–25 years for low-load houses and 3–15 years for high-load houses. Full modulation implementation costs would be similar to the outdoor reset and would provide paybacks of 5-½–20 years for low-load houses and 2-½–10 years for high-load houses.

  5. International Space Station USOS Potable Water Dispenser Development

    NASA Technical Reports Server (NTRS)

    Shaw, Laura A.; Barreda, Jose L.

    2008-01-01

    The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an onorbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity will allow three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. It will be the size of two stacked Shuttle Middeck lockers (approximately the size of two small suitcases) and integrated into a science payload rack in the U.S. Laboratory element. Providing potable-quality water at the proper temperature for food and beverage reconstitution is critical to maintaining crew health and well-being. The numerous engineering challenges as well as human factors and safety considerations during the concept, design, and prototyping are outlined in this paper.

  6. RESOLVE: An International Mission to Search for Volatiles at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Quinn, Jacqueline W.; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.; Picard, Martin

    2013-01-01

    Numerous studies have shown that the use of space resources to manufacture propellant and consumables can significantly reduce the launch mass of space exploration beyond earth orbit. Even the Moon, which has no atmosphere, is ricb in resources that can theoretically be harvested. A series of lunar missions over the last 20 years has shown an unexpected resource on the Moon. There is evidence that water ice and other volatiles useful for the production of propellants are located at the lunar poles, though most of it is located within permanently shadowed craters where accessing these resources is challenging.

  7. Neptune's Wandering Hot Pole

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Fletcher, Leigh; Yanamandra-Fisher, Padma; Geballe, Tom; Hammel, Heidi; Fujiyoshi, Takuya; Encrenaz, Therese; Hofstadter, Mark; Mousis, Olivier; Fuse, Tetsuharu

    2010-05-01

    Images of stratospheric emission from Neptune obtained in 2006 at ESO's Very Large Telescope (Orton et al., 2007, A&A 473, L5) revealed a near-polar hot spot near 70 deg. S latitude that was detectable in different filters sampling both methane (~7-micron) and ethane (~12-micron) emission from Neptune's stratosphere. Such a feature was not present in 2003 Keck and 2005 Gemini North observations: these showed only a general warming trend towards Neptune's pole that was longitudinally homogeneous. Because of the paucity of longitudinal sampling in the 2003, 2005 and 2006 images, it was not clear whether the failure to see this phenomenon in 2003 and 2005 was simply the result of insufficient longitudinal sampling or whether the phenomenon was truly variable in time. To unravel these two possibilities, we proposed for time on large telescopes that were capable of resolving Neptune at these wavelengths. We were granted time at Gemini South in 2007 using T-Recs, Subaru time in 2008 using the COMICS instrument and VLT time in 2008 and 2009 using VISIR. Two serendipitous T-Recs images of Neptune were also obtained in 2007 using a broad-band N (8-14 micron) filter, whose radiance is dominated by 12-micron ethane emission, and whose primary purpose was navigation of N-band spectroscopy. The feature was re-observed (i) in 2007 in the T-Recs N-band filter and (ii) in 2008 with COMICS in a 12.5-micron image. Unfortunately, none of the telescope time granted was sufficient to sample all longitudes over the 12-hour period of this latitude, and so no definitive separation of the two possibilities was obtained. However, considering the ensemble of images as a random sample of longitudes, it is likely that the phenomenon is ephemeral in time, as it was observed only twice among 9 independent observing epochs. We will continue to request observations to sample all longitudes systematically, but our current sample argues that the phenomenon is truly ephemera, because we most likely

  8. Challenges of Watering Plants in Space: Water Retention and Distribution---What Have we Learned?

    NASA Astrophysics Data System (ADS)

    Heinse, Robert; Jones, Scott; Or, Dani; Tuller, Markus; Topham, T. Shane; Podolsky, Igor; Bingham, Gail

    The distribution of water controls directly or indirectly the management of water, air and nutrients in coarse-textured porous plant-growth substrates. With the motivation to involve plants in future life support systems in space, the question arises whether fluid behavior in porous substrates is altered when subjected to microgravitational accelerations. Central to unraveling this question is the water retention characteristic; an often used control parameter for managing water supply to plants in space. In order to differentiate between changes in water content, water configuration, and pore-scale restrictions, we developed experiments which allowed for distinctions in retention characteristics to be made based on measurements in parabolic flight and on the ISS. These measurements highlight an important feature of capillary dominated water configuration: the non-homogeneity of water contents with no gravity gradients remaining. We found this non-homogeneity to be dependent on whether a pore was draining or imbibing prior to the induced change. This dependence results in significant water content gradients maintained at separations of only a few pore lengths. One result of this altered distribution at the root-module scale is the abridged existence and increased length of continuous gas-filled pathways for diffusive transport. These pathways represent, in part, the hypothesized limitation for the exchange of respiratory gases, and therefore record the changes in capillary dominated processes that affect the configuration and transport of fluids in porous media.

  9. Posterior pole tumor update.

    PubMed

    Ou, Judy I; Wheeler, Sharon M; O'Brien, Joan M

    2002-12-01

    This chapter focuses on the diagnosis and management of choroidal melanoma in light of recent findings from the COMS. Retinoblastoma is emphasized to describe recent trends in primary treatment away from EBRT and toward chemoreduction with local therapy. In addition, vascular and glial tumors of the retina and tumors of the retinal pigment epithelium are described because of the association between these lesions and systemic disease. Recent advances in treatment and genetic testing for these diseases are discussed. Finally, ocular metastasis, intraocular lymphoid tumors, and intraocular leukemia are included because of their importance in determining systemic treatment and prognosis. The chapter gives an overview of important posterior pole tumors and highlights recent developments in the management of each intraocular disease process.

  10. KENNEDY SPACE CENTER, FLA. - A female Red-bellied Woodpecker clings to a utility pole where it has made a home on Merritt Island Wildlife Refuge. The most common type of woodpecker in the South, the "Zebraback" nests in the cavities of trees and consumes large quantities of wood-boring beetles, as well as other insect pests. More than 280 species of birds make their homes on the 140,000-acre refuge, which lies within the boundaries of Kennedy Space Center.

    NASA Image and Video Library

    1995-04-10

    KENNEDY SPACE CENTER, FLA. - A female Red-bellied Woodpecker clings to a utility pole where it has made a home on Merritt Island Wildlife Refuge. The most common type of woodpecker in the South, the "Zebraback" nests in the cavities of trees and consumes large quantities of wood-boring beetles, as well as other insect pests. More than 280 species of birds make their homes on the 140,000-acre refuge, which lies within the boundaries of Kennedy Space Center.

  11. Europe's space telescope ISO finds water in distant places

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Equally striking is ISO's discovery of water vapour in the outer planets, Saturn, Uranus and Neptune. As those chilly planets cannot release water from within, they probably have a supply of water coming from elsewhere in the Solar System. Since ISO went into orbit at the end of 1995, it has used its unique power of analysing infrared rays coming from the Universe to identify water vapour and water ice near dying stars and newborn stars. It has also measured the water vapour steaming from Comet Hale-Bopp. "Before ISO no instrument was capable of detecting water in so many places," comments ESA's director of science, Roger Bonnet. "To start revealing the cosmic history of the Earth's water is a big success for ESA and for the astronomers who use our unique infrared observatory. And ISO's discovery that water is commonplace in the Galaxy will encourage renewed speculation about life that may exist in the vicinity of other stars." Water amid the stars Primaeval hydrogen atoms make water by joining with oxygen atoms that are manufactured within stars, in nuclear reactions occurring towards the end of a star's life. Oxygen from defunct stars enriches the Galaxy, and abundant hydrogen is available to react with it. Although the existence of water in interstellar space is not surprising, the Earth's moist atmosphere makes life difficult for any astronomer who wishes to spot water vapour in the Universe with ground-based instruments. Observations from aircraft and balloons gave early hints of cosmic water, but thorough investigations had to wait for ISO's unhampered view from space. Three of the satellite's instruments, the Short Wavelength Spectrometer (SWS), the Long Wavelength Spectrometer (LWS) and the photometer ISOPHOT operating in spectroscopic mode, take part in the hunt for water. Last year, for example, users of both SWS and LWS reported water vapour in the vicinity of the aged star, W Hydrae, from which oxygen-rich winds blow into space. The bright infrared

  12. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  13. Cold Hole Over Jupiter's Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations with two NASA telescopes show that Jupiter has an arctic polar vortex similar to a vortex over Earth's Antarctica that enables depletion of Earth's stratospheric ozone.

    These composite images of Jupiter's north polar region from the Hubble Space Telescope (right) and the Infrared Telescope Facility (left) show a quasi-hexagonal shape that extends vertically from the stratosphere down into the top of the troposphere. A sharp temperature drop, compared to surrounding air masses, creates an eastward wind that tends to keep the polar atmosphere, including the stratospheric haze, isolated from the rest of the atmosphere.

    The linear striations in the composite projections are artifacts of the image processing. The area closest to the pole has been omitted because it was too close to the edge of the planet in the original images to represent the planet reliably.

    The composite on the right combines images from the Wide Field and Planetary Camera 2 of the Hubble Space Telescope taken at a wavelength of 890 nanometers, which shows stratospheric haze particles.

    The sharp boundary and wave-like structure of the haze layer suggest a polar vortex and a similarity to Earth's stratospheric polar clouds. Images of Jupiter's thermal radiation clinch that identification. The composite on the left, for example, is made from images taken with Jet Propulsion Laboratory's Mid-Infrared Large-Well Imager at NASA's Infrared Telescope Facility at a wavelength of 17 microns. It shows polar air mass that is 5 to 6 degrees Celsius (9 to 10 degrees Fahrenheit) colder than its surroundings, with the same border as the stratospheric haze. Similar observations at other infrared wavelengths show the cold air mass extends at least as high as the middle stratosphere down to the top of the troposphere.

    These images were taken Aug. 11 through Aug. 13, 1999, near a time when Jupiter's north pole was most visible from Earth. Other Infrared Telescope Facility images at

  14. Safe-Egress Pole For Vehicle In Motion

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D.; Wesselski, Clarence J.; Pelischek, Timothy E.; Becker, Bruce H.; Kahn, Jon; Grimaldi, Margaret E.; Mcmanamen, John; Castro, Edgar O.

    1990-01-01

    Telescoping pole helps people leave moving vehicle in emergency. Extends from vehicle far enough to guide people away from structural features that could strike and injure them. Also used to deliver cargo from aircraft without damage to or by wings or to eject supplies from moving trucks so they land off roadway. Concept developed to help crewmembers escape from Space Shuttle under certain flight conditions. Pole compact and lightweight.

  15. Higher Pole Linear Traps for Atomic Clock Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    We investigate experimentally and theoretically higher pole linear ion traps for frequency standard use. We have built a 12-pole trap and have successfully loaded ions into it from a linear quadrupole trap. By solving the Boltzmann equation describing large ion clouds where space charge interactions are important, we show that clock frequency changes due to ion number fluctuations are much smaller in ion clocks based multipole traps than comparable clocks based on quadrupole linear traps.

  16. Can tritiated water-dilution space accurately predict total body water in chukar partridges

    SciTech Connect

    Crum, B.G.; Williams, J.B.; Nagy, K.A.

    1985-11-01

    Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water.

  17. Longer life for wood poles

    SciTech Connect

    Hopkinson, J.; Tackaberry, R.

    1982-11-01

    Investigates the use of liquid fumigants on in-service wooden utility poles in order to prevent decay. Reveals that although utility poles are pressure-treated with chemicals before they go into service as supports for transmission and distribution lines, they are frequently invaded by one or more of 225 species of fungus. Indicates that while the average service life of poles is 15-25 yrs, retreatment with fumigants may extend it to 35-40 yrs. Discusses trees and treatment, fungi, pole inspection, and fumigation. Points out that the Bonneville Power Administration estimates that it can save $2.2 million per year by retreating 15,000 poles instead of having to replace 1500 of them per year for 10 yrs. Reports that research results on decay and fumigation have helped more than 160 electric utilities who are using the fumigants. Concludes that although some decay-prone areas in poles, such as seasoning checks and woodpecker holes, will continue to invite the fungal menace, the increasing effort to inspect and fumigate poles on a large scale will ensure safer and more reliable power lines, while eliminating much of the conventional expenditure on replacing decayed poles.

  18. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  19. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  20. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  1. Release of liquid water from the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Knecht, D. J.; Viereck, R. A.; Murad, E.; Kofsky, I. L.; Bagian, J. P.; Buchli, J. F.

    1990-01-01

    Groundbased and onboard video images of a sunlit Shuttle Orbiter water dump are interpreted as showing that the continuous 1-mm-diameter liquid stream quickly breaks up in near-vacuum to form ice/snow particles of two characteristic sizes. Discrete large droplets are most evident in the close-in photographs, and unresolved submicron 'fog' from recondensation of overexpanded evaporated water appears to dominate the ground-telescope photographs of the 2.5 km long optically detectable trail. The mean diameter of the smaller particles was estimated from the spatial distribution of visible radiance using a model of their energy balance, (small) surface roughening as they sublime, and Mie scattering of pre-dawn sunlight. The results are consistent with those from recent space-tank simulations.

  2. An Alternative Water Processor for Long Duration Space Missions

    NASA Astrophysics Data System (ADS)

    Barta, Daniel J.; Wheeler, Raymond; Jackson, William; Pickering, Karen; Meyer, Caitlin; Pensinger, Stuart; Vega, Leticia; Flynn, Michael

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater.

  3. An Alternative Water Processor for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pennsinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

    2014-01-01

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration human space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to stoichiometric maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater

  4. Pollution Beat Explorers to South Pole

    NASA Image and Video Library

    2017-09-27

    Norwegian explorer Roald Amundsen became the first man to reach the South Pole in December 1911. More than 100 years later, an international team of scientists that includes a NASA researcher has proven that air pollution from industrial activities arrived to the planet’s southern pole long before any human. Using data from 16 ice cores collected from widely spaced locations around the Antarctic continent, including the South Pole, a group led by Joe McConnell of the Desert Research Institute (DRI) in Reno, Nevada, created the most accurate and precise reconstruction to date of lead pollution over Earth’s southernmost continent. The new record, described in an article published today in the online edition of the Nature Publishing Group’s journal Scientific Reports, spans a 410-year period from 1600 to 2010. More here: 1.usa.gov/1oB4p9U NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. Upgrades to the International Space Station Water Recovery System

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Pruitt, Jennifer M.; Nur, Mononita; Takada, Kevin C.; Carter, Layne

    2017-01-01

    The International Space Station (ISS) Water Recovery System (WRS) includes the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications aim to reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to improve the WPA through the use of reverse osmosis membrane technology to reduce the resupply mass of the WPA Multi-filtration Bed and improved catalyst for the WPA Catalytic Reactor to reduce the operational temperature and pressure. For the UPA, this paper discusses progress on various concepts for improving the reliability of the system, including the implementation of a more reliable drive belt, improved methods for managing condensate in the stationary bowl of the Distillation Assembly, and evaluating upgrades to the UPA vacuum pump.

  6. Third Pole Environment (TPE) -Latest Progress

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yao, T.; Zhang, F.; Yang, X.; Wang, W.; Ping, F.

    2014-12-01

    Centered on the Tibetan Plateau, the Third Pole region is a unique geographical unit, which represents one of the largest ice masses on the Earth. The region has great impacts on environmental changes in China, the Northern Hemisphere and the globe.It also demonstrates sensitive feedbacks to global changes and the impacts of anthropogenic activities in surrounding regions. Like the Arctic and Antarctica, the Third Pole region is an especially sensitive area that draws great attention from the scientific community. In 2009, with support from the Chinese Academy of Sciences and international organizations, the Third Pole Environment (TPE) program, led by Chinese scientists, was officially launched. The program focuses on the theme of "water-ice-air-ecosystem-human" interactions, with the aim to address the following scientific questions, such as the spatial and temporal characteristics of past environmental changes in the Third pole, the interactions between hydrosphere and cryosphere and hazard processes, the ecological systems' impacts on and response to environmental changes, and the impacts of anthropogenic activities on environmental changes in the region and adaptation strategies. The goal of the program is to reveal environmental change processes and mechanisms on the Third Pole and their influences on and responses to global changes, and thus to serve for enhancement of human adaptation to the changing environment and realization of human-nature harmony. Under the leadership of the co-chairs, and relying on Scientific Committee and the TPE office, the program has accomplished a number of scientific tasks since its inauguration. TPE has made tremendous progress in the research of glacier changes, interactions between the westerlies and monsoon, establishment of field stations, data sharing and education.

  7. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude

  8. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  9. Amorphous and polycrystalline water ices in space environments

    NASA Astrophysics Data System (ADS)

    Andrade, Diana; Pilling, Sergio; Da Silveira, Enio; Barros, Ana

    2016-07-01

    Ices are an important reservoir of more complex molecular species in several space environments, containing information about the composition and formation of these regions. Water ice is the dominant constituent of interstellar ices in most lines of sight and is about 70 % of the composition in comets, being a key molecule in astrochemical models. It is believed that one of the reactive species possibly evaporated from the water ices is the hydronium ion, H_{3}O^{+}, which plays an important role in the oxygen chemistry network. This ion has been detected in the lunar surface of Enceladus and Titan, and toward the Sagittarius B2 molecular Clouds, where H_{2}O and OH were also identified. In this work, the ion desorption due to radiolysis in ices constituted by water at three different temperatures (40, 70 and 125 K) is studied, to investigate the different allotropic water ices. A discussion on the rate of H_{3}O^{+} and water delivered to gas phase, as well as the half-life of water ice grains, inside dense molecular clouds considering a constants cosmic ray flux is given. The ions desorbed from water ice have been mass/charge analyzed by a time-of-flight spectrometer. Among the results, it is seen that in the positive ion spectrum of high density amorphous water ice at 40 K the highest desorption yields (ejected ions/impact) correspond to H^{+}, H_{3}O^{+} and clusters formed by (H_{2}O)_{n}R^{+}, where R^{+} is H_{3}O^{+} and 1 ≤ n ≤ 25. At T = 125 K, the ice is in its low density polycrystalline form and new clusters are present, such as (H_{2}O)_{n}R^{+}, where R^{+} is H_{2}^{+} and H_{3}^{+} (for low n), beyond H_{3}O^{+}. Therefore, it is seen that (H_{2}O)_{n}H_{3}O^{+} series (with n between 1 and 25) is dominant in all cases. The H_{3}O^{+} desorption yield at 40 K is about 5times10^{-3} ions/impact. This value is 4-5 times higher than the one obtained at T > 125 K. This behavior is also seen to all series member and consequently to the sum (Yn).

  10. Restoration guidelines for riparian areas using dormant stock "pole" cuttings

    Treesearch

    Tony Barron

    1996-01-01

    The Open Space Division manages seven thousand acres of riparian areas comprising the Rio Grande Valley State Park. In 1988. Open Space began experimenting with dormant stock cuttings. This paper contains methods and procedures for establishing dormant stock cuttings. Dormant stock cuttings will be referred to as "poles" in this paper.

  11. Lightweight extendable and retractable pole

    DOEpatents

    Warren, J.L.; Brandt, J.E.

    1994-08-02

    A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole. 18 figs.

  12. Lightweight extendable and retractable pole

    DOEpatents

    Warren, John L.; Brandt, James E.

    1994-01-01

    A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole.

  13. Cosmic water traced by Europe's space telescope ISO

    NASA Astrophysics Data System (ADS)

    1996-05-01

    In retracing this history, ISO also observes water in the form of ice in cooler regions around the stars, and in the dust surrounding young stars, from which planets could evolve. Comets represent an intermediate stage in planet-building, and they contain much water ice. According to one hypothesis the newly formed Earth received some of its water directly from impacting comets. Water vapour in the Earth's atmosphere has prevented telescopes on the ground from detecting the water vapour among the stars, except in very unusual circumstances. ISO orbiting in space escapes the impediment of the atmosphere. Excellent onboard instruments register the characteristic infrared signatures of water vapour, water ice and many other materials. When ISO scrutinizes selected objects, it detects emissions or absorptions of infrared rays at particular wavelengths, or "lines" in a spectrum, which reveal the presence of identifiable atoms, molecules and solids. The Short Wavelength Specrometer and the Long Wavelength Spectrometer provide detailed chemical diagnoses, and the photometer ISOPHOT and camera ISOCAM also have important spectroscopic capabilities. Examples of water detection were among many topics reviewed at the First ISO Science Workshop held at ESA's Research and Technology Centre (ESTEC) in Noordwijk, the Netherlands (29-31 May) when 300 astronomers from Europe, the USA and Japan gathered to assess results from ISO since its launch on 17 November 1995. The Long Wavelength Spectrometer has made remarkable observations of water-vapour lines in the vicinity of dying stars and in star-forming regions. So has the Short Wavelength Spectrometer, which also detects water ice. The photometer lSOPHOT has registered water ice in a large number of objects. Although fascinated by the natural history of water in the cosmos, astronomers have more technical reasons for welcoming ISO's observations. They can use thc details in a spectrum to reduce the abundance of water and its

  14. Recycling of treated wood poles

    SciTech Connect

    Fansham, P.

    1995-11-01

    There are approximately 150 million utilities poles in service in North America. Of the 3 million poles removed from service each year, many poles still contain a sound and structurally intact core and only the outer layer has deteriorated. Since most of the old poles are treated with either pentachlorophenol or creosote there are limited disposal options available to pole users. The practice of giving old poles away to farmers or other interested parties in falling into disfavour since this practice does not absolve the utility of the environmental liability associated with the treated wood. TWT has commercialised a thermolysis (Pyrolysis) based process capable of removing oil based preservatives from treated wood. The patented process involves: the shaving of the weathered pole exterior; the rapid distillation of oil based preservatives in an oxygen depleted environment; condensation of the vapours; and separation of liquids. TWT has constructed a 30,000 pole per year facility east of Calgary and has provided recycled poles for the construction of two power lines now in use by TransAlta Utilities Corporation, Canada`s largest investor owned electric utility. TWT has tested two thermolysis (Pyrolysis) technologies and has determined that contact thermolysis using a heated auger design performed better and with less plugging than a fast fluid bed reactor. The fluid bed reactor is prone to coke formation and contamination of the oil by fine char particles. Residual PCP concentration in the shavings was reduced from 9500 ppm to 10 ppm. Leachate testing on the char yielded a PCP concentration of 1.43 ppm in the Leachate, well below the EPA standard maximum of 100 ppm.

  15. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  16. Pole placement by static and dynamic output feedback

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.; Stevens, P. K.

    1982-01-01

    This paper gives new results concerning pole-assignability by static and dynamic output feedback, based on the interpretation of transfer functions, feedback laws, poles and zeroes in terms of the incidence geometry of m-planes and p-planes in (m+p)-space. As an illustration of the most basic ideas, a short proof of the Brasch-Pearson theorem is given. A more careful analysis of this proof yields a significant extension of this theorem, which is considerably sharpened in the case of pole-assignment by constant gain output feedback. As a final application, a root-locus design technique for non-square systems is introduced: zero placement by pre- or post-compensation. This zero placement problem is then analyzed by methods similar to those developed for pole placement by output feedback.

  17. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  18. Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole

    NASA Technical Reports Server (NTRS)

    Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.

    2017-01-01

    The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.

  19. Pole Assignment for Second-Order Systems

    NASA Astrophysics Data System (ADS)

    CHU, E. K.

    2002-01-01

    This paper contains some results for pole assignment problems for the second-order system M ẍ(t)+D ẋ(t)+K x (t)=B u (t) . Specifically, Algorithm 0 constructs feedback matrices F1 and F2 such that the closed-loop quadratic pencil Pc( λ)= λ2M+ λ ( D+ BF2)+( K+ BF1) has a desired set of eigenvalues and the associated eigenvectors are well-conditioned. The method is a modification of the SVD-based method proposed by Juang and Maghami [1, 2] which is a second-order adaptation of the well-known robust eigenvalue assignment method by Kautsky et al. [3] for first-order systems. Robustness is achieved by minimising some not-so-well-known condition numbers of the eigenvalues of the closed-loop second-order pencil. We next consider the partial pole assignment problem. In 1997, Datta, Elhay and Ram proposed three biorthogonality relations for eigenvectors of symmetric definite quadratic pencils [4]. One of these relations was used to derive an explicit solution to the partial pole assignment problem by state feedback for the related single-input symmetric definite second-order control system. The solution shed new light on the stabilisation and control of large flexible space structures, for which only one small subset of the spectrum needs to be reassigned while retaining the complementary part of the spectrum. In this paper, the method has been generalised for multi-input and non-symmetric quadratic pencils. Finally, we discuss briefly the output feedback pole assignment problem.

  20. NASA Satellites See Santa's North Pole

    NASA Image and Video Library

    2017-09-27

    All was well at the North Pole this summer, when Santa and his elves were busily making toys and taking orders for this Christmas. NASA's Terra satellite was able to piece together a number of images it took to give us a complete look at the North Pole, which is usually very difficult to see by satellites, so Santa can keep his exact location secret. On June 30, 2011 the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Terra satellite made multiple passes over the Arctic from its orbit in space, capturing a true-color image of the summer lands and sea-ice near the North Pole on each pass. Individual images were then pieced together to create a large mosaic of the area, which gives a broader view that would not be possible with individual images. In this mosaic of the Arctic, the polar ice cap appears blue-white, while the ice covering land appears bright white. The ice of Greenland, in the lower left (southwest), is especially bright. Clouds also appear bright white, and can be difficult to separate from ice in true-color images. Most of the clouds in this image appear in billowing swirls, while ice tends to be smoother. This can only be confirmed in the false-color images that were also generated by MODIS that same day. The North Pole is found northeast off the coast of Greenland, in the middle of the ice-covered Arctic Ocean and roughly near the center of this image. This is the northernmost point on Earth. From the North Pole, all directions are south. Santa will be leaving from here on the night of the 24th and circling the globe. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us

  1. Analysis of water from the Space Shuttle and Mir Space Station by ion chromatography and capillary electrophoresis.

    PubMed

    Orta, D; Mudgett, P D; Ding, L; Drybread, M; Schultz, J R; Sauer, R L

    1998-04-24

    Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.

