Sample records for pollinators increases crop

  1. Experimental evidence that wildflower strips increase pollinator visits to crops.

    PubMed

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-08-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.

  2. Experimental evidence that wildflower strips increase pollinator visits to crops

    PubMed Central

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-01-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time

  3. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    PubMed

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  4. Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination

    PubMed Central

    Holzschuh, Andrea; Dormann, Carsten F.; Tscharntke, Teja; Steffan-Dewenter, Ingolf

    2011-01-01

    Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service. PMID:21471115

  5. Projected climate change threatens pollinators and crop production in Brazil

    PubMed Central

    Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  6. Projected climate change threatens pollinators and crop production in Brazil.

    PubMed

    Giannini, Tereza Cristina; Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  7. Functional group diversity of bee pollinators increases crop yield

    PubMed Central

    Hoehn, Patrick; Tscharntke, Teja; Tylianakis, Jason M; Steffan-Dewenter, Ingolf

    2008-01-01

    Niche complementarity is a commonly invoked mechanism underlying the positive relationship between biodiversity and ecosystem functioning, but little empirical evidence exists for complementarity among pollinator species. This study related differences in three functional traits of pollinating bees (flower height preference, daily time of flower visitation and within-flower behaviour) to the seed set of the obligate cross-pollinated pumpkin Cucurbita moschata Duch. ex Poir. across a land-use intensity gradient from tropical rainforest and agroforests to grassland in Indonesia. Bee richness and abundance changed with habitat variables and we used this natural variation to test whether complementary resource use by the diverse pollinator community enhanced final yield. We found that pollinator diversity, but not abundance, was positively related to seed set of pumpkins. Bees showed species-specific spatial and temporal variation in flower visitation traits and within-flower behaviour, allowing for classification into functional guilds. Diversity of functional groups explained even more of the variance in seed set (r2=45%) than did species richness (r2=32%) highlighting the role of functional complementarity. Even though we do not provide experimental, but rather correlative evidence, we can link spatial and temporal complementarity in highly diverse pollinator communities to pollination success in the field, leading to enhanced crop yield without any managed honeybees. PMID:18595841

  8. A heterogeneous landscape does not guarantee high crop pollination

    PubMed Central

    Hambäck, Peter A.; Lemessa, Debissa; Nemomissa, Sileshi; Hylander, Kristoffer

    2016-01-01

    The expansion of pollinator-dependent crops, especially in the developing world, together with reports of worldwide pollinator declines, raises concern of possible yield gaps. Farmers directly reliant on pollination services for food supply often live in regions where our knowledge of pollination services is poor. In a manipulative experiment replicated at 23 sites across an Ethiopian agricultural landscape, we found poor pollination services and severe pollen limitation in a common oil crop. With supplementary pollination, the yield increased on average by 91%. Despite the heterogeneous agricultural matrix, we found a low bee abundance, which may explain poor pollination services. The variation in pollen limitation was unrelated to surrounding forest cover, local bee richness and bee abundance. While practices that commonly increase pollinators (restricted pesticide use, flower strips) are an integral part of the landscape, these elements are apparently insufficient. Management to increase pollination services is therefore in need of urgent investigation. PMID:27629036

  9. Insect Pollinated Crops, Insect Pollinators and US Agriculture: Trend Analysis of Aggregate Data for the Period 1992–2009

    PubMed Central

    Calderone, Nicholas W.

    2012-01-01

    In the US, the cultivated area (hectares) and production (tonnes) of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc.) increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare) remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD) decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc.) was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination. PMID:22629374

  10. Bee pollination improves crop quality, shelf life and commercial value.

    PubMed

    Klatt, Björn K; Holzschuh, Andrea; Westphal, Catrin; Clough, Yann; Smit, Inga; Pawelzik, Elke; Tscharntke, Teja

    2014-01-22

    Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.

  11. Using nectar-related traits to enhance crop-pollinator interactions

    USDA-ARS?s Scientific Manuscript database

    Floral nectar and other rewards facilitate crop pollination, and in so doing, increase the amount and breadth of food available for humans. Though pollinator abundance and diversity (particularly bees) have declined over the past several decades, a concomitant increase in reliance on pollinators pre...

  12. Importance of pollinators in changing landscapes for world crops

    PubMed Central

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale. PMID:17164193

  13. Importance of pollinators in changing landscapes for world crops.

    PubMed

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  14. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops

    PubMed Central

    Grab, Heather; Blitzer, Eleanor J.; Danforth, Bryan; Loeb, Greg; Poveda, Katja

    2017-01-01

    One of the greatest challenges in sustainable agricultural production is managing ecosystem services, such as pollination, in ways that maximize crop yields. Most efforts to increase services by wild pollinators focus on management of natural habitats surrounding farms or non-crop habitats within farms. However, mass flowering crops create resource pulses that may be important determinants of pollinator dynamics. Mass bloom attracts pollinators and it is unclear how this affects the pollination and yields of other co-blooming crops. We investigated the effects of mass flowering apple on the pollinator community and yield of co-blooming strawberry on farms spanning a gradient in cover of apple orchards in the landscape. The effect of mass flowering apple on strawberry was dependent on the stage of apple bloom. During early and peak apple bloom, pollinator abundance and yield were reduced in landscapes with high cover of apple orchards. Following peak apple bloom, pollinator abundance was greater on farms with high apple cover and corresponded with increased yields on these farms. Spatial and temporal overlap between mass flowering and co-blooming crops alters the strength and direction of these dynamics and suggests that yields can be optimized by designing agricultural systems that avoid competition while maximizing facilitation. PMID:28345653

  15. Integrated crop pollination: Combining strategies to ensure stable and sustainable yields of pollination-dependent crops

    USDA-ARS?s Scientific Manuscript database

    Meeting the nutritional needs of our growing human population will be increasingly dependent on bees and other pollinators that provide the essential delivery of pollen to crop flowers during bloom. Honey bees have experienced population declines in some regions, and similar changes are evident for ...

  16. Non-bee insects are important contributors to global crop pollination.

    PubMed

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  17. Non-bee insects are important contributors to global crop pollination

    PubMed Central

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  18. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    PubMed

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  19. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    PubMed Central

    Potts, Simon G.; Steffan-Dewenter, Ingolf; Vaissière, Bernard E.; Woyciechowski, Michal; Krewenka, Kristin M.; Tscheulin, Thomas; Roberts, Stuart P.M.; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  20. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    PubMed

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  1. Towards an integrated species and habitat management of crop pollination.

    PubMed

    Garibaldi, Lucas A; Requier, Fabrice; Rollin, Orianne; Andersson, Georg Ks

    2017-06-01

    Pollination deficits are widespread in current agriculture, so improving management for crop pollination is critical. Here we review the two most common management approaches to enhance crop pollination, species and habitat management, by providing referenced lists of successful examples. We pinpoint that these approaches have been studied in isolation from each other, with little discussion on potential synergies and trade-offs between them. The potential costs of species management (e.g., loss of biodiversity due to biological invasion), as well as the potential benefits to managed pollinator species from habitat restoration, are rarely quantified. An integrative approach to crop pollination should be implemented, accounting for the cost and benefits (including those beyond crop production) and interactions of species and habitat management. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops.

    PubMed

    Rader, Romina; Reilly, James; Bartomeus, Ignasi; Winfree, Rachael

    2013-10-01

    If climate change affects pollinator-dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature-induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change. © 2013 John Wiley & Sons Ltd.

  3. The Effects of Crop Intensification on the Diversity of Native Pollinator Communities.

    PubMed

    Mogren, Christina L; Rand, Tatyana A; Fausti, Scott W; Lundgren, Jonathan G

    2016-08-01

    Increases in agricultural conversion are leading to declines in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these changes affect pollinator diversity. Land use types were categorized within 300 m and 3 km radii of pollinator sampling locations in Brookings County, SD. Pollinator abundance and species richness were regressed on the proportion of the landscape dedicated to row crops, grass and pasture, forage crops, small grains, and aquatic habitats using variance components modeling. Row crops had a negative effect on bee abundance at 300 m, after fixed effects modeling accounted for outliers skewing this relationship. At 3 km, corn positively affected bee abundance and richness, while soybean acreage decreased species richness. The landscape matrix of outlying sites consisted of large monocultured areas with few alternative habitat types available, leading to inflated populations of Melissodes and Halictidae. Syrphids had a positive parabolic relationship between diversity and row crops, indicating potential for competitive exclusion from intermediate landscapes. Unlike other studies, landscape diversity within 300 m was not found to significantly benefit pollinator diversity. Within especially agriculturally developed areas of the region, high abundances of pollinators suggest selection for a few dominant species. There was no effect of forage crops or aquatic habitats on pollinator diversity, indicating that less highly managed areas still represent degraded habitat within the landscape. Incorporating pollinator-friendly crops at the farm level throughout the region is likely to enhance pollinator diversity by lessening the negative effects of large monocultures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Contribution of Pollinator-Mediated Crops to Nutrients in the Human Food Supply

    PubMed Central

    Eilers, Elisabeth J.; Kremen, Claire; Smith Greenleaf, Sarah; Garber, Andrea K.; Klein, Alexandra-Maria

    2011-01-01

    The contribution of nutrients from animal pollinated world crops has not previously been evaluated as a biophysical measure for the value of pollination services. This study evaluates the nutritional composition of animal-pollinated world crops. We calculated pollinator dependent and independent proportions of different nutrients of world crops, employing FAO data for crop production, USDA data for nutritional composition, and pollinator dependency data according to Klein et al. (2007). Crop plants that depend fully or partially on animal pollinators contain more than 90% of vitamin C, the whole quantity of Lycopene and almost the full quantity of the antioxidants β-cryptoxanthin and β-tocopherol, the majority of the lipid, vitamin A and related carotenoids, calcium and fluoride, and a large portion of folic acid. Ongoing pollinator decline may thus exacerbate current difficulties of providing a nutritionally adequate diet for the global human population. PMID:21731717

  5. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination

    PubMed Central

    Albrecht, Matthias

    2016-01-01

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. PMID:26865304

  6. Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil

    PubMed Central

    Nunes, Cássio A.; Santos, Natália B.; D`Amico, Ana R.; Fernandes, G. Wilson; Quesada, Maurício; Braga, Rodrigo F.; Neves, Ana Carolina O.

    2016-01-01

    Animal pollinators contribute to human food production and security thereby ensuring an important component of human well-being. The recent decline of these agents in Europe and North America has aroused the concern of a potential global pollinator crisis. In order to prioritize efforts for pollinator conservation, we evaluated the extent to which food production depends on animal pollinators in Brazil—one of the world’s agriculture leaders—by comparing cultivated area, produced volume and yield value of major food crops that are pollinator dependent with those that are pollinator non-dependent. In addition, we valued the ecosystem service of pollination based on the degree of pollinator dependence of each crop and the consequence of a decline in food production to the Brazilian Gross Domestic Product and Brazilian food security. A total of 68% of the 53 major food crops in Brazil depend to some degree on animals for pollination. Pollinator non-dependent crops produce a greater volume of food, mainly because of the high production of sugarcane, but the cultivated area and monetary value of pollinator dependent crops are higher (59% of total cultivated area and 68% of monetary value). The loss of pollination services for 29 of the major food crops would reduce production by 16.55–51 million tons, which would amount to 4.86–14.56 billion dollars/year, and reduce the agricultural contribution to the Brazilian GDP by 6.46%– 19.36%. These impacts would be largely absorbed by family farmers, which represent 74.4% of the agricultural labor force in Brazil. The main effects of a pollinator crisis in Brazil would be felt by the poorer and more rural classes due to their lower income and direct or exclusive dependence on this ecosystem service. PMID:27902787

  7. Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil.

    PubMed

    Novais, Samuel M A; Nunes, Cássio A; Santos, Natália B; D Amico, Ana R; Fernandes, G Wilson; Quesada, Maurício; Braga, Rodrigo F; Neves, Ana Carolina O

    2016-01-01

    Animal pollinators contribute to human food production and security thereby ensuring an important component of human well-being. The recent decline of these agents in Europe and North America has aroused the concern of a potential global pollinator crisis. In order to prioritize efforts for pollinator conservation, we evaluated the extent to which food production depends on animal pollinators in Brazil-one of the world's agriculture leaders-by comparing cultivated area, produced volume and yield value of major food crops that are pollinator dependent with those that are pollinator non-dependent. In addition, we valued the ecosystem service of pollination based on the degree of pollinator dependence of each crop and the consequence of a decline in food production to the Brazilian Gross Domestic Product and Brazilian food security. A total of 68% of the 53 major food crops in Brazil depend to some degree on animals for pollination. Pollinator non-dependent crops produce a greater volume of food, mainly because of the high production of sugarcane, but the cultivated area and monetary value of pollinator dependent crops are higher (59% of total cultivated area and 68% of monetary value). The loss of pollination services for 29 of the major food crops would reduce production by 16.55-51 million tons, which would amount to 4.86-14.56 billion dollars/year, and reduce the agricultural contribution to the Brazilian GDP by 6.46%- 19.36%. These impacts would be largely absorbed by family farmers, which represent 74.4% of the agricultural labor force in Brazil. The main effects of a pollinator crisis in Brazil would be felt by the poorer and more rural classes due to their lower income and direct or exclusive dependence on this ecosystem service.

  8. Using pennycress, camelina, and canola cash crops to provision pollinators

    USDA-ARS?s Scientific Manuscript database

    As pollinator decline continues, the need to provide high value forage for insects continues to rise. Finding agricultural crops to diversify the landscape and provide forage is one way to improve pollinator health. Three winter industrial oilseed crops (pennycress, winter camelina, and winter canol...

  9. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  10. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  11. Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits

    PubMed Central

    Polce, Chiara; Garratt, Michael P; Termansen, Mette; Ramirez-Villegas, Julian; Challinor, Andrew J; Lappage, Martin G; Boatman, Nigel D; Crowe, Andrew; Endalew, Ayenew Melese; Potts, Simon G; Somerwill, Kate E; Biesmeijer, Jacobus C

    2014-01-01

    Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present, there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, which are predicted to provide suboptimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance, choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios. PMID:24638986

  12. Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination.

    PubMed

    Sutter, Louis; Albrecht, Matthias

    2016-02-10

    Insect pollination and pest control are pivotal functions sustaining global food production. However, they have mostly been studied in isolation and how they interactively shape crop yield remains largely unexplored. Using controlled field experiments, we found strong synergistic effects of insect pollination and simulated pest control on yield quantity and quality. Their joint effect increased yield by 23%, with synergistic effects contributing 10%, while their single contributions were 7% and 6%, respectively. The potential economic benefit for a farmer from the synergistic effects (12%) was 1.8 times greater than their individual contributions (7% each). We show that the principal underlying mechanism was a pronounced pest-induced reduction in flower lifetime, resulting in a strong reduction in the number of pollinator visits a flower receives during its lifetime. Our findings highlight the importance of non-additive interactions among ecosystem services (ES) when valuating, mapping or predicting them and reveal fundamental implications for ecosystem management and policy aimed at maximizing ES for sustainable agriculture. © 2016 The Author(s).

  13. Robotic bees for crop pollination: Why drones cannot replace biodiversity.

    PubMed

    Potts, Simon G; Neumann, Peter; Vaissière, Bernard; Vereecken, Nicolas J

    2018-06-14

    The notion that robotic crop pollination will solve the decline in pollinators has gained wide popularity recently (Fig. 1), and in March 2018 Walmart filed a patent for autonomous robot bees. However, w present six arguments showing that this is a technically and economically inviable 'solution' at present and poses substantial ecological and moral risks: (1) despite recent advances, robotic pollination is far from being able to replace bees to pollinate crops efficiently; (2) using robots is very unlikely to be economically viable; (3) there would be unacceptably high environmental costs; (4) wider ecosystems would be damaged; (5) it would erode the values of biodiversity; and, (6) relying on robotic pollination could actually lead to major food insecurity. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    PubMed

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  15. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    NASA Astrophysics Data System (ADS)

    Stanley, Dara A.; Garratt, Michael P. D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-12-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  16. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    PubMed

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  17. Caveats to quantifying ecosystem services: fruit abortion blurs benefits from crop pollination.

    PubMed

    Bos, Merijn M; Veddeler, Dorthe; Bogdanski, Anne K; Klein, Alexandra-Maria; Tscharntke, Teja; Steffan-Dewenter, Ingolf; Tylianakis, Jason M

    2007-09-01

    The recent trend to place monetary values on ecosystem services has led to studies on the economic importance of pollinators for agricultural crops. Several recent studies indicate regional, long-term pollinator declines, and economic consequences have been derived from declining pollination efficiencies. However, use of pollinator services as economic incentives for conservation must consider environmental factors such as drought, pests, and diseases, which can also limit yields. Moreover, "flower excess" is a well-known reproductive strategy of plants as insurance against unpredictable, external factors that limit reproduction. With three case studies on the importance of pollination levels for amounts of harvested fruits of three tropical crops (passion fruit in Brazil, coffee in Ecuador, and cacao in Indonesia) we illustrate how reproductive strategies and environmental stress can obscure initial benefits from improved pollination. By interpreting these results with findings from evolutionary sciences, agronomy, and studies on wild-plant populations, we argue that studies on economic benefits from pollinators should include the total of ecosystem processes that (1) lead to successful pollination and (2) mobilize nutrients and improve plant quality to the extent that crop yields indeed benefit from enhanced pollinator services. Conservation incentives that use quantifications of nature's services to human welfare will benefit from approaches at the ecosystem level that take into account the broad spectrum of biological processes that limit or deliver the service.

  18. Advances in pollination ecology from tropical plantation crops.

    PubMed

    Klein, Alexandra-Maria; Cunningham, Saul A; Bos, Merijn; Steffan-Dewenter, Ingolf

    2008-04-01

    Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.

  19. When ecosystem services interact: crop pollination benefits depend on the level of pest control

    PubMed Central

    Lundin, Ola; Smith, Henrik G.; Rundlöf, Maj; Bommarco, Riccardo

    2013-01-01

    Pollination is a key ecosystem service which most often has been studied in isolation although effects of pollination on seed set might depend on, and interact with, other services important for crop production. We tested three competing hypotheses on how insect pollination and pest control might jointly affect seed set: independent, compensatory or synergistic effects. For this, we performed a cage experiment with two levels of insect pollination and simulated pest control in red clover (Trifolium pratense L.) grown for seed. There was a synergistic interaction between the two services: the gain in seed set obtained when simultaneously increasing pollination and pest control outweighed the sum of seed set gains obtained when increasing each service separately. This study shows that interactions can alter the benefits obtained from service-providing organisms, and this needs to be considered to properly manage multiple ecosystem services. PMID:23269852

  20. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae

    USDA-ARS?s Scientific Manuscript database

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large number...

  1. Courgette Production: Pollination Demand, Supply, and Value.

    PubMed

    Knapp, Jessica L; Osborne, Juliet L

    2017-10-01

    Courgette (Cucurbita pepo L.) production in the United Kingdom is estimated to be worth £6.7 million. However, little is known about this crop's requirement for insect-mediated pollination (pollinator dependence) and if pollinator populations in a landscape are able to fulfil its pollination needs (pollination deficit). Consequently, pollination experiments were conducted over 2 yr to explore pollinator dependence and pollination deficit in field-grown courgette in the United Kingdom. Results showed that pollination increased yield by 39% and there was no evidence of pollination limitation on crop yield. This was evidenced by a surprisingly low pollination deficit (of just 3%) and no statistical difference in yield (length grown, circumference, and weight) between open- and hand-pollinated crops. Nonetheless, the high economic value of courgettes means that reducing even the small pollination deficit could still increase profit by ∼£166/ha. Interestingly, 56% of fruit was able to reach marketable size and shape without any pollination. Understanding a crop's requirement for pollinators can aid growers in their decision-making about what varieties and sites should be used. In doing so, they may increase their agricultural resilience and further their economic advantage. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  2. Pollen resources for pollinators in specialty oilseed crops

    USDA-ARS?s Scientific Manuscript database

    Simplified agroecosystems have depleted habitats for beneficial insects throughout the Midwest and Northern Great Plains of the USA. Beneficial insects include pollinators and natural enemies of crop pests, and both rely heavily on floral resources and habitat diversity to maintain healthy populatio...

  3. Economic benefit of crop pollination by bees: a case of Kakamega small-holder farming in western Kenya.

    PubMed

    Kasina, J M; Mburu, J; Kraemer, M; Holm-Mueller, K

    2009-04-01

    In most developing countries, crop production is by small scale farmers, who mainly produce for their own consumption and the extra for market. Pollination in such systems is unmanaged and is usually incidental, supported by nearby ecosystems. One of the reasons of not managing pollination is the lack of understanding of its economic value. The "public-good" nature of pollination in these systems also discourages individual initiatives intended to conserve pollinators. We evaluate the economic returns from bee pollination in small-holder farming systems. To do this we apply the factor of production method, a form of revealed preferences methods available for valuing ecosystem services. Our analyses show that bee pollination enhances the yield of most crops grown in the farmland and improves immensely the quality of produce. Almost 40% of the annual value of crops under consideration represented the net returns derived from bee pollination. More than 99% of this benefit is attributed to pollination by feral bees. We provide in-depth valuation of pollination service and discuss applicability and limitations of the factor of production method in developing countries.

  4. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms.

    PubMed

    Garibaldi, Lucas A; Carvalheiro, Luísa G; Vaissière, Bernard E; Gemmill-Herren, Barbara; Hipólito, Juliana; Freitas, Breno M; Ngo, Hien T; Azzu, Nadine; Sáez, Agustín; Åström, Jens; An, Jiandong; Blochtein, Betina; Buchori, Damayanti; Chamorro García, Fermín J; Oliveira da Silva, Fabiana; Devkota, Kedar; Ribeiro, Márcia de Fátima; Freitas, Leandro; Gaglianone, Maria C; Goss, Maria; Irshad, Mohammad; Kasina, Muo; Pacheco Filho, Alípio J S; Kiill, Lucia H Piedade; Kwapong, Peter; Parra, Guiomar Nates; Pires, Carmen; Pires, Viviane; Rawal, Ranbeer S; Rizali, Akhmad; Saraiva, Antonio M; Veldtman, Ruan; Viana, Blandina F; Witter, Sidia; Zhang, Hong

    2016-01-22

    Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes. Copyright © 2016, American Association for the Advancement of Science.

  5. High species richness of native pollinators in Brazilian tomato crops.

    PubMed

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  6. Evaluation of native bees as pollinators of cucurbit crops under floating row covers.

    PubMed

    Minter, Logan M; Bessin, Ricardo T

    2014-10-01

    Production of cucurbit crops presents growers with numerous challenges. Several severe pests and diseases can be managed through the use of rotation, trap cropping, mechanical barriers, such as row covers, and chemical applications. However, considerations must also be made for pollinating insects, as adequate pollination affects the quantity and quality of fruit. Insecticides may negatively affect pollinators; a concern enhanced in recent years due to losses in managed Apis melifera L. colonies. Row covers can be used in place of chemical control before pollination, but when removed, pests have access to fields along with the pollinators. If pollination services of native bees could be harnessed for use under continuous row covers, both concerns could be balanced for growers. The potential of two bee species which specialize on cucurbit flowers, Peponapis pruinosa Say and Xenoglossa strenua Cresson, were assessed under continuous row covers, employed over acorn squash. Experimental treatments included plots with either naturally or artificially introduced bees under row covers and control plots with row covers either permanently removed at crop flowering, or employed continuously with no added pollinating insects. Pests in plots with permanently removed row covers were managed using standard practices used in certified organic production. Marketable yields from plots inoculated with bees were indistinguishable from those produced under standard practices, indicating this system would provide adequate yields to growers without time and monetary inputs of insecticide applications. Additionally, application of this technique was investigated for muskmelon production and discussed along with considerations for farm management.

  7. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop

    PubMed Central

    McArt, Scott H.; Fersch, Ashley A.; Milano, Nelson J.; Truitt, Lauren L.; Böröczky, Katalin

    2017-01-01

    Honey bees provide critical pollination services for many agricultural crops. While the contribution of pesticides to current hive loss rates is debated, remarkably little is known regarding the magnitude of risk to bees and mechanisms of exposure during pollination. Here, we show that pesticide risk in recently accumulated beebread was above regulatory agency levels of concern for acute or chronic exposure at 5 and 22 of the 30 apple orchards, respectively, where we placed 120 experimental hives. Landscape context strongly predicted focal crop pollen foraging and total pesticide residues, which were dominated by fungicides. Yet focal crop pollen foraging was a poor predictor of pesticide risk, which was driven primarily by insecticides. Instead, risk was positively related to diversity of non-focal crop pollen sources. Furthermore, over 60% of pesticide risk was attributed to pesticides that were not sprayed during the apple bloom period. These results suggest the majority of pesticide risk to honey bees providing pollination services came from residues in non-focal crop pollen, likely contaminated wildflowers or other sources. We suggest a greater understanding of the specific mechanisms of non-focal crop pesticide exposure is essential for minimizing risk to bees and improving the sustainability of grower pest management programs. PMID:28422139

  8. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    PubMed

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables.

  9. Cover crops to improve soil health and pollinator habitat in nut orchards

    Treesearch

    Jerry Van Sambeek

    2017-01-01

    Recently several national programs have been initiated calling for improving soil health and creating pollinator habitat using cover crops. Opportunities exist for nut growers to do both with the use of cover crops in our nut orchards. Because we can include perennial ground covers as cover crops, we have even more choices than landowners managing cover crops during...

  10. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    PubMed

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can

  11. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production

    PubMed Central

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial ‘Bluecrop’ blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0–39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop

  12. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    PubMed Central

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  13. Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees.

    PubMed

    Bosch, J; Bosch, J; Kemp, W P

    2002-02-01

    The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.

  14. Masting promotes individual- and population-level reproduction by increasing pollination efficiency.

    PubMed

    Moreira, Xoaquín; Abdala-Roberts, Luis; Linhart, Yan B; Mooney, Kailen A

    2014-04-01

    Masting is a reproductive strategy defined as the intermittent and synchronized production of large seed crops by a plant population. The pollination efficiency hypothesis proposes that masting increases pollination success in plants. Despite its general appeal, no previous studies have used long-term data together with population- and individual-level analyses to assess pollination efficiency between mast and non-mast events. Here we rigorously tested the pollination efficiency hypothesis in ponderosa pine (Pinus ponderosa), a long-lived monoecious, wind-pollinated species, using a data set on 217 trees monitored annually for 20 years. Relative investment in male and female function by individual trees did not vary between mast and non-mast years. At both the population and individual level, the rate of production of mature female cones relative to male strobili production was higher in mast than non-mast years, consistent with the predicted benefit of reproductive synchrony on reproductive success. In addition, at the individual level we found a higher conversion of unfertilized female conelets into mature female cones during a mast year compared to a non-mast year. Collectively, parallel results at the population and individual tree level provide robust evidence for the ecological, and potentially also evolutionary, benefits of masting through increased pollination efficiency.

  15. Organic Farming Improves Pollination Success in Strawberries

    PubMed Central

    Andersson, Georg K. S.; Rundlöf, Maj; Smith, Henrik G.

    2012-01-01

    Pollination of insect pollinated crops has been found to be correlated to pollinator abundance and diversity. Since organic farming has the potential to mitigate negative effects of agricultural intensification on biodiversity, it may also benefit crop pollination, but direct evidence of this is scant. We evaluated the effect of organic farming on pollination of strawberry plants focusing on (1) if pollination success was higher on organic farms compared to conventional farms, and (2) if there was a time lag from conversion to organic farming until an effect was manifested. We found that pollination success and the proportion of fully pollinated berries were higher on organic compared to conventional farms and this difference was already evident 2–4 years after conversion to organic farming. Our results suggest that conversion to organic farming may rapidly increase pollination success and hence benefit the ecosystem service of crop pollination regarding both yield quantity and quality. PMID:22355380

  16. Pollination Services of Mango Flower Pollinators

    PubMed Central

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  17. Potential pollinators of tomato, Lycopersicon esculentum (Solanaceae), in open crops and the effect of a solitary bee in fruit set and quality.

    PubMed

    Santos, A O R; Bartelli, B F; Nogueira-Ferreira, F H

    2014-06-01

    We identified native bees that are floral visitors and potential pollinators of tomato in Cerrado areas, described the foraging behavior of these species, and verified the influence of the visitation of a solitary bee on the quantity and quality of fruits. Three areas of tomato crops, located in Minas Gerais, Brazil, were sampled between March and November 2012. We collected 185 bees belonging to 13 species. Exomalopsis (Exomalopsis) analis Spinola, 1853 (Hymenoptera: Apidae) was the most abundant. Ten species performed buzz pollination. Apis mellifera L. 1758 (Hymenoptera: Apidae) and Paratrigona lineata (Lepeletier, 1836) (Hymenoptera: Apidae) could also act as pollinators. The fruit set and number of seeds obtained from the pollination treatment by E. analis were higher than those in the control group. Our results allowed the identification of potential tomato pollinators in Cerrado areas and also contributed information regarding the impact of a single species (E. analis) on fruit set and quality. Although most of the visiting bees show the ability for tomato pollination, there is an absence of adequate management techniques, and its usage is difficult with the aim of increasing the crop production, which is the case for E. analis. Species such as Melipona quinquefasciata, P. lineata, and A. mellifera, which are easy to handle, are not used for pollination services. Finally, it is suggested that a combination of different bee species that are able to pollinate the tomato is necessary to prevent the super-exploitation of only a single species for pollination services and to guarantee the occurrence of potential pollinators in the crop area.

  18. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    USGS Publications Warehouse

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  19. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields

    PubMed Central

    Classen, Alice; Peters, Marcell K.; Ferger, Stefan W.; Helbig-Bonitz, Maria; Schmack, Julia M.; Maassen, Genevieve; Schleuning, Matthias; Kalko, Elisabeth K. V.; Böhning-Gaese, Katrin; Steffan-Dewenter, Ingolf

    2014-01-01

    Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro. PMID:24500173

  20. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields.

    PubMed

    Classen, Alice; Peters, Marcell K; Ferger, Stefan W; Helbig-Bonitz, Maria; Schmack, Julia M; Maassen, Genevieve; Schleuning, Matthias; Kalko, Elisabeth K V; Böhning-Gaese, Katrin; Steffan-Dewenter, Ingolf

    2014-03-22

    Wild animals substantially support crop production by providing ecosystem services, such as pollination and natural pest control. However, the strengths of synergies between ecosystem services and their dependencies on land-use management are largely unknown. Here, we took an experimental approach to test the impact of land-use intensification on both individual and combined pollination and pest control services in coffee production systems at Mount Kilimanjaro. We established a full-factorial pollinator and vertebrate exclosure experiment along a land-use gradient from traditional homegardens (agroforestry systems), shaded coffee plantations to sun coffee plantations (total sample size = 180 coffee bushes). The exclusion of vertebrates led to a reduction in fruit set of ca 9%. Pollinators did not affect fruit set, but significantly increased fruit weight of coffee by an average of 7.4%. We found no significant decline of these ecosystem services along the land-use gradient. Pest control and pollination service were thus complementary, contributing to coffee production by affecting the quantity and quality of a major tropical cash crop across different coffee production systems at Mount Kilimanjaro.

  1. Global growth and stability of agricultural yield decrease with pollinator dependence

    PubMed Central

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.

    2011-01-01

    Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295

  2. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae

    PubMed Central

    Pettis, Jeffery S.; Lichtenberg, Elinor M.; Andree, Michael; Stitzinger, Jennie; Rose, Robyn; vanEngelsdorp, Dennis

    2013-01-01

    Recent declines in honey bee populations and increasing demand for insect-pollinated crops raise concerns about pollinator shortages. Pesticide exposure and pathogens may interact to have strong negative effects on managed honey bee colonies. Such findings are of great concern given the large numbers and high levels of pesticides found in honey bee colonies. Thus it is crucial to determine how field-relevant combinations and loads of pesticides affect bee health. We collected pollen from bee hives in seven major crops to determine 1) what types of pesticides bees are exposed to when rented for pollination of various crops and 2) how field-relevant pesticide blends affect bees’ susceptibility to the gut parasite Nosema ceranae. Our samples represent pollen collected by foragers for use by the colony, and do not necessarily indicate foragers’ roles as pollinators. In blueberry, cranberry, cucumber, pumpkin and watermelon bees collected pollen almost exclusively from weeds and wildflowers during our sampling. Thus more attention must be paid to how honey bees are exposed to pesticides outside of the field in which they are placed. We detected 35 different pesticides in the sampled pollen, and found high fungicide loads. The insecticides esfenvalerate and phosmet were at a concentration higher than their median lethal dose in at least one pollen sample. While fungicides are typically seen as fairly safe for honey bees, we found an increased probability of Nosema infection in bees that consumed pollen with a higher fungicide load. Our results highlight a need for research on sub-lethal effects of fungicides and other chemicals that bees placed in an agricultural setting are exposed to. PMID:23894612

  3. Spatial and Temporal Trends of Global Pollination Benefit

    PubMed Central

    Lautenbach, Sven; Seppelt, Ralf; Liebscher, Juliane; Dormann, Carsten F.

    2012-01-01

    Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services. PMID:22563427

  4. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae)

    PubMed Central

    Drummond, F. A.; Hoshide, A. K.; Dibble, A. C.; Stack, L. B.

    2017-01-01

    Abstract Pollinator-dependent agriculture heavily relies upon a single pollinator—the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter “PRs”) may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. PMID:28069631

  5. Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum).

    PubMed

    Benjamin, Faye E; Winfree, Rachael

    2014-12-01

    Modern agriculture relies on domesticated pollinators such as the honey bee (Apis mellifera L.), and to a lesser extent on native pollinators, for the production of animal-pollinated crops. There is growing concern that pollinator availability may not keep pace with increasing agricultural production. However, whether crop production is in fact pollen-limited at the field scale has rarely been studied. Here, we ask whether commercial highbush blueberry (Vaccinium corymbosum L.) production in New Jersey is limited by a lack of pollination even when growers provide honey bees at recommended densities. We studied two varieties of blueberry over 3 yr to determine whether blueberry crop production is pollen-limited and to measure the relative contributions of honey bees and native bees to blueberry pollination. We found two lines of evidence for pollen limitation. First, berries receiving supplemental hand-pollination were generally heavier than berries receiving ambient pollination. Second, mean berry mass increased significantly and nonasymptotically with honey bee flower visitation rate. While honey bees provided 86% of pollination and thus drove the findings reported above, native bees still contributed 14% of total pollination even in our conventionally managed, high-input agricultural system. Honey bees and native bees were also similarly efficient as pollinators on a per-visit basis. Overall, our study shows that pollination can be a limiting factor in commercial fruit production. Yields might increase with increased honey bee stocking rates and improved dispersal of hives within crop fields, and with habitat restoration to increase pollination provided by native bees.

  6. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae).

    PubMed

    Venturini, E M; Drummond, F A; Hoshide, A K; Dibble, A C; Stack, L B

    2017-04-01

    Pollinator-dependent agriculture heavily relies upon a single pollinator-the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter "PRs") may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  7. Pollination of Granadilla (Passiflora ligularis) Benefits From Large Wild Insects.

    PubMed

    Gutiérrez-Chacón, Catalina; Fornoff, Felix; Ospina-Torres, Rodulfo; Klein, Alexandra-Maria

    2018-05-15

    The contribution of wild pollinators to food production has recently been assessed for many crops, although it remains unclear for several tropical crops. Granadilla (Passiflora ligularis Juss), a crop native to the tropical Andes, is one such crop where a gap exists regarding comprehensive knowledge about its pollination system. In a field experiment in the Colombian Andes, we 1) describe flower visitors in terms of visit quantity (visitation rate) and quality (touches of flower-reproductive structures), 2) assess the pollination system by comparing fruit set and fruit weight per flower in three pollination treatments: pollinator exclusion, open pollination, and supplementary pollination, and 3) evaluate pollination deficits (difference between open and supplementary pollination) in relation to pollinator density. We observed 12 bee species visiting granadilla flowers, with Apis mellifera Linnaeus being the most frequent species. However, large bees such as Xylocopa lachnea Moure and Epicharis rustica Olivier touched stigmata and anthers more often. Fruit set and fruit weight per flower were significantly lower in the pollinator exclusion treatment compared to open and supplementary pollination, while the latter treatments showed nonsignificant differences. Pollination deficit significantly decreased with the increasing density of large bees and wasps. Our results illustrate the high dependency of granadilla on wild pollinating insects and highlight the crucial role of large insects to granadilla production. This stresses the need to maintain or increase the density of large pollinators in granadilla production areas, which in turn will necessitate better knowledge on their ecological requirements to inform landscape planning and population-management programs.

  8. Native Honey Bees Outperform Adventive Honey Bees in Increasing Pyrus bretschneideri (Rosales: Rosaceae) Pollination.

    PubMed

    Gemeda, Tolera Kumsa; Shao, Youquan; Wu, Wenqin; Yang, Huipeng; Huang, Jiaxing; Wu, Jie

    2017-12-05

    The foraging behavior of different bee species is a key factor influencing the pollination efficiency of different crops. Most pear species exhibit full self-incompatibility and thus depend entirely on cross-pollination. However, as little is known about the pear visitation preferences of native Apis cerana (Fabricius; Hymenoptera: Apidae) and adventive Apis mellifera (L.; Hymenoptera: Apidae) in China. A comparative analysis was performed to explore the pear-foraging differences of these species under the natural conditions of pear growing areas. The results show significant variability in the pollen-gathering tendency of these honey bees. Compared to A. mellifera, A. cerana begins foraging at an earlier time of day and gathers a larger amount of pollen in the morning. Based on pollen collection data, A. mellifera shows variable preferences: vigorously foraging on pear on the first day of observation but collecting pollen from non-target floral resources on other experimental days. Conversely, A. cerana persists in pear pollen collection, without shifting preference to other competitive flowers. Therefore, A. cerana outperforms adventive A. mellifera with regard to pear pollen collection under natural conditions, which may lead to increased pear pollination. This study supports arguments in favor of further multiplication and maintenance of A. cerana for pear and other native crop pollination. Moreover, it is essential to develop alternative pollination management techniques to utilize A. mellifera for pear pollination. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Wild bees enhance honey bees’ pollination of hybrid sunflower

    PubMed Central

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  10. Wild bees enhance honey bees' pollination of hybrid sunflower.

    PubMed

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  11. Synergistic effects of non-Apis bees and honey bees for pollination services

    PubMed Central

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  12. Resource Effects on Solitary Bee Reproduction in a Managed Crop Pollination System.

    PubMed

    Pitts-Singer, Theresa L

    2015-08-01

    Population density may affect solitary bee maternal resource allocation. The number of Megachile rotundata (F.), alfalfa leafcutting bee, females released for seed production of Medicago sativa L., alfalfa, may limit flower availability for nest provisioning. In turn, pollinator abundance also may affect crop yield. The M. sativa pollination system presents an opportunity to test for effects of density dependence and maternal manipulation on M. rotundata reproduction. A multiyear study was performed on M. sativa fields upon which M. rotundata densities were altered to induce low, medium, and high density situations. Numbers of adult bees and open flowers were recorded weekly; bee reproduction variables were collected once. Fields varied in plant performance for each site and year, and the intended bee densities were not realized. Therefore, the variable density index (DI) was derived to describe the number of female bees per area of flowers over the study period. As DI increased, percentages of pollinated flowers, established females, and healthy brood significantly increased, and the number of pollinated flowers per female and of dead or diseased brood significantly decreased. Sex ratio was significantly more female biased as DI increased. Overwintered offspring weights were similar regardless of DI, but significantly differed by year for both sexes, and for males also by field and year × field interaction. Overall, resource limitation was not found in this field study. Other density-dependent factors may have induced a bee dispersal response soon after bees were released in the fields that circumvented the need for, or impact of, maternal manipulation. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by a US Government employee and is in the public domain in the US.

  13. Pollination services enhanced with urbanization despite increasing pollinator parasitism

    PubMed Central

    Radzevičiūtė, Rita; Murray, Tomás E.

    2016-01-01

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. PMID:27335419

  14. Pollination services enhanced with urbanization despite increasing pollinator parasitism.

    PubMed

    Theodorou, Panagiotis; Radzevičiūtė, Rita; Settele, Josef; Schweiger, Oliver; Murray, Tomás E; Paxton, Robert J

    2016-06-29

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. © 2016 The Author(s).

  15. Defining the Insect Pollinator Community Found in Iowa Corn and Soybean Fields: Implications for Pollinator Conservation.

    PubMed

    Wheelock, M J; Rey, K P; O'Neal, M E

    2016-10-01

    Although corn (Zea mays L.) and soybeans (Glycine max L.) do not require pollination, they offer floral resources used by insect pollinators. We asked if a similar community of insect pollinators visits these crops in central Iowa, a landscape dominated by corn and soybean production. We used modified pan traps (i.e., bee bowls) in both corn and soybean fields during anthesis and used nonmetric multidimensional scaling (NMS) to compare the communities found in the two crops. Summed across both crops, 6,704 individual insects were captured representing at least 60 species, morphospecies, or higher-level taxa. Thirty-four species were collected in both crops, 19 collected only in corn and seven were collected only in soybean. The most abundant taxa were Lasioglossum [Dialictus] spp., Agapostemon virescens Cresson, Melissodes bimaculata (Lepeletier), and Toxomerus marginatus (Say), which accounted for 65% of the insect pollinators collected from both crops. Although social bees (Apis mellifera L. and Bombus spp.) were found in both crops, they accounted for only 0.5% of all insects captured. The NMS analysis revealed a shared community of pollinators composed of mostly solitary, ground nesting bees. Many of these species have been found in other crop fields throughout North America. Although corn and soybean are grown in landscapes that are often highly disturbed, these data suggest that a community of pollinators can persist within them. We suggest approaches to conserving this community based on partnering with activities that aim to lessen the environmental impact of annual crop production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Plant-herbivore and plant-pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium

    USDA-ARS?s Scientific Manuscript database

    Sampling in Kansas and North Dakota documented the plant-herbivore and plant-pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium Michx. The larva of the tortricid moth, Eucosma giganteana (Riley), was the most common floret- and seed-feeding pest in Kansas, with ...

  17. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity

    PubMed Central

    Garratt, M. P. D.; Breeze, T. D.; Boreux, V.; Coston, D. J.; Jenner, N.; Dean, R.; Westbury, D. B.; Biesmeijer, J. C.; Potts, S. G.

    2016-01-01

    Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology. PMID:27152628

  18. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity.

    PubMed

    Garratt, M P D; Breeze, T D; Boreux, V; Fountain, M T; McKerchar, M; Webber, S M; Coston, D J; Jenner, N; Dean, R; Westbury, D B; Biesmeijer, J C; Potts, S G

    2016-01-01

    Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness), orchard field surveys (flower visitation rate) and pollinator dependence manipulations (pollinator exclusion experiments) to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M), honeybees (£21.4M), bumblebees (£18.6M) and hoverflies (£0.7M). This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.

  19. The importance of key floral bioactive compounds to honey bees for the detection and attraction of hybrid vegetable crops and increased seed yield.

    PubMed

    Mas, Flore; Harper, Aimee; Horner, Rachael; Welsh, Taylor; Jaksons, Peter; Suckling, David M

    2018-02-15

    Crop breeding programmes generally select for traits for improved yield and human consumption preferences. Yet, they often overlook one fundamental trait essential for insect-pollinated crops: pollinator attraction. This is even more critical for hybrid plants that rely on cross-pollination between the male-fertile line and the male-sterile line to set seeds. This study investigated the role of floral odours for honey bee pollination that could explain the poor seed yield in hybrid crops. The key floral bioactive compounds that honey bees detect were identified for three vegetable hybrid crops. It was found that 30% of the variation in bioactive compound quantities was explained by variety. Differences in quantities of the bioactive compounds triggered different degrees of olfactory response and were also associated with varied appetitive response. Correlating the abundance of each bioactive compound with seed yield, it was found that aldehydes such as nonanal and decanal can have a strong negative influence on seed yield with increasing quantity. Using these methodologies to identify relevant bioactive compounds associated with honey bee pollination, plant breeding programmes should also consider selecting for floral traits attractive to honey bees to improve crop pollination for enhanced seed yield. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  20. Global malnutrition overlaps with pollinator-dependent micronutrient production

    PubMed Central

    Chaplin-Kramer, Rebecca; Dombeck, Emily; Gerber, James; Knuth, Katherine A.; Mueller, Nathaniel D.; Mueller, Megan; Ziv, Guy; Klein, Alexandra-Maria

    2014-01-01

    Pollinators contribute around 10% of the economic value of crop production globally, but the contribution of these pollinators to human nutrition is potentially much higher. Crops vary in the degree to which they benefit from pollinators, and many of the most pollinator-dependent crops are also among the richest in micronutrients essential to human health. This study examines regional differences in the pollinator dependence of crop micronutrient content and reveals overlaps between this dependency and the severity of micronutrient deficiency in people around the world. As much as 50% of the production of plant-derived sources of vitamin A requires pollination throughout much of Southeast Asia, whereas other essential micronutrients such as iron and folate have lower dependencies, scattered throughout Africa, Asia and Central America. Micronutrient deficiencies are three times as likely to occur in areas of highest pollination dependence for vitamin A and iron, suggesting that disruptions in pollination could have serious implications for the accessibility of micronutrients for public health. These regions of high nutritional vulnerability are understudied in the pollination literature, and should be priority areas for research related to ecosystem services and human well-being. PMID:25232140

  1. Sugar concentration in nectar: a quantitative metric of crop attractiveness for refined pollinator risk assessments.

    PubMed

    Knopper, Loren D; Dan, Tereza; Reisig, Dominic D; Johnson, Josephine D; Bowers, Lisa M

    2016-10-01

    Those involved with pollinator risk assessment know that agricultural crops vary in attractiveness to bees. Intuitively, this means that exposure to agricultural pesticides is likely greatest for attractive plants and lowest for unattractive plants. While crop attractiveness in the risk assessment process has been qualitatively remarked on by some authorities, absent is direction on how to refine the process with quantitative metrics of attractiveness. At a high level, attractiveness of crops to bees appears to depend on several key variables, including but not limited to: floral, olfactory, visual and tactile cues; seasonal availability; physical and behavioral characteristics of the bee; plant and nectar rewards. Notwithstanding the complexities and interactions among these variables, sugar content in nectar stands out as a suitable quantitative metric by which to refine pollinator risk assessments for attractiveness. Provided herein is a proposed way to use sugar nectar concentration to adjust the exposure parameter (with what is called a crop attractiveness factor) in the calculation of risk quotients in order to derive crop-specific tier I assessments. This Perspective is meant to invite discussion on incorporating such changes in the risk assessment process. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  2. Enhancing Legume Ecosystem Services through an Understanding of Plant-Pollinator Interplay.

