Park, Il-Soo; Lee, Suk-Jo; Kim, Cheol-Hee; Yoo, Chul; Lee, Yong-Hee
2004-06-01
Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter > or = 10 microm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km x 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of approximately 0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197
Li, Longxiang; Gong, Jianhua; Zhou, Jieping
2014-01-01
Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
Stochastic analysis of concentration field in a wake region.
Yassin, Mohamed F; Elmi, Abdirashid A
2011-02-01
Identifying geographic locations in urban areas from which air pollutants enter the atmosphere is one of the most important information needed to develop effective mitigation strategies for pollution control. Stochastic analysis is a powerful tool that can be used for estimating concentration fluctuation in plume dispersion in a wake region around buildings. Only few studies have been devoted to evaluate applications of stochastic analysis to pollutant dispersion in an urban area. This study was designed to investigate the concentration fields in the wake region using obstacle model such as an isolated building model. We measured concentration fluctuations at centerline of various downwind distances from the source, and different heights with the frequency of 1 KHz. Concentration fields were analyzed stochastically, using the probability density functions (pdf). Stochastic analysis was performed on the concentration fluctuation and the pdf of mean concentration, fluctuation intensity, and crosswind mean-plume dispersion. The pdf of the concentration fluctuation data have shown a significant non-Gaussian behavior. The lognormal distribution appeared to be the best fit to the shape of concentration measured in the boundary layer. We observed that the plume dispersion pdf near the source was shorter than the plume dispersion far from the source. Our findings suggest that the use of stochastic technique in complex building environment can be a powerful tool to help understand the distribution and location of air pollutants.
NASA Astrophysics Data System (ADS)
Cantelli, A.; D'Orta, F.; Cattini, A.; Sebastianelli, F.; Cedola, L.
2015-08-01
A computational model is developed for retrieving the positions and the emission rates of unknown pollution sources, under steady state conditions, starting from the measurements of the concentration of the pollutants. The approach is based on the minimization of a fitness function employing a genetic algorithm paradigm. The model is tested considering both pollutant concentrations generated through a Gaussian model in 25 points in a 3-D test case domain (1000m × 1000m × 50 m) and experimental data such as the Prairie Grass field experiments data in which about 600 receptors were located along five concentric semicircle arcs and the Fusion Field Trials 2007. The results show that the computational model is capable to efficiently retrieve up to three different unknown sources.
NASA Astrophysics Data System (ADS)
García, A. R.; Grutter, M. M.; Volkamer, R. M.
2007-05-01
An environmental risk assessment for criteria pollutants and air toxics in Mexico City is presented. The data used in the study were collected by FTIR and DOAS systems during the Mexico City Metropolitan Area field campaign on April 2003 (MCMA2003). The systems were deployed in two different sites: One in downtown (Merced) and the other in the south east (CENICA). Concentrations of criteria pollutants and air toxics were obtained every 5 min and were used to obtain hourly average concentrations and the month average for April. The concentration values were used to estimate the risks of acute and chronic exposure to ambient concentrations using risk measures like hazard index, life cancer probability, life lost expectancy and maximum individual cancer risk. Results revealed that both sites have similar risk values. For acute exposure, criteria pollutants have larger risks than air toxics, but air toxics have larger risks for chronic exposure. Ambient concentrations of benzene showed the largest carcinogenic risk of the measured air toxics.
Season matters when sampling streams for swine CAFO waste pollution impacts.
Mallin, Michael A; McIver, Matthew R
2018-02-01
Concentrated (or confined) animal feed operations (CAFOs) are the principal means of livestock production in the United States, and such facilities pollute nearby waterways because of their waste management practices; CAFO waste is pumped from the confinement structure into a cesspit and sprayed on a field. Stocking Head Creek is located in eastern North Carolina, a state with >9,000,000 head of swine confined in CAFOs. This watershed contains 40 swine CAFOs; stream water quality was investigated at seven sites during 2016, with five sampling dates in early spring and five in summer. Geometric mean fecal coliform counts were in the thousands/100 mL at five sites in spring and all seven sites in summer. Excessive nitrate pollution was widespread with concentrations up to >11.0 mg N/L. Seasonality played an important role in pollutant concentrations. In North Carolina, spraying animal waste on adjoining fields is permissible from March 1 through September 30. Seasonal data showed significantly higher (p < 0.01) concentrations of conductivity, nitrate, total nitrogen, total organic carbon, and fecal bacteria in summer as opposed to early spring. Thus, sampling performed only in winter-early spring would significantly underestimate impacts from swine CAFO spray fields on nearby waterways.
Wind tunnel simulation of air pollution dispersion in a street canyon.
Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek
2002-01-01
Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.
Ai, Shiwei; Liu, Bailin; Yang, Ying; Ding, Jian; Yang, Wenzhi; Bai, Xiaojuan; Naeem, Sajid; Zhang, Yingmei
2018-05-30
Heavy metal pollution in farmlands is highly concerned as crops' easy-uptake of heavy metal can ultimately affect consumers. In order to offer suggestions on cultivating safe quality vegetable, specifically eggplant which is widely consumed for its nutritional value and antioxidant activity, a field study was undertaken to investigate the temporal variations and spatial distributions of heavy metals in a wastewater-irrigated soil-eggplant system. In the present study, eggplants were planted in the farmlands of Weichuan village (WC) (relatively unpolluted field), Liangzhuang village (LZ) (moderately polluted field) and Minqin village (MQ) (seriously polluted field) to elucidate their temporal uptake processes of heavy metals described by the sigmoid model. Eggplant tissues from severely polluted farmlands were found with higher heavy metal concentrations and lower yields compared with other two groups. What is more, 25 farmlands along the Dongdagou stream (heavy metals polluted stream) were chosen to analyze the spatial distribution of heavy metals in soils and eggplants. Heavy metal concentrations in eggplants decreased with the decline of heavy metal concentrations in soil from upstream (pollution source) to downstream. Moreover, several methods were employed to assess bioavailability of heavy metals in soils. All the bioavailable heavy metals were found in linear positive correlations with heavy metal concentrations. Meanwhile, linear correlations were found between heavy metals in soils and eggplants. At last, redundancy analysis was used to investigate the effects of soil properties (pH, organic matter and texture of soils) and heavy metals on eggplants' uptake. The results indicated that soil heavy metals had a dominant impact on their accumulations in eggplant fruit, with a variance contribution of 78.0%, while soil properties had a regulatory effect, with a variance contribution of 5.2%. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xiankui; Wu, Jichun; Wang, Dong, E-mail: wangdong@nju.edu.cn
Coastal areas have great significance for human living, economy and society development in the world. With the rapid increase of pressures from human activities and climate change, the safety of groundwater resource is under the threat of seawater intrusion in coastal areas. The area of Laizhou Bay is one of the most serious seawater intruded areas in China, since seawater intrusion phenomenon was firstly recognized in the middle of 1970s. This study assessed the pollution risk of a groundwater source filed of western Laizhou Bay area by inferring the probability distribution of groundwater Cl{sup −} concentration. The numerical model ofmore » seawater intrusion process is built by using SEAWAT4. The parameter uncertainty of this model is evaluated by Markov Chain Monte Carlo (MCMC) simulation, and DREAM{sub (ZS)} is used as sampling algorithm. Then, the predictive distribution of Cl{sup -} concentration at groundwater source field is inferred by using the samples of model parameters obtained from MCMC. After that, the pollution risk of groundwater source filed is assessed by the predictive quantiles of Cl{sup -} concentration. The results of model calibration and verification demonstrate that the DREAM{sub (ZS)} based MCMC is efficient and reliable to estimate model parameters under current observation. Under the condition of 95% confidence level, the groundwater source point will not be polluted by seawater intrusion in future five years (2015–2019). In addition, the 2.5% and 97.5% predictive quantiles show that the Cl{sup −} concentration of groundwater source field always vary between 175 mg/l and 200 mg/l. - Highlights: • The parameter uncertainty of seawater intrusion model is evaluated by MCMC. • Groundwater source field won’t be polluted by seawater intrusion in future 5 years. • The pollution risk is assessed by the predictive quantiles of Cl{sup −} concentration.« less
Liu, Jian; Wu, Dui; Fan, Shao-jia
2015-11-01
Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.
NASA Astrophysics Data System (ADS)
Li, Qiangkun; Hu, Yawei; Jia, Qian; Song, Changji
2018-02-01
It is the key point of quantitative research on agricultural non-point source pollution load, the estimation of pollutant concentration in agricultural drain. In the guidance of uncertainty theory, the synthesis of fertilization and irrigation is used as an impulse input to the farmland, meanwhile, the pollutant concentration in agricultural drain is looked as the response process corresponding to the impulse input. The migration and transformation of pollutant in soil is expressed by Inverse Gaussian Probability Density Function. The law of pollutants migration and transformation in soil at crop different growth periods is reflected by adjusting parameters of Inverse Gaussian Distribution. Based on above, the estimation model for pollutant concentration in agricultural drain at field scale was constructed. Taking the of Qing Tong Xia Irrigation District in Ningxia as an example, the concentration of nitrate nitrogen and total phosphorus in agricultural drain was simulated by this model. The results show that the simulated results accorded with measured data approximately and Nash-Sutcliffe coefficients were 0.972 and 0.964, respectively.
Approach to identifying pollutant source and matching flow field
NASA Astrophysics Data System (ADS)
Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang
2013-07-01
Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.
Field study of exhaust fans for mitigating indoor air quality problems: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimsrud, D.T.; Szydlowski, R.F.; Turk, B.H.
1986-09-01
Residential ventilation in the United States housing stock is provided primarily by infiltration, the natural leakage of outdoor air into a building through cracks and holes in the building shell. Since ventilation is the dominant mechanism for control of indoor pollutant concentrations, low infiltration rates caused fluctuation in weather conditions may lead to high indoor pollutant concentrations. Supplemental mechanical ventilation can be used to eliminate these periods of low infiltration. This study examined effects of small continuously-operating exhaust fan on pollutant concentrations and energy use in residences.
NASA Astrophysics Data System (ADS)
Borge, Rafael; Narros, Adolfo; Artíñano, Begoña; Yagüe, Carlos; Gómez-Moreno, Francisco Javier; de la Paz, David; Román-Cascón, Carlos; Díaz, Elías; Maqueda, Gregorio; Sastre, Mariano; Quaassdorff, Christina; Dimitroulopoulou, Chrysanthi; Vardoulakis, Sotiris
2016-09-01
Poor urban air quality is one of the main environmental concerns worldwide due to its implications for population exposure and health-related issues. However, the development of effective abatement strategies in cities requires a consistent and holistic assessment of air pollution processes, taking into account all the relevant scales within a city. This contribution presents the methodology and main results of an intensive experimental campaign carried out in a complex pollution hotspot in Madrid (Spain) under the TECNAIRE-CM research project, which aimed at understanding the microscale spatio-temporal variation of ambient concentration levels in areas where high pollution values are recorded. A variety of instruments were deployed during a three-week field campaign to provide detailed information on meteorological and micrometeorological parameters and spatio-temporal variations of the most relevant pollutants (NO2 and PM) along with relevant information needed to simulate pedestrian fluxes. The results show the strong dependence of ambient concentrations on local emissions and meteorology that turns out in strong spatial and temporal variations, with gradients up to 2 μg m-3 m-1 for NO2 and 55 μg m-3 min-1 for PM10. Pedestrian exposure to these pollutants also presents strong variations temporally and spatially but it concentrates on pedestrian crossings and bus stops. The analysis of the results show that the high concentration levels found in urban hotspots depend on extremely complex dynamic processes that cannot be captured by routinely measurements made by air quality monitoring stations used for regulatory compliance assessment. The large influence from local traffic in the concentration fields highlights the need for a detailed description of specific variables that determine emissions and dispersion at microscale level. This also indicates that city-scale interventions may be complemented with local control measures and exposure management, to improve air quality and reduce air pollution health effects more effectively.
NASA Astrophysics Data System (ADS)
Moss, J. A.; Baum, M.; Castonguay, A. E.; Aguirre, V., Jr.; Pesta, A.; Fanter, R. K.; Anderson, M.
2015-12-01
Emission control systems in light-duty motor vehicles (LDMVs) have played an important role in improving regional air quality by dramatically reducing the concentration of criteria pollutants (carbon monoxide, hydrocarbons, and nitrogen oxides) in exhaust emissions. Unintended side-reactions occurring on the surface of three-way catalysts may lead to emission of a number of non-criteria pollutants whose identity and emission rates are poorly understood. A series of near-roadway field studies conducted between 2009-2015 has investigated LDMV emissions of these pollutants with unprecedented depth of coverage, including reactive nitrogen compounds (NH3, amines, HCN, HONO, and HNO3), organic peroxides, and carbonyl compounds (aldehydes, ketones, and carboxylic acids). Methods to collect these pollutants using mist chambers, annular denuders, impingers, and solid-phase cartridges and quantify their concentration using GC-MS, LC-MS/MS, IC, and colorimetry were developed and validated in the laboratory and field. These methods were subsequently used in near-roadway field studies where the concentrations of the target compounds integrated over 1-4 hour blocks were measured at the edge of a freeway and at a background site 140 m from the roadway. Concentrations followed a steep decreasing gradient from the freeway to the background site. Emission factors (pollutant mass emitted per mass fuel consumed) were calculated by carbon mass balance using the difference in concentration measured between the freeway and background sites for the emitted pollutant and CO2 as a measure of carbon mass in the vehicle exhaust. The significance of these results will be discussed in terms of emissions inventories in the South Coast Air Basin of California, emission trends at this site over the period of 2009-2015, and for NH3, emission measurements conducted by our group and others over the period 2000-2015.
Wu, Hao; Zhang, Yan; Yu, Qi; Ma, Weichun
2018-04-01
In this study, the authors endeavored to develop an effective framework for improving local urban air quality on meso-micro scales in cities in China that are experiencing rapid urbanization. Within this framework, the integrated Weather Research and Forecasting (WRF)/CALPUFF modeling system was applied to simulate the concentration distributions of typical pollutants (particulate matter with an aerodynamic diameter <10 μm [PM 10 ], sulfur dioxide [SO 2 ], and nitrogen oxides [NO x ]) in the urban area of Benxi. Statistical analyses were performed to verify the credibility of this simulation, including the meteorological fields and concentration fields. The sources were then categorized using two different classification methods (the district-based and type-based methods), and the contributions to the pollutant concentrations from each source category were computed to provide a basis for appropriate control measures. The statistical indexes showed that CALMET had sufficient ability to predict the meteorological conditions, such as the wind fields and temperatures, which provided meteorological data for the subsequent CALPUFF run. The simulated concentrations from CALPUFF showed considerable agreement with the observed values but were generally underestimated. The spatial-temporal concentration pattern revealed that the maximum concentrations tended to appear in the urban centers and during the winter. In terms of their contributions to pollutant concentrations, the districts of Xihu, Pingshan, and Mingshan all affected the urban air quality to different degrees. According to the type-based classification, which categorized the pollution sources as belonging to the Bengang Group, large point sources, small point sources, and area sources, the source apportionment showed that the Bengang Group, the large point sources, and the area sources had considerable impacts on urban air quality. Finally, combined with the industrial characteristics, detailed control measures were proposed with which local policy makers could improve the urban air quality in Benxi. In summary, the results of this study showed that this framework has credibility for effectively improving urban air quality, based on the source apportionment of atmospheric pollutants. The authors endeavored to build up an effective framework based on the integrated WRF/CALPUFF to improve the air quality in many cities on meso-micro scales in China. Via this framework, the integrated modeling tool is accurately used to study the characteristics of meteorological fields, concentration fields, and source apportionments of pollutants in target area. The impacts of classified sources on air quality together with the industrial characteristics can provide more effective control measures for improving air quality. Through the case study, the technical framework developed in this study, particularly the source apportionment, could provide important data and technical support for policy makers to assess air pollution on the scale of a city in China or even the world.
Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi
2014-04-01
Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.
NASA Astrophysics Data System (ADS)
Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong
2016-10-01
The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.
Assessment of concentrated flow through riparian buffers
M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer; T.G. Franti; K.D. Hoagland
2002-01-01
Concentrated flow of surface runoff from agricultural fields may limit the capability of riparian buffers to remove pollutants. This study was conducted on four farms in southeastern Nebraska to develop a method for assessing the extent of concentrated flow in riparian buffers and for evaluating the impact that it has on sediment-trapping efficiency. Field methods...
NASA Astrophysics Data System (ADS)
Friberg, Mariel D.; Kahn, Ralph A.; Holmes, Heather A.; Chang, Howard H.; Sarnat, Stefanie Ebelt; Tolbert, Paige E.; Russell, Armistead G.; Mulholland, James A.
2017-06-01
Spatiotemporal characterization of ambient air pollutant concentrations is increasingly relying on the combination of observations and air quality models to provide well-constrained, spatially and temporally complete pollutant concentration fields. Air quality models, in particular, are attractive, as they characterize the emissions, meteorological, and physiochemical process linkages explicitly while providing continuous spatial structure. However, such modeling is computationally intensive and has biases. The limitations of spatially sparse and temporally incomplete observations can be overcome by blending the data with estimates from a physically and chemically coherent model, driven by emissions and meteorological inputs. We recently developed a data fusion method that blends ambient ground observations and chemical-transport-modeled (CTM) data to estimate daily, spatially resolved pollutant concentrations and associated correlations. In this study, we assess the ability of the data fusion method to produce daily metrics (i.e., 1-hr max, 8-hr max, and 24-hr average) of ambient air pollution that capture spatiotemporal air pollution trends for 12 pollutants (CO, NO2, NOx, O3, SO2, PM10, PM2.5, and five PM2.5 components) across five metropolitan areas (Atlanta, Birmingham, Dallas, Pittsburgh, and St. Louis), from 2002 to 2008. Three sets of comparisons are performed: (1) the CTM concentrations are evaluated for each pollutant and metropolitan domain, (2) the data fusion concentrations are compared with the monitor data, (3) a comprehensive cross-validation analysis against observed data evaluates the quality of the data fusion model simulations across multiple metropolitan domains. The resulting daily spatial field estimates of air pollutant concentrations and uncertainties are not only consistent with observations, emissions, and meteorology, but substantially improve CTM-derived results for nearly all pollutants and all cities, with the exception of NO2 for Birmingham. The greatest improvements occur for O3 and PM2.5. Squared spatiotemporal correlation coefficients range between simulations and observations determined using cross-validation across all cities for air pollutants of secondary and mixed origins are R2 = 0.88-0.93 (O3), 0.81-0.89 (SO4), 0.67-0.83 (PM2.5), 0.52-0.72 (NO3), 0.43-0.80 (NH4), 0.32-0.51 (OC), and 0.14-0.71 (PM10). Results for relatively homogeneous pollutants of secondary origin, tend to be better than those for more spatially heterogeneous (larger spatial gradients) pollutants of primary origin (NOx, CO, SO2 and EC). Generally, background concentrations and spatial concentration gradients reflect interurban airshed complexity and the effects of regional transport, whereas daily spatial pattern variability shows intra-urban consistency in the fused data. With sufficiently high CTM spatial resolution, traffic-related pollutants exhibit gradual concentration gradients that peak toward the urban centers. Ambient pollutant concentration uncertainty estimates for the fused data are both more accurate and smaller than those for either the observations or the model simulations alone.
Vandecasteele, Bart; Quataert, Paul; De Vos, Bruno; Tack, Filip M G; Muys, Bart
2004-04-01
Many alluvial soils along navigable waterways are affected by disposal of dredged sediments or overbank sedimentation and contain metal concentrations that are elevated compared to baseline levels. Uptake patterns for metals and other elements by several volunteer Salix species growing on these sites were determined during a growing season in field plots and compared with the same species growing on soils with baseline contamination levels. For Cd and Zn, foliar concentrations were clearly higher on dredged sediment landfills. Uptake patterns differed significantly between species. A high uptake of Mn and low uptake of Cu, K and S in S. cinerea was attributed to wetland soil chemistry. Site effects on metal uptake were evaluated in more detail for Salix cinerea and S. alba growing on different sediment-derived sites under field conditions. Foliar Cd concentrations were higher in S. cinerea than in S. alba. This appeared to be a genetic feature not influenced by soil chemical properties, as it was observed both on clean sites and polluted sediment-derived sites. For S. cinerea, soil chemistry was reflected in foliar concentrations, while foliar Cd concentrations and bioavailability were found to be independent of the thickness of the polluted horizon. Dredged sediment landfills and freshwater tidal marshes with comparable Cd soil pollution had significantly different foliar Cd concentrations.
Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael
2014-09-01
Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.
Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.
Singh, Raj Mohan
2008-04-01
Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging.
Thatcher, T L; Wilson, D J; Wood, E E; Craig, M J; Sextro, R G
2004-08-01
Scale modeling is a useful tool for analyzing complex indoor spaces. Scale model experiments can reduce experimental costs, improve control of flow and temperature conditions, and provide a practical method for pretesting full-scale system modifications. However, changes in physical scale and working fluid (air or water) can complicate interpretation of the equivalent effects in the full-scale structure. This paper presents a detailed scaling analysis of a water tank experiment designed to model a large indoor space, and experimental results obtained with this model to assess the influence of furniture and people in the pollutant concentration field at breathing height. Theoretical calculations are derived for predicting the effects from losses of molecular diffusion, small scale eddies, turbulent kinetic energy, and turbulent mass diffusivity in a scale model, even without Reynolds number matching. Pollutant dispersion experiments were performed in a water-filled 30:1 scale model of a large room, using uranine dye injected continuously from a small point source. Pollutant concentrations were measured in a plane, using laser-induced fluorescence techniques, for three interior configurations: unobstructed, table-like obstructions, and table-like and figure-like obstructions. Concentrations within the measurement plane varied by more than an order of magnitude, even after the concentration field was fully developed. Objects in the model interior had a significant effect on both the concentration field and fluctuation intensity in the measurement plane. PRACTICAL IMPLICATION: This scale model study demonstrates both the utility of scale models for investigating dispersion in indoor environments and the significant impact of turbulence created by furnishings and people on pollutant transport from floor level sources. In a room with no furniture or occupants, the average concentration can vary by about a factor of 3 across the room. Adding furniture and occupants can increase this spatial variation by another factor of 3.
Hahn, Intaek; Wiener, Russell W; Richmond-Bryant, Jennifer; Brixey, Laurie A; Henkle, Stacy W
2009-12-01
The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) study was a multidisciplinary field research project that investigated the transport, dispersion, and infiltration processes of traffic emission particulate matter (PM) pollutants in a near-highway urban residential area. The urban PM transport, dispersion, and infiltration processes were described mathematically in a theoretical model that was constructed to develop the experimental objectives of the B-TRAPPED study. In the study, simultaneous and continuous time-series PM concentration and meteorological data collected at multiple outdoor and indoor monitoring locations were used to characterize both temporal and spatial patterns of the PM concentration movements within microscale distances (<500 m) from the highway. Objectives of the study included (1) characterizing the temporal and spatial PM concentration fluctuation and distribution patterns in the urban street canyon; (2) investigating the effects of urban structures such as a tall building or an intersection on the transport and dispersion of PM; (3) studying the influence of meteorological variables on the transport, dispersion, and infiltration processes; (4) characterizing the relationships between the building parameters and the infiltration mechanisms; (5) establishing a cause-and-effect relationship between outdoor-released PM and indoor PM concentrations and identifying the dominant mechanisms involved in the infiltration process; (6) evaluating the effectiveness of a shelter-in-place area for protection against outdoor-released PM pollutants; and (7) understanding the predominant airflow and pollutant dispersion patterns within the neighborhood using wind tunnel and CFD simulations. The 10 papers in this first set of papers presenting the results from the B-TRAPPED study address these objectives. This paper describes the theoretical background and models representing the interrelated processes of transport, dispersion, and infiltration. The theoretical solution for the relationship between the time-dependent indoor PM concentration and the initial PM concentration at the outdoor source was obtained. The theoretical models and solutions helped us to identify important parameters in the processes of transport, dispersion, and infiltration. The B-TRAPPED study field experiments were then designed to investigate these parameters in the hope of better understanding urban PM pollutant behaviors.
EVALUATING THE EFFECTS OF NEAR ROAD SOLID AND ...
Public health concerns for populations living, working and going to school near high-traffic roadways has increased substantially in recent years. Air quality measurement studies indicate high pollutant concentrations can occur near these large roads, impacting population exposures and health effects. Roadside features have been shown to alter pollutant transport and dispersion from the road, affecting near-road concentrations and exposures for nearby populations. Air quality, wind tunnel and tracer gas measurement studies have identified the potential for noise barriers and roadside vegetation to reduce near-road air pollution concentrations, under some conditions by over 50 percent. However, some roadside conditions have been shown to result in increased downwind pollutant concentrations. The data from these studies have been used to develop and evaluate air dispersion model algorithms to simulate pollutant transport and dispersion around and over these features. This presentation will provide an overview of field and wind tunnel studies which have investigated how roadside features alter near-road air quality, how these studies have led to the development of dispersion model algorithms, and recommendations on the design and location of these features to maximize opportunities for pollution reduction and minimize potential increases in near-road pollutant concentrations. Presentation for the CRC MSAT workshop; requested by organizing committee and OTAQ
NASA Astrophysics Data System (ADS)
Hanna, Steven R.; Young, George S.
2017-01-01
What do the terms "top-down", "inverse", "backwards", "adjoint", "sensor data fusion", "receptor", "source term estimation (STE)", to name several appearing in the current literature, have in common? These varied terms are used by different disciplines to describe the same general methodology - the use of observations of air pollutant concentrations and knowledge of wind fields to identify air pollutant source locations and/or magnitudes. Academic journals are publishing increasing numbers of papers on this topic. Examples of scenarios related to this growing interest, ordered from small scale to large scale, are: use of real-time samplers to quickly estimate the location of a toxic gas release by a terrorist at a large public gathering (e.g., Haupt et al., 2009);
Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian
2016-08-01
Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control. Copyright © 2016 Elsevier B.V. All rights reserved.
Mleiki, Anwar; Marigómez, Ionan; El Menif, Najoua Trigui
2017-11-01
The present investigation was conceived to study, in a small scale field study, the potential of the green garden snail, Cantareus apertus, as biomonitor and sentinel for integrative metal pollution assessment in soils. For this purpose, we investigated the association between the trace metal (Cd, Pb, As, Fe, Cr, Cu, Ni, and Zn) concentrations in soil, plants (Trifolium repens), and C. apertus depending on the distance (20, 150, and 700 m) from a main roadside in Tunisia as well as between metal concentrations and biomarkers of oxidative stress, oxidative damage, and neurotoxicity in C. apertus. Results revealed a clear association between the concentration of metals such as Ni, Cu, and Zn in snail digestive gland, both amongst them and with oxidative stress and neurotoxicity biomarkers recorded in the same organ. Interestingly, Ni, Pb, and Zn occurred at the highest concentration in soil, plant, and snails and the association appeared related to the immediacy of the roadside and the concentration of these three metals tended to decrease with distance from the roadside in the soil-plant-snail system. Conversely, Cd and Cu were bioaccumulated in plants and snails but their concentrations in soil were not high and did not show a decline in concentration with distance from the roadside. After PCA analysis, PC-01 (56% of the variance) represented metal bioaccumulation and associated toxic effects in snails in the presence of high levels of metal pollution (nearby the roadside) while PC-02 (35% of the variance) represented stress induced by moderate levels of metal pollution (at intermediate distances from the roadside). The four studied sites were clearly discriminated one from each other, depending on how they are affected by traffic pollution. In summary, this field study reveals that (a) C. apertus can be used as biomonitor for metal pollution in roadside soils and as sentinel for pollution effects assessment based on biochemical biomarkers; and (b) that oxidative stress and neurotoxicity biomarkers endow with a powerful biological tool for metal pollution biomonitoring in soils, especially in combination with chemical analysis of the soil-plant-snail transfer system. Moreover, this study provides some baseline data for future impact assessments concerning trace metal pollution in Tunisia.
Effects of heavy metals on the litter consumption by the earthworm Lumbricus rubellus in field soils
Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.
2006-01-01
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the "Brabantsche Biesbosch", the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations. ?? 2005 Elsevier GmbH. All rights reserved.
A Comparison of Erosion and Water Pollution Control Strategies for an Agricultural Watershed
NASA Astrophysics Data System (ADS)
Prato, Tony; Shi, Hongqi
1990-02-01
The effectiveness and efficiency of two erosion control strategies and one water pollution control (riparian) strategy are compared for Idaho's Tom Beall watershed. Erosion control strategies maximize annualized net returns per hectare on each field and restrict field erosion rates to no more than 11.2 or 16.8 tons per hectare. The riparian strategy uses good vegetative cover on all fields adjacent to the creek and in noncropland areas and the resource management system that maximizes annualized net returns per hectare on remaining fields. The Agricultural Nonpoint Source Pollution model is used to simulate the levels and concentrations of sediment, nitrogen, phosphorus, and chemical oxygen demand at the outlet of the watershed. Erosion control strategies generate less total erosion and water pollution but are less efficient than the riparian strategy. The riparian strategy is less equitable for farmers than the erosion control strategies.
Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter
2014-08-15
Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events. Copyright © 2014. Published by Elsevier B.V.
STOCHASTIC DESCRIPTION OF SUBGRID POLLUTANT VARIABILITY IN CMAQ
This paper describes a tool for investigating and describing fine scale spatial variability in model concentration fields with the goal of improving the use of air quality models for driving exposure modeling to assess human risk to hazardous air pollutants or air toxics. Region...
Dioxin pollution disrupts reproduction in male Japanese field mice.
Ishiniwa, Hiroko; Sakai, Mizuki; Tohma, Shimon; Matsuki, Hidenori; Takahashi, Yukio; Kajiwara, Hideo; Sekijima, Tsuneo
2013-11-01
Dioxins cause various adverse effects in animals including teratogenesis, induction of drug metabolizing enzymes, tumor promotion, and endocrine disruption. Above all, endocrine disruption is known to disturb reproduction in adult animals and may, also seriously impact their offspring. However, most previous studies have quantified the species-specific accumulation of dioxins, whereas few studies have addressed the physiological impacts of dioxins on wildlife, such as reduced reproductive function. Here we clarify an effect of endocrine disruption caused by dioxins on the Japanese field mouse, Apodemus speciosus. Japanese field mice collected from various sites polluted with dioxins accumulated high concentrations of dioxins in their livers. Some dioxin congeners, especially, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 3,3',4,4',5-pentachloro biphenyl, 1,2,3,4,6,7,8-heptachlorodibenzofuran, and octachlorodibenzo-p-dioxin, which showed high biota-soil accumulation factors, contributed to concentration of dioxins in mouse livers with an increase of accumulation of total dioxins. As for physiological effects on the Japanese field mouse, high levels of cytochrome P450 1A1 (CYP1A1) mRNA, a drug metabolizing enzyme induced by dioxins, were found in the livers of mice captured at polluted sites. Furthermore, at such sites polluted with dioxins, increased CYP1A1 expression coincided with reduced numbers of active spermatozoa in mice. Thus, disruption in gametogenesis observed in these mice suggests that dioxins not only negatively impact reproduction among Japanese field mice, but might also act as a kind of selection pressure in a chemically polluted environment.
. To assess the ambient concentration levels of the six criteria air pollutants regulated by National Ambient Air Quality Standards (NAAQS), the U.S. Environmental Protection Agency (EPA) developed a systematic framework of: (a) field measurements of ambient air pollutant levels ...
Development and application of computational fluid dynamics (CFD) simulations are being advanced through case studies for simulating air pollutant concentrations from sources within open fields and within complex urban building environments. CFD applications have been under deve...
CAIRSENSE Study: Real-world evaluation of low cost sensors in Denver, Colorado
Low-cost air pollution sensors are a rapidly developing field in air monitoring. In recent years, numerous sensors have been developed that can provide real-time concentration data for different air pollutants at costs accessible to individuals and non-regulatory groups. Addition...
Yu, Hesheng; Thé, Jesse
2017-05-01
The dispersion of gaseous pollutant around buildings is complex due to complex turbulence features such as flow detachment and zones of high shear. Computational fluid dynamics (CFD) models are one of the most promising tools to describe the pollutant distribution in the near field of buildings. Reynolds-averaged Navier-Stokes (RANS) models are the most commonly used CFD techniques to address turbulence transport of the pollutant. This research work studies the use of [Formula: see text] closure model for the gas dispersion around a building by fully resolving the viscous sublayer for the first time. The performance of standard [Formula: see text] model is also included for comparison, along with results of an extensively validated Gaussian dispersion model, the U.S. Environmental Protection Agency (EPA) AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model). This study's CFD models apply the standard [Formula: see text] and the [Formula: see text] turbulence models to obtain wind flow field. A passive concentration transport equation is then calculated based on the resolved flow field to simulate the distribution of pollutant concentrations. The resultant simulation of both wind flow and concentration fields are validated rigorously by extensive data using multiple validation metrics. The wind flow field can be acceptably modeled by the [Formula: see text] model. However, the [Formula: see text] model fails to simulate the gas dispersion. The [Formula: see text] model outperforms [Formula: see text] in both flow and dispersion simulations, with higher hit rates for dimensionless velocity components and higher "factor of 2" of observations (FAC2) for normalized concentration. All these validation metrics of [Formula: see text] model pass the quality assurance criteria recommended by The Association of German Engineers (Verein Deutscher Ingenieure, VDI) guideline. Furthermore, these metrics are better than or the same as those in the literature. Comparison between the performances of [Formula: see text] and AERMOD shows that the CFD simulation is superior to Gaussian-type model for pollutant dispersion in the near wake of obstacles. AERMOD can perform as a screening tool for near-field gas dispersion due to its expeditious calculation and the ability to handle complicated cases. The utilization of [Formula: see text] to simulate gaseous pollutant dispersion around an isolated building is appropriate and is expected to be suitable for complex urban environment. Multiple validation metrics of [Formula: see text] turbulence model in CFD quantitatively indicated that this turbulence model was appropriate for the simulation of gas dispersion around buildings. CFD is, therefore, an attractive alternative to wind tunnel for modeling gas dispersion in urban environment due to its excellent performance, and lower cost.
Spatial and temporal variations of water quality in Cao-E River of eastern China.
Chen, Ding-jiang; Lu, Jun; Yuan, Shao-feng; Jin, Shu-quan; Shen, Ye-na
2006-01-01
Evaluation and analysis of water quality variations were performed with integrated consideration of water quality parameters, hydrological-meteorologic and anthropogenic factors in Cao-E River, Zhejiang Province of China. Cao-E River system has been polluted and the water quality of some reaches are inferior to Grade V according to National Surface Water Quality Standard of China (GB2002). However, mainly polluted indices of each tributary and mainstream are different. Total nitrogen (TN) and total phosphorus (TP) in the water are the main polluted indices for mainstream that varies from 1.52 to 45.85 mg/L and 0.02 to 4.02 mg/L, respectively. TN is the main polluted indices for Sub-watershed I, II, IV and V (0.76 to 18.27 mg/L). BOD5 (0.36 to 289.5 mg/L), CODMn (0.47 to 78.86 mg/L), TN (0.74 to 31.09 mg/L) and TP (0 to 3.75 mg/L) are the main polluted indices for Sub-watershed III. There are tow pollution types along the river including nonpoint source pollution and point source pollution types. Remarkably temporal variations with a few spatial variations occur in nonpoint pollution type reaches (including mainstream, Sub-watershed I and II) that mainly drained by arable field and/or dispersive rural dwelling district, and the maximum pollutant concentration appears in flooding seasons. It implied that the runoff increases the pollutant concentration of the water in the nonpoint pollution type reaches. On the other hand, remarkably spatial variations occur in the point pollution type reaches (include Sub-watershed III, IV and V) and the maximum pollutant concentration appears in urban reaches. The runoff always decreases the pollutant concentration of the river water in the seriously polluted reaches that drained by industrial point sewage. But for the point pollution reaches resulted from centralized town domestic sewage pipeline and from frequent shipping and digging sands, rainfall always increased the concentration of pollutant (TN) in the river water too. Pollution controls were respectively suggested for these tow types according to different pollution causes.
Luo, Liqiang; Chu, Binbin; Liu, Ying; Wang, Xiaofang; Xu, Tao; Bo, Ying
2014-01-01
Pollution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) in vegetable fields was investigated near a Pb-Zn mine that has been exploited for over 50 years without a tailing reservoir. A total of 205 water, soil, and aerosol samples were taken and quantified by combined chemical, spectrometric, and mineral analytical methods. The pollution origins were identified by Pb isotopes and the pathways of transformation and transport of the elements and minerals was studied. The data showed that the vegetable fields were seriously polluted by As, Cd, and Pb. Some concentrations in the samples were beyond the regulatory levels and not suitable for agricultural activities. This study revealed that: (1) particulate matter is a major pollution source and an important carrier of mineral particles and pollutants; (2) the elements from the polluted water and soils were strongly correlated with each other; (3) Pb isotope ratios from the samples show that Pb minerals were the major pollution sources in the nearby vegetable fields, and the aerosols were the main carrier of mining pollution; (4) the alkaline, rich-carbonate, and wet conditions in this area promoted the weathering and transformation of galena into the secondary minerals, anglesite and cerussite, which are significant evidence of such processes; (5) the soil and the aerosols are a recycled secondary pollution source for each other when being re-suspended with wind.Highlights• Mining activities generated heavy metal pollution in fields around a Pb-Zn mine• The elements from water and soils are strongly correlated• Anglesite and cerussite are evidence of galena transformation into secondary minerals• Particulate matter is an important transport carrier of pollution.
Broday, David M
2017-10-02
The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.
2017-01-01
The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented. PMID:28974042
NASA Astrophysics Data System (ADS)
Cai, Zhe; Jiang, Fei; Chen, Jingming; Jiang, Ziqiang
2017-04-01
China has been suffering from severe particulate matter (PM) pollution in recent years. Both pollution area and pollution levels are increasing gradually. The PM pollution episodes not only occur in the traditional developed areas like Yangtze River Delta (YRD) and Beijing-Tianjin-Hebei (BTH) region, but also frequently happen in the whole eastern coastal provinces (ECPs) of China. Based on hourly PM2.5 concentrations during December 2013 February 2014 of 55 cities located in the ECPs, we investigated the spatial and temporal variabilities of PM2.5 concentrations and the corresponding meteorological conditions during winter. The results shown that basically the seasonal mean concentrations over the whole ECPs exceeded the China's national standard of 75 μg/m3, and the most polluted area with mean concentrations greater than 150 μg/m3 were located in the southwest of Hebei and the west of Shandong provinces. From December to February, there was a decrease trend for the PM2.5 pollution in most areas, especially in the YRD region, while the PM2.5 concentrations over north of Hebei province increased. The spatial distributions and monthly variations are strongly related to the weather conditions. Overall, severe PM pollution was corresponding to a stable weather condition, i.e., small Sea Level Pressure (SLP) gradient, lower Planetary Boundary Layer (PBL) height and weaker wind fields. Statistics shown that the changes of mean PM2.5 concentrations over the ECPs region usually lagged behind the variations of PBL height and wind speeds about 12 18 hours. The variations of weather conditions could explain about 71% (R2) of the overall changes of PM2.5 concentrations in the ECPs region. This study gives a full insight into the PM2.5 pollution in the area of eastern coastal provinces of China during winter, which would be helpful to predict and control the PM2.5 pollution for this area in the future.