  2. Analysis of water from the Space Shuttle and Mir Space Station by ion chromatography and capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.

    1998-01-01

    Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.

  3. Analysis of water from the Space Shuttle and Mir Space Station by ion chromatography and capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.

    1998-01-01

    Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.

  4. Exploring predictions of safe operating spaces for human water use

    NASA Astrophysics Data System (ADS)

    Kwakkel, J. H.; Timmermans, J. S.

    2012-04-01

    In the Nature article 'A safe operating space for humanity', Rockström et al. (2009) introduce the idea of a safe space for human activities that will not push the planet out of the 'Holocene state'. Rockström et al. have identified nine earth-system processes and associated thresholds which, if crossed, are expected to generate unacceptable environmental change. Rockström et al. (2009) focus on the scientific prediction of these thresholds. Concerning the use of these boundaries for public policy, these authors limit their efforts to concluding that the evidence so far suggests that, as long as the thresholds are not crossed, humanity has the freedom to pursue long-term social and economic development. The approach advocated by Rockström et al. (2009) is plagued by two related problems: uncertainty and dynamic complexity (Molden, 2009; Brewer, 2009). The latter problem addresses the reductionist approach of Rockström et al and argues, in opposition, that the limits on each of the nine earth-system processes are co-depended and thus the safe operating space constitutes a single multi-dimensional space that can only be identified holistically. The first problem is that our current scientific knowledge and understanding of the earth system is incomplete and partly contested. A majority of the authors reacting on the global limit concept do however emphasize their relevance as "targets for policy makers". However, the two problems imply that the establishment of predicted global limits as a substantive base for public policy is meaningless. Still, the presence of scientific uncertainty and dynamic complexity and thus the omnipresence of unpredictability need not be used as an excuse to ignore the importance of a substantive grounding of these policies. In this paper, we argue and show how despite dynamic complexity and irreducible uncertainty, policies can be designed, tested, and shown to be effective in reaching broad social goals related to social and economic

  5. Proportional wire calorimeter for magnet pole tips

    SciTech Connect

    Kraus, D; Ludlam, T; Renardy, J; Willis, W; Zurfluh, E

    1980-01-01

    A total absorption calorimeter is designed to have magnetic properties comparable to those of ordinary steel, and thus can be incorporated into the poles of a spectrometer magnet without compromising the field quality. A test device has been built which consists of an iron structure penetrated by a finegrain pattern of holes, each acting as a proportional tube such that 90% of the volume is occupied by iron. Measurements of the energy and space resolution of this device in a high energy beam will be presented.

  6. Swing phase kinematics of horses trotting over poles.

    PubMed

    Brown, S; Stubbs, N C; Kaiser, L J; Lavagnino, M; Clayton, H M

    2015-01-01

    Trotting over poles is used therapeutically to restore full ranges of limb joint motion. The mechanics of trotting over poles have not yet been described, hence quantitative evidence for the presumed therapeutic effects is lacking. To compare limb kinematics in horses trotting over level ground, over low poles and over high poles to determine changes in joint angulations and hoof flight arcs. Repeated measures experimental study in sound horses. Standard motion analysis procedures with skin-fixed reflective markers were used to measure swing phase kinematics from 8 horses trotting on level ground, over low (11 cm) and high (20 cm) poles spaced 1.05 ± 0.05 m apart. Spatiotemporal variables and peak swing phase joint flexion angles were compared using repeated measures ANOVA (P<0.05) with Bonferroni correction for pairwise post hoc testing. Peak heights of the fore and hind hooves increased significantly and progressively from no poles (fore: 13.8 ± 3.8 cm; hind: 10.8 ± 2.4 cm) to low poles (fore: 30.9 ± 4.9 cm; hind: 24.9 ± 3.7 cm) and to high poles (fore: 41.0 ± 3.9 cm; hind: 32.7 ± 4.0 cm). All joints of the fore- and hindlimbs contributed to the increase in hoof height through increased swing phase flexion. The hooves cleared the poles due to increases in joint flexion rather than by raising the body higher during the suspension phases of the stride. The increases in swing phase joint flexions indicate that trotting over poles is effective for activating and strengthening the flexor musculature. Unlike the use of proprioceptive stimulation devices in which the effects decrease over time due to habituation, the horse is required to elevate the hooves to ensure clearance whenever poles are present. The need to raise the limbs sufficiently to clear the poles and place the hooves accurately requires visuomotor coordination, which may be useful in the rehabilitation of neurological cases. The Summary is available in Chinese - see Supporting

  7. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water in galleys and medical care spaces. 1250.84... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in...

  8. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water in galleys and medical care spaces....

  9. A Strategy for Integrated Water Cycle Observations from Space

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Houser, P. R.

    2005-12-01

    The coupling of land surface hydrologic processes to atmospheric processes over a range of spatial and temporal scales is needed for understanding how atmosphere-land surface interactions operate and feed back onto the regional and larger scale climate system. An integral component of NASA's Global Water and Energy Cycle (GWEC) program and the World Climate Research is whether knowledge of land surface hydrologic states results in improved weather and short-term climate predictions. The inherent research strategy for NASA/GWEC and WCRP/GEWEX for investigating this is through the merging (assimilation) of remotely sensed observations of the surface hydrospheric state with process-based, terrestrial water and energy balance models. NASA assumes that remote sensing observations using current (TRMM, Terra, and Aqua) and planned (e.g. Global Precipitation Mission, HYDROS for surface soil moisture and freeze-thaw state, and possibly snow and surface water) platforms will provide sufficient estimates of surface hydrologic state variables. The extent to which this assumption can be realized remains an open question. The unmet needs facing the community in fully exploiting space-borne observations include: (i) having sufficiently accurate retrieval of physical surface states, including validation programs that can estimate retrieval error characteristics; (ii) overcoming satellite sensor programs that primarily focus on a single physical parameter; and (iii) having consistency between satellite observations and land surface models in terms of consistency in the retrieved variables as they relate to the spatial and temporal variability of the terrestrial hydrosphere. This presentation will offer a new vision for water cycle observation and modeling that has, at its core, the concept of integrated observations as opposed to isolated observations, and consistency between models and observations. By integrated observations, we mean the simultaneous retrieval of related water

  10. Electrochemical control of iodine disinfectant for space transportation system and space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    An electrochemical microbial check valve method (EC-MCV) for controlling the iodine disinfectant in potable water (PW) for NASA's space operations was proposed. The factors affecting the design and performance of the unit were analyzed. This showed that it would be feasible to construct a recyclable unit in a small volume that will operate in either an iodine removal or addition mode. The EC-MCV should remove active iodine species rapidly from PW, but the rapid delivery rates at end-use may make complete removal of excess I(-) difficult under some conditions. Its performace change with AgI buildup needs to be investigated, as this controls the time for recycling the unit. The EC-MCV has advantages over the passive microbial check valve (MCV) method currently in use, as it would allow precise control of the I2 level and would not introduce excess I(-) to the water. The presence of oxygen in the EC-MCV needs to be investigated as it could affect the efficiency of I2 addition and excess I(-) removal.

  11. Characterization and monitoring of microbial species in the international space station drinking water

    NASA Technical Reports Server (NTRS)

    Duc, M. T. La; Vankateswaran, K.; Sumner, R.; Pierson, D.

    2003-01-01

    The focus of this study is to develop procedures to characterize the microbial quality of the drinking water for the International Space Station (ISS) and shuttle at various stages of water treatment.

  12. Characterization and monitoring of microbial species in the international space station drinking water

    NASA Technical Reports Server (NTRS)

    Duc, M. T. La; Vankateswaran, K.; Sumner, R.; Pierson, D.

    2003-01-01

    The focus of this study is to develop procedures to characterize the microbial quality of the drinking water for the International Space Station (ISS) and shuttle at various stages of water treatment.

  13. Transport of plutonium in surface and sub-surface waters from the Arctic shelf to the North Pole via the Lomonosov Ridge.

    PubMed

    Vintró, L León; McMahon, C A; Mitchell, P I; Josefsson, D; Holm, E; Roos, P

    2002-01-01

    New data on the levels and long-range transport of plutonium in the Arctic Ocean, recorded in the course of two expeditions to this zone in 1994 and 1996, are discussed in this paper. Specifically, approximately 100 plutonium measurements in surface and sub-surface water sampled at 58 separate stations throughout the Kara, Laptev and East Siberian Seas, as well as along latitudinal transects across the Lomonosov Ridge, are reported and interpreted in terms of the circulation pathways responsible for the transport of this element from the North Atlantic to the Arctic Shelf and into the Arctic interior. In addition, the behaviour of plutonium in its transit through the vast Arctic shelf seas to open waters under extreme environmental conditions is discussed in terms of the partitioning of plutonium between filtered (<0.45 microm) seawater and suspended particulate, and its association with colloidal matter. Finally, limited evidence of the presence of a colloidal plutonium component in Arctic waters subject to direct riverine input is adduced.

  14. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  15. South Pole Lorentz Invariance Test

    NASA Astrophysics Data System (ADS)

    Hedges, Morgan; Smiciklas, Marc; Romalis, Michael

    2014-05-01

    Atomic spin co-magnetometers are among the most sensitive instruments to test for violations of CPT and Lorentz symmetry. Our rotating co-magnetometer has, in recent years, set the most stringent limits for such violations in fermions with measurements conducted in Princeton. In order to eliminate the gyroscopic pickup of Earth's rotation as a major limiting background, we now operate a Rb-21Ne co-magnetometer at the Amundsen-Scott South Pole Station. We discuss the current status of our ongoing South Pole experiment along with the latest results. This research is funded by NSF grant #PLR-1142032.

  16. Calligraphic Poling of Ferroelectric Material

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Strekalov, Dmitry; Savchenkov, Anatoliy; Matsko, Adrey; Maleki, Lute; Iltchenko, Vladimir

    2007-01-01

    Calligraphic poling is a technique for generating an arbitrary, possibly complex pattern of localized reversal in the direction of permanent polarization in a wafer of LiNbO3 or other ferroelectric material. The technique is so named because it involves a writing process in which a sharp electrode tip is moved across a surface of the wafer to expose the wafer to a polarizing electric field in the desired pattern. The technique is implemented by use of an apparatus, denoted a calligraphic poling machine (CPM), that includes the electrode and other components as described in more detail below.

  17. A Southern Bald Eagle perches on a pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Southern Bald Eagle perches on top of a utility pole at Kennedy Space Center. About a dozen bald eagles live in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nest in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  18. Moon's North Pole

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Mariner 10 was launched on November 3, 1973, 12:45 am PST, from Cape Canaveral on an Atlas/Centaur rocket (a reconditioned Intercontinental Ballistic Missile - ICBM). Within 12 hours of launch the twin cameras were turned on and several hundred pictures of both the Earth and the Moon were acquired over the following days.

    In this unusual view eastern Mare Frigor is near the center of the disc, while Mare Crisiumis the large circular feature near the lower right limb. The heavily cratered region shown in the top of the mosaic shows portions of the Moon not seen from the Earth.

    This mosaic is composed of 22 frames acquired in orange (15), clear (4), UV (2), and UV-polarized (1) wavelengths by the Mariner 10 Spacecraft.

    The Mariner 10 mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  19. IAU Poles and Rotation Rates

    NASA Technical Reports Server (NTRS)

    Simon, J. L.

    1997-01-01

    Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites revises tables giving the directions of the north poles rotation and the prime meridians of the planets, satellites, and asteriods and also tables of their sizes and shapes.

  20. Applying the Global Energy and Water Cycle Experiment (GEWEX) Hydroclimatology Panel's (GHP's) Regional Hydroclimate Projects (RHPs) framework to improve understanding of Hydrology of the Third Pole Environment (TPE).

    NASA Astrophysics Data System (ADS)

    van Oevelen, P.; Benedict, S.

    2012-04-01

    Better in-situ and remote sensing observations from TPE and analysis of these phenomena, and improving our ability to model and predict them will contribute to increasing information needed by society and decision makers for future planning. We believe TPE could benefit from becoming an element of the The Regional Hydroclimate Projects (RHPs) that are part of the GEWEX Hydroclimatology Panel (GHP). These Projects are a source of hydrologic science and modeling within GEWEX. GHP, through its network of Regional Projects, provides flux site data sets for different regions, seasons and variables, that can be used to evaluate remote sensing products with energy, water and carbon budget components. In turn, the scope of the contribution made by the RHPs through the application of in-situ and remote sensing data includes advances in seasonal forecasting, the detection and attribution of change and the development and analysis of climate projections. Challenges also remain for GHP in defining a cooperative framework in which to deal with monsoons and to help coordinate the multitude of national and region. By entraining TPE in this framework and in the cross cutting work underway in the High Elevations and water and energy budget study components of GHP there would be a mutual benefit to be gained. The TPE would provide the regional level science and implementation that yields results/tools that would contribute to GEWEX Imperatives and Grand Challenges, while GHP would provide the forum for fostering cross-collaboration between TPE and the existing RHPs in terms of expertise, instrumentation development, modeling exercises, observational data exchange etc. Additionally TPE would benefit from visibility at the programmatic level with the World Climate Research Program (WCRP) and its international sponsors, its presence on the web, newsletters, mailing lists, etc. We will report on how the existing TPE science and data scheme can be incorporated in an international

  1. Revised paleomagnetic pole for the Sonoma Volcanics, California

    USGS Publications Warehouse

    Mankinen, E.A.

    1989-01-01

    Paleomagnetic sampling of the Miocene and Pliocene Sonoma Volcanics, northern California, was undertaken to supplement an earlier collection. Data from 25 cooling units yield positive fold and reversal tests, and a paleomagnetic pole located at 80.2??N., 069.2??E., with ??95 = 6.8??. This paleopole is significantly displaced (9.6?? ?? 5.3?? of latitude) to the farside of the geographic pole. A highly elliptical distribution of the data in both direction and VGP space indicates that incomplete averaging of geomagnetic secular variation is a more likely explanation for this anomaly than is northward translation of the volcanic field. -Author

  2. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    PubMed

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  3. Matrix Methods for Determining System Poles from Transient Response.

    DTIC Science & Technology

    1980-05-01

    K’ whose elements are spaced q samples apart are orthogonal to *, and one can determine the system poles from i provided the decimation aliasing...of the literature in that it stresses the use of matrix methods and vector space geometry rather than "sequential" concepts, primarily because we...this could as easily average out some of the signal, and it would be hard to guarantee preservation of rank. This alternative will not be explored

  4. A cold-pole enhancement in Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Cassidy, Timothy A.; McClintock, William E.; Killen, Rosemary M.; Sarantos, Menelaos; Merkel, Aimee W.; Vervack, Ronald J.; Burger, Matthew H.

    2016-11-01

    The ultraviolet and visible spectrometer component of the Mercury Atmospheric and Surface Composition Spectrometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft characterized the local-time distribution of the sodium exosphere over the course of its orbital mission. The observations show that the sodium exosphere is enhanced above Mercury's cold-pole longitudes. Based on previously published sodium exosphere models, we infer that these regions act as night side surface reservoirs, temporary sinks to the exosphere that collect sodium atoms transported antisunward. The reservoirs are revealed as exospheric enhancements when they are exposed to sunlight. As in the models the reservoir is depleted as the cold poles rotate from dawn to dusk, but unlike the models the depletion is only partial. The persistence of the reservoir means that it could, over the course of geologically long periods of time, contribute to an increase in the bulk concentration of sodium near the cold-pole longitudes.

  5. 78 FR 52868 - Pole Attachment Complaint Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... From the Federal Register Online via the Government Publishing Office FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 1 Pole Attachment Complaint Procedures AGENCY: Federal Communications Commission... regulations concerning pole attachments outlined in the DATES section. DATES: Effective August 27, 2013,...

  6. Landau pole in the pyramid scheme

    NASA Astrophysics Data System (ADS)

    Banks, Tom; Fortin, Jean-François; Kathrein, Scott

    2010-12-01

    We revisit the problem of the hidden sector Landau pole in the pyramid scheme. There is a fixed line in the plane of hidden sector gauge coupling and Yukawa couplings between the trianon fields. We postulate that the couplings flow to this line, at a point where the hidden sector gauge coupling is close to the strong coupling edge of its perturbative regime. Below the masses of the heavier trianons, the model quickly flows to a confining NF=NC=3 supersymmetric gauge theory, as required by phenomenological considerations. We study possible discrete R symmetries, which guarantee, among other things, that the basin of attraction of the fixed line has full codimension in the space of R-allowed couplings. The Yukawa couplings required to get the fixed line violate the pyrma-baryon symmetries we invoked in previous work to find a dark matter candidate. Omitting one of them, we have a dark matter candidate, and an acceptable renormalization group flow down from the unification scale, if the confinement scale of the hidden sector group is lowered from 5 to 2 TeV. However, we cannot find anomaly-free symmetries, which guarantee a set of pyrma-baryon violating couplings that eliminate the Landau pole, but do not allow a supersymmetry preserving vacuum of the model. We can do this with only one pyrma-baryon violating coupling, but this lowers the confinement scale to 900 GeV, which may already be ruled out due to light hidden sector baryons.

  7. Dynamics of Enceladus South Pole Ejecta

    NASA Astrophysics Data System (ADS)

    Makuch, Martin; Schmidt, J.; Spahn, F.

    2007-10-01

    The Saturnian moon Enceladus was recently found to be a potent source of gas and dust particles. There was an active region observed on the south pole of Enceladus with jets spraying material in the space. The ejected dust particles are considered to be the main source of the faint E ring. In our work we investigate the long-term dynamics of icy particles ejected from the south pole of Enceladus. The motion of the ejected grains, being subject to many perturbation forces, strongly depends on particle properties (e.g. size, charge etc.). We study the resulting spatial distribution of particles in the E ring. Primarily we focus on the structure of the ring in the vicinity of Enceladus. In our study we also concentrated on processes limiting particle lifetime. These are mainly collisions with Enceladus and other Saturnian satellites or main ring, as well as the sputtering of particles by plasma ions bombardment. Modeling the equilibrium between particle sources and sinks we found the size distribution which is expected to be observed in the E ring.

  8. Dynamics of Enceladus south pole ejecta

    NASA Astrophysics Data System (ADS)

    Makuch, M.; Schmidt, J.; Spahn, F.

    2007-08-01

    The Saturnian moon Enceladus was recently found to be a potent source of gas and dust particles. There was an active region observed on the south pole of Enceladus with jets spraying material in the space. The ejected dust particles are considered to be the main source of the faint E ring. In our work we investigate the long-term dynamics of icy particles ejected from the south pole of Enceladus. The motion of the ejected grains, being subject to many perturbation forces, strongly depends on particle properties (e.g. size, charge etc.).We study the resulting spatial distribution of particles in the E ring. Primarily we focus on the structure of the ring in the vicinity of Enceladus. In our study we also concentrated on processes limiting particle lifetime. These are mainly collisions with Enceladus and other Saturnian satellites or main ring, as well as the sputtering of particles by plasma ions bombardment. Modeling the equilibrium between particle sources and sinks we found the size distribution which is expected to be observed in the E ring.

  9. Development of a multi-pole magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Shiao, Yaojung; Nguyen, Quang-Anh

    2013-06-01

    This paper presents a new approach in the design and optimization of a novel multi-pole magnetorheological (MR) brake that employs magnetic flux more effectively on the surface of the rotor. MR brakes with conventional single ring-type electromagnetic poles have reached the limits of torque enhancement. One major reason is the limitation of the magnetic field strength within the active area of the MR fluid due to the geometric constraints of the coil. The multi-pole MR brake design features multiple electromagnetic poles surrounded by several coils. As a result, the active chaining areas for the MR fluid are greatly increased, and significant brake torque improvement is achieved. The coil structure, as a part of the stator, becomes flexible and customizable in terms of space usage for the winding and bobbin design. In addition, this brake offers extra options in its dimensions for torque enhancement because either the radial or the axial dimensions of the rotor can be increased. Magnetic circuit analysis was conducted to analyze the effects of the design parameters on the field torque. After that, simulations were done to find the optimal design under all major geometric constraints with a given power supply. The results show that the multi-pole MR brake provides a considerable braking torque increase while maintaining a compact and solid design. This is confirmation of its feasibility in actual braking applications.

  10. Resonance poles in three-body systems

    NASA Astrophysics Data System (ADS)

    Pearce, B. C.; Afnan, I. R.

    1984-12-01

    We develop a method for finding resonance poles in Faddeev equations. The method is computationally simpler than previous methods and is based on the rotation of contour technique. It is applied to πd elastic scattering with coupling to the NΔ channel. The position of the pole is compared with predictions based on Argand diagram and speed analysis. We find that the conventional methods are unreliable if the pole is further from the real axis than the Δ resonance pole.

  11. Sectional Pole for Measuring Tree Heights

    Treesearch

    R. H. Brendemuehl; James B. Baker

    1965-01-01

    A sectional aluminum pole designed by the Silviculture Laboratory at Marianna, Florida, has proved useful for measuring tree heights. It is more convenient than a sectional bamboo pole 1 or a telescoping fiberglass pole. A tree 5 to 30 feet in height can be measured to the nearest tenth of a foot in 30 seconds. The pole is constructed of low-cost, readily available...

  12. Water reflection recognition based on motion blur invariant moments in curvelet space.

    PubMed

    Zhong, Sheng-Hua; Liu, Yan; Liu, Yang; Li, Chang-Sheng

    2013-11-01

    Water reflection, a typical imperfect reflection symmetry problem, plays an important role in image content analysis. Existing techniques of symmetry recognition, however, cannot recognize water reflection images correctly because of the complex and various distortions caused by the water wave. Hence, we propose a novel water reflection recognition technique to solve the problem. First, we construct a novel feature space composed of motion blur invariant moments in low-frequency curvelet space and of curvelet coefficients in high-frequency curvelet space. Second, we propose an efficient algorithm including two sub-algorithms: low-frequency reflection cost minimization and high-frequency curvelet coefficients discrimination to classify water reflection images and to determine the reflection axis. Through experimenting on authentic images in a series of tasks, the proposed techniques prove effective and reliable in classifying water reflection images and detecting the reflection axis, as well as in retrieving images with water reflection.

  13. Third Pole Environment (TPE): a new frontier for interdisciplinary research

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yao, T.; Thompson, L. G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Yang, X.; Wang, W.; Joswiak, D.; Liu, X.; Devkota, L. P.; Tayal, S.; Luo, T.

    2013-12-01

    The Tibetan Plateau and surrounding mountain ranges, referred to by scientists as the Third Pole (TP), represent one of the largest ice masses of the Earth. The region is one of the most sensitive areas responding to global climate change due to its high altitude and the presence of permafrost and glaciers. The near 100,000 km2 of glaciers ensure the permanent flow of major rivers in this region and provide water to 1.4 billion people in Asia. Thus, environmental changes taking place on the TP significantly influences social and economic development of countries in this region such as China, India, Nepal, Tajikistan, Pakistan, Afghanistan and Bhutan. With an average elevation higher than 4,000 metres above sea level, the Third Pole is characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes that bear special significance for the Earth's biodiversity, climate and water cycles. For a comprehensive understanding of the environment of the TP and its implications on the development of the region, we need to integrate different disciplines under a them of 'water-ice-air-ecosystem -human' interactions and reveal environmental change processes and mechanisms on the TP and their influences on and regional responses to global changes, and thus to serve for enhancement of human adaptation to the changing environment. Like Antarctica and the Arctic, the Third Pole region is drawing increased attention of the international academic community. A series of observations and monitoring programs in the Third Pole region has been widely implemented. However, data necessary to precisely assess the environmental, societal and economic changes caused by alterations in the Third Pole dynamics are either lacking or insufficient. The Third Pole Environment (TPE) program is thus established as a comprehensive and coordinated international research, monitoring and capacity building initiative, with goals to address the influence

  14. Problems in water recycling for Space Station Freedom and long duration life support

    NASA Technical Reports Server (NTRS)

    Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.

    1989-01-01

    A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.

  15. Problems in water recycling for Space Station Freedom and long duration life support

    NASA Technical Reports Server (NTRS)

    Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.

    1989-01-01

    A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.

  16. Transition from ring to beam arc distributions of water ions near the Space Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1990-01-01

    The distribution function of water ions produced near the Space Shuttle by charge exchange between ionospheric oxygen ions and outgassed water molecules is studied. The transition from a ring to a beam arc distribution function is described. The number density of water ions is found to increase monotonically with decreasing distance from the Shuttle.

  17. A summary of meteorological requirements for water vapor data and possible space shuttle applications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The accuracy of water vapor measurement required by modelers and forecasters at a number of scales of motion is discussed. Direct and indirect methods for operational use in obtaining atmospheric water vapor data are reviewed along with meteorological applications of water vapor data obtained by a space shuttle laboratory lidar system.

  18. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and in connection with garbage disposal. Any tap discharging nonpotable water which is installed for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water in galleys and medical care spaces. 1250.84... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.84 Water in galleys and medical...

  19. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and in connection with garbage disposal. Any tap discharging nonpotable water which is installed for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water in galleys and medical care spaces. 1250.84... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.84 Water in galleys and medical...

  20. Mars Reconnaissance Orbiter over Pole

    NASA Technical Reports Server (NTRS)

    2003-01-01

    December 10, 2003

    NASA's Mars Reconnaissance Orbiter passes over the planet's south polar region in this artist's concept illustration.

    NASA plans to launch this multipurpose spacecraft in August 2005 to advance our understanding of Mars through detailed observation, to examine potential landing sites for future surface missions and to provide a high-data-rate communications relay for those missions.

    The orbiter's shallow radar experiment, one of six science instruments on board, is designed to probe the internal structure of Mars' polar ice caps, as well as to gather information planet-wide about underground layers of ice, rock and, perhaps, liquid water that might be accessible from the surface.

    Phobos, one of Mars' two moons, appears in the upper left corner of the illustration

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter Project for the NASA Office of Space Science, Washington. JPL's main industrial partner in the project, Lockheed Martin Space Systems, Denver, Colo., is building the spacecraft. The Italian Space Agency is providing the radar instrument.