    PubMed

    Suso, María J; Bebeli, Penelope J; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A A; Torricelli, Renzo; Veloso, Maria M

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant-pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the "pest control service" and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System.

  3. Functionality of Varroa-resistant honey bees (Hymenoptera: Apidae) when used in migratory beekeeping for crop pollination.

    PubMed

    Danka, Robert G; De Guzman, Lilia I; Rinderer, Thomas E; Sylvester, H Allen; Wagener, Christine M; Bourgeois, A Lelania; Harris, Jeffrey W; Villa, José D

    2012-04-01

    Two types of honey bees, Apis mellifera L. (Hymenoptera: Apidae), bred for resistance to Varroa destructor Anderson & Trueman were evaluated for performance when used in migratory crop pollination. Colonies of Russian honey bees (RHB) and outcrossed bees with Varroa-sensitive hygiene (VSH) were managed without miticide treatments and compared with colonies of Italian honey bees that served as controls. Control colonies were managed as groups which either were treated twice each year against V. destructor (CT) or kept untreated (CU). Totals of 240 and 247 colonies were established initially for trials in 2008 and 2009, respectively. RHB and VSH colonies generally had adult and brood populations similar to those of the standard CT group regarding pollination requirements. For pollination of almonds [Prunus dulcis (Mill.) D.A.Webb] in February, percentages of colonies meeting the required six or more frames of adult bees were 57% (VSH), 56% (CT), 39% (RHB), and 34% (CU). RHB are known to have small colonies in early spring, but this can be overcome with appropriate feeding. For later pollination requirements in May to July, 94-100% of colonies in the four groups met pollination size requirements for apples (Malus domestica Borkh.), cranberries (Vaccinium macrocarpon Aiton), and lowbush blueberries (Vaccinium angustifolium Aiton). Infestations with V. destructor usually were lowest in CT colonies and tended to be lower in VSH colonies than in RHB and CU colonies. This study demonstrates that bees with the VSH trait and pure RHB offer alternatives for beekeepers to use for commercial crop pollination while reducing reliance on miticides. The high frequency of queen loss (only approximately one fourth of original queens survived each year) suggests that frequent requeening is necessary to maintain desired genetics.

  4. Diversity of wild bees supports pollination services in an urbanized landscape.

    PubMed

    Lowenstein, David M; Matteson, Kevin C; Minor, Emily S

    2015-11-01

    Plantings in residential neighborhoods can support wild pollinators. However, it is unknown how effectively wild pollinators maintain pollination services in small, urban gardens with diverse floral resources. We used a 'mobile garden' experimental design, whereby potted plants of cucumber, eggplant, and purple coneflower were brought to 30 residential yards in Chicago, IL, USA, to enable direct assessment of pollination services provided by wild pollinator communities. We measured fruit and seed set and investigated the effect of within-yard characteristics and adjacent floral resources on plant pollination. Increased pollinator visitation and taxonomic richness generally led to increases in fruit and seed set for all focal plants. Furthermore, fruit and seed set were correlated across the three species, suggesting that pollination services vary across the landscape in ways that are consistent among different plant species. Plant species varied in terms of which pollinator groups provided the most visits and benefit for pollination. Cucumber pollination was linked to visitation by small sweat bees (Lasioglossum spp.), whereas eggplant pollination was linked to visits by bumble bees. Purple coneflower was visited by the most diverse group of pollinators and, perhaps due to this phenomenon, was more effectively pollinated in florally-rich gardens. Our results demonstrate how a diversity of wild bees supports pollination of multiple plant species, highlighting the importance of pollinator conservation within cities. Non-crop resources should continue to be planted in urban gardens, as these resources have a neutral and potentially positive effect on crop pollination.

  5. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops.

    PubMed

    Shackelford, Gorm; Steward, Peter R; Benton, Tim G; Kunin, William E; Potts, Simon G; Biesmeijer, Jacobus C; Sait, Steven M

    2013-11-01

    To manage agroecosystems for multiple ecosystem services, we need to know whether the management of one service has positive, negative, or no effects on other services. We do not yet have data on the interactions between pollination and pest-control services. However, we do have data on the distributions of pollinators and natural enemies in agroecosystems. Therefore, we compared these two groups of ecosystem service providers, to see if the management of farms and agricultural landscapes might have similar effects on the abundance and richness of both. In a meta-analysis, we compared 46 studies that sampled bees, predatory beetles, parasitic wasps, and spiders in fields, orchards, or vineyards of food crops. These studies used the proximity or proportion of non-crop or natural habitats in the landscapes surrounding these crops (a measure of landscape complexity), or the proximity or diversity of non-crop plants in the margins of these crops (a measure of local complexity), to explain the abundance or richness of these beneficial arthropods. Compositional complexity at both landscape and local scales had positive effects on both pollinators and natural enemies, but different effects on different taxa. Effects on bees and spiders were significantly positive, but effects on parasitoids and predatory beetles (mostly Carabidae and Staphylinidae) were inconclusive. Landscape complexity had significantly stronger effects on bees than it did on predatory beetles and significantly stronger effects in non-woody rather than in woody crops. Effects on richness were significantly stronger than effects on abundance, but possibly only for spiders. This abundance-richness difference might be caused by differences between generalists and specialists, or between arthropods that depend on non-crop habitats (ecotone species and dispersers) and those that do not (cultural species). We call this the 'specialist-generalist' or 'cultural difference' mechanism. If complexity has stronger

  6. Does the invasive Lupinus polyphyllus increase pollinator visitation to a native herb through effects on pollinator population sizes?

    PubMed

    Jakobsson, Anna; Padrón, Benigno

    2014-01-01

    Invasive plants may compete with native species for abiotic factors as light, space and nutrients, and have also been shown to affect native pollination interactions. Studies have mainly focused on how invasive plants affect pollinator behaviour, i.e. attraction of pollinators to or away from native flowers. However, when an invasive plant provides resources utilized by native pollinators this could increase pollinator population sizes and thereby pollination success in natives. Effects mediated through changes in pollinator population sizes have been largely ignored in previous studies, and the dominance of negative interactions suggested by meta-analyses may therefore be biased. We investigated the impact of the invasive Lupinus polyphyllus on pollination in the native Lotus corniculatus using a study design comparing invaded and uninvaded sites before and after the flowering period of the invasive. We monitored wild bee abundance in transects, and visit rate and seed production of potted Lotus plants. Bumblebee abundance increased 3.9 times in invaded sites during the study period, whereas it was unaltered in uninvaded sites. Total visit rate per Lotus plant increased 2.1 times in invaded sites and decreased 4.4 times in uninvaded sites. No corresponding change in seed production of Lotus was found. The increase in visit rate to Lotus was driven by an increase in solitary bee visitation, whereas mainly bumblebees were observed to visit the invasive Lupinus. The mechanism by which the invasive increases pollinator visit rates to Lotus could be increased availability of other flower resources for solitary bees when bumblebees forage on Lupinus.

  7. Coupling of pollination services and coffee suitability under climate change.

    PubMed

    Imbach, Pablo; Fung, Emily; Hannah, Lee; Navarro-Racines, Carlos E; Roubik, David W; Ricketts, Taylor H; Harvey, Celia A; Donatti, Camila I; Läderach, Peter; Locatelli, Bruno; Roehrdanz, Patrick R

    2017-09-26

    Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.

  8. Enhancing Legume Ecosystem Services through an Understanding of Plant–Pollinator Interplay

    PubMed Central

    Suso, María J.; Bebeli, Penelope J.; Christmann, Stefanie; Mateus, Célia; Negri, Valeria; Pinheiro de Carvalho, Miguel A. A.; Torricelli, Renzo; Veloso, Maria M.

    2016-01-01

    Legumes are bee-pollinated, but to a different extent. The importance of the plant–pollinator interplay (PPI), in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: (1) optimal productivity, based on an efficient use of pollinators, and (2) biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the “pest control service” and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: (a) Farming with Alternative Pollinators and (b) Crop Design System. PMID:27047514

  9. Modelling pollination services across agricultural landscapes

    PubMed Central

    Lonsdorf, Eric; Kremen, Claire; Ricketts, Taylor; Winfree, Rachael; Williams, Neal; Greenleaf, Sarah

    2009-01-01

    Background and Aims Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested. Methods Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey–Pennsylvania (NJPA). Key Results Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model. Conclusions The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model's predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery. PMID:19324897

  10. Evaluating pollination deficits in pumpkin production in New York.

    PubMed

    Petersen, J D; Huseth, A S; Nault, B A

    2014-10-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yield.

  11. Distance from forest edge affects bee pollinators in oilseed rape fields.

    PubMed

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  12. Distance from forest edge affects bee pollinators in oilseed rape fields

    PubMed Central

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-01-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services. PMID:24634722

  13. Are ecosystem services stabilized by differences among species? A test using crop pollination.

    PubMed

    Winfree, Rachael; Kremen, Claire

    2009-01-22

    Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.

  14. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes

    PubMed Central

    Kormann, Urs; Scherber, Christoph; Tscharntke, Teja; Klein, Nadja; Larbig, Manuel; Valente, Jonathon J.; Hadley, Adam S.; Betts, Matthew G.

    2016-01-01

    Tropical biodiversity and associated ecosystem functions have become heavily eroded through habitat loss. Animal-mediated pollination is required in more than 94% of higher tropical plant species and 75% of the world's leading food crops, but it remains unclear if corridors avert deforestation-driven pollination breakdown in fragmented tropical landscapes. Here, we used manipulative resource experiments and field observations to show that corridors functionally connect neotropical forest fragments for forest-associated hummingbirds and increase pollen transfer. Further, corridors boosted forest-associated pollinator availability in fragments by 14.3 times compared with unconnected equivalents, increasing overall pollination success. Plants in patches without corridors showed pollination rates equal to bagged control flowers, indicating pollination failure in isolated fragments. This indicates, for the first time, that corridors benefit tropical forest ecosystems beyond boosting local species richness, by functionally connecting mutualistic network partners. We conclude that small-scale adjustments to landscape configuration safeguard native pollinators and associated pollination services in tropical forest landscapes. PMID:26817765

  15. Controlled mass pollination in loblolly pine to increase genetic gains

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; T.D. Byram; W.J. Lowe

    1998-01-01

    Controlled mass pollination (CMP) is one way to increase genetic gains from traditional wind-pollinated seed orchards. Methodology is under development by several forestry companies in the southern USA. Costs of CMP depend on the efficient installation, pollination, and removal of inexpensive paper bags. Even in pilot-scale studies these costs seem reasonable. Net...

  16. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    PubMed

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. The effects of crop intensification on the diversity of native pollinator communities

    USDA-ARS?s Scientific Manuscript database

    Recent increases in agricultural conversion are leading to a decline in native grasslands and natural resources critical for beneficial insects. However, little is known regarding how these regional changes are affecting pollinator diversity. Insect pollinators were collected at 12 locations in Broo...

  18. Pollination and Plant Resources Change the Nutritional Quality of Almonds for Human Health

    PubMed Central

    Brittain, Claire; Kremen, Claire; Garber, Andrea; Klein, Alexandra-Maria

    2014-01-01

    Insect-pollinated crops provide important nutrients for human health. Pollination, water and nutrients available to crops can influence yield, but it is not known if the nutritional value of the crop is also influenced. Almonds are an important source of critical nutrients for human health such as unsaturated fat and vitamin E. We manipulated the pollination of almond trees and the resources available to the trees, to investigate the impact on the nutritional composition of the crop. The pollination treatments were: (a) exclusion of pollinators to initiate self-pollination and (b) hand cross-pollination; the plant resource treatments were: (c) reduced water and (d) no fertilizer. In an orchard in northern California, trees were exposed to a single treatment or a combination of two (one pollination and one resource). Both the fat and vitamin E composition of the nuts were highly influenced by pollination. Lower proportions of oleic to linoleic acid, which are less desirable from both a health and commercial perspective, were produced by the self-pollinated trees. However, higher levels of vitamin E were found in the self-pollinated nuts. In some cases, combined changes in pollination and plant resources sharpened the pollination effects, even when plant resources were not influencing the nutrients as an individual treatment. This study highlights the importance of insects as providers of cross-pollination for fruit quality that can affect human health, and, for the first time, shows that other environmental factors can sharpen the effect of pollination. This contributes to an emerging field of research investigating the complexity of interactions of ecosystem services affecting the nutritional value and commercial quality of crops. PMID:24587215

  19. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    PubMed

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  20. Changes in the Relative Abundance and Movement of Insect Pollinators During the Flowering Cycle of Brassica rapa Crops: Implications for Gene Flow

    PubMed Central

    Mesa, Laura A.; Howlett, Bradley G.; Grant, Jan E.; Didham, Raphael K.

    2013-01-01

    The potential movement of transgenes from genetically modified crops to non-genetically modified crops via insect-mediated pollen dispersal has been highlighted as one of the areas of greatest concern in regards to genetically modified crops. Pollen movement depends sensitively on spatial and temporal variation in the movement of insect pollinators between crop fields. This study tested the degree of variation in the diversity and relative abundance of flower-visiting insects entering versus leaving pak choi, Brassica rapa var. chinensis L. (Brassicales: Brassicaceae), crops throughout different stages of the flowering cycle. The relative abundance of flower-visiting insects varied significantly with Brassica crop phenology. Greater numbers of flower-visiting insects were captured inside rather than outside the crop fields, with the highest capture rates of flower-visitors coinciding with the peak of flowering in both spring-flowering and summer-flowering crops. Moreover, the ratio of flower-visiting insects entering versus leaving crop fields also varied considerably with changing crop phenology. Despite high variation in relative capture rates, the data strongly indicate non-random patterns of variation in insect movement in relation to crop phenology, with early-season aggregation of flower-visiting insects entering and remaining in the crop, and then mass emigration of flower-visiting insects leaving the crop late in the flowering season. Although pollen movement late in the flowering cycle might contribute relatively little to total seed set (and hence crop production), the findings here suggest that extensive late-season pollinator redistribution in the landscape could contribute disproportionately to long-distance gene movement between crops. PMID:23937538

  1. 78 FR 10167 - Pollinator Summit: Status of Ongoing Collaborative Efforts To Protect Pollinators; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... in activities to reduce potential acute exposure of honey bees and pollinators to pesticides. Invited... exposure of honey bees and pollinators to pesticides. This action is directed to the public in general, and... crops. While there are several factors affecting honey bee health, pesticides are among these variables...

  2. Economic Dependence of U.S. Industrial Sectors on Animal-Mediated Pollination Service.

    PubMed

    Chopra, Shauhrat S; Bakshi, Bhavik R; Khanna, Vikas

    2015-12-15

    Declining animal pollinator health and diversity in the U.S. is a matter of growing concern and has particularly gained attention since the emergence of colony collapse disorder (CCD) in 2006. Failure to maintain adequate animal-mediated pollination service to support increasing demand for pollination-dependent crops poses risks for the U.S. economy. We integrate the Economic Input-Output (EIO) model and network analysis with data on pollinator dependence of crops to understand the economic dependence of U.S. industrial sectors on animal-mediated pollination service. The novelty of this work lies in its ability to identify industrial sectors and industrial communities (groups of closely linked sectors) that are most vulnerable to scarcity of pollination service provided by various animal species. While the economic dependence of agricultural sectors on pollination service is significant (US$14.2-23.8 billion), the higher-order economic dependence of the rest of the U.S. industrial sectors is substantially high as well (US$10.3-21.1 billion). The results are compelling as they highlight the critical importance of animal-induced pollination service for the U.S. economy, and the need to account for the role of ecosystem goods and services in product life cycles.

  3. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States.

    PubMed

    Walston, Leroy J; Mishra, Shruti K; Hartmann, Heidi M; Hlohowskyj, Ihor; McCall, James; Macknick, Jordan

    2018-06-13

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlap between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km 2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.

  4. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    PubMed

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCall, James D; Macknick, Jordan E; Walston, Leroy J.

    Of the many roles insects serve for ecosystem function, pollination is possibly the most important service directly linked to human well-being. However, land use changes have contributed to the decline of pollinators and their habitats. In agricultural landscapes that also support renewable energy developments such as utility-scale solar energy [USSE] facilities, opportunities may exist to conserve insect pollinators and locally restore their ecosystem services through the implementation of vegetation management approaches that aim to provide and maintain pollinator habitat at USSE facilities. As a first step toward understanding the potential agricultural benefits of solar-pollinator habitat, we identified areas of overlapmore » between USSE facilities and surrounding pollinator-dependent crop types in the United States (U.S.). Using spatial data on solar energy developments and crop types across the U.S., and assuming a pollinator foraging distance of 1.5 km, we identified over 3,500 km2 of agricultural land near existing and planned USSE facilities that may benefit from increased pollination services through the creation of pollinator habitat at the USSE facilities. The following five pollinator-dependent crop types accounted for over 90% of the agriculture near USSE facilities, and these could benefit most from the creation of pollinator habitat at existing and planned USSE facilities: soybeans, alfalfa, cotton, almonds, and citrus. We discuss how our results may be used to understand potential agro-economic implications of solar-pollinator habitat. Our results show that ecosystem service restoration through the creation of pollinator habitat could improve the sustainability of large-scale renewable energy developments in agricultural landscapes.« less

  6. Artificial light at night as a new threat to pollination.

    PubMed

    Knop, Eva; Zoller, Leana; Ryser, Remo; Gerpe, Christopher; Hörler, Maurin; Fontaine, Colin

    2017-08-10

    Pollinators are declining worldwide and this has raised concerns for a parallel decline in the essential pollination service they provide to both crops and wild plants. Anthropogenic drivers linked to this decline include habitat changes, intensive agriculture, pesticides, invasive alien species, spread of pathogens and climate change. Recently, the rapid global increase in artificial light at night has been proposed to be a new threat to terrestrial ecosystems; the consequences of this increase for ecosystem function are mostly unknown. Here we show that artificial light at night disrupts nocturnal pollination networks and has negative consequences for plant reproductive success. In artificially illuminated plant-pollinator communities, nocturnal visits to plants were reduced by 62% compared to dark areas. Notably, this resulted in an overall 13% reduction in fruit set of a focal plant even though the plant also received numerous visits by diurnal pollinators. Furthermore, by merging diurnal and nocturnal pollination sub-networks, we show that the structure of these combined networks tends to facilitate the spread of the negative consequences of disrupted nocturnal pollination to daytime pollinator communities. Our findings demonstrate that artificial light at night is a threat to pollination and that the negative effects of artificial light at night on nocturnal pollination are predicted to propagate to the diurnal community, thereby aggravating the decline of the diurnal community. We provide perspectives on the functioning of plant-pollinator communities, showing that nocturnal pollinators are not redundant to diurnal communities and increasing our understanding of the human-induced decline in pollinators and their ecosystem service.

  7. Bird pollination of Canary Island endemic plants

    NASA Astrophysics Data System (ADS)

    Ollerton, Jeff; Cranmer, Louise; Stelzer, Ralph J.; Sullivan, Steve; Chittka, Lars

    2009-02-01

    The Canary Islands are home to a guild of endemic, threatened bird-pollinated plants. Previous work has suggested that these plants evolved floral traits as adaptations to pollination by flower specialist sunbirds, but subsequently, they appear to have co-opted generalist passerine birds as sub-optimal pollinators. To test this idea, we carried out a quantitative study of the pollination biology of three of the bird-pollinated plants, Canarina canariensis (Campanulaceae), Isoplexis canariensis (Veronicaceae) and Lotus berthelotii (Fabaceae), on the island of Tenerife. Using colour vision models, we predicted the detectability of flowers to bird and bee pollinators. We measured pollinator visitation rates, nectar standing crops as well as seed-set and pollen removal and deposition. These data showed that the plants are effectively pollinated by non-flower specialist passerine birds that only occasionally visit flowers. The large nectar standing crops and extended flower longevities (>10 days) of Canarina and Isoplexis suggests that they have evolved a bird pollination system that effectively exploits these low frequency non-specialist pollen vectors and is in no way sub-optimal. Seed set in two of the three species was high and was significantly reduced or zero in flowers where pollinator access was restricted. In L. berthelotii, however, no fruit set was observed, probably because the plants were self-incompatible horticultural clones of a single genet. We also show that, while all three species are easily detectable for birds, the orange Canarina and the red Lotus (but less so the yellow-orange Isoplexis) should be difficult to detect for insect pollinators without specialised red receptors, such as bumblebees. Contrary to expectations if we accept that the flowers are primarily adapted to sunbird pollination, the chiffchaff ( Phylloscopus canariensis) was an effective pollinator of these species.

  8. Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe

    PubMed Central

    Breeze, Tom D.; Vaissière, Bernard E.; Bommarco, Riccardo; Petanidou, Theodora; Seraphides, Nicos; Kozák, Lajos; Scheper, Jeroen; Biesmeijer, Jacobus C.; Kleijn, David; Gyldenkærne, Steen; Moretti, Marco; Holzschuh, Andrea; Steffan-Dewenter, Ingolf; Stout, Jane C.; Pärtel, Meelis; Zobel, Martin; Potts, Simon G.

    2014-01-01

    Declines in insect pollinators across Europe have raised concerns about the supply of pollination services to agriculture. Simultaneously, EU agricultural and biofuel policies have encouraged substantial growth in the cultivated area of insect pollinated crops across the continent. Using data from 41 European countries, this study demonstrates that the recommended number of honeybees required to provide crop pollination across Europe has risen 4.9 times as fast as honeybee stocks between 2005 and 2010. Consequently, honeybee stocks were insufficient to supply >90% of demands in 22 countries studied. These findings raise concerns about the capacity of many countries to cope with major losses of wild pollinators and highlight numerous critical gaps in current understanding of pollination service supplies and demands, pointing to a pressing need for further research into this issue. PMID:24421873

  9. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value☆

    PubMed Central

    Garratt, M.P.D.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G.

    2014-01-01

    Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we

  10. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value.

    PubMed

    Garratt, M P D; Breeze, T D; Jenner, N; Polce, C; Biesmeijer, J C; Potts, S G

    2014-02-01

    Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we

  11. Pollen Collection, Honey Production, and Pollination Services: Managing Honey Bees in an Agricultural Setting.

    PubMed

    Hoover, Shelley E; Ovinge, Lynae P

    2018-05-09

    Hybrid canola seed production is an important pollination market in Canada; typically both honey bees (Apis mellifera L. (Hymenoptera: Apidae)) and Alfalfa Leafcutting bees (Megachile rotundata Fab. (Hymenoptera: Megachilidae)) are concurrently managed to ensure pollination in this high-value crop. Beekeepers are paid to provide pollination services, and the colonies also produce a honey crop from the canola. Pollen availability from male-fertile plants is carefully managed in this crop to provide an abundance of pollen to fertilize male-sterile ('female') plants. This abundance of pollen represents an underutilized resource for beekeepers, and an opportunity to diversify the hive-products produced for market in this management system. We used a commercial-style pollen trap to collect pollen from colonies twice weekly for the duration of canola pollination, and compared the honey production and amount of sealed brood in colonies with pollen traps to those without pollen traps. We found that while pollen trapping reduced honey production, there was no negative impact on brood production, and at current market prices, the per-hive revenue was higher in colonies from which pollen was trapped. Pollen trapping honey bee colonies in the context of hybrid canola pollination, therefore, offers beekeepers an opportunity to diversify their products and increase their revenue.

  12. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination.

    PubMed

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V

    2017-05-01

    Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  13. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators

    PubMed Central

    Hallett, Allysa C.; Mitchell, Randall J.; Chamberlain, Evan R.

    2017-01-01

    Abstract Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators. To explore how a change in pollinator composition influences pollination of Asclepias verticillata, we excluded bumble bees from plots in large and small populations of this milkweed species. We then quantified pollinator visitation rates, pollen export and pollen receipt for control plots and for plots where bumble bees were experimentally excluded. We found that exclusion of bumble bees did not reduce pollen receipt by A. verticillata flowers. Visitation by Polistes wasps increased markedly following bumble bee exclusion, both in small populations (186 % increase) and in large populations (400 % increase). Because Polistes wasps were as efficient as bumble bees at pollen transfer, increased wasp visitation offset lost bumble bee pollination services. Thus, loss of a frequent pollinator will not necessarily lead to a decline in pollination success. When pollinator loss is followed by a shift in the composition and abundance of remaining pollinators, pollination success will depend on the net change in the quantity and quality of pollination services. PMID:28798863

  14. Improved storage of the pollinator, Megachile rotundata

    USDA-ARS?s Scientific Manuscript database

    The alfalfa leafcutting bee, Megachile rotundata, is the 3rd most common pollinator used for crop pollination in North America and low-temperature storage protocols are a critical component of M. rotundata management. There are four times during the production cycle that bees may need to be subj...

  15. Evaluation of Nasonov Pheromone Dispensers for Pollinator Attraction in Apple, Blueberry, and Cherry.

    PubMed

    Williamson, J; Adams, C G; Isaacs, R; Gut, L J

    2018-04-23

    Declines in the number of commercial honey bees (Apis mellifera L.) (Hymenoptera: Apidae) and some wild bee species around the world threaten fruit, nut, and vegetable production and have prompted interest in developing methods for gaining efficiencies in pollination services. One possible approach would be to deploy attractants within the target crop to increase the number of floral visits. In this study, we evaluate two new pollinator attractants, Polynate and SPLAT Bloom, for their ability to increase pollinator visitation and fruit set in apple (Malus pumila Mill.), highbush blueberry (Vaccinium sp. L.), and tart cherry (Prunus cerasus L.). Polynate is a plastic twin-tube dispenser loaded with a mixture of floral scent and Nasonov pheromone. SPLAT Bloom contains the same chemical formula as Polynate, but is applied as a 3 g wax dollop directly onto the tree or bush. The objectives of this study were to determine if Polynate and SPLAT Bloom increase the number of honey bee foragers and fruit set in apples, highbush blueberries, and tart cherries. We conducted replicated evaluations of 32 fields or orchards with and without putative attractants over three growing seasons. Both products failed to provide a measurable increase in pollinator visits or fruit set in these crops, indicating no return on investment for either product.

  16. Safeguarding pollinators and their values to human well-being.

    PubMed

    Potts, Simon G; Imperatriz-Fonseca, Vera; Ngo, Hien T; Aizen, Marcelo A; Biesmeijer, Jacobus C; Breeze, Thomas D; Dicks, Lynn V; Garibaldi, Lucas A; Hill, Rosemary; Settele, Josef; Vanbergen, Adam J

    2016-12-08

    Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.

  17. Milkweed (Gentianales: Apocynaceae): a farmscape resource for increasing parasitism of stink bugs (Hemiptera: Pentatomidae) and providing nectar to insect pollinators and monarch butterflies.

    PubMed

    Tillman, P G; Carpenter, J E

    2014-04-01

    In peanut-cotton farmscapes in Georgia, the stink bugs Nezara viridula (L.) and Chinavia hilaris (Say) (Hemiptera: Pentatomidae) and the leaffooted bug, Leptoglossus phyllopus (L.) (Hemiptera: Coreidae), disperse at crop-to-crop interfaces to feed on bolls in cotton. The main objective of this study was to determine whether insecticide-free tropical milkweed (Asclepias curassavica L.), a nectar-producing plant, can increase parasitism of these bugs by Trichopoda pennipes (F.) (Diptera: Tachinidae) and provide nectar to monarch butterflies and insect pollinators in these farmscapes. Peanut-cotton plots with and without flowering milkweed plants were established in 2009 and 2010. Adult T. pennipes, monarch butterflies, honey bees, and native insect pollinators readily fed on floral nectar of milkweed. Monarch larvae feeding on milkweed vegetation successfully developed into pupae. In 2009, N. viridula was the primary host of T. pennipes in cotton, and parasitism of this pest by the parasitoid was significantly higher in milkweed cotton (61.6%) than in control cotton (13.3%). In 2010, parasitism of N. viridula, C. hilaris, and L. phyllopus by T. pennipes was significantly higher in milkweed cotton (24.0%) than in control cotton (1.1%). For both years of the study, these treatment differences were not owing to a response by the parasitoid to differences in host density, because density of hosts was not significantly different between treatments. In conclusion, incorporation of milkweed in peanut-cotton plots increased stink bug parasitism in cotton and provided nectar to insect pollinators and monarch butterflies.

  18. Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture.

    PubMed

    Sandhu, Harpinder; Waterhouse, Benjamin; Boyer, Stephane; Wratten, Steve

    2016-01-01

    Ecosystem services (ES) such as pollination are vital for the continuous supply of food to a growing human population, but the decline in populations of insect pollinators worldwide poses a threat to food and nutritional security. Using a pollinator (honeybee) exclusion approach, we evaluated the impact of pollinator scarcity on production in four brassica fields, two producing hybrid seeds and two producing open-pollinated ones. There was a clear reduction in seed yield as pollination rates declined. Open-pollinated crops produced significantly higher yields than did the hybrid ones at all pollination rates. The hybrid crops required at least 0.50 of background pollination rates to achieve maximum yield, whereas in open-pollinated crops, 0.25 pollination rates were necessary for maximum yield. The total estimated economic value of pollination services provided by honeybees to the agricultural industry in New Zealand is NZD $1.96 billion annually. This study indicates that loss of pollination services can result in significant declines in production and have serious implications for the market economy in New Zealand. Depending on the extent of honeybee population decline, and assuming that results in declining pollination services, the estimated economic loss to New Zealand agriculture could be in the range of NZD $295-728 million annually.

  19. Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture

    PubMed Central

    Waterhouse, Benjamin; Wratten, Steve

    2016-01-01

    Ecosystem services (ES) such as pollination are vital for the continuous supply of food to a growing human population, but the decline in populations of insect pollinators worldwide poses a threat to food and nutritional security. Using a pollinator (honeybee) exclusion approach, we evaluated the impact of pollinator scarcity on production in four brassica fields, two producing hybrid seeds and two producing open-pollinated ones. There was a clear reduction in seed yield as pollination rates declined. Open-pollinated crops produced significantly higher yields than did the hybrid ones at all pollination rates. The hybrid crops required at least 0.50 of background pollination rates to achieve maximum yield, whereas in open-pollinated crops, 0.25 pollination rates were necessary for maximum yield. The total estimated economic value of pollination services provided by honeybees to the agricultural industry in New Zealand is NZD $1.96 billion annually. This study indicates that loss of pollination services can result in significant declines in production and have serious implications for the market economy in New Zealand. Depending on the extent of honeybee population decline, and assuming that results in declining pollination services, the estimated economic loss to New Zealand agriculture could be in the range of NZD $295–728 million annually. PMID:27441108

  20. Attracting mutualists and antagonists: plant trait variation explains the distribution of specialist floral herbivores and pollinators on crops and wild gourds.

    PubMed

    Theis, Nina; Barber, Nicholas A; Gillespie, Sandra D; Hazzard, Ruth V; Adler, Lynn S

    2014-08-01

    • Floral traits play important roles in pollinator attraction and defense against floral herbivory. However, plants may experience trade-offs between conspicuousness to pollinators and herbivore attraction. Comparative studies provide an excellent framework to examine the role of multiple traits shaping mutualist and antagonist interactions.• To assess whether putative defensive and attractive traits predict species interactions, we grew 20 different Cucurbitaceae species and varieties in the field to measure interactions with pollinators and herbivores and in the greenhouse to assess trait variation. Cucurbits are characterized by the production of cucurbitacins, bitter nonvolatile terpenoids that are effective against generalist herbivores but can attract specialist beetles. We determined whether plant traits such as cucurbitacins predict herbivore resistance and pollinator attraction using an information-theoretic approach.• Mutualists and floral antagonists were attracted to the same cucurbit varieties once they flowered. However, rather than cucurbitacin concentration, we found that the size of the flower and volatile emissions of floral sesquiterpenoids explained both pollinator and floral herbivore visitation preference across cucurbit taxa. This pattern held across cucurbit taxa and within the Cucurbita genus.• Surprisingly, floral sesquiterpenoid volatiles, which are associated with direct defense, indirect defense, and attraction, rather than defense traits such as cucurbitacins, appeared to drive interactions with both pollinators and floral herbivores across cucurbit taxa. Identifying the relevant plant traits for attraction and deterrence is important in this economically valuable crop, particularly if pollinators and floral herbivores use the same plant traits as cues. © 2014 Botanical Society of America, Inc.

  1. Differential pollen placement on an Old World nectar bat increases pollination efficiency

    PubMed Central

    Stewart, Alyssa B.; Dudash, Michele R.

    2016-01-01

    Background and Aims Plant species that share pollinators are potentially subject to non-adaptive interspecific pollen transfer, resulting in reduced reproductive success. Mechanisms that increase pollination efficiency between conspecific individuals are therefore highly beneficial. Many nocturnally flowering plant species in Thailand are pollinated by the nectar bat Eonycteris spelaea (Pteropodidae). This study tested the hypothesis that plant species within a community reduce interspecific pollen movement by placing pollen on different areas of the bat’s body. Methods Using flight cage trials, pollen transfer by E. spelaea was compared between conspecific versus heterospecific flowers across four bat-pollinated plant genera. Pollen from four locations on the bat’s body was also quantified to determine if pollen placement varies by plant species. Key Results It was found that E. spelaea transfers significantly more pollen between conspecific than heterospecific flowers, and that diverse floral designs produce significantly different patterns of pollen deposition on E. spelaea. Conclusions In the Old World tropics, differential pollen placement is a mechanism that reduces competition among bat-pollinated plant species sharing a common pollinator. PMID:26482654

  2. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location.

    PubMed

    Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire

    2016-03-01

    within sunflower fields, with edges receiving higher coverage than field centers. To generate more accurate maps of services, we advocate directly measuring the autecology of ecosystem service providers, which vary by crop system, pollinator species, and region. Improving estimates of the factors affecting pollinator populations can increase the accuracy of pollination service maps and help clarify the influence of farming practices on wild bees occurring in agricultural landscapes.

  3. Indirect Effects of Field Management on Pollination Service and Seed Set in Hybrid Onion Seed Production.

    PubMed

    Gillespie, Sandra; Long, Rachael; Williams, Neal

    2015-12-01

    Pollination in crops, as in native ecosystems, is a stepwise process that can be disrupted at any stage. Healthy pollinator populations are critical for adequate visitation, but pollination still might fail if crop management interferes with the attraction and retention of pollinators. Farmers must balance the direct benefits of applying insecticide and managing irrigation rates against their potential to indirectly interfere with the pollination process. We investigated these issues in hybrid onion seed production, where previous research has shown that high insecticide use reduces pollinator attraction. We conducted field surveys of soil moisture, nectar production, pollinator visitation, pollen-stigma interactions, and seed set at multiple commercial fields across 2 yr. We then examined how management actions, such as irrigation rate (approximated by soil moisture), or insecticide use could affect the pollination process. Onions produced maximum nectar at intermediate soil moisture, and high nectar production attracted more pollinators. Insecticide use weakly affected pollinator visitation, but when applied close to bloom reduced pollen germination and pollen tube growth. Ultimately, neither soil moisture nor insecticide use directly affected seed set, but the high correlation between pollinator visitation and seed set suggests that crop management will ultimately affect yields via indirect effects on the pollination process. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Effects of heterospecific pollen from a wind-pollinated and pesticide-treated plant on reproductive success of an insect-pollinated species.

    PubMed

    Arceo-Gómez, Gerardo; Jameel, Mohammad I; Ashman, Tia-Lynn

    2018-05-01

    Studies on the effects of heterospecific pollen (HP) transfer have been focused mainly on insect-pollinated species, despite evidence of insect visitation to wind-pollinated species and transfer of their pollen onto stigmas of insect-pollinated plants. Thus, the potential consequences of HP transfer from wind-pollinated species remain largely unknown. Furthermore, accumulation of pesticide residues in pollen of wind-pollinated crops has been documented, but its potential effects on wild plant species via HP transfer have not been tested. We evaluated the effect of wind-dispersed Zea mays pollen on pollen tube growth of the insect-pollinated Mimulus nudatus via hand pollinations. We further evaluated whether pesticide-contaminated Z. mays pollen has larger effects on M. nudatus pollen success than non-contaminated Z. mays pollen. We found a significant negative effect of Z. mays pollen on M. nudatus pollen tube growth even when deposited in small amounts. However, we did not observe any difference in the magnitude of this effect between pesticide-laden Z. mays pollen and non-contaminated Z. mays pollen. Our results suggest that wind-pollinated species can have negative effects as HP donors on insect-pollinated recipients. Thus, their role in shaping co-flowering interactions for wind- and insect-pollinated species deserves more attention. Although we did not find evidence that pesticide contamination increased HP effects, we cannot fully rule out the existence of such an effect, because pollen load and thus the pesticide dose applied to stigmas was low. This result should be confirmed using other HP donors and across a range of HP loads, pesticide types, and concentrations. © 2018 Botanical Society of America.

  5. Sterile flowers increase pollinator attraction and promote female success in the Mediterranean herb Leopoldia comosa

    PubMed Central

    Morales, Carolina L.; Traveset, Anna; Harder, Lawrence D.

    2013-01-01

    Background and Aims Large floral displays have opposing consequences for animal-pollinated angiosperms: they attract more pollinators but also enable elevated among-flower self-pollination (geitonogamy). The presence of sterile flowers as pollinator signals may enhance attraction while allowing displays of fewer open fertile flowers, limiting geitonogamy. The simultaneous contributions of fertile and non-fertile display components to pollinator attraction and reproductive output remain undetermined. Methods The simultaneous effects of the presence of sterile flowers and fertile-flower display size in two populations of Leopoldia comosa were experimentally assessed. Pollinator behaviour, pollen removal and deposition, and fruit and seed production were compared between intact plants and plants with sterile flowers removed. Key Results The presence of sterile flowers almost tripled pollinator attraction, supplementing the positive effect of the number of fertile flowers on the number of bees approaching inflorescences. Although attracted bees visited more flowers on larger inflorescences, the number visited did not additionally depend on the presence of sterile flowers. The presence of sterile flowers improved all aspects of plant performance, the magnitude of plant benefit being context dependent. During weather favourable to pollinators, the presence of sterile flowers increased pollen deposition on stigmas of young flowers, but this difference was not evident in older flowers, probably because of autonomous self-pollination in poorly visited flowers. Total pollen receipt per stigma decreased with increasing fertile display size. In the population with more pollinators, the presence of sterile flowers increased fruit number but not seed set or mass, whereas in the other population sterile flowers enhanced seeds per fruit, but not fruit production. These contrasts are consistent with dissimilar cross-pollination and autonomous self-pollination, coupled with the

  6. Sweat bees on hot chillies: provision of pollination services by native bees in traditional slash-and-burn agriculture in the Yucatán Peninsula of tropical Mexico.

    PubMed

    Landaverde-González, Patricia; Quezada-Euán, José Javier G; Theodorou, Panagiotis; Murray, Tomás E; Husemann, Martin; Ayala, Ricardo; Moo-Valle, Humberto; Vandame, Rémy; Paxton, Robert J

    2017-12-01

    Traditional tropical agriculture often entails a form of slash-and-burn land management that may adversely affect ecosystem services such as pollination, which are required for successful crop yields. The Yucatán Peninsula of Mexico has a >4000 year history of traditional slash-and-burn agriculture, termed 'milpa'. Hot 'Habanero' chilli is a major pollinator-dependent crop that nowadays is often grown in monoculture within the milpa system.We studied 37 local farmers' chilli fields (sites) to evaluate the effects of landscape composition on bee communities. At 11 of these sites, we undertook experimental pollination treatments to quantify the pollination of chilli. We further explored the relationships between landscape composition, bee communities and pollination service provision to chilli.Bee species richness, particularly species of the family Apidae, was positively related to the amount of forest cover. Species diversity decreased with increasing proportion of crop land surrounding each sampling site. Sweat bees of the genus Lasioglossum were the most abundant bee taxon in chilli fields and, in contrast to other bee species, increased in abundance with the proportion of fallow land, gardens and pastures which are an integral part of the milpa system.There was an average pollination shortfall of 21% for chilli across all sites; yet the shortfall was unrelated to the proportion of land covered by crops. Rather, chilli pollination was positively related to the abundance of Lasioglossum bees, probably an important pollinator of chilli, as well indirectly to the proportion of fallow land, gardens and pastures that promote Lasioglossum abundance. Synthesis and applications . Current, low-intensity traditional slash-and-burn ( milpa ) agriculture provides Lasioglossum spp. pollinators for successful chilli production; fallow land, gardens and pasture therefore need to be valued as important habitats for these and related ground-nesting bee species. However, the

  7. Viruses of commercialized insect pollinators.

    PubMed

    Gisder, Sebastian; Genersch, Elke

    2017-07-01

    Managed insect pollinators are indispensable in modern agriculture. They are used worldwide not only in the open field but also in greenhouses to enhance fruit set, seed production, and crop yield. Managed honey bee (Apis mellifera, Apis cerana) colonies provide the majority of commercial pollination although other members of the superfamily Apoidea are also exploited and commercialized as managed pollinators. In the recent past, it became more and more evident that viral diseases play a key role in devastating honey bee colony losses and it was also recognized that many viruses originally thought to be honey bee specific can also be detected in other pollinating insects. However, while research on viruses infecting honey bees started more than 50years ago and the knowledge on these viruses is growing ever since, little is known on virus diseases of other pollinating bee species. Recent virus surveys suggested that many of the viruses thought to be honey bee specific are actually circulating in the pollinator community and that pollinator management and commercialization of pollinators provide ample opportunity for viral diseases to spread. However, the direction of disease transmission is not always clear and the impact of these viral diseases on the different hosts remains elusive in many cases. With our review we want to provide an up-to-date overview on the viruses detected in different commercialized pollinators in order to encourage research in the field of pollinator virology that goes beyond molecular detection of viruses. A deeper understanding of this field of virology is urgently needed to be able to evaluate the impact of viruses on pollinator health and the role of different pollinators in spreading viral diseases and to be able to decide on appropriate measures to prevent virus-driven pollinator decline. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Differential pollen placement on an Old World nectar bat increases pollination efficiency.

    PubMed

    Stewart, Alyssa B; Dudash, Michele R

    2016-01-01

    Plant species that share pollinators are potentially subject to non-adaptive interspecific pollen transfer, resulting in reduced reproductive success. Mechanisms that increase pollination efficiency between conspecific individuals are therefore highly beneficial. Many nocturnally flowering plant species in Thailand are pollinated by the nectar bat Eonycteris spelaea (Pteropodidae). This study tested the hypothesis that plant species within a community reduce interspecific pollen movement by placing pollen on different areas of the bat's body. Using flight cage trials, pollen transfer by E. spelaea was compared between conspecific versus heterospecific flowers across four bat-pollinated plant genera. Pollen from four locations on the bat's body was also quantified to determine if pollen placement varies by plant species. It was found that E. spelaea transfers significantly more pollen between conspecific than heterospecific flowers, and that diverse floral designs produce significantly different patterns of pollen deposition on E. spelaea. In the Old World tropics, differential pollen placement is a mechanism that reduces competition among bat-pollinated plant species sharing a common pollinator. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Managed bumble bees (Bombus impatiens) (Hymenoptera: Apidae) caged with blueberry bushes at high density did not increase fruit set or fruit weight compared to open pollination

    Treesearch

    J. W. Campbell; J. O' Brien; J. H. Irvin; C. B. Kimmel; J. C. Daniels; J. D. Ellis

    2017-01-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of...

  10. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate.

    PubMed

    Broussard, Melissa Ann; Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production.

  11. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate

    PubMed Central

    Mas, Flore; Howlett, Brad; Pattemore, David; Tylianakis, Jason M.

    2017-01-01

    Approximately one-third of our food globally comes from insect-pollinated crops. The dependence on pollinators has been linked to yield instability, which could potentially become worse in a changing climate. Insect-pollinated crops produced via hybrid breeding (20% of fruit and vegetable production globally) are especially at risk as they are even more reliant on pollinators than open-pollinated plants. We already observe a wide range of fruit and seed yields between different cultivars of the same crop species, and it is unknown how existing variation will be affected in a changing climate. In this study, we examined how three hybrid carrot varieties with differential performance in the field responded to three temperature regimes (cooler than the historical average, average, and warmer that the historical average). We tested how temperature affected the plants' ability to set seed (seed set, pollen viability) as well as attract pollinators (nectar composition, floral volatiles). We found that there were significant intrinsic differences in nectar phenolics, pollen viability, and seed set between the carrot varieties, and that higher temperatures did not exaggerate those differences. However, elevated temperature did negatively affect several characteristics relating to the attraction and reward of pollinators (lower volatile production and higher nectar sugar concentration) across all varieties, which may decrease the attractiveness of this already pollinator-limited crop. Given existing predictions of lower pollinator populations in a warmer climate, reduced attractiveness would add yet another challenge to future food production. PMID:28665949

  12. Pollinators visit related plant species across 29 plant–pollinator networks

    PubMed Central

    Vamosi, Jana C; Moray, Clea M; Garcha, Navdeep K; Chamberlain, Scott A; Mooers, Arne Ø

    2014-01-01

    Understanding the evolution of specialization in host plant use by pollinators is often complicated by variability in the ecological context of specialization. Flowering communities offer their pollinators varying numbers and proportions of floral resources, and the uniformity observed in these floral resources is, to some degree, due to shared ancestry. Here, we find that pollinators visit related plant species more so than expected by chance throughout 29 plant–pollinator networks of varying sizes, with “clade specialization” increasing with community size. As predicted, less versatile pollinators showed more clade specialization overall. We then asked whether this clade specialization varied with the ratio of pollinator species to plant species such that pollinators were changing their behavior when there was increased competition (and presumably a forced narrowing of the realized niche) by examining pollinators that were present in at least three of the networks. Surprisingly, we found little evidence that variation in clade specialization is caused by pollinator species changing their behavior in different community contexts, suggesting that clade specialization is observed when pollinators are either restricted in their floral choices due to morphological constraints or innate preferences. The resulting pollinator sharing between closely related plant species could result in selection for greater pollinator specialization. PMID:25360269

  13. Stingless Bees as Alternative Pollinators of Canola.

    PubMed

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Native Bees Effectively Pollinate New World Cucurbita (C. pepo and C. maxima): An Internet Collaboration

    USDA-ARS?s Scientific Manuscript database

    Wild squash bees have all five traits ascribed to the most effective crop pollinators. They are abundant, competitive, efficient, faithful to a specific crop and fast. Shared pollinator surveys covering 2,700 ha of US squash and pumpkin (n = 50 farms) show strong parallels among Cucurbita’s bee gui...