There is a need to develop modeling and data analysis tools to increase our understanding of human exposures to air pollutants beyond what can be explained by "limited" field data. Modeling simulations of complex distributions of pollutant concentrations within roadw...
Lead pollution from waterfowl hunting in wetlands and rice fields in Argentina.
Romano, Marcelo; Ferreyra, Hebe; Ferreyroa, Gisele; Molina, Fernando V; Caselli, Andrea; Barberis, Ignacio; Beldoménico, Pablo; Uhart, Marcela
2016-03-01
The pollution of wetlands by lead derived from waterfowl hunting with lead shot was investigated. We determined soil pellet density and Pb concentration in soil, water and vegetation in natural wetlands and rice fields in central-eastern Santa Fe province, Argentina. Pellet density varied greatly among hunting sites (between 5.5-141 pellets/m(2)) and pellets were present in some control sites. Soil Pb concentration in most hunting sites (approximately 10-20 mg kg(-1)) was not much higher than in control sites (~5-10 mg kg(-1)), with the exception of the site with highest pellet density, which also had a high Pb soil concentration. In water, on the other hand, Pb concentration was similar in all sites (~4-7 μg L(-1)), both control and hunting, and higher than reference values for aquatic media. Lead was also present in vegetation, including grasses and rice crops, in almost all cases. Most soil-collection sites were slightly acidic, and were frequently flooded. These results strongly suggest that metallic Pb from spent shot is oxidized and dissolved due to wetland conditions. Thus, the pollutant is readily mobilized and distributed across all wetland areas, effectively homogenizing its concentration in locations with and without hunting activities. The replacement of lead by nontoxic materials in pellets appears to be the only effective way to prevent Pb pollution in wetlands. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai
2013-01-01
The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p < 0.05), and the first-flush effect did not occur during the 27 simulated rain events. The results also revealed that the concentration of these nutrient pollutants in the runoff strongly depended on the features of the nutrient substrates used in the green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.
Tausz, Michael; Trummer, Walter; Goessler, Walter; Wonisch, Astrid; Grill, Dieter; Naumann, Simone; Jiménez, Maria Soledad; Morales, Domingo
2005-08-01
Concentrations of potential pollutant elements Na, Cl, and S were investigated in needles of Pinus canariensis grown at 55 field plots in Tenerife. Microelement concentrations (including heavy metals) were measured at a subset of 18 plots. Na and Cl concentrations were high at low elevations (up to 8 mg g(-1) Cl and 5.5 mg g(-1) Na). Na/Cl ratio close to standard seawater indicated sea spray influence up to 1200 m a.s.l. Only at few plots, sulphur concentrations indicated possible pollutant impact. Cluster and correlation analyses identified a related group of V, As, Cr, Fe, Mo, Ni, Cu, Pb, and Al, possibly related to traffic exhaust aggregated with soil particles. Mainly north-eastern, lower elevated plots were exposed to those immissions, but metal concentrations were generally low compared to data from other studies. In conclusion, seawater and soil particles explained most of the element distribution pattern in pine needles in Tenerife, but strong indications for some effect of local sources of air pollutants were detected.
[Effect of greenbelt on pollutant dispersion in street canyon].
Xu, Wei-Jia; Xing, Hong; Yu, Zhi
2012-02-01
The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.
NASA Astrophysics Data System (ADS)
Oginawati, K.; Pratama, M. A.
2016-03-01
Organochlorines are the main pollutants in the class of persistent organic pollutants which are types of pollutants that are being questioned worldwide due to chronic persistence, toxicity and bioaccumulation. Human around the Citarum River are still using groundwater as a drinking source. It is very risky for people health that consume groundwater because in 2009 the application of organochlorine still found in the Upper Citarum watershed rice field and had potential to contaminate groundwater. Groundwater was analyzed with nine species belonging to the organochlorine pollutants Organic Peristent types. 7 types of organochlorinesAldrin was detected with an average concentration of 0.09 ppb, dieldrin with an average concentration of 24 ppb, heptaklor with an average concentration of 0.51 ppb, with concentrations of endosulfan on average 0.73 ppb, DDT with average concentration of 0.13 ppb, Lindan with an average concentration of 1.2 ppb, endrin with an average concentration of 0.03 ppb. Types with the highest concentration of organochlorine a lindan and endosulfan. Residues of aldrin, dieldrin and heptaklor in groundwater already exceeds the quality standards for drinking water Permenkes 492/2010. Based on the iridology analysis obtained several systems are expected to nervous, immune and reproductive system disorders and toxin deposits under the skin.
Influence of solid noise barriers on near-road and on-road air quality
NASA Astrophysics Data System (ADS)
Baldauf, Richard W.; Isakov, Vlad; Deshmukh, Parikshit; Venkatram, Akula; Yang, Bo; Zhang, K. Max
2016-03-01
Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has increased substantially in recent years. Roadside features, including solid noise barriers, have been investigated as potential methods that can be implemented in a relatively short time period to reduce air pollution exposures from nearby traffic. A field study was conducted to determine the influence of noise barriers on both on-road and downwind pollutant concentrations near a large highway in Phoenix, Arizona, USA. Concentrations of nitrogen dioxide, carbon monoxide, ultrafine particles, and black carbon were measured using a mobile platform and fixed sites along two limited-access stretches of highway that contained a section of noise barrier and a section with no noise barrier at-grade with the surrounding terrain. Results of the study showed that pollutant concentrations behind the roadside barriers were significantly lower relative to those measured in the absence of barriers. The reductions ranged from 50% within 50 m from the barrier to about 30% as far as 300 m from the barrier. Reductions in pollutant concentrations generally began within the first 50 m of the barrier edge; however, concentrations were highly variable due to vehicle activity behind the barrier and along nearby urban arterial roadways. The concentrations on the highway, upwind of the barrier, varied depending on wind direction. Overall, the on-road concentrations in front of the noise barrier were similar to those measured in the absence of the barrier, contradicting previous modeling results that suggested roadside barriers increase pollutant levels on the road. Thus, this study suggests that noise barriers do reduce potential pollutant exposures for populations downwind of the road, and do not likely increase exposures to traffic-related pollutants for vehicle passengers on the highway.
NASA Astrophysics Data System (ADS)
Rodriguez, Delphy; Valari, Myrto; Markakis, Konstantinos; Payan, Sébastien
2016-04-01
Currently, ambient pollutant concentrations at monitoring sites are routinely measured by local networks, such as AIRPARIF in Paris, France. Pollutant concentration fields are also simulated with regional-scale chemistry transport models such as CHIMERE (http://www.lmd.polytechnique.fr/chimere) under air-quality forecasting platforms (e.g. Prev'Air http://www.prevair.org) or research projects. These data may be combined with more or less sophisticated techniques to provide a fairly good representation of pollutant concentration spatial gradients over urban areas. Here we focus on human exposure to atmospheric contaminants. Based on census data on population dynamics and demographics, modeled outdoor concentrations and infiltration of outdoor air-pollution indoors we have developed a population exposure model for ozone and PM2.5. A critical challenge in the field of population exposure modeling is model validation since personal exposure data are expensive and therefore, rare. However, recent research has made low cost mobile sensors fairly common and therefore personal exposure data should become more and more accessible. In view of planned cohort field-campaigns where such data will be available over the Paris region, we propose in the present study a statistical framework that makes the comparison between modeled and measured exposures meaningful. Our ultimate goal is to evaluate the exposure model by comparing modeled exposures to monitor data. The scientific question we address here is how to downscale modeled data that are estimated on the county population scale at the individual scale which is appropriate to the available measurements. To assess this question we developed a Bayesian hierarchical framework that assimilates actual individual data into population statistics and updates the probability estimate.
NASA Astrophysics Data System (ADS)
Loughner, C.; Follette-Cook, M. B.; Fried, A.; Pickering, K. E.
2015-12-01
The highest observed surface ozone concentrations in the Houston metropolitan area in 2013 occurred on September 25, which coincided with the Texas DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. Surface ozone was elevated throughout the Houston metropolitan area with maximum 8-hour average ozone peaking along the western shore of Galveston Bay, reaching 124 ppbv, almost 50 ppbv above the current EPA standard of 75 ppbv. The NASA P-3B aircraft observed plumes from refinery flares west and northwest of Galveston Bay that were transported over the water. Continental air pollution from the north was transported into the Houston metropolitan area where it mixed with locally generated emissions. A bay breeze circulation formed causing pollutants that were transported out over the water in the morning to recirculate back inland where they mixed with freshly emitted pollution near the bay breeze convergence zone. The highest surface ozone concentrations were reported near the bay breeze front. This ozone episode will be presented using measurements made during the DISCOVER-AQ field campaign and a CMAQ model simulation with integrated source apportionment, which tracks the contribution of emissions source groups and regions on ozone concentrations.
The Impact of Roadside Barriers and Buildings on Near Road Concentrations of Vehicle Emissions
NASA Astrophysics Data System (ADS)
Schulte, Nico
Exposure to elevated concentrations of vehicle emitted pollutants is associated with negative health effects. Elevated concentrations are typically found within several hundred meters of high traffic roads, where atmospheric dispersion has not sufficiently diluted pollutants. Tall buildings next to roads reduce dispersion, thereby creating pollutant hot spots and increasing exposure to vehicle emissions for city residents. Roadside barriers enhance dispersion of roadway emissions and thus can be used to mitigate elevated concentrations next to large roads. The work in this thesis develops semi-empirical dispersion models that are useful for estimating near road concentrations of vehicle emissions when there are buildings or barriers next to the road. Dispersion models that account for the effect of near road barriers on concentrations are developed and evaluated with data from a wind tunnel and a field tracer study. The model evaluation shows that the primary effect of roadside barriers is enhancement of the vertical mixing by an amount proportional to the barrier height. Additionally, turbulence is enhanced in the barrier's wake, resulting in more rapid growth of the pollutant plume. The models perform well during neutral and stable atmospheric conditions. During unstable conditions the models overestimate concentrations. A model that accounts for reduction of the mean wind speed in the barrier wake is unbiased for all stabilities. Models of the impact of tall buildings next to the road on near road concentrations of vehicle emissions are developed. The models are evaluated with data from field measurements conducted in Los Angeles and Riverside counties, CA, and with data from an urban area in Hannover, Germany. The study specifically investigates dispersion in cities with significant building height variability. Model evaluation shows that vertical turbulent transport dominates dispersion in cities. The primary variables governing near road concentrations of vehicle emissions in cities are the ratio of area weighted building height to street width and the vertical averaged standard deviation of vertical velocity fluctuations. The model informs design of transit oriented developments, dense residential areas located in close proximity to transportation infrastructure, which are used to reduce pollution and greenhouse gas emissions due to transportation.
Updated model assessment of pollution at major U. S. airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamartino, R.J.; Rote, D.M.
1979-02-01
The air quality impact of aircraft at and around Los Angeles International Airport (LAX) was simulated for hours of peak aircraft operation and 'worst case' pollutant dispersion conditions by using an updated version of the Argonne Airport Vicinity Air Pollution model; field programs at LAX, O'Hara, and John F. Kennedy International Airports determined the 'worst case' conditions. Maximum carbon monoxide concentrations at LAX were low relative to National Ambient Air Quality Standards; relatively high and widespread hydrocarbon concentrations indicated that aircraft emissions may aggravate oxidant problems near the airport; nitrogen oxide concentrations were close to the levels set in proposedmore » standards. Data on typical time-in-mode for departing and arriving aircraft, the 8/4/77 diurnal variation in airport activity, and carbon monoxide concentration isopleths are given, and the update factors in the model are discussed.« less
NASA Astrophysics Data System (ADS)
Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu
2017-09-01
Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.
Adrees, Muhammad; Ibrahim, Muhammad; Shah, Aamir Mehmood; Abbas, Farhat; Saleem, Farhan; Rizwan, Muhammad; Hina, Saadia; Jabeen, Fariha; Ali, Shafaqat
2016-05-01
Gaseous pollutant emissions from brick kiln industries deteriorate the current state of ambient air quality in Pakistan and worldwide. These gaseous pollutants affect the health of plants and may decrease plant growth and yield. A field experiment that was conducted to monitor the concentration of gaseous pollutants emitted mainly from brick kilns in the ambient air and associated impacts on the growth and physiological attributes of the two wheat (Triticum spp.) cultivars. Plants were grown at three sites, including control (Ayub Agriculture Research Institute, AARI), low pollution (LP) site (Small Estate Industry), and high pollution (HP) site (Sidar Bypass), of Faisalabad, Pakistan. Monitoring of ambient air pollution at experimental sites was carried out using the state-of-art ambient air analyzers. Plants were harvested after 120 days of germination and were analyzed for different growth attributes. Results showed that the hourly average concentration of gaseous air pollutants CO, NO2, SO2, and PM10 at HP site were significantly higher than the LP and control sites. Similarly, gaseous pollutants decreased plant height, straw and grain yield, photosynthesis and increased physical injury, and metal concentrations in the grains. However, wheat response toward gaseous pollutants did not differ between cultivars (Galaxy and 8173) studied. Overall, the results indicated that brick kiln emissions could reduce the performance of wheat grown in the soils around kilns and confirm the adverse impacts of pollutants on the growth, yield, and quality of the wheat.
Groundwater pollution by nitrates from livestock wastes.
Goldberg, V M
1989-01-01
Utilization of wastes from livestock complexes for irrigation involves the danger of groundwater pollution by nitrates. In order to prevent and minimize pollution, it is necessary to apply geological-hydrogeological evidence and concepts to the situation of wastewater irrigation for the purposes of studying natural groundwater protectiveness and predicting changes in groundwater quality as a result of infiltrating wastes. The procedure of protectiveness evaluation and quality prediction is described. With groundwater pollution by nitrate nitrogen, the concentration of ammonium nitrogen noticeably increases. One of the reasons for this change is the process of denitrification due to changes in the hydrogeochemical conditions in a layer. At representative field sites, it is necessary to collect systematic stationary observations of the concentrations of nitrogenous compounds in groundwater and changes in redox conditions and temperature. PMID:2620669
Gromke, Christof
2011-01-01
A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. Copyright © 2010 Elsevier Ltd. All rights reserved.
Gromke, Christof; Blocken, Bert
2015-01-01
Flow and dispersion of traffic-emitted pollutants were studied in a generic urban neighborhood for various avenue-tree layouts by employing 3D steady RANS simulations with the realizable k-ε turbulence model. In comparison to the tree-free situation quantitative and qualitative changes with flow reversal in the wind field were observed. Low to moderate increases (<13.2%) in the neighborhood-averaged pollutant concentration were found at pedestrian level. An approximately 1% increase in the neighborhood-averaged concentration was obtained with each percent of the street canyon volumes being occupied by vegetation for occupation fractions between 4 and 14%. The overall pattern of concentration changes relative to the tree-free situation was similar for all avenue-tree layouts. However, pronounced locally restricted decreases or increases in concentration (-87 to +1378%) occurred. The results indicate the necessity to account for existing or planned avenue-trees in neighborhood scaled is dispersion studies. Their consideration is prerequisite for reliable urban air quality assessment.
Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.
Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo
2015-01-01
The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil environment.
Study on the traffic air pollution inside and outside a road tunnel in Shanghai, China.
Zhou, Rui; Wang, Shanshan; Shi, Chanzhen; Wang, Wenxin; Zhao, Heng; Liu, Rui; Chen, Limin; Zhou, Bin
2014-01-01
To investigate the vehicle induced air pollution situations both inside and outside the tunnel, the field measurement of the pollutants concentrations and its diurnal variations was performed inside and outside the Xiangyin tunnel in Shanghai from 13:00 on April 24th to 13:00 on April 25th, 2013. The highest hourly average concentrations of pollutants were quantified that CO, NO, NO2 and NOX inside the tunnel were 13.223 mg/m3, 1.829 mg/m3, 0.291 mg/m3 and 3.029 mg/m3, respectively, while the lowest ones were 3.086 mg/m3, 0.344 mg/m3, 0.080 mg/m3 and 0.619 mg/m3. Moreover, the concentrations of pollutants were higher during the daytime, and lower at night, which is relevant to the traffic conditions inside the tunnel. Pollutants concentrations inside the tunnel were much higher than those outside the tunnel. Then in a case of slow wind, the effect of wind is much smaller than the impact of pollution sources. Additionally, the PM2.5 concentrations climbed to the peak sharply (468.45 µg/m3) during the morning rush hours. The concentrations of organic carbon (OC) and elemental carbon (EC) in PM2.5 inside the tunnel were 37.09-99.06 µg/m3 and 22.69-137.99 µg/m3, respectively. Besides, the OC/EC ratio ranged from 0.72 to 2.19 with an average value of 1.34. Compared with the results of other tunnel experiments in Guangzhou and Shenzhen, China, it could be inferred that the proportion of HDVs through the Xiangyin tunnel is relatively lower.
Study on the Traffic Air Pollution inside and outside a Road Tunnel in Shanghai, China
Zhou, Rui; Wang, Shanshan; Shi, Chanzhen; Wang, Wenxin; Zhao, Heng; Liu, Rui; Chen, Limin; Zhou, Bin
2014-01-01
To investigate the vehicle induced air pollution situations both inside and outside the tunnel, the field measurement of the pollutants concentrations and its diurnal variations was performed inside and outside the Xiangyin tunnel in Shanghai from 13:00 on April 24th to 13:00 on April 25th, 2013. The highest hourly average concentrations of pollutants were quantified that CO, NO, NO2 and NOX inside the tunnel were 13.223 mg/m3, 1.829 mg/m3, 0.291 mg/m3 and 3.029 mg/m3, respectively, while the lowest ones were 3.086 mg/m3, 0.344 mg/m3, 0.080 mg/m3 and 0.619 mg/m3. Moreover, the concentrations of pollutants were higher during the daytime, and lower at night, which is relevant to the traffic conditions inside the tunnel. Pollutants concentrations inside the tunnel were much higher than those outside the tunnel. Then in a case of slow wind, the effect of wind is much smaller than the impact of pollution sources. Additionally, the PM2.5 concentrations climbed to the peak sharply (468.45 µg/m3) during the morning rush hours. The concentrations of organic carbon (OC) and elemental carbon (EC) in PM2.5 inside the tunnel were 37.09–99.06 µg/m3 and 22.69–137.99 µg/m3, respectively. Besides, the OC/EC ratio ranged from 0.72 to 2.19 with an average value of 1.34. Compared with the results of other tunnel experiments in Guangzhou and Shenzhen, China, it could be inferred that the proportion of HDVs through the Xiangyin tunnel is relatively lower. PMID:25386920
NASA Astrophysics Data System (ADS)
Boyarshinov, Michael G.; Vaismana, Yakov I.
2016-10-01
The following methods were used in order to identify the pollution fields of urban air caused by the motor transport exhaust gases: the mathematical model, which enables to consider the influence of the main factors that determine pollution fields formation in the complex spatial domain; the authoring software designed for computational modeling of the gas flow, generated by numerous mobile point sources; the results of computing experiments on pollutant spread analysis and evolution of their concentration fields. The computational model of exhaust gas distribution and dispersion in a spatial domain, which includes urban buildings, structures and main traffic arteries, takes into account a stochastic character of cars apparition on the borders of the examined territory and uses a Poisson process. The model also considers the traffic lights switching and permits to define the fields of velocity, pressure and temperature of the discharge gases in urban air. The verification of mathematical model and software used confirmed their satisfactory fit to the in-situ measurements data and the possibility to use the obtained computing results for assessment and prediction of urban air pollution caused by motor transport exhaust gases.
Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali
2014-02-05
Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.
2014-01-01
Background Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries. Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. Results The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue < 0.05) between pollutant concentrations in different operational conditions. Conclusions Degradation of toluene & benzene increases with increasing UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions. PMID:24499601
Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena
2013-02-01
While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution. Copyright © 2012 Elsevier B.V. All rights reserved.
Air flow and pollution in a real, heterogeneous urban street canyon: A field and laboratory study
NASA Astrophysics Data System (ADS)
Karra, Styliani; Malki-Epshtein, Liora; Neophytou, Marina K.-A.
2017-09-01
In this work we investigate the influence of real world conditions, including heterogeneity and natural variability of background wind, on the air flow and pollutant concentrations in a heterogeneous urban street canyon using both a series of field measurements and controlled laboratory experiments. Field measurements of wind velocities and Carbon Monoxide (CO) concentrations were taken under field conditions in a heterogeneous street in a city centre at several cross-sections along the length of the street (each cross-section being of different aspect ratio). The real field background wind was in fact observed to be highly variable and thus different Intensive Observation Periods (IOPs) represented by a different mean wind velocity and different wind variability were defined. Observed pollution concentrations reveal high sensitivity to local parameters: there is a bias towards the side closer to the traffic lane; higher concentrations are found in the centre of the street as compared to cross-sections closer to the junctions; higher concentrations are found at 1.5 height from the ground than at 2.5 m height, all of which are of concern regarding pedestrian exposure to traffic-related pollution. A physical model of the same street was produced for the purpose of laboratory experiments, making some geometrical simplifications of complex volumes and extrusions. The physical model was tested in an Atmospheric Boundary Layer water channel, using simultaneously Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF), for flow visualisation as well as for quantitative measurement of concentrations and flow velocities. The wind field conditions were represented by a steady mean approach velocity in the laboratory simulation (essentially representing periods of near-zero wind variability). The laboratory investigations showed a clear sensitivity of the resulting flow field to the local geometry and substantial three-dimensional flow patterns were observed throughout the modelled street. The real-field observations and the laboratory measurements were compared. Overall, we found that lower variability in the background wind does not necessarily ensure a better agreement between the airflow velocity measured in the field and in the lab. In fact, it was observed that in certain cross sections, the airflow was more affected by the particular complex architectural features such as building extrusions and balconies, which were not represented in the simplified physical model tested in the laboratory, than by the real wind field variability. For wind speed comparisons the most favourable agreement (36.6% of the compared values were within a factor of 2) was found in the case of lowest wind variability and in the section with the most simple geometry where the physical lab model was most similar to the real street. For wind direction comparisons the most favourable agreement (45.5% of the compared values was within ±45°) was found in the case with higher wind variability but in the cross-sections with more homogeneous geometrical features. Street canyons are often simplified in research and are often modelled as homogenous symmetrical canyons under steady flow, for practical purposes; our study as a whole demonstrates that natural variability and heterogeneity play a large role in how pollution disperses throughout the street, and therefore further detail in models is vital to understand real world conditions.
NASA Astrophysics Data System (ADS)
Yu, Hesheng; Thé, Jesse
2016-11-01
The prediction of the dispersion of air pollutants in urban areas is of great importance to public health, homeland security, and environmental protection. Computational Fluid Dynamics (CFD) emerges as an effective tool for pollutant dispersion modelling. This paper reports and quantitatively validates the shear stress transport (SST) k-ω turbulence closure model and its transitional variant for pollutant dispersion under complex urban environment for the first time. Sensitivity analysis is performed to establish recommendation for the proper use of turbulence models in urban settings. The current SST k-ω simulation is validated rigorously by extensive experimental data using hit rate for velocity components, and the "factor of two" of observations (FAC2) and fractional bias (FB) for concentration field. The simulation results show that current SST k-ω model can predict flow field nicely with an overall hit rate of 0.870, and concentration dispersion with FAC2 = 0.721 and FB = 0.045. The flow simulation of the current SST k-ω model is slightly inferior to that of a detached eddy simulation (DES), but better than that of standard k-ε model. However, the current study is the best among these three model approaches, when validated against measurements of pollutant dispersion in the atmosphere. This work aims to provide recommendation for proper use of CFD to predict pollutant dispersion in urban environment.
Cross-comparison and evaluation of air pollution field estimation methods
NASA Astrophysics Data System (ADS)
Yu, Haofei; Russell, Armistead; Mulholland, James; Odman, Talat; Hu, Yongtao; Chang, Howard H.; Kumar, Naresh
2018-04-01
Accurate estimates of human exposure is critical for air pollution health studies and a variety of methods are currently being used to assign pollutant concentrations to populations. Results from these methods may differ substantially, which can affect the outcomes of health impact assessments. Here, we applied 14 methods for developing spatiotemporal air pollutant concentration fields of eight pollutants to the Atlanta, Georgia region. These methods include eight methods relying mostly on air quality observations (CM: central monitor; SA: spatial average; IDW: inverse distance weighting; KRIG: kriging; TESS-D: discontinuous tessellation; TESS-NN: natural neighbor tessellation with interpolation; LUR: land use regression; AOD: downscaled satellite-derived aerosol optical depth), one using the RLINE dispersion model, and five methods using a chemical transport model (CMAQ), with and without using observational data to constrain results. The derived fields were evaluated and compared. Overall, all methods generally perform better at urban than rural area, and for secondary than primary pollutants. We found the CM and SA methods may be appropriate only for small domains, and for secondary pollutants, though the SA method lead to large negative spatial correlations when using data withholding for PM2.5 (spatial correlation coefficient R = -0.81). The TESS-D method was found to have major limitations. Results of the IDW, KRIG and TESS-NN methods are similar. They are found to be better suited for secondary pollutants because of their satisfactory temporal performance (e.g. average temporal R2 > 0.85 for PM2.5 but less than 0.35 for primary pollutant NO2). In addition, they are suitable for areas with relatively dense monitoring networks due to their inability to capture spatial concentration variabilities, as indicated by the negative spatial R (lower than -0.2 for PM2.5 when assessed using data withholding). The performance of LUR and AOD methods were similar to kriging. Using RLINE and CMAQ fields without fusing observational data led to substantial errors and biases, though the CMAQ model captured spatial gradients reasonably well (spatial R = 0.45 for PM2.5). Two unique tests conducted here included quantifying autocorrelation of method biases (which can be important in time series analyses) and how well the methods capture the observed interspecies correlations (which would be of particular importance in multipollutant health assessments). Autocorrelation of method biases lasted longest and interspecies correlations of primary pollutants was higher than observations when air quality models were used without data fusing. Use of hybrid methods that combine air quality model outputs with observational data overcome some of these limitations and is better suited for health studies. Results from this study contribute to better understanding the strengths and weaknesses of different methods for estimating human exposures.
O'Connell, Steven G; McCartney, Melissa A; Paulik, L Blair; Allan, Sarah E; Tidwell, Lane G; Wilson, Glenn; Anderson, Kim A
2014-10-01
Sequestering semi-polar compounds can be difficult with low-density polyethylene (LDPE), but those pollutants may be more efficiently absorbed using silicone. In this work, optimized methods for cleaning, infusing reference standards, and polymer extraction are reported along with field comparisons of several silicone materials for polycyclic aromatic hydrocarbons (PAHs) and pesticides. In a final field demonstration, the most optimal silicone material is coupled with LDPE in a large-scale study to examine PAHs in addition to oxygenated-PAHs (OPAHs) at a Superfund site. OPAHs exemplify a sensitive range of chemical properties to compare polymers (log Kow 0.2-5.3), and transformation products of commonly studied parent PAHs. On average, while polymer concentrations differed nearly 7-fold, water-calculated values were more similar (about 3.5-fold or less) for both PAHs (17) and OPAHs (7). Individual water concentrations of OPAHs differed dramatically between silicone and LDPE, highlighting the advantages of choosing appropriate polymers and optimized methods for pollutant monitoring. Copyright © 2014 Elsevier Ltd. All rights reserved.
O’Connell, Steven G.; McCartney, Melissa A.; Paulik, L. Blair; Allan, Sarah E.; Tidwell, Lane G.; Wilson, Glenn; Anderson, Kim A.
2014-01-01
Sequestering semi-polar compounds can be difficult with low-density polyethylene (LDPE), but those pollutants may be more efficiently absorbed using silicone. In this work, optimized methods for cleaning, infusing reference standards, and polymer extraction are reported along with field comparisons of several silicone materials for polycyclic aromatic hydrocarbons (PAHs) and pesticides. In a final field demonstration, the most optimal silicone material is coupled with LDPE in a large-scale study to examine PAHs in addition to oxygenated-PAHs (OPAHs) at a Superfund site. OPAHs exemplify a sensitive range of chemical properties to compare polymers (log Kow 0.2–5.3), and transformation products of commonly studied parent PAHs. On average, while polymer concentrations differed nearly 7-fold, water-calculated values were more similar (about 3.5-fold or less) for both PAHs (17) and OPAHs (7). Individual water concentrations of OPAHs differed dramatically between silicone and LDPE, highlighting the advantages of choosing appropriate polymers and optimized methods for pollutant monitoring. PMID:25009960
Krahn, Margaret M; Hanson, M Bradley; Schorr, Gregory S; Emmons, Candice K; Burrows, Douglas G; Bolton, Jennie L; Baird, Robin W; Ylitalo, Gina M
2009-10-01
"Southern Resident" killer whales (Orcinus orca) that comprise three fish-eating "pods" (J, K and L) were listed as "endangered" in the US and Canada following a 20% population decline between 1996 and 2001. Blubber biopsy samples from Southern Resident juveniles had statistically higher concentrations of certain persistent organic pollutants than were found for adults. Most Southern Resident killer whales, including the four juveniles, exceeded the health-effects threshold for total PCBs in marine mammal blubber. Maternal transfer of contaminants to the juveniles during rapid development of their biological systems may put these young whales at greater risk than adults for adverse health effects (e.g., immune and endocrine system dysfunction). Pollutant ratios and field observations established that two of the pods (K- and L-pod) travel to California to forage. Nitrogen stable isotope values, supported by field observations, indicated possible changes in the diet of L-pod over the last decade.
Impact of wind direction on near-road pollutant concentrations
NASA Astrophysics Data System (ADS)
Venkatram, Akula; Snyder, Michelle; Isakov, Vlad; Kimbrough, Sue
2013-12-01
Exposure to roadway emissions is an emerging area of research because of recent epidemiological studies reporting association between living within a few hundred meters of high-traffic roadways and adverse health effects. The air quality impact of roadway emissions has been studied in a number of field experiments, most of which have not fully considered the impact of wind direction on near-road concentrations. This paper examines the role of wind direction by using a dispersion model to analyze data from three field studies that include measurements under varying wind directions: 1) a tracer study conducted adjacent to highway 99 in Sacramento, CA in 1981-82, 2) a field study next to a highway in Raleigh, North Carolina in 2006, and 3) a field study conducted next to a depressed highway in Las Vegas, Nevada in 2010. We find that wind direction is an important variable in characterizing exposure to roadway emissions. Under stable conditions, the near-surface concentrations at receptors up to 100 m from the road increase with wind angle before dropping off at angles close to parallel to the road. It is only for pollutants with short life times does the maximum concentration occur when the wind direction is normal to the road. We also show that current dispersion models are reliable tools for interpreting observations and for formulating plans for field studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, S.L.N.; Venugopal, N.B.R.K.
1991-04-01
Heavy metals discharged from industries are a major source of pollution which has become a threat to all forms of life. Among the various heavy metals, cadmium is known to be highly toxic even in low concentrations. The harmful effects of cadmium is attributed to its effects on sulfhydryl groups of enzymes, especially dehydrogenases. Various aspects of cadmium pollution on fishes have been extensively reviewed. A survey of the literature reveals that few attempts have been made to study the various aspects of cadmium toxicity in crustaceans and these studies were mainly devoted to marine forms. The freshwater crustaceans, particularlymore » the freshwater field crab, Barytelphusa guerini, has received little attention. The present study reports the influence of cadmium on certain aspects of protein metabolism in the tissues of a freshwater field crab, Barytelphusa guerini, and important component of the paddy field ecosystem, exposed to sublethal concentrations of cadmium chloride.« less
Bromage, Erin S; Vadas, George G; Harvey, Ellen; Unger, Michael A; Kaattari, Stephen L
2007-10-15
Nitroaromatics are common pollutants of soil and groundwater at military installations because of their manufacture, storage, and use at these sites. Long-term monitoring of these pollutants comprise a significant percentage of restoration costs. Further, remediation activities often have to be delayed, while the samples are processed via traditional chemical assessment protocols. Here we describe a rapid (<5 min), cost-effective, accurate method using a KinExA Inline Biosensor for monitoring of 2,4,6-trinitrotoluene (TNT) in field water samples. The biosensor, which is based on KinExA technology, accurately estimated the concentration of TNT in double-blind comparisons with similar accuracy to traditional high-performance liquid chromatography(HPLC). In the assessment of field samples, the biosensor accurately predicted the concentration of TNT over the range of 1-30,000 microg/L when compared to either HPLC or quantitative gas chromatography-mass spectrometry (GC-MS). Various pre-assessment techniques were explored to examine whether field samples could be assessed untreated, without the removal of particulates or the use of solvents. In most cases, the KinExA Inline Biosensor gave a uniform assessment of TNT concentration independent of pretreatment method. This indicates that this sensor possesses significant promise for rapid, on-site assessment of TNT pollution in environmental water samples.
Aikawa, Masahide; Hiraki, Takatoshi; Tamaki, Motonori; Kasahara, Mikio; Kondo, Akira; Uno, Itsushi; Mukai, Hitoshi; Shimizu, Atsushi; Murano, Kentaro
2006-11-01
An intensive field survey, with 6-h measurement intervals, of concentrations of chemical species in particulate matter and gaseous compounds was carried out at coastal sites on the Sea of Japan during winter. The concentration variation of SO(2)(g) and HNO(3)(g) were well correlated, whereas the NH(3)(g) concentration variation had no correlation with those of SO(2)(g) and HNO(3)(g). The NH(4) (+) (p)/non-sea-salt- (nss-)SO(4) (2 -)(p) ratio in particulate matter was mainly affected by the location of the sampling site. One or more concentration peaks of nss-Ca(2 +) for survey period were observed. Backward trajectories analyses for the highest nss-Ca(2 +) concentration peaks showed some inconsistency in pathways. We consider that insufficient mixing of the atmosphere and/or insufficient time for the transported air pollutants to react with those discharged locally are the most likely explanations for the discrepancies between the measured products [HNO(3)][NH(3)] and the calculated values.
Air pollutant mapping with a mobile laboratory during the BEE-TEX field study
NASA Astrophysics Data System (ADS)
Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Floerchinger, C. R.; Knighton, W. B.; Kolb, C. E., Jr.
2016-12-01
The region surrounding the Houston ship channel (Texas, USA) is home to a high density of petrochemical facilities, many of which emit air toxics of concern to human health. Several residential neighborhoods also abut these industrial areas. The Aerodyne Mobile Laboratory was deployed to the Houston ship channel and surrounding areas during the Benzene and Other Toxics Exposure (BEE-TEX) field study in February of 2015. We evaluate atmospheric concentrations of volatile organic hydrocarbons and other hazardous air pollutants, including benzene, 1,3-butadiene, toluene, xylenes and ethylbenzenes, styrene and nitrogen dioxide. Measurements are focused in the Manchester neighborhood, bordered by industry on the north, a rail yard on the south and a highway on the west. Two other neighborhoods are sampled to a lesser degree: Harrisburg and Galena Park. The most likely measured concentration of 1,3-butadiene in the Manchester neighborhood (0.17 ppb) exceeds the Environmental Protection Agency's E-5 lifetime cancer risk level of 0.14 ppb. In all three neighborhoods, the measured benzene concentration falls below or within the E-5 lifetime cancer risk levels of 0.4-1.4 ppb for benzene. Pollution maps as a function of wind direction show the impact of nearby sources.
Numerical simulation of the Maui Vortex in the trade winds
Kyozo Ueyoshi; John O. Roads; Francis Fujioka; Duane E. Stevens
1996-01-01
On the island of Maui, the dispersion of air pollutants associated with the field burning of biomass is complicated because the persistent Maui Vortex in the lee of Haleakala tends to trap smoke making pollution concentration worse in the central valley. In the present study we describe the spatially as well as temporally continuous short-term climatology of the...
Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations.
N Genikomsakis, Konstantinos; Galatoulas, Nikolaos-Fivos; I Dallas, Panagiotis; Candanedo Ibarra, Luis Miguel; Margaritis, Dimitris; S Ioakimidis, Christos
2018-04-01
Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium.
Development and On-Field Testing of Low-Cost Portable System for Monitoring PM2.5 Concentrations
Galatoulas, Nikolaos-Fivos; I. Dallas, Panagiotis; Candanedo Ibarra, Luis Miguel; Margaritis, Dimitris; S. Ioakimidis, Christos
2018-01-01
Recent developments in the field of low-cost sensors enable the design and implementation of compact, inexpensive and portable sensing units for air pollution monitoring with fine-detailed spatial and temporal resolution, in order to support applications of wider interest in the area of intelligent transportation systems (ITS). In this context, the present work advances the concept of developing a low-cost portable air pollution monitoring system (APMS) for measuring the concentrations of particulate matter (PM), in particular fine particles with a diameter of 2.5 μm or less (PM2.5). Specifically, this paper presents the on-field testing of the proposed low-cost APMS implementation using roadside measurements from a mobile laboratory equipped with a calibrated instrument as the basis of comparison and showcases its accuracy on characterizing the PM2.5 concentrations on 1 min resolution in an on-road trial. Moreover, it demonstrates the intended application of collecting fine-grained spatio-temporal PM2.5 profiles by mounting the developed APMS on an electric bike as a case study in the city of Mons, Belgium. PMID:29614770
The paper presents a new approach to quantifying emissions from fugitive gaseous air pollution sources. Computed tomography (CT) and path-integrated optical remote sensing (PI-ORS) concentration data are combined in a new field beam geometry. Path-integrated concentrations are ...
Defining a "Zone of Impact": Transport Processes and Patterns for Small-Scale Land Runoff.
NASA Astrophysics Data System (ADS)
Largier, J. L.; Basdurak, B.
2016-12-01
Nearshore pollution is a well-recognized environmental problem, yet the pattern of this pollution is not well studied and it is little recognized in policy. Whether nutrients, pathogens or toxins, the highest concentrations of pollutants in the nearfield are controlled by transport and mixing, rather than decay of the constituent. Thus, this becomes a challenge to determine patterns of runoff (and tidal outflow) and to account for the dominant processes that control these patterns. Salinity and fecal indicator bacteria data exhibit coherent space-time patterns, indicating that a coherent "zone of impact" can be determined, i.e., a time-varying spatial zone in which the constituent of concern exceeds a reference concentration (level of concern). To explain field observations, modeling of small-scale runoff plumes and wave-driven transport can be used. In contrast to larger river plumes, wind forcing is a critical factor in plume behavior and the resultant pattern of pollution. This preliminary work suggests that coherent spatio-temporal patterns can explain the apparently not-so-well-behaved patterns of pollution that are reported when concentrations are under-sampled. And it throws out a challenge to nearshore oceanographers to better explain transport and mixing patterns for the benefit of reducing coastal pollution and its impacts.