  1. Regenerative water supply for an interplanetary space station: The experience gained on the space stations “Salut”, “Mir”, ISS and development prospects

    NASA Astrophysics Data System (ADS)

    Bobe, Leonid; Samsonov, Nikoly; Gavrilov, Lev; Novikov, Vladimir; Tomashpolskiy, Mihail; Andreychuk, Peter; Protasov, Nikoly; Synjak, Yury; Skuratov, Vladimir

    2007-06-01

    Based on the experience in operation of Russian space stations Salut, Mir and International space station ISS the station's water balance data, parameters and characteristics of the systems for water recovery have been obtained. Using the data design analysis an integrated water supply system for an interplanetary space station has been performed. A packaged physical/chemical system for water supply is composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. The take off mass of the packaged water supply system (including expendables, redundancy hardware, equivalent mass of power consumption and of thermal control) is appropriate for Mars missions. The international space station is indispensable for verifying innovative processes and new water recovery systems intended for missions to Mars.

  2. Space Techniques Used to Measure Change in Terrestrial Waters

    NASA Astrophysics Data System (ADS)

    Cazenave, A.; Milly, P. C. D.; Douville, H.; Benveniste, J.; Kosuth, P.; Lettenmaier, D.

    2004-02-01

    Terrestrial waters-including snowpack, glaciers, water in aquifers and other geological formations, water in the plant root zone, rivers, lakes, man-made reservoirs, wetlands, and inundated areas-represent less than a mere 1% of the total amount of water on Earth. However, they have a crucial impact on terrestrial life and human needs and play a major role in climate variability. Land waters are continuously exchanged with the atmosphere and oceans in vertical and horizontal mass fluxes through evaporation, transpiration, and surface and subsurface runoff. Although it is now recognized that improved description of the terrestrial branch of the global water cycle is of major importance for climate research and for inventory and management of water resources, the global distribution and spatial-temporal variations of terrestrial waters are still poorly known because routine in situ observations are not available globally. So far, global estimates of spatial-temporal change of land water stored in soils and in the snowpack essentially rely on hydrological models, either coupled with atmosphere/ocean global circulation models and/or forced by observations.

  3. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry; Taylor ,Brandon W.

    2012-01-01

    Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  4. Solar technology assessment project. Volume 3: Active space heating and hot water supply with solar energy

    NASA Astrophysics Data System (ADS)

    Karaki, S.; Loef, G. O. G.

    1981-04-01

    Several types of solar water heaters are described and assessed. These include thermosiphon water heaters and pump circulation water heaters. Auxiliary water heating is briefly discussed, and new and retrofit systems are compared. Liquid-based space heating systems and solar air heaters are described and assessed, auxiliary space heating are discussed, and new and retrofit solar space heating systems are compared. The status of flat plate collectors, evacuated tube collectors, and thermal storage systems is examined. Systems improvements, reliability, durability and maintenance are discussed. The economic assessment of space and water heating systems includes a comparison of new systems costs with conventional fuels, and sales history and projections. The variety of participants in the solar industry and users of solar heat is discussed, and various incentives and barriers to solar heating are examined. Several policy implications are discussed, and specific government actions are recommended.

  5. South Pole Lorentz Invariance Test

    NASA Astrophysics Data System (ADS)

    Hedges, Morgan; Smiciklas, Marc; Romalis, Michael

    2015-04-01

    Tests of Lorentz and CPT symmetries are important because they form a cornerstone of quantum field theory and general relativity. To test one of the consequences of local Lorentz invariance we have performed a precision test of spatial isotropy at the Amundsen-Scott station near the geographic South Pole. This location provides the most isotropic environment available on Earth. We use an atomic spin co-magnetometer to compare energy levels in 21 Ne and Rubidium atoms as the apparatus rotates with respect to the cosmos. Our experimental sensitivity is more than an order of magnitude greater than in previous such measurements, known as Hughes-Drever experiments. By operating at the South Pole we eliminate background signals due to the gyroscopic interactions of spins with Earth's rotation as well as diurnal environmental effects. The experiment has finished a 2-year data collection period and we expect to present the final results at the meeting. This is the first precision atomic physics experiment performed at the Pole and we will discuss the potential for future such measurements.

  6. Water Reclamation Technology Development at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  7. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  8. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  9. Space techniques used to measure change in terrestrial waters

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Terrestrial waters—including snowpack, glaciers, water in aquifers and other geological formations, water in the plant root zone, rivers, lakes, man-made reservoirs, wetlands, and inundated areas—represent less than a mere 1% of the total amount of water on Earth. However, they have a crucial impact on terrestrial life and human needs and play a major role in climate variability.Land waters are continuously exchanged with the atmosphere and oceans in vertical and horizontal mass fluxes through evaporation, transpiration, and surface and subsurface runoff. Although it is now recognized that improved description of the terrestrial branch of the global water cycle is of major importance for climate research and for inventory and management of water resources, the global distribution and spatial-temporal variations of terrestrial waters are still poorly known because routine in situ observations are not available globally. So far, global estimates of spatial-temporal change of land water stored in soils and in the snowpack essentially rely on hydrological models, either coupled with atmosphere/ocean global circulation models and/or forced by observations.

  10. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  11. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  12. A space satellite perspective to monitor water quality using ...

    EPA Pesticide Factsheets

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  13. A NASA Space Sleuth Hunts the Trail of Earth Water

    NASA Image and Video Library

    2009-08-13

    This vertical profile view from the Tropospheric Emission Spectrometer TES instrument on NASA Aura satellite depicts the distribution of water vapor molecules over Earth tropics across one transect of the satellite orbit on January 6, 2006.

  14. Water from Space: Real World Opportunities and Far Away Promises

    NASA Astrophysics Data System (ADS)

    Tayebi, N.; Garcia, L. E.; Serrat-Capdevila, A.

    2015-12-01

    A Global Initiative on Remote Sensing for Water Resources Management (Water RS) was launched in October 2013, financed by the World Bank's Water Partnership Program (WPP[1]) of the Global Water Program. It aims, among other things, to put together and disseminate, in collaboration with the Bank's operational staff as well as external partners, a clear picture of the potential role of Earth Observations (EO) in solution approaches to address particular water-related issues.The initiative focuses on the accuracy, reliability, and validity of the EO products to be used by decision makers in water related management and planning contexts. To make informed decisions, the client needs to know about the potential and the limitations of practical application of remote sensing technology and products, through informed recommendations and the development of practical, result-oriented tools. Thus, the objective of the Water RS initiative is to address this issue by taking a two-phase approach focusing respectively on: (i) identifying demand and priorities of the users while raising awareness on the potential and limitation of RS tools and (ii) bridging the gap between science and development of operational projects.While the first phase has come to completion, the second phase is being designed to tackle some of the reasons why there have been rather limited applications in the developing world (World Bank clients), such as: incentive issues, implementation capacity, costs and financing, and the overall issue of "How to do it?. An overview of the initiative and the lessons learned to date will be presented, setting the stage for muti-partner discussions. [1] The Water Partnership Program (WPP) is a longstanding alliance between the World Bank and the governments of the Netherlands, United Kingdom, Denmark, and Austria.

  15. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect

    Greer, Charles R.

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  16. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  17. Extreme Water Deficit in Brazil Detected from Space

    NASA Technical Reports Server (NTRS)

    Vieira Getirana

    2016-01-01

    Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of 26.1 cmyr21 over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System(GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 2023 of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus.

  18. Formation of Recycle Fluid Water on any Space Surface as Supports of Life

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Kato, T.

    2017-02-01

    The present result can be applied for compact water-CO2 gas exchange method from any primordial rocks at next 2050 space exploration to support any celestial bodies, astronauts, and human life activity on any extraterrestrial surfaces.

  19. Design package for a complete residential solar space heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  20. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  1. Pole-to-pole biogeography of surface and deep marine bacterial communities.

    PubMed

    Ghiglione, Jean-François; Galand, Pierre E; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W; Bakker, Kevin; Bertilson, Stefan; Kirchmanj, David L; Lovejoy, Connie; Yager, Patricia L; Murray, Alison E

    2012-10-23

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.

  2. A Southern Bald Eagle perches on a pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Southern Bald Eagle perched on top of a utility pole searches the area. About a dozen bald eagles live in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nest in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  3. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  4. Research on the Distribution of Magnetic Particles by Changing The Rate of the Radius of the Pole and the Length between Two Poles

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Ye; Gong, Yong-Yong; Yang, Kai; Huang, Zhe-Yong; Pei, Ning

    2016-05-01

    We propose an innovate program in order to improve the distribution of magnetic particles aggregated in magnetic field by changing the radius of the pole(R) and the spacing between two poles(D). The finite element software ANSYS is used to research the changes in magnetic flux density and magnetic gradient in the experiment. The analysis by Origin indicates that the force along radius reduced to less than half of the original, improving the aggregation at the center greatly.

  5. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Dawson, Richard Nils; Qu, Ronghai; Avanesov, Mikhail Avramovich

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  6. Water processing technology for space and weight savings

    SciTech Connect

    Favret, U.B.; Caudle, D.D.

    1996-11-01

    Sump piles have been used on offshore platforms for any years. The very first platforms placed in open waters outside the recognized coastline were fitted with a large diameter tubular vessel which extended from above the surface of the sea to some distance under water. The original purpose of these vessels as to serve as a conduit for waste (rain water and ash water) off the platform deck so that it would not foul the platform structural members. There has been steady development of this technology since the early 1970`s and it has been improved and adapted to other treating applications. Today this technology is capable of doing much more than simply acting as a catch basin for waste oil in deck drains. This paper discuss, advances made in this technology and describes some of the potential applications of it. Modern sump technology includes a number of ow products with a range of capabilities. From the original {open_quote}sump pile{close_quote} used on early platforms several levels of increasingly sophisticated features have been added. The original sump pile was an open ended tubular vessel that extended into the water from the lower levels of the platform. It had an open bottom and no internals. Subsequent improvements have included vessel internals, ways to control level and level fluctuations, and incorporation of more sophisticated separation schemes. This paper will discuss some of these improvements and discuss some illustrative applications.

  7. Video-Puff of Air Hits Ball of Water in Space Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates the phenomenon of a puff of air hitting a ball of water that is free floating in space. Watch the video to see why Dr. Pettit remarks 'I'd hate think that our planet would go through these kinds of gyrations if it got whacked by a big asteroid'.

  8. Plasma density fluctuations observed during Space Shuttle Orbiter water releases

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; D'Angelo, N.; Kurth, W. S.

    1989-01-01

    Observations by the Langmuir probe on the Plasma Diagnostics Package flown as part of the Spacelab 2 mission in the summer of 1985 show a strong increase in the level of turbulence near the Shuttle Orbiter during operations in which liquid water is released. The spectrum of the plasma density fluctuations peaks at the lowest frequencies measured (a few Hz) and extends up to a few kHz, near the lower hybrid frequency. Two potential mechanisms for generating the plasma turbulence are suggested which are both based on the production of water ions as a result of charge exchange with the ambient oxygen ions in the ionosphere. The first mechanism proposed is the ion-plasma instability which arises from the drift of the contaminant with respect to the ambient oxygen ions. The other mechanism proposed is the Ott-Farley instability, which is a result of the ring distribution formed by the 'pick-up' water ions.

  9. Use of water sprays in space rescue and retrieval operations

    NASA Technical Reports Server (NTRS)

    Kaplan, M. H.; Freesland, D. C.

    1976-01-01

    Recent experiments involving liquid jets exhausting into a vacuum have led to significant conclusions regarding techniques for detumbling and despinning spacecraft during retrieval and rescue operations. A fine water spray directed toward a tumbling or a spinning object may quickly form ice over its surface. The added mass of water will absorb angular momentum and slow the vehicle. As this ice sublimes it carries momentum away with it. Thus, a complete detumble or despin is possible by simply spraying water at a disabled or spinning vehicle. Experimental and analytical results are presented on performance and physical properties. Although these are of a preliminary nature, the results are quite promising. Example situations are considered to illustrate potential applications.

  10. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  11. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  12. KENNEDY SPACE CENTER, FLA. -- A pair of breeding ospreys share a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.

    NASA Image and Video Library

    2004-01-14

    KENNEDY SPACE CENTER, FLA. -- A pair of breeding ospreys share a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.

  13. KENNEDY SPACE CENTER, FLA. -- A pair of breeding ospreys have taken up residence in a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.

    NASA Image and Video Library

    2004-01-14

    KENNEDY SPACE CENTER, FLA. -- A pair of breeding ospreys have taken up residence in a nest constructed on a speaker pole in the lower parking lot of the KSC Press Site. Eggs have been sighted in the nest. The NASA logo in the background is painted on an outer wall of the 525-foot-tall Vehicle Assembly Building nearby. Known as a fish hawk, the osprey selects sites of opportunity in which to nest -- from trees and telephone poles to rocks or even flat ground. In North America, it is found from Alaska and Newfoundland to Florida and the Gulf Coast. Osprey nests are found throughout the Kennedy Space Center and surrounding Merritt Island National Wildlife Refuge.

  14. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  15. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  16. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  17. Packet Testing in Free-Space Optical Communication Links Over Water

    DTIC Science & Technology

    2006-01-01

    Packet testing in free-space optical communication links over water M.R. Suitea, H.R. Burrisb, C.I. Moorea, M.F. Stellb, L. Wasiczkoa, W. Freemanc...REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Packet testing in free-space optical communication links over water...for using relative average levels of the three apertures (see “Characterization of the Marine atmosphere for free space optical communication ”, LM

  18. High pressure water electrolysis for space station EMU recharge

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  19. High pressure water electrolysis for space station EMU recharge

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  20. One-year assessment of a solar space/water heater--Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Unit called "System 4" integrated into space-heating and hot-water systems of dormitory satisfied 32 percent of building heat load. System 4 includes flat-plate air collectors, circulation blowers, rock storage bed with heat exchanger, two hot water tanks, and auxiliary heaters. Report describes performance of system and subsystems, operating-energy requirements and savings, and performance parameters.

  1. Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!

  2. Neuropathological Correlates of Temporal Pole White Matter Hyperintensities in CADASIL

    PubMed Central

    Yamamoto, Yumi; Ihara, Masafumi; Tham, Carina; Low, Roger WC; Slade, Janet Y; Moss, Tim; Oakley, Arthur E; Polvikoski, Tuomo; Kalaria, Raj N

    2009-01-01

    Background and Purpose White matter (WM) hyperintensities upon magnetic resonance imaging (MRI) or leukoaraiosis is characteristic of stroke syndromes. Increased MRI signals in the anterior temporal pole are suggested to be diagnostic for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), with 90% sensitivity and 100% specificity. The structural correlates of these specific WM hyperintensities seen on T2-weighted and FLAIR sequences in the temporal pole of CADASIL are unclear. We assessed pathological changes in post-mortem tissue from the temporal pole to reveal the cause of CADASIL specific WM hyperintensities. Materials & Methods A combination of tinctorial and immunostaining approaches and in vitro imaging methods were used to quantify the extent of perivascular space (PVS), arteriosclerosis determined as the sclerotic index (SI), WM myelination as the myelin index (MI) and damage within the WM as accumulated degraded myelin basic protein (dMBP) in samples of the anterior temporal pole from 9 CADASIL and 8 sporadic subcortical ischaemic vascular dementia (SIVD) cases, and 5 similar age (young) and 5 older controls. Luxol fast blue (LFB) stained serial sections from a CADASIL case were also used to reconstruct the temporal pole, which was then compared to the MR images. Results LFB sections used to reconstruct the temporal pole revealed an abundance of enlarged PVS in the WM that topographically appeared as indistinct opaque regions. The mean and total areas of the PVS per WM area (%PVS) were significantly greater in CADASIL compared to the controls. The MI was severely reduced in CADASIL in relation to the SIVD and control sample that was consistent with increased immunoreactivity of dMBP, indicating myelin degeneration. Cerebral microvessels associated with the PVS exhibited a 4.5 fold greater number of basophilic (hyalinised) vessels and a 57% increase in the SI values in CADASIL subjects compared to young

  3. Reverse osmosis for wash water recovery in space vehicles.

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Saltonstall, C. W., Jr.

    1973-01-01

    Tests were carried out on both synthetic and real wash water derived from clothes laundry to determine the utility of reverse osmosis in recovering the water for recycle use. A blend membrane made from cellulose di- and triacetates, and a cross-linked cellulose acetate/methacrylate were evaluated. Both were found acceptable. A number of detergents were evaluated, including a cationic detergent, sodium dodecyl sulfate, potassium palmitate, and sodium dodecylbenzenesulfonate. The tests were all made at a temperature of 165 F to minimize microbial growth. Long-term (15 to 30 day) runs were made at 600 and 400 psi on laundry water which was pretreated either by alum addition and sand filtration or by filtration only through 0.5 micron filters. A 30-day run was made using a 2-in. diameter by 22-in. long spiral module at 400 psig with filtering as the pretreatment. The membrane fouling by colloidal matter was found to be controllable. The unit produced initially 55 gal/day and 27 gal/day after 30 days.

  4. Reverse osmosis for wash water recovery in space vehicles.

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Saltonstall, C. W., Jr.

    1973-01-01

    Tests were carried out on both synthetic and real wash water derived from clothes laundry to determine the utility of reverse osmosis in recovering the water for recycle use. A blend membrane made from cellulose di- and triacetates, and a cross-linked cellulose acetate/methacrylate were evaluated. Both were found acceptable. A number of detergents were evaluated, including a cationic detergent, sodium dodecyl sulfate, potassium palmitate, and sodium dodecylbenzenesulfonate. The tests were all made at a temperature of 165 F to minimize microbial growth. Long-term (15 to 30 day) runs were made at 600 and 400 psi on laundry water which was pretreated either by alum addition and sand filtration or by filtration only through 0.5 micron filters. A 30-day run was made using a 2-in. diameter by 22-in. long spiral module at 400 psig with filtering as the pretreatment. The membrane fouling by colloidal matter was found to be controllable. The unit produced initially 55 gal/day and 27 gal/day after 30 days.

  5. Assessment of biofilm formation in the International Space Station Water Recovery and Management system.

    PubMed

    Roman, M C; Minton-Summers, S

    1998-01-01

    Tests are being conducted at NASA/Marshall Space Flight Center with the purpose of assessing possible water quality changes and potential biofilm formation in the water distribution system of the International Space Station (ISS) Water Recovery and Management (WRM) System. The Biofilm Life Test and Water Degradation Study (WDS) will be discussed in this article. The Biofilm Life Test examines the potential for biofilm formation in the ISS water distribution plumbing and storage tanks. The test has two independent loops; one simulates the waste water prior to the processing by the ISS Water Processor (WP), and the other simulates the processed (clean) water after the ISS WP. The test setup design incorporates tube lengths and angles, material types, flow rates, and recommended hardware that represent the ISS water distribution system. The WDS purpose is to assess changes in water quality (chemical and microbiological) during stagnant, long-term storage in distribution lines. Test results demonstrate that prior to the operation of the ISS WP, water can be stored in the ISS water distribution lines.

  6. Modulation of water surface waves with a coiling-up-space metasurface

    NASA Astrophysics Data System (ADS)

    Sun, H. T.; Wang, J. S.; Cheng, Y.; Wei, Q.; Liu, X. J.

    2016-05-01

    We have designed a gradient-index (GRIN) metasurface to modulate water surface waves (WSWs). The metasurface is composed of an array of coiling-up-space units with a deep sub-wavelength scale, and can focus/scatter WSWs when the units are arranged elaborately and pierced into water. The modulation of WSWs has been ascribed to the relative effective refractive GRIN of the coiling-up-space units, which can be tuned by changing the parameters such as the plate length of units. This work may have potential application in energy extraction of water wave.

  7. The impact of integrated water management on the Space Station propulsion system

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1987-01-01

    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  8. Thyroid function changes related to use of iodinated water in the U.S. Space Program.

    PubMed

    McMonigal, K A; Braverman, L E; Dunn, J T; Stanbury, J B; Wear, M L; Hamm, P B; Sauer, R L; Billica, R D; Pool, S L

    2000-11-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in U.S. spacecraft and long-duration habitability modules. A review of thyroid function tests of NASA astronauts who had consumed iodinated water during spaceflight was conducted. Thyroid function tests of all past and present astronauts were reviewed. Medical records of astronauts with a diagnosis of thyroid disease were reviewed. Iodine consumption by space crews from water and food was determined. Serum thyroid-stimulating hormone (TSH) and urinary iodine excretion from space crews were measured following modification of the Space Shuttle potable water system to remove most of the iodine. Mean TSH significantly increased in 134 astronauts who had consumed iodinated water during spaceflight. Serum TSH, and urine iodine levels of Space Shuttle crewmembers who flew following modification of the potable water supply system to remove iodine did not show a statistically significant change. There was no evidence supporting association between clinical thyroid disease and the number of spaceflights, amount of iodine consumed, or duration of iodine exposure. It is suggested that pharmacological doses of iodine consumed by astronauts transiently decrease thyroid function, as reflected by elevated serum TSH values. Although adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during spaceflight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  9. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  10. Water and energy dietary requirements and endocrinology of human space flight.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  11. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  12. How do bacteria localize proteins to the cell pole?

    PubMed Central

    Laloux, Géraldine; Jacobs-Wagner, Christine

    2014-01-01

    ABSTRACT It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles – the ends of rod-shaped cells – constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole ‘recognition’ can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization. PMID:24345373

  13. Designated fiber stress for wood poles

    Treesearch

    Ronald W. Wolfe; Robert O. Kluge

    2005-01-01

    Wood poles have been used to support utility distribution lines for well over 100 years. Over that time, specifications for a “wood utility pole” have evolved from the closest available tree stem more than 15 ft in length to straight, durable timbers of lengths ranging up 125 ft and base diameters of as much as 27 in. The continued success of wood poles in this...

  14. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2011-01-01

    With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water 'super-Q' - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  15. Pole to Pole Videoconferences Connect Students and Scientists

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Lemone, P.; Yule, S.; Boger, R.; Galloni, M.; Kopplin, M. R.

    2008-12-01

    Alaskan and Argentinean students as well as arctic and antarctic scientists participated in two International Polar Year (IPY) Pole to Pole Videoconferences in 2007 and 2008. The videoconferences involved elementary, middle and high school students as well as scientists from Alaska, Argentina, Colorado and Washington DC. Alaska students were located in Fairbanks, Healy, Shageluk and Wasilla while the Argentinean students were located in Ushuaia, Argentina, at the southern tip of South America. The purpose was to ask each other and the scientists about local environmental changes, seasonal indicators, and climate change, and how to study the seasonal indicators to determine whether they are being affected by climate change. The videoconferences were followed by web chats and web forums to allow more students in other countries including those in non-polar regions, to interact with scientists, and help students develop ideas for their research projects. These activities are part of the Seasons and Biomes Project that engages K-12 teachers and students in Earth system science investigations as a way of teaching and learning science. This project also provides professional development workshops to teachers and teacher trainers. Seasons and Biomes is one of the projects in the University of the Arctic IPY Higher Education Outreach Cluster Project that has been approved by the IPY Joint Committee. As well, it is part of the GLOBE program, an international hands-on, inquiry-based Earth and environmental science and education program for primary and secondary students in 110 countries. The videoconferences, web chats and forums generated much interest and enthusiasm among students and scientists, and have provided the impetus for student research project initiations and collaborations between schools.

  16. Pole-factorization theorem in quantum electrodynamics

    SciTech Connect

    Stapp, H.P.

    1996-01-01

    In quantum electrodynamics a classical part of the S-matrix is normally factored out in order to obtain a quantum remainder that can be treated perturbatively without the occurrence of infrared divergences. However, this separation, as usually performed, introduces spurious large-distance effects that produce an apparent breakdown of the important correspondence between stable particles and poles of the S-matrix, and, consequently, lead to apparent violations of the correspondence principle and to incorrect results for computations in the mesoscopic domain lying between the atomic and classical regimes. An improved computational technique is described that allows valid results to be obtained in this domain, and that leads, for the quantum remainder, in the cases studied, to a physical-region singularity structure that, as regards the most singular parts, is the same as the normal physical-region analytic structure in theories in which all particles have non-zero mass. The key innovations here are to define the classical part in coordinate space, rather than in momentum space, and to define there a separation of the photon-electron coupling into its classical and quantum parts that has the following properties: (1) The contributions from the terms containing only classical couplings can be summed to all orders to give a unitary operator that generates the coherent state that corresponds to the appropriate classical process, and (2) The quantum remainder can be rigorously shown to exhibit, as regards its most singular parts, the normal analytic structure. 22 refs.

  17. Low-oxygen waters limited habitable space for early animals

    PubMed Central

    Tostevin, R.; Wood, R. A.; Shields, G. A.; Poulton, S. W.; Guilbaud, R.; Bowyer, F.; Penny, A. M.; He, T.; Curtis, A.; Hoffmann, K. H.; Clarkson, M. O.

    2016-01-01

    The oceans at the start of the Neoproterozoic Era (1,000–541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550–541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems. PMID:27659064

  18. Low-oxygen waters limited habitable space for early animals

    NASA Astrophysics Data System (ADS)

    Tostevin, R.; Wood, R. A.; Shields, G. A.; Poulton, S. W.; Guilbaud, R.; Bowyer, F.; Penny, A. M.; He, T.; Curtis, A.; Hoffmann, K. H.; Clarkson, M. O.

    2016-09-01

    The oceans at the start of the Neoproterozoic Era (1,000-541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (~550-541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.

  19. Low-oxygen waters limited habitable space for early animals.

    PubMed

    Tostevin, R; Wood, R A; Shields, G A; Poulton, S W; Guilbaud, R; Bowyer, F; Penny, A M; He, T; Curtis, A; Hoffmann, K H; Clarkson, M O

    2016-09-23

    The oceans at the start of the Neoproterozoic Era (1,000-541 million years ago, Ma) were dominantly anoxic, but may have become progressively oxygenated, coincident with the rise of animal life. However, the control that oxygen exerted on the development of early animal ecosystems remains unclear, as previous research has focussed on the identification of fully anoxic or oxic conditions, rather than intermediate redox levels. Here we report anomalous cerium enrichments preserved in carbonate rocks across bathymetric basin transects from nine localities of the Nama Group, Namibia (∼550-541 Ma). In combination with Fe-based redox proxies, these data suggest that low-oxygen conditions occurred in a narrow zone between well-oxygenated surface waters and fully anoxic deep waters. Although abundant in well-oxygenated environments, early skeletal animals did not occupy oxygen impoverished regions of the shelf, demonstrating that oxygen availability (probably >10 μM) was a key requirement for the development of early animal-based ecosystems.