  15. Ecology and economics of using native managed bees for almond pollination

    USDA-ARS?s Scientific Manuscript database

    Evidence of the efficacy of using managed native bees, rather than or concurrently with honey bees, in crop pollination is increasing. However, a broader ecological economic framework for evaluating the costs and benefits of using these bees has not been developed. We conducted a cost-benefit analy...

  16. Ecological and evolutionary conditions for fruit abortion to regulate pollinating seed-eaters and increase plant production

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2002-01-01

    Coevolved mutualisms, such as those between senita cacti, yuccas, and their respective obligate pollinators, benefit both species involved in the interaction. However, in these pollination mutualisms the pollinator's larvae impose a cost on plants through consumption of developing seeds and fruit. The effects of pollinators on benefits and costs are expected to vary with the abundance of pollinators, because large population sizes result in more eggs and larval seed-eaters. Here, we develop the hypothesis that fruit abortion, which is common in yucca, senita, and plants in general, could in some cases have the function of limiting pollinator abundance and, thereby, increasing fruit production. Using a general steady-state model of fruit production and pollinator dynamics, we demonstrate that plants involved in pollinating seed-eater mutualisms can increase their fecundity by randomly aborting fruit. We show that the ecological conditions under which fruit abortion can improve plants fecundity are not unusual. They are best met when the plant is long-lived, the population dynamics of the pollinator are much faster than those of the plant, the loss of one fruit via abortion kills a larva that would have the expectation of destroying more than one fruit through its future egg laying as an adult moth, and the effects of fruit abortion on pollinator abundance are spatially localized. We then use the approach of adaptive dynamics to find conditions under which a fruit abortion strategy based on regulating the pollinator population could feasibly evolve in this type of plant–pollinator interaction.

  17. Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented

    PubMed Central

    Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system. PMID:23894544

  18. Pollination services provided by bees in pumpkin fields supplemented with either Apis mellifera or Bombus impatiens or not supplemented.

    PubMed

    Petersen, Jessica D; Reiners, Stephen; Nault, Brian A

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee (Bombus impatiens Cresson) may be an excellent choice. To examine this issue, a comprehensive 2-yr study was conducted to compare fruit yield and bee visits to flowers in pumpkin (Cucurbita pepo L.) fields that were either supplemented with A. mellifera hives, B. impatiens hives or were not supplemented. We compared pumpkin yield, A. mellifera flower visitation frequency and B. impatiens flower visitation frequency between treatments. Results indicated that supplementing pumpkin fields with either A. mellifera or B. impatiens hives did not increase their visitation to pumpkin flowers or fruit yield compared with those that were not supplemented. Next, the relationship between frequency of pumpkin flower visitation by the most prominent bee species (Peponapis pruinosa (Say), B. impatiens and A. mellifera) and fruit yield was determined across all pumpkin fields sampled. Fruit yield increased as the frequency of flower visits by A. mellifera and B. impatiens increased in 2011 and 2012, respectively. These results suggest that supplementation with managed bees may not improve pumpkin production and that A. mellifera and B. impatiens are important pollinators of pumpkin in our system.

  19. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid.

    PubMed

    Sletvold, Nina; Trunschke, Judith; Smit, Mart; Verbeek, Jeffrey; Ågren, Jon

    2016-03-01

    Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency-dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = -0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand-pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. A conceptual framework that links pollinator foraging behavior to gene flow

    USDA-ARS?s Scientific Manuscript database

    In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...

  1. Wildflower Plantings Do Not Compete With Neighboring Almond Orchards for Pollinator Visits.

    PubMed

    Lundin, Ola; Ward, Kimiora L; Artz, Derek R; Boyle, Natalie K; Pitts-Singer, Theresa L; Williams, Neal M

    2017-06-01

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Valuing Insect Pollination Services with Cost of Replacement

    PubMed Central

    Allsopp, Mike H.; de Lange, Willem J.; Veldtman, Ruan

    2008-01-01

    Value estimates of ecosystem goods and services are useful to justify the allocation of resources towards conservation, but inconclusive estimates risk unsustainable resource allocations. Here we present replacement costs as a more accurate value estimate of insect pollination as an ecosystem service, although this method could also be applied to other services. The importance of insect pollination to agriculture is unequivocal. However, whether this service is largely provided by wild pollinators (genuine ecosystem service) or managed pollinators (commercial service), and which of these requires immediate action amidst reports of pollinator decline, remains contested. If crop pollination is used to argue for biodiversity conservation, clear distinction should be made between values of managed- and wild pollination services. Current methods either under-estimate or over-estimate the pollination service value, and make use of criticised general insect and managed pollinator dependence factors. We apply the theoretical concept of ascribing a value to a service by calculating the cost to replace it, as a novel way of valuing wild and managed pollination services. Adjusted insect and managed pollinator dependence factors were used to estimate the cost of replacing insect- and managed pollination services for the Western Cape deciduous fruit industry of South Africa. Using pollen dusting and hand pollination as suitable replacements, we value pollination services significantly higher than current market prices for commercial pollination, although lower than traditional proportional estimates. The complexity associated with inclusive value estimation of pollination services required several defendable assumptions, but made estimates more inclusive than previous attempts. Consequently this study provides the basis for continued improvement in context specific pollination service value estimates. PMID:18781196

  3. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees.

    PubMed

    Pfister, Sonja C; Eckerter, Philipp W; Schirmel, Jens; Cresswell, James E; Entling, Martin H

    2017-05-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.

  4. A novel method for assessing risks to pollinators from plant protection products using honeybees as a model species.

    PubMed

    Barmaz, Stefania; Potts, Simon G; Vighi, Marco

    2010-10-01

    Pollination is one of the most important ecosystem services in agroecosystems and supports food production. Pollinators are potentially at risk being exposed to pesticides and the main route of exposure is direct contact, in some cases ingestion, of contaminated materials such as pollen, nectar, flowers and foliage. To date there are no suitable methods for predicting pesticide exposure for pollinators, therefore official procedures to assess pesticide risk are based on a Hazard Quotient. Here we develop a procedure to assess exposure and risk for pollinators based on the foraging behaviour of honeybees (Apis mellifera) and using this species as indicator representative of pollinating insects. The method was applied in 13 European field sites with different climatic, landscape and land use characteristics. The level of risk during the crop growing season was evaluated as a function of the active ingredients used and application regime. Risk levels were primarily determined by the agronomic practices employed (i.e. crop type, pest control method, pesticide use), and there was a clear temporal partitioning of risks through time. Generally the risk was higher in sites cultivated with permanent crops, such as vineyard and olive, than in annual crops, such as cereals and oil seed rape. The greatest level of risk is generally found at the beginning of the growing season for annual crops and later in June-July for permanent crops.

  5. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops.

    PubMed

    Wu, Yongzhong; Fox, Tim W; Trimnell, Mary R; Wang, Lijuan; Xu, Rui-Ji; Cigan, A Mark; Huffman, Gary A; Garnaat, Carl W; Hershey, Howard; Albertsen, Marc C

    2016-03-01

    We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross-pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male-sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild-type male fertility gene to restore fertility, (ii) an α-amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild-type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α-amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male-sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross-pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Benefits of increasing plant diversity in sustainable agroecosystems

    USDA-ARS?s Scientific Manuscript database

    Recent studies have revealed many potential benefits of increasing plant diversity in agroecosystems and production forests, including enhancing yields of crops, forage, and wood; stabilizing yields across time and space; enhancing pollinators and pollination; suppressing weeds and other pests; and ...

  7. Field Margins, Foraging Distances and Their Impacts on Nesting Pollinator Success

    PubMed Central

    Rands, Sean A.; Whitney, Heather M.

    2011-01-01

    The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower). Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m), a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees. PMID:21991390

  8. Effects of varroa mites and bee disease on pollination efficacy of honeybees

    USDA-ARS?s Scientific Manuscript database

    Single-stranded RNA viruses cause disease and behavioral changes in many insects, especially honey bees. Varroa mites and viral diseases are known to affect the efficiency of crop pollination by honey bees by eliminating colonies, but almost no information exists about their influence on pollination...

  9. Wildflower plantings do not compete with neighboring almond orchards for pollinator visits

    USDA-ARS?s Scientific Manuscript database

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in ...

  10. Biodiversity ensures plant-pollinator phenological synchrony against climate change.

    PubMed

    Bartomeus, Ignasi; Park, Mia G; Gibbs, Jason; Danforth, Bryan N; Lakso, Alan N; Winfree, Rachael

    2013-11-01

    Climate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species-specific phenological shifts and maintain synchrony at the community level, as predicted by the biodiversity insurance hypothesis. Here, we explore how biodiversity might enhance and stabilise phenological synchrony between a valuable crop, apple and its native pollinators. We combine 46 years of data on apple flowering phenology with historical records of bee pollinators over the same period. When the key apple pollinators are considered altogether, we found extensive synchrony between bee activity and apple peak bloom due to complementarity among bee species' activity periods, and also a stable trend over time due to differential responses to warming climate among bee species. A simulation model confirms that high biodiversity levels can ensure plant-pollinator phenological synchrony and thus pollination function. © 2013 John Wiley & Sons Ltd/CNRS.

  11. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape.

    PubMed

    Budge, G E; Garthwaite, D; Crowe, A; Boatman, N D; Delaplane, K S; Brown, M A; Thygesen, H H; Pietravalle, S

    2015-08-13

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  12. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape

    NASA Astrophysics Data System (ADS)

    Budge, G. E.; Garthwaite, D.; Crowe, A.; Boatman, N. D.; Delaplane, K. S.; Brown, M. A.; Thygesen, H. H.; Pietravalle, S.

    2015-08-01

    Chronic exposure to neonicotinoid insecticides has been linked to reduced survival of pollinating insects at both the individual and colony level, but so far only experimentally. Analyses of large-scale datasets to investigate the real-world links between the use of neonicotinoids and pollinator mortality are lacking. Moreover, the impacts of neonicotinoid seed coatings in reducing subsequent applications of foliar insecticide sprays and increasing crop yield are not known, despite the supposed benefits of this practice driving widespread use. Here, we combine large-scale pesticide usage and yield observations from oilseed rape with those detailing honey bee colony losses over an 11 year period, and reveal a correlation between honey bee colony losses and national-scale imidacloprid (a neonicotinoid) usage patterns across England and Wales. We also provide the first evidence that farmers who use neonicotinoid seed coatings reduce the number of subsequent applications of foliar insecticide sprays and may derive an economic return. Our results inform the societal discussion on the pollinator costs and farming benefits of prophylactic neonicotinoid usage on a mass flowering crop.

  13. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth.

    USDA-ARS?s Scientific Manuscript database

    Pesticides are implicated in current bee declines. Wild bees that nest or forage within agroecosystems may be exposed to numerous pesticides applied throughout their life cycles, with potential additive or synergistic effects. In pollinator-dependent crops, pesticides may reduce bee populations, cre...

  14. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    PubMed Central

    Eckerter, Philipp W.; Schirmel, Jens; Cresswell, James E.; Entling, Martin H.

    2017-01-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees. PMID:28573019

  15. Experimental evidence that honeybees depress wild insect densities in a flowering crop

    PubMed Central

    Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G.

    2016-01-01

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). PMID:27881750

  16. Social insects: from the lab to the landscape - translational approaches to pollinator health

    USDA-ARS?s Scientific Manuscript database

    Approximately 90% of flowering plants — corresponding to nearly three quarters of global agricultural crops — use pollinators to set seed and fruit. However, populations of several species of pollinators are in decline throughout the world, threatening the stability of our ecosystems and productivit...

  17. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator

    USDA-ARS?s Scientific Manuscript database

    The microbiome of the phyllosphere and anthosphere plays an important role in many plant-plant, plant-insect, and plant-microbe interactions. A particularly essential interaction is that of the plant pollinator, which is important for ensuring high crop yields, pollinator health and successful plant...

  18. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators.

    PubMed

    Cariveau, Daniel P; Williams, Neal M; Benjamin, Faye E; Winfree, Rachael

    2013-07-01

    More diverse biological communities may provide ecosystem services that are less variable over space or time. However, the mechanisms underlying this relationship are rarely investigated empirically in real-world ecosystems. Here, we investigate how a potentially important stabilising mechanism, response diversity, the differential response to environmental change among species, stabilises pollination services against land-use change. We measured crop pollination services provided by native bees across land-use gradients in three crop systems. We found that bee species responded differentially to increasing agricultural land cover in all three systems, demonstrating that response diversity occurs. Similarly, we found response diversity in pollination services in two of the systems. However, there was no evidence that response diversity, in general, stabilised ecosystem services. Our results suggest that either response diversity is not the primary stabilising mechanism in our system, or that new measures of response diversity are needed that better capture the stabilising effects it provides. © 2013 John Wiley & Sons Ltd/CNRS.

  19. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services.

    PubMed

    Gallant, Alisa L; Euliss, Ned H; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.

  20. Mapping large-area landscape suitability for honey bees to assess the influence of land-use change on sustainability of national pollination services

    USGS Publications Warehouse

    Gallant, Alisa L.; Euliss, Ned H.; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops.

  1. Mapping Large-Area Landscape Suitability for Honey Bees to Assess the Influence of Land-Use Change on Sustainability of National Pollination Services

    PubMed Central

    Gallant, Alisa L.; Euliss, Ned H.; Browning, Zac

    2014-01-01

    Pollination is a critical ecosystem service affected by various drivers of land-use change, such as policies and programs aimed at land resources, market values for crop commodities, local land-management decisions, and shifts in climate. The United States is the world's most active market for pollination services by honey bees, and the Northern Great Plains provide the majority of bee colonies used to meet the Nation's annual pollination needs. Legislation requiring increased production of biofuel crops, increasing commodity prices for crops of little nutritional value for bees in the Northern Great Plains, and reductions in government programs aimed at promoting land conservation are converging to alter the regional landscape in ways that challenge beekeepers to provide adequate numbers of hives for national pollination services. We developed a spatially explicit model that identifies sites with the potential to support large apiaries based on local-scale land-cover requirements for honey bees. We produced maps of potential apiary locations for North Dakota, a leading producer of honey, based on land-cover maps representing (1) an annual time series compiled from existing operational products and (2) a realistic scenario of land change. We found that existing land-cover products lack sufficient local accuracy to monitor actual changes in landscape suitability for honey bees, but our model proved informative for evaluating effects on suitability under scenarios of land change. The scenario we implemented was aligned with current drivers of land-use change in the Northern Great Plains and highlighted the importance of conservation lands in landscapes intensively and extensively managed for crops. PMID:24919181

  2. When bigger is not better: intraspecific competition for pollination increases with population size in invasive milkweeds.

    PubMed

    Ward, Megan; Johnson, Steven D; Zalucki, Myron P

    2013-04-01

    One of the essential requirements for an introduced plant species to become invasive is an ability to reproduce outside the native range, particularly when initial populations are small. If a reproductive Allee effect is operating, plants in small populations will have reduced reproductive success relative to plants in larger populations. Alternatively, if plants in small populations experience less competition for pollination than those in large populations, they may actually have higher levels of reproductive success than plants in large populations. To resolve this uncertainty, we investigated how the per capita fecundity of plants was affected by population size in three invasive milkweed species. Field surveys of seed production in natural populations of different sizes but similar densities were conducted for three pollinator-dependent invasive species, namely Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus. Additionally, supplemental hand-pollinations were performed in small and large populations in order to determine whether reproductive output was limited by pollinator activity in these populations. Reproductive Allee effects were not detected in any of the study species. Instead, plants in small populations exhibited remarkably high levels of reproductive output compared to those in large populations. Increased fruit production following supplemental hand-pollinations suggested that the lower reproductive output of naturally pollinated plants in large populations is a consequence of pollen limitation rather than limitation due to abiotic resources. This is consistent with increased intraspecific competition for pollination amongst plants in large populations. It is likely that the invasion of these milkweed species in Australia has been enhanced because plants in small founding populations experience less intraspecific competition for pollinators than those in large populations, and thus have the ability to produce copious amounts of

  3. Firm efficiency and returns-to-scale in the honey bee pollination services industry

    USDA-ARS?s Scientific Manuscript database

    Honeybees are well-known for producing honey, but they also provide critical ecosystem services through pollination (Goulson, 2003; Potts et al., 2010; Ványi et al., 2012). This pollination service is vital to the production of many cash crops, on which the U.S. agricultural sector depends (Aizen an...

  4. How to Sustainably Increase Students' Willingness to Protect Pollinators

    ERIC Educational Resources Information Center

    Schönfelder, Mona L.; Bogner, Franz X.

    2018-01-01

    The current loss of biodiversity requires efforts to increase awareness of pollinator conservation. An important tool is education which often uses the honeybee ("Apis mellifera") as an exemplary organism to reach this goal. Any successful module needs to focus on reducing the perceived danger associated with fear, in order to support…

  5. Modeling Pollinator Community Response to Contrasting Bioenergy Scenarios

    PubMed Central

    Bennett, Ashley B.; Meehan, Timothy D.; Gratton, Claudio; Isaacs, Rufus

    2014-01-01

    In the United States, policy initiatives aimed at increasing sources of renewable energy are advancing bioenergy production, especially in the Midwest region, where agricultural landscapes dominate. While policy directives are focused on renewable fuel production, biodiversity and ecosystem services will be impacted by the land-use changes required to meet production targets. Using data from field observations, we developed empirical models for predicting abundance, diversity, and community composition of flower-visiting bees based on land cover. We used these models to explore how bees might respond under two contrasting bioenergy scenarios: annual bioenergy crop production and perennial grassland bioenergy production. In the two scenarios, 600,000 ha of marginal annual crop land or marginal grassland were converted to perennial grassland or annual row crop bioenergy production, respectively. Model projections indicate that expansion of annual bioenergy crop production at this scale will reduce bee abundance by 0 to 71%, and bee diversity by 0 to 28%, depending on location. In contrast, converting annual crops on marginal soil to perennial grasslands could increase bee abundance from 0 to 600% and increase bee diversity between 0 and 53%. Our analysis of bee community composition suggested a similar pattern, with bee communities becoming less diverse under annual bioenergy crop production, whereas bee composition transitioned towards a more diverse community dominated by wild bees under perennial bioenergy crop production. Models, like those employed here, suggest that bioenergy policies have important consequences for pollinator conservation. PMID:25365559

  6. Crop Diversity for Yield Increase

    PubMed Central

    Li, Chengyun; He, Xiahong; Zhu, Shusheng; Zhou, Huiping; Wang, Yunyue; Li, Yan; Yang, Jing; Fan, Jinxiang; Yang, Jincheng; Wang, Guibin; Long, Yunfu; Xu, Jiayou; Tang, Yongsheng; Zhao, Gaohui; Yang, Jianrong; Liu, Lin; Sun, Yan; Xie, Yong; Wang, Haining; Zhu, Youyong

    2009-01-01

    Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean – either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER) of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand. PMID:19956624

  7. Experimental evidence that honeybees depress wild insect densities in a flowering crop.

    PubMed

    Lindström, Sandra A M; Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G

    2016-11-30

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). © 2016 The Author(s).

  8. A Tale of Two Bees: Looking at Pollination Fees for Both Almonds and Sweet Cherries

    USDA-ARS?s Scientific Manuscript database

    The economic theory of supply and demand can explain the recent drastic changes in the pollination prices for almonds and cherries, following large acreage increases for these crops and a concurrent drop in honey bee availability due to colony collapse disorder (CCD). We constructed a model which s...

  9. Pollinator specialization and pollination syndromes of three related North American Silene.

    PubMed

    Reynolds, Richard J; Westbrook, M Jody; Rohde, Alexandra S; Cridland, Julie M; Fenster, Charles B; Dudash, Michele R

    2009-08-01

    . caroliniana was the least specialized with diurnal hawkmoth and large bee pollinators. Compared across the Silene species, divergent floral character states are consistent with increasing the attraction and/or pollen transfer efficiency of their respective major pollinators, which suggests that the pollinators are past and/or contemporary selective agents for floral trait evolution in these three Silene species. We conclude that the pollination syndrome concept allows us to effectively relate the functional significance of floral morphology to the major pollinators of these Silene species.

  10. Pollinator Partnership | Pollinator.org

    Science.gov Websites

    about us Pollinator Partnership's mission is to promote the health of pollinators, critical to food and three bites of food. They also sustain our ecosystems and produce our natural resources by helping plants reproduce. Without the actions of pollinators agricultural economies, our food supply, and

  11. Habitat management utilizing native wildflowers to foster pollinator abundance

    USDA-ARS?s Scientific Manuscript database

    Pollinators provide essential ecosystem services to agricultural crops, however their population has come under threat globally as a result of intensive agricultural practices and landscape simplification. Designing diverse heterogeneous agricultural landscapes to provide optimal resources serves as...

  12. Orchid pollination by sexual deception: pollinator perspectives.

    PubMed

    Gaskett, A C

    2011-02-01

    The extraordinary taxonomic and morphological diversity of orchids is accompanied by a remarkable range of pollinators and pollination systems. Sexually deceptive orchids are adapted to attract specific male insects that are fooled into attempting to mate with orchid flowers and inadvertently acting as pollinators. This review summarises current knowledge, explores new hypotheses in the literature, and introduces some new approaches to understanding sexual deception from the perspective of the duped pollinator. Four main topics are addressed: (1) global patterns in sexual deception, (2) pollinator identities, mating systems and behaviours, (3) pollinator perception of orchid deceptive signals, and (4) the evolutionary implications of pollinator responses to orchid deception, including potential costs imposed on pollinators by orchids. A global list of known and putative sexually deceptive orchids and their pollinators is provided and methods for incorporating pollinator perspectives into sexual deception research are provided and reviewed. At present, almost all known sexually deceptive orchid taxa are from Australia or Europe. A few sexually deceptive species and genera are reported for New Zealand and South Africa. In Central and Southern America, Asia, and the Pacific many more species are likely to be identified in the future. Despite the great diversity of sexually deceptive orchid genera in Australia, pollination rates reported in the literature are similar between Australian and European species. The typical pollinator of a sexually deceptive orchid is a male insect of a species that is polygynous, monandrous, haplodiploid, and solitary rather than social. Insect behaviours involved in the pollination of sexually deceptive orchids include pre-copulatory gripping of flowers, brief entrapment, mating, and very rarely, ejaculation. Pollinator behaviour varies within and among pollinator species. Deception involving orchid mimicry of insect scent signals is

  13. Investigating the pollination syndrome of the Hawaiian lobeliad genus Clermontia (Campanulaceae) using floral nectar traits.

    PubMed

    Pender, Richard J; Morden, Clifford W; Paull, Robert E

    2014-01-01

    Floral nectar sugar compositions have, for several decades, been used to predict a plant species' pollinator guild. Plants possessing a generalist ornithophilous pollination syndrome produce nectar that is dilute (8-12% w/v sugars) with a low sucrose to hexose (glucose and fructose) ratio. The Hawaiian lobeliad genus Clermontia contains 22 endemic species of shrubs and small trees that are believed to have evolved flowers adapted for pollination by now mostly extinct or endangered endemic passerines in the Drepanidinae and Mohoidae. We analyzed the nectar sugar compositions, concentration, and nectar standing crop of 23 taxa to test the assumption that Clermontia taxa have evolved floral traits in response to selection pressures from these avian pollinators. All Clermontia taxa produced nectar with sugar concentrations (mean: 9.2% w/v ± 1.8 SD) comparable to the nectar of other plant species with a generalized bird pollination system. Nectar sugars were overwhelmingly composed of hexoses in all taxa (mean sucrose/hexose ratio: 0.02 ± 0.02). Nectar standing crop volumes varied widely among taxa, ranging from 9.7 µL ± 7.1 to 430.5 µL ± 401.8 (mean volume: 177.8 ± 112.0). Collectively, the nectar traits indicate that Clermontia species possess a generalist passerine pollination syndrome.

  14. Managed Bumble Bees (Bombus impatiens) (Hymenoptera: Apidae) Caged With Blueberry Bushes at High Density Did Not Increase Fruit Set or Fruit Weight Compared to Open Pollination.

    PubMed

    Campbell, J W; O'Brien, J; Irvin, J H; Kimmel, C B; Daniels, J C; Ellis, J D

    2017-04-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of bumble bees to the pollination of commercial highbush blueberries in Florida is unknown. Herein, we determined if managed bumble bees could contribute to highbush blueberry pollination. There were four treatments in this study: two treatments of caged commercial bumble bee (Bombus impatiens Cresson) colonies (low and high weight hives), a treatment excluding all pollinators, and a final treatment which allowed all pollinators (managed and wild pollinators) in the area have access to the plot. All treatments were located within a highbush blueberry field containing two cultivars of blooming plants, 'Emerald' and 'Millennia', with each cage containing 16 mature blueberry plants. We gathered data on fruit set, berry weight, and number of seeds produced per berry. When pollinators were excluded, fruit set was significantly lower in both cultivars (<8%) compared to that in all of the other treatments (>58%). Berry weight was not significantly different among the treatments, and the number of seeds per berry did not show a clear response. This study emphasizes the importance of bumble bees as an effective pollinator of blueberries and the potential beneficial implications of the addition of bumble bees in commercial blueberry greenhouses or high tunnels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Grower networks support adoption of innovations in pollination management: The roles of social learning, technical learning, and personal experience.

    PubMed

    Garbach, Kelly; Morgan, Geoffrey P

    2017-12-15

    Management decisions underpinning availability of ecosystem services and the organisms that provide them in agroecosystems, such as pollinators and pollination services, have emerged as a foremost consideration for both conservation and crop production goals. There is growing evidence that innovative management practices can support diverse pollinators and increase crop pollination. However, there is also considerable debate regarding factors that support adoption of these innovative practices. This study investigated pollination management practices and related knowledge systems in a major crop producing region of southwest Michigan in the United States, where 367 growers were surveyed to evaluate adoption of three innovative practices that are at various stages of adoption. The goals of this quantitative, social survey were to investigate grower experience with concerns and benefits associated with each practice, as well as the influence of grower networks, which are comprised of contacts that reflect potential pathways for social and technical learning. The results demonstrated that 17% of growers adopted combinations of bees (e.g. honey bees, Apis mellifera, with other species), representing an innovation in use by early adopters; 49% of growers adopted flowering cover crops, an innovation in use by the early majority 55% of growers retained permanent habitat for pollinators, an innovation in use by the late majority. Not all growers adopted innovative practices. We found that growers' personal experience with potential benefits and concerns related to the management practices had significant positive and negative relationships, respectively, with adoption of all three innovations. The influence of these communication links likely has different levels of importance, depending on the stage of the adoption that a practice is experiencing in the agricultural community. Social learning was positively associated with adopting the use of combinations of bees

  16. Effects of pollination timing and distance on seed production in a dioecious weed Silene latifolia

    NASA Astrophysics Data System (ADS)

    Anderson, Jay F.; Duddu, Hema S. N.; Shirtliffe, Steven J.; Benaragama, Dilshan; Syrovy, Lena D.; Stanley, Katherine A.; Haile, Teketel A.

    2015-11-01

    Silene latifolia Poir. (white cockle or white campion) is an important invasive weed in North American agriculture. It exhibits dioecy, therefore, both male and female plants are required in order for seed production to occur. However, dioecious species being invasive is not common because of their limitations in pollination and subsequent seed production. The objective of this study is to determine the effect of pollination timing and distance on seed production of Silene latifolia. A series of experiments including pollination exclusion, timing and pollination distance were conducted in 2009 and 2010 at or around Saskatoon, Saskatchewan. For pollination exclusion, exclosures were built around the natural female plants for exclosure, sham-exclosure, and male and female combined treatments. Pollination timing was studied by applying exclosure, non-exclosure, night-exclosure, and day-exclosure treatments to individual female plants. Female plants were transplanted along a linear interval at six different distances from the pollen source to study the effect of pollination distance. S. latifolia was exclusively insect-pollinated and pollination occurred both day and night; however, in one year, pollination occurred mainly at night. Female plants that were in the range of 0-4 m from a compatible pollen source experienced no limitation to pollination. However, when the distance was increased further up to 128 m, pollination levels and subsequent seed production were declined. Moreover, there were differences in seed production between years suggesting that pollination was affected by the environmental conditions during pollination and the crop that white cockle was grown in. These experiments indicate that seed production in S. latifolia is limited by insect-pollination. Although there was pollination limitation for seed production at greater distances from a pollen source, the high fecundity rate (3000-18000 seeds per plant) resulted in a large seed output. Thus, we

  17. Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination.

    PubMed

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-12-01

    Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect participation by wind, is also a new addition to ambophily.

  18. Wind-Dragged Corolla Enhances Self-Pollination: A New Mechanism of Delayed Self-Pollination

    PubMed Central

    Qu, Rongming; Li, Xiaojie; Luo, Yibo; Dong, Ming; Xu, Huanli; Chen, Xuan; Dafni, Amots

    2007-01-01

    Background and Aims Delayed self-pollination is a mechanism that allows animal-pollinated plants to outcross while ensuring seed production in the absence of pollinators. This study aims to explore a new mechanism of delayed self-pollination facilitated by wind-driven corolla abscission in Incarvillea sinensis var. sinensis. Methods Floral morphology and development, and the process of delayed self-pollination were surveyed. Experiments dealing with pollinator and wind exclusion, pollination manipulations, and pollinator observations were conducted in the field. Key Results Delayed self-pollination occurs when the abscising corolla driven by wind drags the adherent epipetalous stamens, thus leading to contact of anthers with stigma in late anthesis. There is no dichogamy and self-incompatibility in this species. The significantly higher proportion of abscised corolla under natural conditions as compared with that in wind-excluding tents indicates the importance of wind in corolla abscission. When pollinators were excluded, corolla abscission significantly increased the number of pollen grains deposited on the stigma and, as a result, the fruit and seed set. Only half of the flowers in plots were visited by pollinators, and the fruit set of emasculated flowers was significantly lower than that of untreated flowers in open pollination. This species has a sensitive stigma, and its two open stigmatic lobes closed soon after being touched by a pollinator, but always reopened if no or only little pollen was deposited. Conclusions This delayed self-pollination, which involved the movement of floral parts, the active participation of the wind and sensitive stigma, is quite different from that reported previously. This mechanism provides reproductive assurance for this species. The sensitive stigma contributes to ensuring seed production and reducing the interference of selfing with outcrossing. The pollination pattern, which combines actions by bees with indirect

  19. Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum?

    PubMed

    Bloch, Daniel; Werdenberg, Niels; Erhardt, Andreas

    2006-01-01

    Knowledge of pollination services provided by flower visitors is a prerequisite for understanding (co)evolutionary processes between plants and their pollinators, for evaluating the degree of specialization in the pollination system, and for assessing threats from a potential pollination crisis. This study examined pollination efficiency and visitation frequency of pollinators--key traits of pollinator-mediated fecundity--in a natural population of the wild carnation Dianthus carthusianorum. The five lepidopteran pollinator species observed differed in pollination efficiency and visitation frequency. Pollinator importance, the product of pollination efficiency and visitation frequency, was determined by the pollinator's visitation frequency. Pollination of D. carthusianorum depended essentially on only two of the five recorded pollinator species. Seed set was pollen-limited and followed a saturating dose-response function with a threshold of c. 50 deposited pollen grains for fruit development. Our results confirm that D. carthusianorum is specialized to lepidopteran pollinators, but is not particularly adapted to the two main pollinator species identified. The local persistence of D. carthusianorum is likely to be at risk as its reproduction depends essentially on only two of the locally abundant, but generally vulnerable, butterfly species.

  20. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): contemporary pollinators may not reflect the historical pollination syndrome

    PubMed Central

    Li, Jiao-Kun; Huang, Shuang-Quan

    2009-01-01

    Background and Aims If stabilizing selection by pollinators is a prerequisite for pollinator-mediated floral evolution, spatiotemporal variation in the pollinator assemblage may confuse the plant–pollinator interaction in a given species. Here, effective pollinators in a living fossil plant Nelumbo nucifera (Nelumbonaceae) were examined to test whether beetles are major pollinators as predicted by its pollination syndrome. Methods Pollinators of N. nucifera were investigated in 11 wild populations and one cultivated population, and pollination experiments were conducted to examine the pollinating role of two major pollinators (bees and beetles) in three populations. Key Results Lotus flowers are protogynous, bowl shaped and without nectar. The fragrant flowers can be self-heating during anthesis and produce around 1 million pollen grains per flower. It was found that bees and flies were the most frequent flower visitors in wild populations, contributing on average 87·9 and 49·4 % of seed set in Mishan and Lantian, respectively. Beetles were only found in one wild population and in the cultivated population, but the pollinator exclusion experiments showed that beetles were effective pollinators of Asian sacred lotus. Conclusions This study indicated that in their pollinating role, beetles, probable pollinators for this thermoregulating plant, had been replaced by some generalist insects in the wild. This finding implies that contemporary pollinators may not reflect the pollination syndrome. PMID:19617594

  1. Bee visitation rates to cultivated sunflowers increase with the amount and accessibility of nectar sugars

    USDA-ARS?s Scientific Manuscript database

    Pollinators make foraging decisions based on numerous floral traits, including nectar and pollen rewards, and associated visual and olfactory cues. For insect-pollinated crops, identifying and breeding for attractive floral traits may increase yields. In this study, we examined floral trait variatio...

  2. Chapter 1: Assessing pollinator habitat services to optimize conservation programs

    USGS Publications Warehouse

    Iovanna, Richard; Ando , Amy W.; Swinton, Scott; Hellerstein, Daniel; Kagan, Jimmy; Mushet, David M.; Otto, Clint R.; Rewa, Charles A.

    2017-01-01

    Pollination services have received increased attention over the past several years, and protecting foraging area is beginning to be reflected in conservation policy. This case study considers the prospects for doing so in a more analytically rigorous manner, by quantifying the pollination services for sites being considered for ecological restoration. The specific policy context is the Conservation Reserve Program (CRP), which offers financial and technical assistance to landowners seeking to convert sensitive cropland back to some semblance of the prairie (or, to a lesser extent, forest or wetland) ecosystem that preceded it. Depending on the mix of grasses and wildflowers that are established, CRP enrollments can provide pollinator habitat. Further, depending on their location, they will generate related services, such as biological control of crop pests, recreation, and aesthetics. While offers to enroll in CRP compete based on cost and some anticipated benefits, the eligibility and ranking criteria do not reflect these services to a meaningful degree. Therefore, we develop a conceptual value diagram to identify the sequence of steps and associated models and data necessary to quantify the full range of services, and find that critical data gaps, some of which are artifacts of policy, preclude the application of benefit-relevant indicators (BRIs) or monetization. However, we also find that there is considerable research activity underway to fill these gaps. In addition, a modeling framework has been developed that can estimate field-level effects on services as a function of landscape context. The approach is inherently scalable and not limited in geographic scope, which is essential for a program with a national footprint. The parameters in this framework are sufficiently straightforward that expert judgment could be applied as a stopgap approach until empirically derived estimates are available. While monetization of benefit-relevant indicators of yield

  3. Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments.

    PubMed

    Henselek, Yuki; Eilers, Elisabeth J; Kremen, Claire; Hendrix, Stephen D; Klein, Alexandra-Maria

    2018-05-28

    Almond (Prunus dulcis (Mill.) D. A. Webb; Rosales: Rosaceae) is a cash crop with an estimated global value of over seven billion U.S. dollars annually and commercial varieties are highly dependent on insect pollination. Therefore, the understanding of basic pollination requirements of the main varieties including pollination efficiency of honey bees (Apis mellifera, Linnaeus, Hymenoptera: Apidae) and wild pollinators is essential for almond production. We first conducted two lab experiments to examine the threshold number of pollen grains needed for successful pollination and to determine if varietal identity or diversity promotes fruit set and weight. Further, we examined stigma and ovules of flowers visited by Apis and non-Apis pollinators in the field to study the proportion of almond to non-almond pollen grains deposited, visitation time per flower visit, and tube set. Results indicate that the threshold for successful fertilization is around 60 pollen grains, but pollen can be from any compatible variety as neither pollen varietal identity nor diversity enhanced fruit set or weight. Andrena cerasifolii Cockerell (Hymenoptera: Andrenidae) was a more effective pollinator on a per single visit basis than Apis and syrphid flies. Nevertheless, Apis was more efficient than A. cerasifolii and syrphid flies as they spent less time on a flower during a single visit. Hence, planting with two compatible varieties and managing for both Apis and non-Apis pollinators is likely to be an optimal strategy for farmers to secure high and stable pollination success.

  4. Ecology and Economics of Using Native Managed Bees for Almond Pollination.

    PubMed

    Koh, Insu; Lonsdorf, Eric V; Artz, Derek R; Pitts-Singer, Theresa L; Ricketts, Taylor H

    2018-02-09

    Native managed bees can improve crop pollination, but a general framework for evaluating the associated economic costs and benefits has not been developed. We conducted a cost-benefit analysis to assess how managing blue orchard bees (Osmia lignaria Say [Hymenoptera: Megachildae]) alongside honey bees (Apis mellifera Linnaeus [Hymenoptera: Apidae]) can affect profits for almond growers in California. Specifically, we studied how adjusting three strategies can influence profits: (1) number of released O. lignaria bees, (2) density of artificial nest boxes, and (3) number of nest cavities (tubes) per box. We developed an ecological model for the effects of pollinator activity on almond yields, validated the model with published data, and then estimated changes in profits for different management strategies. Our model shows that almond yields increase with O. lignaria foraging density, even where honey bees are already in use. Our cost-benefit analysis shows that profit ranged from -US$1,800 to US$2,800/acre given different combinations of the three strategies. Adding nest boxes had the greatest effect; we predict an increase in profit between low and high nest box density strategies (2.5 and 10 boxes/acre). In fact, the number of released bees and the availability of nest tubes had relatively small effects in the high nest box density strategies. This suggests that growers could improve profits by simply adding more nest boxes with moderate number of tubes in each. Our approach can support grower decisions regarding integrated crop pollination and highlight the importance of a comprehensive ecological economic framework for assessing these decisions. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss

    PubMed Central

    Astegiano, Julia; Massol, François; Vidal, Mariana Morais; Cheptou, Pierre-Olivier; Guimarães, Paulo R.

    2015-01-01

    partners may increase the probability of disruption of interactions, the fact that the plants most sensitive to pollinator loss interacted with more particular pollinator assemblages suggest that the persistence of these plants and their pollinators might be highly compromised. PMID:25646762

  6. Disentangling multiple drivers of pollination in a landscape-scale experiment

    PubMed Central

    Schüepp, Christof; Herzog, Felix; Entling, Martin H.

    2014-01-01

    Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services. We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant's need for conspecific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators’ habitat requirements and flower visitation. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service. PMID:24225465

  7. Flowering dynamics and pollinator visitation of oilseed echium (Echium plantagineum)

    USDA-ARS?s Scientific Manuscript database

    Echium (Echium plantagineum L.) is an alternative oilseed crop in summer-wet temperate regions that provides floral resources to pollinators. Its seed oil is rich in omega-3 fatty acids, such as stearidonic acid, which is desired highly by the cosmetic industry. We examined flowering dynamics, polli...

  8. Interaction intensity and pollinator-mediated selection.

    PubMed

    Trunschke, Judith; Sletvold, Nina; Ågren, Jon

    2017-05-01

    In animal-pollinated plants, the opportunity for selection and the strength of pollinator-mediated selection are expected to increase with the degree of pollen limitation. However, whether differences in pollen limitation can explain variation in pollinator-mediated and net selection among animal-pollinated species is poorly understood. In the present study, we quantified pollen limitation, variance in relative fitness and pollinator-mediated selection on five traits important for pollinator attraction (flowering start, plant height, flower number, flower size) and pollination efficiency (spur length) in natural populations of 12 orchid species. Pollinator-mediated selection was quantified by subtracting estimates of selection gradients for plants receiving supplemental hand-pollination from estimates obtained for open-pollinated control plants. Mean pollen limitation ranged from zero to 0.96. Opportunity for selection, pollinator-mediated selection and net selection were all positively related to pollen limitation, whereas nonpollinator-mediated selection was not. Opportunity for selection varied five-fold, strength of pollinator-mediated selection varied three-fold and net selection varied 1.5-fold among species. Supplemental hand-pollination reduced both opportunity for selection and selection on floral traits. The results show that the intensity of biotic interactions is an important determinant of the selection regime, and indicate that the potential for pollinator-mediated selection and divergence in floral traits is particularly high in species that are strongly pollen-limited. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  9. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Pollination ecology of Disterigma stereophyllum (Ericaceae) in south-western Colombia.

    PubMed

    Navarro, L; Guitián, P; Ayensa, G

    2008-07-01

    Several authors have recently expressed doubts that the 'pollination syndromes' as usually expressed are an adequate description of correlated suites of floral characters, or that they adequately describe evolutionary or ecological associations of plants with pollinators. Disterigma stereophyllum is a neotropical Ericaceae with floral characteristics intermediate between the 'entomophilous' syndrome and the 'ornithophilous' syndrome: the corolla is short, white and urceolate, but flowers produce large amounts of dilute nectar. We studied the pollination ecology of this species in south-western Colombia, and found it to be pollinated almost exclusively by hummingbirds at our study site. Two hummingbird species were responsible for about 75 of visits. Despite the fact that nectar standing crop remained more or less constant throughout the day, visit frequencies were highest in the morning and declined throughout the day. Pollinator efficiency, measured as the number of pollen grains deposited on a virgin stigma by each visitor after one visit, did not differ among the species of hummingbirds, but was lower for a nectar-robbing bird, Diglossa albilatera. This species does not contact the surface of the stigma during nectar robbing, but can produce some self-pollination indirectly because it shakes branches vigorously while piercing the flower. These findings indicate a need for further studies of neotropical Ericaceae in order to elucidate whether floral visitors of species like D. stereophyllum fluctuate through time or space, and whether floral characteristics reflect a compromise between such different visitors, or a transitional stage between pollination syndromes, or some other possibility.

  11. Pollinator Protection

    EPA Pesticide Factsheets

    What the EPA is doing to protect bees and other pollinators from pesticides; including addressing the issue of Colony Collapse Disorder (CCD), risk assessment, decline in pollinator health in general, and why pollinators are important.

  12. Complementary crops and landscape features sustain wild bee communities.

    PubMed

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-06-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields, and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry, or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows, and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. © 2018 by the Ecological Society of America.

  13. Real-time divergent evolution in plants driven by pollinators

    PubMed Central

    Gervasi, Daniel D. L.; Schiestl, Florian P

    2017-01-01

    Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system. PMID:28291771

  14. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.

    PubMed

    Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A

    2016-08-01

    Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained

  15. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2015-01-15

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Nectar production in oilseeds: Food for pollinators in an agriculture dominated landscape

    USDA-ARS?s Scientific Manuscript database

    Simplified agroecosystems have degraded habitats for beneficial insects throughout the Midwest and Northern Great Plains of the USA. Beneficial insects include pollinators and natural enemies of crop pests, and both rely heavily on floral resources and habitat diversity to maintain healthy populatio...

  17. Pollen Foraging Differences Among Three Managed Pollinators in the Highbush Blueberry (Vaccinium corymbosum) Agroecosystem.

    PubMed

    Bobiwash, Kyle; Uriel, Yonathan; Elle, Elizabeth

    2018-02-09

    Highbush blueberry, Vaccinium corymbosum (Gray), production in British Columbia is dependent upon insect pollination for fruit yield with particular cultivars demonstrating low yields due to poor pollination. New managed species of pollinators are being developed to provide farmers with managed pollinator options beyond Apis mellifera (Linnaeus). Pollinators in highbush blueberry agricultural systems encounter a variety of nontarget floral resources that may affect the pollination received by the crop. Our study analyzed the differences in pollen foraging of honey bees and two species of managed bumblebees across nine farm sites. Corbicular pollen loads from pollen foraging workers were removed and identified to the lowest taxonomic level possible. Of the three managed pollinators, the corbicular pollen loads of Bombus huntii (Greene) contained the most blueberry pollen (52.1%), three times as much as the two other managed bee species. Fifteen morphotypes of pollen were identified from all foraging workers with Rosaceae being the most frequently gathered overall pollen type (n = 74). The noncrop pollen identified in our samples derived from plant species not common as weedy species in the agroecosystem suggesting that floral resource diversity outside of the farm boundaries is important to pollinators. The three managed species in our blueberry fields utilized floral resources differentially underscoring the importance of pollinator species' characteristics and large-scale floral resource landscape in developing new managed pollinators and pollination strategies. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Resource effects on solitary bee reproduction in a managed crop pollination system

    USDA-ARS?s Scientific Manuscript database

    The number of solitary bees (Megachile rotundata) released for pollination in a managed system (Medicago sativa seed production) and the number of flowers available for brood provisioning may affect reproduction through maternal resource allocation and investment. Overwhelming, limited, or adequate...