Li, Hui; Liu, Yan; Zhou, Yaoyu; Zhang, Jiachao; Mao, Qiming; Yang, Yuan; Huang, Hongli; Liu, Zhaohui; Peng, Qinghui; Luo, Lin
2018-06-04
Highly effective, economical, and replicable ways of Cd-polluted paddy field remediation (in situ) are urgently needed. In this work, a yearlong field experiment (both early and late rice) was conducted to investigate the effects of red mud based passivator [red mud, diatomite, and lime (5:3:2)] on remediation of an acidic Cd-polluted paddy field in Hunan Province. Compared with the control, the addition of red mud based passivator in the early and late rice reduced Cd concentration in each part of the rice plant (with the most significant decrease rate of 59.18% and 72.11% for brown rice in the early rice and late rice seasons respectively). The effect of Cd reduction in the rice plant was persistent in the next growing season. The addition of red mud based passivator also reduced the exchangeable fraction of Cd in the soil and converted the exchangeable fraction into other unavailable fractions. This study demonstrated that the pH in acidic soil increased after the application of red mud based passivator. Furthermore, red mud based passivator had no effect on the concentrations of Olsen-K, Alkaline-N, Olsen-P in the soil, but increased rice grain yield. Overall, the results of this study indicated that the red mud based passivator at 0.6 kg m -2 could be a recommendation for Cd-polluted acidic paddy soil stabilization, and it would be a suitable method for remediation of Cd-polluted acidic paddy soil. Copyright © 2018 Elsevier B.V. All rights reserved.
Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton.
Echeveste, Pedro; Galbán-Malagón, Cristóbal; Dachs, Jordi; Berrojalbiz, Naiara; Agustí, Susana
2016-11-15
Semivolatile and persistent organic pollutants (POPs) undergo atmospheric transport before being deposited to the oceans, where they partition to phytoplankton organic matter. The goal of this study was to determine the toxicity of naturally occurring complex mixtures of organic pollutants to temperate and polar phytoplankton communities from the Mediterranean Sea, the North East (NE) Atlantic, and Southern Oceans. The cell abundance of the different phytoplankton groups, chlorophyll a concentrations, viability of the cells, and growth and decay constants were monitored in response to addition of a range of concentrations of mixtures of organic pollutants obtained from seawater extracts. Almost all of the phytoplankton groups were significantly affected by the complex mixtures of non-polar and polar organic pollutants, with toxicity being greater for these mixtures than for single POPs or simple POP mixtures. Cocktails' toxicity arose at concentrations as low as tenfold the field oceanic levels, probably due to a higher chemical activity of the mixture than of simple POPs mixtures. Overall, smaller cells were the most affected, although Mediterranean picophytoplankton was significantly more tolerant to non-polar POPs than picophytoplankton from the Atlantic Ocean or the Bellingshausen Sea microphytoplankton. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shih-Kai; Jang, Cheng-Shin; Yeh, Chun-Lin
2013-04-01
The intensive use of chemical fertilizer has negatively impacted environments in recent decades, mainly through water pollution by nitrogen (N) and phosphate (P) originating from agricultural activities. As a main crop with the largest cultivation area about 0.25 million ha per year in Taiwan, rice paddies account for a significant share of fertilizer consumption among agriculture crops. This study evaluated the fertilization of paddy fields impacting return flow water quality in an agricultural watershed located at Hsinchu County, northern Taiwan. Water quality monitoring continued for two crop-periods in 2012, around subject to different water bodies, including the irrigation water, drainage water, and shallow groundwater. The results indicated that obviously increasing of ammonium-N, nitrate-N and TP concentrations in the surface drainage water were observed immediately following three times of fertilizer applications (including basal, tillering, and panicle fertilizer application), but reduced to relatively low concentrations after 7-10 days after each fertilizer application. Groundwater quality monitoring showed that the observation wells with the more shallow water depth, the more significant variation of concentrations of ammonium-N, nitrate-N and TP could be observed, which means that the contamination potential of nutrient of groundwater is related not only to the impermeable plow sole layer but also to the length of percolation route in this area. The study also showed that the potential pollution load of nutrient could be further reduced by well drainage water control and rational fertilizer management, such as deep-water irrigation, reuse of return flow, the rational application of fertilizers, and the SRI (The System of Rice Intensification) method. The results of this study can provide as an evaluation basis to formulate effective measures for agricultural non-point source pollution control and the reuse of agricultural return flow. Keywords:Chemical fertilizer, Nitrogen, Phosphorus, Paddy field, Non-point source pollution.
FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FTIR
The paper gives preliminary results from a field evaluation of a new approach for quantifying gaseous fugitive emissions of area air pollution sources. The approach combines path-integrated concentration data acquired with any path-integrated optical remote sensing (PI-ORS) ...
The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...
NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CODING: FIELD FORMS (UA-D-37.0)
The purpose of this SOP is to define the coding strategy for selected field forms. Forms addressed here will be scanned into databases; databases are created because the forms contain critical values needed to calculate pollutant concentrations. Other forms not addressed by thi...
Valari, Myrto; Menut, Laurent; Chatignoux, Edouard
2011-02-01
Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] < or = 10 microm in aerodynamic diameter) were captured and parametrized. Exposures predicted with this model were used in a time-series study of the short-term effect of air pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.
Moss bags as sentinels for human safety in mercury-polluted groundwaters.
Cesa, Mattia; Nimis, Pier Luigi; Buora, Clara; Lorenzonetto, Alberta; Pozzobon, Alessandro; Raris, Marina; Rosa, Maria; Salvadori, Michela
2014-05-01
An equation to estimate Hg concentrations of <4 μg/L in groundwaters of a polluted area in NE Italy was set out by using transplants of the aquatic moss Rhynchostegium riparioides as trace element bioaccumulators. The equation is derived from a previous mathematical model which was implemented under laboratory conditions. The work aimed at (1) checking the compliance of the uptake kinetics with the model, (2) improving/adapting the model for groundwater monitoring, (3) comparing the performances of two populations of moss collected from different sites, and (4) assessing the environmental impact of Hg contamination on a small river. The main factors affecting Hg uptake in the field were-as expected-water concentration and time of exposure, even though the uptake kinetics in the field were slightly different from those which were previously observed in the lab, since the redox environmental conditions influence the solubility of cationic Fe, which is a negative competitor of Hg(2+). The equation was improved by including the variable 'dissolved oxygen concentration'. A numerical parameter depending on the moss collection site was also provided, since the differences in uptake efficiency were observed between the two populations tested. Predicted Hg concentrations well fitted the values measured in situ (approximately ±50%), while a notable underestimation was observed when the equation was used to predict Hg concentration in a neighbouring river (-96%), probably due to the organic pollution which hampers metal uptake by mosses.
Driving forces of heavy metal changes in agricultural soils in a typical manufacturing center.
Qiu, Menglong; Li, Fangbai; Wang, Qi; Chen, Junjian; Yang, Guoyi; Liu, Liming
2015-05-01
Heavy metal concentrations in 2002 and 2012 in agricultural soils in Dongguan, a manufacturing center in southern China, were analyzed to determine the impact of rapid economic development on soil pollution. The level of pollution was assessed using the Nemerow synthetic pollution index (NPI), and its changing characteristics and driving forces were analyzed using multivariate statistical and geostatistical methods. The results indicate that the mean NPI was 0.79 in 2002 and 0.84 in 2012, which indicates aggravated heavy metal contamination in the agricultural soils. The concentrations of Cd and Zn increased 54.7 and 20.8 %, respectively, whereas Hg and Pb decreased 35.3 and 24.5 %, respectively. Cr, As, Cu, and Ni remained relatively stable. The Hg and Cd concentrations were highly correlated with soil types (P < 0.01), the secondary industrial output per unit of land (P < 0.01), proportion of cereal fields (P < 0.01), proportion of vegetable fields (P < 0.01), population density (P < 0.05), and road density (P < 0.05). The Pb and As concentrations were greatly influenced by soil types (P < 0.01), river density (P < 0.01), fertilizer rate (P < 0.01), and road density (P < 0.05). Cr, Zn, Cu, and Ni concentrations were primarily driven by soil types (P < 0.01), river density (P < 0.01), and fertilizer rate (P < 0.05).
Lidar system for air-pollution monitoring over urban areas
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shcheglov, Djolinard A.; Molodtsov, Nikolai A.
1997-05-01
The atmospheric environmental situation over the urban area of a large city is determined by a complex combination of anthropogenic pollution and meteorological factors. The efficient way to provide three-dimensional mapping of gaseous pollutants over wide areas is utilization of lidar systems employing tunable narrowband transmitters. The paper presented describes activity of RRC 'Kurchatov Institute' in the field of lidar atmospheric monitoring. The project 'mobile remote sensing system based on tunable laser transmitter for environmental monitoring' is developed under financial support of International Scientific and Technology Center (Moscow). The objective of the project is design, construction and field testing of a DIAL-technique system. The lidar transmitter consists of an excimer laser pumping dye laser, BBO crystal frequency doubler, and scanning flat mirror. Sulfur dioxide and atomic mercury have been selected as pollutants for field tests of the lidar system under development. A recent large increase in Moscow traffic stimulated taking into consideration also the remote sensing of lower troposphere ozone because of the photochemical smog problem. The status of the project is briefly discussed. The current activity includes also collecting of environmental data relevant to lidar remote sensing. Main attention is paid to pollutant concentration levels over Moscow city and Moscow district areas.
Concentrated flow paths in riparian buffer zones of southern Illinois
R.C. Pankau; J.E. Schoonover; K.W.J. Willard; P.J. Edwards
2012-01-01
Riparian buffers in agricultural landscapes should be designed to trap pollutants in overland flow by slowing, filtering, and infiltrating surface runoff entering the buffer via sheet flow. However, observational evidence suggests that concentrated flow is prevalent from agricultural fields. Over time sediment can accumulate in riparian buffers forming berms that...
NASA Astrophysics Data System (ADS)
Moskalenko, Irina V.; Shecheglov, Djolinard A.; Rogachev, Aleksei P.; Avdonin, Aleksandr A.; Molodtsov, Nikolai A.
1999-01-01
The lidar remote sensing techniques are powerful for monitoring of gaseous toxic species in atmosphere over wide areas. The paper presented describes design, development and field testing of Mobile Lidar System (MLS) based on utilization of Differential Absorption Lidar (DIAL) technique. The activity is performed by Russian Research Center 'Kurchatov Institute' and Research Institute of Pulse Technique within the project 'Mobile Remote SEnsing System Based on Tunable Laser Transmitter for Environmental Monitoring' under funding of International Scientific and Technology Center Moscow. A brief description of MLS is presented including narrowband transmitter, receiver, system steering, data acquisition subsystem and software. MLS is housed in a mobile truck and is able to provide 3D mapping of gaseous species. Sulfur dioxide and elemental mercury were chosen as basic atmospheric pollutants for field test of MLS. The problem of anthropogenic ozone detection attracts attention due to increase traffic in Moscow. The experimental sites for field testing are located in Moscow Region. Examples of field DIAL measurements will be presented. Application of remote sensing to toxic species near-real time measurements is now under consideration. The objective is comparison of pollution level in working zone with maximum permissible concentration of hazardous pollutant.
Updated model assessment of pollution at major U. S. Airports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamartino, R.J.; Rote, D.M.
1979-02-01
The air quality impact of aircraft at and around Los Angeles International Airport (LAX) is simulated for hours of peak aircraft operation and worst case pollutant dispersion conditions. An updated version of the Argonne Airport Vicinity Air Pollution (AVAP) model is used in the simulation; model refinements reflect new theoretical formulations and data from field programs at LAX, O'Hare, and John F. Kennedy International Airports. Maximum carbon monoxide concentrations at LAX are found to be low relative to the NAAQS. Relatively high, widespread hydrocarbon levels indicate that aircraft emissions may aggravate oxidant problems near the airport. Concentrations of oxides ofmore » nitrogen are high enough relative to proposed standards to warrant further study. Similar modeling is underway for the O'Hare and JFK airports.« less
Application of universal kriging for prediction pollutant using GStat R
NASA Astrophysics Data System (ADS)
Nur Falah, Annisa; Subartini, Betty; Nurani Ruchjana, Budi
2017-10-01
In the universe, the air and water is a natural resource that is a very big function for living beings. The air is a gas mixture contained in a layer that surrounds the earth and the components of the gas mixture is not always constant. Also in river there is always a pollutant of chemistry concentration more than concentration limit. During the time a lot of air or water pollution caused by industrial waste, coal ash or chemistry pollution is an example of pollution that can pollute the environment and damage the health of humans. To solve this problem we need a method that is able to predict pollutant content in locations that are not observed. In geostatistics, we can use the universal kriging for prediction in a location that unobserved locations. Universal kriging is an interpolation method that has a tendency trend (drift) or a particular valuation method used to deal with non-stationary sample data. GStat R is a program based on open source R software that can be used to predict pollutant in a location that is not observed by the method of universal kriging. In this research, we predicted river pollutant content using trend (drift) equation of first order. GStat R application program in the prediction of river pollutants provides faster computation, more accurate, convenient and can be used as a recommendation for policy makers in the field of environment.
Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.
2016-09-19
Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two-stage arrangement. With the modified IEC design, ammonium, nitrate, and sulfate ions were determined with a precision of between 5 and 10 percent relative standard deviation for the low loads that happen in remote areas of Alaska. Results from 2012 field studies demonstrated that the targeted ions were stable and fully retained on the IEC during field deployment and could be fully recovered by extraction in the laboratory. Importantly, measurements of annual loads determined by combining snowpack and IEC sampling at sites near National Atmospheric Deposition Program monitoring stations was comparable to results obtained by the National Atmospheric Deposition Program.Field studies completed in 2014 included snowpack and IEC samples to measure depositional loads; the results were compared to concentrations of similar substances in co-located moss samples. Analyses of constituents in snow and IECs included ammonium, nitrate, and sulfate ions; and a suite of trace metals. Constituent measurements in Hylocomium splendens moss included total nitrogen, phosphorous, and sulfur, and trace metals. To recover ammonium ions and metal ions from the upper cation-exchange column, a two-step extraction procedure was developed from laboratory spiking experiments. The 2014 studies determined that concentrations of certain metals, nitrogen, and sulfur in tissues of Hylocomium splendens moss reflected differences in presumptive deposition from local atmospheric sources. Moss tissues collected from two sites farthest from urban locales had the lowest levels of total nitrogen and sulfur, whereas tissues collected from three of the urban sites had the greatest concentrations of many of the trace metals. Moss tissue concentrations of three trace metals (cobalt, chromium, and nickel) were strongly (positively) Spearman’s rank correlated (p<0.05) with annual depositional loads of those metals. In addition, moss sulfur concentrations were positively rank correlated with annual depositional loads of sulfate (p<0.07). Exploratory models indicated linear uptake of the three metals by Hylocomium splendens moss and nonlinear uptake of sulfur from sulfate.Our results provided useful preliminary models for several of the targeted substances; however, our ability to characterize relations between concentrations in moss and loadings for many of the metals was precluded by several factors. The few test sites, small concentration gradients, and generally low concentrations hampered model developments. In addition, the weather was unusually warm throughout Alaska during the winter of 2013–14, which caused intermittent melting of the snowpack at some of the test sites; consequently, our measurements of overwinter loads based on snowpack samples (obtained in late March) probably underestimated the actual loads. Regardless of these potential limitations, these studies have established a foundation to support further studies that can improve our understanding of how mosses accumulate inorganic substances and ultimately how mosses might be used as biomonitors of atmospheric pollutants; moreover, the successful development and validation of the IECs during this research documents how the methodology can be used for future monitoring efforts in remote regions of Alaska and elsewhere.
Overview on the Air Pollution Issues of the City Clusters in China and its Control Strategies
NASA Astrophysics Data System (ADS)
Tang, X.
2007-12-01
Mega-cities in China, such as Beijing, Guangzhou, Shenzhen, and Shanghai are located in three large city clusters, Bo-Hai Bay surrounding area, Pearl River Delta (PRD) and Yangtze River Delta. Like the rest of the coastal regions in China, these mega-cities have been experiencing fast economic developments and consequently serious environmental pollution. Air pollution in those areas is characterized by concurrent occurrence of high concentrations of multiple primary pollutants and secondary pollutants, which lead to the development of "air pollution complex" (perhaps typically Chinese) problem. Several campaigns of field experiments covering the regions such as PRD and Beijing City with surrounding areas have been conducted critically to understand the chemical and physical processes leading to the formation of regional scale air pollution since 2004. Some policy-relevant suggestions for air quality attainment have been made after these campaigns, specially the attainment of air quality during 2008 Beijing Olympic game, which has been attracted as an important concern worldwide. A scientific field campaign was conducted during August of 2007 for testing the control strategies suggested for air quality attainment in 2008-Olympic. An overview of the results of PRD and Beijing Campaigns will be presented.
Zeng, Jianrong; Zhang, Guilin; Bao, Liangman; Long, Shilei; Tan, Mingguang; Li, Yan; Ma, Chenyan; Zhao, Yidong
2013-03-01
Analyzing and understanding the effects of ambient pollution on plants is getting more and more attention as a topic of environmental biology. A method based on synchrotron radiation X-ray fluorescence and X-ray absorption near edge structure spectroscopy was established to analyze the sulfur concentration and speciation in mature camphor tree leaves (CTLs), which were sampled from 5 local fields in Shanghai, China. Annual SO2 concentration, SO4(2-) concentration in atmospheric particulate, SO4(2-) and sulfur concentration in soil were also analyzed to explore the relationship between ambient sulfur sources and the sulfur nutrient cycling in CTLs. Total sulfur concentration in mature camphor tree leaves was 766-1704 mg/kg. The mainly detected sulfur states and their corresponding compounds were +6 (sulfate, include inorganic sulfate and organic sulfate), +5.2 (sulfonate), +2.2 (suloxides), +0.6 (thiols and thiothers), +0.2 (organic sulfides). Total sulfur concentration was strongly correlated with sulfate proportion with a linear correlation coefficient up to 0.977, which suggested that sulfur accumulated in CTLs as sulfate form. Reduced sulfur compounds (organic sulfides, thiols, thioethers, sulfoxide and sulfonate) assimilation was sufficed to meet the nutrient requirement for growth at a balanced level around 526 mg/kg. The sulfate accumulation mainly caused by atmospheric sulfur pollution such as SO2 and airborne sulfate particulate instead of soil contamination. From urban to suburb place, sulfate in mature CTLs decreased as the atmospheric sulfur pollution reduced, but a dramatic increase presented near the seashore, where the marine sulfate emission and maritime activity pollution were significant. The sulfur concentration and speciation in mature CTLs effectively represented the long-term biological accumulation of atmospheric sulfur pollution in local environment.
Gualtieri, Maurizio; Grollino, Maria Giuseppa; Consales, Claudia; Costabile, Francesca; Manigrasso, Maurizio; Avino, Pasquale; Aufderheide, Michaela; Cordelli, Eugenia; Di Liberto, Luca; Petralia, Ettore; Raschellà, Giuseppe; Stracquadanio, Milena; Wiedensohler, Alfred; Pacchierotti, Francesca; Zanini, Gabriele
2018-09-01
Air pollution and particulate matter are recognised cause of increased disease incidence in exposed population. The toxicological processes underlying air pollution associated effects have been investigated by in vivo and/or in vitro experimentation. The latter is usually performed by exposing cells cultured under submerged condition to particulate matter concentration quite far from environmental exposure expected in humans. Here we report for the first time the feasibility of a direct exposure of air liquid interface cultured cells to environmental concentration of particulate matter. Inflammatory proteins release was analysed in cell medium while differential expression of selected genes was analysed in cells. Significant association of anti-oxidant genes was observed with secondary and aged aerosol, while cytochrome activation with primary and PAHs enriched ultrafine particles. The results obtained clearly show the opportunity to move from the lab bench to the field for properly understanding the toxicological effects also of ultrafine particles on selected in vitro models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Franson, J. Christian
2015-01-01
Exposure to lead and petroleum has caused deaths of sea ducks, but relatively few contaminants have been shown to cause mortality or be associated with population level effects. This chapter focuses primarily on field reports of contaminant concentrations in tissues of sea ducks in North America and Europe and results of some pertinent experimental studies. Much of the available interpretive data for contaminants in waterfowl come from studies of freshwater species. Limits of available data present a challenge for managers interested in sea ducks because field reports have shown that marine birds may carry greater burdens of some pollutants than freshwater species, particularly metals. It is important, then, to distinguish poisoning due to a particular contaminant as a cause of death in sea ducks versus simple exposure based solely on tissue residues. A comprehensive approach that incorporates information on field circumstances, any observed clinical signs and lesions, and tissues residues is recommended when evaluating contaminant concentrations in sea ducks.
The purpose of this SOP is to define the coding strategy for selected field forms. Forms addressed here will be scanned into databases. Databases are created because the forms contain critical values needed to calculate pollutant concentrations. Other forms not addressed by th...
In this article we describe an approach for predicting average hourly concentrations of ambient PM10 in Vancouver. We know our solution also applies to hourly ozone fields and believe it may be quite generally applicable. We use a hierarchal Bayesian approach. At the primary ...
Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer
2018-01-01
As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi
2016-02-05
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.
Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi
2016-01-01
This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, A.K.; Kitada, T.
1996-12-31
Dhaka is the capital and the biggest city of Bangladesh, and is expanding very rapidly. Emissions from heavy traffic and many small industries and commercial complexes, newly developed in and around the city, are polluting the air of Dhaka city. The air pollution is severe especially in winter due to adverse meteorological conditions such as low wind speed and dry, stably-stratified air, which restricts the mixing height to low levels and prevent dispersion of pollutants. But so far no study of air pollution of Dhaka city has been done. We have first measured SO{sub 2} and NO{sub 2} concentrations inmore » Dhaka city in a large scale and derived their spatial distributions over Dhaka. Molecular diffusion tubes, which do not require power sources and are produced at low cost, have been used to measure the concentration distributions of SO{sub 2} and NO{sub 2} at 64 sites in Dhaka city and its suburbs during the period of December-January of 1995-96. The diffusion tube samplers were calibrated using 6 automated air pollution monitoring stations in Aichi-prefecture, Japan. The calibration curve and the distribution of the concentration data acquired by automatic measurement instrument at each location showed that the error range of measurements with the molecular diffusion tube samplers was 2-27%. The samples were analyzed using ion-chromatography and spectrophotometer to determine the concentrations of SO{sub 2} and NO{sub 2} respectively. The contamination of unexposed tubes under field conditions was determined and the value of the blank test was subtracted from the measurements of the diffusion tube samplers. The effects of wind turbulence and temperature were reduced using polyflon filters.« less
Kuwaiti oil fires — Air quality monitoring
NASA Astrophysics Data System (ADS)
Amin, Mohamed B.; Husain, Tahir
Just before the Gulf War was concluded in early March 1991, more than 700 wells in Kuwaiti oil fields were set on fire. About 6 million barrels per day of oil were lost in flames and a large number of pools and lakes were formed. Burning wells in Kuwait emitted several thousand tons of gases such as sulfur dioxide, carbon monoxide, hydrogen sulfide, carbon dioxide, and the oxides of nitrogen, as well as particulate matter, on a daily basis containing partially burned hydrocarbons and metals, all of which were potential for affecting human health and vegetation growth. This paper summarizes the real-time measurements of various gaseous pollutants in the Eastern Province of Saudi Arabia in Dhahran, Abqaiq, Rahimah, Jubail and Tanajib. The statistics on monthly variation of gaseous pollutants showed that pollution concentration in general was high in May 1991. The levels of typical pollutants such as sulfur dioxide (SO 2), carbon monoxide (CO) and nitrogen dioxide (NO 2) in the ambient air were much lower than the permissible limits defined in the Meteorology and Environmental Protection Agency (MEPA) standards. The pollutants measured during the Kuwaiti Oil Fires were compared with the corresponding values measured in the previous year. The comparison shows that although the concentration of gaseous pollutants were within the MEPA limits, during the period of oil well fires, the concentration level increased persistently which might have been harmful for human health. The harmful effects of the major pollutants on human health and vegetation are also briefly discussed in the paper.
Lucke, Terry; Nichols, Peter W B
2015-12-01
This study evaluated the pollution removal and hydrologic performance of five, 10-year old street-side bioretention systems. The bioretention basins were subjected to a series of simulated rainfall events using synthetic stormwater. Four different pollution concentrations were tested on three of the bioretention basins. The four concentrations tested were: A) no pollution; B) typical Australian urban pollutant loads; C) double the typical pollution loads, and; D) five times the typical pollution loads. Tests were also undertaken to determine the levels of contaminant and heavy metals build-up that occurred in the filter media over the 10 year operational life of the bioretention systems. Although highly variable, the overall hydrological performance of the basins was found to be positive, with all basins attenuating flows, reducing both peak flow rates and total outflow volumes. Total suspended solids removal performance was variable for all tests and no correlation was found between performance and dosage. Total nitrogen (TN) removal was positive for Tests B, C and D. However, the TN removal results for Test A were found to be negative. Total phosphorus (TP) was the only pollutant to be effectively removed from all basins for all four synthetic stormwater tests. The study bioretention basins were found to export pollutants during tests where no pollutants were added to the simulated inflow water (Test A). Heavy metal and hydrocarbon testing undertaken on the bioretention systems found that the pollution levels of the filter media were still within acceptable limits after 10 years in operation. This field study has shown bioretention basin pollution removal performance to be highly variable and dependant on a range of factors including inflow pollution concentrations, filter media, construction methods and environmental factors. Further research is required in order to fully understand the potential stormwater management benefits of these systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Feenstra, B. J.; Polidori, A.; Tisopulos, L.; Papapostolou, V.; Zhang, H.; Pathmanabhan, J.
2016-12-01
In recent years great progress has been made in development of low-cost miniature air quality sensing technologies. Such low-cost sensors offer a prospect of providing a real-time spatially dense information on pollutants, however, the quality of the data produced by these sensors is so far untested. In an effort to inform the general public about the actual performance of commercially available low-cost air quality sensors, in June 2014 the South Coast Air Quality Management District (SCAQMD) has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC). This program performs a thorough characterization of low-cost sensors under ambient (in the field) and controlled (in the laboratory) conditions. During the field testing, air quality sensors are operated side-by-side with Federal Reference Methods and Federal Equivalent Methods (FRM and FEM, respectively), which are routinely used to measure the ambient concentration of gaseous or particle pollutants for regulatory purposes. Field testing is conducted at two of SCAQMD's existing air monitoring stations, one in Rubidoux and one near the I-710 freeway. Sensors that demonstrate an acceptable performance in the field are brought back to the lab where a "characterization chamber" is used to challenge these devices with known concentrations of different particle and gaseous pollutants under different temperature and relative humidity levels. Testing results for each sensor are then summarized in a technical report and, along with other relevant information, posted online on a dedicated website (www.aqmd.gov/aq-spec) to educate the public about the capabilities of commercially available sensors and their potential applications. During this presentation, the results from two years of field and laboratory testing will be presented. The major strengths and weaknesses of some of the most commonly available particle and gaseous sensors will be discussed.
NASA Astrophysics Data System (ADS)
Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.
2009-04-01
Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an uncertainty analysis. We chose the Monte Carlo method which has already been applied to atmospheric dispersion models [2, 3, 4]. The main advantage of this method is to be insensitive to the number of perturbed parameters but its drawbacks are its computation cost and its slow convergence. In order to speed up this one we used the method of antithetic variable which takes adavantage of the symmetry of probability laws. The air quality model simulations were carried out by the Association for study and watching of Atmospheric Pollution in Alsace (ASPA). The output concentrations distributions can then be updated with a Bayesian method. This work is part of an INERIS Research project also aiming at assessing the uncertainty of the CHIMERE dispersion model used in the Prev'Air forecasting platform (www.prevair.org) in order to deliver more accurate predictions. (1) Rao, K.S. Uncertainty Analysis in Atmospheric Dispersion Modeling, Pure and Applied Geophysics, 2005, 162, 1893-1917. (2) Beekmann, M. and Derognat, C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the PAris Area (ESQUIF) campaign, Journal of Geophysical Research, 2003, 108, 8559-8576. (3) Hanna, S.R. and Lu, Z. and Frey, H.C. and Wheeler, N. and Vukovich, J. and Arunachalam, S. and Fernau, M. and Hansen, D.A. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmospheric Environment, 2001, 35, 891-903. (4) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.
Chemical quality of water in the Walnut River basin, south-central Kansas
Leonard, Robert B.
1972-01-01
Improper disposal of oil-field brine and other wastes has adversely affected the naturally diverse chemical quality of much of the water in the Walnut River basin, south-central Kansas. The basin is an area of about 2,000 square miles in the shape of a rough triangle with its apex toward the south. The Whitewater River, a principal tributary, and the Walnut River below its junction with the Whitewater River flow southward toward the Arkansas River along courses nearly coincident with the contact of the Chase and overlying Sumner Groups of Permian age. The courses of many minor tributaries are parallel to a well-developed joint system in the Permian rock. Thick interbedded limestone and shale of the Chase Group underlie the more extensive, eastern part of the basin. Natural waters are dominantly of the calcium bicarbonate type. Shale and subordinate strata of limestone, gypsum, and dolomite of the Sumner Group underlie the western part of the basin. Natural waters are dominantly of the calcium sulfate type. Inflow from most east-bank tributaries dilutes streamflow of the Walnut River; west-bank tributaries, including the Whitewater River, contribute most of the sulfate. Terrace deposits and alluvial fill along the stream channels are assigned to the Pleistocene and Holocene Series. Calcium bicarbonate waters are common as a result of the dissolution of nearly ubiquitous fragments of calcareous rock, but the chemical quality of the water in the discontinuous aquifers depends mainly on the quality of local recharge. Concentrations of dissolved solids and of one or more ions in most well waters exceeded recommended maximums for drinking water. Nearly all the ground water is hard to very hard. High concentrations of sulfate characterize waters from gypsiferous aquifers; high concentrations of chloride characterize ground waters affected by drainage from oil fields. Extensive fracture and dissolution of the Permian limestones facilitated pollution of ground water by oil-field brine and migration of the polluted water into adjacent areas. Ground water containing more than 1,000 mg/o=l (milligrams per liter) dissolved solids .and more than 100 mg/o=l chloride is common near oil fields but is exceptional elsewhere. The concentration of nitrate in about 25 percent of the sampled well waters exceeded the recommended maximum for drinking water. High concentrations of nitrate generally were associated with shallow aquifers, local sources of organic pollution, and stagnation. Sodium and chloride are the principle ionic constituents of oil-field brine but are minor constituents of natural surface waters or shallow ground water in the basin. The ratios of the concentrations of sodium to chloride in brine from different oil fields varied within a narrow range from a mean of 0.52. Concentrations of chloride exceeding 50 mg/o=l in streamflow and 100 mg/l in ground water generally signified the presence of oil-field brine if the sodium-chloride ratios were less than 0.60. Higher sodium-chloride ratios characterized relatively rare occurrences of high concentrations of the ions that might have originated in evaporite minerals or in sewage. The concentration of chloride during low flow of the major streams generally increased, and the sodium-chloride ratio decreased, in a downstream direction from about 0.65 near the headwaters to about 0.51, which is characteristic of oil-field brine. The changes were most abrupt where polluted ground-water effluent augmented low streamflow adjacent to old oil fields. With increased direct runoff, the sodium-chloride ratio normally increased, and these ions constituted a smaller percentage of the dissolved-solids load. Annual runoff .decreased progressively from above normal to below normal during water years 1962-64. Higher concentrations .of the ions in streamflow persisted for longer periods during the periods of low runoff
Simulation of the effect of an oil refining project on the water environment using the MIKE 21 model
NASA Astrophysics Data System (ADS)
Jia, Peng; Wang, Qinggai; Lu, Xuchuan; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei; Wang, Yaping
2018-02-01
A case study of the Caofeidian oil refining project is conducted. A two-dimensional convective dispersion mathematical model is established to simulate the increase in the concentration of pollutants resulting from the wastewater discharge from the Caofeidian oil refining project and to analyze the characteristics of the dispersion of pollutants after wastewater is discharged and the effect of the wastewater discharge on the surrounding sea areas. The results demonstrate the following: (1) The Caofeidian sea area has strong tidal currents, which are significantly affected by the terrain. There are significant differences in the tidal current velocity and the direction between the deep-water areas and the shoals. The direction of the tidal currents in the deep-water areas is essentially parallel to the contour lines of the sea areas. Onshore currents and rip currents submerging the shoals are the dominant currents in the shoals. (2) The pollutant concentration field in the offshore areas changes periodically with the movement of the tidal current. The dilution and dispersion of pollutants are affected by the ocean currents in different tidal periods. The turbulent dispersion of pollutants is the most intense when a neap tide ebbs, followed by when a neap tide rises, when a spring tide ebbs and when a spring tide rises. (3) There are relatively good hydrodynamic conditions near the project's wastewater discharge outlet. Wastewater is well diluted after being discharged. Areas with high concentrations of pollutants are concentrated near the wastewater discharge outlet and the offshore areas. These pollutants migrate southwestward with the flood tidal current and northeastward with the ebb tidal current and have no significant impact on the protection targets in the open sea areas and nearby sea areas.
Characteristics and classification of PM2.5 pollution episodes in Beijing from 2013 to 2015.
Wang, Xiaoqi; Wei, Wei; Cheng, Shuiyuan; Li, Jianbing; Zhang, Hanyu; Lv, Zhe
2018-01-15
During the period of 2013-2015, a total of 34 PM 2.5 pollution episodes occurred in Beijing, each of which remained for at least 2days. Among that, 28 times occurred in winter half year with the average concentration of 243.1μg/m 3 and summer half year with the average concentration of 194.1μg/m 3 . These episodes were mainly associated with lower wind speed and lower visibility as well as higher relative humidity, indicating that they belonged to heavy pollution under static stability. The PM 2.5 pollution was classified into two categories according to the back trajectory analysis and meteorological background field. Category I, accounting for 22 times among all the pollution episodes, was due to air mass transport from Beijing's southern regions with north-south direction pressure gradient and sparse isopiestic. And category II was mainly led by northwestern air masses accompanied with a large area of uniform pressure field. Then, a typical case study was conducted for each category to recognize the sub-region contribution to Beijing's PM 2.5 pollution based on WRF-CAMx modeling system, and the simulation results indicated that local emission source contribution decreased significantly during the accumulation phase for category I, but increased during that of category II, with an average contribution of 47.3% and 77.1% during the entire pollution period of each category, respectively. Two red alerts of air pollution occurred in December 2015 were also analyzed based on the episode classification. It was found that the second red alert pollution episode belonged to category II. The emission control measures in Beijing worked more obviously with the reduction effect ratio of 15.4% compared to the first red alert period (9.7%). Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Guoying; Jia, Shiming; Niu, Xiuli; Liu, Yanrong; Tian, Haoqi; Chen, Xuefu; Shi, Gaofeng
2018-01-22
Free radicals play an important role in the oxidizing power of polluted air, the development of aging-related diseases, the formation of ozone, and the production of secondary particulate matter. The high variability of peroxyl radical concentration has prevented the detection of possible trends or distributions in the concentration of free radicals. We present a new method, free radical reaction combined with liquid chromatography photodiode array detection, for identifying and quantifying peroxyl radicals in polluted air. Functionalized graphene was used for loading peroxyl radicals and reactive molecules in air sampling system, which can facilitate reaction kinetics (charge transfers) between peroxyl radicals and reaction molecules. Separation was performed with and without a preliminary exposure of the polluted air sample to reactive molecule(s) system. The integral chromatographic peak areas before and after air sampling are used to quantify the atmospheric peroxyl radicals in polluted air. The utility of the new technique was tested with measurements carried out in the field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kashparov, V A; Lundin, S M; Kadygrib, A M; Protsak, V P; Levchuk, S E; Ioshchenko, V I; Kashpur, V A; Talerko, N N
2001-01-01
Retransfer of radionuclides on the condensation trails of Chernobyl radioactive fallouts during forest fires has been experimentally evaluated and their mathematical transfer model verified. It has been shown that radionuclide retransfer will make no great impact on additional pollution of an area even under the most unfavourable conditions. The contribution of convective and non-convective components of transfer to the formation of a radioactive aerosol concentration field has been assessed. Time course of changes in the concentration of radioactive aerosol and its dispersive composition are shown in different phases of fire and at different distance from its source.
Transported acid aerosols measured in southern Ontario
NASA Astrophysics Data System (ADS)
Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie
During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.
A novel methodology for interpreting air quality measurements from urban streets using CFD modelling
NASA Astrophysics Data System (ADS)
Solazzo, Efisio; Vardoulakis, Sotiris; Cai, Xiaoming
2011-09-01
In this study, a novel computational fluid dynamics (CFD) based methodology has been developed to interpret long-term averaged measurements of pollutant concentrations collected at roadside locations. The methodology is applied to the analysis of pollutant dispersion in Stratford Road (SR), a busy street canyon in Birmingham (UK), where a one-year sampling campaign was carried out between August 2005 and July 2006. Firstly, a number of dispersion scenarios are defined by combining sets of synoptic wind velocity and direction. Assuming neutral atmospheric stability, CFD simulations are conducted for all the scenarios, by applying the standard k-ɛ turbulence model, with the aim of creating a database of normalised pollutant concentrations at specific locations within the street. Modelled concentration for all wind scenarios were compared with hourly observed NO x data. In order to compare with long-term averaged measurements, a weighted average of the CFD-calculated concentration fields was derived, with the weighting coefficients being proportional to the frequency of each scenario observed during the examined period (either monthly or annually). In summary the methodology consists of (i) identifying the main dispersion scenarios for the street based on wind speed and directions data, (ii) creating a database of CFD-calculated concentration fields for the identified dispersion scenarios, and (iii) combining the CFD results based on the frequency of occurrence of each dispersion scenario during the examined period. The methodology has been applied to calculate monthly and annually averaged benzene concentration at several locations within the street canyon so that a direct comparison with observations could be made. The results of this study indicate that, within the simplifying assumption of non-buoyant flow, CFD modelling can aid understanding of long-term air quality measurements, and help assessing the representativeness of monitoring locations for population exposure studies.
Salmond, J A; Williams, D E; Laing, G; Kingham, S; Dirks, K; Longley, I; Henshaw, G S
2013-01-15
Space constraints in cities mean that there are only limited opportunities for increasing tree density within existing urban fabric and it is unclear whether the net effect of increased vegetation in street canyons is beneficial or detrimental to urban air quality at local scales. This paper presents data from a field study undertaken in Auckland, New Zealand designed to determine the local impact of a deciduous tree canopy on the distribution of the oxides of nitrogen within a street canyon. The results showed that the presence of leaves on the trees had a marked impact on the transport of pollutants and led to a net accumulation of pollutants in the canyon below the tree tops. The incidence and magnitude of temporally localised spikes in pollutant concentration were reduced within the tree canopy itself. A significant difference in pollutant concentrations with height was not observed when leaves were absent. Analysis of the trends in concentration associated with different wind directions showed a smaller difference between windward and leeward sides when leaves were on the trees. A small relative increase in concentrations on the leeward side was observed during leaf-on relative to leaf-off conditions as predicted by previous modelling studies. However the expected reduction in concentrations on the windward side was not observed. The results suggest that the presence of leaves on the trees reduces the upwards transport of fresh vehicle emissions, increases the storage of pollutants within the canopy space and reduces the penetration of clean air downwards from aloft. Differences observed between NO and NO(2) concentrations could not be accounted for by dispersion processes alone, suggesting that there may also be some changes in the chemistry of the atmosphere associated with the presence of leaves on the trees. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesseyre, Y.