  20. A LINE POLE 77A, HISTORIC POLE WITH HISTORIC REPLACEMENT PINTYPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 77A, HISTORIC POLE WITH HISTORIC REPLACEMENT PIN-TYPE INSULATORS MADE OF BROWN PORCELAIN. VIEW TO WEST-SOUTHWEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  1. Moving water to South America as observed from space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2006-01-01

    The approximate balance of the mass change rate measured by the Gravity Recovery and Climate Experiment (GRACE) with the moisture influx across the entire coastline less climatological river discharge for South America (SA), in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The moisture transport integrated over the depth of the atmosphere is estimated using measurements by QuikSCAT and Special Sensor Microwave/Imager. The large-scale geographic patterns of precipitation from the Tropical Rain Measuring Mission (TRMM) and the mass change rate were found to follow similar annual changes over South America.

  2. Moving water to South America as observed from space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2006-01-01

    The approximate balance of the mass change rate measured by the Gravity Recovery and Climate Experiment (GRACE) with the moisture influx across the entire coastline less climatological river discharge for South America (SA), in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The moisture transport integrated over the depth of the atmosphere is estimated using measurements by QuikSCAT and Special Sensor Microwave/Imager. The large-scale geographic patterns of precipitation from the Tropical Rain Measuring Mission (TRMM) and the mass change rate were found to follow similar annual changes over South America.

  3. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  4. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  5. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  6. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  7. Pole tide triggering of seismicity

    NASA Astrophysics Data System (ADS)

    Gorshkov, V.

    2015-08-01

    The influence of the pole tide (PT) on intensity of seismic process is searched on base of Harvard Centroid-moment tensors catalogue (CMT). The normal and shear stresses excited by PT were calculated for each earthquake (EQ) from CMT (32.3 thousands of EQ events after for- and aftershock declustering). There was revealed that there are two maxima of PT influence on weak (less 5.5 magnitudes) thrust-slip EQ near the both extrema (min and max) of shear stress. This influence has 95 % level of statistical significance by Schuster and χ^2 criteria and could explain the 0.6-year periodicity in seismic intensity spectrum. The PT influence on seismicity becomes negligible when PT variations decrease up to 100~mas. This could explain 6-7 years periodicity in seismic intensity spectrum.

  8. Ground performance of air conditioning and water recycle system for a Space Plant Box.

    PubMed

    Tani, A; Okuma, T; Goto, E; Kitaya, Y; Saito, T; Takahashi, H

    2001-01-01

    Researchers from 5 Japanese universities have developed a plant growth facility (Space Plant Box) for seed to seed experiments under microgravity. The breadboard model of the Space Plant Box was fabricated by assembling subsystems developed for microgravity. The subsystems include air conditioning and water recycle system, air circulation system, water and nutrient delivery system, lighting system and plant monitoring system. The air conditioning and water recycle system is simply composed of a single heat exchanger, two fans and hydrophilic fibrous strings. The strings allow water movement from the cooler fin in the Cooling Box to root supporting materials in the Plant Growth Chamber driven by water potential deficit. Relative humidity in the Plant Growth Chamber can be changed over a wide range by controlling the ratio of latent heat exchange to sensible heat exchange on the cooling fin of the heat exchanger. The transpiration rate was successfully measured by circulating air inside the Plant Growth Chamber only. Most water was recycled and a small amount of water needed to be added from the outside. The simple, air conditioning and water recycle system for the Space Plant Box showed good performance through a barley (Hordeum vulgare L.) growth experiment.

  9. CROWtm FIELD DEMONSTRATION WITH BELL LUMBER AND POLE

    SciTech Connect

    Lyle A. Johnson, Jr.; L. John Fahy

    2002-03-01

    In 1990, efforts were initiated to implement an in-situ remediation project for the contaminated aquifer at the Bell Lumber and Pole Company (Bell Pole) site in New Brighton, Minnesota. The remediation project involves the application of the Contained Recovery of Oily Waste (CROW{trademark}) process, which consists of hot-water injection to displace and recover nonaqueous phase liquids. While reviewing the site evaluation information, it became apparent that better site characterization would enhance the outcome of the project. Additional coring indicated that the areal extent of the contaminated soils was approximately eight times greater than initially believed. Because of the uncertainties, in 1993, a pilot test was conducted that provided containment and organic recovery information that assisted in the design of the full-scale CROW process demonstration. After reviewing the cost ramifications of implementing the full-scale CROW field demonstration, Bell Pole approached Western Research Institute (WRI) with a request for a staged, sequential site remediation. Bell Pole's request for the change in the project scope was prompted by budgetary constraints. Bell Pole felt that although a longer project might be more costly, by extending the length of the project, the yearly cost burden would be more manageable. After considering several options, WRI recommended implementing a phased approach to remediate the contaminated area. Phase 1 involves a CROW process demonstration to remediate the upgradient one-third of the contaminated area, which contains the largest amount of free organic material. The Bell Pole Phase 1 CROW demonstration began in mid-1995 and was operated until January 2001. The operation of the demonstration was satisfactory, although at less than the design conditions. During the demonstration, 25,502,902 gal of hot water was injected and 83,155 gal of organics was transferred to the storage tank. During operations more than 65% of the produced

  10. Late 20th Century increase in South Pole snow accumulation

    USGS Publications Warehouse

    Mosley-Thompson, E.; Paskievitch, J.F.; Gow, A.J.; Thompson, L.G.

    1999-01-01

    A compilation of the 37-year history of net accumulation at the South Pole [Mosley-Thompson et al., 1995] suggests an increase in net annual accumulation since 1965. This record is sporadic and its quality is compromised by spatially restricted observations and nonsystematic measurement procedures. Results from a new, spatially extensive network of 236 accumulation poles document that the current 5-year (1992-1997) average annual net accumulation at the South Pole is 84.5??8.9 mm water equivalent (w.e.). This accumulation rate reflects a 30% increase since the 1960s when the best, although not optimal, records indicate that it was 65 mm w.e. Identification of two prominent beta radioactivity horizons (1954/1955 and 1964/1965) in six firn cores confirms an increase in accumulation since 1965. Viewed from a longer perspective of accumulation provided by ice cores and a snow mine study, the net accumulation of the 30-year period, 1965-1994, is the highest 30-year average of this millennium. Limited data suggest this recent accumulation increase extends beyond the South Pole region and may be characteristic of the high East Antarctic Plateau. Enhanced accumulation over the polar ice sheets has been identified as a potential early indicator of warmer sea surface temperatures and may offset a portion of the current rise in global sea level. Copyright 1999 by the American Geophysical Union.

  11. South Pole Queen Maud Land Traverses, 1964-68 (Invited)

    NASA Astrophysics Data System (ADS)

    Bentley, C. R.

    2009-12-01

    Between early December, 1964, and late January, 1968, the three-part "South Pole Queen Maud Land Traverse" (SPQMLT), supported by the U.S. Antarctic Research Program (USARP), explored the previously unexamined interior of Queen Maud Land, making measurements of surface height and slope, surface mass balance, bore-hole temperatures, ice thickness, seismic wave velocities in and below the ice, gravity, and magnetics. The traverse followed a zigzag, space-filling route between Pole Station, the abandoned Pole of Relative Inaccessibility station, and Plateau Station on the east and roughly the Greenwich Meridian on the west. The traverse equipment featured two large Model 843 Tucker Sno-Cats, designed and built especially for work on the high East Antarctic plateau. Unfortunately, for programmatic reasons a planned 4th season to drive the Sno-Cats back to Pole Station could not be supported, so they were permanently abandoned at the end of the third traverse, at 78° 42.2'S, 6° 52'W. The SPQMLT was remarkable not only for working in a previously unexplored area, but also for the introduction of several new techniques to Antarctic traverse studies, two of which, radar sounding and determination of accumulation rates using a dated radioactive fallout horizon, were major advances that will be discussed by other authors in this session. In this presentation I will discuss the seismic, gravity, and magnetic observations and what they suggest about the character of the underlying terrain. Because of the pronounced differences in route pattern between the SPQMLT and the recent Troll-Pole-Troll traverses the data will be strongly complementary. From SPQMLT only the positions and surface heights are not up to modern standards of accuracy, but the former are adequate for regional studies and the latter have all been superseded by satellite radar and laser altimetry anyway.

  12. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  13. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  14. A `Pole To Pole' Holocene Sea-Level Database

    NASA Astrophysics Data System (ADS)

    Horton, B.; Vacchi, M.; Shaw, T.; Ashe, E.; Engelhart, S. E.; Khan, N.; Kopp, R. E.

    2016-12-01

    Holocene relative sea-level (RSL) records exhibit spatial and temporal variability that arises from the complex pattern of interactions among eustatic (land ice volume and thermal expansion), isostatic (glacio and hydro), tectonic (neotectonic deformation) and local (tidal range change and sediment compaction) components. Each of these components have different response timescales varying relative importance during the Holocene and among regions. We have compiled a Holocene RSL database of 3000 validated sea-level index points from Greenland, North American Atlantic coast, Caribbean, South American Atlantic coast and Antarctica. The databases were constructed from previously published results that were collated in a formalized and consistent methodology to facilitate the development and comparison of regional RSL records. The RSL records are mostly derived from sea-level indicators from intertidal environments. The database also includes information relevant to sediment compaction, and modelling of both modern-day and paleotidal ranges. We assess rates of RSL change by fitting the RSL records with noisy-input Gaussian process models. Holocene RSL records from near-field regions (e.g., Antarctica, Greenland and Canada) reveal a complex pattern of RSL fall from a maximum marine limit due to the net effect of eustatic sea-level rise and glacio-isostatic uplift with rates of RSL fall as great as 69 m/ka. Intermediate field regions (e.g., U.S. mid-Atlantic coast, St. Croix) display variable rates of RSL rise from the cumulative effect of eustatic and isostatic factors. Fast rates of RSL rise (up to 10 m/ka) are found in the early Holocene in regions near the center of forebulge collapse. Far-field RSL records (South America) exhibit a mid-Holocene highstand, the timing and magnitude of which varies between 8 and 4 ka and <1 and 6 m, respectively. By comparing these records across a pole to pole database that spans a range of `fingerprints' from land-based ice sheets, we

  15. 47 CFR 32.2411 - Poles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Poles. 32.2411 Section 32.2411 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.2411 Poles. This...

  16. New pole placement algorithm - Polynomial matrix approach

    NASA Technical Reports Server (NTRS)

    Shafai, B.; Keel, L. H.

    1990-01-01

    A simple and direct pole-placement algorithm is introduced for dynamical systems having a block companion matrix A. The algorithm utilizes well-established properties of matrix polynomials. Pole placement is achieved by appropriately assigning coefficient matrices of the corresponding matrix polynomial. This involves only matrix additions and multiplications without requiring matrix inversion. A numerical example is given for the purpose of illustration.

  17. Pole position studied with artificial earth satellites.

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1972-01-01

    Long-arc orbit computation of highest accuracy can provide pole positions. Optical Baker-Nunn and laser range observations of several satellites are combined. The accuracy of the pole position is comparable to that of the mean satellite-tracking station coordinates (plus or minus 5 m) when sufficient tracking data are available. Exploitation of the technique requires more accurate tracking data.

  18. Vibration Monitoring of Power Distribution Poles

    SciTech Connect

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterization of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.

  19. Pole blight of western white pine

    Treesearch

    Charles D. Leaphart; Otis L. Copeland; Donald P. Graham

    1957-01-01

    Pole blight is one of the most serious diseases of western white pine (Pinus monticola Dougl.) and is restricted to that species. The disease is given this name because it affects pole-size trees primarily, usually those within the 40- to 100-year age class, although trees both younger and older are occasionally affected.

  20. Strength of single-pole utility structures

    Treesearch

    Ronald W. Wolfe

    2006-01-01

    This section presents three basic methods for deriving and documenting Rn as an LTL value along with the coefficient of variation (COVR) for single-pole structures. These include the following: 1. An empirical analysis based primarily on tests of full-sized poles. 2. A theoretical analysis of mechanics-based models used in...

  1. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    SciTech Connect

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  2. Water- and solute-accessible spaces of purified peroxisomes. Evidence that peroxisomes are permeable to NAD+.

    PubMed Central

    Van Veldhoven, P; Debeer, L J; Mannaerts, G P

    1983-01-01

    Peroxisomes were purified from liver homogenates from rats, treated with the peroxisome proliferator clofibrate, by a combination of differential centrifugation and isopycnic centrifugation in iso-osmotic self-generating Percoll gradients. Structural integrity of the peroxisomes appeared to be preserved as evidenced by a high degree of catalase latency, the absence of catalase release during purification and the exclusion of inulin (mol.wt. +/- 5000). Spaces for water and solutes were measured after incubation of the peroxisomes in iso-osmotic sucrose with radioactive water or solutes and separation of the organelles from their media by centrifugation through an organic layer. Extraperoxisomal water was corrected for by the use of radioactive dextran or inulin. The sucrose, glucose, urea, methanol and acetate-accessible spaces were identical, suggesting that these spaces represent the volume in which molecules that can cross the membrane distribute. This volume equalled 50-65% of the water space. Urate and NAD+, a cofactor of peroxisomal beta-oxidation of fatty acids, also distributed in this volume, but were also partly bound. Urate and NAD+ binding was not abolished by sonication, which released the bulk of matrix catalase activity, but NAD+ binding was seriously diminished. The peroxisomal water and sucrose spaces were estimated to be 107 microliters and 55 microliters per g of liver tissue from a clofibrate-treated rat. From quantitative morphometric data [Anthony, Schmucker, Mooney & Jones (1978) J. Lipid Res. 19, 154-165] and our marker enzyme analyses, as well as from our experimentally determined water spaces of mitochondrial and microsomal fractions, it could be calculated that the volume contamination by lysosomes, mitochondria and microsomes did not exceed 1, 8 and 6% respectively. Our data indicate that apparently intact peroxisomes are permeable to a number of small molecules, including NAD+. Whether the NAD+-binding sites in sonicated peroxisomes

  3. Baryon transition form factors at the pole

    SciTech Connect

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the $G_M$, $G_E$, and $G_C$ form factors for the $\\Delta(1232)$ resonance excitation at the Breit-Wigner resonance and pole positions up to $Q^2=5$ GeV$^2$. We also explore the $E/M$ and $S/M$ ratios as functions of $Q^2$. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  4. Baryon transition form factors at the pole

    NASA Astrophysics Data System (ADS)

    Tiator, L.; Döring, M.; Workman, R. L.; Hadžimehmedović, M.; Osmanović, H.; Omerović, R.; Stahov, J.; Švarc, A.

    2016-12-01

    Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the separation of the resonance from background or the decay channel. Photon-nucleon branching ratios are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual photons. We derive and compare relations for nucleon to baryon transition form factors both for the Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses of pion electroproduction data, we compare the GM, GE, and GC form factors for the Δ (1232 ) resonance excitation at the Breit-Wigner resonance and pole positions up to Q2=5 GeV2 . We also explore the E /M and S /M ratios as functions of Q2. For pole and residue extraction, we apply the Laurent + Pietarinen method.

  5. Characterization of thermally poled germanosilicate thin films

    NASA Astrophysics Data System (ADS)

    Ozcan, A.; Digonnet, M. J. F.; Kino, G. S.; Ay, F.; Aydinli, A.

    2004-10-01

    We report measurements of the nonlinearity profile of thermally poled low-loss germanosilicate films deposited on fused-silica substrates by PECVD, of interest as potential electro-optic devices. The profiles of films grown and poled under various conditions all exhibit a sharp peak ~0.5 μm beneath the anode surface, followed by a weaker pedestal of approximately constant amplitude down to a depth of 13-16 μm, without the sign reversal typical of poled undoped fused silica. These features suggest that during poling, the films significantly slow down the injection of positive ions into the structure. After local optimization, we demonstrate a record peak nonlinear coefficient of ~1.6 pm/V, approximately twice as strong as the highest reliable value reported in thermally poled fused silica glass, a significant improvement that was qualitatively expected from the presence of Ge.

  6. Space Station water degradation study covering the first 24 months of exposure

    NASA Technical Reports Server (NTRS)

    Mcright, P. S.; Roman, M. C.

    1995-01-01

    This report describes the MSFC space station water degradation study (WDS) and presents interim results from the first 24 months of testing. The WDS simulates the stagnant storage of water in distribution lines before the activation of the space station's water processor by storing processed water at ambient temperature in valved sections of 1-in stainless steel and titanium tube. The WDS seeks to determine whether the water quality will degrade unacceptably and whether microbial growth will proceed to an unmanageable extent during extended stagnation. During the first 24 months, significant changes have occurred. Although iodine, which is used as a biocide, was nearly depleted within the first 6 months of testing, microbial growth has been minimal. This report describes the decrease in iodine concentration and the results of microbial and biofilm analyses. Increases in total organic carbon, iodide, chloride, nickel, iron, and chromium concentrations are presented and discussed. The observed increase in conductivity and the decreases in pH and turbidity are also presented. The authors conclude that, with proper preparation, potable water can be stored under stagnant conditions without unmanageable degradation in water quality; a flushing operation and subsequent processing of the degraded water should render the water system ready for use.

  7. [The new method monitoring crop water content based on NIR-Red spectrum feature space].

    PubMed

    Cheng, Xiao-juan; Xu, Xin-gang; Chen, Tian-en; Yang, Gui-jun; Li, Zhen-hai

    2014-06-01

    Moisture content is an important index of crop water stress condition, timely and effective monitoring of crop water content is of great significance for evaluating crop water deficit balance and guiding agriculture irrigation. The present paper was trying to build a new crop water index for winter wheat vegetation water content based on NIR-Red spectral space. Firstly, canopy spectrums of winter wheat with narrow-band were resampled according to relative spectral response function of HJ-CCD and ZY-3. Then, a new index (PWI) was set up to estimate vegetation water content of winter wheat by improveing PDI (perpendicular drought index) and PVI (perpendicular vegetation index) based on NIR-Red spectral feature space. The results showed that the relationship between PWI and VWC (vegetation water content) was stable based on simulation of wide-band multispectral data HJ-CCD and ZY-3 with R2 being 0.684 and 0.683, respectively. And then VWC was estimated by using PWI with the R2 and RMSE being 0.764 and 0.764, 3.837% and 3.840%, respectively. The results indicated that PWI has certain feasibility to estimate crop water content. At the same time, it provides a new method for monitoring crop water content using remote sensing data HJ-CCD and ZY-3.

  8. Effect of roof strength in injury mitigation during pole impact.

    PubMed

    Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony

    2007-01-01

    Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space.

  9. Thyroid Function Changes Related to Use of Iodinated Water in United States Space Program

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Braverman, Lewis E.; Dunn, John T.; Stanbury, John B.; Wear, Mary L.; Hamm, Peggy B.; Sauer, Richard L.; Billica, Roger D.; Pool, Sam L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in United States spacecraft and long-duration habitability modules. A review of the effects on the thyroid following consumption o iodinated water by NASA astronauts was conducted. Pharmacological doses of iodine consumed by astronauts transiently decreased thyroid function, as reflected in serum TSH values. Although the adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during space flight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  10. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  11. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  12. Video-Bubbles Inserted Into a Floating Drop of Water on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Inserting a bubble into a floating ball of water in space is difficult, as Pettit demonstrates in this video. Blowing the bubble is the easy part. Getting it to stay in the center of the ball of water is much more difficult. Watch the video to see the technique Dr. Pettit finally uses and see the resulting visual surprise offered by the ensuing optical properties.

  13. Video-Bubbles Inserted Into a Floating Drop of Water on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Inserting a bubble into a floating ball of water in space is difficult, as Pettit demonstrates in this video. Blowing the bubble is the easy part. Getting it to stay in the center of the ball of water is much more difficult. Watch the video to see the technique Dr. Pettit finally uses and see the resulting visual surprise offered by the ensuing optical properties.

  14. Endoscopic extradural supraorbital approach to the temporal pole and adjacent area: technical note.

    PubMed

    Komatsu, Fuminari; Imai, Masaaki; Shigematsu, Hideaki; Aoki, Rie; Oda, Shinri; Shimoda, Masami; Matsumae, Mitsunori

    2017-08-25

    The authors' initial experience with the endoscopic extradural supraorbital approach to the temporal pole and adjacent area is reported. Fully endoscopic surgery using the extradural space via a supraorbital keyhole was performed for tumors in or around the temporal pole, including temporal pole cavernous angioma, sphenoid ridge meningioma, and cavernous sinus pituitary adenoma, mainly using 4-mm, 0° and 30° endoscopes and single-shaft instruments. After making a supraorbital keyhole, a 4-mm, 30° endoscope was advanced into the extradural space of the anterior cranial fossa during lifting of the dura mater. Following identification of the sphenoid ridge, orbital roof, and anterior clinoid process, the bone lateral to the orbital roof was drilled off until the dura mater of the anterior aspect of the temporal lobe was exposed. The dura mater of the temporal lobe was incised and opened, exposing the temporal pole under a 4-mm, 0° endoscope. Tumors in or around the temporal pole were safely removed under a superb view through the extradural corridor. The endoscopic extradural supraorbital approach was technically feasible and safe. The anterior trajectory to the temporal pole using the extradural space under endoscopy provided excellent visibility, allowing minimally invasive surgery. Further surgical experience and development of specialized instruments would promote this approach as an alternative surgical option.

  15. Pole-to-pole biogeography of surface and deep marine bacterial communities

    PubMed Central

    Ghiglione, Jean-François; Galand, Pierre E.; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W.; Bakker, Kevin; Bertilson, Stefan; Kirchman, David L.; Lovejoy, Connie; Yager, Patricia L.; Murray, Alison E.

    2012-01-01

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation. PMID:23045668

  16. Health-risk based approach to setting drinking water standards for long-term space missions

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Dunsky, Elizabeth C.

    1992-01-01

    In order to develop plausible and appropriate drinking water contaminant standards for longer-term NASA space missions, such as those planned for the Space Exploration Initiative, a human health risk characterization was performed using toxicological and exposure values typical of space operations and crew. This risk characterization showed that the greatest acute waterborne health concern was from microbial infection leading to incapacitating gastrointestinal illness. Ingestion exposure pathways for toxic materials yielded de minimus acute health risks unlikely to affect SEI space missions. Risks of chronic health problems were within acceptable public health limits. Our analysis indicates that current Space Station Freedom maximum contamination levels may be unnecessarily strict. We propose alternative environmental contaminant values consistent with both acceptable short and long-term crew health safety.

  17. Health-risk based approach to setting drinking water standards for long-term space missions

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Dunsky, Elizabeth C.

    1992-01-01

    In order to develop plausible and appropriate drinking water contaminant standards for longer-term NASA space missions, such as those planned for the Space Exploration Initiative, a human health risk characterization was performed using toxicological and exposure values typical of space operations and crew. This risk characterization showed that the greatest acute waterborne health concern was from microbial infection leading to incapacitating gastrointestinal illness. Ingestion exposure pathways for toxic materials yielded de minimus acute health risks unlikely to affect SEI space missions. Risks of chronic health problems were within acceptable public health limits. Our analysis indicates that current Space Station Freedom maximum contamination levels may be unnecessarily strict. We propose alternative environmental contaminant values consistent with both acceptable short and long-term crew health safety.

  18. Diagram of the Water Recovery and Management for the International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  19. Diagram of the Water Recovery and Management for the International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  20. [Adaptation of water-electrolytes metabolism to space flight and in its imitation].

    PubMed

    Noskov, V B

    2013-01-01

    50-years study of water-electrolytes exchange, the condition of water environments of the organism and the hormonal regulation in space flights, and also in postflight period or in its on ground modeling (hypokinesia, bed rest, immersion etc.) has shown the important role of the water-salt homeostasis in adaptation of the human and animal organisms to weightlessness. It has been revealed, that in weightlessness conditions for development of negative balance of a liquid (hypohydration) and the basic electrolytes are created. After the termination of long space flights attributes of development adaptive reactions compensating for extracellular liquid's volume come to light. In order to assess the state of the kidneys and water-electrolyte metabolism in cosmonauts and investigators, functional load tests and especial methods of diagnostic were developed. This is the basis for researches directed on improvement of the scheme of correction hydrogenous the status of an organism of the cosmonauts at the different stages of flight.

  1. Invariant poles feedback control of flexible, highly variable spacecraft.

    NASA Technical Reports Server (NTRS)

    Mendel, J. M.

    1972-01-01

    This paper describes a technique for single-axis control of a model of a highly flexible Space Station. Active damping of lower frequency flexibility modes is employed. In the control technique, referred to as invariant poles feedback control (IPFC), feedback gains are adjusted so that the closed-loop system's characteristic equation is matched to that of a reference model; hence, closed-loop system's poles will not move - they will be invariant (provided bending frequencies and parameters can be identified accurately). This is accomplished by obtaining the system's characteristic equation in closed form; equating respective coefficients between terms of like powers in s in the system and reference model characteristic equations; and, solving for the feedback gains. The feedback gains are explicit functions of system plant parameters and the coefficients of the reference model's characteristic equation, and are easily programmed for the digital computer.

  2. Invariant poles feedback control of flexible highly variable spacecraft.

    NASA Technical Reports Server (NTRS)

    Mendel, J. M.

    1972-01-01

    Description of a technique for single-axis control of a model of a highly flexible space station. Active damping of lower frequency flexibility modes is employed. In the control technique, referred to as invariant poles feedback control, feedback gains are adjusted so that the closed-loop system characteristic equation is matched to that of a reference model. Hence closed-loop system poles will not move; they will be invariant (provided that bending frequencies and parameters can be identified accurately). This is accomplished by obtaining the system characteristic equation in closed form; equating respective coefficients between terms of like powers in s in the system and reference model characteristic equations; and solving for the feedback gains. The feedback gains are explicit functions of system plant parameters and the coefficients of the reference model characteristic equation, and are easily programmed for the digital computer.