  19. Risk to pollinators from the use of chlorpyrifos in the United States.

    PubMed

    Cutler, G Christopher; Purdy, John; Giesy, John P; Solomon, Keith R

    2014-01-01

    CPY is an organophosphorus insecticide that is widely used in North American agriculture. It is non-systemic, comes in several sprayable and granular formulations,and is used on a number of high-acreage crops on which pollinators can forage,including tree fruits, alfalfa, corn, sunflower, and almonds. Bees (Apoidea) are the most important pollinators of agricultural crops in North America and were the main pollinators of interest in this risk assessment.The conceptual model identified a number of potential exposure pathways for pollinators, some more significant than others. CPY is classified as being highly toxic to honey bees by direct contact exposure. However, label precautions and good agricultural practices prohibit application of CPY when bees are flying and/or when flowering crops or weeds are present in the treatment area. Therefore, the risk of CPY to pollinators through direct contact exposure should be small. The main hazards for primary exposure for honey bees are dietary and contact exposure from flowers that were sprayed during application and remain available to bees after application. The main pathways for potential secondary exposure to CPY is through pollen and nectar brought to the hive by forager bees and the sublethal body burden of CPY carried on forager bees. Foraging for other materials, including water or propolis, does not appear to be an important exposure route. Since adult forager honey bees are most exposed, their protection from exposure via pollen, honey, and contact with plant surfaces is expected to be protective of other life stages and castes of honey bees.Tier- I approaches to estimate oral exposure to CPY through pollen and nectar/honey, the principle food sources for honey bees, suggested that CPY poses a risk to honey bees through consumption of pollen and nectar. However, a Tier-2 assessment of concentrations reported in pollen and honey from monitoring work in North America indicated there is little risk of acute toxicity

  20. Are pollinating hawk moths declining in the Northeastern United States? An analysis of collection records

    PubMed Central

    2017-01-01

    Increasing attention to pollinators and their role in providing ecosystem services has revealed a paucity of studies on long-term population trends of most insect pollinators in many parts of the world. Because targeted monitoring programs are resource intensive and unlikely to be performed on most insect pollinators, we took advantage of existing collection records to examine long-term trends in northeastern United States populations of 26 species of hawk moths (family Sphingidae) that are presumed to be pollinators. We compiled over 6,600 records from nine museum and 14 private collections that spanned a 112-year period, and used logistic generalized linear mixed models (GLMMs) to examine long-term population trends. We controlled for uneven sampling effort by adding a covariate for list length, the number of species recorded during each sampling event. We found that of the 22 species for which there was sufficient data to assess population trends, eight species declined and four species increased in detection probability (the probability of a species being recorded during each year while accounting for effort, climate, and spatial effects in the GLMMs). Of the four species with too few records to statistically assess, two have disappeared from parts of their ranges. None of the four species with diurnal adults showed a trend in detection probability. Two species that are pests of solanaceous crops declined, consistent with a seven-fold drop in the area planted in tobacco and tomato crops. We found some evidence linking susceptibility to parasitoidism by the introduced fly Compsilura concinnata (Tachinidae) to declines. Moths with larvae that feed on vines and trees, where available evidence indicates that the fly is most likely to attack, had a greater propensity to decline than species that use herbs and shrubs as larval host plants. Species that develop in the spring, before Compsilura populations have increased, did not decline. However, restricting the

  1. Efficiency losses in the pollination services market: A data envelopment analysis

    USDA-ARS?s Scientific Manuscript database

    Honeybees, mainly known for producing honey, also provide critical ecosystems services (Goulson, 2003; Potts et al., 2010). Their pollination is vital to the production of numerous cash crops that the U.S.’s agricultural sector depends on, particularly almonds (Aizen and Harder 2009, Bond et al. 201...

  2. A flower in fruit's clothing: Pollination of jackfruit Artocarpus heterophyllus, Moraceae) by a new species of gall midge, Clinodiplosis ultracrepidata sp. nov. (Diptera: Cecidomyiidae)

    USDA-ARS?s Scientific Manuscript database

    Premise of the Research: Jackfruit (Artocarpus heterophyllus, Moraceae) is an emerging but underutilized crop whose pollination is poorly understood. We present a multidimensional investigation of the reproductive biology and chemical ecology of jackfruit and a putative pollinator, Clinodiplosis ult...

  3. The potential for crop to wild hybridization in eggplant (Solanum melongena; Solanaceae) in southern India.

    PubMed

    Davidar, Priya; Snow, Allison A; Rajkumar, Muthu; Pasquet, Remy; Daunay, Marie-Christine; Mutegi, Evans

    2015-01-01

    • In India and elsewhere, transgenic Bt eggplant (Solanum melongena) has been developed to reduce insect herbivore damage, but published studies of the potential for pollen-mediated, crop- to- wild gene flow are scant. This information is useful for risk assessments as well as in situ conservation strategies for wild germplasm.• In 2010-2014, we surveyed 23 populations of wild/weedy eggplant (Solanum insanum; known as wild brinjal), carried out hand-pollination experiments, and observed pollinators to assess the potential for crop- to- wild gene flow in southern India.• Wild brinjal is a spiny, low-growing perennial commonly found in disturbed sites such as roadsides, wastelands, and sparsely vegetated areas near villages and agricultural fields. Fourteen of the 23 wild populations in our study occurred within 0.5 km of cultivated brinjal and at least nine flowered in synchrony with the crop. Hand crosses between wild and cultivated brinjal resulted in seed set and viable F1 progeny. Wild brinjal flowers that were bagged to exclude pollinators did not set fruit, and fruit set from manual self-pollination was low. The exserted stigmas of wild brinjal are likely to promote outcrossing. The most effective pollinators appeared to be bees (Amegilla, Xylocopa, Nomia, and Heterotrigona spp.), which also were observed foraging for pollen on crop brinjal.• Our findings suggest that hybridization is possible between cultivated and wild brinjal in southern India. Thus, as part of the risk assessment process, we assume that transgenes from the crop could spread to wild brinjal populations that occur nearby. © 2015 Botanical Society of America, Inc.

  4. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  5. Transition from wind pollination to insect pollination in sedges: experimental evidence and functional traits.

    PubMed

    Wragg, Peter D; Johnson, Steven D

    2011-09-01

    Transitions from wind pollination to insect pollination were pivotal to the radiation of land plants, yet only a handful are known and the trait shifts required are poorly understood. We tested the hypothesis that a transition to insect pollination took place in the ancestrally wind-pollinated sedges (Cyperaceae) and that floral traits modified during this transition have functional significance. We paired putatively insect-pollinated Cyperus obtusiflorus and Cyperus sphaerocephalus with related, co-flowering, co-occurring wind-pollinated species, and compared pairs in terms of pollination mode and functional roles of floral traits. Experimentally excluding insects reduced seed set by 56-89% in putatively insect-pollinated species but not in intermingled wind-pollinated species. The pollen of putatively insect-pollinated species was less motile in a wind tunnel than that of wind-pollinated species. Bees, beetles and flies preferred inflorescences, and color-matched white or yellow models, of putatively insect-pollinated species over inflorescences, or color-matched brown models, of wind-pollinated species. Floral scents of putatively insect-pollinated species were chemically consistent with those of other insect-pollinated plants, and attracted pollinators; wind-pollinated species were unscented. These results show that a transition from wind pollination to insect pollination occurred in sedges and shed new light on the function of traits involved in this important transition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  6. Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance

    PubMed Central

    Muola, Anne; Weber, Daniela; Malm, Lisa E.; Egan, Paul A.; Glinwood, Robert; Parachnowitsch, Amy L.; Stenberg, Johan A.

    2017-01-01

    The global decline in pollinators has partly been blamed on pesticides, leading some to propose pesticide-free farming as an option to improve pollination. However, herbivores are likely to be more prevalent in pesticide-free environments, requiring knowledge of their effects on pollinators, and alternative crop protection strategies to mitigate any potential pollination reduction. Strawberry leaf beetles (SLB) Galerucella spp. are important strawberry pests in Northern Europe and Russia. Given that SLB attack both leaf and flower tissue, we hypothesized pollinators would discriminate against SLB-damaged strawberry plants (Fragaria vesca, cultivar ‘Rügen’), leading to lower pollination success and yield. In addition we screened the most common commercial cultivar ‘Rügen’ and wild Swedish F. vesca genotypes for SLB resistance to assess the potential for inverse breeding to restore high SLB resistance in cultivated strawberry. Behavioral observations in a controlled experiment revealed that the local pollinator fauna avoided strawberry flowers with SLB-damaged petals. Low pollination, in turn, resulted in smaller more deformed fruits. Furthermore, SLB-damaged flowers produced smaller fruits even when they were hand pollinated, showing herbivore damage also had direct effects on yield, independent of indirect effects on pollination. We found variable resistance in wild woodland strawberry to SLB and more resistant plant genotypes than the cultivar ‘Rügen’ were identified. Efficient integrated pest management strategies should be employed to mitigate both direct and indirect effects of herbivory for cultivated strawberry, including high intrinsic plant resistance. PMID:28572811

  7. The most effective pollinator principle applies to new invasive pollinators.

    PubMed

    Medel, Rodrigo; González-Browne, Catalina; Salazar, Daniela; Ferrer, Pedro; Ehrenfeld, Mildred

    2018-06-01

    G. L. Stebbins' most effective pollinator principle states that when pollinators are not limiting, plants are expected to specialize and adapt to the most abundant and effective pollinator species available. In this study, we quantify the effectiveness of bees, hummingbirds and hawkmoths in a Chilean population of Erythranthe lutea (Phrymaceae), and examine whether flower traits are subject to pollinator-mediated selection by the most effective pollinator species during two consecutive years. Unlike most species in the pollinator community, the visitation rate of the recently arrived Bombus terrestris did not change substantially between years, which together with its high and stable pollen delivery to flower stigmas made this species the most important in the pollinator assemblage, followed by the solitary bee Centris nigerrima Flower traits were under significant selection in the direction expected for short-tongue bees, suggesting that E. lutea is in the initial steps of adaptation to the highly effective exotic bumblebee . Our results illustrate the applicability of Stebbins' principle for new invasive pollinators, and stress their importance in driving flower adaptation of native plant species, a critical issue in the face of biotic exchange and homogenization. © 2018 The Author(s).

  8. Pollinator Foraging Adaptation and Coexistence of Competing Plants.

    PubMed

    Revilla, Tomás A; Křivan, Vlastimil

    2016-01-01

    We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator's diet maximizes pollinator's fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community.

  9. Pollinator-independent orchid attracts biotic pollinators due the production of lipoidal substances.

    PubMed

    Pansarin, E R; Bergamo, P J; Ferreira-Caliman, M J

    2018-03-01

    Flowering plants often depend on the attraction of biotic pollinators for sexual reproduction. Consequently, the emergence and maintenance of selected floral attributes related to pollinator attraction and rewarding are driven by pollinator pressure. In this paper we explore the effect of pollinators, rainfall, temperature and air humidity on the reproduction of a Brazilian terrestrial orchid, Cranichis candida based on data of phenology, flower resources, olfactory and visual attraction cues, pollinators and breeding system. The flowers of C. candida are strongly protandrous and pollinated by workers of the social native bee Tetragonisca angustula. The bees collect labellar lipoidal substances (wax scales), which are transported to the nest. The lipoidal substance is composed of sterols, hydrocarbons and terpenes. The last presumably protects the bees and their nests against pathogens and other arthropods. C. candida sets fruits through biotic self- and cross-pollination, and spontaneously due the action of raindrops on flowers. Our results indicate that in C. candida, although rain-mediated spontaneous self-pollination happens, fructification mediated by biotic pollinations also occurs, which may result in fruit set by cross-pollination. A mixed pollination system must result in higher genetic variability when compared to species whose fruits are produced entirely by self-pollination. On the other hand, autogamy is a form of reproductive assurance, and has commonly evolved where pollination services are rare or absent. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  10. The worldwide importance of honey bees as pollinators in natural habitats.

    PubMed

    Hung, Keng-Lou James; Kingston, Jennifer M; Albrecht, Matthias; Holway, David A; Kohn, Joshua R

    2018-01-10

    The western honey bee ( Apis mellifera ) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant-pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0-85%), with 5% of plant species recorded as being exclusively visited by A. mellifera For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non- A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non- A. mellifera floral visitor, though it was generally less effective than the most effective non- A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera , and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats. © 2018 The Author(s).

  11. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination.

    PubMed

    Cavigli, Ian; Daughenbaugh, Katie F; Martin, Madison; Lerch, Michael; Banner, Katie; Garcia, Emma; Brutscher, Laura M; Flenniken, Michelle L

    Honey bees are important pollinators of agricultural crops. Since 2006, US beekeepers have experienced high annual honey bee colony losses, which may be attributed to multiple abiotic and biotic factors, including pathogens. However, the relative importance of these factors has not been fully elucidated. To identify the most prevalent pathogens and investigate the relationship between colony strength and health, we assessed pathogen occurrence, prevalence, and abundance in Western US honey bee colonies involved in almond pollination. The most prevalent pathogens were Black queen cell virus (BQCV), Lake Sinai virus 2 (LSV2), Sacbrood virus (SBV), Nosema ceranae , and trypanosomatids. Our results indicated that pathogen prevalence and abundance were associated with both sampling date and beekeeping operation, that prevalence was highest in honey bee samples obtained immediately after almond pollination, and that weak colonies had a greater mean pathogen prevalence than strong colonies.

  12. Effects of habitat isolation on pollinator communities and seed set.

    PubMed

    Steffan-Dewenter, I; Tscharntke, Teja

    1999-11-01

    Destruction and fragmentation of natural habitats is the major reason for the decreasing biodiversity in the agricultural landscape. Loss of populations may negatively affect biotic interactions and ecosystem stability. Here we tested the hypothesis that habitat fragmentation affects bee populations and thereby disrupts plant-pollinator interactions. We experimentally established small "habitat islands" of two self-incompatible, annual crucifers on eight calcareous grasslands and in the intensively managed agricultural landscape at increasing distances (up to 1000 m) from these species-rich grasslands to measure effects of isolation on both pollinator guilds and seed set, independently from patch size and density, resource availability and genetic erosion of plant populations. Each habitat island consisted of four pots each with one plant of mustard (Sinapis arvensis) and radish (Raphanus sativus). Increasing isolation of the small habitat islands resulted in both decreased abundance and species richness of flower-visiting bees (Hymenoptera: Apoidea). Mean body size of flower-visiting wild bees was larger on isolated than on nonisolated habitat islands emphasizing the positive correlation of body size and foraging distance. Abundance of flower-visiting honeybees depended on the distance from the nearest apiary. Abundance of other flower visitors such as hover flies did not change with increasing isolation. Number of seeds per fruit and per plant decreased significantly with increasing distance from the nearest grassland for both mustard and radish. Mean seed set per plant was halved at a distance of approximately 1000 m for mustard and at 250 m for radish. In accordance with expectations, seed set per plant was positively correlated with the number of flower-visiting bees. We found no evidence for resource limitation in the case of mustard and only marginal effects for radish. We conclude that habitat connectivity is essential to maintain not only abundant and

  13. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo).

    PubMed

    Cane, James H; Sampson, Blair J; Miller, Stephanie A

    2011-06-01

    Male bees can be abundant at flowers, particularly floral hosts of those bee species whose females are taxonomic pollen specialists (oligolecty). Contributions of male bees to host pollination are rarely studied directly despite their prevalence in a number of pollination guilds, including those of some crop plants. In this study, males of the oligolectic bee, Peponapis pruinosa Say, were shown to be effective pollinators of summer squash, Cucurbita pepo L. Seven sequential visits from male P. pruinosa maximized squash fruit set and growth. This number of male visits accumulated during the first hour of their foraging and mate searching at flowers soon after sunrise. Pollination efficacy of male P. pruinosa and their abundances at squash flowers were sufficient to account for most summer squash production at our study sites, and by extrapolation, to two-thirds of all 87 North American farms and market gardens growing squashes that were surveyed for pollinators by collaborators in the Squash Pollinators of the Americas Survey. We posit that the substantial pollination value of male Peponapis bees is a consequence of their species' oligolecty, their mate seeking strategy, and some extreme traits of Cucurbita flowers (massive rewards, flower size, phenology).

  14. Cage-Fighting Bees: Can Aggressive Competition Increase Pollination Efficacy for an Oligolectic Native Bee?

    USDA-ARS?s Scientific Manuscript database

    Pollination efficacy of the oligolectic bee Ptilothrix bombiformis was measured as the number of pollen grains delivered to virgin Hibiscus stigmas. Such specialized bee foragers are often assumed to be highly efficient pollinators. Intriguingly, however, we discovered females fight over host blooms...

  15. Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop

    PubMed Central

    Rogers, Shelley R.; Tarpy, David R.; Burrack, Hannah J.

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services. PMID:24817218

  16. Bee species diversity enhances productivity and stability in a perennial crop.

    PubMed

    Rogers, Shelley R; Tarpy, David R; Burrack, Hannah J

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  17. Modularity, pollination systems, and interaction turnover in plant-pollinator networks across space.

    PubMed

    Carstensen, Daniel W; Sabatino, Malena; Morellato, Leonor Patricia C

    2016-05-01

    Mutualistic interaction networks have been shown to be structurally conserved over space and time while pairwise interactions show high variability. In such networks, modularity is the division of species into compartments, or modules, where species within modules share more interactions with each other than they do with species from other modules. Such a modular structure is common in mutualistic networks and several evolutionary and ecological mechanisms have been proposed as underlying drivers. One prominent explanation is the existence of pollination syndromes where flowers tend to attract certain pollinators as determined by a set of traits. We investigate the modularity of seven community level plant-pollinator networks sampled in rupestrian grasslands, or campos rupestres, in SE Brazil. Defining pollination systems as corresponding groups of flower syndromes and pollinator functional groups, we test the two hypotheses that (1) interacting species from the same pollination system are more often assigned to the same module than interacting species from different pollination systems and; that (2) interactions between species from the same pollination system are more consistent across space than interactions between species from different pollination systems. Specifically we ask (1) whether networks are consistently modular across space; (2) whether interactions among species of the same pollination system occur more often inside modules, compared to interactions among species of different pollination systems, and finally; (3) whether the spatial variation in interaction identity, i.e., spatial interaction rewiring, is affected by trait complementarity among species as indicated by pollination systems. We confirm that networks are consistently modular across space and that interactions within pollination systems principally occur inside modules. Despite a strong tendency, we did not find a significant effect of pollination systems on the spatial consistency of

  18. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation.

    PubMed

    Aizen, Marcelo A; Gleiser, Gabriela; Sabatino, Malena; Gilarranz, Luis J; Bascompte, Jordi; Verdú, Miguel

    2016-01-01

    Similarity among species in traits related to ecological interactions is frequently associated with common ancestry. Thus, closely related species usually interact with ecologically similar partners, which can be reinforced by diverse co-evolutionary processes. The effect of habitat fragmentation on the phylogenetic signal in interspecific interactions and correspondence between plant and animal phylogenies is, however, unknown. Here, we address to what extent phylogenetic signal and co-phylogenetic congruence of plant-animal interactions depend on habitat size and isolation by analysing the phylogenetic structure of 12 pollination webs from isolated Pampean hills. Phylogenetic signal in interspecific interactions differed among webs, being stronger for flower-visiting insects than plants. Phylogenetic signal and overall co-phylogenetic congruence increased independently with hill size and isolation. We propose that habitat fragmentation would erode the phylogenetic structure of interaction webs. A decrease in phylogenetic signal and co-phylogenetic correspondence in plant-pollinator interactions could be associated with less reliable mutualism and erratic co-evolutionary change. © 2015 John Wiley & Sons Ltd/CNRS.

  19. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade

    PubMed Central

    Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter

    2014-01-01

    Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. PMID:25002702

  20. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  1. Pollen-mediated gene flow from transgenic cotton under greenhouse conditions is dependent on different pollinators

    PubMed Central

    Yan, Shuo; Zhu, Jialin; Zhu, Weilong; Li, Zhen; Shelton, Anthony M.; Luo, Junyu; Cui, Jinjie; Zhang, Qingwen; Liu, Xiaoxia

    2015-01-01

    With the large-scale release of genetically modified (GM) crops, there are ecological concerns on transgene movement from GM crops to non-GM counterparts and wild relatives. In this research, we conducted greenhouse experiments to measure pollen-mediated gene flow (PGF) in the absence and presence of pollinators (Bombus ignitus, Apis mellifera and Pieris rapae) in one GM cotton (resistant to the insect Helicoverpa armigera and the herbicide glyphosate) and two non-GM lines (Shiyuan321 and Hai7124) during 2012 and 2013. Our results revealed that: (1) PGF varied depending on the pollinator species, and was highest with B. ignitus (10.83%) and lowest with P. rapae (2.71%); (2) PGF with B. ignitus depended on the distance between GM and non-GM cottons; (3) total PGF to Shiyuan321 (8.61%) was higher than to Hai7124 (4.10%). To confirm gene flow, we tested hybrids carrying transgenes for their resistance to glyphosate and H. armigera, and most hybrids showed strong resistance to the herbicide and insect. Our research confirmed that PGF depended on pollinator species, distance between plants and the receptor plant. PMID:26525573

  2. A horizon scan of future threats and opportunities for pollinators and pollination.

    PubMed

    Brown, Mark J F; Dicks, Lynn V; Paxton, Robert J; Baldock, Katherine C R; Barron, Andrew B; Chauzat, Marie-Pierre; Freitas, Breno M; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E; Potts, Simon G; Schweiger, Oliver; Seymour, Colleen L; Stout, Jane C

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

  3. A horizon scan of future threats and opportunities for pollinators and pollination

    PubMed Central

    Dicks, Lynn V.; Paxton, Robert J.; Baldock, Katherine C.R.; Barron, Andrew B.; Chauzat, Marie-Pierre; Freitas, Breno M.; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E.; Potts, Simon G.; Schweiger, Oliver; Seymour, Colleen L.; Stout, Jane C.

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations. PMID:27602260

  4. Competition with wind-pollinated plant species alters floral traits of insect-pollinated plant species

    PubMed Central

    Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle

    2015-01-01

    Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409

  5. Pollinator Foraging Adaptation and Coexistence of Competing Plants

    PubMed Central

    Revilla, Tomás A.; Křivan, Vlastimil

    2016-01-01

    We use the optimal foraging theory to study coexistence between two plant species and a generalist pollinator. We compare conditions for plant coexistence for non-adaptive vs. adaptive pollinators that adjust their foraging strategy to maximize fitness. When pollinators have fixed preferences, we show that plant coexistence typically requires both weak competition between plants for resources (e.g., space or nutrients) and pollinator preferences that are not too biased in favour of either plant. We also show how plant coexistence is promoted by indirect facilitation via the pollinator. When pollinators are adaptive foragers, pollinator’s diet maximizes pollinator’s fitness measured as the per capita population growth rate. Simulations show that this has two conflicting consequences for plant coexistence. On the one hand, when competition between pollinators is weak, adaptation favours pollinator specialization on the more profitable plant which increases asymmetries in plant competition and makes their coexistence less likely. On the other hand, when competition between pollinators is strong, adaptation promotes generalism, which facilitates plant coexistence. In addition, adaptive foraging allows pollinators to survive sudden loss of the preferred plant host, thus preventing further collapse of the entire community. PMID:27505254

  6. Pollinator decline - an ecological calamity in the making?

    PubMed

    Rhodes, Christopher J

    2018-06-01

    Since pollination by insects is vitally important for much of global crop production, and to provide pollination services more widely throughout the planetary ecosystems, the prospect of an imminent 'pollination crisis', due to a die-off of flying insects, is most disquieting, to say the least. Indeed, the term 'ecological Armageddon' has been used in the media. However, to know whether or not a wholesale decline in flying pollinators (including non-bee species) is occurring across the world is very difficult, due to an insufficiency of geographically widespread and long-term data. Bees, as the best documented species, can be seen to be suffering from chronic exposure to a range of stressors, which include: a loss of abundance and diversity of flowers, and a decline in suitable habitat for them to build nests; long-term exposure to agrochemicals, including pesticides such as neonicotinoids; and infection by parasites and pathogens, many inadvertently spread by the actions of humans. It is likely that climate change may impact further on particular pollinators, for example bumble bees, which are cool-climate specialists. Moreover, the co-operative element of various different stress factors should be noted; thus, for example, exposure to pesticides is known to diminish detoxification mechanisms and also immune responses, hence lowering the resistance of bees to parasitic infections. It is further conspicuous that for those wild non-bee insects - principally moths and butterflies - where data are available, the picture is also one of significant population losses. Alarmingly, a recent study in Germany indicated that a decline in the biomass of flying insects had occurred by 76% in less than three decades, as sampled in nature reserves across the country. Accordingly, to fully answer the question posed in the title of this article 'pollinator decline - an ecological calamity in the making?' will require many more detailed, more geographically encompassing, more

  7. The role of pollinator diversity in the evolution of corolla-shape integration in a pollination-generalist plant clade.

    PubMed

    Gómez, José María; Perfectti, Francisco; Klingenberg, Christian Peter

    2014-08-19

    Flowers of animal-pollinated plants are integrated structures shaped by the action of pollinator-mediated selection. It is widely assumed that pollination specialization increases the magnitude of floral integration. However, empirical evidence is still inconclusive. In this study, we explored the role of pollinator diversity in shaping the evolution of corolla-shape integration in Erysimum, a plant genus with generalized pollination systems. We quantified floral integration in Erysimum using geometric morphometrics and explored its evolution using phylogenetic comparative methods. Corolla-shape integration was low but significantly different from zero in all study species. Spatial autocorrelation and phylogenetic signal in corolla-shape integration were not detected. In addition, integration in Erysimum seems to have evolved in a way that is consistent with Brownian motion, but with frequent convergent evolution. Corolla-shape integration was negatively associated with the number of pollinators visiting the flowers of each Erysimum species. That is, it was lower in those species having a more generalized pollination system. This negative association may occur because the co-occurrence of many pollinators imposes conflicting selection and cancels out any consistent selection on specific floral traits, preventing the evolution of highly integrated flowers. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias).

    PubMed

    La Rosa, Raffica J; Conner, Jeffrey K

    2017-01-01

    Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition. © 2017 Botanical Society of America.

  9. Flight performance of bumble bee as a possible pollinator in space agriculture under partial gravity

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Mitsuhata, Masahiro; Sasaki, Masami; Space Agriculture Task Force, J.

    Space agriculture is an advanced life support concept for habitation on extraterrestrial bodies based on biological and ecological function. Flowering plant species are core member of space agriculture to produce food and revitalize air and water. Selection of crop plant species is made on the basis of nutritional requirements to maintain healthy life of space crew. Species selected for space agriculture have several mode of reproduction. For some of plant species, insect pollination is effective to increase yield and quality of food. In terrestrial agriculture, bee is widely introduced to pollinate flower. For pollinator insect on Mars, working environment is different from Earth. Magnitude of gravity is 0.38G on Mars surface. In order to confirm feasibility of insect pollination for space agriculture, capability of flying pollinator insect under such exotic condition should be examined. Even bee does not possess evident gravity sensory system, gravity dominates flying performance and behavior. During flight or hovering, lifting force produced by wing beat sustains body weight, which is the product of body mass and gravitational acceleration. Flying behavior of bumble bee, Bombus ignitus, was documented under partial or micro-gravity produced by parabolic flight of jet plane. Flying behavior at absence of gravity differed from that under normal gravity. Ability of bee to fly under partial gravity was examined at the level of Mars, Moon and the less, to determine the threshold level of gravity for bee flying maneuver. Adaptation process of bee flying under different gravity level was evaluated as well by successive documentation of parabolic flight experiment.

  10. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees

    PubMed Central

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-01-01

    Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in

  11. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees.

    PubMed

    Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus

    2011-06-01

    Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.

  12. Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in US field crops.

    PubMed

    Douglas, Margaret R; Tooker, John F

    2015-04-21

    Neonicotinoids are the most widely used class of insecticides worldwide, but patterns of their use in the U.S. are poorly documented, constraining attempts to understand their role in pest management and potential nontarget effects. We synthesized publicly available data to estimate and interpret trends in neonicotinoid use since their introduction in 1994, with a special focus on seed treatments, a major use not captured by the national pesticide-use survey. Neonicotinoid use increased rapidly between 2003 and 2011, as seed-applied products were introduced in field crops, marking an unprecedented shift toward large-scale, preemptive insecticide use: 34-44% of soybeans and 79-100% of maize hectares were treated in 2011. This finding contradicts recent analyses, which concluded that insecticides are used today on fewer maize hectares than a decade or two ago. If current trends continue, neonicotinoid use will increase further through application to more hectares of soybean and other crop species and escalation of per-seed rates. Alternatively, our results, and other recent analyses, suggest that carefully targeted efforts could considerably reduce neonicotinoid use in field crops without yield declines or economic harm to farmers, reducing the potential for pest resistance, nontarget pest outbreaks, environmental contamination, and harm to wildlife, including pollinator species.

  13. A Meta-Analysis of Effects of Bt Crops on Honey Bees (Hymenoptera: Apidae)

    PubMed Central

    Duan, Jian J.; Marvier, Michelle; Huesing, Joseph; Dively, Galen; Huang, Zachary Y.

    2008-01-01

    Background Honey bees (Apis mellifera L.) are the most important pollinators of many agricultural crops worldwide and are a key test species used in the tiered safety assessment of genetically engineered insect-resistant crops. There is concern that widespread planting of these transgenic crops could harm honey bee populations. Methodology/Principal Findings We conducted a meta-analysis of 25 studies that independently assessed potential effects of Bt Cry proteins on honey bee survival (or mortality). Our results show that Bt Cry proteins used in genetically modified crops commercialized for control of lepidopteran and coleopteran pests do not negatively affect the survival of either honey bee larvae or adults in laboratory settings. Conclusions/Significance Although the additional stresses that honey bees face in the field could, in principle, modify their susceptibility to Cry proteins or lead to indirect effects, our findings support safety assessments that have not detected any direct negative effects of Bt crops for this vital insect pollinator. PMID:18183296

  14. Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids.

    PubMed

    Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R

    2017-09-01

    The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators

    PubMed Central

    Reverté, Sara; Retana, Javier; Gómez, José M.; Bosch, Jordi

    2016-01-01

    Background and aims Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. Methods We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant–pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. Key Results We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. Conclusions The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant–pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant–pollinator associations. PMID:27325897

  16. Mechanisms and evolution of deceptive pollination in orchids.

    PubMed

    Jersáková, Jana; Johnson, Steven D; Kindlmann, Pavel

    2006-05-01

    The orchid family is renowned for its enormous diversity of pollination mechanisms and unusually high occurrence of non-rewarding flowers compared to other plant families. The mechanisms of deception in orchids include generalized food deception, food-deceptive floral mimicry, brood-site imitation, shelter imitation, pseudoantagonism, rendezvous attraction and sexual deception. Generalized food deception is the most common mechanism (reported in 38 genera) followed by sexual deception (18 genera). Floral deception in orchids has been intensively studied since Darwin, but the evolution of non-rewarding flowers still presents a major puzzle for evolutionary biology. The two principal hypotheses as to how deception could increase fitness in plants are (i) reallocation of resources associated with reward production to flowering and seed production, and (ii) higher levels of cross-pollination due to pollinators visiting fewer flowers on non-rewarding plants, resulting in more outcrossed progeny and more efficient pollen export. Biologists have also tried to explain why deception is overrepresented in the orchid family. These explanations include: (i) efficient removal and deposition of pollinaria from orchid flowers in a single pollinator visit, thus obviating the need for rewards to entice multiple visits from pollinators; (ii) efficient transport of orchid pollen, thus requiring less reward-induced pollinator constancy; (iii) low-density populations in many orchids, thus limiting the learning of associations of floral phenotypes and rewards by pollinators; (iv) packaging of pollen in pollinaria with limited carry-over from flower to flower, thus increasing the risks of geitonogamous self-pollination when pollinators visit many flowers on rewarding plants. All of these general and orchid-specific hypotheses are difficult to reconcile with the well-established pattern for rewardlessness to result in low pollinator visitation rates and consequently low levels of fruit

  17. Pollinators show flower colour preferences but flowers with similar colours do not attract similar pollinators.

    PubMed

    Reverté, Sara; Retana, Javier; Gómez, José M; Bosch, Jordi

    2016-08-01

    Colour is one of the main floral traits used by pollinators to locate flowers. Although pollinators show innate colour preferences, the view that the colour of a flower may be considered an important predictor of its main pollinators is highly controversial because flower choice is highly context-dependent, and initial innate preferences may be overridden by subsequent associative learning. Our objective is to establish whether there is a relationship between flower colour and pollinator composition in natural communities. We measured the flower reflectance spectrum and pollinator composition in four plant communities (85 plant species represented by 109 populations, and 32 305 plant-pollinator interactions in total). Pollinators were divided into six taxonomic groups: bees, ants, wasps, coleopterans, dipterans and lepidopterans. We found consistent associations between pollinator groups and certain colours. These associations matched innate preferences experimentally established for several pollinators and predictions of the pollination syndrome theory. However, flowers with similar colours did not attract similar pollinator assemblages. The explanation for this paradoxical result is that most flower species are pollination generalists. We conclude that although pollinator colour preferences seem to condition plant-pollinator interactions, the selective force behind these preferences has not been strong enough to mediate the appearance and maintenance of tight colour-based plant-pollinator associations. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. How exotic plants integrate into pollination networks

    PubMed Central

    Stouffer, Daniel B; Cirtwill, Alyssa R; Bascompte, Jordi; Bartomeus, Ignasi

    2014-01-01

    Summary There is increasing world-wide concern about the impact of the introduction of exotic species on ecological communities. Since many exotic plants depend on native pollinators to successfully establish, it is of paramount importance that we understand precisely how exotic species integrate into existing plant–pollinator communities. In this manuscript, we have studied a global data base of empirical pollination networks to determine whether community, network, species or interaction characteristics can help identify invaded communities. We found that a limited number of community and network properties showed significant differences across the empirical data sets – namely networks with exotic plants present are characterized by greater total, plant and pollinator richness, as well as higher values of relative nestedness. We also observed significant differences in terms of the pollinators that interact with the exotic plants. In particular, we found that specialist pollinators that are also weak contributors to community nestedness are far more likely to interact with exotic plants than would be expected by chance alone. Synthesis. By virtue of their interactions, it appears that exotic plants may provide a key service to a community's specialist pollinators as well as fill otherwise vacant ‘coevolutionary niches’. PMID:25558089

  19. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, John B.; Nassauer, Joan I.; Currie, William S.

    Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less

  20. Assessing wild bees in perennial bioenergy landscapes: effects of bioenergy crop composition, landscape configuration, and bioenergy crop area

    DOE PAGES

    Graham, John B.; Nassauer, Joan I.; Currie, William S.; ...

    2017-03-25

    Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees. Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations. Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7%, 23.5% and 28.8% of agricultural landmore » converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape. Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale. Moreover, strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.« less

  1. [Bee diversity in Tecoma stans (L.) Kunth (Bignoniaceae): importance for pollination and fruit production].

    PubMed

    Silva, Cláudia I; Augusto, Solange C; Sofia, Silvia H; Moscheta, Ismar S

    2007-01-01

    Tecoma stans (L.) Kunth is an exotic plant in Brazil, commonly distributed in urban areas, which is considered an invasive species in crop and pasture areas. In this study, the floral biology and the behavior of bees in flowers of T. stans from three urban areas in southeastern Brazil were investigated. In all study sites, T. stans was an important food resource to the Apoidea to 48 species of bees. Centris tarsata Smith and Exomalopsis fulvofasciata Smith (Hymenoptera: Apidae) were the effective pollinators more abundant, while Scaptotrigona depilis Moure (Hymenoptera: Apidae) was the more frequent robber species. The most part of T. stans visitors (87.5%) exploited exclusively nectar, which varied in sugar concentration depending on the day period and flower phase. In all flower stages, higher averages of nectar concentration (26.4% to 32.7%) occurred from 10 am to 2 pm. The presence of osmophore in the petals and protandry were detected. In two urban areas the number of visitors varied significantly during the day. The greatest abundance of pollinators occurred when pollen availability was higher and flowers showed receptive stigma, which could be contributing to the reproductive success of T. stans. The results indicate that the production of fruits increased in plants that received a higher number of effective pollinators.

  2. The pollination biology of a pavement plain: pollinator visitation patterns.

    PubMed

    O'Brien, Mary H

    1980-01-01

    The pollination biology of the 20 plant species of a treeless, pavement plain in the San Bernardino Mountains of southern California was studied throughout one flowering season.Several patterns of pollinator activity recorded during the season underline the necessity for noting the activity of all insect pollinators whether specialized, non-specialized, regular, or occasional: 1) Occasional insect visitors were a feature of the visitation to nine of the twelve entomophilous plant species and were the sole pollinators for three of these twelve species. 2) The eight entomophilous plant species which had open, generalized flower morphologies received the heaviest pollinator visitation, while three of the four entomophilous species with specialized flower morphologies received little visitation. 3) Most regular flower visitors, whether bees, flies, or wasps, appeared to be similar with respect to number of plant species visited regularly, purity of pollen load, length of residence and localization of activity on the site. The question is raised as to whether such similarity of behavior as pollen vectors is a function of the low plant diversity or a feature commonly found when the pollen loads and behavior of different pollinator types are actually monitored.

  3. Pollination induces autophagy in petunia petals via ethylene.

    PubMed

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  4. Population dynamics and the ecological stability of obligate pollination mutualisms

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2001-01-01

    Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

  5. Benefit and cost curves for typical pollination mutualisms.

    PubMed

    Morris, William F; Vázquez, Diego P; Chacoff, Natacha P

    2010-05-01

    Mutualisms provide benefits to interacting species, but they also involve costs. If costs come to exceed benefits as population density or the frequency of encounters between species increases, the interaction will no longer be mutualistic. Thus curves that represent benefits and costs as functions of interaction frequency are important tools for predicting when a mutualism will tip over into antagonism. Currently, most of what we know about benefit and cost curves in pollination mutualisms comes from highly specialized pollinating seed-consumer mutualisms, such as the yucca moth-yucca interaction. There, benefits to female reproduction saturate as the number of visits to a flower increases (because the amount of pollen needed to fertilize all the flower's ovules is finite), but costs continue to increase (because pollinator offspring consume developing seeds), leading to a peak in seed production at an intermediate number of visits. But for most plant-pollinator mutualisms, costs to the plant are more subtle than consumption of seeds, and how such costs scale with interaction frequency remains largely unknown. Here, we present reasonable benefit and cost curves that are appropriate for typical pollinator-plant interactions, and we show how they can result in a wide diversity of relationships between net benefit (benefit minus cost) and interaction frequency. We then use maximum-likelihood methods to fit net-benefit curves to measures of female reproductive success for three typical pollination mutualisms from two continents, and for each system we chose the most parsimonious model using information-criterion statistics. We discuss the implications of the shape of the net-benefit curve for the ecology and evolution of plant-pollinator mutualisms, as well as the challenges that lie ahead for disentangling the underlying benefit and cost curves for typical pollination mutualisms.

  6. Pollination ecology of Silene acutifolia (Caryophyllaceae): floral traits variation and pollinator attraction.

    PubMed

    Buide, María Luisa

    2006-02-01

    The floral display influences the composition of pollinators interacting with a plant species. Geographic and temporal variation in pollinator composition complicates the understanding of the evolutionary consequences of floral display variation. This paper analyses the relationships between Silene acutifolia, a hermaphroditic perennial herb, and its pollinators, based on field studies in the north-west of Spain. Studies were conducted over three years (1997-1999). Firstly, the main pollinators of this species were determined for two years in one population. Secondly, pollen limitation in fruit and seed production was analysed by supplementary hand pollinations, and counting the pollen grains and tubes growing in styles for two different-sized populations. Finally, the effect of flower size and number on the rate of visitation and total seed number was examined for 15 marked plants. The primary pollinators were long-tongued insects, including Hymenoptera, Lepidoptera and Diptera, but the composition and visitation frequencies differed between years. Pollen limitation occurred in one of the years of study. There was between-population variation in the number of pollen grains and pollen tubes found in styles, suggesting pollen limitation in one population. Overall, pollinators visited plants with more open flowers more frequently, and pollinated more flowers within these plants. Conversely, petal and calyx sizes had no effect on insect visitation. Plants with higher rates of visits produced higher number of seeds, suggesting that pollinator-mediated limitation of seed and fruit production may be important in some years.

  7. Pollination limitation to reproductive success in the Missouri evening primrose, Oenothera macrocarpa (Onagraceae).

    PubMed

    Moody-Weis, J M; Heywood, J S

    2001-09-01

    Habitat fragmentation may result in plant populations that are less attractive to pollinators and thus susceptible to reduced reproductive output due to pollination limitation. Pollination limitation was investigated in three Missouri populations of Oenothera macrocarpa, a hawk-moth-pollinated, perennial herb. The populations represented extremes in size and habitat quality. Following supplemental pollination, mean fertilization success (proportion of ovules fertilized) across populations increased from 24.3 to 44.8% and mean seed set (proportion of ovules that matured into seed) increased from 14.7 to 27.9%. These increases were statistically significant in two of the three populations. Failure to achieve 100% fertilization and seed set following supplementation indicates that other factors, in addition to pollination, were limiting to female reproductive success. Fruit set was pollination limited in only one population. Fruits matured with as few as one seed, suggesting that fruit set was not resource limited. The degree of pollination limitation was greatest in the most disturbed population. The population located in the highest-quality habitat was not significantly pollination limited. This suggests that pollination limitation is occurring, at least in part, because of reduced pollinator activity in degraded habitats.

  8. High temperatures result in smaller nurseries which lower reproduction of pollinators and parasites in a brood site pollination mutualism.

    PubMed

    Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V; Venkateswaran, Vignesh; Borges, Renee M

    2014-01-01

    In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3-5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig-pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology

  9. Contrasting effects of invasive plants in plant-pollinator networks.

    PubMed

    Bartomeus, Ignasi; Vilà, Montserrat; Santamaría, Luís

    2008-04-01

    The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant-pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant-pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant-pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant-pollinator network.

  10. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?

    PubMed Central

    Van der Niet, Timotheüs; Pirie, Michael D.; Shuttleworth, Adam; Johnson, Steven D.; Midgley, Jeremy J.

    2014-01-01

    Background and Aims According to the Grant–Stebbins model of pollinator-driven divergence, plants that disperse beyond the range of their specialized pollinator may adapt to a new pollination system. Although this model provides a compelling explanation for pollination ecotype formation, few studies have directly tested its validity in nature. Here we investigate the distribution and pollination biology of several subspecies of the shrub Erica plukenetii from the Cape Floristic Region in South Africa. We analyse these data in a phylogenetic context and combine these results with information on pollinator ranges to test whether the evolution of pollination ecotypes is consistent with the Grant–Stebbins model. Methods and Key Results Pollinator observations showed that the most common form of E. plukenetii with intermediate corolla length is pollinated by short-billed Orange-breasted sunbirds. Populations at the northern fringe of the distribution are characterized by long corollas, and are mainly pollinated by long-billed Malachite sunbirds. A population with short corollas in the centre of the range was mainly pollinated by insects, particularly short-tongued noctuid moths. Bird exclusion in this population did not have an effect on fruit set, while insect exclusion reduced fruit set. An analysis of floral scent across the range, using coupled gas chromatography–mass spectrometry, showed that the scent bouquets of flowers from moth-pollinated populations are characterized by a larger number of scent compounds and higher emission rates than those in bird-pollinated populations. This was also reflected in clear separation of moth- and bird-pollinated populations in a two-dimensional phenotype space based on non-metric multidimensional scaling analysis of scent data. Phylogenetic analyses of chloroplast and nuclear DNA sequences strongly supported monophyly of E. plukenetii, but not of all the subspecies. Reconstruction of ancestral character states suggests two

  11. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Treesearch

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  12. Mating patterns and pollinator mobility are critical traits in forest fragmentation genetics

    PubMed Central

    Breed, M F; Ottewell, K M; Gardner, M G; Marklund, M H K; Dormontt, E E; Lowe, A J

    2015-01-01

    Most woody plants are animal-pollinated, but the global problem of habitat fragmentation is changing the pollination dynamics. Consequently, the genetic diversity and fitness of the progeny of animal-pollinated woody plants sired in fragmented landscapes tend to decline due to shifts in plant-mating patterns (for example, reduced outcrossing rate, pollen diversity). However, the magnitude of this mating-pattern shift should theoretically be a function of pollinator mobility. We first test this hypothesis by exploring the mating patterns of three ecologically divergent eucalypts sampled across a habitat fragmentation gradient in southern Australia. We demonstrate increased selfing and decreased pollen diversity with increased fragmentation for two small-insect-pollinated eucalypts, but no such relationship for the mobile-bird-pollinated eucalypt. In a meta-analysis, we then show that fragmentation generally does increase selfing rates and decrease pollen diversity, and that more mobile pollinators tended to dampen these mating-pattern shifts. Together, our findings support the premise that variation in pollinator form contributes to the diversity of mating-pattern responses to habitat fragmentation. PMID:24002239

  13. Degradation of soil fertility can cancel pollination benefits in sunflower.

    PubMed

    Tamburini, Giovanni; Berti, Antonio; Morari, Francesco; Marini, Lorenzo

    2016-02-01

    Pollination and soil fertility are important ecosystem services to agriculture but their relative roles and potential interactions are poorly understood. We explored the combined effects of pollination and soil fertility in sunflower using soils from a trial characterized by different long-term input management in order to recreate plausible levels of soil fertility. Pollinator exclusion was used as a proxy for a highly eroded pollination service. Pollination benefits to yield depended on soil fertility, i.e., insect pollination enhanced seed set and yield only under higher soil fertility indicating that limited nutrient availability may constrain pollination benefits. Our study provides evidence for interactions between above- and belowground ecosystem services, highlighting the crucial role of soil fertility in supporting agricultural production not only directly, but also indirectly through pollination. Management strategies aimed at enhancing pollination services might fail in increasing yield in landscapes characterized by high soil service degradation. Comprehensive knowledge about service interactions is therefore essential for the correct management of ecosystem services in agricultural landscapes.

  14. Pollination induces autophagy in petunia petals via ethylene

    PubMed Central

    Shibuya, Kenichi

    2013-01-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence. PMID:23349142

  15. Increased nutritional value in food crops.

    PubMed

    Goicoechea, Nieves; Antolín, M Carmen

    2017-09-01

    Modern agriculture and horticulture must combine two objectives that seem to be almost mutually exclusive: to satisfy the nutritional needs of an increasing human population and to minimize the negative impact on the environment. These two objectives are included in the Goal 2 of the 2030 Agenda for Sustainable Development of the United Nations: 'End hunger, achieve food security and improved nutrition and promote sustainable agriculture'. Enhancing the nutritional levels of vegetables would improve nutrient intake without requiring an increase in consumption. In this context, the use of beneficial rhizospheric microorganisms for improving, not only growth and yield, but also the nutrient quality of crops represents a promising tool that may respond to the challenges for modern agriculture and horticulture and represents an alternative to the genetic engineering of crops. This paper summarizes the state of the art, the current difficulties associated to the use of rhizospheric microorganisms as enhancers of the nutritional quality of food crops as well as the future prospects. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages.