The study allowed development of an original measuring system for mobility, involving simultaneously a repulsive electrical field and a continuous gas flow. It made it possible to define a model to calculate ionic transparency of grates, taking into account electrical fields below and above them, ion mobility, speed of gas flow and geometric transparency. Calculation of the electrical field proceeded in a plane-plane system, taking into account the space load and diffusion; a graphic method was developed to determine the field, thus avoiding numerical integration of the diffusion equation. The tracings of the mobility spectra obtained in different gases mademore » it possible to determine characteristic discrete mobility values comparable to those observed by other more sophisticated systems for measuring mobilities, such as the flight time systems. Detection of pollutants in weak concentration in dry air was shown. However, the presence of water vapor in the air forms agglomerates around the ions formed, reducing resolution of the system and making it less applicable under normal atmospheric conditions.« less
Lee, Hyung Joo; Chatfield, Robert B; Bell, Michelle L
2018-01-01
In recent years, multipollutant approaches have been employed to investigate the association with health outcomes to better represent real-world conditions than more traditional analysis that considers a single pollutant. With regard to the exposure assessment of a mixture of air pollutants, it is critical to understand the spatial variability in multipollutant relations in order to assess their potential health implications. In this study, we investigated the spatial relations of multiple pollutant concentrations (i.e., NO x , NO y , black carbon, carbon monoxide, acetaldehyde, formaldehyde, toluene, xylenes/ethylbenzene, ozone, water-soluble organic carbon, and aerosol extinction) observed from the P-3B aircraft in the 2011 NASA field campaign in Baltimore/Washington D.C. areas during July 2011. The between-pollutant Pearson correlations and Z-scores (calculated from log-transformed concentrations) between near-highways and non-highways and between near-urban centers and non-urban centers varied by pollutant pair and space. We found generally lower correlations between NO x and other pollutants for near-highways (average r = 0.36) than for non-highways (average r = 0.41) and also for non-urban centers (average r = 0.37) than for near-urban centers (average r = 0.41). This indicated that the temporal associations between NO x and health outcomes might be less affected by other pollutants, which were also related to same health outcomes, for near-highways and non-urban centers. The analysis of between-pollutant Z-scores showed varying spatial relations for popular traffic-related pollutants with the Z-score differences of 0.43 (NO x -carbon monoxide), 0.29 (NO x -black carbon), and 0.17 (black carbon-carbon monoxide) between near-highways and non-highways. This result exhibited heterogeneous traffic-related pollutant mixtures with the proximity to highways, potentially leading to the diverse extent of health associations. Furthermore, a mixed effects model presented pollutant-specific associations between the concentrations and the proximity to highways and urban centers, showing larger declines for NO x , xylenes/ethylbenzene, toluene, and NO y than those for the pollutants related to secondary pollutant formation. The model also demonstrated the different sensitivity of each pollutant to meteorological parameters, which may modify the spatial and temporal variability in the relations between the pollutants. Our findings provide insights for exposure assessment studies to better understand the cumulative health consequences associated with multiple air pollutants simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Saha, Provat K.; Khlystov, Andrey; Snyder, Michelle G.; Grieshop, Andrew P.
2018-03-01
We present field measurement data and modeling of multiple traffic-related air pollutants during two seasons at a site adjoining Interstate 40, near Durham, North Carolina. We analyze spatial-temporal and seasonal trends and fleet-average pollutant emission factors and use our data to evaluate a line source dispersion model. Month-long measurement campaigns were performed in summer 2015 and winter 2016. Data were collected at a fixed near-road site located within 10 m from the highway edge, an upwind background site and, under favorable meteorological conditions, along downwind perpendicular transects. Measurements included the size distribution, chemical composition, and volatility of submicron particles, black carbon (BC), nitrogen oxides (NOx), meteorological conditions and traffic activity data. Results show strong seasonal and diurnal differences in spatial distribution of traffic sourced pollutants. A strong signature of vehicle emissions was observed within 100-150 m from the highway edge with significantly higher concentrations during morning. Substantially higher concentrations and less-sharp near-road gradients were observed in winter for many species. Season-specific fleet-average fuel-based emission factors for NO, NOx, BC, and particle number (PN) were derived based on up- and down-wind roadside measurements. The campaign-average NOx and PN emission factors were 20% and 300% higher in winter than summer, respectively. These results suggest that the combined effect of higher emissions and their slower downwind dispersion in winter dictate the observed higher downwind concentrations and wider highway influence zone in winter for several species. Finally, measurements of traffic data, emission factors, and pollutant concentrations were integrated to evaluate a line source dispersion model (R-LINE). The dispersion model captured the general trends in the spatial and temporal patterns in near-road concentrations. However, there was a tendency for the model to under-predict concentrations near the road in the mornings and over-predict concentrations in the evenings.
Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China
Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.
2013-01-01
Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R 2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R 2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066
Nitrate-driven urban haze pollution during summertime over the North China Plain
NASA Astrophysics Data System (ADS)
Li, Haiyan; Zhang, Qiang; Zheng, Bo; Chen, Chunrong; Wu, Nana; Guo, Hongyu; Zhang, Yuxuan; Zheng, Yixuan; Li, Xin; He, Kebin
2018-04-01
Compared to the severe winter haze episodes in the North China Plain (NCP), haze pollution during summertime has drawn little public attention. In this study, we present the highly time-resolved chemical composition of submicron particles (PM1) measured in Beijing and Xinxiang in the NCP region during summertime to evaluate the driving factors of aerosol pollution. During the campaign periods (30 June to 27 July 2015, for Beijing and 8 to 25 June 2017, for Xinxiang), the average PM1 concentrations were 35.0 and 64.2 µg m-3 in Beijing and Xinxiang. Pollution episodes characterized with largely enhanced nitrate concentrations were observed at both sites. In contrast to the slightly decreased mass fractions of sulfate, semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA) in PM1, nitrate displayed a significantly enhanced contribution with the aggravation of aerosol pollution, highlighting the importance of nitrate formation as the driving force of haze evolution in summer. Rapid nitrate production mainly occurred after midnight, with a higher formation rate than that of sulfate, SV-OOA, or LV-OOA. Based on observation measurements and thermodynamic modeling, high ammonia emissions in the NCP region favored the high nitrate production in summer. Nighttime nitrate formation through heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) enhanced with the development of haze pollution. In addition, air masses from surrounding polluted areas during haze episodes led to more nitrate production. Finally, atmospheric particulate nitrate data acquired by mass spectrometric techniques from various field campaigns in Asia, Europe, and North America uncovered a higher concentration and higher fraction of nitrate present in China. Although measurements in Beijing during different years demonstrate a decline in the nitrate concentration in recent years, the nitrate contribution in PM1 still remains high. To effectively alleviate particulate matter pollution in summer, our results suggest an urgent need to initiate ammonia emission control measures and further reduce nitrogen oxide emissions over the NCP region.
Rochman, Chelsea M; Hoh, Eunha; Hentschel, Brian T; Kaye, Shawn
2013-02-05
Concerns regarding marine plastic pollution and its affinity for chemical pollutants led us to quantify relationships between different types of mass-produced plastic and organic contaminants in an urban bay. At five locations in San Diego Bay, CA, we measured sorption of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) throughout a 12-month period to the five most common types of mass-produced plastic: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). During this long-term field experiment, sorption rates and concentrations of PCBs and PAHs varied significantly among plastic types and among locations. Our data suggest that for PAHs and PCBs, PET and PVC reach equilibrium in the marine environment much faster than HDPE, LDPE, and PP. Most importantly, concentrations of PAHs and PCBs sorbed to HDPE, LDPE, and PP were consistently much greater than concentrations sorbed to PET and PVC. These data imply that products made from HDPE, LDPE, and PP pose a greater risk than products made from PET and PVC of concentrating these hazardous chemicals onto fragmented plastic debris ingested by marine animals.
Yang, Rui; Tong, Juxiu; Hu, Bill X; Li, Jiayun; Wei, Wenshuo
2017-06-01
Agricultural non-point source pollution is a major factor in surface water and groundwater pollution, especially for nitrogen (N) pollution. In this paper, an experiment was conducted in a direct-seeded paddy field under traditional continuously flooded irrigation (CFI). The water movement and N transport and transformation were simulated via the Hydrus-1D model, and the model was calibrated using field measurements. The model had a total water balance error of 0.236 cm and a relative error (error/input total water) of 0.23%. For the solute transport model, the N balance error and relative error (error/input total N) were 0.36 kg ha -1 and 0.40%, respectively. The study results indicate that the plow pan plays a crucial role in vertical water movement in paddy fields. Water flow was mainly lost through surface runoff and underground drainage, with proportions to total input water of 32.33 and 42.58%, respectively. The water productivity in the study was 0.36 kg m -3 . The simulated N concentration results revealed that ammonia was the main form in rice uptake (95% of total N uptake), and its concentration was much larger than for nitrate under CFI. Denitrification and volatilization were the main losses, with proportions to total consumption of 23.18 and 14.49%, respectively. Leaching (10.28%) and surface runoff loss (2.05%) were the main losses of N pushed out of the system by water. Hydrus-1D simulation was an effective method to predict water flow and N concentrations in the three different forms. The study provides results that could be used to guide water and fertilization management and field results for numerical studies of water flow and N transport and transformation in the future.
Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang
2013-10-16
Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.
Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.;
2014-01-01
Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.
Yassin, Mohamed F; Ohba, Masaake
2012-09-01
To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.
A field trial for an ex-situ bioremediation of a drilling mud-polluted site.
Rojas-Avelizapa, N G; Roldán-Carrillo, T; Zegarra-Martínez, H; Muñoz-Colunga, A M; Fernández-Linares, L C
2007-01-01
The remediation of drilling mud-polluted sites in the Southeast of Mexico is a top priority for Mexican oil industry. The objective of this work was to find a technology to remediate these sites. A field trial was performed by composting in biopiles, where four 1ton soil-biopiles were established, one treatment in triplicate and one unamended biopile. Amended biopiles were added with nutrients to get a C/N/P ratio of 100/3/0.5 plus a bulking agent (straw) at a soil/straw ratio of 97/3. Moisture content was maintained around 30-35%. Results showed that, after 180 d, total petroleum hydrocarbon (TPH) concentrations decreased from 99300+/-23000mgTPHkg(-1) soil to 5500+/-770mgTPHkg(-1) for amended biopiles and to 22900+/-7800mgTPHkg(-1) for unamended biopile. An undisturbed soil control showed no change in TPH concentrations. Gas chromatographic analysis showed residual alkyl dibenzothiophene type compounds. Highest bacterial counts were observed during the first 30 d which correlated with highest TPH removal, whereas fungal count increased at the end of the experimentation period. Results suggested an important role of the straw, nutrient addition and water content in stimulating aerobic microbial activity and thus hydrocarbon removal. This finding opens an opportunity to remediate old polluted sites with recalcitrant and high TPH concentration.
NASA Astrophysics Data System (ADS)
Borys, Randolph D.; Lowenthal, Douglas H.; Mitchell, David L.
A study was conducted to examine the relationships among air pollutant loadings, cloud microphysics, and snowfall rates in cold mountain clouds. It was hypothesized that variations in pollutant loadings would be reflected in shifts in the cloud droplet size distribution. A field program was conducted at Storm Peak Laboratory (SPL) at an elevation of 3210 m MSL in northwestern Colorado. Cold precipitating clouds were sampled during January, 1995. Cloud water was collected and analyzed for major ion and trace element chemistry. Cloud droplet concentrations and size were measured continuously using a PMS FSSP-100. The results indicate a direct relationship between clear-air equivalent (CAE) sulfate concentrations in cloud water and cloud droplet concentrations, an indirect relationship between droplet number and droplet size, a direct relationship between droplet size and snowfall rate, and an indirect relationship between CAE sulfate concentration and snowfall rate.
Fujimori, Takashi; Takigami, Hidetaka
2014-02-01
We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.
Impact of height and shape of building roof on air quality in urban street canyons
NASA Astrophysics Data System (ADS)
Yassin, Mohamed F.
2011-09-01
A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.
Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland
2017-06-20
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Intercontinental transport of aerosols and photochemical oxidants from Asia and its consequences.
Wuebbles, Donald J; Lei, Hang; Lin, Jintai
2007-11-01
The intercontinental transport of aerosols and photochemical oxidants from Asia is a crucial issue for air quality concerns in countries downwind of the significant emissions and concentrations of pollutants occurring in this important region of the world. Since the lifetimes of some important pollutants are long enough to be transported over long distance in the troposphere, regional control strategies for air pollution in downwind countries might be ineffective without considering the effects of long-range transport of pollutants from Asia. Field campaigns provide strong evidence for the intercontinental transport of Asian pollutants. They, together with ground-based observations and model simulations, show that the air quality over parts of North America is being affected by the pollutants transported from Asia. This paper examines the current understanding of the intercontinental transport of gases and aerosols from Asia and resulting effects on air quality, and on the regional and global climate system.
This presentation describes the draft “open source” design package for the SPod fenceline sensor. The SPod is a low cost, solar-powered system that combines wind field and air pollutant concentration measurements to detect emission plumes and help locate the source of emissions....
Zhang, Hao; Yuan, Haiou; Liu, Xiaohui; Yu, Junyi; Jiao, Yongli
2018-06-15
North China Plain area (NCP) is one of the most densely populated and heavily polluted regions in the world. In the last five years, frequently happened fine particulate matter (PM 2.5 ) serious pollution events were one of the top environmental concerns in China. As PM 2.5 concentrations are highly influenced by synoptic flow patterns and local meteorological conditions, a two-stage hierarchical clustering method based on dynamic principal component analysis (DPCA) and standard k-means clustering algorithm was employed to classify synoptic wind fields into 6 patterns over the NCP area using the data of 5 PM 2.5 seasons (Sept. 15th-Apr. 15th) from 2013 to 2017. Among the six identified synoptic patterns, pattern of uniform pressure field (U) and that of zonal high pressure (Z H ) accounted for 78.21%, 65.55%, 63.56%, 57.11%, 59.13% and 58.27% studied heavy smog pollution events in Beijing, Tianjin, Tangshan, Baoding, Shijiazhuang and Xingtai city. The two particular patterns were associated with uniform pressure field and sparsely latitudinal isobar in 850 hPa level, respectively. They were also characterized by high relative humidity, low temperature, low-speed northerly wind in Tianjin and Tangshan, and southerly wind in the other cities. Under the continuous control of pattern Z H , the values of 24 h-average PM 2.5 were found to increase at a rate of 31.78 μg/m 3 per day. To evaluate the contribution of meteorological factors and precursors to PM 2.5 levels, linear mixed-effects models (LMMs) were applied to establish relations among 24 h-average PM 2.5 concentrations, concentrations of main precursors, local meteorological factors and synoptic patterns. Results show that the variations of precursors, local meteorological factors and synoptic flow patterns can explain 51.67%, 19.15% and 14.01% changes of the 24 h-average PM 2.5 concentrations, respectively. This study illustrates that dense precursor emissions are still the main cause for heavy haze pollution events, although meteorological conditions play almost equal roles sometimes. Copyright © 2018 Elsevier B.V. All rights reserved.
Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hun, Diana E; Jackson, Mark C; Shrestha, Som S
2014-01-01
High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniquesmore » that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.« less
Measurements and models of CO2 and CH4 Flux in the Baltimore/Washington area.
NASA Astrophysics Data System (ADS)
Dickerson, R. R.; Ren, X.; Salawitch, R. J.; Ahn, D.; Karion, A.; Shepson, P. B.; Whetstone, J. R.; Martin, C.
2017-12-01
Direct measurements of concentrations of pollutants such as CO2 and CH4 can be combined with wind fields to determine the flux of these species and to evaluate emissions inventories or models. The mass balance approach, assumng linear flow into and out of a volume set over a city, works best where wind fields are simplest. Over typical American east coast cities, upwind sources and complex circulation (e.g., the sea breeze) complicate such analyses. We will present findings from a coupled measurement and modeling project involving a network of surface-based tower measurements, aircraft observations, and remote sensing that constrain model calculations. Summer and winter scenarios are contrasted, and results help evaluate the emissions of short-lived pollutants. Determinations are compared to several emissions inventories and are being used to help States evaluate evaluate plans for pollution control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-30
Fields Brook is located in the City of Ashtabula, Ohio and drains a 5.6-square mile watershed (defined as the 'site'). The 3.5 mile main channel of Fields Brook flows through an industrial area that is one of the largest and most diversified concentrations of chemical plants in Ohio. Industrial sources have contaminated the sediment in Fields Brook with a variety of organic and heavy metal pollutants, including TCE, PCE, chlorobenzene, vinyl chloride, arsenic, zinc, mercury and chromium. Base-neutral compounds including hexachloroethane, toluenediamine and toluene diisocyanate also were detected in Fields Brook sediments. Sediments taken from the Ashtabula River in themore » vicinity of Fields Brook are contaminated with PCBs. The U.S. EPA believes that the amount of contamination entering the brook at this time has been substantially reduced due to the recent development of pollution control laws and discharge-permitting requirements.« less
Liu, Lin; Guo, Jianping; Miao, Yucong; Liu, Lin; Li, Jian; Chen, Dandan; He, Jing; Cui, Chunguang
2018-06-11
Wuhan, a megacity in central China, suffers from frequent aerosol pollution and is accompanied by meteorological factors at both synoptic and local scales. Partly due to the lack of appropriate observations of planetary boundary layer (PBL), the associations between synoptic conditions, PBL, and pollution there are not yet fully understood. Thus, systematic analyses were conducted using the fine-resolution soundings, surface meteorological measurements, and aerosol observations in Wuhan during summer for the period 2013-2016, in combination with T-mode principal component analysis and simulations of backward trajectory. The results showed that the variations of boundary layer height (BLH) not only modulated the diurnal variation of PM 2.5 concentration in Wuhan, but also the daily pollution level. Five different synoptic patterns during summer in Wuhan were identified from reanalysis geopotential height fields. Among these synoptic patterns, two types characterized by northeasterly prevailing winds, were found to be associated with heavy pollution in Wuhan. Driven by the northeasterly winds, the polluted air mass from the heavily polluted regions could be easily transported to Wuhan, such as North China Plain and Yangtze River Delta. Such regional transports of pollutants must be partly responsible for the aerosol pollution in Wuhan. In addition, these two synoptic patterns were also featured by the relatively high cloud cover and low boundary layer height in Wuhan, which would favor the occurrence of pollution there. Overall, this study has important implications for understanding the important roles of meteorological factors in modulating aerosol pollution in central China. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Yi; Li, Yuyuan; Li, Yong; Liu, Feng; Liu, Xinliang; Gong, Dianlin; Ma, Qiumei; Li, Wei; Wu, Jinshui
2015-09-01
High nitrogen (N) concentrations in rural domestic water supplies have been attributed to excessive agricultural N leaching into shallow groundwater systems; therefore, it is important to determine the impact of agriculture (e.g., rice production) on groundwater quality. To understand the impact of agricultural land use on the N concentrations in the shallow groundwater in subtropical central China, a large observation program was established to observe ammonium-N (NH4-N), nitrate-N (NO3-N), and total N (TN) concentrations in 161 groundwater observation wells from April 2010 to November 2012. The results indicated that the median values of NH4-N, NO3-N, and TN concentrations in the groundwater were 0.15, 0.39, and 1.38 mg N L(-1), respectively. A total of 36.3 % of the water samples were categorized as NH4-N pollution, and only a small portion of the samples were categorized as NO3-N pollution, based on the Chinese Environmental Quality Standards for Groundwater of GB/T 14848-93 (General Administration of Quality Supervision of China, 1993). These results indicated of moderate groundwater NH4-N pollution, which was mainly attributed to intensive rice agriculture with great N fertilizer application rates in the catchment. In addition, tea and vegetable fields showed higher groundwater NO3-N and TN concentrations than other agricultural land use types. The factorial correspondence analysis (FCA) suggested that the flooded agricultural land use types (e.g., single-rice and double-rice) had potential to impose NH4-N pollution, particularly in the soil exhausting season during from July to October. And, the great N fertilizer application rates could lead to a worse NO3-N and TN pollution in shallow groundwater. Hence, to protect groundwater quality and minimize NH4-N pollution, managing optimal fertilizer application and applying appropriate agricultural land use types should be implemented in the region.
Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen
2016-07-01
To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fu, J; Wang, Z; Mai, B; Kang, Y
2001-01-01
Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.
Transport and dispersion of pollutants in surface impoundments: a finite difference model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, G.T.
1980-07-01
A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.
NASA Astrophysics Data System (ADS)
Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.
2013-12-01
Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.
Assessment of Runoff Toxicity from Coated Surfaces
Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...
The effects of short- and long-term air pollutants on plant phenology and leaf characteristics.
Jochner, Susanne; Markevych, Iana; Beck, Isabelle; Traidl-Hoffmann, Claudia; Heinrich, Joachim; Menzel, Annette
2015-11-01
Pollution adversely affects vegetation; however, its impact on phenology and leaf morphology is not satisfactorily understood yet. We analyzed associations between pollutants and phenological data of birch, hazel and horse chestnut in Munich (2010) along with the suitability of leaf morphological parameters of birch for monitoring air pollution using two datasets: cumulated atmospheric concentrations of nitrogen dioxide and ozone derived from passive sampling (short-term exposure) and pollutant information derived from Land Use Regression models (long-term exposure). Partial correlations and stepwise regressions revealed that increased ozone (birch, horse chestnut), NO2, NOx and PM levels (hazel) were significantly related to delays in phenology. Correlations were especially high when rural sites were excluded suggesting a better estimation of long-term within-city pollution. In situ measurements of foliar characteristics of birch were not suitable for bio-monitoring pollution. Inconsistencies between long- and short-term exposure effects suggest some caution when interpreting short-term data collected within field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons
NASA Astrophysics Data System (ADS)
Liu, J.; Fu, X.; Tao, S.
2016-12-01
Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.
Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2
NASA Astrophysics Data System (ADS)
Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.
2003-03-01
Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.
Su, Xiaoli; Wang, Qiao; Li, Zhengqiang; Calvello, Mariarosaria; Esposito, Francesco; Pavese, Giulia; Lin, Meijing; Cao, Junji; Zhou, Chunyan; Li, Donghui; Xu, Hua
2017-04-15
Simultaneous measurements of columnar aerosol microphysical and optical properties, as well as PM 2.5 chemical compositions, were made during two types of spring pollution episodes in Tianjin, a coastal megacity of China. The events were investigated using field observations, satellite data, model simulations, and meteorological fields. The lower Ångström Exponent and the higher aerosol optical depth on 29 March, compared with the earlier event on 26 March, implied a dominance of coarse mode particles - this was consistent with the differences in volume-size distributions. Based on the single scattering spectra, the dominant absorber (at blue wavelength) changed from black carbon during less polluted days to brown carbon on 26 March and dust on 29 March. The concentrations of major PM 2.5 species for these two episodes also differed, with the earlier event enriched in pollution-derived substances and the later with mineral dust elements. The formation mechanisms of these two pollution episodes were also examined. The 26 March episode was attributed to the accumulation of both local emissions and anthropogenic pollutants transported from the southwest of Tianjin under the control of high pressure system. While the high aerosol loading on 29 March was caused by the mixing of transported dust from northwest source region with local urban pollution. The mixing of transported anthropogenic pollutants and dust with local emissions demonstrated the complexity of springtime pollution in Tianjin. The synergy of multi-scale observations showed excellent potential for air pollution study. Copyright © 2017 Elsevier B.V. All rights reserved.
Predicting ecological effects of pollutants: A role for marine mesocosms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, T.J.
1994-12-31
The major uncertainty in predicting the ecological effects of a pollutant is the relationship between dose and the ecological response. Mesocosms may be used to simulate population-level biological processes and to estimate the nature and shape of dose-related responses to pollutants, for use in predictive evaluations of pollutant impacts. To ensure that responses observed in mesocosm tests are representative it is necessary to confirm that the simulated processes operate at rates similar to those found in the field. Pilot experiments were conducted in small marine mesocosms simulating major processes in two local habitat types: unvegetated sand and sand colonized bymore » the brown macroalga Sargassum. The results showed that for a range of variates (such as the % of egg-bearing harpacticoid copepods, or the chlorophyll a concentration in surface sediments) the mean values for measurements in the tanks over a 9 week period did not consistently converge or diverge from those in the field. Also, for a number of the variates, a modelled decrease of more than about 60% in the mean could be detected with greater than 80% statistical power. This indicates that the effects of a pollutant could be detected with acceptable power. Use of a combination of such variates based on different functional or taxonomic groups for pollutant effects testing could greatly decrease uncertainty about the predicted effects of pollutants discharged to these habitats.« less
Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang
2013-01-01
Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads. PMID:24135820
Fischer, Susan L; Koshland, Catherine P
2007-03-01
Rural kitchens of solid-fuel burning households constitute the microenvironment responsible for the majority of human exposures to health-damaging air pollutants, particularly respirable particles and carbon monoxide. Portable nephelometers facilitate cheaper, more precise, time-resolved characterization of particles in rural homes than are attainable by gravitational methods alone. However, field performance of nephelometers must contend with aerosols that are highly variable in terms of chemical content, size, and relative humidity. Previous field validations of nephelometer performance in residential settings explore relatively low particle concentrations, with the vast majority of 24-h average gravitational PM2.5 concentrations falling below 40 microg/m3. We investigate relationships between 24-h gravitational particle measurements and nephelometric data logged by the personal DataRAM (pDR) in highly polluted rural Chinese kitchens, where gravitationally determined 24-h average respirable particle concentrations were as high as 700 microg/m3. We find that where relative humidity remained below 95%, nephelometric response was strongly linear despite complex mixtures of aerosols and variable ambient conditions. Where 95% relative humidity was exceeded for even a brief duration, nephelometrically determined 24-h mean particle concentrations were nonsystematically distorted relative to gravitational data, and neither concurrent relative humidity measurements nor use of robust statistical measures of central tendency offered means of correction. This nonsystematic distortion is particularly problematic for rural exposure assessment studies, which emphasize upper quantiles of time-resolved particle measurements within 24-h samples. Precise, accurate interpretation of nephelometrically resolved short-term particle concentrations requires calibration based on short-term gravitational sampling.
Modeling the impact of solid noise barriers on near road air quality
Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutan...
EVALUATION OF TOXICS IN RUNOFF FROM COATED SURFACES
Presented in this paper are results from a field and laboratory study of the potential runoff toxicity from coated surfaces. The study results qualified and quantified the types and concentrations of pollutants in runoff from surfaces sealed with a variety of products. Coatings a...
Cape, J N
1993-01-01
The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is stimulated by acidic precipitation, amounts leached are small compared with root uptake, unless soils have been impoverished. This aspect of the potential effects of acidic precipitation is best considered in terms of the long-term critical-load of pollutants to the soil. Given the practical difficulties in monitoring cloud water composition, a method for defining critical levels is proposed, which uses climatological average data to identify the duration and frequency of hill cloud, and combines this information with measured or modelled concentrations of particulate sulphate in the atmosphere, to derive cloud water concentrations as a function of cloud liquid water content. For forests within 100 m of the cloud base the critical levels of particulate sulphate, corresponding to solution concentrations in the range 150-500 micromol litre(-1), are in the range 1-3.3 microg S m(-3). These concentrations are observed over much of central Europe, suggesting that many montane forests are at risk of direct effects of fossil-fuel-derived pollutants in cloud.
Pragst, Fritz; Stieglitz, Klaus; Runge, Hella; Runow, Klaus-Dietrich; Quig, David; Osborne, Robert; Runge, Christian; Ariki, John
2017-05-01
In the oil fields of Thar Jath, South Sudan, increasing salinity of drinking water was observed together with human incompatibilities and rise in livestock mortalities. Hair analysis was used to characterize the toxic exposure of the population. Hair samples of volunteers from four communities with different distance from the center of the oil field (Koch 23km, n=24; Leer 50km, n=26; Nyal 110km, n=21; and Rumbek 220km, n=25) were analyzed for altogether 39 elements by inductively coupled plasma-mass spectrometry. Very high concentrations and a toxic health endangerment were assessed for lead and barium. The concentration of lead increased steadily with decreasing distance from the oil field from Rumbek (mean 2.8μg/g) to Koch (mean 18.7μg/g) and was there in the same range as in highly contaminated mining regions in Kosovo, China or Bolivia. The weighting materials in drilling muds barite (BaSO 4 ) and galena (PbS) were considered to be the sources of drinking water pollution and high hair values. The high concentrations of lead and barium in hair demonstrate clearly the health risk caused by harmful deposition of toxic industrial waste but cannot be used for diagnosis of a chronic intoxication of the individuals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Songmin; Wang, Xiaoling; Qiao, Bin; Li, Jiansheng; Tu, Jiamin
2017-03-01
Nonpoint storm runoff remains a major threat to surface water quality in China. As a paddy matures, numerous fertilizers are needed, especially in the rainy seasons; the concentration of nitrogen and phosphorus in rainfall runoff from farmland is much higher than at other times, and this poses a great threat to water bodies and is the main reason for water eutrophication, especially in high concentration drainages. To date, most studies regarding the characteristics of pollutants in rainfall runoff have mainly been concentrated on urban runoff and watershed runoff; therefore, it is particularly important to investigate the characteristics of nitrogen and phosphorus loss in rainfall runoff from paddy fields. To study the characteristics of nitrogen and phosphorus loss and whether the first flush effect exists, continuous monitoring of the rainfall runoff process of six rainfall events was conducted in 2013, of which four rainfall events during storm, high, middle, and low intensity rainfalls were analyzed, and runoff and quality parameters, such as suspended solids (SS), total nitrogen (TN), ammonium nitrogen (NH 4 + -N), nitrate nitrogen (NO 3 - -N), total phosphorus (TP), and phosphate (PO 4 3- -P), were analyzed to determine the relationship between runoff and water quality. The paddy field is located north of Wuxi Lake Basin along the Hejia River upstream in Zhoutie town, Yixing city. An analysis of the load distribution during rainfall runoff was conducted. Event mean concentration (EMC) was used to evaluate the pollution situation of the paddy field's rainfall runoff. A curve of the dimensionless normalized cumulative load (L) vs. normalized cumulative flow (F) (L-F curve), the probability of the mass first flush (MFFn), and the pollutants carried by the initial 25% of runoff (FF 25 ) were used to analyze the first flush effect of the paddy field runoff, and different contaminants show different results: the concentration of nitrogen and phosphorus fluctuate and follow a similar trend as runoff changes, NO 3 - -N concentration is lower in the early part of runoff and higher in the later, and TP mainly occurs in the particle state in storm runoff and mainly in the dissolved state when the rainfall intensity is smaller. Nitrogen and phosphorus losses from paddy fields are closely related to the average rainfall intensity and the max rainfall intensity, and the runoff loss of nitrogen and phosphorus is more severe when the rainfall intensity is large. Based on an analysis of multiple methodologies, TN and NH 4 + -N show a certain degree of a first flush effect, whereas the first flush effect of TP is not obvious. The first flush effect of SS is obvious in larger intensity rainfall and shows a slight secondary flush effect in smaller rainfall events.
Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant
NASA Technical Reports Server (NTRS)
Mitsev, TS.; Kolarov, G.
1992-01-01
Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.
NASA Astrophysics Data System (ADS)
Jambert, Corinne; Pacifico, Federica; Delon, Claire; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Derrien, Solene; Dione, Cheikh; Brosse, Fabien; Gabella, Omar; Pedruzzo Bagazgoitia, Xavier; Durand, Pierre
2017-04-01
Tropospheric oxidation of VOCs (Volatile Organic Compounds), including isoprene, in the presence of NOx and sunlight leads to the formation of O3 and Secondary Organic Aerosols (SOA). Changes in NO or VOCs sources will consequently modify their atmospheric concentrations and thus, the rate of O3 production and SOA formation. NOx have also an impact on the abundance of the hydroxyl radical (OH) which determines the lifetime of some pollutants and greenhouse gases. Anthropogenic emissions of pollutants from mega cities located on the Guinean coast in South West Africa are likely to increase in the next decades due to a strong anthropogenic pressure and to land use changes at the regional or continental scale. The consequences on regional air quality and on pollutant deposition onto surfaces may have some harmful effects on human and ecosystem health. Furthermore, the regional climate and water cycle are affected by changes in atmospheric chemistry. When transported northward on the African continent, polluted air masses meet biogenic emissions from rural areas which contributes to increase ozone and SOA production, in high temperature and solar radiation conditions, highly favourable to enhanced photochemistry. During the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) field campaign, we measured the atmospheric chemical composition and the exchanges of trace components in a hinterland area of Benin, at the Savé super-site (8°02'03" N, 2°29'11″ E). The observations, monitored in June and July 2016, in a rural mixed agricultural area, include near surface concentrations of ozone (O3), carbon monoxide (CO), nitrogen oxides (NOx) and isoprene, isoprene fluxes and meteorological parameters. We observed hourly average concentrations of O3 up to 50 ppb, low NOx concentrations (ca. 1 ppb and CO concentrations between 75 and 300 ppb. An 8 m tower was equipped with a Fast Isoprene Sensor and sonic anemometer to measure isoprene concentrations and determine isoprene fluxes with eddy-covariance technique over a mixed (patched maize, manioc and anacardium) agricultural plot. We discuss the influence of meteorological conditions on biogenic emissions (i.e. isoprene fluxes) and on ambient atmospheric chemistry (i.e. isoprene, NOx, O3 and CO concentrations observed on the site). We also studied the impact of remote anthropogenic emissions from cities on the Guinean southern coast on local chemistry.
NASA Astrophysics Data System (ADS)
Stratmann, Greta; Schlager, Hans; Sauer, Daniel; Brocchi, Vanessa; Catoire, Valery; Baumann, Robert
2017-04-01
The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions over West Africa) airborne field campaign was conducted in Southern West Africa in June/July 2016. Three European research aircraft (DLR - Falcon 20, SAFIRE - ATR 42 and BAS - Twin Otter) were deployed from Lomé/Togo and conducted research flights across Ivory Coast, Ghana, Togo and Benin. On board the DLR Falcon O3, SO2, CO, NO2 and aerosol fine mode particle number concentration and size distribution were measured during a total of 12 scientific flights. Until now only few airborne trace gas measurements were conducted in Southern West Africa. Therefore, this field experiment contributes to the knowledge of the chemical composition of the lower troposphere between 0 - 4 km. During several flights pollution plumes from major population centers - Lomé/Togo, Accra/Ghana, Kumasi/Ghana, and Abidjan/Ivory Coast - were probed below, inside and above clouds. Here, enhanced trace gas and particle concentrations were observed. In addition, plumes from biomass burning emissions were detected which were transported to West Africa. The composition of the pollution plumes are presented as well as transport pathways using HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectories) trajectory calculations. Ozone enhancements in the biomass burning pollution plumes of up to 70 ppb were observed compared to background concentrations of 30-40 ppb. Furthermore, HYSPLIT atmospheric dispersion simulations are used to estimate anthropogenic SO2 city emissions.
Modeling the impact of solid noise barriers on near road air ...
Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier. Highlights • Developed a dispersion model a
Modeling the impact of solid noise barriers on near road air quality
NASA Astrophysics Data System (ADS)
Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard
2016-09-01
Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.
Pesticides in soil and sediment of a dyke-protected area of the Red River Delta, Vietnam
NASA Astrophysics Data System (ADS)
Braun, Gianna; Bläsing, Melanie; Kruse, Jens; Amelung, Wulf; Renaud, Fabrice; Sebesvari, Zita
2017-04-01
Coastal regions are densely populated but at the same time represent important agricultural areas for food production of the growing world population. To sustain high agricultural yields, in monocultures such as permanent rice systems, pesticides are used in high quantity and frequency. While earlier studies monitored the fate of pesticides in paddy rice systems, the overall fate of these compounds is altered nowadays due to the construction of dykes, which are needed in many delta regions to protect them from high tides, storm surges and salt water intrusion such as in the Red River Delta. The dyke system regulates the discharge and water exchange inside the diked area including irrigation channels for the paddy rice production. Local authorities observed increasing pollution towards the sea (highest pollution close to the dykes) and hypothesized that the dyke system would prevent water exchange and thus lead to an accumulation of pollutants within the diked area. Hence, the purpose of this study was to investigate the effect of dykes on pesticide pollution patterns in coastal delta regions of the Red River Delta. The study was conducted in the district Giao Thuy of the Red River Delta, Vietnam. This area is surrounded by a sea and river dyke; both have several inlet and outlet gates to control the water level in the irrigation channels. We determined the pesticide pollution pattern in a diked agricultural area, as well as along salinity gradients in and outside the diked areas. Samples were taken from rice fields and sediments from irrigation channels inside the diked area as well from saline aquaculture fields located outside the dyke. Pesticide analysis was conducted by accelerated solvent extraction (ASE), followed up by the clean-up process described by Laabs et al. (2007) and analyses using gas chromatography coupled with a mass selective detector (MSD). Preliminary results suggest that out of the 26 analysed compounds chlorpyrifos, propiconazole and isoprothiolane occurred frequently in samples taken from rice fields. Pesticide concentrations were not higher in rice field closer to the dykes. Pesticide concentrations within paddy fields are likely driven by pesticide inputs on site. However, pattern in canal sediment samples is more likely de-coupled from on-site applications. Results will be discussed in relation to adaptation to increasing salinity intrusion in coastal areas.
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek
2015-04-01
Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged concentration values. We demonstrate the approach by using six land use regression (LUR) models developed in the ESCAPE (European Study of Cohorts for Air Pollution Effects) project. These models calculate several air pollutants (e.g. NO2, NOx, PM2.5) for the entire Netherlands at a high (5 m) resolution. Using these air pollution maps, we compare exposure of individuals calculated at their x, y location of their home, their work place, and aggregated over the close surroundings of these locations. In addition, total exposure is accumulated over daily activity patterns, summing exposure at home, at the work place, and while travelling between home and workplace, by routing individuals over the Dutch road network, using the shortest route. Finally, we illustrate how routes can be calculated with the minimum total exposure (instead of shortest distance).
MODELING INDOOR CONCENTRATIONS AND EXPOSURE
The paper discusses the use of an indoor air quality model, EXPOSURE, to predict pollutant concentrations and exposures. The effects of indoor air pollutants depend on the concentrations of the pollutants and the exposure of individuals to the pollutants. The air pollutant concen...