  3. Glacier melt on the Third Pole

    NASA Astrophysics Data System (ADS)

    Yao, T.

    2015-12-01

    With an average elevation above 4,000 metres, the Third Pole (TP) is a unique region with many high mountains centered on the Tibetan Plateau stretching over 5 million square kilometers. Major environmental changes are taking place on the TP characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes. These processes are critical for the well-being of the three billion people inhabiting the plateau and the surrounding regions. Glacier melt is one of the most significant environmental changes observed on the TP. Over the past decade, most of the glaciers on the TP have undergone considerable melt. The Third Pole Environment (TPE) has focused on the causes of the glacier melt by conducting large-scale ground in-situ observation and monitoring, analyzing satellite images and remote sensing data, and applying numerical modeling to environmental research on the TP. The studies of long-term record of water stable isotopes in precipitation and ice core throughout the TP have revealed different features with regions, thus proposing significant influence of atmospheric circulations on spatial precipitation pattern over the TP. Validation of the result by isotope-equipped general circulation models confirms the spatial distribution of different atmospheric circulation dominances on the TP, with northern part dominated by the westerlies, southern part by the summer monsoon, and central part featuring the influences of both circulation systems. Such unique circulation patterns also bear directly on the status of glaciers and lakes over the TP and its surroundings. The studies therefore found the largest glacier melt in the monsoon-dominated southern part, moderate melt in the central part of transition, and the least melt, or even slight advance in the westerlies-dominated northern TP. It is clear that some mountains on the TP are undergoing rapid melt and the consequence of without ice and snow will be very soon. The

  4. Columbus APM water loop architecture tradeoffs to meet Space Station Freedom interface requirements

    NASA Astrophysics Data System (ADS)

    Trichilo, Michele; Ciampolini, Francesca; Dodd, Charles

    1992-07-01

    The Columbus Attached Pressurized Module (APM) Active Thermal Control System (ATCS) water loop collects the APM waste heat and transfers it to the Space Station Freedom (SSF) Central Thermal Bus. This paper describes the APM ATCS tradeoffs which have been performed in order to arrive at an optimized water loop architecture able to meet all existing requirements and the new SSF interloop heat exchangers interface requirements.

  5. Status of the Space Station water reclamation and management subsystem design concept

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  6. Status of the Space Station water reclamation and management subsystem design concept

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  7. Water sprays in space retrieval operations. [for despinning or detumbling disabled spacecraft

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Recent experiments involving liquid jets exhausting into a vacuum have led to significant conclusions regarding techniques for detumbling and despinning disabled spacecraft during retrieval operations. A fine water spray directed toward a tumbling or spinning object may quickly form ice over its surface. The added mass of water will absorb angular momentum and slow the vehicle. As this ice sublimes it carries momentum away with it. Thus, a complete detumble or despin is possible by simply spraying water at a disabled vehicle. Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  8. Water sprays in space retrieval operations. [for despinning or detumbling disabled spacecraft

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Recent experiments involving liquid jets exhausting into a vacuum have led to significant conclusions regarding techniques for detumbling and despinning disabled spacecraft during retrieval operations. A fine water spray directed toward a tumbling or spinning object may quickly form ice over its surface. The added mass of water will absorb angular momentum and slow the vehicle. As this ice sublimes it carries momentum away with it. Thus, a complete detumble or despin is possible by simply spraying water at a disabled vehicle. Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  9. Roles of water molecules in trapping carbon dioxide molecules inside the interlayer space of graphene oxides.

    PubMed

    Yumura, Takashi; Yamasaki, Ayumi

    2014-05-28

    Density functional theory (DFT) calculations were employed to investigate the energetics of carbon dioxide migration within hydrated or anhydrous graphene oxides (GOs). When anhydrous GO structures contain a carbon dioxide molecule, the carbon dioxide interacts repulsively with the GO layers to increase the interlayer spacing. The repulsive electrostatic interactions are reduced by the insertion of water molecules into CO2-containing GO structures due to the occurrence of attractive water-layer interactions through hydrogen bonding. Consequently, the interlayer spacings in CO2-containing hydrated structures are shortened compared with those in the anhydrous structures. The results indicate that the intercalated water molecules have the ability to connect the GO layers in the presence of carbon dioxide. Furthermore, the DFT calculations indicated that the GO interlayer spacings, which are influenced by the intercalation of water molecules, control carbon dioxide migration within the GO layers. The importance of the interlayer spacings on the migration of carbon dioxide arises from the occurrence of repulsive interactions between CO2 and oxygen-containing groups attached on the graphene sheets. When the GO interlayer spacings are short due to the presence of intercalated water molecules, the repulsive interactions between carbon dioxide and the GO layers are strong enough to prevent CO2 from migrating from its original position. Such repulsive interactions do not occur during the migration of CO2 within anhydrous GO structures because of the relatively longer interlayer spacing. Accordingly, CO2 migrates within anhydrous GO with a less significant barrier, indicating that carbon dioxide molecules are easily released from the GO.

  10. Holography with a Landau pole

    NASA Astrophysics Data System (ADS)

    Faedo, Antón F.; Mateos, David; Pantelidou, Christiana; Tarrío, Javier

    2017-02-01

    Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is d = 4, N=4 super Yang-Mills coupled to N f quark flavors, which possesses a Landau pole at a UV scale ΛLP. The dual gravity solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies E ≪ ΛLP no pathologies appear, as expected from effective field theory. In contrast, at scales E ≲ ΛLP the gravitational potential becomes repulsive, and at temperatures T ≲ ΛLP the specific heat becomes negative. Although we focus on N=4 super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singularity is a hyper-scaling violating metric with exponent θ > d - 1.

  11. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    NASA Technical Reports Server (NTRS)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  12. Heavy Cratering near Callisto's South Pole

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Images from NASA's Galileo spacecraft provide new insights into this region near Callisto's south pole. This two frame mosaic shows a heavily cratered surface with smooth plains in the areas between craters. North is to the top of the image. The smoothness of the plains appears to increase toward the south pole, approximately 480 kilometers (293 miles) south of the bottom of the image. This smoothness of Callisto's surface was not evident in images taken during the 1979 flyby of NASA's Voyager spacecraft because the resolution was insufficient to show the effect. This smooth surface, and the process(es) that cause it, are among the most intriguing aspects of Callisto. Although not fully understood, the process(es) responsible for this smoothing could include erosion by tiny meteorites and energetic ions. Some craters, such as Keelut, the 47 kilometer (29 mile) crater in the lower right corner, have sharp, well defined rims. Keelut contains an inner ring surrounding a central depression about 17 kilometers (11 miles) in diameter. Keelut, and the more irregularly shaped, degraded Reginleif, the 32 kilometer (19.5 mile) crater in the top center of the image, are very shallow and have flat floors. Crater forms can be seen down to less than 2 kilometers (1.2 miles) in diameter in the image. Each picture element (pixel) in this image is approximately 0.68 kilometers (0.41 miles) across.

    This image which was taken by the Galileo spacecraft's solid state imaging (CCD) system during its eighth orbit around Jupiter, on May 6th, 1997. The center of the image is located at 71.3 degrees south latitude, 97.6 degrees west longitude, and was taken when the spacecraft was approximately 35,470 kilometers (21,637 miles) from Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at

  13. Geometric Modelling of Octagonal Lamp Poles

    NASA Astrophysics Data System (ADS)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  14. Development of Mini-pole Superconducting Undulator

    SciTech Connect

    Jan, J. C.; Hwang, C. S.; Lin, P. H.; Chang, C. H.; Lin, F. Y.

    2007-01-19

    A mini-pole superconducting undulator with a 15mm period length (SU15) was developed at the National Synchrotron Radiation Research Center (NSRRC). The coil was wound by a superconducting (SC) NbTi wire with small dimensions and low Cu/SC ratio. The design field strength of SU15 with 158turns/pole was 1.4T at 215A, and the magnet gap was 5.6 mm. Extra trim coils and poles are mounted on the main iron pole. The trim coils directly compensate for the strength error of the peak field. The prototype racetrack iron pole was fabricated via electric discharge machining to produce a complete set of 40-poles. The coil was impregnated by epoxy and wrapped in Kapton to maintain insulation between coil and iron pole. A substitution beam duct was built and assembled with the magnet array and tested in the test Dewar. The conceptual design of bath liquid helium (LHe) cryostat has to tolerate more image current and radiation heating on the beam duct.

  15. What does the "mean pole" mean

    NASA Astrophysics Data System (ADS)

    Ries, J. C.; Petit, G.; Luzum, B. J.

    2015-12-01

    Rotational deformation (also called the pole tide) is the response of the solid earth and ocean to the Earth's wobble, which includes gravitational and surface displacement components. An important part of the model is the Conventional Mean Pole, which is required to remove the slow variation in the polar motion. This ensures that the rotational deformation model removes only the principal periodic motions (annual, Chandler and any other high frequency variations). Previously, no dependable mean pole product had been available. Consequently, for the 2010 Conventions, a cubic was fit to a filtered time series of polar motion and this model was adopted, along with a simple linear extrapolation into the future that was expected to be adequate until the next Conventions update. In light of the large changes in the mean pole due to recent ice mass losses, such extrapolations may not be reliable. To avoid this, the next Conventions update will include the use of a regularly updated mean pole table. Some subtleties in that choice will be noted. However, the original pole tide model was conceived when the mean pole was moving (more or less) linearly, largely in response to glacial isostatic adjustment (GIA). With the recent ice mass losses, particularly in Greenland, this motion is decidedly non-linear, and it is unclear whether the pole tide model correctly reflects this new reality. There are questions as to whether the mean pole should be the slow variation as conceived currently or should it reflect only the long-term linear motion (either based on a GIA model or a linear fit over an appropriate time span).

  16. Water Vapor Storage Change in the Canopy-Air Space of a Tall Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Wade, C.; Dragoni, D.; Schmid, H.

    2005-05-01

    The ability of weather and climate models to predict humidity, cloud formation and precipitation critically depends on the exchange of water vapor between vegetation and the atmosphere. The canopy air-space in tall forests is deep enough to act as a buffer volume that is depleted at times of well developed turbulent mixing, and gets recharged in conditions of poor mixing. Recent studies have attributed biases in modeled vapor exchange to the misrepresentation or neglect of this mechanism. At the Morgan-Monroe State Forest AmeriFlux site (Indiana, USA), water vapor exchange and the vapor storage change in the canopy air-space has been observed for the last six years. The objective of this work is to calculate vapor storage change fluxes in the canopy air-space from time increments of concentration profiles from data collected in 2003. We relate vapor storage change fluxes to measured environmental forcing quanitites, such as net radiation, ambient vapor pressure deficit, dew-point temperature depression, stability, and friction velocity to interpret the observed seasonal and daily patterns. Also, changes in water vapor storage rates are compared with measured latent heat fluxes to determine how the total forest-atmosphere vapor exchange is affected by the recharging and depletion of water vapor throughout the canopy air-space.

  17. Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations

    NASA Technical Reports Server (NTRS)

    Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.

    1986-01-01

    The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.

  18. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water in galleys and medical care spaces. 1250.84 Section 1250.84 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION...

  19. Study of solid rocket motor for a space shuttle booster. Appendix A: SRM water entry loads

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the water entry loads imposed on the reusable solid propellant rocket engine of the space shuttle following parachute descent is presented. The cases discussed are vertical motion, horizontal motion, and motion after penetration. Mathematical models, diagrams, and charts are included to support the theoretical considerations.

  20. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf

    NASA Astrophysics Data System (ADS)

    Chang, Jiang-Hao; Yu, Jing-Cun; Liu, Zhi-Xin

    2016-09-01

    The full-space transient electromagnetic response of water-filled goaves in coal mines were numerically modeled. Traditional numerical modeling methods cannot be used to simulate the underground full-space transient electromagnetic field. We used multiple transmitting loops instead of the traditional single transmitting loop to load the transmitting loop into Cartesian grids. We improved the method for calculating the z-component of the magnetic field based on the characteristics of full space. Then, we established the fullspace 3D geoelectrical model using geological data for coalmines. In addition, the transient electromagnetic responses of water-filled goaves of variable shape at different locations were simulated by using the finite-difference time-domain (FDTD) method. Moreover, we evaluated the apparent resistivity results. The numerical modeling results suggested that the resistivity differences between the coal seam and its roof and floor greatly affect the distribution of apparent resistivity, resulting in nearly circular contours with the roadway head at the center. The actual distribution of apparent resistivity for different geoelectrical models of water in goaves was consistent with the models. However, when the goaf water was located in one side, a false low-resistivity anomaly would appear on the other side owing to the full-space effect but the response was much weaker. Finally, the modeling results were subsequently confirmed by drilling, suggesting that the proposed method was effective.

  1. Status of the International Space Station Regenerative ECLSS Water Recovery and Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Cloud, Dale

    2005-01-01

    NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.

  2. Test results on re-use of reclaimed shower water: Summary. [space stations

    NASA Technical Reports Server (NTRS)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  3. Test results on re-use of reclaimed shower water: Summary. [space stations

    NASA Technical Reports Server (NTRS)

    Verostko, C. E.; Garcia, R.; Sauer, R.; Linton, A. T.; Elms, T.; Reysa, R. P.

    1988-01-01

    A microgravity whole body shower (WBS) and waste water recovery systems (WWRS) were evaluated in three separate closed loop tests. Following a protocol similar to that anticipated for the U.S. Space Station, test subjects showered in a prototype whole body shower. The WWRS processes evaluated during the test series were phase change and reverse osmosis (RO). A preprototype Thermoelectric Integrated Hollow Fiber Membrane Evaporation Subsystem phase change process was used for the initial test with chemical pretreatment of the shower water waste input. The second and third tests concentrated on RO technologies. The second test evaluated a dynamic RO membrane consisting of zirconium oxide polyacrylic acid (ZOPA) membranes deposited on the interior diameter of 316L porous stainless steel tubes while the final test employed a thin semipermeable RO membrane deposited on the interior surface of polysulfone hollow fibers. All reclaimed water was post-treated for purity using ion exchange and granular activated carbon beds immediately followed by microbial control treatment using both heat and iodine. The test hardware, controls exercised for whole body showering, types of soaps evaluated, shower subject response to reclaimed water showering, and shower water collection and chemical pretreatment (if required) for microbial control are described. The WWRS recovered water performance and the effectiveness of the reclaimed water post-treatment techniques used for maintaining water purity and microorganism control are compared. Results on chemical and microbial impurity content of the water samples obtained from various locations in the shower water reuse system are summarized.

  4. Planetary science: constant illumination at the lunar north pole.

    PubMed

    Bussey, D Ben J; Fristad, Kirsten E; Schenk, Paul M; Robinson, Mark S; Spudis, Paul D

    2005-04-14

    Images returned by the spacecraft Clementine have been used to produce a quantitative illumination map of the north pole of the Moon, revealing the percentage of time that points on the surface are illuminated during the lunar day. We have used this map to identify areas that are constantly illuminated during a lunar day in summer and which may therefore be in permanent sunlight. All are located on the northern rim of Peary crater, close to the north pole. Permanently sunlit areas represent prime locations for lunar outpost sites as they have abundant solar energy, are relatively benign thermally (when compared with equatorial regions), and are close to permanently shadowed regions that may contain water ice.

  5. Heat Pump Water Heaters: Controlled Field Research of Impact on Space Conditioning and Demand Response Characteristics

    SciTech Connect

    Parker, Graham B.; Widder, Sarah H.; Eklund, Ken; Petersen, Joseph M.; Sullivan, Greg

    2015-10-05

    A new generation of heat pump water heaters (HPWH) has been introduced into the U.S. market that promises to provide significant energy savings for water heating. Many electric utilities are promoting their widespread adoption as a key technology for meeting energy conservation goals and reducing greenhouse gas emissions. There is, however, considerable uncertainty regarding the space conditioning impact of an HPWH installed in a conditioned space. There is also uncertainty regarding the potential for deployment of HPWHs in demand response (DR) programs to help manage and balance peak utility loads in a similar manner as conventional electric resistance water heaters (ERWH). To help answer these uncertainties, controlled experiments have been undertaken over 30 months in a matched pair of unoccupied Lab Homes located on the campus of the Pacific Northwest National Laboratory (PNNL) in Richland, Washington.

  6. Titan's Gas Behavior During the South Pole Fall

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor A.; Achterberg, Richard K.; Jennings, Donald E.; Gorius, Nicolas; Irwin, Patrick G. J.

    2015-11-01

    Titan’s southern middle atmosphere has been showing several changes since the start of fall season in 2009. In 2012 a large cloud appeared [1], [2], [3], temperatures became very low and condensation and gas concentration at the South Pole increased [3], [4].In this work we will show the results of gas abundances retrievals in the South Pole and their latitudinal variation changes as the cold season evolved with time.We analyzed several Cassini Composite InfraRed Spectrometer (CIRS [5]) mid-infrared observations of the South Pole acquired during 2013-2014. The data coordinates were converted in order to be centered on the atmospheric pole and refer to the 1 mbar level and not to the surface. We first determine stratospheric temperatures from the same data and latitudes from the n4 band of methane centered around 1300 cm-1. We retrieve the temperature profiles applying a radiative transfer forward model combined with a non-linear optimal estimation inversion method [6]. We then retrieve the main gases abundances and track their variation with latitude using the same method.Latitudinal changes of the main Titan’s gases - HC3N, C4H2, C6H6, C2H2, C2H4, C3H8 and HCN - show different trends in the Southern polar regions over 2014, when winter was getting closer. We observe a ring-shape in some of the gas abundance distributions, with a local maximum peak around -75 deg of latitude. We also observe an increase of abundance of most of the gases toward the south pole, as seen previously in the North during the winter. The observed increase of benzene over the South Pole is definitely evident and strong. References: [1] West, R. A. et al. (2013) BAAS, 45, 305.03. [2] Jennings, D. E. et al. (2012) ApJ, 754, L3. [3] de Kok, R. et al. (2014), Nature, 514, 7520, 65-67. [4] Vinatier S. et al. (2015) Icarus, Volume 250, p. 95-115. [5] Flasar et al. (2004) Space Sci. Rev., 115, 169-297. [6] Irwin, P.G.J. et al. (2008) J. Quant. Spectrosc. Radiat. Trans., 109, 1136-1150.

  7. Microbiological Tests Performed During the Design of the International Space Station ECLSS: Part 1, Bulk Phase Water and Wastewater

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    This slide presentation summarizes the studies performed to assess the bulk phase microbial community during the Space Station Water Recover Tests (WRT) from 1990-1998. These tests show that it is possible to recycle water from different sources including urine, and produce water that can exceed the quality of municpally produced tap water.

  8. The contribution of space observations to water resources management; Proceedings of the Symposium, Bangalore, India, May 29-June 9, 1979

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V. (Editor); Bhavsar, P. D.

    1980-01-01

    The symposium focused on hydrology, soil moisture estimation and ground water exploration, wetlands monitoring and water quality estimation, hydrometeorology, snow and ice monitoring, and evapotranspiration estimation. Other problems discussed include surface water and flood mapping, watershed runoff estimation and prediction, and new space systems contributing to water resources management.

  9. The contribution of space observations to water resources management; Proceedings of the Symposium, Bangalore, India, May 29-June 9, 1979

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V. (Editor); Bhavsar, P. D.

    1980-01-01

    The symposium focused on hydrology, soil moisture estimation and ground water exploration, wetlands monitoring and water quality estimation, hydrometeorology, snow and ice monitoring, and evapotranspiration estimation. Other problems discussed include surface water and flood mapping, watershed runoff estimation and prediction, and new space systems contributing to water resources management.

  10. NASA's LRO Discovers Lunar Hydrogen More Abundant on Moon's Pole-Facing Slopes

    NASA Image and Video Library

    2017-09-28

    Space travel is difficult and expensive – it would cost thousands of dollars to launch a bottle of water to the moon. The recent discovery of hydrogen-bearing molecules, possibly including water, on the moon has explorers excited because these deposits could be mined if they are sufficiently abundant, sparing the considerable expense of bringing water from Earth. Lunar water could be used for drinking or its components – hydrogen and oxygen – could be used to manufacture important products on the surface that future visitors to the moon will need, like rocket fuel and breathable air. Recent observations by NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft indicate these deposits may be slightly more abundant on crater slopes in the southern hemisphere that face the lunar South Pole. "There’s an average of about 23 parts-per-million-by-weight (ppmw) more hydrogen on Pole-Facing Slopes (PFS) than on Equator-Facing Slopes (EFS)," said Timothy McClanahan of NASA's Goddard Space Flight Center in Greenbelt, Maryland. This is the first time a widespread geochemical difference in hydrogen abundance between PFS and EFS on the moon has been detected. It is equal to a one-percent difference in the neutron signal detected by LRO's Lunar Exploration Neutron Detector (LEND) instrument. McClanahan is lead author of a paper about this research published online October 19 in the journal Icarus. Read more: 1.usa.gov/1uaa8s2 Photo caption: LRO image of the moon's Hayn Crater, located just northeast of Mare Humboldtianum, dramatically illuminated by the low Sun casting long shadows across the crater floor. Image Credit: NASA/GSFC/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  11. Use of Aquaporins to Achieve Needed Water Purity on the International Space Station for the Extravehicular Mobility Unit Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2012-01-01

    With the retirement of the U.S. Space Shuttle fleet, the supply of extremely high quality water required for the Extravehicular Mobility Unit (EMU) space suit cooling on the International Space Station (ISS) will become a significant operational hardware challenge in the very near future. One proposed solution is the use of a filtration system consisting of a semipermeable membrane embedded with aquaporin proteins, a special class of transmembrane proteins that facilitate passive, selective transport of water in vivo. The specificity of aquaporins is such that only water is allowed through the protein structure, and it is this novel property that invites their adaptation for use in water filtration systems, specifically those onboard the ISS for the EMU space suit system. These proteins are also currently being developed for use in terrestrial filtration systems.

  12. International Space Station Common Cabin Air Assembly Water Separator On-Orbit Operation, Failure, and Redesign

    NASA Technical Reports Server (NTRS)

    Balistreri, Steven F., Jr.; Shaw, Laura A.; Laliberte, Yvon

    2010-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The Water Separator (WS) pulls in air and water from the CHX, and centrifugally separates the mixture, sending the water to the condensate bus and the air back into the CHX outlet airstream. Two distinct early failures of the CCAA Water Separator in the Quest Airlock forced operational changes and brought about the re-design of the Water Separator to improve the useful life via modification kits. The on-orbit operational environment of the Airlock presented challenges that were not foreseen with the original design of the Water Separator. Operational changes were instituted to prolong the life of the third installed WS, while waiting for newly designed Water Separators to be delivered on-orbit. The modification kit design involved several different components of the Water Separator, including the innovative use of a fabrication technique to build the impellers used in Water Separators out of titanium instead of aluminum. The technique allowed for the cost effective production of the low quantity build. This paper will describe the failures of the Water Separators in the Quest Airlock, the operational constraints that were implemented to prolong the life of the installed Water Separators throughout the USOS, and the innovative re-design of the CCAA Water Separator.

  13. Multiplicative-cascade dynamics in pole balancing.

    PubMed

    Harrison, Henry S; Kelty-Stephen, Damian G; Vaz, Daniela V; Michaels, Claire F

    2014-06-01

    Pole balancing is a key task for probing the prospective control that organisms must engage in for purposeful action. The temporal structure of pole-balancing behaviors will reflect the on-line operation of control mechanisms needed to maintain an upright posture. In this study, signatures of multifractality are sought and found in time series of the vertical angle of a pole balanced on the fingertip. Comparisons to surrogate time series reveal multiplicative-cascade dynamics and interactivity across scales. In addition, simulations of a pole-balancing model generating on-off intermittency [J. L. Cabrera and J. G. Milton, Phys. Rev. Lett. 89, 158702 (2002)] were analyzed. Evidence of multifractality is also evident in simulations, though comparing simulated and participant series reveals a significantly greater contribution of cross-scale interactivity for the latter. These findings suggest that multiplicative-cascade dynamics are an extension of on-off intermittency and play a role in prospective coordination.

  14. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  15. Gravity at the Moon North Pole

    NASA Image and Video Library

    2013-03-19

    This is a polar stereographic map of gravity of the north polar region of the moon from the Gravity Recovery and Interior Laboratory GRAIL mission. The map displays the region from latitude 60 north to the pole.

  16. Pole and piling production in the Midsouth

    Treesearch

    Roy C. Beltz; Joe F. Christopher

    1968-01-01

    In 1964, nearly 53 million cubic feet of poles and piling were produced in the Midsouth-Alabama, Arkansas, Louisiana, Mississippi, Oklahoma, Tennessee, and Texas. Virtually all the volume was southern pine.

  17. A Salient-Pole Synchronous Generator with Permanent Magnets between the Field Poles

    NASA Astrophysics Data System (ADS)

    Matsui, Yasuhiro; Hayamizu, Takahito; Shima, Kazuo; Fukami, Tadashi; Hanaoka, Ryoichi; Takata, Shinzo

    In this paper, a new salient-pole synchronous generator (SG) termed the PMa-SG is presented. In the PMa-SG, permanent magnets (PMs) are placed between the pole shoes to reduce the magnetic saturation in the field poles. By using finite element analysis (FEA), the internal magnetic fields and basic characteristics of a 2.8-MVA PMa-SG were compared with those of a conventional SG of the same size, and the reduction effect of the magnetic saturation of the PMs was examined. The FEA simulations were also validated by experiments on a 2.0-kVA prototype machine. The PMs placed between the pole shoes reduce the magnetic saturation in the pole bodies and pole tips and effectively increase the terminal voltage and output power.