    PubMed

    Wu, Yun; Li, Qing-Jun

    2017-10-01

    Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.

  17. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture

    PubMed Central

    Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao

    2018-01-01

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. PMID:29792597

  18. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    PubMed

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  19. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia.

    PubMed

    Boberg, Elin; Alexandersson, Ronny; Jonsson, Magdalena; Maad, Johanne; Ågren, Jon; Nilsson, L Anders

    2014-01-01

    Plant-pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia. Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population. Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site. The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts.

  20. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia

    PubMed Central

    Boberg, Elin; Alexandersson, Ronny; Jonsson, Magdalena; Maad, Johanne; Ågren, Jon; Nilsson, L. Anders

    2014-01-01

    Background and Aims Plant–pollinator interactions are thought to have shaped much of floral evolution. Yet the relative importance of pollinator shifts and coevolutionary interactions for among-population variation in floral traits in animal-pollinated species is poorly known. This study examined the adaptive significance of spur length in the moth-pollinated orchid Platanthera bifolia. Methods Geographical variation in the length of the floral spur of P. bifolia was documented in relation to variation in the pollinator fauna across Scandinavia, and a reciprocal translocation experiment was conducted in south-east Sweden between a long-spurred woodland population and a short-spurred grassland population. Key Results Spur length and pollinator fauna varied among regions and habitats, and spur length was positively correlated with the proboscis length of local pollinators. In the reciprocal translocation experiment, long-spurred woodland plants had higher pollination success than short-spurred grassland plants at the woodland site, while no significant difference was observed at the grassland site. Conclusions The results are consistent with the hypothesis that optimal floral phenotype varies with the morphology of the local pollinators, and that the evolution of spur length in P. bifolia has been largely driven by pollinator shifts. PMID:24169591

  1. Competition for pollinators and intra-communal spectral dissimilarity of flowers.

    PubMed

    van der Kooi, C J; Pen, I; Staal, M; Stavenga, D G; Elzenga, J T M

    2016-01-01

    Competition for pollinators occurs when, in a community of flowering plants, several simultaneously flowering plant species depend on the same pollinator. Competition for pollinators increases interspecific pollen transfer rates, thereby reducing the number of viable offspring. In order to decrease interspecific pollen transfer, plant species can distinguish themselves from competitors by having a divergent phenotype. Floral colour is an important signalling cue to attract potential pollinators and thus a major aspect of the flower phenotype. In this study, we analysed the amount of spectral dissimilarity of flowers among pollinator-competing plants in a Dutch nature reserve. We expected pollinator-competing plants to exhibit more spectral dissimilarity than non-competing plants. Using flower visitation data of 2 years, we determined the amount of competition for pollinators by different plant species. Plant species that were visited by the same pollinator were considered specialist and competing for that pollinator, whereas plant species visited by a broad array of pollinators were considered non-competing generalists. We used principal components analysis to quantify floral reflectance, and found evidence for enhanced spectral dissimilarity among plant species within specialist pollinator guilds (i.e. groups of plant species competing for the same pollinator). This is the first study that examined intra-communal dissimilarity in floral reflectance with a focus on the pollination system. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Calorie increase and water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2015-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.

  3. Generalization versus Specialization in Pollination Systems: Visitors, Thieves, and Pollinators of Hypoestes aristata (Acanthaceae)

    PubMed Central

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Štěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata’s reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses. PMID:23593135

  4. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae).

    PubMed

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Stěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  5. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants.

    PubMed

    Friedman, Jannice; Barrett, Spencer C H

    2009-06-01

    The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers.

  6. Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants

    PubMed Central

    Friedman, Jannice; Barrett, Spencer C. H.

    2009-01-01

    Background The rich literature that characterizes the field of pollination biology has focused largely on animal-pollinated plants. At least 10 % of angiosperms are wind pollinated, and this mode of pollination has evolved on multiple occasions among unrelated lineages, and hence this discrepancy in research interest is surprising. Here, the evolution and functional ecology of pollination and mating in wind-pollinated plants are discussed, a theoretical framework for modelling the selection of wind pollination is outlined, and pollen capture and the occurrence of pollen limitation in diverse wind-pollinated herbs are investigated experimentally. Scope and Conclusions Wind pollination may commonly evolve to provide reproductive assurance when pollinators are scarce. Evidence is presented that pollen limitation in wind-pollinated plants may not be as common as it is in animal-pollinated species. The studies of pollen capture in wind-pollinated herbs demonstrate that pollen transfer efficiency is not substantially lower than in animal-pollinated plants as is often assumed. These findings challenge the explanation that the evolution of few ovules in wind-pollinated flowers is associated with low pollen loads. Floral and inflorescence architecture is crucial to pollination and mating because of the aerodynamics of wind pollination. Evidence is provided for the importance of plant height, floral position, and stamen and stigma characteristics in promoting effective pollen dispersal and capture. Finally, it is proposed that geitonogamous selfing may alleviate pollen limitation in many wind-pollinated plants with unisexual flowers. PMID:19218583

  7. Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Services Industry.

    PubMed

    Jones Ritten, Chian; Peck, Dannele; Ehmke, Mariah; Patalee, M A Buddhika

    2018-04-03

    While the demand for pollination services have been increasing, continued declines in honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies have put the cropping sector and the broader health of agro-ecosystems at risk. Economic factors may play a role in dwindling honey bee colony supply in the United States, but have not been extensively studied. Using data envelopment analysis (DEA), we measure technical efficiency, returns to scale, and factors influencing the efficiency of those apiaries in the northern Rocky Mountain region participating in the pollination services market. We find that, although over 25% of apiaries are technically efficient, many experience either increasing or decreasing returns to scale. Smaller apiaries (under 80 colonies) experience increasing returns to scale, but a lack of available financing may hinder them from achieving economically sustainable colony levels. Larger apiaries (over 1,000 colonies) experience decreasing returns to scale. Those beekeepers may have economic incentivizes to decrease colony numbers. Using a double bootstrap method, we find that apiary location and off-farm employment influence apiary technical efficiency. Apiaries in Wyoming are found to be more efficient than those in Utah or Montana. Further, engagement in off-farm employment increases an apiary's technical efficiency. The combined effects of efficiency gains through off-farm employment and diseconomies of scale may explain, in part, the historical decline in honey bee numbers.

  8. High Temperatures Result in Smaller Nurseries which Lower Reproduction of Pollinators and Parasites in a Brood Site Pollination Mutualism

    PubMed Central

    Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V.; Venkateswaran, Vignesh; Borges, Renee M.

    2014-01-01

    In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3–5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig–pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive

  9. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands.

    PubMed

    Biesmeijer, J C; Roberts, S P M; Reemer, M; Ohlemüller, R; Edwards, M; Peeters, T; Schaffers, A P; Potts, S G; Kleukers, R; Thomas, C D; Settele, J; Kunin, W E

    2006-07-21

    Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre-versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.

  10. Seasonal and annual variations in the pollination efficiency of a pollinator community of Dictamnus albus L.

    PubMed

    Fisogni, A; Rossi, M; Sgolastra, F; Bortolotti, L; Bogo, G; de Manincor, N; Quaranta, M; Galloni, M

    2016-05-01

    The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra- and inter-annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra-plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large-sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross-pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system.

    PubMed

    Scopece, Giovanni; Campese, Lucia; Duffy, Karl J; Cozzolino, Salvatore

    2018-02-01

    Plants involved in specialized pollinator interactions, such as nursery pollination, may experience trade-offs in their female fitness, as the larvae of their pollinators may also consume seeds produced by the flowers they pollinate. These interactions could potentially shift between mutualism and parasitism, depending on the presence and abundance of both the nursery pollinator and of other pollinators. We investigated the fitness trade-off in a Mediterranean plant ( Silene latifolia ), which has a specialist nocturnal nursery pollinator moth ( Hadena bicruris ) and is also visited by several diurnal pollinators. We estimated the pollination rates and fecundity of S. latifolia in both natural and experimental populations in the Mediterranean. We estimated natural pollination rates in different flowering times and with presence/absence of the H. bicruis moth. Then by exposing plants to each pollinator group either during the day or at night, we quantified the contribution of other diurnal pollinators and the specialized nocturnal nursery pollinator to plant female fitness. We found no difference in plant fruit set mediated by diurnal versus nocturnal pollinators, indicating that non-specialist pollinators contribute to plant female fitness. However, in both natural and experimental populations, H. bicruris was the most efficient pollinator in terms of seeds produced per fruit. These results suggest that the female fitness costs generated by nursery pollination can be overcome through higher fertilization rates relative to predation rates, even in the presence of co-pollinators. Quantifying such interactions is important for our understanding of the selective pressures that promote highly specialized mutualisms, such as nursery pollination, in the Mediterranean region, a centre of diversification of the carnation family.

  12. Pollination decays in biodiversity hotspots.

    PubMed

    Vamosi, Jana C; Knight, Tiffany M; Steets, Janette A; Mazer, Susan J; Burd, Martin; Ashman, Tia-Lynn

    2006-01-24

    As pollinators decline globally, competition for their services is expected to intensify, and this antagonism may be most severe where the number of plant species is the greatest. Using meta-analysis and comparative phylogenetic analysis, we provide a global-scale test of whether reproduction becomes more limited by pollen receipt (pollen limitation) as the number of coexisting plant species increases. As predicted, we find a significant positive relationship between pollen limitation and species richness. In addition, this pattern is particularly strong for species that are obligately outcrossing and for trees relative to herbs or shrubs. We suggest that plants occurring in species-rich communities may be more prone to pollen limitation because of interspecific competition for pollinators. As a consequence, plants in biodiversity hotspots may have a higher risk of extinction and/or experience increased selection pressure to specialize on certain pollinators or diversify into different phenological niches. The combination of higher pollen limitation and habitat destruction represents a dual risk to tropical plant species that has not been previously identified.

  13. Reduced abundance and earlier collection of bumble bee workers under intensive cultivation of a mass-flowering prairie crop.

    PubMed

    Galpern, Paul; Johnson, Sarah A; Retzlaff, Jennifer L; Chang, Danielle; Swann, John

    2017-04-01

    One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape ( Brassica napus ). As a mass-flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees ( Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass-flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus ), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass-flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.

  14. Rain pollination provides reproductive assurance in a deceptive orchid.

    PubMed

    Fan, Xu-Li; Barrett, Spencer C H; Lin, Hua; Chen, Ling-Ling; Zhou, Xiang; Gao, Jiang-Yun

    2012-10-01

    Abiotic pollination by wind or water is well established in flowering plants. In some species pollination by rain splashes, a condition known as ombrophily, has been proposed as a floral strategy. However, evidence for this type of abiotic pollination has remained controversial and many reported cases have subsequently been shown to be false. This study investigates ombrophily in the deceptive orchid Acampe rigida to determine the mechanism by which this species is able to maintain high fecundity, despite flowering during the rainy season in south-west China when pollinators are scarce. The floral mechanisms promoting rain pollination in A. rigida were observed and described in detail. Controlled pollination experiments and observations of floral visitors were conducted. A field experiment using rain shelters at 14 sites in Guangxi, south-west China, evaluated the contribution of rain pollination to fruit-set. During rainfall, raindrops physically flicked away the anther cap exposing the pollinarium. Raindrops then caused pollinia to be ejected upwards with the strap-like stipe pulling them back and causing them to fall into the stigmatic cavity, resulting in self-pollination. Neither flower nor pollen function were damaged by water. Although A. rigida is self-compatible, it is incapable of autonomous self-pollination without the assistance of rain splashes. The results of the rain-sheltering experiment indicated that rain pollination contributed substantially to increasing fruit-set, although there was variation among sites in the intensity of this effect. A. rigida flowers during the rainy season, when pollinators are scarce, and ombrophily functions to provide reproductive assurance without compromising opportunities for outcrossing.

  15. Pollinator effectiveness varies with experimental shifts in flowering time.

    PubMed

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  16. Fire Promotes Pollinator Visitation: Implications for Ameliorating Declines of Pollination Services

    PubMed Central

    Van Nuland, Michael E.; Haag, Elliot N.; Bryant, Jessica A. M.; Read, Quentin D.; Klein, Robert N.; Douglas, Morgan J.; Gorman, Courtney E.; Greenwell, Trey D.; Busby, Mark W.; Collins, Jonathan; LeRoy, Joseph T.; Schuchmann, George; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2013-01-01

    Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue. PMID:24265787

  17. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation

    PubMed Central

    Lázaro, A.; Totland, Ø.

    2014-01-01

    Background and Aims The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Methods Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Key Results Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. Conclusions The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. PMID:24838838

  18. Pollination syndromes in African Marantaceae.

    PubMed

    Ley, Alexandra C; Classen-Bockhoff, Regine

    2009-07-01

    The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The 'small (horizontal)' flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the 'large (horizontal)' and 'medium-sized (horizontal)' flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the 'locked (horizontal)' flowers by large bees (Xylocopa nigrita, X. varipes) and the '(large) vertical' flowers by sunbirds. The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints.

  19. Increasing crop diversity mitigates weather variations and improves yield stability.

    PubMed

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  20. Increasing Crop Diversity Mitigates Weather Variations and Improves Yield Stability

    PubMed Central

    Gaudin, Amélie C. M.; Tolhurst, Tor N.; Ker, Alan P.; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C.; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  1. Orchid–pollinator interactions and potential vulnerability to biological invasion

    PubMed Central

    Chupp, Adam D.; Battaglia, Loretta L.; Schauber, Eric M.; Sipes, Sedonia D.

    2015-01-01

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as

  2. Rain pollination provides reproductive assurance in a deceptive orchid

    PubMed Central

    Fan, Xu-Li; Barrett, Spencer C. H.; Lin, Hua; Chen, Ling-Ling; Zhou, Xiang; Gao, Jiang-Yun

    2012-01-01

    Background and Aims Abiotic pollination by wind or water is well established in flowering plants. In some species pollination by rain splashes, a condition known as ombrophily, has been proposed as a floral strategy. However, evidence for this type of abiotic pollination has remained controversial and many reported cases have subsequently been shown to be false. This study investigates ombrophily in the deceptive orchid Acampe rigida to determine the mechanism by which this species is able to maintain high fecundity, despite flowering during the rainy season in south-west China when pollinators are scarce. Methods The floral mechanisms promoting rain pollination in A. rigida were observed and described in detail. Controlled pollination experiments and observations of floral visitors were conducted. A field experiment using rain shelters at 14 sites in Guangxi, south-west China, evaluated the contribution of rain pollination to fruit-set. Key Results During rainfall, raindrops physically flicked away the anther cap exposing the pollinarium. Raindrops then caused pollinia to be ejected upwards with the strap-like stipe pulling them back and causing them to fall into the stigmatic cavity, resulting in self-pollination. Neither flower nor pollen function were damaged by water. Although A. rigida is self-compatible, it is incapable of autonomous self-pollination without the assistance of rain splashes. The results of the rain-sheltering experiment indicated that rain pollination contributed substantially to increasing fruit-set, although there was variation among sites in the intensity of this effect. Conclusions A. rigida flowers during the rainy season, when pollinators are scarce, and ombrophily functions to provide reproductive assurance without compromising opportunities for outcrossing. PMID:22851311

  3. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    PubMed Central

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  4. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    PubMed

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  5. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    PubMed Central

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  6. Pollinator effectiveness varies with experimental shifts in flowering time

    PubMed Central

    Rafferty, Nicole E.; Ives, Anthony R.

    2013-01-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches. PMID:22690631

  7. Moonlight pollination in the gymnosperm Ephedra (Gnetales).

    PubMed

    Rydin, Catarina; Bolinder, Kristina

    2015-04-01

    Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation.

    PubMed

    Lázaro, A; Totland, O

    2014-07-01

    The pollinator-mediated stabilizing selection hypothesis suggests that the specialized pollination system of zygomorphic flowers might cause stabilizing selection, reducing their flower size variation compared with actinomorphic flowers. However, the degree of ecological generalization and of dependence on pollinators varies greatly among species of both flower symmetry types and this may also affect flower size variation. Data on 43 species from two contrasting communities (one alpine and one lowland community) were used to test the relationships and interactions between flower size phenotypic variation, floral symmetry, ecological pollination generalization and species' dependence on pollinators. Contrary to what was expected, higher flower size variation was found in zygomorphic than in actinomorphic species in the lowland community, and no difference in flower size variation was found between symmetry types in the alpine community. The relationship between floral symmetry and flower size variation depended on ecological generalization and species' dependence on pollinators, although the influence of ecological generalization was only detected in the alpine community. Zygomorphic species that were highly dependent on pollinators and that were ecologically specialized were less variable in flower size than ecologically generalist and selfing zygomorphic species, supporting the pollinator-mediated stabilizing selection hypothesis. However, these relationships were not found in actinomorphic species, probably because they are not dependent on any particular pollinator for efficient pollination and therefore their flower size always shows moderate levels of variation. The study suggests that the relationship between flower size variation and floral symmetry may be influenced by population-dependent factors, such as ecological generalization and species' dependence on pollinators. © The Author 2014. Published by Oxford University Press on behalf of the Annals of

  9. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    PubMed

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  10. Pollination syndromes in African Marantaceae

    PubMed Central

    Ley, Alexandra C.; Claßen-Bockhoff, Regine

    2009-01-01

    Background and Aims The Marantaceae (550 spp.) is the most derived family in the order Zingiberales and exhibits a complex explosive pollination mechanism. To understand the evolutionary significance of this unique process of pollen transfer, comparative morphological and ecological studies were conducted in Gabon. Methods During a total stay of 11 months, 31 species of Marantaceae were investigated at different sites in Gabon. The study included analyses of floral diversity, observations on the pollinator spectrum as well as ecological measurements (e.g. nectar sugar concentration and volume). Key Results Analyses reveal five flower types based on flower size and pigmentation, spatial arrangement of the floral tube and presence/absence of nectar guides and conspicuous outer staminodes. Each type is associated with a specific functional pollinator group leading to the description of distinct pollination syndromes. The ‘small (horizontal)’ flowers are predominantly pollinated by small bees (Thrinchostoma spp., Allodapula ornaticeps), the ‘large (horizontal)’ and ‘medium-sized (horizontal)’ flowers by medium-sized bees (Amegilla vivida, Thrinchostoma bicometes), the ‘locked (horizontal)’ flowers by large bees (Xylocopa nigrita, X. varipes) and the ‘(large) vertical’ flowers by sunbirds. Conclusions The longevity of Marantaceae individuals and the omnipresence of their pollinators allowed the specialization to a given functional pollinator group. Intermediate ecological values, however, make occasional pollinator overlaps possible, indicating potential pathways of pollinator shifts. Similar radiation tendencies observed on other continents hint at similar selective pressures and evolutionary constraints. PMID:19443460

  11. Pollination

    PubMed Central

    Kühn, Nathalie; Arce-Johnson, Patricio

    2012-01-01

    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present results showing how quickly this effect is achieved. PMID:22301957

  12. Pollen-limited reproduction in blue oak: Implications for wind pollination in fragmented populations

    USGS Publications Warehouse

    Knapp, E.E.; Goedde, M.A.; Rice, K.J.

    2001-01-01

    Human activities are fragmenting forests and woodlands worldwide, but the impact of reduced tree population densities on pollen transfer in wind-pollinated trees is poorly understood. In a 4-year study, we evaluated relationships among stand density, pollen availability, and seed production in a thinned and fragmented population of blue oak (Quercus douglasii). Geographic coordinates were established and flowering interval determined for 100 contiguous trees. The number of neighboring trees within 60 m that released pollen during each tree's flowering period was calculated and relationships with acorn production explored using multiple regression. We evaluated the effects of female flower production, average temperature, and relative humidity during the pollination period, and number of pollen-producing neighbors on individual trees' acorn production. All factors except temperature were significant in at least one of the years of our study, but the combination of factors influencing acorn production varied among years. In 1996, a year of large acorn crop size, acorn production was significantly positively associated with number of neighboring pollen producers and density of female flowers. In 1997, 1998, and 1999, many trees produced few or no acorns, and significant associations between number of pollen-producing neighbors and acorn production were only apparent among moderately to highly reproductive trees. Acorn production by these reproductive trees in 1997 was significantly positively associated with number of neighboring pollen producers and significantly negatively associated with average relative humidity during the pollination period. In 1998, no analysis was possible, because too few trees produced a moderate to large acorn crop. Only density of female flowers was significantly associated with acorn production of moderately to highly reproductive trees in 1999. The effect of spatial scale was also investigated by conducting analyses with pollen producers

  13. Attraction of pollinators to atemoya (Magnoliales: Annonaceae) in Puerto Rico: A synergetic approach using multiple nitidulid lures

    USDA-ARS?s Scientific Manuscript database

    Atemoya, a cross between Annona squamosa and A. cherimola (Annonaceae), has the potential to be a major fruit crop in tropical and subtropical areas. A major setback to production throughout the world is low fruit-set due to inadequate visits by pollinators, typically beetles in the family Nitidulid...

  14. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    PubMed

    Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier

    2017-01-01

    Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.

  15. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    PubMed Central

    Vanden Ende, Wim; Honnay, Olivier

    2017-01-01

    Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide. PMID:28406910

  16. Organic Farming and Landscape Structure: Effects on Insect-Pollinated Plant Diversity in Intensively Managed Grasslands

    PubMed Central

    Power, Eileen F.; Kelly, Daniel L.; Stout, Jane C.

    2012-01-01

    Parallel declines in insect-pollinated plants and their pollinators have been reported as a result of agricultural intensification. Intensive arable plant communities have previously been shown to contain higher proportions of self-pollinated plants compared to natural or semi-natural plant communities. Though intensive grasslands are widespread, it is not known whether they show similar patterns to arable systems nor whether local and/or landscape factors are influential. We investigated plant community composition in 10 pairs of organic and conventional dairy farms across Ireland in relation to the local and landscape context. Relationships between plant groups and local factors (farming system, position in field and soil parameters) and landscape factors (e.g. landscape complexity) were investigated. The percentage cover of unimproved grassland was used as an inverse predictor of landscape complexity, as it was negatively correlated with habitat-type diversity. Intensive grasslands (organic and conventional) contained more insect-pollinated forbs than non-insect pollinated forbs. Organic field centres contained more insect-pollinated forbs than conventional field centres. Insect-pollinated forb richness in field edges (but not field centres) increased with increasing landscape complexity (% unimproved grassland) within 1, 3, 4 and 5km radii around sites, whereas non-insect pollinated forb richness was unrelated to landscape complexity. Pollination systems within intensive grassland communities may be different from those in arable systems. Our results indicate that organic management increases plant richness in field centres, but that landscape complexity exerts strong influences in both organic and conventional field edges. Insect-pollinated forb richness, unlike that for non-insect pollinated forbs, showed positive relationships to landscape complexity reflecting what has been documented for bees and other pollinators. The insect-pollinated forbs, their

  17. The genetic architecture of reproductive isolation in Louisiana irises: pollination syndromes and pollinator preferences.

    PubMed

    Martin, Noland H; Sapir, Yuval; Arnold, Michael L

    2008-04-01

    In animal-pollinated plants, pollinator preferences for divergent floral forms can lead to partial reproductive isolation. We describe regions of plant genomes that affect pollinator preferences for two species of Louisiana Irises, Iris brevicaulis and Iris fulva, and their artificial hybrids. Iris brevicaulis and I. fulva possess bee and bird-pollination syndromes, respectively. Hummingbirds preferred I. fulva and under-visited both I. brevicaulis and backcrosses toward this species. Lepidopterans preferred I. fulva and backcrosses toward I. fulva, but also under-visited I. brevicaulis and I. brevicaulis backcrosses. Bumblebees preferred I. brevicaulis and F1 hybrids and rarely visited I. fulva. Although all three pollen vectors preferred one or the other species, these preferences did not prevent visitation to other hybrid/parental classes. Quantitative trait locus (QTL) mapping, in reciprocal BC1 mapping populations, defined the genetic architecture of loci that affected pollinator behavior. We detected six and nine QTLs that affected pollinator visitation rates in the BCIb and BCIf mapping populations, respectively, with as many as three QTLs detected for each trait. Overall, this study reflects the possible role of quantitative genetic factors in determining (1) reproductive isolation, (2) the pattern of pollinator-mediated genetic exchange, and thus (3) hybrid zone evolution.

  18. Dynamics of an ant-plant-pollinator model

    NASA Astrophysics Data System (ADS)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  19. Orchid-pollinator interactions and potential vulnerability to biological invasion.

    PubMed

    Chupp, Adam D; Battaglia, Loretta L; Schauber, Eric M; Sipes, Sedonia D

    2015-08-17

    Mutualistic relationships between plants and their pollinators have played a major role in the evolution of biodiversity. While the vulnerability of these relationships to environmental change is a major concern, studies often lack a framework for predicting impacts from emerging threats (e.g. biological invasions). The objective of this study was to determine the reliance of Platanthera ciliaris (orange-fringed orchid) on Papilio palamedes (Palamedes swallowtail butterfly) for pollination and the relative availability of alternative pollinators. Recent declines of P. palamedes larval host plants due to laurel wilt disease (LWD) could endanger P. ciliaris populations that rely heavily on this butterfly for pollination. We monitored pollinator visitation and fruit set and measured nectar spur lengths of P. ciliaris flowers and proboscis lengths of its floral visitors in Jackson County, MS, USA. Papilio palamedes was the primary visitor with minimal visitation by Phoebis sennae (cloudless sulfur butterfly). Lengths of P. ciliaris nectar spurs were similar to proboscis lengths of both pollinator species. Fruit set was moderate with access to pollinators (55 ± 10.8 %), yet failed (0 %) when pollinators were excluded. Visitation increased with inflorescence size, but there was no such pattern in fruit set, indicating that fruit set was not limited by pollinator visitation within the range of visitation rates we observed. Our results are supported by historical data that suggest P. palamedes and P. sennae are important pollinators of P. ciliaris. Although P. sennae may provide supplemental pollination service, this is likely constrained by habitat preferences that do not always overlap with those of P. cilaris. Observed declines of P. palamedes due to LWD could severely limit the reproductive success and persistence of P. ciliaris and similar orchid species populations. This empirical-based prediction is among the first to document exotic forest pests and pathogens as

  20. Invasive species management restores a plant-pollinator mutualism in Hawaii

    USGS Publications Warehouse

    Hanna, Cause; Foote, David; Kremen, Claire

    2013-01-01

    1.The management and removal of invasive species may give rise to unanticipated changes in plant–pollinator mutualisms because they can alter the composition and functioning of plant–pollinator interactions in a variety of ways. To utilize a functional approach for invasive species management, we examined the restoration of plant–pollinator mutualisms following the large-scale removal of an invasive nectar thief and arthropod predator, Vespula pensylvanica. 2.We reduced V. pensylvanica populations in large plots managed over multiple years to examine the response of plant–pollinator mutualisms and the fruit production of a functionally important endemic Hawaiian tree species, Metrosideros polymorpha. To integrate knowledge of the invader's behaviour and the plant's mating system, we determined the efficacy of V. pensylvanica as a pollinator of M. polymorpha and quantified the dependence of M. polymorpha on animal pollination (e.g. level of self-compatibility and pollen limitation). 3.The reduction of V. pensylvanica in managed sites, when compared to unmanaged sites, resulted in a significant increase in the visitation rates of effective bee pollinators (e.g. introduced Apis mellifera and native Hylaeus spp.) and in the fruit production of M. polymorpha. 4.Apis mellifera, following the management of V. pensylvanica, appears to be acting as a substitute pollinator for M. polymorpha, replacing extinct or threatened bird and bee species in our study system. 5.Synthesis and applications. Fruit production of the native M. polymorpha was increased after management of the invasive pollinator predator V. pensylvanica; however, the main pollinators were no longer native but introduced. This research thus demonstrates the diverse impacts of introduced species on ecological function and the ambiguous role they play in restoration. We recommend incorporating ecological function and context into invasive species management as this approach may enable conservation

  1. Point and interval estimation of pollinator importance: a study using pollination data of Silene caroliniana.

    PubMed

    Reynolds, Richard J; Fenster, Charles B

    2008-05-01

    Pollinator importance, the product of visitation rate and pollinator effectiveness, is a descriptive parameter of the ecology and evolution of plant-pollinator interactions. Naturally, sources of its variation should be investigated, but the SE of pollinator importance has never been properly reported. Here, a Monte Carlo simulation study and a result from mathematical statistics on the variance of the product of two random variables are used to estimate the mean and confidence limits of pollinator importance for three visitor species of the wildflower, Silene caroliniana. Both methods provided similar estimates of mean pollinator importance and its interval if the sample size of the visitation and effectiveness datasets were comparatively large. These approaches allowed us to determine that bumblebee importance was significantly greater than clearwing hawkmoth, which was significantly greater than beefly. The methods could be used to statistically quantify temporal and spatial variation in pollinator importance of particular visitor species. The approaches may be extended for estimating the variance of more than two random variables. However, unless the distribution function of the resulting statistic is known, the simulation approach is preferable for calculating the parameter's confidence limits.

  2. The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields.

    PubMed

    da Silva, Cláudia Inês; Bordon, Natali Gomes; da Rocha Filho, Léo Correia; Garófalo, Carlos Alberto

    2012-12-01

    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production.

  3. Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop

    PubMed Central

    Cowling, Wallace A.; Stefanova, Katia T.; Beeck, Cameron P.; Nelson, Matthew N.; Hargreaves, Bonnie L. W.; Sass, Olaf; Gilmour, Arthur R.; Siddique, Kadambot H. M.

    2015-01-01

    We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield. PMID:25943522

  4. Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varieties and breeding systems.

    PubMed

    Carruthers, Jonathan M; Cook, Samantha M; Wright, Geraldine A; Osborne, Juliet L; Clark, Suzanne J; Swain, Jennifer L; Haughton, Alison J

    2017-08-01

    Oilseed rape (OSR; Brassica napus L.) is a major crop in temperate regions and provides an important source of nutrition to many of the yield-enhancing insect flower visitors that consume floral nectar. The manipulation of mechanisms that control various crop plant traits for the benefit of pollinators has been suggested in the bid to increase food security, but little is known about inherent floral trait expression in contemporary OSR varieties or the breeding systems used in OSR breeding programmes. We studied a range of floral traits in glasshouse-grown, certified conventional varieties of winter OSR to test for variation among and within breeding systems. We measured 24-h nectar secretion rate, amount, concentration and ratio of nectar sugars per flower, and sizes and number of flowers produced per plant from 24 varieties of OSR representing open-pollinated (OP), genic male sterility (GMS) hybrid and cytoplasmic male sterility (CMS) hybrid breeding systems. Sugar concentration was consistent among and within the breeding systems; however, GMS hybrids produced more nectar and more sugar per flower than CMS hybrid or OP varieties. With the exception of ratio of fructose/glucose in OP varieties, we found that nectar traits were consistent within all the breeding systems. When scaled, GMS hybrids produced 1.73 times more nectar resource per plant than OP varieties. Nectar production and amount of nectar sugar in OSR plants were independent of number and size of flowers. Our data show that floral traits of glasshouse-grown OSR differed among breeding systems, suggesting that manipulation and enhancement of nectar rewards for insect flower visitors, including pollinators, could be included in future OSR breeding programmes.

  5. Crop-emptying rate and the design of pesticide risk assessment schemes in the honey bee and wild bees (Hymenoptera: Apidae).

    PubMed

    Fournier, Alice; Rollin, Orianne; Le Féon, Violette; Decourtye, Axel; Henry, Mickaël

    2014-02-01

    Recent scientific literature and reports from official sanitary agencies have pointed out the deficiency of current pesticide risk assessment processes regarding sublethal effects on pollinators. Sublethal effects include troubles in learning performance, orientation skills, or mobility, with possible contribution to substantial dysfunction at population scale. However, the study of sublethal effects is currently limited by considerable knowledge gaps, particularly for the numerous pollinators other than the honey bee Apis mellifera L.--the traditional model for pesticide risk assessment in pollinators. Here, we propose to use the crop-emptying time as a rule of thumb to guide the design of oral exposure experiments in the honey bee and wild bees. The administration of contaminated sucrose solutions is typically followed by a fasting time lapse to allow complete assimilation before the behavioral tests. The fasting duration should at least encompass the crop-emptying time, because no absorption takes place in the crop. We assessed crop-emptying rate in fasted bees and how it relates 1) with sucrose solution concentration in the honey bee and 2) with body mass in wild bees. Fasting duration required for complete crop emptying in honey bees fed 20 microl of a 50% sucrose solution was nearly 2 h. Actual fasting durations are usually shorter in toxicological studies, suggesting incomplete crop emptying, and therefore partial assimilation of experimental solutions that could imply underestimation of sublethal effects. We also found faster crop-emptying rates in large wild bees compared with smaller wild bees, and suggest operative rules to adapt sublethal assessment schemes accordingly.

  6. Nectar secretion dynamic links pollinator behavior to consequences for plant reproductive success in the ornithophilous mistletoe Psittacanthus robustus.

    PubMed

    Guerra, T J; Galetto, L; Silva, W R

    2014-09-01

    The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright-coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand-, self- and cross-pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. On the success of a swindle: pollination by deception in orchids

    NASA Astrophysics Data System (ADS)

    Schiestl, Florian P.

    2005-06-01

    A standing enigma in pollination ecology is the evolution of pollinator attraction without offering reward in about one third of all orchid species. Here I review concepts of pollination by deception, and in particular recent findings in the pollination syndromes of food deception and sexual deception in orchids. Deceptive orchids mimic floral signals of rewarding plants (food deception) or mating signals of receptive females (sexual deception) to attract pollen vectors. In some food deceptive orchids, similarities in the spectral reflectance visible to the pollinator in a model plant and its mimic, and increased reproductive success of the mimic in the presence of the model have been demonstrated. Other species do not mimic specific model plants but attract pollinators with general attractive floral signals. In sexually deceptive orchids, floral odor is the key trait for pollinator attraction, and behaviorally active compounds in the orchids are identical to the sex pheromone of the pollinator species. Deceptive orchids often show high variability in floral signals, which may be maintained by negative frequency-dependent selection, since pollinators can learn and subsequently avoid common deceptive morphs more quickly than rare ones. The evolution of obligate deception in orchids seems paradoxical in the light of the typically lower fruit set than in rewarding species. Pollination by deception, however, can reduce self-pollination and encourage pollen flow over longer distances, thus promoting outbreeding. Although some food deceptive orchids are isolated through postzygotic reproductive barriers, sexually deceptive orchids lack post-mating barriers and species isolation is achieved via specific pollinator attraction. Recent population genetic and phylogenetic investigations suggest gene-flow within subgeneric clades, but pollinator-mediated selection may maintain species-specific floral traits.

  8. Pollinator-mediated natural selection in Penstemon digitalis.

    PubMed

    Parachnowitsch, Amy; Kessler, André

    2010-12-01

    Measuring the agents of natural selection is important because it allows us to understand not only which traits are expected to evolve but also why they will evolve. Natural selection by pollinators on floral traits is often assumed because in outcrossing animal-pollinated plants flowers are generally thought to function as advertisements of rewards directed at pollinators. We tested the role of bee pollinators in selection on Penstemon digitalis and found that pollinators were driving selection for larger and more flowers. However, what makes our publication unique is the additional information we gained from reviewing the few other studies that also directly tested whether pollinators were agents of selection on floral traits. As we would expect if pollinators are important agents of selection, selection on floral traits was significantly stronger when pollinators were present than when they were experimentally removed. Taken together, these results suggest that pollinators can be important drivers of selection in contemporary populations.

  9. Thrips pollination of Mesozoic gymnosperms.

    PubMed

    Peñalver, Enrique; Labandeira, Conrad C; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen

    2012-05-29

    Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110-105 million years ago, possibly considerably earlier.

  10. Thrips pollination of Mesozoic gymnosperms

    PubMed Central

    Peñalver, Enrique; Labandeira, Conrad C.; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen

    2012-01-01

    Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110–105 million years ago, possibly considerably earlier. PMID:22615414

  11. Feeding the enemy: loss of nectar and nectaries to herbivores reduces tepal damage and increases pollinator attraction in Iris bulleyana.

    PubMed

    Zhu, Ya-Ru; Yang, Min; Vamosi, Jana C; Armbruster, W Scott; Wan, Tao; Gong, Yan-Bing

    2017-08-01

    Floral nectar usually functions as a pollinator reward, yet it may also attract herbivores. However, the effects of herbivore consumption of nectar or nectaries on pollination have rarely been tested. We investigated Iris bulleyana , an alpine plant that has showy tepals and abundant nectar, in the Hengduan Mountains of SW China. In this region, flowers are visited mainly by pollen-collecting pollinators and nectarivorous herbivores. We tested the hypothesis that, in I. bulleyana , sacrificing nectar and nectaries to herbivores protects tepals and thus enhances pollinator attraction. We compared rates of pollination and herbivory on different floral tissues in plants with flowers protected from nectar and nectary consumption with rates in unprotected control plants. We found that nectar and nectaries suffered more herbivore damage than did tepals in natural conditions. However, the amount of tepal damage was significantly greater in the flowers with protected nectaries than in the controls; this resulted in significant differences in pollinator visitation rates. These results provide the first evidence that floral nectar and nectaries may be 'sacrificed' to herbivores, leading to reduced damage to other floral tissues that are more important for reproduction. © 2017 The Author(s).

  12. Predicting plant attractiveness to pollinators with passive crowdsourcing

    DOE PAGES

    Bahlai, Christie A.; Landis, Douglas A.

    2016-06-01

    observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.« less

  13. Predicting plant attractiveness to pollinators with passive crowdsourcing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahlai, Christie A.; Landis, Douglas A.

    observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.« less

  14. Predicting plant attractiveness to pollinators with passive crowdsourcing.

    PubMed

    Bahlai, Christie A; Landis, Douglas A

    2016-06-01

    observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes.

  15. Predicting plant attractiveness to pollinators with passive crowdsourcing

    PubMed Central

    Bahlai, Christie A.; Landis, Douglas A.

    2016-01-01

    observations were not associated with Internet images, but were slightly associated with BP. Our results suggest that passively crowdsourced image data can potentially be a useful screening tool to identify candidate plants for pollinator habitat restoration efforts directed at wild bee conservation. Increasing our understanding of the attractiveness of a greater diversity of plants increases the potential for more rapid and efficient research in creating pollinator-supportive landscapes. PMID:27429762

  16. Pollination biology of Eulophia alta (Orchidaceae) in Amazonia: effects of pollinator composition on reproductive success in different populations

    PubMed Central

    Jürgens, Andreas; Bosch, Simone R.; Webber, Antonio C.; Witt, Taina; Frame, Dawn; Gottsberger, Gerhard

    2009-01-01

    Background and Aims Spatial variation in pollinator composition and abundance is a well-recognized phenomenon. However, a weakness of many studies claiming specificity of plant–pollinator interactions is that they are often restricted to a single locality. The aim of the present study was to investigate pollinator effectiveness of the different flower visitors to the terrestrial orchid Eulophia alta at three different localities and to analyse whether differences in pollinator abundance and composition effect this plant's reproductive success. Methods Natural pollination was observed in vivo, and manipulative experiments were used to study the pollination biology and breeding system of E. alta at three sites near Manaus, Brazil. To gain a better understanding of the underlying mechanisms of pollinator attraction, nectar composition and secretion patterns were also studied, floral scent composition was analysed and a bioassay was conducted. Key Results Flower visitors, pollinator composition, pollinia transfer efficiency of particular pollinator species and natural fruit set differed among the investigated populations of E. alta. Flowers were self-compatible, partially autogamous and effectively pollinated by five bee species (four Centris species and Xylocopa muscaria). Visiting insects appeared to imbibe small amounts of hexose-rich nectar. Nectar sugar content was highest on the third day after flower opening. Floral fragrance analyses revealed 42 compounds, of which monoterpenes and benzenoids predominated. A bioassay using floral parts revealed that only floral tissue from the labellum chamber and labellum tip was attractive to flower visitors. Conclusions The data suggest that observed differences in reproductive success in the three populations cannot be explained by absolute abundance of pollinators alone. Due to behavioural patterns such as disturbance of effective pollinators on flowers by male Centris varia bees defending territory, pollinia transfer

  17. Private channels in plant-pollinator mutualisms

    PubMed Central

    Chen, Chun; Hossaert-McKey, Martine

    2010-01-01

    Volatile compounds often mediate plant-pollinator interactions, and may promote specialization in plant-pollinator relationships, notably through private channels of unusual compounds. Nevertheless, the existence of private channels, i.e., the potential for exclusive communication via unique signals and receptors, is still debated in the literature. Interactions between figs and their pollinating wasps offer opportunities for exploring this concept. Several experiments have demonstrated that chemical mediation is crucial in ensuring the encounter between figs and their species-specific pollinators. Indeed, chemical messages emitted by figs are notably species- and developmental stage-specific, making them reliable cues for the pollinator. In most cases, the species-specificity of wasp attraction is unlikely to result from the presence of a single specific compound. Nevertheless, a recent paper on the role of scents in the interaction between Ficus semicordata and its pollinating wasp Ceratosolen gravelyi showed that a single compound, 4-methylanisole, is the main signal compound in the floral scent, and is sufficient by itself to attract the obligate pollinator. Mainly focusing on these results, we propose here that a floral scent can act as a private channel, attracting only the highly specific pollinator. PMID:20484975

  18. Alfalfa (Medicago sativa L.) seed yield in relation to phosphorus fertilization and honeybee pollination.

    PubMed

    Al-Kahtani, Saad Naser; Taha, El-Kazafy Abdou; Al-Abdulsalam, Mohammed

    2017-07-01

    This investigation was conducted at the Agricultural and Veterinary Training and Research Station, King Faisal University, Al-Ahsa, Saudi Arabia, during the alfalfa growing season in 2014. The study aimed to evaluate the impact of phosphorus fertilization and honeybee pollination on alfalfa seed production. The experiment was divided into 9 treatments of open pollination, honeybee pollination, and non-pollination with three different levels (0, 300 or 600 kg P 2 O 5 /ha/year) of triple super phosphate. All vegetative growth attributes of Hassawi alfalfa were significantly higher in the non-insect pollination plots, while the yield and yield component traits were significantly higher with either open pollination or honeybee pollination in parallel with the increasing level of phosphorus fertilizer up to 600 kg P 2 O 5 /ha/year in light salt-affected loamy sand soils. There was no seed yield in Hassawi alfalfa without insect pollination. Therefore, placing honeybee colonies near the fields of Hassawi alfalfa and adding 600 kg P 2 O 5 /ha/year can increase seed production.

  19. Linking pollinator efficiency to patterns of pollen limitation: small bees exploit the plant-pollinator mutualism.

    PubMed

    Koski, Matthew H; Ison, Jennifer L; Padilla, Ashley; Pham, Angela Q; Galloway, Laura F

    2018-06-13

    Seemingly mutualistic relationships can be exploited, in some cases reducing fitness of the exploited species. In plants, the insufficient receipt of pollen limits reproduction. While infrequent pollination commonly underlies pollen limitation (PL), frequent interactions with low-efficiency, exploitative pollinators may also cause PL. In the widespread protandrous herb Campanula americana , visitation by three pollinators explained 63% of the variation in PL among populations spanning the range. Bumblebees and the medium-sized Megachile campanulae enhanced reproductive success, but small solitary bees exacerbated PL. To dissect mechanisms behind these relationships, we scored sex-specific floral visitation, and the contributions of each pollinator to plant fitness using single flower visits. Small bees and M. campanulae overvisited male-phase flowers, but bumblebees frequently visited female-phase flowers. Fewer bumblebee visits were required to saturate seed set compared to other bees. Scaling pollinator efficiency metrics to populations, small bees deplete large amounts of pollen due to highly male-biased flower visitation and infrequent pollen deposition. Thus, small bees reduce plant reproduction by limiting pollen available for transfer by efficient pollinators, and appear to exploit the plant-pollinator mutualism, acting as functional parasites to C. americana It is therefore unlikely that small bees will compensate for reproductive failure in C. americana when bumblebees are scarce. © 2018 The Author(s).

  20. Pollination effects on antioxidant content of Perilla frutescens seeds analysed by NMR spectroscopy.

    PubMed

    Ferrazzi, Paola; Vercelli, Monica; Chakir, Amina; Romane, Abderrahmane; Mattana, Monica; Consonni, Roberto

    2017-12-01

    The effects of Perilla frutescens pollination on the content of seed antioxidants were analysed by agronomical and pollination trials, comparing seeds produced from bagged plants in 2013 (A) to prevent access to pollinating insects, and seeds from open-pollinated plants in 2013 (B) and 2015 (C). The seeds of open-pollinated plants were significantly more numerous and heavier than those of self-pollinated plants. 1 H NMR seed analysis showed a higher presence of phenolic compounds in open-pollinated seeds, mainly rosmarinic acid and flavonoids, apigenin and luteolin. Flavonoids were present in the glucosylated form in seeds (A) and (C), and in the aglycone form in seeds from (B) plants. Saturated and unsaturated fatty acids (palmitic, linoleic and linolenic) were more abundant in seeds from self-pollinated flowers. Pollination performed almost exclusively by the honeybee notably increased the antioxidant content in perilla seeds and gave rise to a reduction in the fatty acid content.

  1. Nectar supplementation changes pollinator behaviour and pollination mode in Pedicularis dichotoma: implications for evolutionary transitions.