Observational analyses of dramatic developments of a severe air pollution event in the Beijing area
NASA Astrophysics Data System (ADS)
Li, Ju; Sun, Jielun; Zhou, Mingyu; Cheng, Zhigang; Li, Qingchun; Cao, Xiaoyan; Zhang, Jingjiang
2018-03-01
A rapid development of a severe air pollution event in Beijing, China, at the end of November 2015 was investigated with unprecedented observations collected during the field campaign of the Study of Urban Rainfall and Fog/Haze (SURF-15). Different from previous statistical analyses of air pollution events and their correlations with meteorological environmental conditions in the area, the role of turbulent mixing in the pollutant transfer was investigated in detail. The analyses indicate that the major pollution source associated with high particulate matter of diameter 2.5 µm (PM2.5) was from south of Beijing. Before the day of the dramatic PM2.5 increase, the nighttime downslope flow from the mountains to the west and north of Beijing reduced the surface PM2.5 concentration northwest of Beijing. The nighttime surface stable boundary layer (SBL) not only kept the relatively less-polluted air near the surface, it also shielded the rough surface from the pollutant transfer by southwesterly winds above the SBL, leading to the fast transport of pollutants over the Beijing area at night. As the daytime convective turbulent mixing developed in the morning, turbulent mixing transported the elevated polluted air downward even though the weak surface wind was from northeast, leading to the dramatic increase of the surface PM2.5 concentration in the urban area. As a result of both turbulent mixing and advection processes with possible aerosol growth from secondary aerosol formation under the low-wind and high-humidity conditions, the PM2.5 concentration reached over 700 µg m-3 in the Beijing area by the end of the day. Contributions of the two transporting processes to the PM2.5 oscillations prior to this dramatic event were also analyzed. The study demonstrates the important role of large-eddy convective turbulent mixing in vertical transfer of pollutants and the role of the SBL in not only decoupling vertical transport of trace gases and aerosols but also in accelerating horizontal transfer of pollutants above.
NASA Astrophysics Data System (ADS)
Desyana, R. D.; Sulistyantara, B.; Nasrullah, N.; Fatimah, I. S.
2017-03-01
Transportation is one significant factor which contributes to urban air pollution. One of the pollutants emitted from transportation which affect human’s health is NO2. Plants, especially trees, have high potential in reducing air pollutants from transportation through diffusion, absorbtion, adsorption and deposition. Purpose of this study was to analyze the effectiveness of several tree canopy types on roadside green belt in influencing distribution of NO2 gas emitted from transportation. The study conducted in three plots of tree canopy in Jagorawi Highway: Bungur (Lagerstroemia speciosa), Gmelina (Gmelina arborea) and Tanjung (Mimusops elengi). The tree canopy ability in absorbing pollutant is derived by comparing air quality on vegetated area with ambience air quality at control area (open field). Air sampling was conducted to measure NO2 concentration at elevation 1.5m, 5m and 10m at distance 0m, 10m and 30m, using Air Sampler Impinger. Concentration of NO2 was analyzed with Griess-Saltzman method. From this research, the result of ANOVA showed that tree plot (vegetated area) affected significantly to NO2 concentration. However the effect of distance from road and elevation was not significant. Among the plots, the highest NO2 concentration was found on Control plot (area without tree canopy), while the lowest NO2 concentration was found in Tanjung plot. Tanjung plot with round shape and high density canopy performed better in reducing NO2 than Bungur plot with round shape and medium density canopy, regardless the sampling elevation and distance. Gmelina plot performed the best in reducing horizontal distribution of NO2 concentration at elevation 1.5 and 5m, but the result at elevation 10m was not significant.
NASA Astrophysics Data System (ADS)
Hu, Xue-Feng; Jiang, Ying; Shu, Ying
2014-05-01
Hunan province, Central South China, is a well-known nonferrous metal base in China. Mine exploiting and processing there, however, often lead to heavy metal pollution of farmland. To study the effects of mining activities on the soil environmental quality, four representative paddy fields, the HSG, SNJ, NT and THJ, in Y county, northern Hunan province, were investigated. It was found that the streams running through the HSG, SNJ and NT are severely contaminated due to the long-term discharge of untreated mineral wastewater from local indigenous mining factories. The stream at the HSG, for example, is brownish red in color, with high concentrations of Cu, Zn, Cd, Fe and Mn. The concentrations of Cu, Zn and Cd in all the stream water of the HSG, SNJ and NT exceed the maximum allowable levels of the Agricultural Irrigation Water Criteria of China. Correspondingly, the HSG, SNJ and NT are heavily polluted by Cu, Zn and Cd due to the long-term irrigation with the contaminated stream water. In comparison, both stream water and paddy fields of the THJ, far away from mining areas, are not contaminated by any heavy metals and hence regarded as a control in this study. The rice grain produced at the HSG, SNJ and NT has a high risk of Cd contamination. The rate of rice grain produced in the four paddy fields in Y county with Cd exceeding the safe level (Cd, 0.2 μg g-1) specified by the National Standards for Rice Quality and Safety of China reaches 90%. Cd content in the rice grain is positively significantly correlated with that in the paddy fields, especially with the content of diethylenetriaminepentaacetic acid (DTPA) - extracted Cd, suggesting that the heavy metal pollution of paddy fields has already posed a high risk to rice safety and human health. Soil enzyme activities and microbial biomass are significantly inhibited by the heavy metal pollution of the paddy fields. Microbial biomass C and N (MBC and MBN) at a severely contaminated site of the HSG are only 31.6% and 64.4% of the controls; the activities of dehydrogenase, urease, catalase, acid and neutral phosphatase and sucrase are only 25.2%, 49.3%, 52.4%, 94.7%, 53.2% and 87.8% of the controls. These microbial parameters are mostly negatively significantly correlated with the contents of Cu, Zn, Cd and Ni in the paddy fields, suggesting the toxic effects of the heavy metals on microbial processes. Both the Principal Component Analysis (PCA) and Cluster Analysis (CA) indicated that DH activity and MBC are the most sensitive to the heavy metal pollution and could be used as eco-indicators of the environmental quality of the paddy fields in the study areas. Acknowledgements: This work was supported by the National Natural Science Foundation of China (No. 41130526).
New Magnetic and Geochemical Results on Topsoils of the Mexico City Metropolitan Area
NASA Astrophysics Data System (ADS)
Martínez-Pichar, E.; Soler-Arechalde, A. M.; Morton, O.; Hernandez, E.; Lozano-Santa-Cruz, R.; Gonzalez, G.; Beramendi, L.; Urrutia-Fucugauchi, J. H.
2008-05-01
The Metropolitan Area of Mexico city is a region well known for intense industrial and commercial activity. The potential sources of the heavy metal pollutants are assumed to be petroleum processing, production of iron material, manufacturing, coal combustion, commercial and automobile exhaust. New samples were collected from industrial, roadside, residential and public parks in the urban areas around the city and added to two previous field campaigns (2003 and 2005). Localities selected for the study represent, presumably, different heavy metal pollution levels and sources. At each sampling point, the top 2 cm layer of the soil profile was collected with a stainless steel trowel and stored in a plastic bag. The elements Fe, Cu and Zn concentrations were determined by EDXRF (Philips PW1400 apparatus) on bulk- sample pressed, boric-acid backed pellets. Metal concentrations of Pb, Ni, Cr, and V were analyzed by ICP-MS with a VG Elemental PQ3 instrument. Magnetic mineralogy in bulk soil samples was investigated by low-field susceptibility using a Kappabridge KLY2. Remanent magnetizations (ARM and IRM) and Hysteresis loops of micro samples had been carried out at room temperature. Bivariate analysis on different ratios of magnetic parameters was employed to characterize the pollution sources.
Fritsch, Clémentine; Cœurdassier, Michaël; Giraudoux, Patrick; Raoul, Francis; Douay, Francis; Rieffel, Dominique; de Vaufleury, Annette; Scheifler, Renaud
2011-01-01
Concepts and developments for a new field in ecotoxicology, referred to as “landscape ecotoxicology,” were proposed in the 1990s; however, to date, few studies have been developed in this emergent field. In fact, there is a strong interest in developing this area, both for renewing the concepts and tools used in ecotoxicology as well as for responding to practical issues, such as risk assessment. The aim of this study was to investigate the spatial heterogeneity of metal bioaccumulation in animals in order to identify the role of spatially explicit factors, such as landscape as well as total and extractable metal concentrations in soils. Over a smelter-impacted area, we studied the accumulation of trace metals (TMs: Cd, Pb and Zn) in invertebrates (the grove snail Cepaea sp and the glass snail Oxychilus draparnaudi) and vertebrates (the bank vole Myodes glareolus and the greater white-toothed shrew Crocidura russula). Total and CaCl2-extractable concentrations of TMs were measured in soils from woody patches where the animals were captured. TM concentrations in animals exhibited a high spatial heterogeneity. They increased with soil pollution and were better explained by total rather than CaCl2-extractable TM concentrations, except in Cepaea sp. TM levels in animals and their variations along the pollution gradient were modulated by the landscape, and this influence was species and metal specific. Median soil metal concentrations (predicted by universal kriging) were calculated in buffers of increasing size and were related to bioaccumulation. The spatial scale at which TM concentrations in animals and soils showed the strongest correlations varied between metals, species and landscapes. The potential underlying mechanisms of landscape influence (community functioning, behaviour, etc.) are discussed. Present results highlight the need for the further development of landscape ecotoxicology and multi-scale approaches, which would enhance our understanding of pollutant transfer and effects in ecosystems. PMID:21655187
Near-road air quality is an issue of emerging concern, with field studies consistently showing elevated air pollutant concentrations adjacent to major roads, usually decreasing to background levels within several hundred meters. Roadside barriers, both vegetative and structural, ...
Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.
Greger, Maria; Landberg, Tommy
2015-01-01
Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.
Biologically plausible particulate air pollution mortality concentration-response functions.
Roberts, Steven
2004-01-01
In this article I introduce an alternative method for estimating particulate air pollution mortality concentration-response functions. This method constrains the particulate air pollution mortality concentration-response function to be biologically plausible--that is, a non-decreasing function of the particulate air pollution concentration. Using time-series data from Cook County, Illinois, the proposed method yields more meaningful particulate air pollution mortality concentration-response function estimates with an increase in statistical accuracy. PMID:14998745
Gallagher, J; Gill, L W; McNabola, A
2013-08-01
This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.
Zheng, Jing; Hu, Min; Peng, Jianfei; Wu, Zhijun; Kumar, Prashant; Li, Mengren; Wang, Yujue; Guo, Song
2016-09-01
Severe air pollution and its associated health impacts have become one of the major concerns in China. A detailed analysis of PM2.5 chemical compositions is critical for optimizing pollution control measures. In this study, daily 24-h bulk filter samples were collected and analyzed for totally 21 field campaigns at 17 sites in China between 2008 and 2013. The 17 sites were classified into four groups including six urban sites, seven regional sites, two coastal sites in four fast developing regions of China (i.e. Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River Delta and Sichuan Basin), and two ship cruise measurements covered the East China Sea and Yellow Sea of China. The high average concentrations of PM2.5 and the occurrences of extreme cases at most sites imply the widespread air pollution in China. Fine particles were largely composed of organic matter and secondary inorganic species at most sites. High correlation between the temporal trends of PM2.5 and secondary species of urban and regional sites highlights the uniformly distributed air pollutants within one region. Secondary inorganic species were the dominant contributors to the high PM2.5 concentration in Northern China. However in Southern China, the relative contributions of different chemical species kept constant as PM2.5 increased. This study provides us a better understanding of the current state of air pollution in diversified Chinese cities. Analysis of chemical signatures of PM2.5 could be a strong support for model validation and emission control strategy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pekey, Hakan; Karakaş, Duran; Bakoğlu, Mithat
2004-11-01
Surface water samples were collected from ten previously selected sites of the polluted Dil Deresi stream, during two field surveys, December 2001 and April 2002. All samples were analyzed using ICP-AES, and the concentrations of trace metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Pb, Sn and Zn) were determined. The results were compared with national and international water quality guidelines, as well as literature values reported for similar rivers. Factor analysis (FA) and a factor analysis-multiple regression (FA-MR) model were used for source apportionment and estimation of contributions from identified sources to the concentration of each parameter. By a varimax rotated factor analysis, four source types were identified as the paint industry; sewage, crustal and road traffic runoff for trace metals, explaining about 83% of the total variance. FA-MR results showed that predicted concentrations were calculated with uncertainties lower than 15%.
NASA Astrophysics Data System (ADS)
Gengembre, Cyril; Zhang, Shouwen; Dieudonné, Elsa; Sokolov, Anton; Augustin, Patrick; Riffault, Véronique; Dusanter, Sébastien; Fourmentin, Marc; Delbarre, Hervé
2016-04-01
Impacts of global climate evolution are quite uncertain at regional and local scales, especially on air pollution. Air quality is associated with local atmospheric dynamics at a time scale shorter than a few weeks, while the climate change time scale is on the order of fifty years. To infer consequences of climate evolution on air pollution, it is necessary to fill the gap between these different scales. Another challenge is to understand the effect of global warming on the frequency of meteorological phenomena that influence air pollution. In this work, we classified meteorological events related to air pollution during a one-year long field campaign in Dunkirk (northern France). Owing to its coastal location under urban and industrial exposures, the Dunkirk agglomeration is an interesting area for studying gaseous and aerosols pollutants and their relationship with weather events such as sea breezes, fogs, storms and fronts. The air quality in the northern region of France is also greatly influenced by highly populated and industrialized cities along the coast of the North Sea, and by London and Paris agglomerations. During a field campaign, we used simultaneously a three-dimensional sonic anemometer and a weather station network, along with a scanning Doppler Lidar system to analyse the vertical structure of the atmosphere. An Aerosol Chemical Speciation Monitor enabled investigating the PM1 behaviour during the studied events. Air contaminants such as NOx (NO and NO2) were also measured by the regional pollution monitoring network ATMO Nord Pas-de-Calais. The events were identified by finding specific criteria from meteorological and turbulent parameters. Over a hundred cases of sea breezes, fog periods, stormy days and atmospheric front passages were investigated. Variations of turbulent parameters (vertical sensible heat flux and momentum flux) give estimations on the transport and the dispersal of pollutants. As the fluxes are weak during fogs, an increase of PM1 concentrations was observed, which causes a deposition of the particles. Due to turbulence and horizontal dilution, PM1 concentrations were weak during storms.
Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J
2011-03-01
The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.
Vandecasteele, Bart; De Vos, Bruno; Tack, Filip M G
2002-11-01
Salix species and Sambucus nigra L. (elder) naturally invade dredged sediment landfills and are commonly encountered on substrates contaminated with heavy metals. Foliar concentrations of Cd and Zn in four Salix species and elder were explored in the field. Metal contents in dredged sediment derived soils were elevated compared to baseline concentration levels reported for Flanders. To evaluate foliar concentrations, reference data were compiled from observations in nurseries, young plantations and unpolluted sites with volunteer willow vegetation. Willows grown on polluted dredged sediment landfills showed elevated foliar Cd and Zn concentrations (>6.6 mg Cd/kg DW and >700 mg Zn/kg DW). This was not the case for elder. For willow, a significant relation was found between soil total Zn or Cd and foliar Zn or Cd, regardless of age, species, or clone. Willows proved to be useful bioindicators. Results indicated a possible threat in long-term habitat development of willow brushwood from transfer of Cd and Zn to the food web.
Lead in Albacore: Guide to Lead Pollution in Americans
NASA Astrophysics Data System (ADS)
Settle, Dorothy M.; Patterson, Clair C.
1980-03-01
Lead contamination in canned tuna, exceeding natural concentrations 10,000-fold, went undiscovered for decades because of analytical error. The magnitude of this pollution effect helps explain the difference between the lead concentration in the diets of present-day Americans (0.2 part per million) and in the diets of prehistoric peoples (estimated to be less than 0.002 part per million). It also explains how skeletal concentrations of lead in typical Americans became elevated 500-fold above the natural concentrations measured in bones of Peruvians who lived in an unpolluted environment 1800 years ago. It has been tacitly assumed that natural biochemical effects of lead in human cells have been studied, but this is not so because reagents, nutrients, and controls used in laboratory and field studies have been unknowingly contaminated with lead far in excess of naturally occurring levels. An unrecognized form of poisoning caused by this excessive exposure to lead may affect most Americans because magnitudes of biochemical dysfunctions are proportional to degrees of exposure.
NASA Astrophysics Data System (ADS)
Bian, R.; Cui, L.; Pan, G.; Li, L.
2012-04-01
The bioavailability of Cd in agricultural soils has been a great health concern due to the potential risk through exposure of agro-food produced in Cd-contaminated fields. Yet, rice subject to Cd contamination appears to have expanded at the last decade due to irrigation with waste water and chemical fertilization in south china. This is supposed to raise the Cd accumulation of rice grain. Therefore, techniques to reduce Cd mobility and plant uptake have been a urgent demand for food safety in China.A field experiment was performed in a high-polluted (HP), mid-pollute (MP) and unpolluted (UP) paddy soil with biochar(BC) amendment in 2011. BC was applied in HP, MP and UP in 2008, 2009, 2009 with the rates of 0, 10, 20, 40t ha-1 in HP, MP and 0, 40t ha-1 in UP. The experiment was monitored in 2011. It was observed that BC amendment did not affect rice grain yield but significantly increased soil pH by 0.58-0.77, 1.30 units in MP, UP and there was no difference in HP. The Cacl2 extracted Cd in soil was decreased by 18.1%-28.9% in HP, 49.3%-67.5% in MP and 83.1% in UP, respectively. Meanwhile, H2O extractable Cd in soil was decreased by 20.0%-31.7% in HP, 32.7%-44.2% in MP and 25.0% in UP, respectively. With the BC treatment, rice grain Cd concentration was decreased 4.7%-17.6% in HP, 35.9%-53.4% in MP. Especially in UP field, the rice grain Cd concentration was decreased from 0.22mg kg-1 to 0.07mg kg-1 which was below National standard (0.20mg kg-1) in China. The straw and root Cd contents were also significantly decreased with BC application. Therefore, BC amendment in polluted and unpolluted fields can sustainably reduce rice Cd uptake and it may offer a basic option to reduce Cd levels in rice. Keywords: Biochar, Cd, bioavailability, paddy soil, food safety
Investigation of air pollution and regional climate change due to anthropogenic aerosols
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Sano, Itaru; Mukai, Sonoyo
2016-10-01
Increased emissions of anthropogenic aerosols associated with economic growth can lead to increased concentrations of hazardous air pollutants. In particular, large cities in East Asia have experienced numerous heavy haze episodes. Atmospheric aerosol distributions in East Asia are complex, being influenced by both natural phenomena and human activity, with urban areas in particular being dominated by fine anthropogenic aerosols released from diesel-powered vehicles and industrial activity. In Japan, air pollution levels have been reduced; nevertheless, in recent years, there is increasing concern regarding air pollution caused by fine particulate matter. The origins of air pollution were examined, focusing on the comparison between aerosol properties observed from satellites and that on the ground. Because of their short life spans, concentrations of anthropogenic aerosols are highest over the source regions, and as a result, the climatic impacts of anthropogenic aerosols are also found to be most pronounced in these regions. In this study, aerosol impacts on climate are assessed by numerical model simulations. The direct effects of aerosols include reduced solar radiation, and hence a decrease in surface temperatures. In addition to these changes in the radiation budget, aerosols have a significant potential to change cloud and precipitation fields. These climatic responses to aerosols can manifest far from their source regions with high industrial activities.
Huang, Sheng; Zhao, Xin; Sun, Yanqiu; Ma, Jianli; Gao, Xiaofeng; Xie, Tian; Xu, Dongsheng; Yu, Yi; Zhao, Youcai
2016-04-01
A comprehensive field investigation of organic pollutants was examined in industrial construction and demolition waste (ICDW) inside an abandoned pesticide manufacturing plant. Concentrations of eight types of pesticides, a metabolite and two intermediates were studied. The ICDW was under severe and long-term contamination by organophosphorus, intermediates and pyrethroid pesticide with mean concentrations of 23,429, 3538 and 179.4 mg kg(-1), respectively. FT-IR analysis suggested that physical absorption and chemical bonding were their mutual interaction forms. Patterns of total pesticide spatial distribution showed good correlations with manufacturing processes spreading all over the plant both in enclosed workshops and in residues randomly dumped outside, while bricks and coatings were the most vulnerable to pollutants. Ultimately the fate of the OPPs was diversified as the immersion of ICDW in water largely transferred the pollutants into aquatic systems while exposure outside did not largely lead to pesticide degradation. The adoption of centralized collections for the disposal of wastes could only eliminate part of the contaminated ICDW, probably due to lack of knowledge and criteria. Correlation matrix and cluster analysis indicated that regulated disposal and management of polluted ICDW was effective, thus presenting the requirement for its appropriate disposal.
Carnevale, C; Finzi, G; Pisoni, E; Volta, M; Kishcha, P; Alpert, P
2012-02-15
The Po Valley in Northern Italy is frequently affected by high PM10 concentrations, where both natural and anthropogenic sources play a significant role. To improve air pollution modeling, 3D dust fields, produced by means of the DREAM dust forecasts, were integrated as boundary conditions into the mesoscale 3D deterministic Transport Chemical Aerosol Model (TCAM). A case study of the TCAM and DREAM integration was implemented over Northern Italy for the period May 15-June 30, 2007. First, the Saharan dust impact on PM10 concentration was analyzed for eleven remote PM10 sites with the lowest level of air pollution. These remote sites are the most sensitive to Saharan dust intrusions into Northern Italy, because of the absence of intensive industrial pollution. At these remote sites, the observed maxima in PM10 concentration during dust events is evidence of dust aerosol near the surface in Northern Italy. Comparisons between modeled PM10 concentrations and measurements at 230 PM10 sites in Northern Italy, showed that the integrated TCAM-DREAM model more accurately reproduced PM10 concentration than the base TCAM model, both in terms of correlation and mean error. Specifically, the correlation median increased from 0.40 to 0.65, while the normalized mean absolute error median dropped from 0.5 to 0.4. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.
2018-05-01
In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.
The feasibility of large-scale fungal bioaugmentation was evaluated by assessing the ability of the lignin-degrading fungus Phanerochaete sordida to decrease the soil concentrations of pentachlorophenol (PCP) and 13 priority pollutant polynuclear aromatic (PNA) creosote component...
Laser induced fluoroescence from algae: Results of a ship-borne field test
NASA Technical Reports Server (NTRS)
Hartmann, B.; Steinvall, O.; Widen, A.
1981-01-01
A basis is provided for the feasibility of air-borne laser fluorosensing not only of chlorophyll but also of pollutants such as oils and chemicals. There was a satisfactory correlation between the laser data and those obtained manually. The absolute determination of the chlorophyll concentration is discussed.
USDA-ARS?s Scientific Manuscript database
Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...
The goal of achieving verisimilitude of air quality simulations to observations is problematic. Chemical transport models such as the Community Multi-Scale Air Quality (CMAQ) modeling system produce volume averages of pollutant concentration fields. When grid sizes are such tha...
NASA Astrophysics Data System (ADS)
Tan, Z.; Lu, K.; Ma, X.; Bohn, B.; Hofzumahaus, A.; Broch, S.; Fuchs, H.; Holland, F.; Liu, Y.; Li, X.; Novelli, A.; Rohrer, F.; Wang, H.; Wu, Y.; Shao, M.; Zeng, L.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.
2017-12-01
A comprehensive field campaign was carried out in winter 2016 in the campus of UCAS (University of Chinese Academy of Science), located in a small town 60 km northeast of urban Beijing. Concentrations of OH, HO2 and RO2 radicals as well as the total OH reactivity were measured by a laser induced fluorescence instrument. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. These radical concentrations were smaller than those observed during summer because of the reduced solar radiation. A chemical modulation device to separate atmospheric OH radicals from any interfering species was applied for few days showing negligible interference for both clean and polluted air masses.HONO and HCHO photolysis were found to be the most important primary sources of ROx radicals. CO and NOx were the important OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary air products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations for moderate NOx conditions but larger discrepancies are observed for both low and high NOx regimes for the peroxy radical concentrations. The underestimation of RO2 radical concentrations for high NOx conditions is discussed in the context of recent campaigns.
[Physicochemical properties of Guanting Reservoir sediment and its land application].
Su, De-Chun; Hu, Yu-Feng; Song, Chong-Wei; Wu, Fei-Long; Liu, Pei-Bin
2007-06-01
Surface sediment of Guanting Reservoir was dredged up and dewatered in field, and pollutant and physicochemical characterizations were mensurated. The stabilization and agricultural land use of the sediment was also studied in the field. Results showed that the sediments have a higher clay content, bulk density (1.89 g x cm(-3)) and lower porosity (23.8%), higher deoxidize material and available nitrogen, phosphorus concentration. Heavy metal and organochlorinated pesticides concentration was lower than the class II of national standard for soil. Stabilized the sediment with sand soil and straw could improve the physical property and decrease the concentration of deoxidize material and available nitrogen, phosphorus. Stabilized sediment could be a suitable medium for alfalfa, tree and corn growth and used for agricultural land.
Rice methylmercury exposure and mitigation: a comprehensive review
Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.
2014-01-01
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.
Rice Methylmercury Exposure and Mitigation: A Comprehensive Review
Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.
2014-01-01
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509
NASA Astrophysics Data System (ADS)
Yuval; Bekhor, Shlomo; Broday, David M.
2013-11-01
Spatially detailed estimation of exposure to air pollutants in the urban environment is needed for many air pollution epidemiological studies. To benefit studies of acute effects of air pollution such exposure maps are required at high temporal resolution. This study introduces nonlinear optimisation framework that produces high resolution spatiotemporal exposure maps. An extensive traffic model output, serving as proxy for traffic emissions, is fitted via a nonlinear model embodying basic dispersion properties, to high temporal resolution routine observations of traffic-related air pollutant. An optimisation problem is formulated and solved at each time point to recover the unknown model parameters. These parameters are then used to produce a detailed concentration map of the pollutant for the whole area covered by the traffic model. Repeating the process for multiple time points results in the spatiotemporal concentration field. The exposure at any location and for any span of time can then be computed by temporal integration of the concentration time series at selected receptor locations for the durations of desired periods. The methodology is demonstrated for NO2 exposure using the output of a traffic model for the greater Tel Aviv area, Israel, and the half-hourly monitoring and meteorological data from the local air quality network. A leave-one-out cross-validation resulted in simulated half-hourly concentrations that are almost unbiased compared to the observations, with a mean error (ME) of 5.2 ppb, normalised mean error (NME) of 32%, 78% of the simulated values are within a factor of two (FAC2) of the observations, and the coefficient of determination (R2) is 0.6. The whole study period integrated exposure estimations are also unbiased compared with their corresponding observations, with ME of 2.5 ppb, NME of 18%, FAC2 of 100% and R2 that equals 0.62.
NASA Astrophysics Data System (ADS)
Jovanovic, Larisa; Aleksic, Gorica; Radosavljevic, Milan; Onjia, Antonije
2015-04-01
Mineral oil leaking from vehicles or released during accidents is an important source of soil and ground water pollution. In the railway junction Niš (Serbia) total 90 soil samples polluted with mineral oil derivatives were investigated. Field work at the railway Niš sites included the opening of soil profiles and soil sampling. The aim of this work is the determination of petroleum hydrocarbons concentration in the soil samples and the investigation of the bioremediation technique for treatment heavily contaminated soil. For determination of petroleum hydrocarbons in the soil samples method of gas-chromatography was carried out. On the basis of measured concentrations of petroleum hydrocarbons in the soil it can be concluded that: Obtained concentrations of petroleum hydrocarbons in 60% of soil samples exceed the permissible values (5000 mg/kg). The heavily contaminated soils, according the Regulation on the program of systematic monitoring of soil quality indicators for assessing the risk of soil degradation and methodology for development of remediation programs, Annex 3 (Official Gazette of RS, No.88 / 2010), must be treated using some of remediation technologies. Between many types of phytoremediation of soil contaminated with mineral oils and their derivatives, the most suitable are phytovolatalisation and phytostimulation. During phytovolatalisation plants (poplar, willow, aspen, sorgum, and rye) absorb organic pollutants through the root, and then transported them to the leaves where the reduced pollutants are released into the atmosphere. In the case of phytostimulation plants (mulberry, apple, rye, Bermuda) secrete from the roots enzymes that stimulates the growth of bacteria in the soil. The increase in microbial activity in soil promotes the degradation of pollutants. Bioremediation is performed by composting the contaminated soil with addition of composting materials (straw, manure, sawdust, and shavings), moisture components, oligotrophs and heterotrophs bacteria.
On the feasibility of measuring urban air pollution by wireless distributed sensor networks.
Moltchanov, Sharon; Levy, Ilan; Etzion, Yael; Lerner, Uri; Broday, David M; Fishbain, Barak
2015-01-01
Accurate evaluation of air pollution on human-wellbeing requires high-resolution measurements. Standard air quality monitoring stations provide accurate pollution levels but due to their sparse distribution they cannot capture the highly resolved spatial variations within cities. Similarly, dedicated field campaigns can use tens of measurement devices and obtain highly dense spatial coverage but normally deployment has been limited to short periods of no more than few weeks. Nowadays, advances in communication and sensory technologies enable the deployment of dense grids of wireless distributed air monitoring nodes, yet their sensor ability to capture the spatiotemporal pollutant variability at the sub-neighborhood scale has never been thoroughly tested. This study reports ambient measurements of gaseous air pollutants by a network of six wireless multi-sensor miniature nodes that have been deployed in three urban sites, about 150 m apart. We demonstrate the network's capability to capture spatiotemporal concentration variations at an exceptional fine resolution but highlight the need for a frequent in-situ calibration to maintain the consistency of some sensors. Accordingly, a procedure for a field calibration is proposed and shown to improve the system's performance. Overall, our results support the compatibility of wireless distributed sensor networks for measuring urban air pollution at a sub-neighborhood spatial resolution, which suits the requirement for highly spatiotemporal resolved measurements at the breathing-height when assessing exposure to urban air pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
The gains in life expectancy by ambient PM2.5 pollution reductions in localities in Nigeria.
Etchie, Tunde O; Etchie, Ayotunde T; Adewuyi, Gregory O; Pillarisetti, Ajay; Sivanesan, Saravanadevi; Krishnamurthi, Kannan; Arora, Narendra K
2018-05-01
Global burden of disease estimates reveal that people in Nigeria are living shorter lifespan than the regional or global average life expectancy. Ambient air pollution is a top risk factor responsible for the reduced longevity. But, the magnitude of the loss or the gains in longevity accruing from the pollution reductions, which are capable of driving mitigation interventions in Nigeria, remain unknown. Thus, we estimate the loss, and the gains in longevity resulting from ambient PM 2.5 pollution reductions at the local sub-national level using life table approach. Surface average PM 2.5 concentration datasets covering Nigeria with spatial resolution of ∼1 km were obtained from the global gridded concentration fields, and combined with ∼1 km gridded population of the world (GPWv4), and global administrative unit layers (GAUL) for territorial boundaries classification. We estimate the loss or gains in longevity using population-weighted average pollution level and baseline mortality data for cardiopulmonary disease and lung cancer in adults ≥25 years and for respiratory infection in children under 5. As at 2015, there are six "highly polluted", thirty "polluted" and one "moderately polluted" States in Nigeria. People residing in these States lose ∼3.8-4.0, 3.0-3.6 and 2.7 years of life expectancy, respectively, due to the pollution exposure. But, assuming interventions achieve global air quality guideline of 10 μg/m 3 , longevity would increase by 2.6-2.9, 1.9-2.5 and 1.6 years for people in the State-categories, respectively. The longevity gains are indeed high, but to achieve them, mitigation interventions should target emission sources having the highest population exposures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong
2011-08-15
Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.
Nitrate concentrations under irrigated agriculture
Zaporozec, A.
1983-01-01
In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.
Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc
2013-01-01
Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.
[Hexavalent chromium pollution and exposure level in electroplating workplace].
Zhang, Xu-hui; Zhang, Xuan; Yang, Zhang-ping; Jiang, Cai-xia; Ren, Xiao-bin; Wang, Qiang; Zhu, Yi-min
2012-08-01
To investigate the pollution of hexavalent chromium in the electroplating workplace and screen the biomarkers of chromium exposure. Field occupational health investigation was conducted in 25 electroplating workplaces. 157 electroplating workers and 93 healthy unexposed controls were recruited. The epidemiological information was collected with face to face interview. Chromium in erythrocytes was determined by graphite furnace atomic absorption spectrophotometer. The median of short-term exposure concentration of chromium in the air at electroplating workplace was 0.06 mg/m(3) (median) and ranging from 0.01 (detect limit) to 0.53 mg/m(3)). The median concentration of Cr (VI) in erythrocytes in electroplating workers was 4.41 (2.50 ∼ 5.29) µg/L, which was significantly higher than that in control subjects [1.54 (0.61 ∼ 2.98) µg/L, P < 0.01]. After stratified by potential confounding factors such as gender, age, smoking status and alcohol consumption, significant differences still existed between electroplating workers and control subjects, except for the subjects of age less than 30 years old (P = 0.11). There was hexavalent chromium pollution in electroplating workplace. Occupational hazards prevention measures should be taken to control the chromium pollution hazards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millward, R.N.; Grant, A.
2000-02-01
Pollution-induced community tolerance (PICT) has been proposed as an indicator of the deleterious effects of pollutants on communities in the field. Nematode assemblages were sampled at 10 estuarine sites that ranged from uncontaminated to grossly contaminated with metals. Relative tolerance of these assemblages to Cu was quantified using acute toxicity tests. There were large differences between sites in tolerance to Cu, and copper tolerance was strongly correlated with severity of contamination. Enhanced Cu tolerance occurred at two sites where Cu concentration in sediment was around 180 {micro}g/g but not at a third site, where Cu concentration was 214 {micro}g/g. Thismore » implies a threshold of effects on these nematode communities at {approximately}200 {micro}g/g Cu. Comparison with studies of nematode community composition in these same estuaries indicates that PICT is at least as sensitive as the best available ecological monitoring methods. It is, however, faster to carry out and requires much less taxonomic expertise. The PICT appears to be a sensitive indicator of ecological effects of pollution and has considerable promise as a monitoring tool.« less
An evaluation of the urban stormwater pollutant removal efficiency of catch basin inserts.
Morgan, Robert A; Edwards, Findlay G; Brye, Kristofor R; Burian, Stephen J
2005-01-01
In a storm sewer system, the catch basin is the interface between surface runoff and the sewer. Responding to the need to improve the quality of stormwater from urban areas and transportation facilities, and spurred by Phase I and II Stormwater Rules from the U.S. Environmental Protection Agency, several companies market catch basin inserts as best management practices for urban water quality management. However, little data have been collected under controlled tests that indicate the pollutant removal efficiency of these inserts when the inflow is near what can be expected to occur in the field. A stormwater simulator was constructed to test inserts under controlled and replicable conditions. The inserts were tested for removal efficiency of total suspended solids (TSS) and total petroleum hydrocarbons (TPH) at an inflow rate of 757 to 814 L/min, with influent pollutant concentrations of 225 mg/L TSS and 30 mg/L TPH. These conditions are similar to stormwater runoff from small commercial sites in the southeastern United States. Results from the tests indicate that at the test flowrate and pollutant concentration, average TSS removal efficiencies ranged from 11 to 42% and, for TPH, the removal efficiency ranged from 10 to 19%.
Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh.
Bhuiyan, Mohammad A H; Parvez, Lutfar; Islam, M A; Dampare, Samuel B; Suzuki, Shigeyuki
2010-01-15
Total concentrations of heavy metals in the soils of mine drainage and surrounding agricultural fields in the northern part of Bangladesh were determined to evaluate the level of contamination. The average concentrations of Ti, Mn, Zn, Pb, As, Fe, Rb, Sr, Nb and Zr exceeded the world normal averages and, in some cases, Mn, Zn, As and Pb exceeded the toxic limit of the respective metals. Soil pollution assessment was carried out using enrichment factor (EF), geoaccumulation index (I(geo)) and pollution load index (PLI). The soils show significant enrichment with Ti, Mn, Zn, Pb, As, Fe, Sr and Nb, indicating inputs from mining activities. The I(geo) values have revealed that Mn (1.24+/-0.38), Zn (1.49+/-0.58) and Pb (1.63+/-0.38) are significantly accumulated in the study area. The PLIs derived from contamination factors indicate that the distal part of the coal mine-affected area is the most polluted (PLI of 4.02). Multivariate statistical analyses, principal component and cluster analyses, suggest that Mn, Zn, Pb and Ti are derived from anthropogenic sources, particularly coal mining activities, and the extreme proximal and distal parts are heavily contaminated with maximum heavy metals.
Characteristics and formation of heavy winter haze pollution during 2014-2015 in Tianjin, China
NASA Astrophysics Data System (ADS)
Sun, Zhenli; Ma, Tao; Zhu, Lidan; Duan, Fengkui; He, Kebin
2017-04-01
With the rapid increase in the amount of vehicles and energy consumption during the past two decades, China faces a serious air pollution in urban areas, which has produced negative impact on the society development and human health. Tianjin, locating on the southeast of Beijing-Tianjin-Hebei region in north China, has been one of the heavy polluted cities during 2013-2016 of which the haze occurred frequently in particular in winter while the knowledge on its sources and formation mechanism are limited. For better understanding of the characteristics and the formation mechanisms of PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm), especially secondary water-soluble inorganic species in these haze events, continuous and online hourly field observations in Tianjin urban area were carried out during 2014-2015 winter, that were, hourly concentrations of PM2.5, sulfate, nitrate, and ammonium (SNA) as well as the concentrations of gaseous pollutants and meteorological parameters. PM2.5 concentrations ranged from 5.6 μgṡm-3 to 495.5 μgṡm-3, with an average of 112.1 (±96.1) μgṡm-3. In general, SNA (sulfate, nitrate and ammonium) was the most abundant secondary water-soluble inorganic species and contributed to 35% of PM2.5 mass concentration. The most severe PM2.5 pollution was observed in January 2015 with four haze episodes observed. The chemical composition of four episodes was characterized by high level of SO42- (22%˜38%), together with high concentration of NO3- (22%˜34%), suggesting the contribution of secondary conversion. NOR and SOR increased with elevated PM2.5levels and heterogeneous processes seemed to be the most plausible explanation of this increase. Nitrogen oxidation ratio (NOR) was much higher than sulfur oxidation ratio (SOR), indicating the NO2 was easily oxidized in low temperature condition than that of SO2. Relative humidity (RH) played a considerable role in the formation of secondary inorganic aerosols, accelerated the secondary transformation of gaseous precursors, and further aggravated haze pollution. Key words: winter haze; secondary formation; high relative humidity; heterogeneous processes
Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline
2014-01-01
In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Atmospheric ammonia measurements at low concentration ...
We evaluated the relative importance of dry deposition of ammonia (NH3) gas at several headwater areas of the Susquehanna River, the largest single source of nitrogen pollution to Chesapeake Bay, including three that are remote from major sources of NH3 emissions (CTH, ARN, and KEF) and one (HFD) that is near a major agricultural source. We also examined the importance of nitrogen dioxide (NO2) deposition at one of these sites. Over the past decade, increasing evidence has suggested that NH3 deposition, in particular, may be an important contributor to total nitrogen deposition and to downstream nitrogen pollution. We used Ogawa passive samplers to measure NH3 concentrations over several years (2006–2011) for CTH, and primarily in 2008 and 2009 for the other sites. NO2 was measured at CTH mainly in 2007. Chamber calibration studies for NH3 and NO2, and field comparisons with annular denuders for NH3, validated the use of these passive samplers over a range of temperatures and humidity observed in the field, if attention is given to field and laboratory blank issues. The annual mean NH3 concentrations for the forested sites were 0.41 ± 0.03, 0.41 ± 0.06 and 0.25 ± 0.08 µg NH3/m3 for CTH, ARN and KEF, respectively. NO2 passive sampler mean annual concentration was 3.19 ± 0.42 µg NO2/m3 at CTH. Direct comparison of our measured values with the widely used Community Multiscale Air Quality (CMAQ) model (v4.7.1) show reasonably good agreement. However, the mod
Li, Ping; Yang, Yan; Xiong, Wuyan
2015-12-01
Mercury (Hg) and Hg-containing products are used in a wide range of settings in hospitals. Hg pollution control measures were carried out in the pediatric ward of a hospital to decrease the possibility of Hg pollution occurring and to decrease occupational Hg exposure. Total gaseous Hg (TGM) concentrations in the pediatric ward and hair and urine Hg concentrations for the pediatric staff were determined before and after the Hg pollution control measures had been implemented. A questionnaire survey performed indicated that the pediatric staff had little understanding of Hg pollution and that appropriate disposal techniques were not always used after Hg leakage. TGM concentrations in the pediatric ward and urine Hg (UHg) concentrations for the pediatric staff were 25.7 and 22.2% lower, respectively, after the Hg pollution control measures had been implemented than before, which indicated that the control measures were effective. However, TGM concentrations in the pediatric ward remained significantly higher than background concentrations and UHg concentrations for the pediatric staff were remained significantly higher than the concentrations in control group, indicating continued existence of certain Hg pollution.