  18. Economic Analysis of the South Pole Traverse

    DTIC Science & Technology

    2014-05-29

    up the Leverett Glacier en route to South Pole during the 2008–09 season...fleet. This proof-of-concept effort estab- lished a 1030-mile safe route across the Ross Ice Shelf, up the Leverett Glacier , and across the Polar...Figure 2. Three SPoT sled trains heading up the Leverett Glacier en route to South Pole during the 2008–09 season. The front-most train includes the

  19. A moving-barber-pole illusion.

    PubMed

    Sun, Peng; Chubb, Charles; Sperling, George

    2014-05-01

    In the barber-pole illusion (BPI), a diagonally moving grating is perceived as moving vertically because of the shape of the vertically oriented window through which it is viewed-a strong shape-motion interaction. We introduce a novel stimulus-the moving barber pole-in which a diagonal, drifting sinusoidal carrier is windowed by a raised, vertical, drifting sinusoidal modulator that moves independently of the carrier. In foveal vision, the moving-barber-pole stimulus can be perceived as several active barber poles drifting horizontally but also as other complex dynamic patterns. In peripheral vision, pure vertical motion (the moving-barber-pole illusion [MBPI]) is perceived for a wide range of conditions. In foveal vision, the MBPI is observed, but only when the higher-order modulator motion is masked. Theories to explain the BPI make indiscriminable predictions in a standard barber-pole display. But, in moving-barber-pole stimuli, the motion directions of features (e.g., end stops) of the first-order carrier and of the higher-order modulator are all different from the MBPI. High temporal frequency stimuli viewed peripherally greatly reduce the effectiveness of higher-order motion mechanisms and, ideally, isolate a single mechanism responsible for the MBPI. A three-stage motion-path integration mechanism that (a) computes local motion energies, (b) integrates them for a limited time period along various spatial paths, and (c) selects the path with the greatest motion energy, quantitatively accounts for these high-frequency data. The MBPI model also accounts for the perceived motion-direction in peripherally viewed moving-barber-pole stimuli that do and do not exhibit the MBPI over the entire range of modulator (0-10 Hz) and carrier (2.5-10 Hz) temporal frequencies tested.

  20. Fiberglass distribution poles: A case study

    SciTech Connect

    Miller, M.F.; Hosford, G.S.; Boozer, J.F. III

    1995-01-01

    This paper addresses the design considerations and manufacturing techniques along with mechanical test results of fiberglass reinforced composite (FRC) primary distribution poles. With it`s light weight, and virtually no maintenance it offers a viable alternative for use in remote and inaccessible locations. This paper also discusses a case study where seventy five FRC primary distribution poles have been installed on a distribution system in a remote area accessible only by foot and helicopter.

  1. Mechanical Four-Pole Parameters: Transmission Matrices

    DTIC Science & Technology

    1976-04-19

    theory a. an effective means of analyzing four-terminal networksl•; more recently, with mchanical notetion, they have been used to solve vibra- tion...they are driven and terminated ao that only symmetrical vibrations about their mid- points are excited. Four-pole parameter theory is actually a simple... theory of transmission miatzices. When more complicated situations are encountered than those mentioned hitherto, four-pole theory becomes inadequate

  2. [The water-salt balance and renal function in space flights and in model experiments].

    PubMed

    Morukov, B V; Noskov, V B; Larina, I M; Natochin, Iu V

    2003-03-01

    Study of a condition of mineral and water-electrolyte metabolism, function of kidneys, and their hormonal regulation during model experiments (hypokinesia, bed rest, immersion etc.), and also in space flights and in readaptation period, has shown a major role of water-electrolyte homeostasis during general adaptation of humans and animals to new conditions of life and to conditions of weightlessness in particular. The change in regulation of volumes of fluid milieu in an initial period of weightlessness was shown to be the consequence of redistribution of blood and hemodynamics of the shifts resulting in change of production of volume-regulation hormones, formation of negative water balance, and redistribution of fluid in the organism among various fluid compartments. At later stages of flight or long-term hypokinesia, a change of water-electrolyte homeostasis occurs with a decrease in the kidneys excretion of sodium, and diuresis, but with an increased excretion of calcium and production of ADH and RAAS hormones. Following returning to earth gravitation, the majority of astronauts have adaptive reactions, compensating for the loss extracellular fluid and mineral substances and formation of "earth" water-electrolyte homeostasis. For estimation of water-electrolyte homeostasis and the functions of kidneys in astronauts, various functional loading tests have been developed. The developed system of preventive maintenance is successfully used for abolition of adverse changes at various stages of space flight and in readaptation period.

  3. Shift of annual water balance in the Budyko space for a catchment with groundwater dependent evapotranspiration

    NASA Astrophysics Data System (ADS)

    Wang, X.-S.; Zhou, Y.

    2015-11-01

    Empirical equations have been formulated for the general relationship between the evapotranspiration ratio (F) and the aridity index (φ) in the Budyko framework. Though it is normally applied for mean annual behaviors, the Budyko hypothesis has been directly adopted to analyze the interannual change in water balance. However, there are reported cases where the annual evapotranspiration ratio is larger than 1.0 (F > 1). This study reveals the effects of groundwater dependent evapotranspiration in triggering such abnormal shift of annual water balance in the Budyko space. A widely used monthly hydrological model, the ABCD model, is modified to incorporate the groundwater dependent evapotranspiration in the zone with shallow water table and delayed groundwater recharge in the zone with deep water table. This model is applied in the Hailiutu River catchment in China. Results show that the variations in the annual evapotranspiration ratio with aridity index do not satisfy the traditional Budyko hypothesis. The shift of the annual water balance in the Budyko space depends on the proportion of shallow water table area, intensity of groundwater dependent evapotranspiration, and the normal Budyko-type trend of F in the deep groundwater zone. Excess evapotranspiration (F > 1) could occur in extreme dry years, which is enhanced by groundwater-dependent evapotranspiration. Use of groundwater for irrigation may increase the frequency of occurrence of the F > 1 cases.

  4. Effect of plasticity on the dynamics of Enceladus's south pole

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Cadek, O.; Tobie, G.; Choblet, G.

    2012-09-01

    The intense activity at the south pole of Enceladus hints at an internal water reservoir. However, there is no direct evidence of liquid water at present and its long-term stability in the interior remains problematic. By modeling heat production and transfer in the ice shell in a spherical geometry, in a previous study Behounková et al. [1], we have shown that tidal heating naturally leads to a concentration of convective hot upwellings in the south polar region, favoring the preservation of liquid water at depth. We show that large volumes of water are produced within the ice shell at the south pole during periods of elevated orbital eccentricity (3-5 times the present-day value). Strong lateral variations in the melt production and crystallization rates result in stress concentration in the south polar region, thus providing an explanation for the tectonic activity observed today. We predict that an internal ocean may be sustained over the long term as the consequence of repeated periods with elevated orbital eccentricity, leading to episodic melting and resurfacing events. In order to model the resurfacing event following a tidally-induced melting episode, we are currently incorporating plasticity effects. We also improve the modeling of tidal deformation by incorporating the Andrade model, which is expected to better reproduce the viscoelastic properties of water ice Castillo-Rogez et al. [2].

  5. Assessment of structural integrity of wooden poles

    NASA Astrophysics Data System (ADS)

    Craighead, Ian A.; Thackery, Steve; Redstall, Martin; Thomas, Matthew R.

    2000-05-01

    Despite recent advances in the development of new materials, wood continues to be used globally for the support of overhead cable networks used by telecommunications and electrical utility companies. As a natural material, wood is subject to decay and will eventually fail, causing disruption to services and danger to public and company personnel. Internal decay, due to basidomycetes fungi or attack by termites, can progress rapidly and is often difficult to detect by casual inspection. The traditional method of testing poles for decay involves hitting them with a hammer and listening to the sound that results. However, evidence suggests that a large number of poles are replaced unnecessarily and a significant number of poles continue to fail unexpectedly in service. Therefore, a more accurate method of assessing the structural integrity of wooden poles is required. Over the last 25 years there have been a number of attempts at improving decay detection. Techniques such as ultrasound, drilling X rays etc. have been developed but have generally failed to improve upon the practicality and accuracy of the traditional testing method. The paper describes the use of signal processing techniques to analyze the acoustic response of the pole and thereby determine the presence of decay. Development of a prototype meter is described and the results of initial tests on several hundred poles are presented.

  6. Poles apart: Scott, Amundsen and science.

    PubMed

    Larson, Edward J

    2011-12-01

    One hundred years ago, teams led by Roald Amundsen and Robert Scott may have been heading in the same direction but they were poles apart in the way they sought their goals. Amundsen led a five-person team of expert Nordic skiers and dog-sledders with a single goal: getting to the South Pole first. He planned and executed the effort brilliantly. Scott, in contrast, led a complex and multi-faceted Antarctic expedition with 33 explorers and scientists, many of whom were focused on ambitious and often taxing scientific research projects that had nothing whatsoever to do with reaching the Pole. Although Scott failed to reach the South Pole first and died with four men on the return trip, his expedition made significant contributions to Antarctic science. Indeed, at least some of Scott's failure to reach the Pole first and the subsequent death of his polar party on the return trip can be attributed to burden of trying to do too much and not focusing on reaching the pole.

  7. Pole movement in electronic and optoelectronic oscillators

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Pal, S.; Biswas, B. N.

    2013-12-01

    An RLC circuit with poles on the left half of the complex frequency plane is capable of executing transient oscillations. During this period, energy conversion from potential to kinetic and from kinetic to potential continuously goes on, until the stored energy is lost in dissipation through the resistance. On the other hand, in an electronic or opto-electronic oscillator with an embedded RLC circuit, the poles are forcibly placed on the right-half plane (RHP) and as far as practicable away from the imaginary axis in order to help the growth of oscillation as quickly as possible. And ultimately, it is imagined that, like the case of an ideal linear harmonic oscillator, the poles are frozen on the imaginary axis so that the oscillation neither grows nor decays. The authors feel that this act of holding the poles right on the imaginary axis is a theoretical conjecture in a soft or hard self-excited oscillator. In this article, a detailed discussion on pole movement in an electronic and opto-electronic oscillator is carried out from the basic concept. A new analytical method for estimating the time-dependent part of the pole is introduced here.

  8. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  9. Hollow Fiber Space Suit Water Membrane Evaporator Development for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Hanford, Anthony J.; Mitchell, Keith

    2009-01-01

    The Space Suit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The Hollow Fiber (HoFi) SWME is being considered for service in the Constellation Space Suit Element (CSSE) Portable Life Support Subsystem (PLSS) to provide cooling to the thermal loop through water evaporation to the vacuum of space. Previous work described the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME: 1) porous hydrophobic polypropylene, 2) porous hydrophobic polysulfone, and 3) ion exchange through nonporous hydrophilic modified Nafion. Contamination tests were performed to probe for sensitivities of the candidate SWME elements to organics and non-volative inorganics expected to be found in the target feedwater source, i.e., potable water provided by the vehicle. The resulting presence of precipitate in the coolant water could plug pores and tube channels and affect the SWME performance. From this prior work, a commercial porous hydrophobic hollow fiber was selected to satisfy both the sensitivity question and the need to provide 800 W of heat rejection. This paper describes the trade studies, the design methodology, and the hollow fiber test data used to design a full

  10. Space-Confined Earth-Abundant Bifunctional Electrocatalyst for High-Efficiency Water Splitting.

    PubMed

    Tang, Yanqun; Fang, Xiaoyu; Zhang, Xin; Fernandes, Gina; Yan, Yong; Yan, Dongpeng; Xiang, Xu; He, Jing

    2017-10-12

    Hydrogen generation from water splitting could be an alternative way to meet increasing energy demands while also balancing the impact of energy being supplied by fossil-based fuels. The efficacy of water splitting strongly depends on the performance of electrocatalysts. Herein, we report a unique space-confined earth-abundant electrocatalyst having the bifunctionality of simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), leading to high-efficiency water splitting. Outperforming Pt/C or RuO2 catalysts, this mesoscopic, space-confined, bifunctional configuration is constructed from a monolithic zeolitic imidazolate framework@layered double hydroxide (ZIF@LDH) precursor on Ni foam. Such a confinement leads to a high dispersion of ultrafine Co3O4 nanoparticles within the N-doped carbon matrix by temperature-dependent calcination of the ZIF@LDH. We demonstrate that the OER has an overpotential of 318 mV at a current density of 10 mA cm(-2), while that of HER is -106 mV @ -10 mA cm(-2). The voltage applied to a two-electrode cell for overall water splitting is 1.59 V to achieve a stable current density of 10 mA cm(-2) while using the monolithic catalyst as both the anode and the cathode. It is anticipated that our space-confined method, which focuses on earth-abundant elements with structural integrity, may provide a novel and economically sound strategy for practical energy conversion applications.

  11. Ballooning in the constant sun of the South Pole summer

    NASA Image and Video Library

    2014-01-12

    A BARREL balloon launches up into the sky, destined to float on the circumpolar winds around the South Pole for up to three weeks while measuring Earth's magnetic field and energetic particles from the radiation belts. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: http://www.nasa.gov/content/nasas-barrel-returns-successful-from-antarctica/ -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Ballooning in the constant sun of the South Pole summer

    NASA Image and Video Library

    2013-12-28

    The BARREL instrument in Antarctica– prior to being encased in its protective box – destined to float beneath a giant balloon to study magnetic fields and energetic particles near the South Pole. Credit: NASA/Goddard/BARREL/Brett Anderson Read more: http://www.nasa.gov/content/nasas-barrel-returns-successful-from-antarctica/ -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. HIPPO (HIAPER Pole-to-Pole Observations) Data from CDIAC's HIPPO Data Archive

    DOE Data Explorer

    The HIPPO (HIAPER Pole-to-Pole Observations) study of the carbon cycle and greenhouse gases measured meteorology, atmospheric chemistry, and aerosol constituents along transects from approximately pole-to-pole over the Pacific Ocean. HIPPO flew hundreds of vertical profiles from the ocean/ice surface to as high as the tropopause, at five times during different seasons over a three year period from 2009-2011. HIPPO provides the first high-resolution vertically-resolved global survey of a comprehensive suite of atmospheric trace gases and aerosols pertinent to understanding the carbon cycle and challenging global climate models.

  14. CROW{trademark} FIELD DEMONSTRATION WITH BELL LUMBER AND POLE

    SciTech Connect

    L. John Fahy; Lyle A. Johnson, Jr.

    1997-04-01

    Beginning in 1990, efforts were initiated for Western Research Institute (WRI) to implement an in situ remediation project for the contaminated aquifer at the Bell Lumber and Pole Company (Bell Pole) Site in New Brighton, Minnesota. The remediation project involves the application of the Contained Recovery of Oily Waste (CROW{trademark}) process, which consists of hot-water injection to displace and recover the non-aqueous phase liquids (NAPL) (Johnson and Sudduth 1989). Wood treating activities began at the Bell Pole Site in 1923 and have included the use of creosote and pentachlorophenol (PCP) in a fuel oil carrier. Creosote was used as a wood preservative from 1923 to 1958. Provalene 4-A, a non-sludging fuel-oil-type carrier for PCP, was used from 1952 until it was no longer commercially available in 1968. A 5-6% mixture of PCP in fuel oil has been used as a wood preservative since 1952, and a fuel-oil-type carrier, P-9, has been used since 1968. While reviewing the site evaluation information, it became apparent that better site characterization would enhance the outcome of the project. Additional coring indicated that the area's extent of the contaminated soils was approximately eight times greater than initially believed. Because of these uncertainties, a pilot test was conducted, which provided containment and organic recovery information that assisted in the design of the full-scale CROW process demonstration.

  15. Dynamics of the North Sea pole tide reconsidered

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl

    1986-01-01

    The anomalous tide in the North Sea, driven by the Chandler wobble, is here re-examined. A previously published solution in which these 'pole tide' observations were explained as a forced co-oscillation from the deep water tide is shown to be untenable, because it is very unlikely that the deep ocean tide is anything but equilibrium. Using the same physics as in the previous solution (viscous, linear, quasi-geostrophic dynamics), it is now suggested that the only plausible explanation is that there is a coincidental resonance between the long-wavelength branch topographic Rossby wave of the North Sea and the direct driving by the pole tide potential. This resonance is not a basin-resonance, but that of a free wave driven by a travelling forcing function. Simplified models reproduce the observations in qualitative fashion. If this explanation is the correct one, then the Arctic seas north of Asia and North America appear to be likely candidates as other regions where there may be a large pole tide response and, hence, a locus of wobble dissipation. Given the difficulties of observation, the long times required, and the general instability of the dissipation calculation with the simplified analytical model, probably a numerical model will be required for further progress.

  16. Spatial distribution of water in the stratosphere of Jupiter from observations with the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Feuchtgruber, H.; Lellouch, E.; de Val-Borro, M.; Jarchow, C.; Moreno, R.; Hartogh, P.; Orton, G.; Greathouse, T. K.; Billebaud, F.; Dobrijevic, M.; Lara, L. M.; Gonzalez, A.; Sagawa, H.

    2013-09-01

    Water in the atmospheres of the outer planets has both an internal and an external source (e.g., [1] and [2] for Jupiter). These sources are separated by a condensation layer, the tropopause cold trap, which acts as a transport barrier between the troposphere and the stratosphere. Thus, the water vapor observed by the Infrared Space Observatory (ISO) in the stratosphere of the giant planets has an external origin [3]. This external supply of water may have several sources: (i) a permanent flux from interplanetary dust particles produced from asteroid collisions and from comet activity [4], (ii) local sources from planetary environments (rings, satellites) [5], (iii) cometary "Shoemaker-Levy 9 (SL9) type" impacts [6]. In the past 15 years, several studies suggested that water in the stratosphere of Jupiter originated from the SL9 comet impacts in July 1994, but a direct proof was missing. We will report the first high S/N spatially resolved mapping observations of water in Jupiter's stratosphere carried out with the Heterodyne Instrument for the Far Infrared (HIFI) [7] and Photodetector Array Camera and Spectrometer (PACS) [8] instruments onboard the ESA Herschel Space Observatory [9]. These observations have been obtained in the framework of the Guaranteed Time Key Program "Water and related chemistry in the Solar System", also known as "Herschel Solar System Observations" (HssO) [10]. In parallel, we have monitored Jupiter's stratospheric temperature with the NASA Infrared Telescope Facility (IRTF) to separate temperature from water variability. We will present the results recently published by our team [11]. Water is found to be restricted to pressures lower than 2mbar. Its column density decreases by a factor of 2-3 between southern and northern latitudes (see Fig. 1), consistently between the HIFI and the PACS 66.4μm maps. Latitudinal temperature variability cannot explain the global north-south asymmetry in the water maps. From the latitudinal and vertical

  17. International Space Station USOS Potable Water Dispenser On-Orbit Functionality Versus Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2010-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmember food and drinking packages. There is one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. Shuttle mission STS-126 delivered the USOS Potable Water Dispenser (PWD) to ISS on ULF2; subsequent activation occurred on November 2008. The PWD is capable of supporting an ISS crew of six, but nominally supplies only half this crew size. The PWD design provides incremental quantities of hot and ambient temperature potable water to US food and beverage packages. PWD receives iodinated water from the US Water Recovery System (WRS) Fuel Cell Water Bus, which feeds from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 L of hot water (65 to 93 ?C) every 30 min. During a single meal, this quantity of water supports three to four crewmembers? food rehydration and beverages. The unit design has a functional life expectancy of 10 years, with replacement of limited life items, such as filters. To date, the PWD on-orbit performance is acceptable. Since activation of the PWD, there were several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is discussed for the following key areas: 1) microbial contamination, 2) no-dispense and water leakage scenarios, and 3) under-dispense scenarios.

  18. Radiative property degradation of water impinging on thermally-controlled surfaces under space conditions.

    NASA Technical Reports Server (NTRS)

    Maples, D.; Spiller, M. H.; Maples, G.

    1973-01-01

    Review of the results of an investigation aimed at determining experimentally the directional monochromatic reflectance changes caused under high-vacuum space conditions by a water spray impinging on thermally controlled surfaces consisting of three paint specimens (Z93, S13G, and 92-007) and an aluminum foil. The first two paints and the aluminum foil suffered considerable physical damage, but only small changes resulted in the reflectance of the paints while the reflectance of the aluminum foil decreased with increase in exposure time to the water jet. Only the 92-007 Dow Corning paint retained the same physical and reflective characteristics.

  19. Radiative property degradation of water impinging on thermally-controlled surfaces under space conditions.

    NASA Technical Reports Server (NTRS)

    Maples, D.; Spiller, M. H.; Maples, G.

    1973-01-01

    Review of the results of an investigation aimed at determining experimentally the directional monochromatic reflectance changes caused under high-vacuum space conditions by a water spray impinging on thermally controlled surfaces consisting of three paint specimens (Z93, S13G, and 92-007) and an aluminum foil. The first two paints and the aluminum foil suffered considerable physical damage, but only small changes resulted in the reflectance of the paints while the reflectance of the aluminum foil decreased with increase in exposure time to the water jet. Only the 92-007 Dow Corning paint retained the same physical and reflective characteristics.

  20. Water sprays in space retrieval operations. [for disabled spacecraft detumbling and despinning

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1978-01-01

    The water spray technique (WST) for nullifying the angular momentum of a disabled spacecraft is examined. Such a despinning operation is necessary before a disabled spacecraft can be retrieved by the Space Shuttle. The WST involving the use of liquid sprays appears to be less complex and costly than other techniques proposed to despin a disabled vehicle. A series of experiments have been conducted to determine physical properties of water sprays exhausting into a vacuum. A computer model is built which together with the experimental results yields satellite despin performance parameters. The selection and retrieval of an actual disabled spacecraft is considered to demonstrate an application of the WST.

  1. The potential of wood-based composite poles

    Treesearch

    Todd F. Shupe; Cheng Piao; Chung Y. Hse

    2009-01-01

    Wood-based composite utility poles are receiving increasing attention in the North American pole market. This interest is being driven by many increasing factors such as increasing: (1) disposal costs of solid wood poles, (2) liability and environmental concerns with traditional means of disposal of solid wood poles, (3) cost and concerns of long-term...

  2. Mechanical properties of small-scale wood laminated composite poles

    Treesearch

    Cheng Piao; Todd F. Shupe; Chung Y. Hse

    2004-01-01

    Power companies in the United States consume millions of solid wood poles every year. These poles are from high-valued trees that are becoming more expensive and less available. wood laminated composite poles (LCP) are a novel alternative to solid wood poles. LCP consists of trapezoid wood strips that are bonded by a synthetic resin. The wood strips can be made from...

  3. Cover pole design for easy transport, assembly and field use.

    USDA-ARS?s Scientific Manuscript database

    Cover poles, also called Robel poles, are used to measure a variety of structural vegetation attributes commonly used in wildlife and livestock management. Although cover pole dimensions, measurement criteria, and interpretation of cover pole data vary depending on measurement objectives, the techni...

  4. Human water, sodium, and calcium regulation during space flight and exercise

    NASA Astrophysics Data System (ADS)

    Doty, S. E.; Seagrave, R. C.

    2000-05-01

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  5. Human water, sodium, and calcium regulation during space flight and exercise

    NASA Astrophysics Data System (ADS)

    Doty, S. E.; Seagrave, R. C.

    When one is exposed to microgravity, fluid which is normally pooled in the lower extremities is redistributed headward and weight bearing bones begin to demineralize due to reduced mechanical stresses. The kidney, which is the primary regulator of body fluid volume and composition, responds to the fluid shift and bone demineralization by increasing the urinary output of water, sodium, and calcium. This research involves developing a mathematical description of how water and electrolytes are internally redistributed and exchanged with the environment during space flight. This model consequently involves kidney function and the associated endocrine system. The model agrees well with actual data, including that a low sodium diet can prevent bone demineralization. Therefore, assumptions made to develop the model are most likely valid. Additionally, various levels of activity are also considered in the model since exercise may help to eliminate some of the undesired effects of space flight such as muscle atrophy and bone demineralization.

  6. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  7. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  8. Analysis of space heating and domestic hot water systems for energy-efficient residential buildings

    SciTech Connect

    Dennehy, G

    1983-04-01

    An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

  9. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  10. Video- Making a Film of Water Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.

  11. Video-A Bottle of Water And Bubbles Rotate on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Pettit performs a demonstration in which he shook up a bottle that was half full of water, half full of air, so that bubbles formed, then spun it real fast to see what would happen to the bubbles. Watch the video to see the outcome.

  12. Advanced techniques for free-space optical quantum cryptography over water

    NASA Astrophysics Data System (ADS)

    Hill, Alexander D.; Christensen, Bradley; Kwiat, Paul G.

    2016-03-01

    Free-space quantum key distribution (QKD) over water (e.g., ship to ship) may be limited by ship motion and atmospheric effects, such as mode distortion and beam wander due to turbulence. We report on a technique which reduces noise by excluding spatial modes which are less likely to contain QKD signal photons and experimentally demonstrate an improvement in QKD key generation rates in various noise and turbulence regimes.

  13. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect

    Not Available

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  14. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Technical Reports Server (NTRS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, C.; Lanyi, G.; Naudet, C.

    2005-01-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  15. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  16. Relocation of Advanced Water Vapor Radiometer 1 to Deep Space Station 55

    NASA Astrophysics Data System (ADS)

    Oswald, J.; Riley, L.; Hubbard, A.; Rosenberger, H.; Tanner, A.; Keihm, S.; Jacobs, Christopher S.; Lanyi. G. E.; Naudet, C. J.

    2005-11-01

    In June of 2004, the Advanced Water Vapor Radiometer (AWVR) unit no. 1 was relocated to the Deep Space Station (DSS) 55 site in Madrid, Spain, from DSS 25 in Goldstone, California. This article summarizes the relocation activity and the subsequent operation and data acquisition. This activity also relocated the associated Microwave Temperature Profiler (MTP) and Surface Meteorology (SurfMET) package that collectively comprise the Cassini Media Calibration System (MCS).

  17. Video- Making a Film of Water Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.

  18. Video-A Bottle of Water And Bubbles Rotate on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Pettit performs a demonstration in which he shook up a bottle that was half full of water, half full of air, so that bubbles formed, then spun it real fast to see what would happen to the bubbles. Watch the video to see the outcome.

  19. Feasibility study for geothermal-water space heating for the Safford Federal Prison Camp, Safford, Arizona

    SciTech Connect

    Not Available

    1981-07-01

    The results of an economic feasibility study for the Oregon Institute of Technology regarding a geothermal heating system for the Federal Prison Camp, Safford, Arizona are presented. The following aspects were examined: heat load calculations of the buildings involved; mechanical equipment retrofits necessary to accept geothermal water for the purpose of space heating; cost estimates for the equipment retrofit; and evaluation of the equipment retrofit to determine economic feasibility.