    PubMed

    Tong, Ze-Yu; Wang, Xiang-Ping; Wu, Ling-Yun; Huang, Shuang-Quan

    2018-06-07

    Gain or loss of floral nectar, an innovation in floral traits, has occurred in diverse lineages of flowering plants, but the causes of reverse transitions (gain of nectar) remain unclear. Phylogenetic studies show multiple gains and losses of floral nectar in the species-rich genus Pedicularis. Here we explore how experimental addition of nectar to a supposedly nectarless species, P. dichotoma, influences pollinator foraging behaviour. The liquid (nectar) at the base of the corolla tube in P. dichotoma was investigated during anthesis. Sugar components were measured by high-performance liquid chromatography. To understand evolutionary transitions of nectar, artificial nectar was added to corolla tubes and the reactions of bumble-bee pollinators to extra nectar were examined. A quarter of unmanipulated P. dichotoma plants contained measurable nectar, with 0.01-0.49 μL per flower and sugar concentrations ranging from 4 to 39 %. The liquid surrounding the ovaries in the corolla tubes was sucrose-dominant nectar, as in two sympatric nectariferous Pedicularis species. Bumble-bees collected only pollen from control (unmanipulated) flowers of P. dichotoma, adopting a sternotribic pollination mode, but switched to foraging for nectar in manipulated (nectar-supplemented) flowers, adopting a nototribic pollination mode as in nectariferous species. This altered foraging behaviour did not place pollen on the ventral side of the bees, and sternotribic pollination also decreased. Our study is the first to quantify variation in nectar production in a supposedly 'nectarless' Pedicularis species. Flower manipulations by adding nectar suggested that gain (or loss) of nectar would quickly result in an adaptive behavioural shift in the pollinator, producing a new location for pollen deposition and stigma contact without a shift to other pollinators. Frequent gains of nectar in Pedicularis species would be beneficial by enhancing pollinator attraction in unpredictable pollination

  2. Breeding system and pollination of two closely related bamboo species.

    PubMed

    Chen, Ling-Na; Cui, Yong-Zhong; Wong, Khoon-Meng; Li, De-Zhu; Yang, Han-Qi

    2017-05-01

    An understanding of the breeding systems and pollination of agriculturally important plants is critical to germplasm improvement. Breeding system characteristics greatly influence the amount and spatial distribution of genetic variation within and amongst populations and influence the rarity and extinction vulnerability of plant species. Many woody bamboos have a long vegetative period (20-150 years) followed by gregarious monocarpy. Relatively, little is known about their pollination and breeding systems. We studied these characteristics in wild Dendrocalamus membranaceus populations and cultivated Dendrocalamus sinicus populations distributed in the Yunnan Province of China. Floral morphology, flower visitors and breeding system were studied from 2013 to 2015. Both bamboos were protogynous, but flowering periods of florets overlapped providing opportunities for self-pollination amongst florets, especially in D. membranaceus . There was no agamospermy in either species. Seed set of D. sinicus was low (0.42 ± 0.42 %) under natural pollination but higher (8.89 ± 2.55 %) after artificial xenogamy. Seed set of D. membranaceus was higher (7.49 ± 0.82 %) in mass flowering populations and 2.14 ± 0.25 % in sporadically flowering populations. The Asian honeybee Apis cerana could provide cross-pollination of D. membranaceus and D. sinicus , and flower visitation peaked at 1000-1200 h. Pollination limitation due to lack of pollinators or pollen was detected in the cultivated populations of D. sinicus and sporadically flowering populations of D. membranaceus . Pollination limitation was not obvious within mass flowering populations. Hand pollination could significantly increase seed set of these two bamboo species. Dendrocalamus membranaceus and D. sinicus were self-compatible and have a mixed-mating system with outcrossing being pre-dominant. Their seed production was limited by the quantity of pollen and pollinator activity. Honeybees were

  3. Is floral diversification associated with pollinator divergence? Flower shape, flower colour and pollinator preference in Chilean Mimulus.

    PubMed

    Cooley, A M; Carvallo, G; Willis, J H

    2008-04-01

    Adaptation to different pollinators is thought to drive divergence in flower colour and morphology, and may lead to interspecific reproductive isolation. Floral diversity was tested for association with divergent pollinator preferences in a group of four closely related wildflower species: the yellow-flowered Mimulus luteus var. luteus and the red-pigmented M. l. variegatus, M. naiandinus and M. cupreus. Patterns of pollinator visitation were evaluated in natural plant populations in central Chile, including both single-species and mixed-species sites. Floral anthocyanin pigments were identified, and floral morphology and nectar variation were quantified in a common garden experiment using seeds collected from the study sites. Mimulus l. luteus, M. l. variegatus and M. naiandinus are morphologically similar and share a single generalist bumblebee pollinator, Bombus dahlbomii. Mimulus cupreus differs significantly from the first three taxa in corolla shape as well as nectar characteristics, and had far fewer pollinator visits. This system shows limited potential for pollinator-mediated restriction of gene flow as a function of flower colour, and no evidence of transition to a novel pollinator. Mimulus cupreus may experience reduced interspecific gene flow due to a lack of bumblebee visitation, but not because of its red pigmentation: rare yellow morphs are equally undervisited by pollinators. Overall, the results suggest that factors other than pollinator shifts may contribute to the maintenance of floral diversity in these Chilean Mimulus species.

  4. Wildlife-friendly farming increases crop yield: evidence for ecological intensification.

    PubMed

    Pywell, Richard F; Heard, Matthew S; Woodcock, Ben A; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M

    2015-10-07

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50-60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained--and, indeed, enhanced for some crops--despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. © 2015 The Authors.

  5. Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations.

    PubMed

    Geib, Jennifer C; Galen, Candace

    2012-07-01

    Partner abundance affects costs and benefits in obligate mutualisms, but its role in facultative partnerships is less clear. We address this gap in a pollination web consisting of two clovers (Trifolium) that differ in specialization on a bumble bee pollinator Bombus balteatus. We examine how pollination niche breadth affects plant responses to pollinator abundance, comparing early-flowering (specialized) and late-flowering (generalized) cohorts of T. parryi and early T. parryi to T. dasyphyllum, a pollination generalist. Co-pollinators disrupt the link between B. halteatus visitation and pollination rate for both clovers. Only for early-flowering T. parryi do visitation, pollination, and seed set increase with density of B. balteatus. Bumble bee density also alters timing of seed germination in T. parryi, with seeds from plants receiving augmented B. balteatus germinating sooner than seeds of open-pollinated counterparts. Benefits saturate at intermediate bumble bee densities. Despite strong effects of B. balteatus density on individual plant fitness components, population models suggest little impact of B. balteatus density on lamda in T. parryi or T. dasyphyllum. Findings show that functional redundancy in a pollinator guild mediates host-plant responses to partner density. Unexpected effects of pollinator density on life history schedule have implications for recruitment under pollinator decline.

  6. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae

    PubMed Central

    Wang, Ruohan; Zhang, Zhixiang

    2015-01-01

    Floral thermogenesis plays a crucial role in pollination biology, especially in plant–pollinator interactions. We have recently explored how thermogenesis is related to pollinator activity and odour release in Magnolia sprengeri. By analyzing flower temperatures, emission of volatiles, and insect visitation, we found that floral blends released during pistillate and staminate stages were similar and coincided with sap beetle visitation. Thus, odour mimicry of staminate-stage flowers may occur during the pistillate stage and may be an adaptive strategy of Magnolia species to attract pollinators during both stages, ensuring successful pollination. In addition to the biological significance of floral thermogenesis in Magnolia species, we explored the underlying regulatory mechanisms via profiling miRNA expression in M. denudata flowers during thermogenic and non-thermogenic stages. We identified 17 miRNAs that may play regulatory roles in floral thermogenesis. Functional annotation of their target genes indicated that these miRNAs regulate floral thermogenesis by influencing cellular respiration and light reactions. These findings increase our understanding of plant–pollinator interactions and the regulatory mechanisms in thermogenic plants. PMID:26844867

  7. Pollinators: Downward Trends and Lofty Goals

    EPA Science Inventory

    Pollinators are essential to natural and managed landscapes. By providing critical pollination services, bees, birds, beetles, butterflies, bats and other animals enhance biodiversity and contribute to production of many nutritious foods. Honey bees alone pollinate 90 commercia...

  8. Spatial heterogeneity and the distribution of bromeliad pollinators in the Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Varassin, Isabela Galarda; Sazima, Marlies

    2012-08-01

    Interactions between plants and their pollinators are influenced by environmental heterogeneity, resulting in small-scale variations in interactions. This may influence pollinator co-existence and plant reproductive success. This study, conducted at the Estação Biológica de Santa Lúcia (EBSL), a remnant of the Atlantic Forest in southeastern Brazil, investigated the effect of small-scale spatial variations on the interactions between bromeliads and their pollinators. Overall, hummingbirds pollinated 19 of 23 bromeliad species, of which 11 were also pollinated by bees and/or butterflies. However, spatial heterogeneity unrelated to the spatial location of plots or bromeliad species abundance influenced the presence of pollinators. Hummingbirds were the most ubiquitous pollinators at the high-elevation transect, with insect participation clearly declining as transect elevation increased. In the redundancy analysis, the presence of the hummingbird species Phaethornis eurynome, Phaethornis squalidus, Ramphodon naevius, and Thalurania glaucopis, and the butterfly species Heliconius erato and Heliconius nattereri in each plot was correlated with environmental factors such as bromeliad and tree abundance, and was also correlated with horizontal diversity. Since plant-pollinator interactions varied within the environmental mosaics at the study site, this small-scale environmental heterogeneity may relax competition among pollinators, and may explain the high diversity of bromeliads and pollinators generally found in the Atlantic Forest.

  9. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review

    PubMed Central

    MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M

    2015-01-01

    1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested. PMID:25914438

  10. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review.

    PubMed

    MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M

    2015-06-01

    1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.

  11. A pollinators' eye view of a shelter mimicry system.

    PubMed

    Vereecken, Nicolas J; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-06-01

    'Human-red' flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography-mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic ('bee-black') protective shelters used preferentially by male solitary bees, and that pollinator visits are presumably not the result of an odour-based sexual stimulation or

  12. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  13. The physics of pollinator attraction.

    PubMed

    Moyroud, Edwige; Glover, Beverley J

    2017-10-01

    Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Pollinator community structure and sources of spatial variation in plant--pollinator interactions in Clarkia xantiana ssp. xantiana.

    PubMed

    Moeller, David A

    2005-01-01

    The structure of diverse floral visitor assemblages and the nature of spatial variation in plant-pollinator interactions have important consequences for floral evolution and reproductive interactions among pollinator-sharing plant species. In this study, I use surveys of floral visitor communities across the geographic range of Clarkia xantiana ssp. xantiana (hereafter C. x. xantiana) (Onagraceae) to examine the structure of visitor communities, the specificity of the pollination system, and the role of variation in the abiotic vs. biotic environment in contributing to spatial variation in pollinator abundance and community composition. Although the assemblage of bee visitors to C. x. xantiana is very diverse (49 species), few were regular visitors and likely to act as pollinators. Seventy-four percent of visitor species accounted for only 11% of total visitor abundance and 69% were collected in three or fewer plant populations (of ten). Of the few reliable visitors, Clarkia pollen specialist bees were the most frequent visitors, carried more Clarkia pollen compared to generalist foragers, and were less likely to harbor foreign pollen. Overall, the core group of pollinators was obscured by high numbers of incidental visitors that are unlikely to contribute to pollination. In a geographic context, the composition of specialist pollinator assemblages varied considerably along the abiotic gradient spanning the subspecies' range. However, the overall abundance of specialist pollinators in plant populations was not influenced by the broad-scale abiotic gradient but strongly affected by local plant community associations. C. x. xantiana populations sympatric with pollinator-sharing congeners were visited twice as often by specialists compared to populations occurring alone. These positive indirect interactions among plant species may promote population persistence and species coexistence by enhancing individual reproductive success.

  15. Olive Fertility as Affected by Cross-Pollination and Boron

    PubMed Central

    Spinardi, A.; Bassi, D.

    2012-01-01

    Self-compatibility of local olive (Olea europaea L.) accessions and of the cultivars “Frantoio” and “Leccino” was investigated in Garda Lake area, northern Italy. Intercompatibility was determined for “Casaliva,” “Frantoio,” and “Leccino,” as well as the effects of foliar Boron applications (0, 262, 525, or 1050 mg·L−1) applied about one week before anthesis on fruit set, shotberry set, and on in vitro pollen germination. Following self-pollination, fruit set was significantly lower and the occurrence of shot berries significantly higher than those obtained by open pollination. No significant effect of controlled cross-pollination over self-pollination on fruit set and shotberry set was detectable. B treatments increased significantly fruit set in “Frantoio” and “Casaliva” but not in “Leccino.” B sprays had no effect on shotberry set, suggesting that these parthenocarpic fruits did not strongly compete for resources allocation and did not take advantage of increased B tissue levels. Foliar B application enhanced in vitro pollen germination, and the optimal level was higher for pollen germination than for fruit set. Our results highlight the importance of olive cross pollination for obtaining satisfactory fruit set and the beneficial effect of B treatments immediately prior to anthesis, possibly by affecting positively the fertilisation process and subsequent plant source-sink relations linked to fruitlet retention. PMID:22919310

  16. Climate-associated phenological advances in bee pollinators and bee-pollinated plants.

    PubMed

    Bartomeus, Ignasi; Ascher, John S; Wagner, David; Danforth, Bryan N; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-12-20

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated.

  17. Obligate pollination mutualism in Breynia (Phyllanthaceae): further documentation of pollination mutualism involving Epicephala moths (Gracillariidae).

    PubMed

    Kawakita, Atsushi; Kato, Makoto

    2004-09-01

    This paper reports obligate seed-parasitic pollination mutualisms in Breynia vitis-idea and B. fruticosa (Phyllanthaceae). The genus Breynia is closely related to Glochidion and Gomphidium (a subgenus of Phyllanthus), in which pollination by species-specific, seed-parasitic Epicephala moths (Gracillariidae) have been previously reported. At night, female Epicephala moths carrying numerous pollen grains on their proboscises visited female flowers of B. vitis-idea, actively pollinated flowers, and each subsequently laid an egg. Examination of field-collected flowers indicated that pollinated flowers of B. vitis-idea and B. fruticosa almost invariably had Epicephala eggs, suggesting that these moths are the primary pollinators of the two species. Single Epicephala larvae consumed a fraction of seeds within developing fruit in B. vitis-idea and all seeds in B. fruticosa. However, some of the fruits were left untouched, and many of these had indication of moth oviposition, suggesting that egg/larval mortality of Epicephala moths is an important factor assuring seed set in these plants. The overall similarity of the specialized floral structure among Breynia species may indicate that this pollination system is fairly widespread within the genus.

  18. Phenotypic selection varies with pollination intensity across populations of Sabatia angularis.

    PubMed

    Emel, Sarah L; Franks, Steven J; Spigler, Rachel B

    2017-07-01

    Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Indirect competition for pollinators is weak compared to direct resource competition: pollination and performance in the face of an invader.

    PubMed

    Palladini, Jennifer D; Maron, John L

    2013-08-01

    Invasive plants have the potential to reduce native plant abundance through both direct and indirect interactions. Direct interactions, such as competition for soil resources, and indirect interactions, such as competition for shared pollinators, have been shown to influence native plant performance; however, we know much less about how these interactions influence native plant abundance in the field. While direct competitive interactions are often assumed to drive declines in native abundance, an evaluation of their influence relative to indirect mechanisms is needed to more fully understand invasive plant impacts. We quantified the direct effects of resource competition by the invasive perennial forb, Euphorbia esula (Euphorbiaceae), on the recruitment, subsequent performance, and ultimate adult abundance of the native annual, Clarkia pulchella (Onagraceae). We contrast these direct effects with those that indirectly resulted from competition for shared pollinators. Although E. esula dramatically reduced pollinator visitation to C. pulchella, plants were only weakly pollen-limited. Pollen supplementation increased the number of seeds per fruit from 41.28 to 46.38. Seed addition experiments revealed that the impacts of ameliorating pollen limitation only increased potential recruitment by 12.3 %. In contrast, seed addition experiments that ameliorated direct competition with E. esula resulted in an increase in potential future recruitment of 574 %. Our results show that, while the indirect effects of competition for pollinators can influence plant abundance, its effects are dwarfed by the magnitude of direct effects of competition for resources.

  20. Ecology and evolution of plant–pollinator interactions

    PubMed Central

    Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.

    2009-01-01

    Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881

  1. Ecology and evolution of plant-pollinator interactions.

    PubMed

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  2. The reproductive strategy of a pollinator-limited Himalayan plant, Incarvillea mairei (Bignoniaceae)

    PubMed Central

    2013-01-01

    Background Plants may adapt to alpine habitats by specialization in the reproductive strategy and functional aspects of their flowers and pollination systems. Alpine habitats reduce the opportunities for cross-pollination in a relatively high proportion of alpine plant species, and self-pollination may be favored in these adverse conditions. Here, we investigated the mating system and pollination of Incarvillea mairei, a perennial Himalayan herb typically found at altitudes between 3000 and 4500 m. Results Analyses of floral morphology, observation of plant-pollinator interactions, and hand pollination experiments were conducted in three natural populations. Outcrossing rates and effective numbers of pollen donors were assessed in 45 open-pollinated families by using progeny analysis based on seven microsatellite markers. Incarvillea mairei displayed a set of apparently specialized floral traits, the stigma is sensitive to touch and close immediately and its reopening allows a second opportunity for the receipt of pollen. The species is fully self-compatible but employs a predominantly outcrossing mating system according to parentage analysis (tm > 0.9). Fruit set was low (26.3%), whereas seed set was high (67.2%), indicating that this species suffers pollinator limitation. Its main effective pollinator was Halictus sp., and visitation frequency was low. Conclusions Floral features such as having a sensitive stigma and anther-prongs, in conjunction with pollinator behavior, function together contributing to a set of unique reproductive adaptations that enhance outcrossing success. The increased floral longevity and high pollination efficiency operated as compensatory mechanisms to counteract low pollinator visitation frequency. PMID:24289097

  3. Resource reallocation patterns within Sagittaria trifolia inflorescences following differential pollination.

    PubMed

    Dai, Can; Luo, Wen-Jie; Gong, Yan-Bing; Liu, Fan; Wang, Zheng-Xiang

    2018-04-30

    Understanding resource allocation to reproduction, a key factor in life history tradeoffs, has long intrigued plant ecologists. Despite the recognized importance of understanding the movement of resources among flowers following variable pollination, the patterns of resource reallocation to plant reproductive organs have not been thoroughly addressed. In this study, we aimed to empirically explore how resources redistribute within inflorescences in response to differential pollination intensities. Using a common herb, Sagittaria trifolia, we conducted supplemental and controlled pollination for single, some, or all flowers in simple and complex inflorescences, and compared their resulting fruiting probabilities, seed production, and average seed masses. Pollen supplementation of a single flower significantly increased its fruiting probability; however, the same manipulation of an inflorescence did not increase its overall reproduction. Single pollen-supplemented flowers had a higher percentage fruit set than inflorescences receiving supplemental pollination. In complex inflorescences, supplemental pollination had no effect on the reproductive success of flowers on the lateral or main branches. We provided evidence of resource reallocation from controlled to pollen-supplemented flowers in simple inflorescences; however, resources were unlikely to be reallocated between the main and lateral branches in the complex inflorescences, suggesting that flowering branches represent integrated physiological units in S. trifolia. The results also demonstrated that single-flower supplemental pollination would exaggerate pollen limitation and lead to a biased understanding of a plant's reproductive status. © 2018 Botanical Society of America.

  4. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    PubMed

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  5. Plant pollinator networks along a gradient of urbanisation.

    PubMed

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies

  6. Plant Pollinator Networks along a Gradient of Urbanisation

    PubMed Central

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Background Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Methodology/Principal Findings Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits (“open flowers” and “tubular flowers”). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Conclusions/Significance Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of

  7. Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients.

    PubMed

    Zhao, Zhi-Gang; Wang, Yi-Ke

    2015-01-01

    Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators.

  8. Persistence of pollination mutualisms in the presence of ants.

    PubMed

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  9. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops.

    PubMed

    Thorburn, Peter J; Biggs, Jody S; Palmer, Jeda; Meier, Elizabeth A; Verburg, Kirsten; Skocaj, Danielle M

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N) -1 , where yields were low (i.e., <50 Mg ha -1 ) and N inputs were high, to >5 Mg cane (kg N) -1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting

  10. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops

    PubMed Central

    Thorburn, Peter J.; Biggs, Jody S.; Palmer, Jeda; Meier, Elizabeth A.; Verburg, Kirsten; Skocaj, Danielle M.

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions

  11. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    PubMed

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.

  12. Recent introduction of an allodapine bee into Fiji: A new model system for understanding biological invasions by pollinators.

    PubMed

    Groom, Scott V C; Tuiwawa, Marika V; Stevens, Mark I; Schwarz, Michael P

    2015-08-01

    Morphology-based studies have suggested a very depauperate bee fauna for islands in the South West Pacific, and recent genetic studies since have indicated an even smaller endemic fauna with many bee species in this region resulting from human-aided dispersal. These introduced species have the potential to both disrupt native pollinator suites as well as augment crop pollination, but for most species the timings of introduction are unknown. We examined the distribution and nesting biology of the long-tongued bee Braunsapis puangensis that was first recorded from Fiji in 2007. This bee has now become widespread in Fiji and both its local abundance and geographical range are likely to increase dramatically. The impacts of this invasion are potentially enormous for agriculture and native ecosystems, but they also provide opportunities for understanding how social insect species adapt to new environments. We outline the major issues associated with this recent invasion and argue that a long-term monitoring study is needed. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  13. Nectary tracks as pollinator manipulators: The pollination ecology of Swertia bimaculata (Gentianaceae).

    PubMed

    Wang, Shuai; Fu, Wen-Long; Du, Wei; Zhang, Qi; Li, Ya; Lyu, Yu-Shu; Wang, Xiao-Fan

    2018-03-01

    Floral nectaries are closely associated with biotic pollination, and the nectar produced by corolla nectaries is generally enclosed in floral structures. Although some Swertia spp. (Gentianaceae), including S. bimaculata , evolved a peculiar form of corolla nectaries (known as "gland patches") arranged in a conspicuous ring on the rotate corolla and that completely expose their nectar, little is known about the pollination of these plants. Two hypotheses were made concerning the possible effects of gland patches: visual attraction and visitor manipulation. The floral traits, mating system, and insect pollination of S. bimaculata were examined, and the pollination effects of gland patches were evaluated. A comparative study was made using Swertia kouitchensis , a species with fimbriate nectaries. Swertia bimaculata flowers were protandrous, with obvious stamen movement leading to herkogamy in the female phase and to a significant reduction in nectary-anther distance. The species is strongly entomophilous and facultatively xenogamous. The daily reward provided per flower decreased significantly after the male phase. The most effective pollinators were large dipterans, and the visiting proportion of Diptera was significantly higher in S. bimaculata than in S. kouitchensis . Most visitors performed "circling behavior" in S. bimaculata flowers. Removing or blocking the nectaries caused no reduction in visiting frequency but a significant reduction in visit duration, interrupting the circling behavior. The circling behavior was encouraged by nectar abundance and promoted pollen dispersal. Visitor species with small body size had little chance to contact the anthers or stigma, revealing a filtration effect exerted by the floral design. These results rejected the "visual attraction" hypothesis and supported the "visitor manipulation" hypothesis. The nectary whorl within a flower acted like a ring-shaped track that urged nectar foragers to circle on the corolla, making

  14. Pollination: sexual mimicry abounds.

    PubMed

    Schiestl, Florian P

    2010-12-07

    Why do plants mimic female insects to attract males for pollination? A new study gives insights into the advantages of sexual mimicry and documents this pollination system for the first time outside the orchid family, in a South African daisy. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Wildlife-friendly farming increases crop yield: evidence for ecological intensification

    PubMed Central

    Pywell, Richard F.; Heard, Matthew S.; Woodcock, Ben A.; Hinsley, Shelley; Ridding, Lucy; Nowakowski, Marek; Bullock, James M.

    2015-01-01

    Ecological intensification has been promoted as a means to achieve environmentally sustainable increases in crop yields by enhancing ecosystem functions that regulate and support production. There is, however, little direct evidence of yield benefits from ecological intensification on commercial farms growing globally important foodstuffs (grains, oilseeds and pulses). We replicated two treatments removing 3 or 8% of land at the field edge from production to create wildlife habitat in 50–60 ha patches over a 900 ha commercial arable farm in central England, and compared these to a business as usual control (no land removed). In the control fields, crop yields were reduced by as much as 38% at the field edge. Habitat creation in these lower yielding areas led to increased yield in the cropped areas of the fields, and this positive effect became more pronounced over 6 years. As a consequence, yields at the field scale were maintained—and, indeed, enhanced for some crops—despite the loss of cropland for habitat creation. These results suggested that over a 5-year crop rotation, there would be no adverse impact on overall yield in terms of monetary value or nutritional energy. This study provides a clear demonstration that wildlife-friendly management which supports ecosystem services is compatible with, and can even increase, crop yields. PMID:26423846

  16. Effects of non-native Melilotus albus on pollination and reproduction in two boreal shrubs.

    PubMed

    Spellman, Katie V; Schneller, Laura C; Mulder, Christa P H; Carlson, Matthew L

    2015-10-01

    The establishment of abundantly flowered, highly rewarding non-native plant species is expected to have strong consequences for native plants through altered pollination services, particularly in boreal forest where the flowering season is short and the pollinator pool is small. In 18 boreal forest sites, we added flowering Melilotus albus to some sites and left some sites as controls in 2 different years to test if the invasive plant influences the pollination and reproductive success of two co-flowering ericaceous species: Vaccinium vitis-idaea and Rhododendron groenlandicum. We found that M. albus increased the pollinator diversity and tended to increase visitation rates to the focal native plant species compared to control sites. Melilotus albus facilitated greater seed production per berry in V. vitis-idaea when we added 120 plants compared to when we added 40 plants or in control sites. In R. groenlandicum, increasing numbers of M. albus inflorescences lowered conspecific pollen loads and percentage of flowers pollinated; however, no differences in fruit set were detected. The number of M. albus inflorescences had greater importance in explaining R. groenlandicum pollination compared to other environmental variables such as weather and number of native flowers, and had greater importance in lower quality black spruce sites than in mixed deciduous and white spruce sites for explaining the percentage of V. vitis-idaea flowers pollinated. Our data suggest that the identity of new pollinators attracted to the invaded sites, degree of shared pollinators between invasive and native species, and variation in resource limitation among sites are likely determining factors in the reproductive responses of boreal native plants in the presence of an invasive.

  17. Increasing diveristy of arbuscular mycorrhizal fungi in agroecosystems using specific cover crops

    USDA-ARS?s Scientific Manuscript database

    Fall-planted cover crops provide a plant host for obligate symbiotic arbuscular mycorrhizal fungi (AMF) during otherwise fallow periods and thus may increase AMF numbers in agroecosystems. Increased AMF numbers should increase mycorrhizal colonization of the subsequent cash crops, which has been li...

  18. A pollinators' eye view of a shelter mimicry system

    PubMed Central

    Vereecken, Nicolas J.; Dorchin, Achik; Dafni, Amots; Hötling, Susann; Schulz, Stefan; Watts, Stella

    2013-01-01

    Background and Aims ‘Human-red’ flowers are traditionally considered to be rather unpopular with bees, yet some allogamous species in the section Oncocyclus (genus Iris, Iridaceae) have evolved specialized interactions with their pollinators, a narrow taxonomic range of male solitary bees. The dark-red, tubular flowers of these irises are nectarless but provide protective shelters (i.e. a non-nutritive form of reward) primarily to male solitary bees (Apidae, Eucerini) that pollinate the flowers while looking for a shelter. An earlier study on orchids suggested that species pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of different n-alkenes (unsaturated cuticular hydrocarbons). Whether or not this also applies to the Oncocyclus irises and whether pollinators are attracted by specific colours or scents of these flowers is unknown. Methods Using Iris atropurpurea, recording of pollinator preferences for shelters with different spatial parameters was combined with analyses of floral colours (by spectrophotometry) and scents (by gas chromatography–mass spectrometry) to test the hypotheses that (a) pollinators significantly prefer floral tunnels facing the rising sun (floral heat-reward hypothesis), and that (b) flowers pollinated predominantly by male solitary bees produce significantly larger amounts and larger numbers of unsaturated cuticular hydrocarbons (n-alkenes) in their floral scent (preadaptation to sexual-deception hypothesis). Key Results Male bees do not significantly prefer shelters facing the rising sun or with the presence of high absolute/relative amounts and numbers of n-alkenes in the floral scent. Conclusions The results suggest that the flowers of I. atropurpurea probably evolved by pollinator-mediated selection acting primarily on floral colours to mimic large achromatic (‘bee-black’) protective shelters used preferentially by male solitary bees, and that pollinator visits are

  19. Selection by Pollinators on Floral Traits in Generalized Trollius ranunculoides (Ranunculaceae) along Altitudinal Gradients

    PubMed Central

    Zhao, Zhi-Gang; Wang, Yi-Ke

    2015-01-01

    Abundance and visitation of pollinator assemblages tend to decrease with altitude, leading to an increase in pollen limitation. Thus increased competition for pollinators may generate stronger selection on attractive traits of flowers at high elevations and cause floral adaptive evolution. Few studies have related geographically variable selection from pollinators and intraspecific floral differentiation. We investigated the variation of Trollius ranunculoides flowers and its pollinators along an altitudinal gradient on the eastern Qinghai-Tibet Plateau, and measured phenotypic selection by pollinators on floral traits across populations. The results showed significant decline of visitation rate of bees along altitudinal gradients, while flies was unchanged. When fitness is estimated by the visitation rate rather than the seed number per plant, phenotypic selection on the sepal length and width shows a significant correlation between the selection strength and the altitude, with stronger selection at higher altitudes. However, significant decreases in the sepal length and width of T. ranunculoides along the altitudinal gradient did not correspond to stronger selection of pollinators. In contrast to the pollinator visitation, mean annual precipitation negatively affected the sepal length and width, and contributed more to geographical variation in measured floral traits than the visitation rate of pollinators. Therefore, the sepal size may have been influenced by conflicting selection pressures from biotic and abiotic selective agents. This study supports the hypothesis that lower pollinator availability at high altitude can intensify selection on flower attractive traits, but abiotic selection is preventing a response to selection from pollinators. PMID:25692295

  20. The safety of thiamethoxam to pollinating bumble bees (Bombus terrestris L.) when applied to tomato plants through drip irrigation.

    PubMed

    Alarcón, A L; Cánovas, M; Senn, R; Correia, R

    2005-01-01

    Thiamethoxam, mainly sold under the trademark of Actara, is a neonicotinoid widely used in covered vegetables for the control of aphids and whiteflies. In these crops, and particularly in covered tomatoes, bumble-bees are used for cross-pollination as an alternative to labour intensive manual techniques. In this study, made on tomatoes grown in separated greenhouse plots in Murcia, Southern Spain, thiamethoxam was applied through drip irrigation at a rate of 200 g ai/ha, and as a split application of the same rate, to evaluate the effects on pollinating bumble bees compared to a foliar application of a toxic standard. The results showed that the toxic foliar standard had a clear effect on the pollination of tomato flowers, declining to zero pollination two weeks after application, whereas both the single and split drip irrigation applications of Actara had no effect on pollination when compared to the control plots. The count of dead adults and larvae did not show any differences between the treatments, whereas the measurement of sugar water consumption was shown to correlate well with pollination. The consumption of sugar water declined in the toxic standard plots by 69% with respect to the control, whilst the decline in lower dose drip irrigation application was only 3%. In regard to hive weight, and number of adults and brood after destructive sampling; there were no statistical differences between the treatments but a negative effect of the foliar treatment was observed. Based on these results we can conclude that a split application of Actara applied in drip irrigation to the soil/substrate has no effect on the bumble-bees used in tomatoes for pollination.

  1. More crop per drop - Increasing input efficiency in sprinkler irrigated potatoes.

    NASA Astrophysics Data System (ADS)

    Kostka, Stan; Fang, Lisa; Ren, Haiqin; Glucksman, Robert; Gadd, Nick

    2014-05-01

    Water scarcity, climate change, and population growth are significant global challenges for producing sufficient food, fiber, and fuel in the 21st century. Feeding an increasingly hungry world necessitates innovative strategies and technologies to maximize crop production outputs while simultaneously increasing crop water productivity. In the 20th century, major advances in precision irrigation enabled producers to increase productivity while more efficiently applying water to crops. While pressurized irrigation systems can deliver water effectively to the soil surface, the efficiency of rootzone delivery may be compromised by intrinsic heterogeneities in soil wetting characteristics related to organic matter, biofilms, and hydrophobic coatings on soil particles and aggregates. Efficiently delivering applied irrigation water throughout the soil matrix is critical to increasing crop productivity. We propose that management of soil water access by surfactants is a viable management option to maintain or increase yields under deficit irrigation. Potato yield and tuber quality under sprinkler irrigation were evaluated under standard production practices or with the inclusion of an aqueous nonionic surfactant formulation (10 wt% alkoxylated polyols and 7% glucoethers) applied at 10L ha-1 between emergence and tuberization. Crop responses from multi-year evaluations conducted on irrigated potatoes in Idaho (USA) were compared to multi-year on farm grower evaluations in Australia and China. Surfactant treatment resulted in statistically significant increases in yield (+5%) and US No. 1 grades (+8%) while reducing culls (-10%) in trials conducted in Idaho, USA. Similar responses were observed in commercial grower evaluations conducted in Australia (+8% total yield, +18% mean tuber weight) and in China in 2011 (+8% total yield and +18% premium, -12% culls). Under diverse production conditions, a single application of the surfactant formulation improved crop water

  2. Uni-directional interaction and plant-pollinator-robber coexistence.

    PubMed

    Wang, Yuanshi; DeAngelis, Donald L; Holland, J Nathaniel

    2012-09-01

    A mathematical model for the plant-pollinator-robber interaction is studied to understand the factors leading to the widespread occurrence and stability of such interactions. In the interaction, a flowering plant provides resource for its pollinator and the pollinator has both positive and negative effects on the plant. A nectar robber acts as a plant predator, consuming a common resource with the pollinator, but with a different functional response. Using dynamical systems theory, mechanisms of species coexistence are investigated to show how a robber could invade the plant-pollinator system and persist stably with the pollinator. In addition, circumstances are demonstrated in which the pollinator's positive and negative effects on the plant could determine the robber's invasibility and the three-species coexistence.

  3. Timing of Bag Application and Removal in Controlled Mass Pollination

    Treesearch

    F.E. Bridgwater; D.L. Bramlett; V.D. Hipkins

    1999-01-01

    Controlled mass pollination (CMP) among outstanding parents is one way to increase genetic gains from traditional wind-pollinated seed orchards, but the economic success of CMP depends on both genetic gains and costs. CMP has been shown. to be cost-effective (Bridgwater et al. 1998) even when costs were adjusted for risk (Byram and Bridgwater 1999, These Proceedings...

  4. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae

    PubMed Central

    Rolland, Jonathan; Clark, John L.; Salamin, Nicolas

    2017-01-01

    The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant–hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators. PMID:28381621

  5. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae.

    PubMed

    Serrano-Serrano, Martha Liliana; Rolland, Jonathan; Clark, John L; Salamin, Nicolas; Perret, Mathieu

    2017-04-12

    The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant-hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators. © 2017 The Author(s).

  6. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism.

    PubMed

    Vannette, Rachel L; Gauthier, Marie-Pierre L; Fukami, Tadashi

    2013-02-07

    Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such 'third-party' species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant-pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.

  7. Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism

    PubMed Central

    Vannette, Rachel L.; Gauthier, Marie-Pierre L.; Fukami, Tadashi

    2013-01-01

    Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such ‘third-party’ species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant–pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other. PMID:23222453

  8. Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae)

    PubMed Central

    Xiong, Ying-Ze; Fang, Qiang; Huang, Shuang-Quan

    2013-01-01

    Recent molecular phylogenetics have indicated that American mayapple (mainly self-incompatible, SI) and Himalayan mayapple, which was considered to be self-compatible (SC), are sister species with disjunct distribution between eastern Asia and eastern North America. We test a hypothesis that the persistence of this early spring flowering herb in the Himalayan region is attributable to the transition from SI to SC, the capacity for selfing in an unpredictable pollination environment. Pollinator observations were conducted in an alpine meadow with hundreds of Himalayan mayapple (Podophyllum hexandrum Royle) individuals over 2 years. To examine autogamy, seed set under different pollination treatments was compared. To clarify whether automatic self-pollination is achieved by movement of the pistil as a previous study suggested, we measured incline angles of the pistil and observed flower movement during anthesis using video. Floral visitors to the nectarless flowers were very rare, but solitary bees and honeybees could be potential pollinators. Seed set of bagged flowers was not significantly different from that of open-pollinated, self- or cross-pollinated flowers. However, removal of petals or stamens lowered seed yield. The angles of inclination of pistils did not change during the process of pollination. Automatic self-pollination was facilitated by petals closing and stamens moving simultaneously to contact the stigma. Stigmatic pollen load increased little during the day time, in contrast to a sharp increase when the flowers closed during the night-time. These observations indicated that Himalayan mayapple was SC and delayed self-pollination was facilitated by the movement of petals rather than the pistil. Compared with SI American mayapple, no obvious inbreeding depression in SC Himalayan mayapple may contribute its existence in the uplifting zone. A scarcity of pollinators may have driven the shift to delayed selfing in P. hexandrum.

  9. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Treesearch

    James H. Cane; Rick Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  10. Floral advertisement and the competition for pollination services.

    PubMed

    Fishman, Michael A; Hadany, Lilach

    2015-06-01

    Flowering plants are a major component of terrestrial ecosystems, and most of them depend on animal pollinators for reproduction. Thus, the mutualism between flowering plants and their pollinators is a keystone ecological relationship in both natural and agricultural ecosystems. Though plant-pollinator interactions have received considerable amount of attention, there are still many unanswered questions. In this paper, we use methods of evolutionary game theory to investigate the co-evolution of floral advertisement and pollinator preferences Our results indicate that competition for pollination services among plant species can in some cases lead to specialization of the pollinator population to a single plant species (oligolecty). However, collecting pollen from multiple plants - at least at the population level - is evolutionarily stable under a wider parameter range. Finally, we show that, in the presence of pollinators, plants that optimize their investment in attracting vs. rewarding visiting pollinators outcompete plants that do not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. The evolution of bat pollination: a phylogenetic perspective

    PubMed Central

    Fleming, Theodore H.; Geiselman, Cullen; Kress, W. John

    2009-01-01

    Background Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecological and evolutionary consequences are explored. Scope and Conclusions This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes. We propose that flower-visiting bats provide two important benefits to plants: they deposit large amounts of pollen and a variety of pollen genotypes on plant stigmas and, compared with many other pollinators, they are long-distance pollen dispersers. Bat pollination tends to occur in plants that occur in low densities and in lineages producing large flowers. In highly fragmented tropical habitats, nectar bats play an important role in maintaining the genetic continuity of plant populations and thus have considerable conservation value. PMID:19789175

  12. Climate-associated phenological advances in bee pollinators and bee-pollinated plants

    PubMed Central

    Bartomeus, Ignasi; Ascher, John S.; Wagner, David; Danforth, Bryan N.; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-01-01

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated. PMID:22143794

  13. Extremely Long-Lived Stigmas Allow Extended Cross-Pollination Opportunities in a High Andean Plant

    PubMed Central

    Torres-Díaz, Cristian; Gómez-González, Susana; Stotz, Gisela C.; Torres-Morales, Patricio; Paredes, Brayam; Pérez-Millaqueo, Matías; Gianoli, Ernesto

    2011-01-01

    High-elevation ecosystems are traditionally viewed as environments in which predominantly autogamous breeding systems should be selected because of the limited pollinator availability. Chaetanthera renifolia (Asteraceae) is an endemic monocarpic triennial herb restricted to a narrow altitudinal range within the high Andes of central Chile (3300–3500 m a.s.l.), just below the vegetation limit. This species displays one of the larger capitulum within the genus. Under the reproductive assurance hypothesis, and considering its short longevity (monocarpic triennial), an autogamous breeding system and low levels of pollen limitation would be predicted for C. renifolia. In contrast, considering its large floral size, a xenogamous breeding system, and significant levels of pollen limitation could be expected. In addition, the increased pollination probability hypothesis predicts prolonged stigma longevity for high alpine plants. We tested these alternative predictions by performing experimental crossings in the field to establish the breeding system and to measure the magnitude of pollen limitation in two populations of C. renifolia. In addition, we measured the stigma longevity in unpollinated and open pollinated capitula, and pollinator visitation rates in the field. We found low levels of self-compatibility and significant levels of pollen limitation in C. renifolia. Pollinator visitation rates were moderate (0.047–0.079 visits per capitulum per 30 min). Although pollinator visitation rate significantly differed between populations, they were not translated into differences in achene output. Finally, C. renifolia stigma longevity of unpollinated plants was extremely long and significantly higher than that of open pollinated plants (26.3±2.8 days vs. 10.1±2.2, respectively), which gives support to the increased pollination probability hypothesis for high-elevation flowering plants. Our results add to a growing number of studies that show that xenogamous breeding

  14. Modeling the status, trends, and impacts of wild bee abundance in the United States

    PubMed Central

    Koh, Insu; Lonsdorf, Eric V.; Williams, Neal M.; Brittain, Claire; Isaacs, Rufus; Gibbs, Jason; Ricketts, Taylor H.

    2016-01-01

    Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation’s pollinators. PMID:26699460

  15. Modeling the status, trends, and impacts of wild bee abundance in the United States.

    PubMed

    Koh, Insu; Lonsdorf, Eric V; Williams, Neal M; Brittain, Claire; Isaacs, Rufus; Gibbs, Jason; Ricketts, Taylor H

    2016-01-05

    Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation's pollinators.

  16. [Preliminary study on pollination biology of Tulipa edulis].

    PubMed

    Wu, Zhengjun; Zhu, Zaibiao; Guo, Qiaosheng; Xu, Hongjian; Ma, Hongliang; Miao, Yuanyuan

    2012-02-01

    Current study on the pollination biology of Tulipa edulis was conducted to investigate its pollination characteristics and to provide references for artificial domestication and breeding of T. edulis. Flowering dynamics, pollinators, morphology and structure of flower were observed. Different methods were adopted to evaluate the pollen vitality, and benzidine-H2O2 method was used for estimation of the stigma receptivity. Breeding system was evaluated based on out-crossing index (OCI) , pollen-ovule ratio (P/O) and the results of emasculation, bagging and artificial pollination studies. The flower of T. edulis showed typical characteristics of Liliaceae. The pollen remained viable to some extent during all the anthesis and peaked within three days after blossoming. Stigma acceptability peaked in the first day of blossom and dwindled away in the next four days. The type of breeding system of T. edulis was facultative xenogamy, three species of Halictus are the main pollination insects. The type of breeding system of T. edulis was facultative xenogamy, withal cross-pollination give priority to self-pollination, and the insects play a main role on the pollination of T. edulis, further validation are needed to judge if the wind is helpful to pollination.

  17. Evolution of pollination niches in a generalist plant clade.

    PubMed

    Gómez, José María; Perfectti, Francisco; Abdelaziz, Mohamed; Lorite, Juan; Muñoz-Pajares, Antonio Jesús; Valverde, Javier

    2015-01-01

    It is widely assumed that floral diversification occurs by adaptive shifts between pollination niches. In contrast to specialized flowers, identifying pollination niches of generalist flowers is a challenge. Consequently, how generalist pollination niches evolve is largely unknown. We apply tools from network theory and comparative methods to investigate the evolution of pollination niches among generalist species belonging to the genus Erysimum. These species have similar flowers. We found that the studied species may be grouped in several multidimensional niches separated not by a shift of pollinators, but instead by quantitative variation in the relative abundance of pollinator functional groups. These pollination niches did not vary in generalization degree; we did not find any evolutionary trend toward specialization within the studied clade. Furthermore, the evolution of pollination niche fitted to a Brownian motion model without phylogenetic signal, and was characterized by frequent events of niche convergences and divergences. We presume that the evolution of Erysimum pollination niches has occurred mostly by recurrent shifts between slightly different generalized pollinator assemblages varying spatially as a mosaic and without any change in specialization degree. Most changes in pollination niches do not prompt floral divergence, a reason why adaptation to pollinators is uncommon in generalist plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula.

    PubMed

    Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies

    2016-12-01

    Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.

  19. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent.

    PubMed

    Cordeiro, G D; Pinheiro, M; Dötterl, S; Alves-Dos-Santos, I

    2017-03-01

    Bees are the most important diurnal pollinators of angiosperms. In several groups of bees a nocturnal/crepuscular habit developed, yet little is known about their role in pollination and whether some plants are adapted specifically to these bees. We used a multidisciplinary approach to investigate the reproductive biology and to understand the role of nocturnal/crepuscular bees in pollination of Campomanesia phaea (Myrtaceae), popularly named cambuci. We studied the floral biology and breeding system of C. phaea. We collected the floral visitors and tested the pollinators' effectiveness. We also determined the floral scents released at night and during daytime, and studied behavioural responses of crepuscular/nocturnal bees towards these scents. The flowers of cambuci were self-incompatible and had pollen as the only resource for flower visitors. Anthesis lasted around 14 h, beginning at 04:30 h at night. The flowers released 14 volatile compounds, mainly aliphatic and aromatic compounds. We collected 52 species of floral visitors, mainly bees. Nocturnal and crepuscular bees (four species) were among the most frequent species and the only effective pollinators. In field bioassays performed at night, nocturnal/crepuscular bees were attracted by a synthetic scent blend consisting of the six most abundant compounds. This study describes the first scent-mediated pollination system between a plant and its nocturnal bee pollinators. Further, C. phaea has several floral traits that do not allow classification into other nocturnal pollination syndromes (e.g. pollinator attraction already before sunrise, with pollen as the only reward), instead it is a plant specifically adapted to nocturnal bees. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates

    NASA Technical Reports Server (NTRS)

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; hide

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  1. Temperature increase reduces global yields of major crops in four independent estimates

    PubMed Central

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-01-01

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375

  2. Temperature increase reduces global yields of major crops in four independent estimates.

    PubMed

    Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold

    2017-08-29

    Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.

  3. Frequent Insect Visitors Are Not Always Pollen Carriers in Hybrid Carrot Pollination.

    PubMed

    Gaffney, Ann; Bohman, Björn; Quarrell, Stephen R; Brown, Philip H; Allen, Geoff R

    2018-06-07

    Insect crop visitations do not necessarily translate to carriage or transfer of pollen. To evaluate the potential of the various insects visiting hybrid carrot flowers to facilitate pollen transfer, this study examines insect visitation rates to hybrid carrot seed crops in relation to weather, time of day and season, pollen carrying capacity, inter-row movement, and visitation frequency to male-fertile and male-sterile umbels. The highest pollen loads were carried by nectar scarabs, honey bees, and the hover fly Eristalis tenax (Linnaeus). Honey bees and muscoid flies were observed to forage mostly within the male fertile carrot row while nectar scarabs and E. tenax foraged across rows, carrying equal pollen loads regardless of their distance from the pollen source. All observed insect taxa were more frequently seen visiting male-fertile than male-sterile umbels. In contrast to other visiting insects, honey bees were abundant and frequent visitors and were observed carrying high pollen loads. Consequently, we suggest both optimizing honey bee management and improving the attraction of carrot lines to honey bees to improve pollination rates for hybrid carrot seed crops.