Liu, X P; Niu, J L; Kwok, K C S; Wang, J H; Li, B Z
2011-08-15
In this present work, the characteristics of hazardous gas dispersion and possible cross-unit contamination around a complex-shaped high-rise residential building due to wind effect are thoroughly studied using physical modeling method. Experiments were performed in a boundary layer wind tunnel for a 1:30 scale model that represented a 10-story residential building in prototype. Tracer gas, simulating exhausted room air, was continuously released from different floor levels, and its concentrations on the adjacent envelope surfaces were measured using fast flame ionization detectors. The mean concentration fields were reported and analyzed under different configurations during the experiment to consider the effects on pollutant dispersion behavior due to changes in source position and approaching wind condition, with the main emphasis on the differences between open-window and closed-window conditions. In particular, the measured concentration fields were further examined from a practical point of view, with respect to hazard assessment. Understanding these hazardous plume dispersion features is useful for employing effective intervention strategies in modern residential building environment in case of hazardous substance release. The study on this physical process is not only helpful to reduce the hazardous effect of routine release of harmful pollutant near the building, but also useful for the purpose of prevention and control of accidental infectious diseases outbreak. Copyright © 2011 Elsevier B.V. All rights reserved.
Hu, Jinhua; Li, Nianping; Lv, Yang; Liu, Jing; Xie, Jingchao; Zhang, Huibo
2017-01-01
Greater attention is currently being paid to the relationship between indoor environment and childhood allergies, however, the lack of reliable data and the disparity among different areas hinders reliable assessment of the relationship. This study focuses on the effect of indoor pollution on Chinese schoolchildren and the relationship between specific household and health problems suffered. The epidemiological questionnaire survey and the field measurement of the indoor thermal environment and primary air pollutants including CO2, fine particulate matter (PM2.5), chemical pollutants and fungi were performed in six Chinese cities. A total of 912 questionnaires were eligible for statistical analyses and sixty houses with schoolchildren aged 9–12 were selected for field investigation. Compared with Chinese national standards, inappropriate indoor relative humidity (<30% or >70%), CO2 concentration exceeding 1000 ppm and high PM2.5 levels were found in some monitored houses. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most frequently detected semi-volatile organic compounds (SVOCs) in house dust. Cladosporium, Aspergillus and Penicillium were detected in both indoor air and house dust. This study indicates that a thermal environment with CO2 exceeding 1000 ppm, DEHP and DBP exceeding 1000 μg/g, and high level of PM2.5, Cladosporium, Aspergillus and Penicillium increases the risk of children’s allergies. PMID:28850091
Hu, Jinhua; Li, Nianping; Lv, Yang; Liu, Jing; Xie, Jingchao; Zhang, Huibo
2017-08-29
Greater attention is currently being paid to the relationship between indoor environment and childhood allergies, however, the lack of reliable data and the disparity among different areas hinders reliable assessment of the relationship. This study focuses on the effect of indoor pollution on Chinese schoolchildren and the relationship between specific household and health problems suffered. The epidemiological questionnaire survey and the field measurement of the indoor thermal environment and primary air pollutants including CO₂, fine particulate matter (PM 2.5 ), chemical pollutants and fungi were performed in six Chinese cities. A total of 912 questionnaires were eligible for statistical analyses and sixty houses with schoolchildren aged 9-12 were selected for field investigation. Compared with Chinese national standards, inappropriate indoor relative humidity (<30% or >70%), CO₂ concentration exceeding 1000 ppm and high PM 2.5 levels were found in some monitored houses. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were the most frequently detected semi-volatile organic compounds (SVOCs) in house dust. Cladosporium , Aspergillus and Penicillium were detected in both indoor air and house dust. This study indicates that a thermal environment with CO₂ exceeding 1000 ppm, DEHP and DBP exceeding 1000 μg/g, and high level of PM 2.5 , Cladosporium , Aspergillus and Penicillium increases the risk of children's allergies.
Assessment of heavy metals in sediment of Aguamilpa Dam, Mexico.
Rangel-Peraza, Jesús Gabriel; de Anda, José; González-Farías, Fernando A; Rode, Michael; Sanhouse-García, Antonio; Bustos-Terrones, Yaneth A
2015-03-01
The Aguamilpa Dam is part of the reservoir cascade system formed by four reservoirs in the middle and lower part of the Santiago River. For decades, this system has received urban and industrial wastewater from the metropolitan area of Guadalajara and the runoff of agricultural fields located in the river basin. The present study was carried out to obtain a preliminary assessment on the concentration distribution of heavy metals (Al, Ba, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in surface sediments of the Aguamilpa reservoir collected from 10 sampling stations. The metal concentrations (mg kg(-1)) in the sampling stations ranged as follows: Al, 27,600-7760; Ba, 190.0-15.9; Cd, 0.27-0.02; Cr, 18.30-0.22; Cu, 60.80-0.79; Fe, 15,900-4740; Hg, 0.04-0.01; Mg, 7590-8.05; Ni, 189.00-0.24; Pb, 13.6-1.64; and Zn, 51.8-14.8. Significant spatial variation in concentrations was observed for Al, Fe, and Pb. Sediment pollution was evaluated using the enrichment factor, the geo-accumulation index, the pollution load index, and sediment quality guidelines. Based on geo-accumulation and pollution load indexes, Aguamilpa sediments were found, in some sampling stations, as unpolluted to moderately polluted with Ni, Cd, Cu, and Mg. Enrichment factors showed that Cd is highly related to agricultural activities that take place in the surrounding areas of the Aguamilpa reservoir. Despite these results, none of the heavy metals evaluated exceeded international concentrations limits, indicating that the Aguamilpa reservoir surface sediments are not contaminated.
Study of the air quality in the surroundings of an urban park: A micrometeorological approach
NASA Astrophysics Data System (ADS)
Sastre, Mariano; Yagüe, Carlos; Arrillaga, Jon A.; Román-Cascón, Carlos; Maqueda, Gregorio; Artíñano, Begoña; Díaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Barreiro, Marcos; Borge, Rafael; Narros, Adolfo; Pérez, Javier; Quaassdorff, Christina
2017-04-01
In this work we study the differences showed by two types of pollutants, particulate matter (PM) and NOx, by comparing ambient concentration measurements within an urban park versus the corresponding values nearby (but outside) it. The results are linked to both proximity to emission sources, such as road traffic, and the microscale atmospheric conditions. The work is motivated by the fact that poor air quality is a crucial issue of current cities. For some of them it is not uncommon to face this problem with occasional traffic restrictions when high concentrations of pollutants are reached. These events occur more frequently with specific large-scale atmospheric conditions, for example when a strong anticyclone is present. As the meteorological conditions may significantly influence the pollutants concentrations, the research project TECNAIRE-CM (Innovative technologies for the assessment and improvement of urban air quality) aims to provide new approaches to obtain proper descriptions of the urban pollution and its dynamics at different spatial and temporal scales, not only the synoptic scale. So far, a few field campaigns have been developed within TECNAIRE-CM at two locations in the city of Madrid, which are considered hot spots according to the air quality network records. Here we use the data from a field campaign carried out during summer 2016, which consider standard pollution and meteorological measurements, as well as sonic anemometer data. The latter help to include atmospheric turbulence as a significant agent for air quality characterization. The instrumentation was deployed at a location with considerable traffic density, but nearby a border of the main urban park of the city, so that its influence might be investigated. Supplementary data considered for this work correspond to permanent instrumentation within the park. With this extra information we can compare both measurements inside and outside the park. Therefore, we study the effect on wind, turbulence or air quality when we measure at a site either directly exposed to traffic emissions or partly protected and with a reduced influence of typical atmospheric urban phenomena. This work has been funded by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).
NASA Astrophysics Data System (ADS)
Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen
2017-11-01
Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air pollutants. Thus, this pattern is quite favorable for the accumulation of pollutants in the YRD, resulting in higher regional mean PM10 (116.5 ± 66.9 µg m-3), PM2.5 (75.9 ± 49.9 µg m-3), and AOD (0.74) values. Moreover, this pattern is also responsible for the occurrence of most large-scale regional PM2.5 (70.4 %) and PM10 (78.3 %) pollution episodes. High wind speed and clean marine air masses may also play important roles in the mitigation of pollution in the YRD. Especially when the clean marine air masses account for a large proportion of all trajectories (i.e., when the YRD is affected by the cyclonic system or oceanic circulation), the air in the YRD has a lesser chance of being polluted. The observed correlation between weather patterns and particle pollution can provide valuable insight into making decisions about pollution control and mitigation strategies.
NASA Astrophysics Data System (ADS)
Huang, J. J.; Lin, S. C.; Löwemark, L.; Liou, Y. H.; Chang, Q. M.; Chang, T. K.; Wei, K. Y.; Croudace, I. W. C.
2017-12-01
Due to the rapid industrial expansion, environments are subject to irregular fluctuations and spatial distributions in pollutant concentrations. This study proposes to use ion exchange resin accompanied with the XRF-scanning technique to monitor environmental pollution. As a passive sampling sorbent, the use of ion exchange resin provides a rapid, low cost and simple method to detect episodic pollution signals with a high spatial sampling density. In order to digest large quantities of samples, the fast and non-destructive Itrax-XRF core scanner has been introduced to assess elemental concentrations in the resin samples. Although the XRF scanning results are often considered as a semi-quantitative measurement due to possible absorption or scattering caused by the physical variabilities of scanned materials, the use of resin can minimize such influences owing to the standarization of the sample matrix. In this study, 17 lab-prepared standard resin samples were scanned with the Itrax-XRF core scanner (at 100 s exposure time with the Mo-tube) and compared with the absolute elemental concentrations. Six elements generally used in pollution studies (Cr, Mn, Ni, Cu, Zn, and Pb) were selected, and their regression lines and correlation coefficients were determined. In addition, 5 standard resin samples were scanned at different exposure time settings (1 s, 5 s, 15 s, 30 s, 100 s) to address the influence of exposure time on the accuracy of the measurements. The results show that within the test range (from few ppm to thousands ppm), the correlation coefficients are higher than 0.97, even at the shortest exposure time (1 s). Furthermore, a pilot field survey with 30 resin samples has been conducted in a potentially polluted farm area in central Taiwan to demonstrate the feasibility of this novel approach. The polluted hot zones could be identified and the properties and sources of wastewater pollution can therefore be traced over large areas for the purposes of environmental monitoring and environmental forensics.
Entomopathogenic nematode food webs in an ancient, mining pollution gradient in Spain.
Campos-Herrera, Raquel; Rodríguez Martín, José Antonio; Escuer, Miguel; García-González, María Teresa; Duncan, Larry W; Gutiérrez, Carmen
2016-12-01
Mining activities pollute the environment with by-products that cause unpredictable impacts in surrounding areas. Cartagena-La Unión mine (Southeastern-Spain) was active for >2500years. Despite its closure in 1991, high concentrations of metals and waste residues remain in this area. A previous study using nematodes suggested that high lead content diminished soil biodiversity. However, the effects of mine pollution on specific ecosystem services remain unknown. Entomopathogenic nematodes (EPN) play a major role in the biocontrol of insect pests. Because EPNs are widespread throughout the world, we speculated that EPNs would be present in the mined areas, but at increased incidence with distance from the pollution focus. We predicted that the natural enemies of nematodes would follow a similar spatial pattern. We used qPCR techniques to measure abundance of five EPN species, five nematophagous fungi species, two bacterial ectoparasites of EPNs and one group of free-living nematodes that compete for the insect-cadaver. The study comprised 193 soil samples taken from mining sites, natural areas and agricultural fields. The highest concentrations of iron and zinc were detected in the mined area as was previously described for lead, cadmium and nickel. Molecular tools detected very low numbers of EPNs in samples found to be negative by insect-baiting, demonstrating the importance of the approach. EPNs were detected at low numbers in 13% of the localities, without relationship to heavy-metal concentrations. Only Acrobeloides-group nematodes were inversely related to the pollution gradient. Factors associated with agricultural areas explained 98.35% of the biotic variability, including EPN association with agricultural areas. Our study suggests that EPNs have adapted to polluted habitats that might support arthropod hosts. By contrast, the relationship between abundance of Acrobeloides-group and heavy-metal levels, revealed these taxa as especially well suited bio-indicators of soil mining pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Luo, Jie; Cai, Limei; Qi, Shihua; Wu, Jian; Sophie Gu, Xiaowen
2018-03-01
Direct and alternating current electric fields with various voltages were used to improve the decontamination efficiency of chelator assisted phytoremediation for multi-metal polluted soil. The alleviation effect of electric field on leaching risk caused by chelator application during phytoremediation process was also evaluated. Biomass yield, pollutant uptake and metal leaching retardation under alternating current (AC) and direct current (DC) electric fields were compared. The biomass yield of Eucalyptus globulus under AC fields with various voltages (2, 4 and 10 V) were 3.91, 4.16 and 3.67kg, respectively, significantly higher than the chelator treatment without electric field (2.71kg). Besides growth stimulation, AC fields increased the metal concentrations of plant tissues especially in aerial parts manifested by the raised translocation factor of different metals. Direct current electric fields with low and moderate voltages increased the biomass production of the species to 3.45 and 3.12kg, respectively, while high voltage on the contrary suppressed the growth of the plants (2.66kg). Under DC fields, metal concentrations elevated obviously with increasing voltages and the metal translocation factors were similar under all voltages. Metal extraction per plant achieved the maximum value under moderate voltage due to the greatest biomass production. DC field with high voltage (10V) decreased the volume of leachate from the chelator treatment without electric field from 1224 to 56mL, while the leachate gathered from AC field treatments raised from 512 to 670mL. DC field can retard the downward movement of metals caused by chelator application more effectively relative to AC field due to the constant water flow and electroosmosis direction. Alternating current field had more promotive effect on chelator assisted phytoremediation efficiency than DC field illustrated by more metal accumulation in the species. However, with the consideration of leaching risk, DC field with moderate voltage was the optimal supplementary technique for phytoremediation. Copyright © 2017 Elsevier Inc. All rights reserved.
Uptake of eight pesticides of different classes (organochlorines, synthetic pyrethroids, dinitroanilines, amides) by semi-permeable membrane devices (SPMDs) was studied in a laboratory continuous-flow system. After 20 days of exposure, membrane concentration factors were in th...
To fully understand the potential long-term ecological impacts a pollutant has on a species, population-level effects must be estimated. Since long-term field experiments are typically not feasible, vital rates such as survival, growth, and reproduction of individual organisms ar...
In the late summer of 2000 and the early spring of 2001, in the USEPA-sponsored program, "Children's Total Exposures to Persistent Pesticides and Other Persistent Organic Pollutants" (CTEPP), we conducted a field pilot study of the potential exposures of 130 North Car...
Klumpp, G; Furlan, C M; Domingos, M; Klumpp, A
2000-01-31
The present study was performed in the vicinity of the industrial complex of Cubatão, São Paulo, Brazil, in order to evaluate the response of 'manaca da serra' Tibouchina pulchra Cogn. (Melastomataceae), a common species of secondary Atlantic Rain Forest vegetation, to the impact of complex air pollution. Emphasis was given to changes of biochemical parameters such as ascorbic acid concentration, peroxidase activity, contents of water-soluble thiols, pH of leaf extract and buffering capacity. These plant factors are often used as early indicators of air pollution stress. Field experiments included sampling of leaves from mature trees in areas with different air pollution load (passive monitoring), exposure of saplings cultivated in uniform soil at these areas (active monitoring) and a study on the combined effects of contaminated soil and air pollution. In general, metabolic response of saplings was more accentuated than that of mature trees. Leaf extract pH and buffering capacity showed no or only small alterations in plants exposed to industrial emissions. In contrast, air pollution resulted in a distinct decrease in ascorbic acid contents and an increase in peroxidase activity and thiol concentrations in leaves. Cultivation of saplings in soil types from contaminated regions frequently caused the same modifications or enhanced the effects produced by air pollution. Growth analysis of exposed saplings demonstrated that a change of the relationship between above-ground and below-ground plant parts was the most obvious effect of air pollution and soil contamination. The experiments showed that even T. pulchra, a species considered resistant to air pollution, suffers metabolic disturbances by the present ambient air and soil quality. Although biochemical and physiological alterations were not related to a certain air pollution type, they could be used to estimate the overall pollution load and to map zones with different air quality.
Implementation of a best management practice (BMP) system for a clay mining facility in Taiwan.
Lin, Jen-Yang; Chen, Yen-Chang; Chen, Walter; Lee, Tsu-Chuan; Yu, Shaw L
2006-01-01
The present paper describes the planning and implementation of a best management practice (BMP) system for a clay mining facility in Northern Taiwan. It is a challenge to plan and design BMPs for mitigating the impact of clay mining operations due to the fact that clay mining drainage typically contains very high concentrations of suspended solids (SS), Fe-ions, and [H+] concentrations. In the present study, a field monitoring effort was conducted to collect data for runoff quality and quantity from a clay mining area in Northern Taiwan. A BMP system including holding ponds connected in series was designed and implemented and its pollutant removal performance was assessed. The assessment was based on mass balance computations and an analysis of the relationship between BMP design parameters such as pond depth, detention time, surface loading rate, etc. and the pollutant removal efficiency. Field sampling results showed that the surface-loading rate is exponential related to the removing rate. The results provide the basis for a more comprehensive and efficient BMP implementation plan for clay mining operations.
Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study
NASA Astrophysics Data System (ADS)
Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Feng, Tian; Li, Nan; Zhao, Suyu; Tian, Jie; Li, Guohui; Zhang, Qiang
2016-08-01
With the provincial statistical data and crop field burning (CFB) activities captured by Moderate Resolution Imaging Spectroradiometer (MODIS), we extracted a detailed CFB emission inventory in the North China Plain (NCP). The WRF-CHEM model was applied to investigate the impact of CFB on air pollution during the period from 6 to 12 October 2014, corresponding to a heavy haze incident with high concentrations of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm). The WRF-CHEM model generally performed well in simulating the surface species concentrations of PM2.5, O3 and NO2 compared to the observations; in addition, it reasonably reproduced the observed temporal variations of wind speed, wind direction and planetary boundary layer height (PBLH). It was found that the CFB that occurred in southern NCP (SNCP) had a significant effect on PM2.5 concentrations locally, causing a maximum of 34 % PM2.5 increase. Under continuous southerly wind conditions, the CFB pollution plume went through a long-range transport to northern NCP (NNCP; with several mega cities, including Beijing, the capital city of China), where few CFBs occurred, resulting in a maximum of 32 % PM2.5 increase. As a result, the heavy haze in Beijing was enhanced by the CFB, which occurred in SNCP. Mountains also play significant roles in enhancing the PM2.5 pollution in NNCP through the blocking effect. The mountains blocked and redirected the airflows, causing the pollutant accumulations along the foothills of mountains. This study suggests that the prohibition of CFB should be strict not only in or around Beijing, but also on the ulterior crop growth areas of SNCP. PM2.5 emissions in SNCP should be significantly limited in order to reduce the occurrences of heavy haze events in the NNCP region.
Escompte Field Experiment : Some Preliminary Results About The Iop 2
NASA Astrophysics Data System (ADS)
Cros, B.; Durand, P.; Ancellet, G.; Calpini, B.; Frejafon, E.; Jambert, C.; Serça, D.; Sol, B.; Wortham, H.; Zephoris, M.
One of the main goals of the ESCOMPTE programme is to create an appropriate -3D data base including emissions, transport and air composition measurements during urban pollution episodes. ESCOMPTE will as well as provide a highly documented framework for dynamical and chemical studies. For this purpose a field campaign was carried out in Marseille -Berre area in the south-eastern of France from June 4 to July 13, 2001. Five pollution events (IOP) were documented. The second one called IOP2 is particularly interesting in term of photochemical pollution. The chemical evolution of the urban and industrial plumes and the orographic influence are analysed from surface, remote sensing and airborne measurements. This IOP 2 of six days duration ( June 21 to June 26) will be presented . It began with a moderate S/SW wind (an end of Mistral situation) , clear skies and hot temperature (>30rC). Marseille and Berre plumes extended towards the East and over the sea. The highest surface ozone concentration were found around Toulon area. This first period (23-26/06) so called IOP 2a was followed by IOP 2b, three days of very hot temperature (>34rC) and high surface concentration in ozone - 100 ppbv over the whole domain , 125 ppbv all around Aix on the 24 up to 150 ppbv in the durance valley on the 25.
Saline water in the Little Arkansas River Basin area, south-central Kansas
Leonard, Robert B.; Kleinschmidt, Melvin K.
1976-01-01
Ground water in unconsolidated deposits of Pleistocene age in part of the Little Arkansas River basin has been polluted by the influx of saline water. The source of the saline water generally is oil-field brine that leaked from disposal ponds on the land surface. Locally, pollution by saline water also has been caused by upwelling of oil-field brine injected under pressure into the "lost-circulation zone" of the Lower Permian Wellington Formation and, possibly, by leakage of brine from corroded or improperly cased disposal wells. Anomalously high concentrations of chloride ion in some reaches of the Little Arkansas River probably can be attributed to pollution by municipal wastes rather than from inflow of saline ground water. Hydraulic connection exists between the "lost-circulation zone" and unconsolidated deposits, as evidenced by the continuing development of sinkholes, by the continuing discharge of saline water through springs and seeps along the Arkansas River south of the Little Arkansas River basin and by changes in the chloride concentration in water pumped from wells in the "lost-circulation zone." The hydraulic head in the "lost-circulation zone" is below the base of the unconsolidated deposits, and much below the potentiometric surface of the aquifer in those deposits. Any movement of water, therefore, would be downward from the "fresh-water" aquifer to the saline "lost-circulation zone."
Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki region, NE Greece.
Nikolaidis, Christos; Zafiriadis, Ilias; Mathioudakis, Vasileios; Constantinidis, Theodore
2010-09-01
The "Agios Philippos" mine in the Kirki region (NE Greece) has been abandoned in 1998 after half a century of ore exploration without a reclamation or remediation plan. This article aims at elucidating the potential environmental risks associated with this site by quantifying pollution in tailing basins, stream waters, stream sediments and agricultural fields. Concentrations of heavy metals in the abandoned mine tailings reached 12,567 mg/kg for Pb, 22,292 mg/kg for Zn, 174 mg/kg for Cd and 241 mg/kg for As. The geoaccumulation index and enrichment factor for these metals were indicative of extremely high contamination (I(geo) > 5) and extremely high enrichment (EF > 40), respectively. Stream waters in the proximity of the mine had an acidic pH equal to 5.96 and a high sulfate content (SO(4)(-2) = 545.5 mg/L), whereas concentrations of Mn, Zn and Cd reached 2,399 microg/L, 7,681 microg/L and 11.2 microg/L. High I(geo) and EF values for Cd, Zn and As in stream sediments indicates that surface water pollution has a historic background, which is typically associated with acid mine drainage. Agricultural fields in the proximity of the mine exhibited high I(geo) and EF values, which were in decreasing order Cd > Pb > Zn > As. These findings urge for an immediate remediation action of the afflicted area.
NASA Astrophysics Data System (ADS)
Dusanter, S.; Vimal, D.; Stevens, P. S.; Volkamer, R.; Molina, L. T.
2007-12-01
The Mexico City Metropolitan Area (MCMA) field campaign, held in March 2006, was a unique opportunity to collect data in one of the most polluted megacities in the world. Such environments exhibit a complex oxidation chemistry involving a strong coupling between odd hydrogen radicals (HOX=OH+HO2) and nitrogen oxides species (NOX=NO+NO2). High levels of volatile organic compounds (VOCs) and NOX control the HOX budget and lead to elevated tropospheric ozone formation. The HOX-NOX coupling can be investigated by comparing measured and model-predicted HOx concentrations. Atmospheric HOX concentrations were measured by the Indiana University laser-induced fluorescence instrument and data were collected at the Instituto Mexicano del Petroleo between 14 and 31 March. Measured hydroxyl radical (OH) concentrations are comparable to that measured in less polluted urban environments and suggest that the OH concentrations are highly buffered under high NOX conditions. In contrast, hydroperoxy radical (HO2) concentrations are more sensitive to the NOX levels and are highly variable between different urban sites. Enhanced levels of OH and HO2 radicals were observed on several days between 9h30-11h00 AM and suggest an additional HOX source for the morning hours and/or a fast HOX cycling under the high NOX conditions of the MCMA. A preliminary investigation of the HOX chemistry occurring in the MCMA urban atmosphere was performed using a photochemical box model based on the Regional Atmospheric Chemistry Mechanism (RACM). Model comparisons will be presented and the agreement between measured and predicted HOX concentrations will be discussed.
Benthic foraminifera as indicators of pollution in high latitude marine environments
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Klitgaard-Kristensen, D.; Hald, M.
2012-04-01
An increasing number of studies demonstrate the potential of benthic foraminifera to characterize ecological status. However, the use of benthic foraminifera as bio-indicators has previously not been tested in high latitudes. This research contributes to the development of foraminifera as a bio-monitoring technique for the Arctic region, as industrial activities in this region will increase in the coming years. Surface sediments (0-1 cm) from sites close to gas fields in the SW Barents Sea were studied. In addition, to elucidate the range from less to very affected, surface sediments from the harbor of the town of Hammerfest (70° N) were studied. At least 300 living benthic foraminifera from the size fraction 100 µm-1 mm were counted and identified at species level. Pollution levels (heavy metals and persistent organic pollutants) and sediment properties (grainsize and TOC) were also analyzed. Pollution levels at the sea floor in the SW Barents Sea are of background to good level (level I-II) according to the definitions by the Water Framework Directorate (WFD). Benthic foraminiferal assemblages are influenced by natural environmental parameters such as water mass properties, water depth, nutrient availability, bottom current strength, and grain size. Surface sediments from the Hammerfest harbor are of moderate environmental status (WFD level II-III) based on heavy metal concentrations and of bad environmental status (WFD IV-V) based on persistent organic pollutant concentrations. Opportunistic benthic foraminifera are dominating the assemblages. The most polluted areas in the harbor are barren for foraminifera or have high amounts of deformed shells. In both environments the foraminiferal diversity of the samples, does not correspond to expected environmental status based on the pollution levels of the sediments. Environmental status classes, based on benthic foraminifera instead of macrofauna, would allow rapid analyses of the environmental impact of pollution.
Sun, Jie; Zhang, Rui; Qin, Long; Zhu, Haixiao; Huang, Yu; Xue, Yingang; An, Shuqing; Xie, Xianchuan; Li, Aimin
2017-03-01
To further treat the reclaimed municipal wastewater and rehabilitate the aquatic ecosystem of polluted urban rivers, an 18.5-km field-scale ecological restoration project was constructed along Jialu River, a polluted urban river which receives only reclaimed municipal wastewater from Zhengzhou City without natural upland water dilution. This study investigated the potential efficiency of water quality improvement, as well as genotoxicity and cytotoxicity reduction along the ecological restoration project of this polluted urban river. Results showed that the chemical oxygen demand (COD) and ammonia nitrogen (NH 3 -N) of the reclaimed municipal effluent were reduced by more than 45 and 70%, respectively, meeting the Chinese surface water environmental quality standard level IV, while the total phosphorus and metal concentrations had no significant reduction along the restoration project, and Pb concentrations in all river water samples exceeded permissible limit in drinking water set by WHO (2006) and China (GB5749-2006). The in vitro SOS/umu assay showed 4-nitroquinoline-1-oxide equivalent (4-NQO-EQ) values of reclaimed municipal wastewater of 0.69 ± 0.05 μg/L in April and 0.68 ± 0.06 μg/L in December, respectively, indicating the presence of genotoxic compounds. The results of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and hepatic cell apoptosis in zebrafish after a chorionic long-term (21 days) in vivo exposure also demonstrated that the reclaimed municipal wastewater caused significant DNA oxidative damage and cytotoxicity. After the ecological purification of 18.5-km field-scale restoration project, the genotoxicity assessed by in vitro assay was negligible, while the DNA oxidative damage and cytotoxicity in exposed fish were still significantly elevated. The mechanisms of DNA oxidative damage and cytotoxicity caused by the reclaimed municipal wastewater need further study.
A model for dispersion from area sources in convective turbulence. [for air pollution
NASA Technical Reports Server (NTRS)
Crane, G.; Panofsky, H. A.; Zeman, O.
1977-01-01
Four independent estimates of the vertical distribution of the eddy coefficient for dispersion of a passive contaminant from an extensive area source in a convective layer have been presented. The estimates were based on the following methods: (1) a second-order closure prediction, (2) field data of pollutant concentrations over Los Angeles, (3) lab measurements of particle dispersion, and (4) assumption of equality between momentum and mass transfer coefficients in the free convective limit. It is suggested that K-values estimated both from second-order closure theory and from Los Angeles measurements are systematically underestimated.
Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.
Yassin, Mohamed F; Kellnerová, R; Janour, Z
2009-09-01
The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.
Quantifying compositional impacts of ambient aerosol on cloud droplet formation
NASA Astrophysics Data System (ADS)
Lance, Sara
It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute volume fraction, showing that measurable aging of the aerosol population occurs during the day, on the timescale of a few hours. The mixing state of the aerosol, also showing a consistent diurnal pattern, clearly correlates with a chemical tracer for local combustion sources. Chapter 4 describes results from the GoMACCS field study, in which the CCNc was subsequently deployed on an airborne field campaign in Houston, Texas during August-September, 2006. GoMACCS tested our ability to predict CCN for highly polluted conditions with limited chemical information. Assuming the particles were composed purely of ammonium sulfate, CCN closure was obtained with a 10% overprediction bias on average for CCN concentrations ranging from less than 100 cm-3 to over 10,000 cm-3, but with on average 50% variability. Assuming measured concentrations of organics to be internally mixed and insoluble tended to reduce the overprediction bias for less polluted conditions, but led to underprediction bias in the most polluted conditions. A likely explanation is that the high organic concentrations in the polluted environments depress the surface tension of the droplets, thereby enabling activation at lower soluble fractions.
Winter Photochemistry Underlying High Ozone in an Oil and Gas Producing Region
NASA Astrophysics Data System (ADS)
Brown, S. S.; Edwards, P. M.; Roberts, J. M.; Ahmadov, R.; Banta, R. M.; De Gouw, J. A.; Dube, W. P.; Field, R. A.; Gilman, J.; Graus, M.; Helmig, D.; Koss, A.; Langford, A. O.; Lefer, B. L.; Lerner, B. M.; McKeen, S. A.; Li, S. M.; Murphy, S. M.; Parrish, D. D.; Senff, C. J.; Stutz, J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Warneke, C.; Wild, R. J.; Young, C.; Yuan, B.; Zamora, R. J.; Washenfelder, R. A.
2014-12-01
Ozone formation during wintertime in oil and gas producing basins of the Rocky Mountain West now accounts for some of the highest ozone pollutant concentrations observed in the U.S. These events are scientifically challenging, occurring only during cold, snow covered periods when meteorological inversions concentrate pollutants near the surface, but when incident solar actinic flux that initiates photochemical reactions is at or near its minimum. A near-explicit chemical model that incorporates detailed measurements obtained during three successive winter field studies in the Uintah Basin, Utah, accurately reproduces the observed buildup of ozone and other photochemically generated species. It also identifies the sources of free radicals that drive this unusual photochemistry, and quantifies their relative contributions. Although sharing the same basic atmospheric chemistry, winter ozone formation differs from its summertime, urban counterpart in its dependence upon the relative concentrations of volatile organic compounds (VOCs) and nitrogen oxide (NOx) precursors. Observed NOx mixing ratios in the Uintah basin are lower than is typical of urban areas, while VOC levels are significantly larger. These extreme VOC concentrations allow for nearly optimal efficiency of ozone production from the available NOx. This analysis will inform the design of mitigation strategies and provide insight into the response of winter ozone to primary air pollutants in other regions, particularly those where oil and gas development is contemplated.
Biomonitoring of air pollution as exemplified by recent IAEA programs.
Smodis, B; Parr, R M
1999-01-01
Biomonitoring is an appropriate tool for assessing the levels of atmospheric pollution, having several advantages compared with the use of direct measurements of contaminants (e.g., in airborne particulate matter, atmospheric deposition, precipitation), related primarily to the permanent and common occurrence of the chosen organisms in the field, the ease of sampling, and trace element accumulation. Furthermore, biomonitors may provide a measure of integrated exposure over an extended period of time and are present in remote areas and no expensive technical equipment is involved in collecting them. They accumulate contaminants over the exposure time and concentrate them, thus facilitating analytical measurements. Based on large-scale biomonitoring surveys, polluted areas can be identified, and by applying appropriate statistical tools, information can be obtained on the type of pollution sources and on the transboundary transport of atmospheric pollutants. The International Atomic Energy Agency is including the research on biomonitors in its projects on health-related environmental studies. Biomonitoring activities from several coordinated research projects on air pollution are presented, and results from an international workshop are discussed. In addition, activities in supporting improvement quality in the participating laboratories are outlined.
Rice methylmercury exposure and mitigation: a comprehensive review.
Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E
2014-08-01
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bindler, R.; Braennvall, M.L.; Renberg, I.
1999-10-01
Knowledge of natural, prepollution concentrations of heavy metals in forest soils and temporal trends of soil pollution are essential for understanding present-day pollution and for establishing realistic goals for reductions of atmospheric pollution deposition. Soils not exposed to deposition of atmospheric pollution no longer exist and, for example, present lead (Pb) pollution conditions in northern European soils are a consequence of nearly 4,000 years of atmospheric pollution. The authors use analyses of Pb concentrations and stable Pb isotopes ({sup 206}Pb/{sup 207}Pb ratios) of ombrotrophic peat and forest soils from southern Sweden and a model for Pb cycling in forest soilsmore » to derive an estimate for the prepollution concentration of Pb in the mor layer of boreal forest soils and to back-calculate Pb concentrations for the last 5,500 years. While the present-day concentrations of the mor layer are typically 40--100 {micro}g g{sup {minus}1} (0.25--1.0 g m{sup {minus}2}), Pb concentrations of pristine forest mor layers in Sweden were quite low, {le}0.1 {micro}g g{sup {minus}1} ({le}1 mg m{sup {minus}2}). Large-scale atmospheric pollution from the Greek and Roman cultures increased Pb concentrations to about 1 {micro}g g{sup {minus}1}. Lead (Pb) concentrations increased to about 4 {micro}g g{sup {minus}1} following the increase of metal production and atmospheric pollution in Medieval Europe.« less
NASA Astrophysics Data System (ADS)
Cheng, Wai Chi; Liu, Chun-Ho
2010-05-01
To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.
NASA Astrophysics Data System (ADS)
Rao, K. Shankar; Eckman, Richard M.; Hosker, Rayford P., Jr.
1989-07-01
During the 1984 ASCOT field study in Brush Creek Valley, two perfluorocarbon tracers were released into the nocturnal drainage flow at two different heights. The resulting surface concentrations were sampled at 90 sites, and vertical concentration profiles at 11 sites. These detailed tracer measurements provide a valuable dataset for developing and testing models of pollutant transport and dispersion in valleys.In this paper, we present the results of Gaussian puff model simulations of the tracer releases in Brush Creek Valley. The model was modified to account for the restricted lateral dispersion in the valley, and for the gross elevation differences between the release site and the receptors. The variable wind fields needed to transport the puffs were obtained by interpolation between wind profiles measured using tethered balloons at five along-valley sites. Direct turbulence measurements were used to estimate diffusion. Subsidence in the valley flow was included for elevated releases.Two test simulations-covering different nights, tracers, and release heights-were performed. The predicted hourly concentrations were compared with observations at 51 ground-level locations. At most sites, the predicted and observed concentrations agree within a factor of 2 to 6. For the elevated release simulation, the observed mean concentration is 40 pL/L, the predicted mean is 21 pL/L, the correlation coefficient between the observed and predicted concentrations is 0.24, and the index of agreement is 0.46. For the surface release simulation, the observed mean is 85 pL/L, and the predicted mean is 73 pL/L. The correlation coefficient is 0.23, and the index of agreement is 0.42. The results suggest that this modified puff model can be used as a practical tool for simulating pollutant transport and dispersion in deep valleys.
The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?
Luoma, Samuel N.
1996-01-01
Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.
Baur, I; Ludwig, C; Johnson, C A
2001-07-01
The factors controlling leachate composition of cement stabilized air pollution control (APC) residues (41% APC residues, 22% cement, 3% Na2CO3, and 32% water, w/w) have been investigated both in the laboratory and in a pilot landfill. Batch leaching and tank leaching tests were carried out in the laboratory in order to determine solubility controlling phases and diffusion controlled species. The major species Ca, SO4, Al, and Si could be partially modeled by assuming calcium silicate hydrate (C-S-H), portlandite, and ettringite to be the solubility controlling phases both in field and laboratory. There were obviously additional minerals that could not be taken into account in calculations because of the lack of data. The determined effective diffusion coefficients (De) for Na and K (2.18e-12 and 5.43e-12 m2s-1) were used to model field concentrations. Agreement with field data was good. Heavy metal concentrations were in the range of 10(-8) mol dm-1 (Cd, Co, Cu, Mn, Ni) to 10(-6) mol dm-1 (Mo, Pb, W, Zn) in all experiments and often lower in the field leachate than expected from batch experiments. In laboratory experiments, the solubility of Mo and W was most probably controlled by their calcium metalates, Cu by CuO, Ni by Ni(OH)2, and Zn probably by a Zn containing C-S-H phase. In the field, diffusion seems to control Mo and W leachability, with calculated De values of 3.49e-14 and 1.35e-15 m2s-1.
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
Mobile Instruments Measure Atmospheric Pollutants
NASA Technical Reports Server (NTRS)
2009-01-01
As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.
Trace element distribution in the snow cover from an urban area in central Poland.
Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy
2015-05-01
This work presents the first results from winter field campaigns focusing on trace metals and metalloid chemistry in the snow cover from an urbanized region in central Poland. Samples were collected between January and March 2013 and trace element concentrations were determined using GF-AAS. A large inter-seasonal variability depending on anthropogenic emission, depositional processes, and meteorological conditions was observed. The highest concentration (in μg L(-1)) was reported for Pb (34.90), followed by Ni (31.37), Zn (31.00), Cu (13.71), Cr (2.36), As (1.58), and Cd (0.25). In addition, several major anthropogenic sources were identified based on principal component analysis (PCA), among which the most significant was the activity of industry and coal combustion for residential heating. It was stated that elevated concentrations of some trace metals in snow samples were associated with frequent occurrence of south and southeast advection of highly polluted air masses toward the sampling site, suggesting a large impact of regional urban/industrial pollution plumes.