  20. Energy expenditure in space flight (doubly labelled water method) (8-IML-1)

    NASA Technical Reports Server (NTRS)

    Parsons, Howard G.

    1992-01-01

    The objective of the Energy Expenditure in Space Flight (ESS) experiment is to demonstrate and evaluate the doubly labeled water method of measuring the energy expended by crew members during approximately 7 days in microgravity. The doubly labeled water technique determines carbon dioxide production which is then used to calculate energy expenditure. The method relies on the equilibrium between oxygen in respiratory carbon dioxide and oxygen in body water. Because of this equilibrium, the kinetic of water turnover and respiration are interdependent. Under normal conditions, man contains small but significant amounts of deuterium and oxygen 18. Deuterium is eliminated from the body as water while oxygen 18 is eliminated as water and carbon dioxide. The difference in the turnover rates in the two isotopes is proportional to the carbon dioxide production. Deliberately enriching the total body water with both of these isotopes allows the isotope turnovers to be accurately measured in urine, plasma, or saliva samples. The samples are taken to the laboratory for analysis using an ion-ratio spectrometer.

  1. Coupled water transport in standing gradient models of the lateral intercellular space.

    PubMed Central

    Weinstein, A M; Stephenson, J L

    1981-01-01

    A standing gradient model of the lateral intercellular space is presented which includes a basement membrane of finite solute permeability. The solution to the model equations is estimated analytically using the "isotonic convection approximation" of Segel. In the case of solute pumps uniformly distributed along the length of the channel, the achievement of isotonic transport depends only on the water permeability of the cell membranes. The ability of the model to transport water against an adverse osmotic gradient is the sum of two terms: The first term is simply that for a well-stirred compartment model and reflects basement membrane solute permeability. The second term measures the added strength due to diffusion limitation within the interspace. It is observed, however, that the ability for uphill water transport due to diffusion limitation is diminished by high cell membrane water permeability. For physiologically relevant parameters, it appears that the high water permeability required for isotonic transport renders the contribution of the standing gradient relatively ineffective in transport against an osmotic gradient. Finally, when the model transports both isotonically and against a gradient, it is shown that substantial intraepithelial solute polarization effects are unavoidable. Thus, the measured epithelial water permeability will grossly underestimate the water permeability of the cell membranes. The accuracy of the analytic approximation is demonstrated by numerical solution of the complete model equations. PMID:7260315

  2. Energy expenditure in space flight (doubly labelled water method) (8-IML-1)

    NASA Technical Reports Server (NTRS)

    Parsons, Howard G.

    1992-01-01

    The objective of the Energy Expenditure in Space Flight (ESS) experiment is to demonstrate and evaluate the doubly labeled water method of measuring the energy expended by crew members during approximately 7 days in microgravity. The doubly labeled water technique determines carbon dioxide production which is then used to calculate energy expenditure. The method relies on the equilibrium between oxygen in respiratory carbon dioxide and oxygen in body water. Because of this equilibrium, the kinetic of water turnover and respiration are interdependent. Under normal conditions, man contains small but significant amounts of deuterium and oxygen 18. Deuterium is eliminated from the body as water while oxygen 18 is eliminated as water and carbon dioxide. The difference in the turnover rates in the two isotopes is proportional to the carbon dioxide production. Deliberately enriching the total body water with both of these isotopes allows the isotope turnovers to be accurately measured in urine, plasma, or saliva samples. The samples are taken to the laboratory for analysis using an ion-ratio spectrometer.

  3. [The influence of space flights on water-electrolytes turnover and its regulation].

    PubMed

    Grigor'ev, A I; Larina, I M; Noskov, V B

    2006-01-01

    A study of water-electrolyte exchange, the condition of water milieu of the organism, and the volume- and electrolyte homeostasis regulation in space flights, and also in postflight period has shown the important role of the water-salt homeostasis in adaptation of the human and animal organism to weightlessness. Obviously, downturn of food consumption, renal excretion and the intestine output seem to be caused by suppression of activity of mechanisms of ion deposition. The most intensive changes of the liquid milieu volumes occur in the first days of weightlessness or in its ground simulation. And, with prolonged duration, the changes of extracellular liquid volume and the volume of plasma do not extend. After termination of long space flights, activation of renin-aldosterone systems occurs as well as a decrease in efficiency of antidiuretic hormone, misbalance of pressor/unpressor prostanoids. In the period of re-adaptation after space flights, development of desensitization of kidneys to endogenous ADH occurs. This is the basis for researches directed to improvement of the existing scheme of correction of the hydrogenous status of the astronaut organism in the closing stage of flight.

  4. Lack of exposed ice inside lunar south pole Shackleton Crater.

    PubMed

    Haruyama, Junichi; Ohtake, Makiko; Matsunaga, Tsuneo; Morota, Tomokatsu; Honda, Chikatoshi; Yokota, Yasuhiro; Pieters, Carle M; Hara, Seiichi; Hioki, Kazuyuki; Saiki, Kazuto; Miyamoto, Hideaki; Iwasaki, Akira; Abe, Masanao; Ogawa, Yoshiko; Takeda, Hiroshi; Shirao, Motomaro; Yamaji, Atsushi; Josset, Jean-Luc

    2008-11-07

    The inside of Shackleton Crater at the lunar south pole is permanently shadowed; it has been inferred to hold water-ice deposits. The Terrain Camera (TC), a 10-meter-resolution stereo camera onboard the Selenological and Engineering Explorer (SELENE) spacecraft, succeeded in imaging the inside of the crater, which was faintly lit by sunlight scattered from the upper inner wall near the rim. The estimated temperature of the crater floor, based on the crater shape model derived from the TC data, is less than approximately 90 kelvin, cold enough to hold water-ice. However, at the TC's spatial resolution, the derived albedo indicates that exposed relatively pure water-ice deposits are not on the crater floor. Water-ice may be disseminated and mixed with soil over a small percentage of the area or may not exist at all.

  5. Lack of Exposed Ice Inside Lunar South Pole Shackleton Crater

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Ohtake, Makiko; Matsunaga, Tsuneo; Morota, Tomokatsu; Honda, Chikatoshi; Yokota, Yasuhiro; Pieters, Carle M.; Hara, Seiichi; Hioki, Kazuyuki; Saiki, Kazuto; Miyamoto, Hideaki; Iwasaki, Akira; Abe, Masanao; Ogawa, Yoshiko; Takeda, Hiroshi; Shirao, Motomaro; Yamaji, Atsushi; Josset, Jean-Luc

    2008-11-01

    The inside of Shackleton Crater at the lunar south pole is permanently shadowed; it has been inferred to hold water-ice deposits. The Terrain Camera (TC), a 10-meter-resolution stereo camera onboard the Selenological and Engineering Explorer (SELENE) spacecraft, succeeded in imaging the inside of the crater, which was faintly lit by sunlight scattered from the upper inner wall near the rim. The estimated temperature of the crater floor, based on the crater shape model derived from the TC data, is less than ˜90 kelvin, cold enough to hold water-ice. However, at the TC’s spatial resolution, the derived albedo indicates that exposed relatively pure water-ice deposits are not on the crater floor. Water-ice may be disseminated and mixed with soil over a small percentage of the area or may not exist at all.

  6. Reorientation of the early lunar pole

    NASA Astrophysics Data System (ADS)

    Takahashi, Futoshi; Tsunakawa, Hideo; Shimizu, Hisayoshi; Shibuya, Hidetoshi; Matsushima, Masaki

    2014-06-01

    Palaeomagnetic measurements suggest that an active core dynamo operated on the Moon from 4.2 to 3.56 billion years ago. Since the Apollo era, many magnetic anomalies have been observed on the Moon. The magnetization of the lunar crust in some of these regions could preserve the signature of an early dipolar magnetic field generated by a core dynamo. Thus, the magnetic anomalies may yield information about the position of the palaeomagnetic pole during the time that the dynamo operated. Here we present a comprehensive survey of magnetic anomalies on the lunar surface using magnetometer data obtained by the Lunar Prospector and Kaguya lunar orbiters. We extract magnetization vectors from 24 magnetic anomalies using an iterative inversion method and derive the palaeomagnetic poles. We find that the north poles, as well as the antipodal south poles, cluster in two distinct locations: one near the present rotation axis and the other at mid-latitude. The clustering is consistent with a dipole-dominated magnetic field generated in the lunar core by a dynamo that was reversing, much like that of Earth. Furthermore, the two pole clusters imply that the Moon experienced a polar wander event during its ancient history due to the reorientation of the Moon with respect to its spin axis by 45°-60°.

  7. Pole tide in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Medvedev, I. P.; Rabinovich, A. B.; Kulikov, E. A.

    2014-03-01

    The pole tide, which is driven by the Chandler Wobble, has a period of about 14 months and typical amplitudes in the World Ocean of ˜0.5 cm. However, in the Baltic Sea the pole tide is anomalously high. To examine this effect we used long-term hourly sea level records from 23 tide gauges and monthly records from 64 stations. The lengths of the series were up to 123 years for hourly records and 211 years for monthly records. High-resolution spectra revealed a cluster of neighboring peaks with periods from 410 to 440 days. The results of spectral analysis were applied to estimate the integral amplitudes of pole tides from all available tide gauges along the coast of the Baltic Sea. The height of the pole tide was found to gradually increase from the entrance (Danish Straits, 1.5-2 cm) to the northeast end of the sea. The largest amplitudes—up to 4.5-7 cm—were observed in the heads of the Gulf of Finland and the Gulf of Bothnia. Significant temporal fluctuations in amplitudes and periods of the pole tide were observed during the 19th and 20th centuries.

  8. Pion scattering poles and chiral symmetry restoration

    SciTech Connect

    Fernandez-Fraile, D.; Nicola, A. Gomez; Herruzo, E. T.

    2007-10-15

    Using unitarized chiral perturbation theory methods, we perform a detailed analysis of the {pi}{pi} scattering poles f{sub 0}(600) and {rho}(770) behavior when medium effects such as temperature or density drive the system towards chiral symmetry restoration. In the analysis of real poles below threshold, we show that it is crucial to extend properly the unitarized amplitudes so that they match the perturbative Adler zeros. Our results do not show threshold enhancement effects at finite temperature in the f{sub 0}(600) channel, which remains as a pole of broad nature. We also implement T=0 finite-density effects related to chiral symmetry restoration, by varying the pole position with the pion decay constant. Although this approach takes into account only a limited class of contributions, we reproduce the expected finite-density restoration behavior, which drives the poles towards the real axis, producing threshold enhancement and {pi}{pi} bound states. We compare our results with several model approaches and discuss the experimental consequences, both in relativistic heavy ion collisions and in {pi}{yields}{pi}{pi} and {gamma}{yields}{pi}{pi} reactions in nuclei.

  9. Changes of total water and sucrose space accompanying induced ion uptake or phosphate swelling of rat liver mitochondria

    PubMed Central

    Harris, E. J.; Van Dam, K.

    1968-01-01

    1. Total water exchangeable with tritiated water and sucrose space were measured in rat liver mitochondria during the uptake of K+ induced by valinomycin and the release caused by nigericin. The K+ content and the sucrose-inaccessible water rose and fell together. 2. Swelling resulting from phosphate addition in a medium of high K+ concentration was associated mainly with increased sucrose-accessible water, which carried dissolved K+. This change was reversed by addition of ATP. 3. The response of the sucrose-inaccessible space to changed osmolarity was qualitatively that expected if the mitochondrial K+ is assumed to be present in this space with a univalent anion. 4. It is brought out that the light-scattering method fails to distinguish between changes in sucrose space and in sucrose-inaccessible space, which in the present experiments could be altered respectively by phosphate (in high K+ solution) and by cation uptake induced by antibiotic. PMID:5639931

  10. Body mass, energy intake, and water consumption of rats and humans during space flight.

    PubMed

    Wade, C E; Miller, M M; Baer, L A; Moran, M M; Steele, M K; Stein, T P

    2002-10-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  11. Body mass, energy intake, and water consumption of rats and humans during space flight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  12. Body mass, energy intake, and water consumption of rats and humans during space flight

    NASA Technical Reports Server (NTRS)

    Wade, C. E.; Miller, M. M.; Baer, L. A.; Moran, M. M.; Steele, M. K.; Stein, T. P.

    2002-01-01

    Alteration of metabolism has been suggested as a major limiting factor to long-term space flight. In humans and primates, a negative energy balance has been reported. The metabolic response of rats to space flight has been suggested to result in a negative energy balance. We hypothesized that rats flown in space would maintain energy balance as indicated by maintenance of caloric intake and body mass gain. Further, the metabolism of the rat would be similar to that of laboratory-reared animals. We studied the results from 15 space flights lasting 4 to 19 d. There was no difference in average body weight (206 +/- 13.9 versus 206 +/- 14.8 g), body weight gain (5.8 +/- 0.48 versus 5.9 +/- 0.56 g/d), caloric intake (309 +/- 21.0 versus 309 +/- 20.1 kcal/kg of body mass per day), or water intake (200 +/- 8.6 versus 199 +/- 9.3 mL/kg of body mass per day) between flight and ground control animals. Compared with standard laboratory animals of similar body mass, no differences were noted. The observations suggested that the negative balance observed in humans and non-human primates may be due to other factors in the space-flight environment.

  13. Optimal Management of Water, Nutrient and Carbon Cycles of Green Urban Spaces

    NASA Astrophysics Data System (ADS)

    Revelli, R.; Pelak, N. F., III; Porporato, A. M.

    2016-12-01

    The urban ecosystem is a complex, metastable system with highly coupled flows of mass, energy, people and capital. Their sustainability is in part linked to the existence of green spaces which provide important ecosystem services, whose sustainable management requires quantification of their benefits in terms of impacts on water, carbon and energy fluxes. An exploration of problems of optimal management of such green urban spaces and the related biogeochemical fluxes is presented, extending probabilistic ecohydrological models of the soil-plant system to the urban context, where biophysical and ecological conditions tend to be radically different from the surrounding rural and natural environment (e.g. heat islands, air and water pollution, low quality soils, etc…). The coupled soil moisture, nutrient and plant dynamics are modeled to compute water requirements, carbon footprint, nutrient demand and losses, and related fluxes under different design, management and climate scenarios. The goal is to provide operative rules for a sustainable water use through focused irrigation and fertilization strategies, optimal choice of plants, soil and cultivation conditions, accounting for the typical hydroclimatic variability that occur in the urban environment. This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701914. The work is also cofounded by USDA Agricultural Research Service cooperative agreement 58-6408-3-027; National Science Foundation (NSF) grants: EAR-1331846, EAR-1316258, and the DGE-1068871 and FESD EAR-1338694.

  14. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Vega, Leticia; Aber, Gregory; Adam, Niklas; Clements, Anna; Modica, Catherine; Younker, Diane

    2011-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems which are less dependent on hardware that would need to be launched on a regular basis. Three systems for electrochemical production of potable water disinfectants are being assessed for use on the International Space Station (ISS). Since there is a wide variability in the literature with regards to efficacy in both concentration and exposure time of these disinfectants, there is a need to establish baseline efficacy values. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria and to determine whether these electrochemical disinfection devices are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

  15. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Anderson, Molly; Anderson, Molly; Adam, Niklas; Vega, Leticia; Modica, Catherine; Bodkin, Douglas

    2012-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.

  16. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    NASA Technical Reports Server (NTRS)

    Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

    2013-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

  17. International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lovell, Randal W.

    2009-01-01

    The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.

  18. Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone.

    PubMed

    Samuel, Jitin; Sinha, Debarshi; Zhao, John Cong-Gui; Wang, Xiaodu

    2014-02-01

    Water may affect the mechanical behavior of bone by interacting with the mineral and organic phases through two major pathways: i.e. hydrogen bonding and polar interactions. In this study, dehydrated bone was soaked in several solvents (i.e. water, heavy water (D2O), ethylene glycol (EG), dimethylformamide (DMF), and carbon tetrachloride(CCl4)) that are chemically harmless to bone and different in polarity, hydrogen bonding capability and molecular size. The objective was to examine how replacing the original matrix water with the solvents would affect the mechanical behavior of bone. The mechanical properties of bone specimens soaked in these solvents were measured in tension in a progressive loading scheme. In addition, bone specimens without any treatments were tested as the baseline control whereas the dehydrated bone specimens served as the negative control. The experimental results indicated that 22.3±5.17vol% of original matrix water in bone could be replaced by CCl4, 71.8±3.77vol% by DMF, 85.5±5.15vol% by EG, and nearly 100% by D2O and H2O, respectively. CCl4 soaked specimens showed similar mechanical properties with the dehydrated ones. Despite of great differences in replacing water, only slight differences were observed in the mechanical behavior of EG and DMF soaked specimens compared with dehydrated bone samples. In contrast, D2O preserved the mechanical properties of bone comparable to water. The results of this study suggest that a limited portion of water (<15vol% of the original matrix water) plays a pivotal role in the mechanical behavior of bone and it most likely resides in small matrix spaces, into which the solvent molecules larger than 4.0Å cannot infiltrate.

  19. Effect of the pole--human body interaction on pole vaulting performance.

    PubMed

    Arampatzis, Adamantios; Schade, Falk; Brüggemann, Gert-Peter

    2004-09-01

    The purposes of this study were: (a) to examine the interactions between the athlete and the pole and the possibility for the athlete to take advantage of the pole's elasticity by means of muscular work and (b) to develop performance criteria during the interaction between the athlete and the pole in pole vaulting. Six athletes performed 4-11 trials each, at 90% of their respective personal best performance. All trials were recorded using four synchronized, genlocked video cameras operating at 50 Hz. The ground reaction forces exerted on the bottom of the pole were measured using a planting box fixed on a force plate (1000 Hz). The interaction between athlete and pole may be split into two parts. During the first part, energy is transferred into the pole and the total energy of the athlete decreases. The difference between the energy decrease of the athlete and the pole energy is an indicator of the energy produced by the athletes by means of muscular work (criterion 1). During the second part of the interaction, energy is transferred back to the athlete and the total energy of the athlete increases. The difference between the returned pole energy and the amount of energy increase of the athlete defines criterion 2. In general, the function of the pole during the interaction is: (a) store part of the kinetic energy that the athlete achieved during the run up as strain energy and convert this strain energy into potential energy of the athlete, (b) allow the active system (athlete) to produce muscular work to increase the total energy potential.

  20. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  1. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  2. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  3. Water recovery and management test support modeling for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; Bacskay, Allen S.

    1990-01-01

    The water-recovery and management (WRM) subsystem proposed for the Space Station Freedom program is outlined, and its computerized modeling and simulation based on a Computer Aided System Engineering and Analysis (CASE/A) program are discussed. A WRM test model consisting of a pretreated urine processing (TIMES), hygiene water processing (RO), RO brine processing using TIMES, and hygiene water storage is presented. Attention is drawn to such end-user equipment characteristics as the shower, dishwasher, clotheswasher, urine-collection facility, and handwash. The transient behavior of pretreated-urine, RO waste-hygiene, and RO brine tanks is assessed, as well as the total input/output to or from the system. The model is considered to be beneficial for pretest analytical predictions as a program cost-saving feature.

  4. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Gervais, Edward, III; Trevino, Luis

    2008-01-01

    NASA s next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew s liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  5. Development of a Prototype Water Pump for Future Space Suit Applications

    NASA Technical Reports Server (NTRS)

    Hartman, David; Hodgson, Edward; Dionne, Steven; Gervais, Edward, III; Trevino, Luis

    2009-01-01

    NASA's next generation of space suit systems will place new demands on the pump used to circulate cooling water through the life support system and the crew's liquid cooling garment. Long duration missions and frequent EVA require increased durability and reliability; limited resupply mass requirements demand compatibility with recycled water, and changing system design concepts demand increased tolerance for dissolved and free gas and the ability to operate over a broader range of flow rates and discharge pressure conditions. This paper describes the development of a positive displacement prototype pump to meet these needs. A gerotor based design has been adapted to meet pump performance, gas tolerance, and durability requirements while providing a small, lightweight pump assembly. This design has been detailed and implemented using materials selected to address anticipated water quality and mission needs as a prototype unit for testing in NASA laboratories. Design requirements, pump technology selection and design, performance testing and test results will be discussed.

  6. Water recovery and management test support modeling for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, Habib; Bacskay, Allen S.

    1990-01-01

    The water-recovery and management (WRM) subsystem proposed for the Space Station Freedom program is outlined, and its computerized modeling and simulation based on a Computer Aided System Engineering and Analysis (CASE/A) program are discussed. A WRM test model consisting of a pretreated urine processing (TIMES), hygiene water processing (RO), RO brine processing using TIMES, and hygiene water storage is presented. Attention is drawn to such end-user equipment characteristics as the shower, dishwasher, clotheswasher, urine-collection facility, and handwash. The transient behavior of pretreated-urine, RO waste-hygiene, and RO brine tanks is assessed, as well as the total input/output to or from the system. The model is considered to be beneficial for pretest analytical predictions as a program cost-saving feature.

  7. [Space-time water monitoring system at the Iriklinsk hydroelectric power station].

    PubMed

    Deriabin, D G; Poliakov, E G; Priakhina, A A; Karimov, I F

    2002-01-01

    The Microbiosensor B 17677 F test system was applied to make a space-time monitoring of the biotoxicity of water used for production and everyday purposes at the Iriklinsk hydroelectric power station (IHEPS) and to identify the leading causes determining the biotoxicity of tested samples. There were seasonal variations in the biotoxicity with the maximum in spring and with minimum in winter and spring and a relationship of the spring rise in the biotoxicity to water pH changes. There was also an association of the certain values of the biotoxicity of industrial water with the concentration of petroleum products that are major pollutants at the IHEPS. The datum points that characterize the maximum level of technogenic exposure were identified.

  8. Urea, creatinine, uric acid, and phosphate spaces and their relationship to total body water during chronic hemodialysis

    SciTech Connect

    Ericsson, F.; Odar-Cederloef, I.E.; Eriksson, C.G.; Lindgren, S.; Kjellstrand, C.M.

    1988-07-01

    The authors determined total body water (TBW) with tritium in 11 patients on chronic hemodialysis and compared this space to that estimated by 60% of body weight, and removal spaces of urea, creatinine, uric acid, and phosphate (PO4). The latter spaces were determined by dividing the total amount of substance (measured in total dialysate) by pre- minus post-dialysis concentrations. Body water X 0.6 was more than 10% less than the tritium space, and showed a maximal variation of 10 liters, or 24%. The removal space of urea was 80% of the tritium space, but correlated closely with it. The difference between total body water and urea removal space was variable and dependent on fluid excess (edema) in the patients. Creatinine, uric acid, and phosphate removal spaces were highly variable and not correlated to total body water. The authors suggest that actual measured TBW should be used, rather than estimations using BW X 0.6, for V in K X T/V, where K = clearance, T = duration of dialysis, and V = the removal space of urea. Furthermore, one may need to introduce a correction factor for urea removal space over TBW in the equation to allow better quantification of dialysis in edematous patients and during very fast dialyses.

  9. Using Atmospheric River Observations to Improve Integrated Water Management Across Multiple Space and Time Scales

    NASA Astrophysics Data System (ADS)

    Anderson, M.

    2016-12-01

    Over the past decade, California has invested in emerging technologies to observe and track the landfall and evolution of atmospheric river events. The number of events, size, duration, location of landfall, and character of each event play key roles in water management over a range of space and time scales. In a changing climate, it is expected that the improtance of managing the water originating from atmospheric river events will increase. Some evidence of this expectation has been observed over the past three years with the ongoing Calfiornia drought. To that end, additional observation investments are being considered and a range of projects are in progress to develop applications to relate the atmospheric river observations into water management program activity. Applications range from local storm-water management to watershed and statewide storage and conveyance planning and operations. Time scales range from event evolution to water year and beyond outlooks. In this presentation, select atmospheric river events from the past three years are used to highlight the new observations and connect those observations to water management activities. Observation gaps and areas of need in the research arena will be identified.

  10. Mitigation of Damage to the International Space Station (ISS) from Water Dumps

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Visentine, James T.; Mikatarian, Ron

    2004-01-01

    The International Space Station (ISS) and Orbiter dump water overboard. This water is from the ISS condensate system, and from the Orbiter s fuel cell (supply side) and wastewater (urine and condensate) systems. Water dumped from either the ISS or Orbiter is a possible source of damage. When water is dumped into a vacuum, some of it flashes into a vapor. The expanding vapor bursts the liquid stream into vapor, and small and large liquid/ice particles. The large liquid/ice particles are approximately 2 mm in diameter and have nominal velocities of approximately 31 Wsec (U.S. Lab) and 50 Wsec (Orbiter). As these liquid/ice particles impact, they can cause mechanical damage due to erosion/pitting of sensitive surfaces, including solar array or radiator surfaces. Solar arrays are of particular concern because of the thin optical coatings on the surface of the cells. The thickness of these coatings is in the range of 1300 to 44000 angstroms. Damage to these coatings can cause degradation of the cells optical characteristics. To mitigate damage from water dumps, the characteristics of the water dumps were studied and an impact code was used to study damage to sensitive surfaces. The results were used to develop the constraints needed to mitigate damage to ISS hardware from Orbiter and U.S. Lab dumps.

  11. Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces.

    PubMed

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2012-03-01

    The goal of the present study is to characterize water sounds that can be used in urban open spaces to mask road traffic noise. Sounds and visual images of a number of water features located in urban open places were obtained and subsequently analyzed in terms of psychoacoustical metrics and acoustical measures. Laboratory experiments were then conducted to investigate which water sound is appropriate for masking urban noise. The experiments consisted of two sessions: (1) Audio-only condition and (2) combined audio-visual condition. Subjective responses to stimuli were rated through the use of preference scores and 15 adjectives. The results of the experiments revealed that preference scores for the urban soundscape were affected by the acoustical characteristics of water sounds and visual images of water features; Sharpness that was used to explain the spectral envelopes of water sounds was proved to be a dominant factor for urban soundscape perception; and preferences regarding the urban soundscape were significantly related to adjectives describing "freshness" and "calmness."