  4. Florivore impacts on plant reproductive success and pollinator mortality in an obligate pollination mutualism.

    PubMed

    Althoff, David M; Xiao, Wei; Sumoski, Sarah; Segraves, Kari A

    2013-12-01

    Florivores are present in many pollination systems and can have direct and indirect effects on both plants and pollinators. Although the impact of florivores are commonly examined in facultative pollination mutualisms, their effects on obligate mutualism remain relatively unstudied. Here, we used experimental manipulations and surveys of naturally occurring plants to assess the effect of florivory on the obligate pollination mutualism between yuccas and yucca moths. Yucca filamentosa (Agavaceae) is pollinated by the moth Tegeticula cassandra (Lepidoptera: Prodoxidae), and the mutualism also attracts two florivores: a generalist, the leaf-footed bug Leptoglossus phyllopus (Hemiptera: Coreidae), and a specialist, the beetle Hymenorus densus (Coleoptera: Tenebrionidae). Experimental manipulations of leaf-footed bug densities on side branches of Y. filamentosa inflorescences demonstrated that feeding causes floral abscission but does not reduce pollen or seed production in the remaining flowers. Similar to the leaf-footed bugs, experimental manipulations of beetle densities within individual flowers demonstrated that beetle feeding also causes floral abscission, but, in addition, the beetles also cause a significant reduction in pollen availability. Path analyses of phenotypic selection based on surveys of naturally occurring plants revealed temporal variation in the plant traits important to plant fitness and the effects of the florivores on fitness. Leaf-footed bugs negatively impacted fitness when fewer plants were flowering and leaf-footed bug density was high, whereas beetles had a positive effect on fitness when there were many plants flowering and their densities were low. This positive effect was likely due to adult beetles consuming yucca moth eggs while having a negligible effect on floral abscission. Together, the actions of both florivores either augmented the relationship of plant traits and fitness or slightly weakened the relationship. Overall, the

  5. Specialty oilseed crops provide an attractive source of pollen for beneficial insects

    USDA-ARS?s Scientific Manuscript database

    The continuing pollinator crisis is due, in part, to the lack of year-round floral resources. In intensive farming regions, such as the Upper Midwest (UMW) of the USA, natural and pastoral vegetation largely has been replaced by annual crops such as corn, soybean, and wheat. Neither the energy (nect...

  6. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: implications for pollinator-driven speciation.

    PubMed

    Peakall, Rod; Ebert, Daniel; Poldy, Jacqueline; Barrow, Russell A; Francke, Wittko; Bower, Colin C; Schiestl, Florian P

    2010-10-01

    • Sexually deceptive orchids are predicted to represent a special case of plant speciation where strong reproductive isolation may be achieved by differences in floral scent. • In this study of Australian sexually deceptive Chiloglottis orchids, we performed choice experiments to test for wasp pollinator specificity in the field; identified the compounds involved in pollinator attraction by gas chromatography with electroantennographic detection (GC-EAD), gas chromatography with mass selective detection (GC-MS), chemical synthesis and behavioural bioassays; and mapped our chemical findings on to a phylogeny of the orchids. • Field experiments confirmed pollination is a highly specific interaction, but also revealed a pool of nonpollinating 'minor responder' wasps. Six novel compounds, all 2,5-dialkylcyclohexan-1,3-diones, called 'chiloglottones', were discovered to be involved in pollinator attraction. Bioassays confirmed that pollinator specificity has a strong chemical basis, with specificity among sympatric orchids maintained by either different single compounds or a variation in a blend of two compounds. The phylogenetic overlay confirmed that speciation is always associated with pollinator switching and usually underpinned by chemical change. • If the chemical differences that control reproductive isolation in Chiloglottis have a strong genetic basis, and given the confirmed pool of potential pollinators, we conclude that pollinator-driven speciation appears highly plausible in this system. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  7. Cover crops to improve soil health and pollinator habitat in nut orchards: Part II

    Treesearch

    Jerry Van Sambeek

    2017-01-01

    Integrating cover crops into a nut orchard can have some unique benefits and problems not found when used cover crops during the fallow period between cash crops. Studies show ground covers can reduce hardwood tree growth anywhere from a few percent to more than 70 percent in the case of tall fescue. This means if it takes 3 years to put on one inch of diameter growth...

  8. Pollination drop in Juniperus communis: response to deposited material.

    PubMed

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-12-01

    The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal. These results suggest that the non-specific response

  9. Pollination Drop in Juniperus communis: Response to Deposited Material

    PubMed Central

    Mugnaini, Serena; Nepi, Massimo; Guarnieri, Massimo; Piotto, Beti; Pacini, Ettore

    2007-01-01

    Background and Aims The pollination drop is a liquid secretion produced by the ovule and exposed outside the micropyle. In many gymnosperms, pollen lands on the surface of the pollination drop, rehydrates and enters the ovule as the drop retracts. The objective of this work was to study the formation of the pollination drop in Juniperus communis, its carbohydrate composition and the response to deposition of conspecific pollen, foreign pollen and other particulate material, in an attempt to clarify the mechanism of pollination drop retraction. Method Branches with female cones close to pollination drop secretion were collected. On the first day of pollination drop exposure, an eyelash mounted on a wooden stick with paraffin was used to collect pollen or silica gel particles, which were then deposited by contact with the drop. Volume changes in pollination drops were measured by using a stereomicroscope with a micrometer eyepiece 3 h after deposition. The volume of non-pollinated control drops was also recorded. On the first day of secretion, drops were also collected for sugar analysis by high-performance liquid chromatography. Key Results The pollination drop persisted for about 12 d if not pollinated, and formed again after removal for up to four consecutive days. After pollination with viable conspecific pollen, the drop retracted quickly and did not form again. Partial withdrawal occurred after deposition of other biological and non-biological material. Fructose was the dominant sugar; glucose was also present but at a much lower percentage. Conclusions Sugar analysis confirmed the general trend of fructose dominance in gymnosperm pollination drops. Complete pollination drop withdrawal appears to be triggered by a biochemical mechanism resulting from interaction between pollen and drop constituents. The results of particle deposition suggest the existence of a non-specific, particle-size-dependent mechanism that induces partial pollination drop withdrawal

  10. How specialised is bird pollination in the Cactaceae?

    PubMed

    Gorostiague, P; Ortega-Baes, P

    2016-01-01

    Many cactus species produce 'bird' flowers; however, the reproductive biology of the majority of these species has not been studied. Here, we report on a study of the pollination of two species from the Cleistocactus genus, cited as an ornithophilous genus, in the context of the different ways in which they are specialised to bird pollination. In addition, we re-evaluate the level of specialisation of previous studies of cacti with bird pollination and evaluate how common phenotypic specialisation to birds is in this family. Both Cleistocactus species exhibited ornithophilous floral traits. Cleistocactus baumannii was pollinated by hummingbirds, whereas Cleistocactus smaragdiflorus was pollinated by hummingbirds and bees. Pollination by birds has been recorded in 27 cactus species, many of which exhibit ornithophilous traits; however, they show generalised pollination systems with bees, bats or moths in addition to birds being their floral visitors. Of all cactus species, 27% have reddish flowers. This trait is associated with diurnal anthesis and a tubular shape. Phenotypic specialisation to bird pollination is recognised in many cactus species; however, it is not predictive of functional and ecological specialisation in this family. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Pollinators' mating rendezvous and the evolution of floral advertisement.

    PubMed

    Fishman, Michael A; Hadany, Lilach

    2013-01-07

    Successful cross-fertilization in plant species that rely on animal pollinators depends not just on the number of pollinator visits, but also on these visits' duration. Furthermore, in non-deceptive pollination, a visit's duration depends on the magnitude of the reward provided to the pollinator. Accordingly, plants that rely on biotic pollination have to partition their investment in cross-fertilization assurance between attracting pollinator visits - advertisement, and rewarding visitors to assure that the visit is of productive duration. Here we analyze these processes by a combination of optimality methods and game theoretical modeling. Our results indicate that the optimality in such allocation of resources depends on the types of reward offered to the pollinators. More precisely, we show that plants that offer both food reward and mating rendezvous to pollinators will evolve to allocate a higher proportion of their cross-fertilization assurance budget to advertisement than plants that offer only food reward. That is, our results indicate that pollinators' mating habits may play a role in floral evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Collapse of a pollination web in small conservation areas.

    PubMed

    Pauw, Anton

    2007-07-01

    A suspected global decline in pollinators has heightened interest in their ecological significance. In a worst-case scenario, the decline of generalist pollinators is predicted to trigger cascades of linked declines among the multiple specialist plant species to which they are linked, but this has not been documented. I studied a portion of a pollination web involving a generalist pollinator, the oil-collecting bee Rediviva peringueyi, and a community of oil-secreting plants. Across 27 established conservation areas located in the Cape Floral Region, I found substantial variation in the bees' occurrence in relation to soil type and the successional stage of the vegetation. Anthropogenic declines were detectable against this background of naturally occurring variation: R. peringueyi was absent from small conservation areas (< 385 ha) in an urban matrix. In the absence of the bee, seed set failed in six specialist plant species that are pollinated only by R. peringueyi but remained high in a pollination generalist, which had replacement pollinators. The findings are consistent with theoretical predictions of the importance of generalist pollinators in maintaining the structure of pollination webs.

  13. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    PubMed

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    PubMed

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  15. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.

    PubMed

    Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato

    2018-02-12

    Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.

  16. Generalised pollination systems for three invasive milkweeds in Australia.

    PubMed

    Ward, M; Johnson, S D

    2013-05-01

    Because most plants require pollinator visits for seed production, the ability of an introduced plant species to establish pollinator relationships in a new ecosystem may have a central role in determining its success or failure as an invader. We investigated the pollination ecology of three milkweed species - Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus - in their invaded range in southeast Queensland, Australia. The complex floral morphology of milkweeds has often been interpreted as a general trend towards specialised pollination requirements. Based on this interpretation, invasion by milkweeds contradicts the expectation than plant species with specialised pollination systems are less likely to become invasive that those with more generalised pollination requirements. However, observations of flower visitors in natural populations of the three study species revealed that their pollination systems are essentially specialised at the taxonomic level of the order, but generalised at the species level. Specifically, pollinators of the two Gomphocarpus species included various species of Hymenoptera (particularly vespid wasps), while pollinators of A. curassavica were primarily Lepidoptera (particularly nymphalid butterflies). Pollinators of all three species are rewarded with copious amounts of highly concentrated nectar. It is likely that successful invasion by these three milkweed species is attributable, at least in part, to their generalised pollinator requirements. The results of this study are discussed in terms of how data from the native range may be useful in predicting pollination success of species in a new environment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Sustainable harvest: managing plasticity for resilient crops

    PubMed Central

    Bloomfield, Justin A; Rose, Terry J; King, Graham J

    2014-01-01

    Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding. PMID:24891039

  18. Multilevel Spatial Structure Impacts on the Pollination Services of Comarum palustre (Rosaceae)

    PubMed Central

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees. PMID:24915450

  19. Multilevel spatial structure impacts on the pollination services of Comarum palustre (Rosaceae).

    PubMed

    Somme, Laurent; Mayer, Carolin; Jacquemart, Anne-Laure

    2014-01-01

    Habitat destruction and fragmentation accelerate pollinator decline, consequently disrupting ecosystem processes such as pollination. To date, the impacts of multilevel spatial structure on pollination services have rarely been addressed. We focused on the effects of population spatial structure on the pollination services of Comarum palustre at three levels (i.e. within-population, between-populations and landscape). For three years, we investigated 14 Belgian populations, which differed in their within-population flower density, population surface, closure (i.e. proportion of the population edge that consisted of woody elements) and isolation (i.e. percentage of woody area cover within a 500 m radius from the population centre). We tested whether these spatial characteristics impact on pollinator abundance and visitation rate and thus, reproductive success of C. palustre. Insects were observed in 15 randomly-chosen plots in each population. We tested for pollen limitation with supplemental hand-cross pollination. Bumble bees and solitary bees were the major pollinators through all populations. Within populations, plots with high flower densities attracted high numbers of bumble bees and other insects. High bumble bee and solitary bee abundance was observed in populations presenting high proportions of woody edges and in populations within landscapes presenting high proportions of woody areas. Seed set resulting from open pollination varied with bumble bee and solitary bee visitation rate, leading to increased pollen limitation when pollinators were scarce. Since the reproductive success depended on the visitation rate of the main pollinators, which depended on multilevel spatial structure, wetland management plans should pay special attention to favour a mosaic of biotopes, including nesting sites and food resources for insects. This study particularly supports the relevance of a mix wetlands and woody habitats to bees.

  20. The pollination niche and its role in the diversification and maintenance of the southern African flora

    PubMed Central

    Johnson, Steven D.

    2010-01-01

    The flora of southern Africa has exceptional species richness and endemism, making it an ideal system for studying the patterns and processes of evolutionary diversification. Using a wealth of recent case studies, I examine the evidence for pollinator-driven diversification in this flora. Pollination systems, which represent available niches for ecological diversification, are characterized in southern Africa by a high level of ecological and evolutionary specialization on the part of plants, and, in some cases, by pollinators as well. These systems are asymmetric, with entire plant guilds commonly specialized for a particular pollinator species or functional type, resulting in obvious convergent floral evolution among guild members. Identified modes of plant lineage diversification involving adaptation to pollinators in these guilds include (i) shifts between pollination systems, (ii) divergent use of the same pollinator, (iii) coevolution, (iv) trait tracking, and (v) floral mimicry of different model species. Microevolutionary studies confirm that pollinator shifts can be precipitated when a plant species encounters a novel pollinator fauna on its range margin, and macroevolutionary studies confirm frequent pollinator shifts associated with lineage diversification. As Darwin first noted, evolutionary specialization for particular pollinators, when resulting in ecological dependency, may increase the risk of plant extinction. I thus also consider the evidence that disturbance provokes pollination failure in some southern African plants with specialized pollination systems. PMID:20047876

  1. The pollination niche and its role in the diversification and maintenance of the southern African flora.

    PubMed

    Johnson, Steven D

    2010-02-12

    The flora of southern Africa has exceptional species richness and endemism, making it an ideal system for studying the patterns and processes of evolutionary diversification. Using a wealth of recent case studies, I examine the evidence for pollinator-driven diversification in this flora. Pollination systems, which represent available niches for ecological diversification, are characterized in southern Africa by a high level of ecological and evolutionary specialization on the part of plants, and, in some cases, by pollinators as well. These systems are asymmetric, with entire plant guilds commonly specialized for a particular pollinator species or functional type, resulting in obvious convergent floral evolution among guild members. Identified modes of plant lineage diversification involving adaptation to pollinators in these guilds include (i) shifts between pollination systems, (ii) divergent use of the same pollinator, (iii) coevolution, (iv) trait tracking, and (v) floral mimicry of different model species. Microevolutionary studies confirm that pollinator shifts can be precipitated when a plant species encounters a novel pollinator fauna on its range margin, and macroevolutionary studies confirm frequent pollinator shifts associated with lineage diversification. As Darwin first noted, evolutionary specialization for particular pollinators, when resulting in ecological dependency, may increase the risk of plant extinction. I thus also consider the evidence that disturbance provokes pollination failure in some southern African plants with specialized pollination systems.

  2. Contribution of Pollinators to Seed Production as Revealed by Differential Pollinator Exclusion in Clerodendrum trichotomum (Lamiaceae)

    PubMed Central

    Sakamoto, Ryota L.; Ito, Motomi; Kawakubo, Nobumitsu

    2012-01-01

    A diverse assemblage of pollinators, such as bees, beetles, flies, and butterflies, will often visit a single plant species. However, evaluating the effect of several insects on fruit and seed production is difficult in plants visited by a variety of insects. Here, we analyzed the effect of three types of pollinators, Papilio spp., Macroglossum pyrrhosticta, and Xylocopa appendiculata on fruit and seed production in Clerodendrum trichotomum by using a flower visitor barrier experiment with nets of specific mesh sizes. As a result, fruit/flower and seed/ovule ratios were significantly lower under Papilio exclusion than under natural conditions. On the other hand, ratios were not significantly different between Papilio excluded and both Papilio and M. pyrrhosticta excluded treatments. Therefore, Papilio and X. appendiculata are effective pollinators, whereas M. pyrrhosticta, which was the most frequent visitor, of C. trichotomum, is not. From our observations of visiting behaviors, we believe that because M. pyrrhosticta probably promotes self- pollination, this species is a non-effective pollinator. This is the first study to separate and compare the contribution of various visitors to the reproductive success of a plant. PMID:22442724

  3. The Effect of Altered Soil Moisture on Hybridization Rate in a Crop-Wild System (Raphanus spp.)

    PubMed Central

    Sneck, Michelle E.; Chaplin, Colleen; Mercer, Kristin L.

    2016-01-01

    Since plant mating choices are flexible and responsive to the environment, rates of spontaneous hybridization may vary across ecological clines. Developing a robust and predictive framework for rates of plant gene flow requires assessing the role of environmental sensitivity on plant reproductive traits, relative abundance, and pollen vectors. Therefore, across a soil moisture gradient, we quantified pollinator movement, life-history trait variation, and unidirectional hybridization rates from crop (Raphanus sativus) to wild (Raphanus raphanistrum) radish populations. Both radish species were grown together in relatively dry (no rain), relatively wet (double rain), or control soil moisture conditions in Ohio, USA. We measured wild and crop radish life-history, phenology and pollinator visitation patterns. To quantify hybridization rates from crop-to-wild species, we used a simply inherited morphological marker to detect F1 hybrid progeny. Although crop-to-wild hybridization did not respond to watering treatments, the abundance of hybrid offspring was higher in fruits produced late in the period of phenological overlap, when both species had roughly equal numbers of open flowers. Therefore, the timing of fruit production and its relationship to flowering overlap may be more important to hybrid zone formation in Raphanus spp. than soil moisture or pollen vector movements. PMID:27936159

  4. RAPID EVOLUTION CAUSED BY POLLINATOR LOSS IN MIMULUS GUTTATUS

    PubMed Central

    Bodbyl Roels, Sarah A.; Kelly, John K.

    2018-01-01

    Anthropogenic perturbations including habitat loss and emerging disease are changing pollinator communities and generating novel selection pressures on plant populations. Disruption of plant–pollinator relationships is predicted to cause plant mating system evolution, although this process has not been directly observed. This study demonstrates the immediate evolutionary effects of pollinator loss within experimental populations of a predominately outcrossing wildflower. Initially equivalent populations evolved for five generations within two pollination treatments: abundant bumblebee pollinators versus no pollinators. The populations without pollinators suffered greatly reduced fitness in early generations but rebounded as they evolved an improved ability to self-fertilize. All populations diverged in floral, developmental, and life-history traits, but only a subset of characters showed clear association with pollination treatment. Pronounced treatment effects were noted for anther–stigma separation and autogamous seed set. Dramatic allele frequency changes at two chromosomal polymorphisms occurred in the no pollinator populations, explaining a large fraction of divergence in pollen viability. The pattern of phenotypic and genetic changes in this experiment favors a sequential model for the evolution of the multitrait “selfing syndrome” observed throughout angiosperms. PMID:21884055

  5. Rapid evolution caused by pollinator loss in Mimulus guttatus.

    PubMed

    Roels, Sarah A Bodbyl; Kelly, John K

    2011-09-01

    Anthropogenic perturbations including habitat loss and emerging disease are changing pollinator communities and generating novel selection pressures on plant populations. Disruption of plant-pollinator relationships is predicted to cause plant mating system evolution, although this process has not been directly observed. This study demonstrates the immediate evolutionary effects of pollinator loss within experimental populations of a predominately outcrossing wildflower. Initially equivalent populations evolved for five generations within two pollination treatments: abundant bumblebee pollinators versus no pollinators. The populations without pollinators suffered greatly reduced fitness in early generations but rebounded as they evolved an improved ability to self-fertilize. All populations diverged in floral, developmental, and life-history traits, but only a subset of characters showed clear association with pollination treatment. Pronounced treatment effects were noted for anther-stigma separation and autogamous seed set. Dramatic allele frequency changes at two chromosomal polymorphisms occurred in the no pollinator populations, explaining a large fraction of divergence in pollen viability. The pattern of phenotypic and genetic changes in this experiment favors a sequential model for the evolution of the multitrait "selfing syndrome" observed throughout angiosperms. © 2011 The Author(s).

  6. Pollination implications of the diverse diet of tropical nectar-feeding bats roosting in an urban cave.

    PubMed

    Lim, Voon-Ching; Ramli, Rosli; Bhassu, Subha; Wilson, John-James

    2018-01-01

    Intense landscaping often alters the plant composition in urban areas. Knowing which plant species that pollinators are visiting in urban areas is necessary for understanding how landscaping impacts biodiversity and associated ecosystem services. The cave nectar bat, Eonycteris spelaea , is an important pollinator for many plants and is often recorded in human-dominated habitats. Previous studies of the diet of E. spelaea relied on morphological identification of pollen grains found in faeces and on the body of bats and by necessity disregarded other forms of digested plant material present in the faeces (i.e., plant juice and remnants). The main objective of this study was to examine the diet of the nectarivorous bat, E. spelaea, roosting in an urban cave at Batu Caves, Peninsular Malaysia by identifying the plant material present in the faeces of bats using DNA metabarcoding. Faeces were collected under the roost of E. spelaea once a week from December 2015 to March 2016. Plant DNA was extracted from the faeces, Polymerase chain reaction (PCR) amplified at ITS2 and rbcL regions and mass sequenced. The resultant plant operational taxonomic units were searched against NCBI GenBank for identification. A total of 55 species of plants were detected from faeces of E. spelaea including Artocarpus heterophyllus, Duabanga grandiflora and Musa spp. which are likely to be important food resources for the cave nectar bat. Many native plant species that had not been reported in previous dietary studies of E. spelaea were detected in this study including Bauhinia strychnoidea and Urophyllum leucophlaeum , suggesting that E. spelaea remains a crucial pollinator for these plants even in highly disturbed habitats. The detection of many introduced plant species in the bat faeces indicates that E. spelaea are exploiting them, particularly Xanthostemon chrysanthus, as food resources in urban area. Commercial food crops were detected from all of the faecal samples, suggesting that E

  7. Elevated temperature drives a shift from selfing to outcrossing in the insect-pollinated legume, faba bean (Vicia faba).

    PubMed

    Bishop, Jacob; Jones, Hannah E; O'Sullivan, Donal M; Potts, Simon G

    2017-04-01

    Climate change can threaten the reproductive success of plants, both directly, through physiological damage during increasingly extreme weather events, and indirectly, through disruption of plant-pollinator interactions. To explore how plant-pollinator interactions are modified by extreme weather, we exposed faba bean (Vicia faba) plants to elevated temperature for 5 d during flowering, simulating a heatwave. We then moved the plants to flight cages with either bumblebees or no pollinators, or to two field sites, where plants were enclosed in mesh bags or pollinated by wild insect communities. We used a morphological marker to quantify pollen movement between experimental plants. There was a substantial increase in the level of outcrossing by insect pollinators following heat stress. Proportion outcrossed seed increased from 17 % at control temperature, to 33 % following heat stress in the flight cages, and from 31 % to 80 % at one field site, but not at the other (33 % to 32 %). Abiotic stress can dramatically shift the relative contributions of cross- and self-pollination to reproduction in an insect pollinated plant. The resulting increases in gene flow have broad implications for genetic diversity and functioning of ecosystems, and may increase resilience by accelerating the selection of more stress-tolerant genotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. [Mechanisms that limit pollinator range in Ericaceae].

    PubMed

    Dlusskiĭ, G M; Glazunova, K P; Perfil'eva, K S

    2005-01-01

    Studies were conducted in 2001-2003 at Valdai National Park (Novgorod region) and at the Zvenigorod biological station of Moscow State University. The morphology of flowers, flowering dynamics and composition of insect visiting flowers of Ericaceae species: Andromeda polifolia, Chamaedaphne calyculata, Ledum palustre, Oxycoccus palustris, Vaccinium myrtillus, V. uliginosum, and V. vitis-idaea L. were studied. Some species of insects visiting flowers were excluded from the list of pollinators on the basis of observation on their behavior. L. palustre was visited mainly by flies where as other investigated species were visited mainly by bumblebees. In some cases bumblebees were the only visitors of the investigated plants. Mechanisms that protect flowers from flies and short-tongued solitary bees visits and ensure a best pollination by bumblebees are various among different species of Ericaceae. Efficiency of nectary protection also differs among different plant species and is defined by particularities of their habitats and flowering phenology. As far as all species of this family during the flowering are dominants in typical habitats, a competition for the pollination with species of other families in most cases is megligible. Flowering periods of V. vitis-idaea and V. myrtillus in forest ecosystems overlapped weakly. Moreover, V. myrtillus is pollinated mainly by bumblebee queens where as pollinators of V. vitis-idaea are bumblebee workers, solitary bees and horse flies. The other investigated plant species inhabit only oligotrophic peat bogs. Thery are pollinated by bumblebees but periods of flowering are not overlapped and consequently follow one after another. L. palustre and V. uliginosum flower simultaneosly but they are pollinated by different pollinators.

  9. Assessing Honey Bee (Hymenoptera: Apidae) Foraging Populations and the Potential Impact of Pesticides on Eight U.S. Crops

    PubMed Central

    Frazier, Maryann T.; Mullin, Chris A.; Frazier, Jim L.; Ashcraft, Sara A.; Leslie, Tim W.; Mussen, Eric C.; Drummond, Frank A.

    2015-01-01

    Beekeepers who use honey bees (Apis mellifera L.) for crop pollination services, or have colonies making honey on or in close proximity to agricultural crops, are concerned about the reductions of colony foragers and ultimate weakening of their colonies. Pesticide exposure is a potential factor in the loss of foragers. During 2009–2010, we assessed changes in the field force populations of 9–10 colonies at one location per crop on each of the eight crops by counting departing foragers leaving colonies at regular intervals during the respective crop blooming periods. The number of frames of adult bees was counted before and after bloom period. For pesticide analysis, we collected dead and dying bees near the hives, returning foragers, crop flowers, trapped pollen, and corn-flowers associated with the cotton crop. The number of departing foragers changed over time in all crops except almonds; general patterns in foraging activity included declines (cotton), noticeable peaks and declines (alfalfa, blueberries, cotton, corn, and pumpkins), and increases (apples and cantaloupes). The number of adult bee frames increased or remained stable in all crops except alfalfa and cotton. A total of 53 different pesticide residues were identified in samples collected across eight crops. Hazard quotients (HQ) were calculated for the combined residues for all crop-associated samples and separately for samples of dead and dying bees. A decrease in the number of departing foragers in cotton was one of the most substantial crop-associated impacts and presented the highest pesticide risk estimated by a summed pesticide residue HQ. PMID:26453703

  10. Nectar and pollination drops: how different are they?

    PubMed Central

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-01-01

    Background Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as ‘reward’ for ants defending plants against herbivores (indirect defence). Scope Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a ‘reward’ for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Conclusions Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from

  11. Nectar and pollination drops: how different are they?

    PubMed

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both

  12. Seed set in guayule (Parthenium argentatum, Asteraceae) in relation to insect pollination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamood, A.N.; Waller, G.D.; Ray, D.T.

    Guayule (Parthenium argentatum, Asteraceae) is one of two major plant species grown for natural rubber. Studies were conducted to determine the effect of honey bee (Apis mellifera) pollination and season on seed set and total seed yield/ha. The experiments involved four pollination treatments: plants caged with bees; plants caged without bees; plants open pollinated (uncovered); and plants individually covered. Seeds were harvested monthly July-September 1984, and May-September 1985. Plots with bees produced at least 150% more seeds than plots without bees, and there were no qualitative differences in the seed weights among treatments. Highest seed yield was in May andmore » September. Results indicate that (1) insect pollination in guayule increases seed yield and (2) fewer seeds are produced in the warmest months.« less

  13. Plant-pollinator interactions in New Caledonia influenced by introduced honey bees.

    PubMed

    Kato, Makoto; Kawakita, Atsushi

    2004-11-01

    The flora of New Caledonia is characterized by remarkably high species diversity, high endemicity, and an unusual abundance of archaic plant taxa. To investigate community-level pollination mutualism in this endemic ecosystem, we observed flower visitors on 99 plant species in 42 families of various types of vegetation. Among the 95 native plant species, the most dominant pollination system was melittophily (bee-pollinated, 46.3%), followed by phalaenophily (moth-pollinated, 20.0%), ornithophily (bird-pollinated, 11.6%), cantharophily (beetle-pollinated, 8.4%), myophily (fly-pollinated, 3.2%), chiropterophily (bat-pollinated, 3.2%), and anemophily (wind-pollinated, 3.2%). The prevalence of ornithophily by honeyeaters shows an ecological link to pollination mutualism in Australia. The relative dominance of phalaenophily is unique to New Caledonia, and is proposed to be related to the low diversity of the original bee fauna and the absence of long-tongued bees. Although some archaic plants maintain archaic plant-pollinator interactions, e.g., Zygogynum pollinated by micropterigid moths, or Hedycarya pollinated by thrips and staphylinid beetles, the most dominant organism observed on flowers was the introduced honey bee, Apis mellifera. The plant species now visited by honey bees are thought to have originally been pollinated by native solitary short-tongued bees. Our data suggest that the unique systems of pollination mutualism in New Caledonia are now endangered by the establishment of highly invasive honey bees.

  14. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated araceae.

    PubMed

    Dötterl, Stefan; David, Anja; Boland, Wilhelm; Silberbauer-Gottsberger, Ilse; Gottsberger, Gerhard

    2012-12-01

    Many plants attract their pollinators with floral scents, and these olfactory signals are especially important at night, when visual signals become inefficient. Dynastid scarab beetles are a speciose group of night-active pollinators, and several plants pollinated by these insects have methoxylated aromatic compounds in their scents. However, there is a large gap in our knowledge regarding the compounds responsible for beetle attraction. We used chemical analytical analyses to determine temporal patterns of scent emission and the composition of scent released from inflorescences of Philodendron selloum. The attractiveness of the main components in the scent to the dynastid scarab beetle Erioscelis emarginata, the exclusive pollinator of this plant, was assessed in field biotests. The amount of scent increased rapidly in the evening, and large amounts of scent were released during the activity time of the beetle pollinators. Inflorescences emitted a high number of compounds of different biosynthetic origin, among them both uncommon and also widespread flower scents. Methoxylated aromatic compounds dominated the scent, and 4-methoxystyrene, the most abundant compound, attracted E. emarginata beetles. Other compounds, such as (Z)-jasmone and possibly also the methoxylated aromatic compound 3,4-dimethoxystyrene increased the attractiveness of 4-methoxystyrene. Methoxylated aromatics, which are known from other dynastid pollinated plants as well, are important signals in many scarab beetles in a different context (e.g., pheromones), thus suggesting that these plants exploit pre-existing preferences of the beetles for attracting this group of insects as pollinators.

  15. Has pollination mode shaped the evolution of ficus pollen?

    PubMed

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode in this unique obligate mutualism.

  16. Has Pollination Mode Shaped the Evolution of Ficus Pollen?

    PubMed Central

    Wang, Gang; Chen, Jin; Li, Zong-Bo; Zhang, Feng-Ping; Yang, Da-Rong

    2014-01-01

    Background The extent to which co-evolutionary processes shape morphological traits is one of the most fascinating topics in evolutionary biology. Both passive and active pollination modes coexist in the fig tree (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) mutualism. This classic obligate relationship that is about 75 million years old provides an ideal system to consider the role of pollination mode shifts on pollen evolution. Methods and Main Findings Twenty-five fig species, which cover all six Ficus subgenera, and are native to the Xishuangbanna region of southwest China, were used to investigate pollen morphology with scanning electron microscope (SEM). Pollination mode was identified by the Anther/Ovule ratio in each species. Phylogenetic free regression and a correlated evolution test between binary traits were conducted based on a strong phylogenetic tree. Seventeen of the 25 fig species were actively pollinated and eight species were passively pollinated. Three pollen shape types and three kinds of exine ornamentation were recognized among these species. Pollen grains with ellipsoid shape and rugulate ornamentation were dominant. Ellipsoid pollen occurred in all 17 species of actively pollinated figs, while for the passively pollinated species, two obtuse end shapes were identified: cylinder and sphere shapes were identified in six of the eight species. All passively pollinated figs presented rugulate ornamentation, while for actively pollinated species, the smoother types - psilate and granulate-rugulate ornamentations - accounted for just five and two among the 17 species, respectively. The relationship between pollen shape and pollination mode was shown by both the phylogenetic free regression and the correlated evolution tests. Conclusions Three pollen shape and ornamentation types were found in Ficus, which show characteristics related to passive or active pollination mode. Thus, the pollen shape is very likely shaped by pollination mode

  17. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants.

    PubMed

    Ohashi, Kazuharu; Thomson, James D

    2009-06-01

    Trapline foraging (repeated sequential visits to a series of feeding locations) has been often observed in pollinators collecting nectar or pollen from flowers. Although field studies on bumble-bees and hummingbirds have clarified fundamental aspects of this behaviour, trapline foraging still poses several difficult questions from the perspectives of both animals and plants. These questions include whether and how traplining improves foraging performance, how animals develop traplines with accumulating foraging experience, and how traplining affects pollen flow or plant reproduction. First, we review our previous work performed by using computer simulations and indoor flight-cage experiments with bumble-bees foraging from arrays of automated feeders. Our findings include the following: (1) traplining benefits foragers that are competing for resources that replenish in a decelerating way, (2) traplining is a learned behaviour that develops over a period of hours and (3) the establishment of traplines could be hampered by spatial configuration of plants such as zigzags. Second, using a simulation model linking pollinator movement and pollen transfer, we consider how service by pollinators with different foraging patterns (searchers or trapliners) would affect pollen flow. Traplining increases mating distance and mate diversity, and reduces 'iterogamy' (self-pollination caused by return visits) at the population level. Furthermore, increased visitation rates can have opposite effects on the reproductive success of a plant, depending on whether the visitors are traplining or searching. Finally, we discuss possible consequences of traplining for plants in the light of new experimental work and modelling. We suggest that trapline foraging by pollinators increases variation among plant populations in genetic diversity, inbreeding depression and contributions of floral traits to plant fitness, which should in turn affect the rates and directions of floral evolution. More

  18. Effects of landscape composition and configuration on pollination in a native herb: a field experiment.

    PubMed

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G

    2015-10-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.

  19. Learning in Insect Pollinators and Herbivores.

    PubMed

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  20. Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient

    PubMed Central

    Bates, Adam J.; Sadler, Jon P.; Fairbrass, Alison J.; Falk, Steven J.; Hale, James D.; Matthews, Tom J.

    2011-01-01

    Background The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city. Methodology/Principal Findings Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants. Conclusions/Significance Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just

  1. Pollinator-mediated assemblage processes in California wildflowers.

    PubMed

    Briscoe Runquist, R; Grossenbacher, D; Porter, S; Kay, K; Smith, J

    2016-05-01

    Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator-mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co-occurrence patterns to determine the role of pollinator-mediated processes in structuring plant communities dominated by congeners. We surveyed three species-rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co-flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44-48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co-occurrence. Together, it appears that pollinators influence community assemblage in these three clades. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  2. Some pollinators are more equal than others: Factors influencing pollen loads and seed set capacity of two actively and passively pollinating fig wasps

    NASA Astrophysics Data System (ADS)

    Kjellberg, Finn; Suleman, Nazia; Raja, Shazia; Tayou, Abelouahad; Hossaert-McKey, Martine; Compton, Stephen G.

    2014-05-01

    The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.

  3. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa.

    PubMed

    Goldblatt, Peter; Manning, John C

    2006-03-01

    Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen

  4. [Effects of flower bud removal and artificial pollination on growth and yield of Tulipa edulis].

    PubMed

    Miao, Yuan-Yuan; Zhu, Zai-Biao; Guo, Qiao-Sheng; Ma, Hong-Liang; Yang, Ying; Zhu, Li-Fang

    2014-06-01

    The study was conducted to explore the response of growth and yield of Tulipa edulis to flower bud removal and artificial pollination. And flower bud removal and artificial pollination were carried out in the squaring period and bloom stage respectively. The morphological index and biomass indicators were determined and the yield was counted in harvest time. Result showed that flower bud removal was beneficial to the growth of T. edulis, resulting in increasing growth index, biomass as well as the yield of bulb. The diameter and dry weight of T. edulis fruit by artificial pollination were increased significantly compared with the control. Seed setting percentage increased to 100%, and the number of seed as well as the single grain weight increased by 69.03% and 16.48%, respectively, which did not significantly affect the bulb production. In conclusion, Flower bud removal treatment accelerates bulb biomass increase, so as to improve its yield. Artificial pollination raised significantly seed setting percentage, seed number as well as the single grain weight.

  5. Pollination niche overlap between a parasitic plant and its host.

    PubMed

    Ollerton, Jeff; Stott, Adrian; Allnutt, Emma; Shove, Sam; Taylor, Chloe; Lamborn, Ellen

    2007-03-01

    Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts.

  6. Floral advertisement scent in a changing plant-pollinators market.

    PubMed

    Filella, Iolanda; Primante, Clara; Llusià, Joan; Martín González, Ana M; Seco, Roger; Farré-Armengol, Gerard; Rodrigo, Anselm; Bosch, Jordi; Peñuelas, Josep

    2013-12-05

    Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market.

  7. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    PubMed Central

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  8. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    PubMed

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  9. Plant-pollinator interactions in a biodiverse meadow are rather stable and tight for 3 consecutive years.

    PubMed

    Fang, Qiang; Huang, Shuangquan

    2016-05-01

    Plant-pollinator interactions can be highly variable across years in natural communities. Although variation in the species composition and its basic structure has been investigated to understand the dynamic nature of pollination networks, little is known about the temporal dynamic of interaction strength between the same plant and pollinator species in any natural community. Pollinator-mediated selection on the evolution of floral traits could be diminished if plant-pollinator interactions vary temporally. To quantify the temporal variation in plant-pollinator interactions and the interaction strength (observed visits), we compared weighted networks between plants and pollinators in a biodiverse alpine meadow in Shangri-La, southwest China for 3 consecutive years. Although plant-pollinator interactions were highly dynamic such that identical interactions only accounted for 10.7% of the total between pair years, the diversity of interactions was stable. These identical interactions contributed 41.2% of total visits and were similar in strength and weighted nestedness. For plant species, 72.6% of species were visited by identical pollinator species between pair years, accounting for over half of the total visits and three-quarters at the functional group level. More generalized pollinators contributed more connectiveness and were more central in networks across years. However, there was no similar or even opposite trend for plant species, which suggested that specialized plant species may also be central in pollinator networks. The variation in pollinator composition decreased as pollinator species numbers increased, suggesting that generalized plants experienced stable pollinator partition. The stable, tight interactions between generalized pollinators and specialized plants represent cornerstones of the studied community. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  10. Reduced expression of selected FASCICLIN-LIKE ARABINOGALACTAN PROTEIN genes associates with the abortion of kernels in field crops of Zea mays (maize) and of Arabidopsis seeds.

    PubMed

    Cagnola, Juan Ignacio; Dumont de Chassart, Gonzalo Javier; Ibarra, Silvia Elizabeth; Chimenti, Claudio; Ricardi, Martiniano María; Delzer, Brent; Ghiglione, Hernán; Zhu, Tong; Otegui, María Elena; Estevez, José Manuel; Casal, Jorge José

    2018-03-01

    Abortion of fertilized ovaries at the tip of the ear can generate significant yield losses in maize crops. To investigate the mechanisms involved in this process, 2 maize hybrids were grown in field crops at 2 sowing densities and under 3 irrigation regimes (well-watered control, drought before pollination, and drought during pollination), in all possible combinations. Samples of ear tips were taken 2-6 days after synchronous hand pollination and used for the analysis of gene expression and sugars. Glucose and fructose levels increased in kernels with high abortion risk. Several FASCICLIN-LIKE ARABINOGALACTAN PROTEIN (FLA) genes showed negative correlation with abortion. The expression of ZmFLA7 responded to drought only at the tip of the ear. The abundance of arabinogalactan protein (AGP) glycan epitopes decreased with drought and pharmacological treatments that reduce AGP activity enhanced the abortion of fertilized ovaries. Drought also reduced the expression of AthFLA9 in the siliques of Arabidopsis thaliana. Gain- and loss-of-function mutants of Arabidopsis showed a negative correlation between AthFLA9 and seed abortion. On the basis of gene expression patterns, pharmacological, and genetic evidence, we propose that stress-induced reductions in the expression of selected FLA genes enhance abortion of fertilized ovaries in maize and Arabidopsis. © 2018 John Wiley & Sons Ltd.

  11. Increased food production and reduced water use through optimized crop distribution

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  12. Ants and termites increase crop yield in a dry climate.

    PubMed

    Evans, Theodore A; Dawes, Tracy Z; Ward, Philip R; Lo, Nathan

    2011-03-29

    Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates.

  13. Ants and termites increase crop yield in a dry climate

    PubMed Central

    Evans, Theodore A.; Dawes, Tracy Z.; Ward, Philip R.; Lo, Nathan

    2011-01-01

    Agricultural intensification has increased crop yields, but at high economic and environmental cost. Harnessing ecosystem services of naturally occurring organisms is a cheaper but under-appreciated approach, because the functional roles of organisms are not linked to crop yields, especially outside the northern temperate zone. Ecosystem services in soil come from earthworms in these cooler and wetter latitudes; what may fulfill their functional role in agriculture in warmer and drier habitats, where they are absent, is unproven. Here we show in a field experiment that ants and termites increase wheat yield by 36% from increased soil water infiltration due to their tunnels and improved soil nitrogen. Our results suggest that ants and termites have similar functional roles to earthworms, and that they may provide valuable ecosystem services in dryland agriculture, which may become increasingly important for agricultural sustainability in arid climates. PMID:21448161

  14. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  15. Evaluation of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera: Apidae) as pollinator of greenhouse tomatoes.

    PubMed

    Del Sarto, M C L; Peruquetti, R C; Campos, L A O

    2005-04-01

    The Neotropical stingless bee Melipona quadrifasciata Lepeletier was evaluated for pollinating tomatoes (variety Rodas; long-life hybrid) in greenhouses under plastic and with a hydroponic system and "organic concepts" in Minas Gerais State, Brazil. Flowers not pollinated did not set any fruit. Pollination by bees plus manual pollination did not differ from either bee or manual pollination. Maximum fruit diameter, fruit height, and roundness (quotient between maximum fruit diameter and fruit height) were not significantly different between treatments, but fruit visited by M. quadrifasciata had 10.8% less seeds (dry mass) than manual pollination. This apparently low efficiency of M. quadrifasciata pollination was attributed to the overlap of only 30 min between highest bee foraging activity and highest flower stigma receptivity. Thus, it was concluded that M. quadrifasciata is a feasible pollinator of greenhouse tomatoes because of 1) the observed increase in fruit quality with lower mechanical injury than traditional manual pollination, 2) no significant decrease in fruit size, and 3) high price of such product in the market. Some considerations for sustainable use of M. quadrifasciata as greenhouse pollinator are presented. Although techniques for keeping captive colonies of M. quadrifasciata are currently available, the sole current method for acquiring new colonies is removing them from the forest, and if demand was created for large numbers of colonies for commercial use, techniques for captive rearing must be developed to prevent serious declines in wild populations.

  16. Radiation of Pollination Systems in the Iridaceae of sub-Saharan Africa

    PubMed Central

    GOLDBLATT, PETER; MANNING, JOHN C.

    2006-01-01

    • Background Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. • Scope Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating

  17. Carbohydrates, pollinators, and cycads

    PubMed Central

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations. PMID:26479502

  18. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production

    PubMed Central

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E.; Mathews, Sarah

    2016-01-01

    Background and Aims Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Methods Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana. RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. Key Results About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen–ovule interactions. Conclusions The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of

  19. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    PubMed

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  20. Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot

    PubMed Central

    Phillips, Ryan D.; Hopper, Stephen D.; Dixon, Kingsley W.

    2010-01-01

    The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour. PMID:20047877

  1. Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot.

    PubMed

    Phillips, Ryan D; Hopper, Stephen D; Dixon, Kingsley W

    2010-02-12

    The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour.

  2. Requirements for plant coexistence through pollination niche partitioning

    PubMed Central

    Benadi, Gita

    2015-01-01

    Plant–pollinator interactions are often thought to have been a decisive factor in the diversification of flowering plants, but to be of little or no importance for the maintenance of existing plant diversity. In a recent opinion paper, Pauw (2013 Trends Ecol. Evol. 28, 30–37. (doi:10.1016/j.tree.2012.07.019)) challenged this view by proposing a mechanism of diversity maintenance based on pollination niche partitioning. In this article, I investigate under which conditions the mechanism suggested by Pauw can promote plant coexistence, using a mathematical model of plant and pollinator population dynamics. Numerical simulations show that this mechanism is most effective when the costs of searching for flowers are low, pollinator populations are strongly limited by resources other than pollen and nectar, and plant–pollinator interactions are sufficiently specialized. I review the empirical literature on these three requirements, discuss additional factors that may be important for diversity maintenance through pollination niche partitioning, and provide recommendations on how to detect this coexistence mechanism in natural plant communities. PMID:26108627

  3. Anther evolution: pollen presentation strategies when pollinators differ.

    PubMed

    Castellanos, Maria Clara; Wilson, Paul; Keller, Sarah J; Wolfe, Andrea D; Thomson, James D

    2006-02-01

    Male-male competition in plants is thought to exert selection on flower morphology and on the temporal presentation of pollen. Theory suggests that a plant's pollen dosing strategy should evolve to match the abundance and pollen transfer efficiency of its pollinators. Simultaneous pollen presentation should be favored when pollinators are infrequent or efficient at delivering the pollen they remove, whereas gradual dosing should optimize delivery by frequent and wasteful pollinators. Among Penstemon and Keckiella species, anthers vary in ways that affect pollen release, and the morphology of dried anthers reliably indicates how they dispense pollen. In these genera, hummingbird pollination has evolved repeatedly from hymenopteran pollination. Pollen production does not change with evolutionary shifts between pollinators. We show that after we control for phylogeny, hymenopteran-adapted species present their pollen more gradually than hummingbird-adapted relatives. In a species pair that seemed to defy the pattern, the rhythm of anther maturation produced an equivalent dosing effect. These results accord with previous findings that hummingbirds can be more efficient than bees at delivering pollen.