Cooper, Richard J; Fitt, Peter; Hiscock, Kevin M; Lovett, Andrew A; Gumm, Lee; Dugdale, Steve J; Rambohul, Justin; Williamson, Antony; Noble, Lister; Beamish, James; Hovesen, Poul
2016-10-01
Agricultural point source pesticide pollution arising from contaminated machinery washings and accidental spillages pose a significant threat to river water and groundwater quality. In this study, we assess the effectiveness of a three-stage on-farm biobed for treating pesticide contaminated wastewater from a large (20 km(2)) commercial arable estate. The facility consisted of an enclosed machinery wash-down unit (stage 1), a 49 m(2) lined compost-straw-topsoil biobed (stage 2), and a 200 m(2) drainage field with a trickle irrigation system (stage 3). Pesticide concentrations were analysed in water samples collected fortnightly between November 2013 and November 2015 from the biobed input and output sumps and from 20 porous pots buried at 45 cm and 90 cm depth within the drainage field. The results revealed that the biobed removed 68-98% of individual pesticides within the contaminated washings, with mean total pesticide concentrations reducing by 91.6% between the biobed input and output sumps. Drainage field irrigation removed a further 68-99% of individual pesticides, with total mean pesticide concentrations reducing by 98.4% and 97.2% in the 45 cm and 90 cm depth porous pots, respectively. The average total pesticide concentration at 45 cm depth in the drainage field (57 μg L(-1)) was 760 times lower than the mean concentration recorded in the input sump (43,334 μg L(-1)). There was no evidence of seasonality in the efficiency of biobed pesticide removal, nor was there evidence of a decline in removal efficiency over the two-year monitoring period. However, higher mean total pesticide concentrations at 90 cm (102 μg L(-1)) relative to 45 cm (57 μg L(-1)) depth indicated an accumulation of pesticide residues deeper within the soil profile. Overall, the results presented here demonstrate that a three-stage biobed can successfully reduce pesticide pollution risk from contaminated machinery washings on a commercial farm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mobile phones as monitors of personal exposure to air pollution: Is this the future?
Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik; Morawska, Lidia
2018-01-01
Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone-BROAD Life-equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone's response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone's response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept in mind, however, that a mobile phone measuring air quality alone cannot as such 'reduce the burden of disease to air pollution, as knowing ambient concentrations is only one of the building block in this quest. As long as individuals cannot avoid exposure e.g. in urban areas, knowing concentrations is not sufficient to reduce potential adverse effects. Yet, there are many situations and microenvironments, which individuals could avoid knowing the concentrations and also being aware of the risk caused by exposure to them. This includes for example to proximity to vehicle emissions, either for social purposes (e.g. street cafes) or exercising (e.g. walking or jogging along busy roads)or indoor environments affected by combustion emissions (smoking, candle burning, open fire).
Mobile phones as monitors of personal exposure to air pollution: Is this the future?
Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik
2018-01-01
Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone—BROAD Life—equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone’s response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone’s response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept in mind, however, that a mobile phone measuring air quality alone cannot as such 'reduce the burden of disease to air pollution, as knowing ambient concentrations is only one of the building block in this quest. As long as individuals cannot avoid exposure e.g. in urban areas, knowing concentrations is not sufficient to reduce potential adverse effects. Yet, there are many situations and microenvironments, which individuals could avoid knowing the concentrations and also being aware of the risk caused by exposure to them. This includes for example to proximity to vehicle emissions, either for social purposes (e.g. street cafes) or exercising (e.g. walking or jogging along busy roads)or indoor environments affected by combustion emissions (smoking, candle burning, open fire). PMID:29474387
Chapman, R S; Mumford, J L; Harris, D B; He, Z Z; Jiang, W Z; Yang, R D
1988-01-01
In Xuan Wei, a rural Chinese county of about one million people, females' annual lung cancer mortality is China's highest, and males' is among China's highest. Xuan Wei's very high indoor air pollution levels (sometimes exceeding 20 mg/m3), residentially stable population, relatively uncomplicated lifestyle, and wide geographic variation in lung cancer mortality render it highly amenable to quantitative, interdisciplinary investigation of chemical carcinogens due to indoor air pollution. To date, epidemiologic findings reveal a closer association of lung cancer with the indoor burning of "smoky" coal (as opposed to "smokeless" coal or wood) than with tobacco use or occupation. Current aerometric, chemical, and toxicologic findings tend to confirm this association, though the specific carcinogenic constituents of Xuan Wei indoor air pollution have not yet been determined. Chinese and American investigators are conducting interdisciplinary field and laboratory investigations to quantify the lung cancer risk attendant on indoor air pollution relative to other factors, to measure and compare the characteristics of pollution from different Xuan Wei fuels, to determine the relative etiologic importance of pollution composition and concentration, and to develop quantitative relationships between air pollution dose and lung cancer risk.
Air pollution source identification
NASA Technical Reports Server (NTRS)
Fordyce, J. S.
1975-01-01
The techniques available for source identification are reviewed: remote sensing, injected tracers, and pollutants themselves as tracers. The use of the large number of trace elements in the ambient airborne particulate matter as a practical means of identifying sources is discussed. Trace constituents are determined by sensitive, inexpensive, nondestructive, multielement analytical methods such as instrumental neutron activation and charged particle X-ray fluorescence. The application to a large data set of pairwise correlation, the more advanced pattern recognition-cluster analysis approach with and without training sets, enrichment factors, and pollutant concentration rose displays for each element is described. It is shown that elemental constituents are related to specific source types: earth crustal, automotive, metallurgical, and more specific industries. A field-ready source identification system based on time and wind direction resolved sampling is described.
NASA Astrophysics Data System (ADS)
Fan, Q.; Liu, Y.; Hong, Y.; Wang, X.; Chan, P.; Chen, X.; Lai, A.; Wang, M.; Chen, X.
2017-12-01
Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM2.5 and its precursors was applied to identify the source-receptor relationships for PM2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM2.5 concentration. PM2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution.
A roadway toxics dispersion study was conducted by the Field Research Division (FRD) of NOAA at the Idaho National Laboratory (INL) near Idaho Falls, ID to document the effects on concentrations of roadway emissions behind a roadside sound barrier in various conditions of atmosph...
Health risks from large-scale water pollution: trends in Central Asia.
Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor
2011-02-01
Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Heavy haze in winter Beijing driven by fast gas phase oxidation
NASA Astrophysics Data System (ADS)
Lu, K.; Tan, Z.; Wang, H.; Li, X.; Wu, Z.; Chen, Q.; Wu, Y.; Ma, X.; Liu, Y.; Chen, X.; Shang, D.; Dong, H.; Zeng, L.; Shao, M.; Hu, M.; Fuchs, H.; Novelli, A.; Broch, S.; Hofzumahaus, A.; Holland, F.; Rohrer, F.; Bohn, B.; Georgios, G.; Schmitt, S. H.; Schlag, P.; Kiendler-Scharr, A.; Wahner, A.; Zhang, Y.
2017-12-01
Heavy haze conditions were frequently presented in the airsheds of Beijing and surrounding areas, especially during winter time. To explore the trace gas oxidation and the subsequent formation of aerosols, a comprehensive field campaign was performed at a regional site (in the campus of University of Chinese Academy of Science, UCAS) in Beijing winter 2016. Serious haze pollution processes were often observed with the fast increase of inorganic salt (especially nitrate) and these pollutions were always associated with enhanced humidity and the concentrations of PAN (PeroxyAcyl Nitrates) which is normally a marker of gas phase oxidations from NOx and VOCs. Moreover, based on the measurements of OH, HO2, RO2, total OH reactivity, N2O5, NO, NO2, SO2, particle concentrations/distributions/chemical compositions, and meteorological parameters, the gas phase oxidation rates that leads to the formation of sulfate, nitrate and secondary organic aerosols were estimated. These determined formation rates were clearly enhanced by several folds during pollution episodes compared to that of the clean air masses. Preliminary analysis result showed that the gas phase formation potential of nitrate and secondary organic aerosols were larger than the observed concentrations of nitrate and SOA of which the excess production may be explained by deposition and dilution.
Lu, Yan; Li, Xinrong; He, Mingzhu; Zeng, Fanjiang
2013-01-01
The application of vegetation cover for the phytomanagement of heavy metal-polluted soils needs prior investigation on the suitability of plant species. In this study, behaviors of Arrhenatherum elatius and Sonchus transcaspicus, two native perennial grasses that currently grow in a mine tailing, were investigated through plant metal concentration, phytotoxicity and their detoxification responses. Both of the species accumulated Ni, Cu, Cd, Co, Mn, Pb, Cr, and Zn in shoots far below criterion concentration as a hyperaccumulators; thus, neither of them were found to be hyperaccumulators. A. elatius accumulated metals in roots and then in shoots, on the contrary, in S. transcaspicus metals were preferentially accumulated in shoots. Plants exposure to such metals resulted in oxidative stress in the considered organs as indicated by the changes in chlorophyll fluorescence, chlorophyll contents, malondialdehyde (MDA) levels and antioxidative enzyme activities. A. elatius seemed to be more affected by metal-induced oxidative stress than S. transcaspicus. Correspondingly, S. transcaspicus showed a greater capacity to adapt to metal-induced oxidative stress, depending on more effective antioxidative defense mechanisms to protect itself from oxidative damage. These findings allowed us to conclude that both of these plant species could be suitable for the phytostabilization of metal-polluted soils.
Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF.
Liu, Zhifeng; Yu, Mingda; Zeng, Guangming; Li, Min; Zhang, Jiachao; Zhong, Hua; Liu, Yang; Shao, Binbin; Li, Zhigang; Wang, Zhiquan; Liu, Guansheng; Yang, Xin
2017-01-01
Micellar-enhanced ultrafiltration (MEUF) processes of resorcinol, phenol, and 1-Naphthol with rhamnolipid as an anionic biosurfactant were investigated using polysulfone membrane. The effects of retentate/permeate concentration of phenolic pollutants (C R /C P ), distribution coefficient of phenolic pollutions (D), concentration ratios of phenolic pollutions (α P ) and rhamnolipids (α R ) and adsorption capacity of the membrane (N m ) were studied by operating pressure, pH condition, feed surfactant, and phenolic pollution concentrations. Results showed that C R (with pH) increased and ranked in the following order: resorcinol > phenol > 1-Naphthol, which is same with C R (with pressure), C R (with surfactant), C R /C P (with pollution), α, P and D, while C P (with pH), C P (with pressure), and C P (with surfactant) ranked in the reverse order. The operating pressure increased the solubility of phenolic from 0 to 0.1 MPa and then decreased slowly above 0.1 MPa. The concentration ratio of rhamnolipid was nearly at 2.0 and that of phenolic pollution was slightly above 1.0. D of phenolic pollutants reached the maximum at phenolic pollution concentration of 0.1 mM and the feed rhamnolipid concentration at 1 CMC. Moreover, zeta potential in feed stream and retentate stream and membrane adsorption of phenolic pollutions were firstly investigated in this article; the magnitudes of zeta potential with the feed stream of three phenolic pollutions were nearly the same and slightly lower than those with the retentate stream. The adsorption capacity of the membrane (N m ) was calculated and compared to the former research, which showed that rhamnolipid significantly decreases the membrane adsorption of phenolic pollutions at a relatively lower concentration. It was implied that rhamnolipid can be substituted for chemical surfactants.
NASA Astrophysics Data System (ADS)
Yamada, Tetsuji; Kao, Chih-Yue; Bunker, Susan
We apply a three-dimensional meteorological model with a four-dimensional data assimilation (4-DDA) technique to simulate diurnal variations of wind, temperature, water vapor, and turbulence in a region extending from the west coast to east of the Rockies and from northern Mexico to Wyoming. The wind data taken during the 1985 SCENES ( Subregional Cooperative Electric Utility, Dept. of Defense, National Park Service, and Environmental Protection Agency Study on Visibility) field experiments are successfully assimilated into the model through the 4-DDA technique by 'nudging' the modeled winds toward the observed winds. The modeled winds and turbulence fields are then used in a Lagrangian random-particle statistical model to investigate how pollutants from potential sources are transported and diffused. Finally, we calculate the ground concentrations through a kernel density estimator. Two scenarios in different weather patterns are investigated with simulation periods up to 6 days. One is associated with the evolution of a surface cold front and the other under a high-pressure stagnant condition. In the frontal case, the impact of air-mass movement on the ground concentrations of pollutants released from the Los Angeles area is well depicted by the model. Also, the pollutants produced from Los Angeles can be transported to the Grand Canyon area within 24 h. However, if we use only the data that were obtained from the regular NWS rawinsonde network, whose temporal and spatial resolutions are coarser than those of the special network, the plume goes north-northeast and never reaches the Grand Canyon area. In the stagnant case, the pollutants meander around the source area and can have significant impact on local air quality.
Direct Measurements of the Local Ozone Production Rate in the Pollution Outflow from a Megacity
NASA Astrophysics Data System (ADS)
Crilley, L.; Kramer, L. J.; Woodward-Massey, R.; Cryer, D. R.; Whalley, L. K.; Heard, D. E.; Reeves, C.; Forster, G.; Oram, D.; Bandy, B.; Reed, C.; Lee, J. D.; Bloss, W.
2015-12-01
Tropospheric ozone (O3) is major secondary air pollutant that is formed in the atmosphere through the complex oxidation of volatile organic carbon compounds (VOCs) in the presence of nitrogen oxides (NOx) and sunlight. In order to effectively implement control measures to reduce O3 levels, it is necessary to understand the chemical processes that in part govern O3 concentration, and to disaggregate local chemical O3 production from transport. To address this issue, a major field campaign was organised at the Weybourne Atmospheric Observatory (WAO), a coastal site in the UK that is regularly within the pollution outflow from London and Western Europe. As part of this campaign, a novel approach to directly measure in situ the rate of local O3 production was employed along with a range of instrumentation to measure concentrations of different radical species as well as with detailed VOC and NOx speciation. We will present preliminary findings from a major O3 pollution event (~120 ppb) that occurred during the campaign as a case study for investigating the contributing factors influencing O3 formation at a NOx limited site. Direct measurements of local chemical O3 production rates are compared with those inferred from a range of indirect approaches.
Fractal Analysis of Air Pollutant Concentrations
NASA Astrophysics Data System (ADS)
Cortina-Januchs, M. G.; Barrón-Adame, J. M.; Vega-Corona, A.; Andina, D.
2010-05-01
Air pollution poses significant threats to human health and the environment throughout the developed and developing countries. This work focuses on fractal analysis of pollutant concentration in Salamanca, Mexico. The city of Salamanca has been catalogued as one of the most polluted cities in Mexico. The main causes of pollution in this city are fixed emission sources, such as chemical industry and electricity generation. Sulphur Dioxide (SO2) and Particulate Matter less than 10 micrometer in diameter (PM10) are the most important pollutants in this region. Air pollutant concentrations were investigated by applying the box counting method in time series obtained of the Automatic Environmental Monitoring Network (AEMN). One year of time series of hourly average concentrations were analyzed in order to characterize the temporal structures of SO2 and PM10.
Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman
2011-01-15
Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.
Siudek, Patrycja
2016-12-01
In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.
NASA Astrophysics Data System (ADS)
Huang, Jyh-Jaan; Lin, Sheng-Chi; Löwemark, Ludvig; Liou, Ya-Hsuan; Chang, Queenie; Chang, Tsun-Kuo; Wei, Kuo-Yen; Croudace, Ian W.
2016-04-01
X-ray fluorescence (XRF) core-scanning is a fast, and convenient technique to assess elemental variations for a wide variety of research topics. However, the XRF scanning counts are often considered a semi-quantitative measurement due to possible absorption or scattering caused by down core variability in physical properties. To overcome this problem and extend the applications of XRF-scanning to water pollution studies, we propose to use cation exchange resin (IR-120) as an "elemental carrier", and to analyze the resins using the Itrax-XRF core scanner. The use of resin minimizes the matrix effects during the measurements, and can be employed in the field in great numbers due to its low price. Therefore, the fast, and non-destructive XRF-scanning technique can provide a quick and economical method to analyze environmental pollution via absorption in the resin. Five standard resin samples were scanned by the Itrax-XRF core scanner at different exposure times (1 s, 5 s, 15 s, 30 s, 100 s) to allow the comparisons of scanning counts with the absolute concentrations. The regression lines and correlation coefficients of elements that are generally used in pollution studies (Ca, Ti, Cr, Ni, Cu, Zn, and Pb) were examined for the different exposure times. The result shows that within the test range (from few ppm to thousands ppm), the correlation coefficients are all higher than 0.97, even at the shortest exposure time (1 s). Therefore, we propose to use this method in the field to monitor for example sewage disposal events. The low price of resin, and fast, multi elements and precise XRF-scanning technique provide a viable, cost- and time-effective approach that allows large sample numbers to be processed. In this way, the properties and sources of wastewater pollution can be traced for the purpose of environmental monitoring and environmental forensics.
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Hald, M.
2012-04-01
During the last decades petroleum industry and shipping activities have increased in the SW Barents Sea. Oil exploration wells were drilled in the 1980s with production starting in 2007. These activities are projected to expand in the coming years. As part of the Northern Environmental Waste Management (EWMA) project, a competence cluster for petroleum industry related waste handling, we investigate the impacts of enhanced anthropogenic activities on benthic foraminiferal assemblages in the SW Barents Sea. Sediment cores (0-20 cm) from sites in proximity to two oil- and gas fields are under investigation. These sediment cores, dated with the 210Pb method, represent the last 90 to 150 years. Both dead and living benthic foraminifera (100 µm-1 mm) were counted to elucidate differences in foraminiferal assemblages between pre-impact and recent conditions. In addition, the heavy metal concentrations, persistent organic pollutant (POP) concentrations, grain size and total organic content (TOC) of the sediment cores have been analyzed. Pollution levels of the surface sediments (0-1 cm) are of background to good level (level I-II) according to the definitions of the Water Framework Directorate (WFD). Patterns in living benthic foraminiferal assemblages identified in the sea floor surface sediments, are the result of natural environmental changes such as depth, water mass and sediment composition. Further downcore (1-20 cm) pollution levels are in general of background environmental status (WFD level I). However, at some depth intervals, especially in sediment cores from the near proximity of the oil- and gas- fields, pollution levels are slightly enhanced (WFD level II). Further work will include statistical comparison of dead and living foraminiferal assemblages with sediment pollution levels, sediment properties, and oceanographic conditions. This research contributes to the development of foraminifera as a useful bio-monitoring technique for the Arctic region as industrial activities increase in the coming years.
McArthur, J M; Sikdar, P K; Hoque, M A; Ghosal, U
2012-10-15
Across West Bengal and Bangladesh, concentrations of Cl in much groundwater exceed the natural, upper limit of 10 mg/L. The Cl/Br mass ratios in groundwaters range up to 2500 and scatter along mixing lines between waste-water and dilute groundwater, with many falling near the mean end-member value for waste-water of 1561 at 126 mg/L Cl. Values of Cl/Br exceed the seawater ratio of 288 in uncommon NO(3)-bearing groundwaters, and in those containing measurable amounts of salt-corrected SO(4) (SO(4) corrected for marine salt). The data show that shallow groundwater tapped by tube-wells in the Bengal Basin has been widely contaminated by waste-water derived from pit latrines, septic tanks, and other methods of sanitary disposal, although reducing conditions in the aquifers have removed most evidence of NO(3) additions from these sources, and much evidence of their additions of SO(4). In groundwaters from wells in palaeo-channel settings, end-member modelling shows that >25% of wells yield water that comprises ≥10% of waste-water. In palaeo-interfluvial settings, only wells at the margins of the palaeo-interfluvial sequence contain detectable waste water. Settings are identifiable by well-colour survey, owner information, water composition, and drilling. Values of Cl/Br and faecal coliform counts are both inversely related to concentrations of pollutant As in groundwater, suggesting that waste-water contributions to groundwater in the near-field of septic-tanks and pit-latrines (within 30 m) suppress the mechanism of As-pollution and lessen the prevalence and severity of As pollution. In the far-field of such sources, organic matter in waste-water may increase groundwater pollution by As. Copyright © 2012. Published by Elsevier B.V.
Giron-Calva, Patricia Sarai; Li, Tao; Blande, James D
2017-04-01
Plants constitutively release volatile organic compounds (VOCs), but qualitatively and quantitatively alter their emission of VOCs in response to biotic and abiotic stresses. The blend of VOCs emitted reflects the physiological status of the plant. Plants may be exposed to the VOC blend emitted by their near neighbors and gain information that allows them to adjust their own defenses. These plant-plant interactions may potentially be exploited to protect crops from pests, but they can be disturbed by abiotic factors making the process sensitive to environmental perturbation. Despite numerous studies describing plant-plant interactions, relatively few have been conducted with agriculturally significant cultivated plant varieties under field conditions. Here we studied plant-plant interactions in a conspecific association of Brassica oleracea var. capitata (cabbage) and show that undamaged plants exposed to neighbors damaged by the herbivore Pieris brassicae are primed for stronger volatile emissions upon subsequent herbivore attack. We conducted a field study in an ozone free-air concentration enrichment (FACE) facility with ambient and elevated ozone levels and found that elevated tropospheric ozone significantly alters the priming of VOCs in receiver plants. We conclude that plant-plant interactions may prime defensive attributes of receiver plants under field conditions, but are impaired by ozone pollution. Therefore, when planning the manipulation of plant-plant interactions for agricultural purposes, the potential effects of atmospheric pollutants should be considered.
NASA Astrophysics Data System (ADS)
Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui
2018-03-01
A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced the stability of the near-surface atmosphere, causing the air pollutants to accumulate at low levels and exacerbating the air pollution problem. Finally, a persistent stagnant weather system with a weak geopotential height field of 1000 hPa and warm air advection at 850 hPa was the main feature of atmospheric circulation associated with the heavy pollution.
Urban Air Quality Modelling with AURORA: Prague and Bratislava
NASA Astrophysics Data System (ADS)
Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.
2012-04-01
The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution) for air pollution and human exposure statistics for an entire year. So far we concentrated on Brussels, Belgium and the Rotterdam harbour area, The Netherlands. In this contribution we focus on the operational forecast services. Reference Lefebvre W. et al. (2011) Validation of the MIMOSA-AURORA-IFDM model chain for policy support: Modeling concentrations of elemental carbon in Flanders, Atmospheric Environment 45, 6705-6713
Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai
2013-02-01
The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loon, W.M.G.M. van; Hermens, J.L.M.
1994-12-31
A large part of all aquatic pollutants can be classified as narcosis-type (baseline toxicity) chemicals. Many chemicals contribute to a joint baseline aquatic toxicity even at trace concentrations. A novel surrogate parameter, which simulated bioconcentration of hydrophobic substances from water and estimates internal molar concentrations, has been explored by Verhaar et al.. These estimated biological concentrations can be used to predict narcosis-type toxic effects, using the Lethal Body Burden (LBB) concept. The authors applied this toxicological-analytical concept to river water, and some recent technological developments and field results are pointed out. The simulation of bioconcentration is performed by extracting watermore » samples with empore{trademark} disks. The authors developed two extraction procedures; i.e., laboratory extraction and field extraction. Molar concentrations measurements are performed using vapor pressure osmometry, GC-FID and GC-MS. Results on the molar concentrations of hydrophobic compounds which can be bioaccumulated from several Dutch river systems will be presented.« less
Oettl, D
2015-11-01
Dispersion modelling in complex terrain always has been challenging for modellers. Although a large number of publications are dedicated to that field, candidate methods and models for usage in regulatory applications are scarce. This is all the more true when the combined effect of topography and obstacles on pollutant dispersion has to be taken into account. In Austria, largely situated in Alpine regions, such complex situations are quite frequent. This work deals with an approach, which is in principle capable of considering both buildings and topography in simulations by combining state-of-the-art wind field models at the micro- (<1 km) and mesoscale γ (2-20 km) with a Lagrangian particle model. In order to make such complex numerical models applicable for regulatory purposes, meteorological input data for the models need to be readily derived from routine observations. Here, use was made of the traditional way to bin meteorological data based on wind direction, speed, and stability class, formerly mainly used in conjunction with Gaussian-type models. It is demonstrated that this approach leads to reasonable agreements (fractional bias < 0.1) between observed and modelled annual average concentrations in an Alpine basin with frequent low-wind-speed conditions, temperature inversions, and quite complex flow patterns, while keeping the simulation times within the frame of possibility with regard to applications in licencing procedures. However, due to the simplifications in the derivation of meteorological input data as well as several ad hoc assumptions regarding the boundary conditions of the mesoscale wind field model, the methodology is not suited for computing detailed time and space variations of pollutant concentrations.
Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010
ERIC Educational Resources Information Center
Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.
2012-01-01
This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…
De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven
2009-06-15
The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS.
NASA Astrophysics Data System (ADS)
Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia
2017-11-01
To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction of the PM2.5 concentration during APEC and 38 and 25 % during the Victory Parade, respectively, based on the assumption that the concentrations of air pollutants are only determined by meteorological conditions and emission intensities. We also estimated the contribution of meteorological conditions and control strategies in reducing the concentrations of gaseous pollutants and PM2.5 components with the GLMs, revealing the effective control of anthropogenic emissions.
Fractional kalman filter to estimate the concentration of air pollution
NASA Astrophysics Data System (ADS)
Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik
2018-04-01
Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).
Source Contributions to Premature Mortality Due to Ambient Particulate Matter in China
NASA Astrophysics Data System (ADS)
Hu, J.; Huang, L.; Ying, Q.; Zhang, H.; Shi, Z.
2016-12-01
Outdoor air pollution is linked to various health effects. Globally it is estimated that ambient air pollution caused 3.3 million premature deaths in 2010. The health risk occurs predominantly in developing countries, particularly in Asia. China has been suffering serious air pollution in recent decades. The annual concentrations of ambient PM2.5 are more than five times higher than the WHO guideline value in many populous Chinese cities. Sustained exposure to high PM2.5 concentrations greatly threatens public health in this country. Recognizing the severity of the air pollution situation, the Chinese government has set a target in 2013 to reduce PM2.5 level by up to 25% in major metropolitan areas by 2017. It is urgently needed for China to assess premature mortality caused by outdoor air pollution, identify source contributions of the premature mortality, and evaluate responses of the premature mortality to air quality improvement, in order to design effective control plans and set priority for air pollution controls to better protect public health. In this study, we determined the spatial distribution of excess mortality (ΔMort) due to adult (> 30 years old) ischemic heart disease (IHD), cerebrovascular disease (CEV), chronic obstructive pulmonary disease (COPD) and lung cancer (LC) at 36-km horizontal resolution for 2013 from the predicted annual-average surface PM2.5 concentrations using an updated source-oriented Community Multiscale Air Quality (CMAQ) model along with an ensemble of four regional and global emission inventories. Observation data fusing was applied to provide additional correction of the biases in the PM2.5 concentration field from the ensemble. Source contributions to ΔMort were determined based on total ΔMort and fractional source contributions to PM2.5 mass concentrations. We estimated that ΔMort due to COPD, LC, IHD and CEV are 0.329, 0.148, 0.239 and 0.953 million in China, respectively, leading to a total ΔMort of 1.669 million. Industries and residential sources were the two leading sources to ΔMort, contributing to 0.508 (30.5%) and 0.366 (21.9%) mp, respectively. Secondary ammonium ion from agriculture sources, secondary organic aerosol and aerosols from power generation sources were responsible for ΔMort of 0.204, 0.179 and 0.172 mp, respectively.
Xiong, TianTian; Dumat, Camille; Pierart, Antoine; Shahid, Muhammad; Kang, Yuan; Li, Ning; Bertoni, Georges; Laplanche, Christophe
2016-12-01
The quality of cultivated consumed vegetables in relation to environmental pollution is a crucial issue for urban and peri-urban areas, which host the majority of people at the global scale. In order to evaluate the fate of metals in urban soil-plant-atmosphere systems and their consequences on human exposure, a field study was conducted at two different sites near a waste incinerator (site A) and a highway (site B). Metal concentrations were measured in the soil, settled atmospheric particulate matter (PM) and vegetables. A risk assessment was performed using both total and bioaccessible metal concentrations in vegetables. Total metal concentrations in PM were (mg kg -1 ): (site A) 417 Cr, 354 Cu, 931 Zn, 6.3 Cd and 168 Pb; (site B) 145 Cr, 444 Cu, 3289 Zn, 2.9 Cd and 396 Pb. Several total soil Cd and Pb concentrations exceeded China's Environmental Quality Standards. At both sites, there was significant metal enrichment from the atmosphere to the leafy vegetables (correlation between Pb concentrations in PM and leaves: r = 0.52, p < 0.05) which depended on the plant species. Total Cr, Cd and Pb concentrations in vegetables were therefore above or just under the maximum limit levels for foodstuffs according to Chinese and European Commission regulations. High metal bioaccessibility in the vegetables (60-79 %, with maximum value for Cd) was also observed. The bioaccessible hazard index was only above 1 for site B, due to moderate Pb and Cd pollution from the highway. In contrast, site A was considered as relatively safe for urban agriculture.
Larson, Rebecca A; Safferman, Steven I
2012-01-01
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Totsche, K. U.; Hensel, D.; Jann, S.; Jaesche, P.; Kögel-Knabner, I.; Scheibke, R.
The contamination of the unsaturated soil zone with organic pollutants (PAH, BTEX, PCB, Phenols, etc.) and pollutant mixtures, e.g. light/dense non-aqueous phase liq- uids (L/D-NAPLs), represents a specific challenge for sanitation and remediation of contaminated sites. Monitored natural attenuation as an alternative option for remedi- ation of such sites requires (1) the proof of an effective pollutant reduction potential and (2) the proof that a further spreading of the contaminants and their potentially toxic metabolites is minimized to an acceptable minimum concentration level. These demands apply equally likely to contaminated soil and groundwater environments. However, a major problem arises when the task is to monitor the release and transport of contaminants within the unsaturated soil zone over a longer period (> 10 years) of time at an expenditure as small as possible. The aim of our presentation is to employ and test a survey technique to monitor pollutant release and redistribution within the unsaturated soil zone in the context of MNA. The proposed technique is based on the combination of laboratory-column and field-lysimeter studies. The first is used to ac- quire knowledge on the governing processes, the latter is used to monitor release and transport of the contaminants.
NASA Astrophysics Data System (ADS)
Clozel, Blandine
2017-04-01
As part of the Regional Health Plan for the Rhône-Alpes area (France), a cartography of soil contamination by persistent organic pollutants (dioxins/furans (PCDD/PCDF) and polychlorinated biphenyls (PCB)) was undertaken in order to define the background concentrations of soils located away from point source pollution. In the natural environment, PCDD/PCDF and PCB comes from air pollution and accumulate in the upper part of the soils. To define the background concentration of persistent organic pollutants from diffuse atmospheric origin in soils, sampling was carried out within the first 5 centimeters of soils that have been very little anthropized and untilled for more than 15 years. In such soils mixing and dilution of the pollutants is very limited. 170 samples were collected following a systematic plan of grid type (mesh of 8 x 8 km) in an area of 14 000km2, avoiding soil of high altitude and from urban area. Beyond their total concentration, the ratio of the congeners of PCBs (7 indicators and 12 dioxin-like) and of the 17 dioxins/furans was also used for interpretation. As expected, the concentrations in pollutants are globally lower in the rural zones than in the more industrialized ones. However, the pollutants are relatively enriched in valleys, confirming that the meteorological conditions and the local topography play a significant role in the repartition of the diffuse atmospheric pollution. For the vast majority of samples, even some of those presenting the highest total concentration, the ratio of the various congeners argues for an ancient origin of the contamination. All studies at the French or European level of the atmospheric concentration of organic pollutants indicate a progressive decrease in emissions of these contaminants for about 20 years. However, the soils have been receptors since a long time and such pollutants have accumulated. The congeners ratio give evolved signature of pollution indicating, on one hand, it is mainly due to past activities but, on the other hand, indicate that it will persist because of its high stability. These results show the importance of knowing the spatial distribution of the concentrations of PCDD/PCDF and PCB and taking into account the signature of their congeners when defining the reference value of background concentration which are applied to distinguish a recent point source pollution
The effects of electric fields on charged molecules and particles in individual microenvironments
NASA Astrophysics Data System (ADS)
Jamieson, K. S.; ApSimon, H. M.; Jamieson, S. S.; Bell, J. N. B.; Yost, M. G.
Measurements of small air ion concentrations, electrostatic potential and AC electric field strengths were taken in an office setting to investigate the link between electric fields and charged molecule and particle concentrations in individual microenvironments. The results obtained indicate that the electromagnetic environments individuals can be exposed to whilst indoors can often bear little resemblance to those experienced outdoors in nature, and that many individuals may spend large periods of their time in "Faraday cage"-like conditions exposed to inappropriate levels and types of electric fields that can reduce localised concentrations of biologically essential and microbiocidal small air ions. Such conditions may escalate their risk of infection from airborne contaminants, including microbes, whilst increasing localised surface contamination. The degree of "electro-pollution" that individuals are exposed to was shown to be influenced by the type of microenvironment they occupy, with it being possible for very different types of microenvironment to exist within the same room. It is suggested that adopting suitable electromagnetic hygiene/productivity guidelines that seek to replicate the beneficial effects created by natural environments may greatly mitigate such problems.
NASA Astrophysics Data System (ADS)
Perez, Pedro; Miranda, Regina
2013-04-01
The traffic-related atmospheric emissions, composition and transport of greenhouse gases (GHGs) and air toxic pollutants (ATPs), are an important environmental problem that affect climate change and air pollution in Madrid, Spain. Carbon dioxide (CO2) affects the regional weather and particularly fine particle matter (PM) translocate to the people resulting in local health problems. As the main source of emissions comes from road transport, and subsequent combustion of fossil fuels, air quality deterioration may be elevated during weekdays and peak hours. We postulate that traffic-related air quality (CO2, methane CH4, PM, volatile organic compounds VOCs, nitrogen oxides NOx and carbon monoxide CO contents) impairs epidemiology in part via effects on health and disease development, likely increasing the external costs of transport in terms of climate change and air pollution. First, the paper intends to estimate the local air quality related to the road transport emissions of weeks over a domain covering Madrid (used as a case study). The local air quality model (LAQM) is based on gridded and shaped emission fields. The European Environmental Agency (EEA) COPERT modeling system will provide GHGs and ATPs gridded and shaped emission data and mobile source parameters, available for Madrid from preliminary emission inventory records of the Municipality of Madrid and from disaggregated traffic counts of the Traffic Engineering Company and the Metropolitan Company of Metro (METRO-Madrid). The paper intends to obtain estimates of GHGs and ATPs concentrations commensurate with available ground measurements, 24-hour average values, from the Municipality of Madrid. The comparison between estimated concentrations and measurements must show small errors (e.g. fractional error, fractional bias and coefficient of determination). The paper's expected results must determine spatial and temporal patterns in Madrid. The estimates will be used to cross check the primary local emission inventory, together with the mobile source's parameters and the disaggregated transport activity data. The paper will also identify emission and concentration differences and gradients of certain magnitude/factor (e.g. comparison between estimated ATPs hourly concentrations in Madrid City Center and in the peripheries). Furthermore, because of the higher contribution of road mobile sources to GHGs and ATPs emissions in Madrid, small gradients between urban highways and residential areas will be expected. Second, the paper objectives are to develop valid methods and approaches to measure air quality and to develop valid road transport emission inventories to assess correlations between external costs, epidemiology and emissions in order to reveal how traffic pollution affects people exposure to key contaminants and disease development, and identify susceptible emission scenarios and health impacts. We have conducted general emission inventory studies providing preliminary evidence of regional road transport air pollution impacts on external cost growth and disease development. Third, we also aim to demonstrate short and long-term impacts of road transport emissions on external costs development using innovative multi-methodological methods interfaced with environmental chemistry and meteorology following meteorological and chemical fields with contrasting high/low traffic emissions in several linked components involving: air pollutant assessment using local measurements, height of the boundary layer, meteorological environment interactions on external costs and epidemiology, mapping of Madrid (identifying gradients of emissions), integrative causal modeling using statistical models, and trend and scenario analyses on external costs and impacts on human health. Meteorological and chemical fields will be obtained from local records collected by surface meteorological and air quality stations. These two sets of fields define the horizontal and vertical profiles of GHGs and ATPs of Madrid based on air quality ground (initial conditions) and vertical (boundary conditions) measurements and modulate air concentration estimates
NASA Astrophysics Data System (ADS)
Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.
2010-12-01
The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.
NASA Astrophysics Data System (ADS)
Feidieker, Doris; Kämpfer, Peter; Dott, Wolfgang
1995-08-01
The biological in situ remediation of a former pesticide production site, highly contaminated with chlorobenzenes, chlorophenols and hexachlorocyclohexanes, was studied for a period of one year. Field experiments testing the remediation technology were carried out in the subsurface to a depth of 5.5 m. Detailed monitoring of several chemical and microbiological parameters was made in order to evaluate the remediation success. The initial pollution of this site ranged from 0.03-0.30 g EOX (extractable halogenated organic compounds)/kg soil in the saturated layer to 1-20 g kg -1 EOX in the unsaturated layer, whereas the impounded water was polluted with 8-13 mg L -1 AOX (adsorbable halogenated organic compounds). No significant decrease of the pollutants in the subsoil was observed, although oxygen and nutrients were supplied in sufficient concentrations. In contrast, several of the chlorinated organic compounds were eliminated from the water treatment plant, either by physical or biological processes. Based on measurements of AOX in different parts of the plant, 26% of the pollutants was found adsorbed on the activated carbon and 3% was found in the sludge of the filter back-wash. Dependent on these measurements, elimination of ˜ 70% of the pollutants was attributed to microbial degradation. The latter fact is supported by oxygen consumption data, by increase in the microbial counts and by changes in the distribution of the pollutants in the plant effluent. Among the chlorobenzenes, 1,2,4-trichlorobenzene, and among the hexachlorocyclohexanes, a-hexachlorocyclohexane were eliminated preferentially. The results suggest that an in situ remediation of a site polluted with chlorinated organic compounds cannot be recommended; however, an on site circulation water treatment is possible by a combination of physical and biological processes.
NASA Astrophysics Data System (ADS)
Halenka, T.; Bednar, J.; Brechler, J.
The spatial distribution of air pollution on the regional scale (Bohemian region) is simulated by means of Charles University puff model SMOG. The results are used for the assessment of the concentration fields of ozone, nitrogen oxides and other ozone precursors. Current improved version of the model covers up to 16 groups of basic compounds and it is based on trajectory computation and puff interaction both by means of Gaussian diffusion mixing and chemical reactions of basic species. Gener- ally, the method used for trajectory computation is valuable mainly for episodes sim- ulation, nevertheless, climatological study can be solved as well by means of average wind rose. For the study being presented huge database of real emission sources was incorporated with all kind of sources included. Some problem with the background values of concentrations was removed. The model SMOG has been nested into the forecast model ETA to obtain appropriate meteorological data input. We can estimate air pollution characteristics both for episodes analysis and the prediction of future air quality conditions. Necessary prognostic variables from the numerical weather pre- diction model are taken for the region of the central Bohemia, where the original puff model was tested. We used mainly 850 hPa wind field for computation of prognos- tic trajectories, the influence of surface temperature as a parameter of photochemistry reactions as well as the effect of cloudness has been tested.