  12. Mitigation of Damage to the International Space Station (ISS) from Water Dumps

    NASA Technical Reports Server (NTRS)

    Schmidl, William; Visentine, James T.; Mikatarian, Ron

    2004-01-01

    The International Space Station (ISS) and Orbiter dump water overboard. This water is from the ISS condensate system, and from the Orbiter s fuel cell (supply side) and wastewater (urine and condensate) systems. Water dumped from either the ISS or Orbiter is a possible source of damage. When water is dumped into a vacuum, some of it flashes into a vapor. The expanding vapor bursts the liquid stream into vapor, and small and large liquid/ice particles. The large liquid/ice particles are approximately 2 mm in diameter and have nominal velocities of approximately 31 Wsec (U.S. Lab) and 50 Wsec (Orbiter). As these liquid/ice particles impact, they can cause mechanical damage due to erosion/pitting of sensitive surfaces, including solar array or radiator surfaces. Solar arrays are of particular concern because of the thin optical coatings on the surface of the cells. The thickness of these coatings is in the range of 1300 to 44000 angstroms. Damage to these coatings can cause degradation of the cells optical characteristics. To mitigate damage from water dumps, the characteristics of the water dumps were studied and an impact code was used to study damage to sensitive surfaces. The results were used to develop the constraints needed to mitigate damage to ISS hardware from Orbiter and U.S. Lab dumps.

  13. Acceptable levels for ingestion of dimethylsilanediol in water on the International Space Station.

    PubMed

    Ramanathan, Raghupathy; James, John T; McCoy, Torin

    2012-06-01

    Water is recovered aboard the International Space Station (ISS) from humidity condensate and treated urine. The product water is monitored for total organic carbon (TOC). In 2010 the TOC readings indicated that a new contaminant had entered the potable water and was steadily increasing toward the TOC screening limit of 3 mg x L(-1). In a ground-based laboratory, chemists discovered that dimethylsilanediol (DMSD) was the principal new contaminant. As no standard existed for safe levels of DMSD in water, the Toxicology Office at Johnson Space Center was asked to set such a standard. The Toxicology Office used methods developed over the past decade, in collaboration with the National Research Council Committee on Toxicology, for setting Spacecraft Water Exposure Guidelines (SWEGs). These methods require a thorough literature search and development of an acceptable concentration (AC) for each potential toxic effect, keeping in mind that the adverse effects that accompany spaceflight could increase toxicity for certain end points. Benchmark dose modeling was encouraged if sufficient data were available. The most sensitive AC becomes the driver for the SWEG. Hematotoxicity, hepatotoxicity, and possibly neurotoxicity were the most sensitive toxicological endpoints for DMSD. The SWEG for DMSD for 100 d of ingestion was set at 35 mg x L(-1), which is equivalent to 9 mg x L(-1) as TOC. This is well above the TOC SWEG of 3 mg x L(-1) and the peak DMSD level of processed water observed on orbit, which was 2.2 mg x L(-1) asTOC (8.5 mg x L(-10 of DMSD).

  14. Gravity increase at the south pole

    USGS Publications Warehouse

    Behrendt, John C.

    1967-01-01

    Abstract. Measurements made between December 1957 and January 1966 of the gravity difference between the McMurdo Sound pendulum station, which is on bedrock, and the South Pole station, which is on the Antarctic ice sheet, show a gravity increase at the South Pole of 0.11 milligals per year. The most likely hypothesis for the increase is that it was caused by ice flowing downslope across a gravity gradient and by the sinking of the South Pole station as a result of accumulation of ice. An alternate hypothesis that the gravity increase was caused by a decrease in ice thickness, of about 40 centimeters per year, is theoretically possible but is not supported by direct evidence.

  15. New magnet pole shape for isochronous cyclotrons

    SciTech Connect

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-01-01

    A new design has been developed for shaping pole tips to produce the radially increasing fields required for isochronous cyclotrons. The conventional solid hill poles are replaced by poles mounted over a small secondary gap which tapers radially from maximum at the magnet edge to zero near the center. Field measurements with a model magnet and calculations with the code TRIM show an increase in field at the edge of the magnet without the usual corresponding large increase in fringing, and a radial field shape more nearly field independent than for conventional hills. The flying hills have several advantages for variable energy multiparticle cyclotrons: (1) a large reduction in the power dissipated by isochronizing trim coils; (2) a more constant shape and magnitude flutter factor, eliminating flutter coils and increasing the operating range; and (3) a sharper fall-off of the fringe field, simplifying beam extraction.

  16. A method to determine asteroid poles

    NASA Technical Reports Server (NTRS)

    Deangelis, G.

    1993-01-01

    The determination of spin axis and shape is well known to be of fundamental importance for studies about the rotational and physical properties of asteroids. In particular, knowledge that the pole coordinate distribution is random or not could indicate the probable non-Maxwellian distribution of asteroid spin axes, while the distribution in terms of size and shape could place important constraints on the theories about the collisional history of some individual asteroids, of asteroid families, and of the asteroid population as a whole. Many kinds of methods have been developed to determine pole coordinates. An EA method is presented, from which it is possible to obtain the solution with no trial poles, but with a simultaneous least square fit on both the E and A part. Results for rotational and shape parameters were obtained for 18 asteroids: the values of the obtained parameters are generally in close agreement with those of others.

  17. Bell Pole CROW pilot test results and evaluation

    SciTech Connect

    Fahy, L.J.; Johnson, L.A. Jr.; Sola, D.V.; Horn, S.G.; Christofferson, J.L.

    1992-11-01

    Beginning in 1990, efforts were initiated to implement an in situ remediation project to address the creosote and pentachlorophenol (PCP) contaminated surficial aquifer at the Bell Lumber and Pole Company (Bell Pole) Site. The remediation project involves the application of the Contained Recovery of Oily Wastes (CROW{trademark}) process which consists of hot-water injection to displace and recover the non-aqueous phase liquids (NAPL). Based on the results from the pilot test the following conclusions can be made: (1) The pilot test provided sufficient hydraulic information to design the full-scale CROW remediation system. The pumping test portion of the pilot test indicated uniform aquifer properties. The entire thickness of the aquifer reached the target temperature range and containment of the injected hot water was achieved. (2) Pretest injection and production rate predictions were achieved. (3) The post test soil boring data indicated hot-water injection displaced greater than 80% of the NAPL near the injection well. The data indicates that a NAPL saturation of approximately 19% (pore volume basis) and a 500 fold decrease in PCP concentration can be achieved with 20 pore volumes of flushing. (4) The treatment system used during the pilot test was effective in reducing PCP and PAH compounds to concentrations acceptable for sanitary sewer discharge. (5) The microbial assay of the post test samples found an encouraging increase in microbial population compared to earlier data collected before the pilot test.

  18. Bell Pole CROW pilot test results and evaluation

    SciTech Connect

    Fahy, L.J.; Johnson, L.A. Jr. ); Sola, D.V.; Horn, S.G.; Christofferson, J.L. )

    1992-01-01

    Beginning in 1990, efforts were initiated to implement an in situ remediation project to address the creosote and pentachlorophenol (PCP) contaminated surficial aquifer at the Bell Lumber and Pole Company (Bell Pole) Site. The remediation project involves the application of the Contained Recovery of Oily Wastes (CROW[trademark]) process which consists of hot-water injection to displace and recover the non-aqueous phase liquids (NAPL). Based on the results from the pilot test the following conclusions can be made: (1) The pilot test provided sufficient hydraulic information to design the full-scale CROW remediation system. The pumping test portion of the pilot test indicated uniform aquifer properties. The entire thickness of the aquifer reached the target temperature range and containment of the injected hot water was achieved. (2) Pretest injection and production rate predictions were achieved. (3) The post test soil boring data indicated hot-water injection displaced greater than 80% of the NAPL near the injection well. The data indicates that a NAPL saturation of approximately 19% (pore volume basis) and a 500 fold decrease in PCP concentration can be achieved with 20 pore volumes of flushing. (4) The treatment system used during the pilot test was effective in reducing PCP and PAH compounds to concentrations acceptable for sanitary sewer discharge. (5) The microbial assay of the post test samples found an encouraging increase in microbial population compared to earlier data collected before the pilot test.

  19. Environmental effects of supplemental wood preservative treatments of electric utility poles. Final report

    SciTech Connect

    Horn, M.E.

    1995-12-01

    A field study and associated risk assessment was conducted to evaluate the potential ecological and human health impacts related to the standard application of five supplemental wood preservatives to 20 electric utility transmission poles. Post-application monitoring for chemical residuals and microbiological effects was conducted over a 17 month post-application period (June 6, 1990--November 7, 1991). The utility wood poles in the study were located in wetland sites of the New York State Adirondack Park. All poles were western red cedar and all had been treated with pentachlorophenol (PCP) prior to installation. At the time supplemental preservatives were applied, the poles had been in service for approximately 40 years. Groundwater, surface water, and soil around each treated pole were monitored for release of active ingredients, organic carriers and subsequent degradation products of the commercial wood preservatives. The analytes were as follows: chlorpyrifos, 1,1,1-trichloroethane, creosote, 2,4-dinitrophenol, fluoride, chromium, arsenic, copper, naphthenate, sodium methyl dithiocarbamate and methyl isothiocyanate. Ecological response to chemical exposure was estimated by means of measuring soil gases (carbon dioxide and methane), soil macroinvertebrate populations and soil microbial biomass. Results from near-pole post-treatment sampling were compared to pre-treatment samples and reference plots used to establish preapplication biological conditions and background levels of wood preservative constituents.

  20. Log amplifier with pole-zero compensation

    DOEpatents

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  1. Detectors for the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Chang, C. L.; Ade, P.; Aird, K.; Austermann, J.; Beall, J.; Becker, D.; Benson, B.; Bleem, L.; Britton, J.; Carlstrom, J.; Cho, H.; de Haan, T.; Crawford, T.; Crites, A.; Datesman, A.; Dobbs, M.; Everett, W.; Ewall-Wice, A.; George, E.; Halverson, N.; Harrington, N.; Henning, J.; Hilton, G.; Holzapfel, W.; Hoover, S.; Hubmayr, J.; Irwin, K.; Keisler, R.; Kennedy, J.; Lee, A.; Leitch, E.; Li, D.; Lueker, M.; Marrone, D. P.; Mcmahon, J.; Mehl, J.; Meyer, S.; Montgomery, J.; Montroy, T.; Natoli, T.; Nibarger, J.; Niemack, M.; Novosad, V.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C.; Ruhl, J.; Saliwanchik, B.; Sayre, J.; Schafer, K.; Shirokoff, E.; Story, K.; Vanderlinde, K.; Vieira, J.; Wang, G.; Williamson, R.; Yefremenko, V.; Yoon, K. W.; Young, E.

    The South Pole Telescope (SPT) is a 10-m mm/sub-mm telescope at the Amundsen-Scott South Pole Station. It's primary science goals consist of a galaxy cluster survey for understanding Dark Energy and probing the physics of Inflation through the CMB polarization. Both science goals require exceptional sensitivity necessitating focal planes with many optical elements. The focal planes of the SPT utilize Transition Edge Sensor (TES) bolometers to build arrays of nearly 1000 detectors. In this talk, I will present the TES bolometer technology for both the first SPT focal plane and its upcoming upgrade to a polarization sensitive array.

  2. Light propagation in the South Pole ice

    SciTech Connect

    Williams, Dawn; Collaboration: IceCube Collaboration

    2014-11-18

    The IceCube Neutrino Observatory is located in the ice near the geographic South Pole. Particle showers from neutrino interactions in the ice produce light which is detected by IceCube modules, and the amount and pattern of deposited light are used to reconstruct the properties of the incident neutrino. Since light is scattered and absorbed by ice between the neutrino interaction vertex and the sensor, IceCube event reconstruction depends on understanding the propagation of light through the ice. This paper presents the current status of modeling light propagation in South Pole ice, including the recent observation of an azimuthal anisotropy in the scattering.

  3. Determination of pole sensitivities by Danilevskii's method

    NASA Technical Reports Server (NTRS)

    Nail, J. B.; Mitchell, J. R.; Mcdaniel, W. L., Jr.

    1977-01-01

    In control theory, a synonymous term for pole sensitivity is eigenvalue sensitivity. Existing methods of calculating eigenvalues are cumbersome, and cannot be trusted for systems roughly greater than tenth order. The method proposed in the present paper is applicable to high-order system. (It has been routinely used to generate eigenvalue sensitivities for systems up to 26th order, using a UNIVAC 1106.) Danilevskii's method is shown to be suitable for performing the necessary evaluations. The result is a rational function that can be used to evaluate the sensitivities for all distinct poles.

  4. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  5. Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.

    PubMed

    Jin, Byung-Ju; Zhang, Hua; Binder, Devin K; Verkman, A S

    2013-01-01

    Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency.

  6. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    NASA Technical Reports Server (NTRS)

    Ghosh, Amlan; Seidel, Chad; Adam, Niklas; Pickering, Karen; White, Dawn

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight mission. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wellsthat have hydrogen sulfide odor

  7. From Earth to Space: Application of Biological Treatment for the Removal of Ammonia from Water

    NASA Technical Reports Server (NTRS)

    Pickering, Karen; Adam, Niklas; White, Dawn; Ghosh, Amlan; Seidel, Chad

    2014-01-01

    Managing ammonia is often a challenge in both drinking water and wastewater treatment facilities. Ammonia is unregulated in drinking water, but its presence may result in numerous water quality issues in the distribution system such as loss of residual disinfectant, nitrification, and corrosion. Ammonia concentrations need to be managed in wastewater effluent to sustain the health of receiving water bodies. Biological treatment involves the microbiological oxidation of ammonia to nitrate through a two-step process. While nitrification is common in the environment, and nitrifying bacteria can grow rapidly on filtration media, appropriate conditions, such as the presence of dissolved oxygen and required nutrients, need to be established. This presentation will highlight results from two ongoing research programs - one at NASA's Johnson Space Center, and the other at a drinking water facility in California. Both programs are designed to demonstrate nitrification through biological treatment. The objective of NASA's research is to be able to recycle wastewater to potable water for spaceflight missions. To this end, a biological water processor (BWP) has been integrated with a forward osmosis secondary treatment system (FOST). Bacteria mineralize organic carbon to carbon dioxide as well as ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrification and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system testing planned for this year is expected to produce water that requires only a polishing step to meet potable water requirements for spaceflight. The pilot study in California is being conducted on Golden State Water Company's Yukon wells that have hydrogen sulfide odor

  8. On the design of pole modules for inverse systems

    NASA Technical Reports Server (NTRS)

    Wyman, B. F.; Sain, M. K.

    1985-01-01

    When a linear dynamical system admits more than one inverse, it is known that the pole module of any inverse must contain, either as a submodule or as a factor module, a module of fixed poles isomorphic to the zero module of the original system. Design of the pole module for such an inverse system is resolved by introducing a variable pole module for the inverse, by determining necessary and sufficient conditions for a desired module to be a variable pole module, and by studying the manner in which the fixed and variable modules assemble into the pole module of the inverse. If the fixed and variable pole spectra are disjoint, the pole module of the inverse system is a direct sum of the fixed- and variable-pole modules; if not, procedures for addressing the Jordan structure are presented.

  9. IR excitation of contaminant water by oxygen for the space shuttle at low Earth orbit altitude

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Pendleton, W. R., Jr.; Bingham, G. E.; Thompson, D. C.; Raitt, W. J.; Nadile, R. M.

    1994-01-01

    As the water outgas of a space shuttle passes through the rarefied atmosphere at orbital altitude, collisions occur between the gases with sufficient energy to excite infrared-active water molecules to various vibrational and rotational states. An infrared contaminant model (IR model) has been developed to study the shuttle-induced excitation and emission of water molecules outgassed from the space shuttle. The focus of the first application of the model is translation-to-vibration (T-V) energy transfer since estimates suggest that this process should dominate the production of vibrationally excited H2O under typical low Earth orbit conditions. Using the velocity and position distribution functions of interacting neutral gases obtained from a neutral gases interaction model, the spatial distributions of excitation and IR radiation from contaminant water are computed, and typical results are presented. Infrared spectral data (450 - 2500/cm), measured by the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) sensor on STS-39 (April 28 to May 6, 1991) at an altitude near 265 km, are used to test model predictions. The dependence of the radiant emission structure and brightness on outgassing rates and altitudes is discussed. The time history of the contaminant water outgassing rate is inferred for STS-39, and it is compared with the mass-spectrometer-based results for STS-4 (June 26 to July 4, 1982). Also, estimates of H2O column density at mission elapsed time (MET) 50 hours are compared for missions STS-2, STS-3, STS-4, and STS-39.

  10. IR excitation of contaminant water by oxygen for the space shuttle at low Earth orbit altitude

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Pendleton, W. R., Jr.; Bingham, G. E.; Thompson, D. C.; Raitt, W. J.; Nadile, R. M.

    1994-01-01

    As the water outgas of a space shuttle passes through the rarefied atmosphere at orbital altitude, collisions occur between the gases with sufficient energy to excite infrared-active water molecules to various vibrational and rotational states. An infrared contaminant model (IR model) has been developed to study the shuttle-induced excitation and emission of water molecules outgassed from the space shuttle. The focus of the first application of the model is translation-to-vibration (T-V) energy transfer since estimates suggest that this process should dominate the production of vibrationally excited H2O under typical low Earth orbit conditions. Using the velocity and position distribution functions of interacting neutral gases obtained from a neutral gases interaction model, the spatial distributions of excitation and IR radiation from contaminant water are computed, and typical results are presented. Infrared spectral data (450 - 2500/cm), measured by the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS-1A) sensor on STS-39 (April 28 to May 6, 1991) at an altitude near 265 km, are used to test model predictions. The dependence of the radiant emission structure and brightness on outgassing rates and altitudes is discussed. The time history of the contaminant water outgassing rate is inferred for STS-39, and it is compared with the mass-spectrometer-based results for STS-4 (June 26 to July 4, 1982). Also, estimates of H2O column density at mission elapsed time (MET) 50 hours are compared for missions STS-2, STS-3, STS-4, and STS-39.

  11. Effectiveness of the Space Shuttle anti-exposure system in a cold water environment

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Kaufman, Jonathan W.

    1990-01-01

    The purpose of this study was to evaluate the NASA Space Shuttle launch entry suit (LES) and raft for 24 h of protection against cold water immersion. Two configurations, the LES and the LES with raft (LES/r) were evaluated for antiexposure protection. Conditions were selected to simulate worst-case water and air temperatures along projected Space Shuttle ground tracks; i.e., water temperatures = 4.4 C, air temperature = 5.6 C, 1-foot waves (chop), and constant spray. Four males 31-44 years of age and one 32-year-old female were studied once in each configuration. Trials with and without a raft were scheduled for up to 24 and 6 h, respectively. Mean LES trial durations were 150 + or - 9 min and final rectal temperature (FRT) = 36.5 + or - 0.3 C. Mean LES/r trial durations were 398 + or - 126 min and FRT = 35.6 + or - 0.4 C. LES and LES/r trials were terminated for reaching FRT = 35.0 C or subject-requested termination due to discomfort. The longest LES and LES/r trials were terminated due to subject discomfort. Although not achieving the desired durations, the LES and LES/r did prove capable of protecting individuals, respectively, for up to 3 and 13.5 h. Since the longest runs were terminated due to subjective tolerance, actual survival times greater than 3 and 13.5 h could be expected.

  12. Transition from ring to beam arc distributions of water ions near the space shuttle orbiter

    SciTech Connect

    Cairns, I.H. )

    1990-09-01

    The distribution function of water ions produced near the space shuttle by charge exchange between ionospheric oxygen ions and outgassed water molecules is investigated using solutions of Liouville's equation with a source term modeling the charge exchange process. A transition from ring distributions to beamlike distributions termed beam arc distributions is found with decreasing distance upstream from the orbiter. This beam arc distribution corresponds to a finite section of a ring distribution and not to a conventional beam distribution. The ratio of water ion number density to oxygen ion number density is calculated; typical values within 50 m of the shuttle are in excess of 2% with a maximum value of the order of 20% for nominal parameters, suggsting that these ions must be considered with interpreting particle data from near the space shuttle. An argument for a plasma density enhancement of the order of 10% very close to the shuttle, due to kinematic effects (corresponding to pileup of plasma) and not to plasma creation, is also presented. This kinetmatic density enhancement is insufficient, by an order of magnitude, to explain the plasma density enhancements inferred from Spacelab 2 data.

  13. Long-term corrosion evaluation of stainless steels in Space Shuttle iodinated resin and water

    NASA Technical Reports Server (NTRS)

    Krohn, Douglas D.

    1992-01-01

    The effects of stainless steel exposure to iodinated water is a concern in developing the Integrated Water System (IWS) for Space Station Freedom. The IWS has a life requirement of 30 years, but the effects of general and localized corrosion over such a long period have not been determined for the candidate materials. In 1978, Umpqua Research Center immersed stainless steel 316L, 321, and 347 specimens in a solution of deionized water and the Space Shuttle microbial check valve resin. In April 1990, the solution was chemically analyzed to determine the level of corrosion formed, and the surface of each specimen was examined with scanning electron microscopy and metallography to determine the extent of general and pitting corrosion. This examination showed that the attack on the stainless steels was negligible and never penetrated past the first grain boundary layer. Of the three alloys, 316L performed the best; however, all three materials proved to be compatible with an aqueous iodine environment. In addition to the specimens exposed to aqueous iodine, a stainless steel specimen (unspecified alloy) was exposed to moist microbial check valve resin and air for a comparable period. This environment allowed contact of the metal to the resin as well as to the iodine vapor. Since the particular stainless steel alloy was not known, energy dispersive spectroscopy was used to determine that this alloy was stainless steel 301. The intergranular corrosion found on the specimen was limited to the first grain boundary layer.

  14. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  15. Multiport well design for sampling of ground water at closely spaced vertical intervals

    SciTech Connect

    Delin, G.N.; Landon, M.K.

    1996-11-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples form the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Trace experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorocarbon concentrations.

  16. Evaluation of available analytical techniques for monitoring the quality of space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    To assure the quality of potable water (PW) on the Space Station (SS) a number of chemical and physical tests must be conducted routinely. After reviewing the requirements for potable water, both direct and indirect analytical methods are evaluated that could make the required tests and improvements compatible with the Space Station operation. A variety of suggestions are made to improve the analytical techniques for SS operation. The most important recommendations are: (1) the silver/silver chloride electrode (SB) method of removing I sub 2/I (-) biocide from the water, since it may interfere with analytical procedures for PW and also its end uses; (2) the orbital reactor (OR) method of carrying out chemistry and electrochemistry in microgravity by using a disk shaped reactor on an orbital table to impart artificial G force to the contents, allowing solution mixing and separation of gases and liquids; and (3) a simple ultra low volume highly sensitive electrochemical/conductivity detector for use with a capillary zone electrophoresis apparatus. It is also recommended, since several different conductivity and resistance measurements are made during the analysis of PW, that the bipolar pulse measuring circuit be used in all these applications for maximum compatibility and redundancy of equipment.

  17. Effectiveness of the Space Shuttle anti-exposure system in a cold water environment

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Kaufman, Jonathan W.

    1990-01-01

    The purpose of this study was to evaluate the NASA Space Shuttle launch entry suit (LES) and raft for 24 h of protection against cold water immersion. Two configurations, the LES and the LES with raft (LES/r) were evaluated for antiexposure protection. Conditions were selected to simulate worst-case water and air temperatures along projected Space Shuttle ground tracks; i.e., water temperatures = 4.4 C, air temperature = 5.6 C, 1-foot waves (chop), and constant spray. Four males 31-44 years of age and one 32-year-old female were studied once in each configuration. Trials with and without a raft were scheduled for up to 24 and 6 h, respectively. Mean LES trial durations were 150 + or - 9 min and final rectal temperature (FRT) = 36.5 + or - 0.3 C. Mean LES/r trial durations were 398 + or - 126 min and FRT = 35.6 + or - 0.4 C. LES and LES/r trials were terminated for reaching FRT = 35.0 C or subject-requested termination due to discomfort. The longest LES and LES/r trials were terminated due to subject discomfort. Although not achieving the desired durations, the LES and LES/r did prove capable of protecting individuals, respectively, for up to 3 and 13.5 h. Since the longest runs were terminated due to subjective tolerance, actual survival times greater than 3 and 13.5 h could be expected.

  18. Soil, Groundwater, Surface Water, and Sediments of Kennedy Space Center, Florida: Background Chemical and Physical Characteristics

    NASA Technical Reports Server (NTRS)

    Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.

    2000-01-01

    This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.

  19. Microbial Surveillance of Potable Water Sources of the International Space Station

    NASA Technical Reports Server (NTRS)

    Bruce, Rebekah J.; Ott, C. Mark; Skuratov, Vladimir M.; Pierson, Duane L.

    2005-01-01

    To mitigate risk to the crew, the microbial surveillance of the quality of potable water sources of the International Space Station (ISS) has been ongoing since before the arrival of the first permanent crew. These water sources have included stored ground-supplied water, water produced by the shuttle fuel cells during flight, and ISS humidity condensate that is reclaimed and processed. Monitoring was accomplished using a self-contained filter designed to allow bacterial growth and enumeration during flight. Upon return to earth, microbial isolates were identified using 16S ribosomal gene sequencing. While the predominant isolates were common Gramnegative bacteria including Ralstonia eutropha, Methylobacterium fujisawaense, and Spingomonas paucimobilis, opportunistic pathogens such as Stenotrophomonas maltophilia and Pseudomonas aeruginosa were also isolated. Results of in-flight enumeration have indicated a fluctuation of bacterial counts above system design specifications. Additional in-flight monitoring capability for the specific detection of coliforms was added in 2004; no coliforms have been detected from any potable water source. Neither the bacterial concentrations nor the identification of the isolates recovered from these samples has suggested a threat to crew health.

  20. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport.

    PubMed

    Amadei, Carlo Alberto; Montessori, Andrea; Kadow, Julian P; Succi, Sauro; Vecitis, Chad D

    2017-04-06

    Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.