  4. Pollination Research Methods with Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    This chapter describes field and lab procedures for doing experiments on honey bee pollination. Most of the methods apply to any insect for whom pollen vectoring capacity is the question. What makes honey bee pollination distinctive is its historic emphasis on agricultural applications; hence one fi...

  5. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.).

    PubMed

    Hladun, Kristen R; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Pollinators of the Rocky Mountain columbine: temporal variation, functional groups and associations with floral traits

    PubMed Central

    Brunet, Johanne

    2009-01-01

    Background and Aims Pollinators together with other biotic and some abiotic factors can select for floral traits. However, variation in pollinator abundance over time and space can weaken such selection. In the present study, the variation in pollinator abundance over time and space was examined in populations of the Rocky Mountain columbine. The variation in three floral traits is described and correlations between pollinator type, functional pollinator groups or altitude and floral traits are examined. Methods Pollinator observations took place in six Aquilegia coerulea populations over 1–4 years and spur length, flower colour and sepal length were measured in 12 populations. Pollinator abundance, measured as visits per flower per hour, was compared among populations and years. Pollinators were grouped into two functional groups: pollen or nectar collectors. The following associations were examined: annual presence of hawkmoths and whiter flowers with longer spurs; the presence of Sphinx vashti and longer spurs; and higher altitudes and whiter flowers. The study looked at whether an increase in the proportion of hawkmoths in a population was associated with whiter and larger flowers with longer spurs. Key Results The abundance of different pollinator groups varied over time and space. Floral traits varied among populations. Higher altitude was correlated with bluer flowers. Whiter flowers were associated with the annual presence of hawkmoths. Populations visited by Sphinx vashti had longer spurs than populations visited only by Hyles lineata. Populations with greater percentage of nectar-collecting pollinators did not have whiter, larger flowers with longer spurs. Conclusions Despite the large variation in pollinator abundance over time and space, one species of bumble-bee or hawkmoth tended to predominate in each population each year. Future studies of Aquilegia coerulea should examine the specific influences of pollinators and the environment on flower colour

  7. Pollinator responses to floral colour change, nectar, and scent promote reproductive fitness in Quisqualis indica (Combretaceae).

    PubMed

    Yan, Juan; Wang, Gang; Sui, Yi; Wang, Menglin; Zhang, Ling

    2016-04-13

    Floral colour change is visual signals for pollinators to avoid old flowers and increase pollination efficiency. Quisqualis indica flowers change colour from white to pink to red may be associated with a shift from moth to butterfly pollination. To test this hypothesis, we investigated Q. indica populations in Southwest China. Flowers secreted nectar continuously from the evening of anthesis until the following morning, then decreased gradually with floral colour change. The scent compounds in the three floral colour stages were similar; however, the scent composition was different, and the scent emission rate decreased from the white to red stage. Dichogamy in Q. indica prevents self-pollination and interference of male and female functions. Controlled pollinations demonstrated that this species is self-incompatible and needs pollinators for seed production. Different pollinators were attracted in each floral colour stage; mainly moths at night and bees and butterflies during the day. Observations of open-pollinated inflorescences showed that white flowers had a higher fruit set than pink or red flowers, indicating the high contribution of moths to reproductive success. We concluded that the nectar and scent secretion are related to floral colour change in Q. indica, in order to attract different pollinators and promote reproductive fitness.

  8. Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis).

    PubMed

    Ma, Qingping; Chen, Changsong; Zeng, Zhongping; Zou, Zhongwei; Li, Huan; Zhou, Qiongqiong; Chen, Xuan; Sun, Kang; Li, Xinghui

    2018-04-25

    Self-incompatibility (SI) is a major barrier that obstructs the breeding process in most horticultural plants including tea plants (Camellia sinensis). The aim of this study was to elucidate the molecular mechanism of SI in tea plants through a high throughput transcriptome analysis. In this study, the transcriptomes of self- and cross-pollinated pistils of two tea cultivars 'Fudingdabai' and 'Yulv' were compared to elucidate the SI mechanism of tea plants. In addition, the ion components and pollen tube growth in self- and cross-pollinated pistils were investigated. Our results revealed that both cultivars had similar pollen activities and cross-pollination could promote the pollen tube growth. In tea pistils, the highest ion content was potassium (K + ), followed by calcium (Ca 2+ ), magnesium (Mg 2+ ) and phosphorus (P 5+ ). Ca 2+ content increased after self-pollination but decreased after cross-pollination, while K + showed reverse trend with Ca 2+ . A total of 990 and 3 common differentially expressed genes (DEGs) were identified in un-pollinated vs. pollinated pistils and self- vs. cross-pollinated groups after 48 h, respectively. Function annotation indicated that three genes encoding UDP-glycosyltransferase 74B1 (UGT74B1), Mitochondrial calcium uniporter protein 2 (MCU2) and G-type lectin S-receptor-like serine/threonine-protein kinase (G-type RLK) might play important roles during SI process in tea plants. Ca 2+ and K + are important signal for SI in tea plants, and three genes including UGT74B1, MCU2 and G-type RLK play essential roles during SI signal transduction.

  9. Testing hypotheses for excess flower production and low fruit-to-flower ratios in a pollinating seed-consuming mutualism

    USGS Publications Warehouse

    Holland, J. Nathaniel; Bronstein, Judith L.; DeAngelis, Donald L.

    2004-01-01

    Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.

  10. Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera).

    PubMed

    Anderson, Kirk E; Sheehan, Timothy H; Mott, Brendon M; Maes, Patrick; Snyder, Lucy; Schwan, Melissa R; Walton, Alexander; Jones, Beryl M; Corby-Harris, Vanessa

    2013-01-01

    Nearly all eukaryotes are host to beneficial or benign bacteria in their gut lumen, either vertically inherited, or acquired from the environment. While bacteria core to the honey bee gut are becoming evident, the influence of the hive and pollination environment on honey bee microbial health is largely unexplored. Here we compare bacteria from floral nectar in the immediate pollination environment, different segments of the honey bee (Apis mellifera) alimentary tract, and food stored in the hive (honey and packed pollen or "beebread"). We used cultivation and sequencing to explore bacterial communities in all sample types, coupled with culture-independent analysis of beebread. We compare our results from the alimentary tract with both culture-dependent and culture-independent analyses from previous studies. Culturing the foregut (crop), midgut and hindgut with standard media produced many identical or highly similar 16S rDNA sequences found with 16S rDNA clone libraries and next generation sequencing of 16S rDNA amplicons. Despite extensive culturing with identical media, our results do not support the core crop bacterial community hypothesized by recent studies. We cultured a wide variety of bacterial strains from 6 of 7 phylogenetic groups considered core to the honey bee hindgut. Our results reveal that many bacteria prevalent in beebread and the crop are also found in floral nectar, suggesting frequent horizontal transmission. From beebread we uncovered a variety of bacterial phylotypes, including many possible pathogens and food spoilage organisms, and potentially beneficial bacteria including Lactobacillus kunkeei, Acetobacteraceae and many different groups of Actinobacteria. Contributions of these bacteria to colony health may include general hygiene, fungal and pathogen inhibition and beebread preservation. Our results are important for understanding the contribution to pollinator health of both environmentally vectored and core microbiota, and the

  11. Does Passive Sampling Accurately Reflect the Bee (Apoidea: Anthophila) Communities Pollinating Apple and Sour Cherry Orchards?

    PubMed

    Gibbs, Jason; Joshi, Neelendra K; Wilson, Julianna K; Rothwell, Nikki L; Powers, Karen; Haas, Mike; Gut, Larry; Biddinger, David J; Isaacs, Rufus

    2017-06-01

    During bloom of spring orchard crops, bees are the primary providers of pollination service. Monitoring these insects for research projects is often done by timed observations or by direct aerial netting, but there has been increasing interest in blue vane traps as an efficient passive approach to collecting bees. Over multiple spring seasons in Michigan and Pennsylvania, orchards were monitored for wild bees using timed netting from crop flowers and blue vane traps. This revealed a distinctly different community of wild bees captured using the two methods, suggesting that blue vane traps can complement but cannot replace direct aerial netting. The bee community in blue vane traps was generally composed of nonpollinating species, which can be of interest for broader biodiversity studies. In particular, blue vane traps caught Eucera atriventris (Smith), Eucera hamata (Bradley), Bombus fervidus (F.), and Agapostemon virescens (F.) that were never collected from the orchard crop flowers during the study period. Captures of bee species in nets was generally stable across the 3 yr, whereas we observed significant declines in the abundance of Lasioglossum pilosum (Smith) and Eucera spp. trapped using blue vane traps during the project, suggesting local overtrapping of reproductive individuals. We conclude that blue vane traps are a useful tool for expanding insights into bee communities within orchard crop systems, but they should be used with great caution to avoid local extirpation of these important insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Pollination patterns and plant breeding systems in the Galapagos: a review.

    PubMed

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M; McMullen, Conley K; Traveset, Anna

    2012-11-01

    Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower-visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Although breeding systems are known for <20 % of the flora, most species in our database were self-compatible. Moreover, the incidence of autogamy among endemics, non-endemic natives and alien species did not differ significantly, being high in all groups, which suggests that a poor pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands

  13. Low abundance of long-tongued pollinators leads to pollen limitation in four specialized hawkmoth-pollinated plants in the Atlantic Rain forest, Brazil

    NASA Astrophysics Data System (ADS)

    Amorim, Felipe W.; Wyatt, Graham E.; Sazima, Marlies

    2014-11-01

    Long-tubed hawkmoth-pollinated species present some of the most remarkable examples of floral specialization depending exclusively on long-tongued hawkmoths for sexual reproduction. Nonetheless, long-tongued hawkmoths do not rely exclusively on specialized plants as nectar sources, which may limit sexual reproduction through pollen limitation. However, very few studies have quantified the level of pollen limitation in plants with highly specialized floral traits in tropical regions. In this context, we studied four sympatric hawkmoth-pollinated species in a highland Atlantic Rain forest and assessed pollen limitation and their dependence on pollinators by analyzing the floral biology, breeding system, pollination mechanisms, and abundance of long-tongued pollinators. We showed that the four species are self-compatible, but are completely dependent on long-tongued hawkmoths to set fruits, and that flower visitation was infrequent in all plant species. Pollen limitation indices ranged from 0.53 to 0.96 showing that fruit set is highly limited by pollen receipt. Long-tongued moths are much less abundant and comprise only one sixth of the hawkmoth fauna. Pollen analyses of 578 sampled moths revealed that hawkmoths visited ca. 80 plant species in the community, but only two of the four species studied. Visited plants included a long-tubed hawkmoth-pollinated species endemic to the lowland forest ca. 15-20 km away from the study site. Specialization index ( H 2 ' = 0.20) showed that community-level interactions between hawkmoths and plants are generalized. We suggest that sexual reproduction of these highly specialized hawkmoth-pollinated species is impaired by competition among plants for pollinators, in conjunction with the low abundance and diversity of long-tongued pollinators.

  14. More than euglossines: the diverse pollinators and floral scents of Zygopetalinae orchids.

    PubMed

    Nunes, Carlos E P; Wolowski, Marina; Pansarin, Emerson Ricardo; Gerlach, Günter; Aximoff, Izar; Vereecken, Nicolas J; Salvador, Marcos José; Sazima, Marlies

    2017-10-13

    Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.

  15. Flight of the bumble bee: Buzzes predict pollination services.

    PubMed

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee

  16. Flight of the bumble bee: Buzzes predict pollination services

    PubMed Central

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to

  17. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts

    PubMed Central

    Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.

    2017-01-01

    Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456

  18. Pollinator limitation and the effect of breeding systems on plant reproduction in forest fragments

    NASA Astrophysics Data System (ADS)

    Nayak, K. Geetha; Davidar, Priya

    2010-03-01

    Reproduction of plants in fragmented habitats may be limited because of lower diversity or abundance of pollinators, and/or variation in local plant density. We assessed natural fruit set and pollinator limitation in ten species of woody plants in natural and restored fragments in the Pondicherry region of southern India, to see whether breeding system of plants (self-compatible and self-incompatible) affected fruit set. We tested whether the number of flowering individuals in the fragments affected the fruit set and further examined the adult and sapling densities of self-compatible (SC) and self-incompatible (SI) species. We measured the natural level of fruit set and pollinator limitation (calculated as the difference in fruit set between hand cross-pollinated and naturally pollinated flowers). Our results demonstrate that there was a higher level of pollinator limitation and hence lower levels of natural fruit set in self-incompatible species as compared to self-compatible species. However, the hand cross-pollinated flowers in SC and SI species produced similar levels of fruit set, further indicating that lower fruit set was due to pollinator limitation and not due to lack of cross-compatible individuals in the fragments. There was no significant relation between number of flowering individuals and the levels of natural fruit set, except for two species Derris ovalifolia, Ixora pavetta. In these species the natural fruit set decreased with increasing population size, again indicating pollinator limitation. The adult and sapling densities in self-compatible species were significantly higher than in self-incompatible species. These findings indicate that the low reproductive output in self-incompatible species may eventually lead to lower population sizes. Restoration of pollinator services along with plant species in fragmented habitats is important for the long-term conservation of biodiversity.

  19. Do specialized flowers promote reproductive isolation? Realized pollination accuracy of three sympatric Pedicularis species

    PubMed Central

    Armbruster, W. Scott; Shi, Xiao-Qing; Huang, Shuang-Quan

    2014-01-01

    Background and Aims Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae). Methods Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively. Key Results All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees' bodies. Conclusions The Pedicularis species studied in the eastern Himalayan region did not conform with Grant's ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners. PMID:24047714

  20. Asynchronous diversification in a specialized plant-pollinator mutualism.

    PubMed

    Ramírez, Santiago R; Eltz, Thomas; Fujiwara, Mikiko K; Gerlach, Günter; Goldman-Huertas, Benjamin; Tsutsui, Neil D; Pierce, Naomi E

    2011-09-23

    Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.

  1. Pollination of Vietnamese Aspidistra xuansonensis (Asparagaceae) by female Cecidomyiidi flies: larvae of pollinator feed on fertile pollen in anthers of anthetic bisexual flowers.

    PubMed

    Vislobokov, Nikolay A; Galinskaya, Tatiana V; Degtjareva, Galina V; Valiejo-Roman, Carmen M; Samigullin, Tahir H; Kuznetsov, Andrey N; Sokoloff, Dmitry D

    2014-09-01

    • Aspidistra is a species-rich, herbaceous monocot genus of tropical Southeast Asia. Most species are recently discovered and apparently endangered, though virtually nothing is known about their biology. Species of the genus are primarily distinguished using flower morphology, which is enormously diverse. However, the pollination process has not been directly observed in the center of diversity of the genus (N Vietnam and S China). Indirect and partly direct data on the only widely cultivated species of the genus (A. elatior) placed it among angiosperms with the most unusual pollination biology, though these data are highly controversial, suggesting pollen transfer by mollusks, crustaceans, flies, or possibly tiny soil invertebrates such as collembolans.• Pollination of Aspidistra xuansonensis in the center of diversity of the genus was studied using visual observations and videos and light and scanning electron microscopy investigation of flowers and their pollinators. Pollinators and their larvae were molecularly barcoded.• Aspidistra xuansonensis is pollinated by female cecidomyiid flies (gall midges). They oviposit on anthers, and larvae develop among the pollen mass. Molecular barcoding proved taxonomic identity of the larvae and the flies. The larvae neither damage floral parts nor cause gall formation, but feed on pollen grains by sucking out their content. The larvae move out of the flowers before decomposition starts. Carebara ants steal developing larvae from flowers but do not contribute to pollination.• More than one kind of myiophily is present in Aspidistra. Brood site pollination was documented for the first time in Aspidistra. The pollination system of A. xuansonensis differs from other kinds of brood site pollination in the exit of the larvae prior to the decomposition of floral parts. © 2014 Botanical Society of America, Inc.

  2. A novel mutualism between an ant-plant and its resident pollinator

    NASA Astrophysics Data System (ADS)

    Shenoy, Megha; Borges, Renee M.

    2008-01-01

    Pollination systems in which the host plant provides breeding sites for pollinators, invariably within flowers, are usually highly specialized mutualisms. We found that the pollinating bee Braunsapis puangensis breeds within the caulinary domatia of the semi-myrmecophyte Humboldtia brunonis (Fabaceae), an unusual ant-plant that is polymorphic for the presence of domatia and harbours a diverse invertebrate fauna including protective and non-protective ants in its domatia. B. puangensis is the most common flower visitor that carries the highest proportion of H. brunonis pollen. This myrmecophyte is pollen limited and cross-pollinated by bees in the daytime. Hence, the symbiotic pollinator could provide a benefit to trees bearing domatia by alleviating this limitation. We therefore report for the first time an unspecialised mutualism in which a pollinator is housed in a plant structure other than flowers. Here, the cost to the plant is lower than for conventional brood-site pollination mutualisms where the pollinator develops at the expense of plant reproductive structures. Myrmecophytes housing resident pollinators are unusual, as ants are known to be enemies of pollinators, and housing them together may decrease the benefits that these residents could individually provide to the host plant.

  3. Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae-Apocynaceae).

    PubMed

    Wiemer, A P; Sérsic, A N; Marino, S; Simões, A O; Cocucci, A A

    2012-01-01

    BACKGROUND AND AIMS The extreme complexity of asclepiad flowers (Asclepiadoideae-Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South

  4. Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae–Apocynaceae)

    PubMed Central

    Wiemer, A. P.; Sérsic, A. N.; Marino, S.; Simões, A. O.; Cocucci, A. A.

    2012-01-01

    Background and Aims The extreme complexity of asclepiad flowers (Asclepiadoideae–Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Methods Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. Key Results The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Conclusions Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators

  5. Diurnal and nocturnal pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico.

    PubMed

    Dar, Saleem; del Coro Arizmendi, Ma; Valiente-Banuet, Alfonso

    2006-03-01

    Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico.

  6. Diurnal and Nocturnal Pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico

    PubMed Central

    DAR, SALEEM; ARIZMENDI, Ma. del CORO; VALIENTE-BANUET, ALFONSO

    2006-01-01

    • Background and Aims Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. • Methods Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. • Key Results Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. • Conclusions Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico. PMID:16394025

  7. Railway Embankments as New Habitat for Pollinators in an Agricultural Landscape

    PubMed Central

    Moroń, Dawid; Skórka, Piotr; Lenda, Magdalena; Rożej-Pabijan, Elżbieta; Wantuch, Marta; Kajzer-Bonk, Joanna; Celary, Waldemar; Mielczarek, Łukasz Emil; Tryjanowski, Piotr

    2014-01-01

    Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground. PMID:25054427

  8. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    PubMed

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Oviposition by mutualistic seed-consuming pollinators reduces fruit abortion in a recently discovered pollination mutualism

    PubMed Central

    Song, Bo; Stöcklin, Jürg; Gao, Yong-Qian; Peng, De-Li; Song, Min-Shu; Sun, Hang

    2016-01-01

    A prerequisite for the evolutionary stability of pollinating seed-consuming mutualisms is that each partner benefits from the association. However, few studies of such mutualism have considered the benefit gained by the pollinators. Here, we determined how the pollinating seed-predators ensure the provisioning of their offspring in the recently discovered mutualism between Rheum nobile and Bradysia flies. The correlation between flower fate and fly oviposition was examined. Floral traits and patterns of variation in fruit abortion and fly oviposition were investigated to determine whether female flies exhibit preferences for particular flowers when laying eggs. Indole-3-acetic acid (IAA) was quantified to determine whether female flies manipulate host physiology. Flowers that flies oviposited on had a significantly lower probability of fruit abortion compared with intact flowers. Females did not exhibit oviposition preference for any of the floral traits examined. There was no significant correlation between fruit abortion and fly oviposition in terms of either flower position or timing of flowering. IAA concentrations in oviposited flowers were significantly higher than in intact flowers. Our results suggest that oviposition by the mutualistic seed-consuming pollinator Bradysia sp., greatly reduces the probability of fruit abortion of its host, R. nobile; this may be attributed to the manipulation of host physiology through regulating IAA levels. PMID:27418228

  10. Does deficit irrigation of field crops increase water use efficiency

    USDA-ARS?s Scientific Manuscript database

    Deficit irrigation is often proposed as a method to stretch limited irrigation water supply and increase water use efficiency. A field study of field crops in the high plains shows that water use efficiency, in terms of irrigation water applied, often increases with deficit irrigation. However, in t...

  11. Milkweed: A resource for increasing stink bug parasitism and aiding insect pollinator and monarch butterfly conservation

    USDA-ARS?s Scientific Manuscript database

    The flowers of milkweed species can produce a rich supply of nectar, and therefore, planting an insecticide-free milkweed habitat in agricultural farmscapes could possibly conserve monarch butterflies, bees and other insect pollinators, as well as enhance parasitism of insect pests. In peanut-cotton...

  12. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    USGS Publications Warehouse

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  13. Indirect interactions between invasive and native plants via pollinators

    NASA Astrophysics Data System (ADS)

    Kaiser-Bunbury, Christopher N.; Müller, Christine B.

    2009-03-01

    In generalised pollination systems, the presence of alien plant species may change the foraging behaviour of pollinators on native plant species, which could result in reduced reproductive success of native plant species. We tested this idea of indirect interactions on a small spatial and temporal scale in a field study in Mauritius, where the invasive strawberry guava, Psidium cattleianum, provides additional floral resources for insect pollinators. We predicted that the presence of flowering guava would indirectly and negatively affect the reproductive success of the endemic plant Bertiera zaluzania, which has similar flowers, by diverting shared pollinators. We removed P. cattleianum flowers within a 5-m radius from around half the B. zaluzania target plants (treatment) and left P. cattleianum flowers intact around the other half (control). By far, the most abundant and shared pollinator was the introduced honey bee, Apis mellifera, but its visitation rates to treatment and control plants were similar. Likewise, fruit and seed set and fruit size and weight of B. zaluzania were not influenced by the presence of P. cattleianum flowers. Although other studies have shown small-scale effects of alien plant species on neighbouring natives, we found no evidence for such negative indirect interactions in our system. The dominance of introduced, established A. mellifera indicates their replacement of native insect flower visitors and their function as pollinators of native plant species. However, the pollination effectiveness of A. mellifera in comparison to native pollinators is unknown.

  14. Pollination and protection against herbivory of Nepalese Coelogyninae (Orchidaceae).

    PubMed

    Subedi, Abishkar; Chaudhary, Ram P; van Achterberg, Cees; Heijerman, Theodoor; Lens, Frederic; Van Dooren, Tom J M; Gravendeel, Barbara

    2011-07-01

    Although many species in the orchid genus Coelogyne are horticulturally popular, hardly anything is known about their pollination. Pollinators of three species were observed in the field in Nepal. This information is urgently needed because many orchid species in Nepal are endangered. Whether the exudates produced by extrafloral nectaries played a role in protection against herbivory was also investigated. Pollinators of C. flaccida, C. nitida, and Otochilus albus were filmed, captured, and identified. Ant surveys and exclusion experiments were carried out. To investigate whether pollinators are needed for fruit set, plants were wrapped in mesh wire bags. Inflorescence stems were examined with microscopy. Fehling's reagent was used to detect sugars in extrafloral exudates. Coelogyne flaccida and C. nitida need pollinators to set fruit and are pollinated by wild bees identified as Apis cerana. Otochilus albus was found to be pollinated by Bombus kashmirensis. Extrafloral nectar was found to be exuded by nectary-modified stomata and contained high amounts of sugars. Different species of ants were observed collecting these exudates. A significant difference was found in damage inflicted by flower and leaf-eating beetles between C. nitida plants living in trees with ant nests and those in ant-free trees. Floral syndromes include scented and colored trap flowers without reward to their pollinators. All orchids investigated exude extrafloral nectar by nectary-modified stomata. This nectar was found to flow from the phloem to the stomata through intercellular spaces in the outer parenchymatous layer of the inflorescence.

  15. Methods for generating or increasing revenues from crops

    DOEpatents

    Copenhaver, Gregory P.; Keith, Kevin; Preuss, Daphne

    2007-03-20

    The present invention provides methods of doing business and providing services. For example, methods of increasing the revenue of crops are provided. To this end, the method includes the use of a nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and mini chromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

  16. Crop yield response to increasing biochar rates

    USDA-ARS?s Scientific Manuscript database

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  17. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    PubMed Central

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies

  18. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production.

    PubMed

    Yu, Qin; Powles, Stephen

    2014-11-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Is floral specialization an evolutionary dead-end? Pollination system transitions in Ruellia (Acanthaceae).

    PubMed

    Tripp, Erin A; Manos, Paul S

    2008-07-01

    Pollination systems frequently reflect adaptations to particular groups of pollinators. Such systems are indicative of evolutionary specialization and have been important in angiosperm diversification. We studied the evolution of pollination systems in the large genus Ruellia. Phylogenetic analyses, morphological ordinations, ancestral state reconstructions, and a character mapping simulation were conducted to reveal key patterns in the direction and lability of floral characters associated with pollination. We found significant floral morphological differences among species that were generally associated with different groups of floral visitors. Floral evolution has been highly labile and also directional. Some specialized systems such as hawkmoth or bat pollination are likely evolutionary dead-ends. In contrast, specialized pollination by hummingbirds is clearly not a dead-end. We found evidence for multiple reverse transitions from presumed ancestral hummingbird pollination to more derived bee or insect pollination. These repeated origins of insect pollination from hummingbird-pollinated ancestors have not evolved without historical baggage. Flowers of insect-pollinated species derived from hummingbird-pollinated ancestors are morphologically more similar to hummingbird flowers than they are to other more distantly related insect-pollinated flowers. Finally, some pollinator switches were concomitant with changes in floral morphology that are associated with those pollinators. These observations are consistent with the hypothesis that some transitions have been adaptive in the evolution of Ruellia.

  20. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae).

    PubMed

    Timerman, David; Greene, David F; Urzay, Javier; Ackerman, Josef D

    2014-12-06

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind-stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Turbulence-induced resonance vibrations cause pollen release in wind-pollinated Plantago lanceolata L. (Plantaginaceae)

    PubMed Central

    Timerman, David; Greene, David F.; Urzay, Javier; Ackerman, Josef D.

    2014-01-01

    In wind pollination, the release of pollen from anthers into airflows determines the quantity and timing of pollen available for pollination. Despite the ecological and evolutionary importance of pollen release, wind–stamen interactions are poorly understood, as are the specific forces that deliver pollen grains into airflows. We present empirical evidence that atmospheric turbulence acts directly on stamens in the cosmopolitan, wind-pollinated weed, Plantago lanceolata, causing resonant vibrations that release episodic bursts of pollen grains. In laboratory experiments, we show that stamens have mechanical properties corresponding to theoretically predicted ranges for turbulence-driven resonant vibrations. The mechanical excitation of stamens at their characteristic resonance frequency caused them to resonate, shedding pollen vigorously. The characteristic natural frequency of the stamens increased over time with each shedding episode due to the reduction in anther mass, which increased the mechanical energy required to trigger subsequent episodes. Field observations of a natural population under turbulent wind conditions were consistent with these laboratory results and demonstrated that pollen is released from resonating stamens excited by small eddies whose turnover periods are similar to the characteristic resonance frequency measured in the laboratory. Turbulence-driven vibration of stamens at resonance may be a primary mechanism for pollen shedding in wind-pollinated angiosperms. The capacity to release pollen in wind can be viewed as a primary factor distinguishing animal- from wind-pollinated plants, and selection on traits such as the damping ratio and flexural rigidity may be of consequence in evolutionary transitions between pollination systems. PMID:25297315

  2. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use

    USGS Publications Warehouse

    Hladik, Michelle L.; Bradbury, Steven; Schulte, Lisa A.; Helmers, Matthew; Witte, Christopher; Kolpin, Dana W.; Garrett, Jessica D.; Harris, Mary

    2017-01-01

    Neonicotinoids are a widely used class of insecticides that are commonly applied as seed coatings for agricultural crops. Such neonicotinoid use may pose a risk to non-target insects, including pollinators and natural enemies of crop pests, and ecosystems. This study assessed neonicotinoid residues in groundwater, surface runoff water, soil, and native plants adjacent to corn and soybean crop fields with a history of being planted with neonicotinoid-treated seeds from 2008-2013. Data from six sites with the same crop management history, three with and three without in-field prairie strips, were collected in 2015-2016, 2-3 years after neonicotinoid (clothianidin and imidacloprid) seed treatments were last used. Three of the six neonicotinoids analyzed were detected in at least one environmental matrix: the two applied as seed coatings on the fields (clothianidin and imidacloprid) and another widely used neonicotinoid (thiamethoxam). Sites with prairie strips generally had lower concentrations of neonicotinoids: groundwater and footslope soil neonicotinoid concentrations were significantly lower in the sites with prairie strips than those without; mean concentrations for groundwater were 11 and 20 ng/L (p = 0.048) and <1 and 6 ng/g (p = 0.0004) for soil, respectively. Surface runoff water concentrations were not significantly (p = 0.38) different for control sites (44 ng/L) or sites with prairie strips (140 ng/L). Consistent with the decreased inputs of neonicotinoids, concentrations tended to decrease over the sampling timeframe. Two sites recorded concentration increases, however, potentially due to disturbance of previous applications or influence from nearby fields where use of seed treatments continued. There were no detections (limit of detection: 1 ng/g) of neonicotinoids in the foliage or roots of plants comprising prairie strips, indicating a low likelihood of exposure to pollinators and other insects visiting these plants following the cessation of seed

  3. Meta-Analysis of Pollen Limitation Reveals the Relevance of Pollination Generalization in the Atlantic Forest of Brazil

    PubMed Central

    Wolowski, Marina; Ashman, Tia-Lynn; Freitas, Leandro

    2014-01-01

    Despite the extensive knowledge of pollen limitation in angiosperms, its assessment within tropical forests is still limited. Especially lacking are large scale comparisons of species within this biome – one that is highly diverse but also becoming increasingly threatened. In fact, many tropical plant species depend upon pollinators for reproduction but evaluation of the impact of this dependence via different levels of pollination specialization has yet to be made at the biome scale. We assessed the occurrence and magnitude of pollen limitation for species in the Brazilian Atlantic forest and tested the association of pollination specialization, breeding system, and life habit with pollination efficiency. We compiled data from studies published between 1985 and 2012. We calculated species' effect size (d) from data on fruit set after hand cross-pollination and natural pollination and conducted standard and phylogenetically independent meta-analysis. Overall pollen limitation was moderate, with magnitude of 0.50, and 95% confidence interval [0.37, 0.62] for 126 species. Pollen limitation was observed in 39% of species. Pollination specialization was the factor that best explained the occurrence of pollen limitation. Specifically, phenotypic and ecological specialists (plants with zygomorphic flowers and pollinated by one species of pollinator, respectively) had higher pollen limitation than generalist plants (actinomorphic flowers and pollination by two or more species). Functional generalists (plants pollinated by three or more functional groups) were not pollen limited. On the other hand, breeding system and life habit were not associated to pollen limitation. Pollen limitation was observed in the Atlantic forest and its magnitude was comparable to that for angiosperms as a whole. The finding that pollination specialization was the strongest predictor of pollen limitation suggests that specialist plants in this biome may be most prone to the reproductive

  4. Pollinator adaptation and the evolution of floral nectar sugar composition.

    PubMed

    Abrahamczyk, S; Kessler, M; Hanley, D; Karger, D N; Müller, M P J; Knauer, A C; Keller, F; Schwerdtfeger, M; Humphreys, A M

    2017-01-01

    A long-standing debate concerns whether nectar sugar composition evolves as an adaptation to pollinator dietary requirements or whether it is 'phylogenetically constrained'. Here, we use a modelling approach to evaluate the hypothesis that nectar sucrose proportion (NSP) is an adaptation to pollinators. We analyse ~ 2100 species of asterids, spanning several plant families and pollinator groups (PGs), and show that the hypothesis of adaptation cannot be rejected: NSP evolves towards two optimal values, high NSP for specialist-pollinated and low NSP for generalist-pollinated plants. However, the inferred adaptive process is weak, suggesting that adaptation to PG only provides a partial explanation for how nectar evolves. Additional factors are therefore needed to fully explain nectar evolution, and we suggest that future studies might incorporate floral shape and size and the abiotic environment into the analytical framework. Further, we show that NSP and PG evolution are correlated - in a manner dictated by pollinator behaviour. This contrasts with the view that a plant necessarily has to adapt its nectar composition to ensure pollination but rather suggests that pollinators adapt their foraging behaviour or dietary requirements to the nectar sugar composition presented by the plants. Finally, we document unexpectedly sucrose-poor nectar in some specialized nectarivorous bird-pollinated plants from the Old World, which might represent an overlooked form of pollinator deception. Thus, our broad study provides several new insights into how nectar evolves and we conclude by discussing why maintaining the conceptual dichotomy between adaptation and constraint might be unhelpful for advancing this field. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  5. Two invasive acacia species secure generalist pollinators in invaded communities

    NASA Astrophysics Data System (ADS)

    Montesinos, Daniel; Castro, Sílvia; Rodríguez-Echeverría, Susana

    2016-07-01

    Exotic entomophilous plants need to establish effective pollinator interactions in order to succeed after being introduced into a new community, particularly if they are obligatory outbreeders. By establishing these novel interactions in the new non-native range, invasive plants are hypothesised to drive changes in the composition and functioning of the native pollinator community, with potential impacts on the pollination biology of native co-flowering plants. We used two different sites in Portugal, each invaded by a different acacia species, to assess whether two native Australian trees, Acacia dealbata and Acacia longifolia, were able to recruit pollinators in Portugal, and whether the pollinator community visiting acacia trees differed from the pollinator communities interacting with native co-flowering plants. Our results indicate that in the invaded range of Portugal both acacia species were able to establish novel mutualistic interactions, predominantly with generalist pollinators. For each of the two studied sites, only two other co-occurring native plant species presented partially overlapping phenologies. We observed significant differences in pollinator richness and visitation rates among native and non-native plant species, although the study of β diversity indicated that only the native plant Lithodora fruticosa presented a differentiated set of pollinator species. Acacias experienced a large number of visits by numerous pollinator species, but massive acacia flowering resulted in flower visitation rates frequently lower than those of the native co-flowering species. We conclude that the establishment of mutualisms in Portugal likely contributes to the effective and profuse production of acacia seeds in Portugal. Despite the massive flowering of A. dealbata and A. longifolia, native plant species attained similar or higher visitation rates than acacias.

  6. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    PubMed

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  7. Pollinator Interactions with Yellow Starthistle (Centaurea solstitialis) across Urban, Agricultural, and Natural Landscapes

    PubMed Central

    Leong, Misha; Kremen, Claire; Roderick, George K.

    2014-01-01

    Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis), a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1) rates of bee visitation, 2) viable seed set, and 3) the efficiency of pollination (relationship between bee visitation and seed set). We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services. PMID:24466050

  8. Reproductive biology and nectar secretion dynamics of Penstemon gentianoides (Plantaginaceae): a perennial herb with a mixed pollination system?

    PubMed Central

    Salas-Arcos, Lucía; Ornelas, Juan Francisco

    2017-01-01

    Background In many plant species, pollination syndromes predict the most effective pollinator. However, other floral visitors may also offer effective pollination services and promote mixed pollination systems. Several species of the species-rich Penstemon (Plantaginaceae) exhibit a suite of floral traits that suggest adaptation for pollination by both hymenopterans and hummingbirds. Transitions from the ancestral hymenopteran pollination syndrome to more derived hummingbird pollination syndrome may be promoted if the quantity or quality of visits by hummingbirds is increased and if the ancestral pollinator group performs less efficiently. The quantification of such shifts in pollination systems in the group is still limited. We aimed to investigate floral traits linked to this pollination syndrome in Penstemon gentianoides with flowers visited by bumblebees and hummingbirds. Methods We investigated the floral biology, pollinator assemblages, breeding system and nectar production patterns ofP. gentianoides inhabiting a temperate montane forest in central Mexico. Pollination experiments were also conducted to assess the pollinator effectiveness of bumblebees and hummingbirds. Results P. gentianoides flowers are protandrous, with 8-d male phase (staminate) flowers, followed by the ∼1–7 d female phase (pistillate phase). Flowers display traits associated with hymenopteran pollination, including purple flowers abruptly ampliate-ventricose to a broad throat with anthers and stigmas included, and long lifespans. However, the nectar available in the morning hours was abundant and dilute, traits linked to flowers with a hummingbird pollination syndrome. Two hummingbird species made most of the visits to flowers, Selasphorus platycercus (30.3% of all visits), followed by Archilochus colubris (11.3%). Bumblebees (Bombus ephippiatus, B. huntii and B. weisi) accounted for 51.8% of all recorded visits, but their foraging activity was restricted to the warmer hours

  9. Native bees and plant pollination

    USGS Publications Warehouse

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  10. Poor correlation between the removal or deposition of pollen grains and frequency of pollinator contact with sex organs

    NASA Astrophysics Data System (ADS)

    Sakamoto, Ryota L.; Morinaga, Shin-Ichi

    2013-09-01

    Pollinators deposit pollen grains on stigmas and remove pollen grains from anthers. The mechanics of these transfers can now be quantified with the use of high-speed video. We videoed hawkmoths, carpenter bees, and swallowtail butterflies pollinating Clerodendrum trichotomum. The number of grains deposited on stigmas did not vary significantly with the number of times pollinators contacted stigmas. In contrast, pollen removal from the anthers increased significantly with the number of contacts to anthers. Pollen removal varied among the three types of pollinators. Also, the three types carried pollen on different parts of their bodies. In hawkmoths and carpenter bees, a large number of contacted body part with anthers differed significantly from the body part that attached a large number of pollen grains. Our results indicate that a large number of contacts by pollinators does not increase either the male or female reproductive success of plants compared to a small number of contacts during a visit.

  11. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.

    PubMed

    Gezon, Zachariah J; Inouye, David W; Irwin, Rebecca E

    2016-05-01

    Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow-removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost-damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early-flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the

  12. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).

    PubMed

    Kiepiel, Ian; Johnson, Steven D

    2014-01-01

    Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.

  13. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa

    PubMed Central

    2014-01-01

    Background Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Results Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Conclusions Apis mellifera’s high rate of self-pollination may have significant negative effects on both male

  14. Self-pollination rate and floral-display size in Asclepias syriaca (Common Milkweed) with regard to floral-visitor taxa.

    PubMed

    Howard, Aaron F; Barrows, Edward M

    2014-06-23

    Animals fertilize thousands of angiosperm species whose floral-display sizes can significantly influence pollinator behavior and plant reproductive success. Many studies have measured the interactions among pollinator behavior, floral-display size, and plant reproductive success, but few studies have been able to separate the effects of pollinator behavior and post-pollination processes on angiosperm sexual reproduction. In this study, we utilized the highly self-incompatible pollinium-pollination system of Asclepias syriaca (Common Milkweed) to quantify how insect visitors influenced male reproductive success measured as pollen removal, female reproductive success measured as pollen deposition, and self-pollination rate. We also determined how floral-display size impacts both visitor behavior and self-pollination rate. Four insect taxonomic orders visited A. syriaca: Coleoptera, Diptera, Hymenoptera, and Lepidoptera. We focused on three groups of visitor taxa within two orders (Hymenoptera and Lepidoptera) with sample sizes large enough for quantitative analysis: Apis mellifera (Western Honey Bee), Bombus spp. (bumble bees) and lepidopterans (butterflies and moths). Qualitatively, lepidopterans had the highest pollinator importance values, but the large variability in the lepidopteran data precluded meaningful interpretation of much of their behavior. The introduced A. mellifera was the most effective and most important diurnal pollinator with regard to both pollen removal and pollen deposition. However, when considering the self-incompatibility of A. syriaca, A. mellifera was not the most important pollinator because of its high self-pollination rate as compared to Bombus spp. Additionally, the rate of self-pollination increased more rapidly with the number of flowers per inflorescence in A. mellifera than in the native Bombus spp. Apis mellifera's high rate of self-pollination may have significant negative effects on both male and female reproductive successes

  15. Increasing temperature cuts back crop yields in Hungary over the last 90 years.

    PubMed

    Pinke, Zsolt; Lövei, Gábor L

    2017-12-01

    The transformation of climatic regime has an undeniable impact on plant production, but we rarely have long enough date series to examine the unfolding of such effects. The clarification of the relationship between crop plants and climate has a near-immediate importance due to the impending human-made global change. This study investigated the relationship between temperature, precipitation, drought intensity and the yields of four major cereals in Hungary between 1921 and 2010. The analysis of 30-year segments indicated a monotonously increasing negative impact of temperature on crop yields. A 1°C temperature increase reduced the yield of the four main cereals by 9.6%-14.8% in 1981-2010, which revealed the vulnerability of Eastern European crop farming to recent climate change. Climate accounted for 17%-39% of yield variability over the past 90 years, but this figure reached 33%-67% between 1981 and 2010. Our analysis supports the claim that the mid-20th century green revolution improved yields "at the mercy of the weather": during this period, the impact of increasing fertilization and mechanisation coincided with climatic conditions that were more favourable than today. Crop yields in Eastern Europe have been stagnating or decreasing since the mid-1980s. Although usually attributed to the large socio-economic changes sweeping the region, our analysis indicates that a warming climate is at least partially responsible for this trend. Such a robust impact of increasing temperatures on crop yields also constitutes an obvious warning for this core grain-growing region of the world. © 2017 John Wiley & Sons Ltd.

  16. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  17. Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators

    USGS Publications Warehouse

    Ginsberg, Howard; Bargar, Timothy A.; Hladik, Michelle L.; Lubelczyk, Charles

    2017-01-01

    Tick and mosquito management is important to public health protection. At the same time, growing concerns about declines of pollinator species raise the question of whether vector control practices might affect pollinator populations. We report the results of a task force of the North American Pollinator Protection Campaign (NAPPC) that examined potential effects of vector management practices on pollinators, and how these programs could be adjusted to minimize negative effects on pollinating species. The main types of vector control practices that might affect pollinators are landscape manipulation, biocontrol, and pesticide applications. Some current practices already minimize effects of vector control on pollinators (e.g., short-lived pesticides and application-targeting technologies). Nontarget effects can be further diminished by taking pollinator protection into account in the planning stages of vector management programs. Effects of vector control on pollinator species often depend on specific local conditions (e.g., proximity of locations with abundant vectors to concentrations of floral resources), so planning is most effective when it includes collaborations of local vector management professionals with local experts on pollinators. Interventions can then be designed to avoid pollinators (e.g., targeting applications to avoid blooming times and pollinator nesting habitats), while still optimizing public health protection. Research on efficient targeting of interventions, and on effects on pollinators of emerging technologies, will help mitigate potential deleterious effects on pollinators in future management programs. In particular, models that can predict effects of integrated pest management on vector-borne pathogen transmission, along with effects on pollinator populations, would be useful for collaborative decision-making.

  18. Distinct effects of pollinator dependence and self-incompatibility on pollen limitation in South African biodiversity hotspots.

    PubMed

    Rodger, James G; Ellis, Allan G

    2016-06-01

    Global synthesis indicates that limitation of plant fecundity by pollen receipt (pollen limitation) is positively related to regional plant diversity and is higher for self-incompatible than self-compatible species. While self-incompatible species are always dependent on pollinating agents, self-compatible species may be pollinator-dependent or autofertile. This should cause variation in pollen limitation among self-compatible species, with lower pollen limitation in autofertile species because they do not depend on pollinators. We hypothesized that the intensity of pollen limitation in self-incompatible compared with pollinator-dependent self-compatible species should depend on whether pollen limitation is determined more by quantity than quality of pollen received. We compared pollen limitation between these three groups using a dataset of 70 biotically pollinated species from biodiverse regions of South Africa. Comparison with a global dataset indicated that pollen limitation in the South African biodiversity hotspots was generally comparable to other regions, despite expectations of higher pollen limitation based on the global plant diversity-pollen limitation relationship. Pollen limitation was lowest for autofertile species, as expected. It was also higher for pollinator-dependent self-compatible species than self-incompatible species, consistent with increased pollen-quality limitation in the former group due to negative consequences of pollinator-mediated self-pollination. However, there was a higher frequency of plants with zygomorphic flowers, which were also more pollen-limited, among pollinator-dependent self-compatible species. Thus, we could not attribute this difference in pollen limitation exclusively to a difference in pollen quality. Nevertheless, our results indicate that comparative studies should control for both pollinator dependence and self-incompatiblity when evaluating effects of other factors on pollen limitation. © 2016 The Author(s).

  19. Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production1

    PubMed Central

    Yu, Qin; Powles, Stephen

    2014-01-01

    Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species. PMID:25106819

  20. On ‘various contrivances’: pollination, phylogeny and flower form in the Solanaceae

    PubMed Central

    Knapp, Sandra

    2010-01-01

    Members of the euasterid angiosperm family Solanaceae have been characterized as remarkably diverse in terms of flower morphology and pollinator type. In order to test the relative contribution of phylogeny to the pattern of distribution of floral characters related to pollination, flower form and pollinators have been mapped onto a molecular phylogeny of the family. Bilateral flower symmetry (zygomorphy) is prevalent in the basal grades of the family, and more derived clades have flowers that are largely radially symmetric, with some parallel evolution of floral bilateralism. Pollinator types (‘syndromes’) are extremely homoplastic in the family, but members of subfamily Solanoideae are exceptional in being largely bee pollinated. Pollinator relationships in those genera where they have been investigated more fully are not as specific as flower morphology and the classical pollinator syndrome models might suggest, and more detailed studies in some particularly variable genera, such as Iochroma and Nicotiana, are key to understanding the role of pollinators in floral evolution and adaptive radiation in the family. More studies of pollinators in the field are a priority. PMID:20047871