Human health cost of hydrogen sulfide air pollution from an oil and gas Field.
Kenessary, Dinara; Kenessary, Almas; Kenessariyev, Ussen Ismailovich; Juszkiewicz, Konrad; Amrin, Meiram Kazievich; Erzhanova, Aya Eralovna
2017-06-08
Introduction and objective. The Karachaganak oil and gas condensate field (KOGCF), one of the largest in the world, located in the Republic of Kazakhstan (RoK) in Central Asia, is surrounded by 10 settlements with a total population of 9,000 people. Approximately73% of this population constantly mention a specific odour of rotten eggs in the air, typical for hydrogen sulfide (H2S) emissions, and the occurrence of low-level concentrations of hydrogen sulfide around certain industrial installations (esp. oil refineries) is a well known fact. Therefore, this study aimed at determining the impact on human health and the economic damage to the country due to H2S emissions. Materials and method. Dose-response dependency between H2S concentrations in the air and cardiovascular morbidity using multiple regression analysis was applied. Economic damage from morbidity was derived with a newly-developed method, with Kazakhstani peculiarities taken into account. Results.Hydrogen sulfide air pollution due to the KOGCF activity costs the state almost $60,000 per year. Moreover, this is the reason for a more than 40% rise incardiovascular morbidity in the region. Conclusion. The reduction of hydrogen sulfide emissions into the air is recommended, as well as successive constant ambient air monitoring in future. Economic damage evaluation should be made mandatory, on a legal basis, whenever an industrial facility operation results in associated air pollution.
Pohlert, Thorsten; Hillebrand, Gudrun; Breitung, Vera
2011-06-01
This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.
Up in the Air: Methane and Ozone over California
NASA Technical Reports Server (NTRS)
Iraci, Laura T.
2014-01-01
The Alpha Jet Atmospheric eXperiment (AJAX) at NASA Ames Research Center measures in-situ carbon dioxide, methane, and ozone concentrations in the Earth's atmosphere several times each month. The AJAX team studies local photochemical smog production, provides data for long-term studies of trans-Pacific transport of pollution, and supports the observation of greenhouse gases from satellites. The aircraft is stationed at Moffett Field and is outfitted with scientific instruments to measure trace gas concentrations and 3-D wind speeds. Vertical profiles from near the surface up to approximately 27,000 ft are routinely collected over locations such as: Merced, Edwards Air Force Base, Railroad Valley, NV, and over the Pacific Ocean. In addition, boundary layer measurements scout for surface sources such as fires, oil gas infrastructure, livestock, and urban pollution. This talk will focus on recent observations over dairy operations, fossil fuel infrastructure, and wildfires.
Restless roosts: Light pollution affects behavior, sleep, and physiology in a free-living songbird.
Ouyang, Jenny Q; de Jong, Maaike; van Grunsven, Roy H A; Matson, Kevin D; Haussmann, Mark F; Meerlo, Peter; Visser, Marcel E; Spoelstra, Kamiel
2017-11-01
The natural nighttime environment is increasingly polluted by artificial light. Several studies have linked artificial light at night to negative impacts on human health. In free-living animals, light pollution is associated with changes in circadian, reproductive, and social behavior, but whether these animals also suffer from physiologic costs remains unknown. To fill this gap, we made use of a unique network of field sites which are either completely unlit (control), or are artificially illuminated with white, green, or red light. We monitored nighttime activity of adult great tits, Parus major, and related this activity to within-individual changes in physiologic indices. Because altered nighttime activity as a result of light pollution may affect health and well-being, we measured oxalic acid concentrations as a biomarker for sleep restriction, acute phase protein concentrations and malaria infection as indices of immune function, and telomere lengths as an overall measure of metabolic costs. Compared to other treatments, individuals roosting in the white light were much more active at night. In these individuals, oxalic acid decreased over the course of the study. We also found that individuals roosting in the white light treatment had a higher probability of malaria infection. Our results indicate that white light at night increases nighttime activity levels and sleep debt and affects disease dynamics in a free-living songbird. Our study offers the first evidence of detrimental effects of light pollution on the health of free-ranging wild animals. © 2017 John Wiley & Sons Ltd.
[Performance of Grass Swales for Controlling Pollution of Roadway Runoff in Field Experiments].
Huang, Jun-jie; Shen, Qing-ran; Li, Tian
2015-06-01
Two different styles of grass swales were built in new Binhu region of Hefei city to monitor the flux and quality of the influent and effluent water under actual precipitation conditions, in order to evaluate the performance of water quality purification and pollution load control for roadway runoff. The results showed that both of the grass swales could effectively remove the pollutants such as TSS, COD, Pb, Cu, Cd, Zn in roadway runoff; the median EMC removal efficiencies of TSS and COD were 67.1%, 46.7% respectively,for facility I, and the median EMC removal efficiencies of TSS and COD were 78.6%, 58.6% respectively, for facility II; the concentrations of Pb, Cu, Zn in the effluent of facility II could meet the requirements of the surface water quality class V; release of nitrogen and phosphorus occurred in both facilities I and I[ in several rainfall events, mainly in heavy storms; the removal efficiencies of TP in the two grass swales were improved with the increase of influent concentration; the mean removal efficiencies of TP in facilities I and II were 14.7% and 45.4%, respectively; the load control performance of facility II for pollutants such as TSS, COD, TP, TN, NH4+ -N and NO3- -N was better than that of facility I; in the district with poor soil permeability and low ground slope, application of dry swale could achieve better performance in water quality control and pollution load reduction of roadway runoff.
Classification of river water pollution using Hyperion data
NASA Astrophysics Data System (ADS)
Kar, Soumyashree; Rathore, V. S.; Champati ray, P. K.; Sharma, Richa; Swain, S. K.
2016-06-01
A novel attempt is made to use hyperspectral remote sensing to identify the spatial variability of metal pollutants present in river water. It was also attempted to classify the hyperspectral image - Earth Observation-1 (EO-1) Hyperion data of an 8 km stretch of the river Yamuna, near Allahabad city in India depending on its chemical composition. For validating image analysis results, a total of 10 water samples were collected and chemically analyzed using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Two different spectral libraries from field and image data were generated for the 10 sample locations. Advanced per-pixel supervised classifications such as Spectral Angle Mapper (SAM), SAM target finder using BandMax and Support Vector Machine (SVM) were carried out along with the unsupervised clustering procedure - Iterative Self-Organizing Data Analysis Technique (ISODATA). The results were compared and assessed with respect to ground data. Analytical Spectral Devices (ASD), Inc. spectroradiometer, FieldSpec 4 was used to generate the spectra of the water samples which were compiled into a spectral library and used for Spectral Absorption Depth (SAD) analysis. The spectral depth pattern of image and field spectral libraries was found to be highly correlated (correlation coefficient, R2 = 0.99) which validated the image analysis results with respect to the ground data. Further, we carried out a multivariate regression analysis to assess the varying concentrations of metal ions present in water based on the spectral depth of the corresponding absorption feature. Spectral Absorption Depth (SAD) analysis along with metal analysis of field data revealed the order in which the metals affected the river pollution, which was in conformity with the findings of Central Pollution Control Board (CPCB). Therefore, it is concluded that hyperspectral imaging provides opportunity that can be used for satellite based remote monitoring of water quality from space.
NASA Astrophysics Data System (ADS)
Yue, Tao; Gao, Xiang; Gao, Jiajia; Tong, Yali; Wang, Kun; Zuo, Penglai; Zhang, Xiaoxi; Tong, Li; Wang, Chenlong; Xue, Yifeng
2018-07-01
In the past decade, due to the management policies and coal combustion controls in Beijing, the consumption of natural gas has increased gradually. Nevertheless, the research on the emission characteristics of gaseous pollutants emitted from gas-fired industrial boilers, especially considering the influence of low nitrogen (low-NOx) retrofit policy of gas boilers, is scarcely. In this study, based on literature and field investigations, onsite measurements of NOx, CO, NH3 and VOCs (Volatile Organic Compounds) emissions from gas-fired industrial boilers as well as the key factors that affected the emission of gaseous pollutants were discussed. Category-specific emission factors (EFs) of NOx, CO, NH3 and VOCs were obtained from the field measurements of 1107 "low-NOx" retrofitted and unabated gas-fired industrial boilers. Our results showed that operating load and control measures were the two key factors affecting the formation of gaseous pollutants. The EFs of NOx (EFNOx) and CO (EFCO) of atmospheric combustion boilers (ACBs) were much higher than the EFs of chamber combustion boilers (CCBs). The total emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing in the year of 2015 were estimated at 10489.6 t, 3272.8 t, 196.4 t and 235.4 t, respectively. Alkanes, BTEX, oxygenated VOCs and non-reactive organic matter were the four main chemical components of VOCs. As for the spatial distributions, the emissions of NOx, CO, NH3 and VOCs from gas-fired industrial boilers in Beijing were predominantly concentrated in central six urban districts. In the future, more detailed investigation and field tests for all kinds of gas-fired industrial boilers are still greatly needed to achieve more reliable estimations of atmospheric pollutants from gas-fired industrial boilers.
Study on the Influence of Building Materials on Indoor Pollutants and Pollution Sources
NASA Astrophysics Data System (ADS)
Wang, Yao
2018-01-01
The paper summarizes the achievements and problems of indoor air quality research at home and abroad. The pollutants and pollution sources in the room are analyzed systematically. The types of building materials and pollutants are also discussed. The physical and chemical properties and health effects of main pollutants were analyzed and studied. According to the principle of mass balance, the basic mathematical model of indoor air quality is established. Considering the release rate of pollutants and indoor ventilation, a mathematical model for predicting the concentration of indoor air pollutants is derived. The model can be used to analyze and describe the variation of pollutant concentration in indoor air, and to predict and calculate the concentration of pollutants in indoor air at a certain time. The results show that the mathematical model established in this study can be used to analyze and predict the variation law of pollutant concentration in indoor air. The evaluation model can be used to evaluate the impact of indoor air quality and evaluation of current situation. Especially in the process of building and interior decoration, through pre-evaluation, it can provide reliable design parameters for selecting building materials and determining ventilation volume.
Bao, Zhi Yong; Liu, Xin; Chen, Y; Wu, Yucheng; Chan, Helen L W; Dai, Jiyan; Lei, Dang Yuan
2014-09-15
This paper reports a simple label-free high-sensitive method for detecting low-concentration persistent organic pollutants and explosive materials. The proposed method combines surface-enhanced Raman spectroscopy (SERS) and magnetomotive enrichment of the target molecules on the surface of Ag nanoparticles (NPs). This structure can be achieved through self-assembling integration of Ag NPs with ferromagnetic Fe3O4 microspheres, forming a hybrid SERS nanoprobe with both optical and magnetic properties. Moreover, the magnetic response of ferromagnetic Fe3O4 microspheres can be used to dynamically modulate the optical property of Ag NPs through controlling their geometric arrangement on the substrate by applying an external magnetic field. It is also demonstrated from the full-wave numerical simulation results that the maximum electromagnetic field enhancement can be greatly increased by shortening the distance of neighboring Ag NPs and therefore resulting in an improved SERS detecting limit. More importantly, by using the prepared substrate, the SERS signals from organic pollution substances, i.e. aromatic polychlorinated biphenyl-77 and 2,4,6-trinitrotoluene, were quantitatively analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Persistence analysis of extreme CO, NO2 and O3 concentrations in ambient air of Delhi
NASA Astrophysics Data System (ADS)
Chelani, Asha B.
2012-05-01
Persistence analysis of air pollutant concentration and corresponding exceedance time series is carried out to examine for temporal evolution. For this purpose, air pollutant concentrations, namely, CO, NO2 and O3 observed during 2000-2009 at a traffic site in Delhi are analyzed using detrended fluctuation analysis. Two types of extreme values are analyzed; exceeded concentrations to a threshold provided by national pollution controlling agency and time interval between two exceedances. The time series of three pollutants is observed to possess persistence property whereas the extreme value time series of only primary pollutant concentrations is found to be persistent. Two time scaling regions are observed to be significant in extreme time series of CO and NO2, mainly attributed to implementation of CNG in vehicles. The presence of persistence in three pollutant concentration time series is linked to the property of self-organized criticality. The observed persistence in the time interval between two exceeded levels is a matter of concern as persistent high concentrations can trigger health problems.
NASA Astrophysics Data System (ADS)
Shazryenna, D.; Ruzanna, R.; Jessica, M. S.; Piakong, M. T.
2015-04-01
Phenols and its derivatives are environmental pollutant commonly found in many industrial effluents. It is toxic in nature and causes various health hazards. However, they are poorly removed in conventional biological processes due to their toxicity. Immobilization of microbial cells has received increasing interest in the field of waste treatment and creates opportunities in a wide range of sectors including environmental pollution control. Live cells of phenol-degrading yeast, Candida tropicalis RETL-Crl, were immobilized on coconut husk and loofah by adsorption. The immobolized particle was packed into biofilter column which used for continuous treatment of a phenol with initial phenol concentration of 3mM. Both loofah and coconut husk have similar phenol biodegradation rate of 0.0188 gL-1h-1 within 15 hours to achieve a phenol removal efficiency of 100%. However loofah have lower biomass concentration of 4.22 gL-1 compared to biomass concentration on coconut husk, 4.39 gL-1. Coconut husk contain higher biomass concentration which makes it better support material than loofah. Fibrous matrices such as loofah and coconut husk provide adequate supporting surfaces for cell adsorption, due to their high specific surface area. Therefore, coconut husk and loofah being an agricultural waste product have the potential to be used as low-cost adsorbent and support matrix for microbial culture immobilization for the removal of organic pollutant from wastewater.
Pan, Lili; Sun, Jianteng; Li, Zhiheng; Zhan, Yu; Xu, Shen; Zhu, Lizhong
2018-01-01
Organophosphorus pesticides (OPPs) are used worldwide and pose great risks to human health. However, information on their presence in agricultural soils at regional scale and the associated risks is limited. In this study, an extensive investigation on agricultural soils was conducted throughout the Yangtze River Delta (YRD) of China to reveal the status of OPP pollution. The total concentrations of the nine OPPs ranged from <3.0 to 521 ng g -1 dry weight, with a mean of 64.7 ng g -1 dry weight and a detection rate of 93 %. Dimethoate was found to be the primary compound, followed by methyl parathion and parathion. The highest concentrations of OPPs were found in Jiangsu province due to the intensive agricultural activities. The pollution of OPPs is also highly associated with the land use types. The lower concentrations of OPPs found in vegetable fields could be attributed to their easy photodegradation and hydrolysis in aerobic soils. There was no significant difference in microbial communities among the sample sites, indicating that OPPs in agricultural soils of the YRD region cause negligible effects on microbiota. The risks of OPPs in the soils to human health were further evaluated. The hazard indexes in all the soil samples were below 1, suggesting absence of non-cancer risks. This study provides valuable information for a better understanding of the pollution status of OPPs in agricultural soils and a scientific basis for soil quality assessments.
NASA Astrophysics Data System (ADS)
Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.
2017-12-01
Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS surveys and pilot "low-cost" sensor deployments. We will also outline benefits of using a combination of mobile ORS surveys and "low-cost" sensor networks for community exposure monitoring.
Song, Yang; Wan, Xiaoming; Bai, Shuoxin; Guo, Dong; Ren, Ci; Zeng, Yu; Li, Yirui; Li, Xuewen
2017-01-01
Background The elevation and dissipation of pollutants after the ignition of fireworks in different functional areas of a valley city were investigated. Methods The Air Quality Index (AQI) as well as inter-day and intra-day concentrations of various air pollutants (PM10, PM2.5, SO2, NO2, CO, O3) were measured during two episodes that took place during Chinese New Year festivities. Results For the special terrain of Jinan, the mean concentrations of pollutants increased sharply within 2–4 h of the firework displays, and concentrations were 4–6 times higher than the usual levels. It took 2–3 d for the pollutants to dissipate to background levels. Compared to Preliminary Eve (more fireworks are ignited on New Year’s Eve, but the amounts of other human activities are also lesser), the primary pollutants PM2.5, PM10, and CO reached higher concentrations on New Year’s Eve, and the highest concentrations of these pollutants were detected in living quarters. All areas suffered from serious pollution problems on New Year’s Eve (rural = urban for PM10, but rural > urban for PM2.5). However, SO2 and NO2 levels were 20%–60% lower in living quarters and industrial areas compared to the levels in these same areas on Preliminary Eve. In contrast to the other pollutants, O3 concentrations fell instead of rising with the firework displays. Conclusion Interactions between firework displays and other human activities caused different change trends of pollutants. PM2.5 and PM10 were the main pollutants, and the rural living quarter had some of the highest pollution levels. PMID:28045925
Song, Yang; Wan, Xiaoming; Bai, Shuoxin; Guo, Dong; Ren, Ci; Zeng, Yu; Li, Yirui; Li, Xuewen
2017-01-01
The elevation and dissipation of pollutants after the ignition of fireworks in different functional areas of a valley city were investigated. The Air Quality Index (AQI) as well as inter-day and intra-day concentrations of various air pollutants (PM10, PM2.5, SO2, NO2, CO, O3) were measured during two episodes that took place during Chinese New Year festivities. For the special terrain of Jinan, the mean concentrations of pollutants increased sharply within 2-4 h of the firework displays, and concentrations were 4-6 times higher than the usual levels. It took 2-3 d for the pollutants to dissipate to background levels. Compared to Preliminary Eve (more fireworks are ignited on New Year's Eve, but the amounts of other human activities are also lesser), the primary pollutants PM2.5, PM10, and CO reached higher concentrations on New Year's Eve, and the highest concentrations of these pollutants were detected in living quarters. All areas suffered from serious pollution problems on New Year's Eve (rural = urban for PM10, but rural > urban for PM2.5). However, SO2 and NO2 levels were 20%-60% lower in living quarters and industrial areas compared to the levels in these same areas on Preliminary Eve. In contrast to the other pollutants, O3 concentrations fell instead of rising with the firework displays. Interactions between firework displays and other human activities caused different change trends of pollutants. PM2.5 and PM10 were the main pollutants, and the rural living quarter had some of the highest pollution levels.
O'Donoghue, R T; Broderick, B M
2007-09-01
A 5 week monitoring campaign was carried out in Dublin City centre, to establish which site gave a more accurate background city centre estimation: a roof-top or green field site. This background represented a conservative estimate of HC exposure in Dublin City centre, useful for quantifying health effects related to this form of pollution and also for establishing a local background relative to the four surrounding main roads when the wind direction is travelling towards each road with the background receptor upwind. Over the entire monitoring campaign, the lowest concentrations and relative standard deviations were observed at the green field site, regardless of time of day or meteorological effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bytnerowicz, A.; Olszyk, D.M.; Dawson, P.J.
Concentrations of gaseous and particulate air pollutants, and deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup {minus}2}{sub 4}, and NH{sup +}{sub 4} ions to branches of California lilac (Ceanothus crassifolius Torr.), Coulter pine (Pinus coulteri D. Don.), ponderosa pine (P. ponderosa Dougl. ex P. C. Lawson), nylon filters, and paper filters were measured in open-top field chambers with different filtration materials and in chamberless outside plots. Additionally, concentrations of O{sub 3}, NO{sub 2}, NO, SO{sub 2} and total S compounds also were determined in the chambers. Effects of different air filtrations were more evident for deposition fluxes to plant and surrogatemore » surfaces. On the average, in the CHARCOAL chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} to the surfaces were reduced to 21, 38, and 26% of the outside values, respectively. In the DUST 1 DUST 2 chambers, deposition fluxes of NO{sup {minus}}{sub 3}, SO{sup 2{minus}}{sub 4}, and NH{sup +}{sub 4} were reduced to about 50, 56, and 75% of the outside levels, respectively. Deposition fluxes of the studied ions to plants were much lower than to nylon and paper filters.« less
NASA Technical Reports Server (NTRS)
Kibler, J. F.; Suttles, J. T.
1977-01-01
One way to obtain estimates of the unknown parameters in a pollution dispersion model is to compare the model predictions with remotely sensed air quality data. A ground-based LIDAR sensor provides relative pollution concentration measurements as a function of space and time. The measured sensor data are compared with the dispersion model output through a numerical estimation procedure to yield parameter estimates which best fit the data. This overall process is tested in a computer simulation to study the effects of various measurement strategies. Such a simulation is useful prior to a field measurement exercise to maximize the information content in the collected data. Parametric studies of simulated data matched to a Gaussian plume dispersion model indicate the trade offs available between estimation accuracy and data acquisition strategy.
Harmful effect of detergents on lipase.
Fatima, Sadaf; Ajmal, Rehan; Badr, Gamal; Khan, Rizwan H
2014-11-01
In order to study effects of detergents at molecular level, we have done activity measurements of wheat germ lipase in increasing concentration of some commercial detergents. Conformational changes in protein structure using circular dichroism and fluorescence spectroscopy were studied in increasing concentration of sodium dodecyl sulfate. Our study proves that detergents may lead to loss of enzymatic activity and structure of plant enzymes. Since detergents are common source of pollution in water bodies and the water from these resources can be used in fields, our study may prove helpful in creating awareness about harmful action of detergents.
NASA Astrophysics Data System (ADS)
Menut, Laurent; Coll, Isabelle; Cautenet, Sylvie
2005-03-01
During the summer 2001, several photo-oxidant pollution episodes were documented around Marseilles-Fos-Berre in the South of France within the framework of the ESCOMPTE campaign. The site is composed of large cities (Marseilles, Aix, and Toulon), significant factories (Fos-Berre), a dense road network, and extensive rural area. Both biogenic and anthropogenic emissions are thus significative. Located close to the Mediterranean Sea and framed by the Pyrenees and the Alps Mountains, pollutant concentrations are under the influence of strong emissions as well as a complex meteorology. During the whole summer 2001, the chemistry-transport model CHIMERE was used to forecast pollutant concentrations. The ECMWF forecast meteorological fields were used as forcing, with a raw spatial and temporal resolution of 0.5° and 3 h, respectively. It was observed that even if the synoptic dynamic processes were correctly described, the resolution was not always able to detail small-scale dynamics (sea breezes and orographical winds). To estimate the impact of meteorological forcing on the modeled concentration accuracy, an intercomparison exercise has thus been carried out on the same episode but with two sets of meteorological data: ECMWF data (with horizontal and temporal resolution of 0.5° and 3 h) and data from the mesoscale model RAMS (3 km and 1 h). The two sets of meteorological data are compared and discussed in terms of raw differences as a function of time and location, and in terms of induced discrepancies between the modeled and observed ozone concentration fields. It was shown that even if the RAMS model provides a better description of land-sea breezes and nocturnal boundary layer processes, the simulated ozone time series are satisfactory with the two meteorological forcings. In the context of ozone forecast, the scores are better with ECMWF. This is attributed to the diffusive aspect of these data that will more easily catch localized peaks, while a small error in wind speed or direction in RAMS will misplace the ozone plume.
Hydrodynamics and water quality models applied to Sepetiba Bay
NASA Astrophysics Data System (ADS)
Cunha, Cynara de L. da N.; Rosman, Paulo C. C.; Ferreira, Aldo Pacheco; Carlos do Nascimento Monteiro, Teófilo
2006-10-01
A coupled hydrodynamic and water quality model is used to simulate the pollution in Sepetiba Bay due to sewage effluent. Sepetiba Bay has a complicated geometry and bottom topography, and is located on the Brazilian coast near Rio de Janeiro. In the simulation, the dissolved oxygen (DO) concentration and biochemical oxygen demand (BOD) are used as indicators for the presence of organic matter in the body of water, and as parameters for evaluating the environmental pollution of the eastern part of Sepetiba Bay. Effluent sources in the model are taken from DO and BOD field measurements. The simulation results are consistent with field observations and demonstrate that the model has been correctly calibrated. The model is suitable for evaluating the environmental impact of sewage effluent on Sepetiba Bay from river inflows, assessing the feasibility of different treatment schemes, and developing specific monitoring activities. This approach has general applicability for environmental assessment of complicated coastal bays.
Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega
2016-06-07
Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.
Zaneveld, Jesse R.; Burkepile, Deron E.; Shantz, Andrew A.; Pritchard, Catharine E.; McMinds, Ryan; Payet, Jérôme P.; Welsh, Rory; Correa, Adrienne M. S.; Lemoine, Nathan P.; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A.; Thurber, Rebecca Vega
2016-01-01
Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral–algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism. PMID:27270557
Reduction of air pollutant concentrations in an indoor ice-skating rink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K.; Yanagisawa, Yukio; Spengler, J.D.
1994-01-01
High carbon monoxide and nitrogen dioxide concentrations were measured in an indoor ice-skating rink with fuel-powered ice-resurfacing equipment. In 22% to 33% of the measurements over 90-min segments, CO concentrations exceeded 20 [mu]L/L as a 90-min average in the absence of rink ventilation. Average NO[sub 2] concentrations over 14 h were higher than 600 nL/L. Reduction of air pollutant concentrations in the ice-skating rink is necessary to prevent air-pollutant-exposure-related health incidents. Various methods for reducing air pollutants in an ice-skating rink were evaluated by simultaneously measuring CO and NO[sub 2] concentrations. Single pollution reduction attempts, such as extension of themore » exhaust pipe, reduction in the number of resurfacer operations, or use of an air recirculation system, did not significantly reduce air pollutant concentrations in the rink. Full operation of the mechanical ventilation system combined with reduced resurfacer operation was required to keep the air pollutant levels in the skating rink below the recommended guidelines. This investigation showed that management of clean air quality in an ice-skating rink is practically difficult as long as fuel-powered resurfacing equipment is used. 16 refs., 3 figs., 5 tabs.« less
40 CFR 423.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... performance standards: (a) The pH of all discharges, except once through cooling water, shall be within the... the concentration listed in the following table: Pollutant or pollutant property NSPS effluent... cleaning wastes times the concentration listed in the following table: Pollutant or pollutant property NSPS...
40 CFR 423.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... performance standards: (a) The pH of all discharges, except once through cooling water, shall be within the... the concentration listed in the following table: Pollutant or pollutant property NSPS effluent... cleaning wastes times the concentration listed in the following table: Pollutant or pollutant property NSPS...
40 CFR 423.15 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... performance standards: (a) The pH of all discharges, except once through cooling water, shall be within the... the concentration listed in the following table: Pollutant or pollutant property NSPS effluent... cleaning wastes times the concentration listed in the following table: Pollutant or pollutant property NSPS...
NASA Astrophysics Data System (ADS)
Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar
2015-04-01
Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their production and deposition and interaction with BVOCs at low nitrogen oxides polluted area. Forests of Beskydy Mountains could play a key role in pollutants removal because of closeness to highest ozone and aerosol polluted area of the Czech Republic - Ostrava region, where heavy industry is located.
Huang, Guowen; Lee, Duncan; Scott, E Marian
2018-03-30
The long-term health effects of air pollution are often estimated using a spatio-temporal ecological areal unit study, but this design leads to the following statistical challenges: (1) how to estimate spatially representative pollution concentrations for each areal unit; (2) how to allow for the uncertainty in these estimated concentrations when estimating their health effects; and (3) how to simultaneously estimate the joint effects of multiple correlated pollutants. This article proposes a novel 2-stage Bayesian hierarchical model for addressing these 3 challenges, with inference based on Markov chain Monte Carlo simulation. The first stage is a multivariate spatio-temporal fusion model for predicting areal level average concentrations of multiple pollutants from both monitored and modelled pollution data. The second stage is a spatio-temporal model for estimating the health impact of multiple correlated pollutants simultaneously, which accounts for the uncertainty in the estimated pollution concentrations. The novel methodology is motivated by a new study of the impact of both particulate matter and nitrogen dioxide concentrations on respiratory hospital admissions in Scotland between 2007 and 2011, and the results suggest that both pollutants exhibit substantial and independent health effects. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus
2017-04-01
Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World Health Organization (WHO) guideline concentration limits for O3 and of the regulatory limits for NO2. Model tests were performed with CityChem to study the ozone formation rate with simultaneous variation of emissions of nitrogen oxides (NOx) and volatile organic compounds (VOC). Emissions of VOC in urban areas are not well quantified as they may originate from various sources, including solvent usage, industry, combustion plants and vehicular traffic. The employed chemical mechanism contains large uncertainties with respect to ozone formation. Observed high-O3 episodes were analyzed by comparing modelled pollutant concentrations with concentration data from the Hamburg air quality surveillance network (http://luft.hamburg.de/). The analysis inspected possible reasons for too low modelled O3 in summer such as missing emissions of VOC from natural sources like green parks and the vertical exchange of O3 towards the surface.
Healthy neighborhoods: walkability and air pollution.
Marshall, Julian D; Brauer, Michael; Frank, Lawrence D
2009-11-01
The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O(3)) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O(3) was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. All three attributes exhibit an urban-rural gradient, with high walkability and NO concentrations, and low O(3) concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O(3) concentrations. Higher-income areas tend to have lower pollution (NO and O(3)). "Sweet-spot" neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident's exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level.
Long term assessment of air quality from a background station on the Malaysian Peninsula.
Latif, Mohd Talib; Dominick, Doreena; Ahamad, Fatimah; Khan, Md Firoz; Juneng, Liew; Hamzah, Firdaus Mohamad; Nadzir, Mohd Shahrul Mohd
2014-06-01
Rural background stations provide insight into seasonal variations in pollutant concentrations and allow for comparisons to be made with stations closer to anthropogenic emissions. In Malaysia, the designated background station is located in Jerantut, Pahang. A fifteen-year data set focusing on ten major air pollutants and four meteorological variables from this station were analysed. Diurnal, monthly and yearly pollutant concentrations were derived from hourly continuous monitoring data. Statistical methods employed included principal component regression (PCR) and sensitivity analysis. Although only one of the yearly concentrations of the pollutants studied exceeded national and World Health Organisation (WHO) guideline standards, namely PM10, seven of the pollutants (NO, NO2, NOx, O3, PM10, THC and CH4) showed a positive upward trend over the 15-year period. High concentrations of PM10 were recorded during severe haze episodes in this region. Whilst, monthly concentrations of most air pollutants, such as: PM10, O3, NOx, NO2, CO and NmHC were recorded at higher concentrations between June and September, during the southwest monsoon. Such results correspond with the mid-range transport of pollutants from more urbanised and industrial areas. Diurnal patterns, rationed between major air pollutants and sensitivity analysis, indicate the influence of local traffic emissions on air quality at the Jerantut background station. Although the pollutant concentrations have not shown a rapid increase, an alternative background station will need to be assigned within the next decade if development projects in the surrounding area are not halted. Copyright © 2014 Elsevier B.V. All rights reserved.
Aerosol chemistry in Beijing, China: Different pollution regimes and diurnal profiles
NASA Astrophysics Data System (ADS)
van Pinxteren, D.; Brüggemann, E.; Gnauk, T.; Iinuma, Y.; Müller, K.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Herrmann, H.
2009-04-01
The rapid economic development during the last three decades in China has led to a severe decrease in air quality, especially in densely populated regions such as Beijing, Shanghai, and the Pearl River Delta. Although during last years a number of measures for air pollution control have been implemented especially in the capital Beijing, air pollution is still regarded to be one of the top environmental concerns in China during the next decade. To better characterize the processes leading to the frequently observed high concentrations of air pollutants on a regional scale, the international field campaign "Campaigns of Air Quality Research in Beijing 2006" (CAREBEIJING2006) was conducted in summer 2006. Organized by the Peking University, project partners from Japan, Korea, Hong Kong, Germany, and China studied the various aspects of gaseous and particulate air pollution in a megacity environment. In this contribution, we present chemical data of size-resolved particles, obtained by a 5-stage Berner impactor (0.05-10 μm) during 3 weeks at both an urban and a suburban site in the area of Beijing, China. The sampling time of the impactors was about 4-5 hours. This allowed for taking four size-resolved samples per day and obtaining rough diurnal profiles of particle components. The samples were analyzed for inorganic ions (Cl-, SO42-, NO3-, NH4+, K+, Ca2+, Na+, Mg2+), carbon sum parameters (OC, EC, WSOC), and a variety of organic compounds such as dicarboxylic acids, alkanes, PAHs and, for the first time in China, nitrooxy-organosulfates. On average, the observed PM10 mass concentrations were 133 μg m-3 and 112 μg m-3 at the urban and suburban site, respectively. In general, the observed concentrations of particulate pollutants were similarly high as reported from previous studies in the Beijing summer atmosphere. A back trajectory analysis allowed the classification of the samples into different meteorological categories with different air mass origins. A high influence of meteorology on the PM pollution was observed: The highest concentrations of both PM mass and particle constituents were measured when sampled air masses originated south of Beijing and moved over the area with low wind speeds. During such periods, a strong increase of daytime concentrations of the secondary ions sulfate, nitrate, ammonium, and also some dicarboxylic acids could be observed. The comparison of a suburban sampling site to an urban one revealed a clear influence of urban emissions on top of the regional pollution level for a period with relatively stagnant meteorological conditions and high photochemical processing. In contrast, during measurement periods with higher wind speeds and different air mass origins, the concentration levels of particulate pollutants were basically the same at the two sites. During an intensive period, a strong diurnal variation of particle sulfate concentration with increasing values from morning to afternoon was observed, which could be attributed to regional production. Similar observations where made for oxalic acid. Generally, water soluble organic carbon concentrations were enhanced by a factor of 2 in fine particles during the studied period of intense photochemistry. Elemental carbon, alkanes, and PAHs showed clear nighttime concentration maxima obviously due to enhanced emissions and a relatively low mixing volume during night. For the newly studied compound group of nitrooxy-organosulfates qualitative data can be presented indicating an influence of night-time chemistry and/or anthropogenic activities on their concentrations. The investigation of an intense nucleation and particle growth event revealed that the youngest particles largely consist of ammonium sulfate and primary carbonaceous material, with a possible contribution of secondary organic compounds.
Overview of the Benzene and Other Toxics Exposure (BEE-TEX) Field Study.
Olaguer, Eduardo P
2015-01-01
The Benzene and other Toxics Exposure (BEE-TEX) field study was an experimental campaign designed to demonstrate novel methods for measuring ambient concentrations of hazardous air pollutants (HAPs) in real time and to attribute these concentrations to quantified releases from specific emission points in industrial facilities while operating outside facility fence lines. BEE-TEX was conducted in February 2015 at three neighboring communities in the Houston Ship Channel of Texas, where a large number of petrochemical facilities are concentrated. The novel technologies deployed during BEE-TEX included: (1) tomographic remote sensing based on differential optical absorption spectroscopy; (2) real-time broadcasting of ambient air monitoring data over the World Wide Web; (3) real-time source attribution and quantification of HAP emissions based on either tomographic or mobile measurement platforms; and (4) the use of cultured human lung cells in vitro as portable indicators of HAP exposure.
Overview of the Benzene and Other Toxics Exposure (BEE-TEX) Field Study
Olaguer, Eduardo P.
2015-01-01
The Benzene and other Toxics Exposure (BEE-TEX) field study was an experimental campaign designed to demonstrate novel methods for measuring ambient concentrations of hazardous air pollutants (HAPs) in real time and to attribute these concentrations to quantified releases from specific emission points in industrial facilities while operating outside facility fence lines. BEE-TEX was conducted in February 2015 at three neighboring communities in the Houston Ship Channel of Texas, where a large number of petrochemical facilities are concentrated. The novel technologies deployed during BEE-TEX included: (1) tomographic remote sensing based on differential optical absorption spectroscopy; (2) real-time broadcasting of ambient air monitoring data over the World Wide Web; (3) real-time source attribution and quantification of HAP emissions based on either tomographic or mobile measurement platforms; and (4) the use of cultured human lung cells in vitro as portable indicators of HAP exposure. PMID:26549972
Wang, Shumin; He, Qiang; Ai, Hainan; Wang, Zhentao; Zhang, Qianqian
2013-03-01
To investigate the distribution of pollutant concentrations and pollution loads in stormwater runoff in Chongqing, six typical land use types were selected and studied from August 2009 to September 2011. Statistical analysis on the distribution of pollutant concentrations in all water samples shows that pollutant concentrations fluctuate greatly in rainfall-runoff, and the concentrations of the same pollutant also vary greatly in different rainfall events. In addition, it indicates that the event mean concentrations (EMCs) of total suspended solids (TSS) and chemical oxygen demand (COD) from urban traffic roads (UTR) are significantly higher than those from residential roads (RR), commercial areas (CA), concrete roofs (CR), tile roofs (TRoof), and campus catchment areas (CCA); and the EMCs of total phosphorus (TP) and NH3-N from UTR and CA are 2.35-5 and 3 times of the class-II standard values specified in the Environmental Quality Standards for Surface Water (GB 3838-2002). The EMCs of Fe, Pb and Cd are also much higher than the class-III standard values. The analysis of pollution load producing coefficients (PLPC) reveals that the main pollution source of TSS, COD and TP is UTR. The analysis of correlations between rainfall factors and EMCs/PLPC indicates that rainfall duration is correlated with EMCs/PLPC of TSS for TRoof and TP for UTR, while rainfall intensity is correlated with EMCs/PLPC of TP for both CR and CCA. The results of this study provide a reference for better management of non-point source pollution in urban regions.
[CALCULATION OF THE PROBABILITY OF METALS INPUT INTO AN ORGANISM WITH DRINKING POTABLE WATERS].
Tunakova, Yu A; Fayzullin, R I; Valiev, V S
2015-01-01
The work was performed in framework of the State program for the improvement of the competitiveness of Kazan (Volga) Federal University among the world's leading research and education centers and subsidies unveiled to Kazan Federal University to perform public tasks in the field of scientific research. In the current methodological recommendations "Guide for assessing the risk to public health under the influence of chemicals that pollute the environment," P 2.1.10.1920-04 there is regulated the determination of quantitative and/or qualitative characteristics of the harmful effects to human health from exposure to environmental factors. We proposed to complement the methodological approaches presented in P 2.1.10.1920-04, with the estimation of the probability of pollutants input in the body with drinking water which is the greater, the higher the order of the excess of the actual concentrations of the substances in comparison with background concentrations. In the paper there is proposed a method of calculation of the probability of exceeding the actual concentrations of metal cations above the background in samples of drinking water consumed by the population, which were selected at the end points of consumption in houses and apartments, to accommodate the passage of secondary pollution ofwater pipelines and distributing paths. Research was performed on the example of Kazan, divided into zones. The calculation of probabilities was made with the use of Bayes' theorem.
Petracchini, Francesco; Romagnoli, Paola; Paciucci, Lucia; Vichi, Francesca; Imperiali, Andrea; Paolini, Valerio; Liotta, Flavia; Cecinato, Angelo
2017-02-01
The environmental influence of biomass burning for civil uses was investigated through the determination of several air toxicants in the town of Leonessa and its surroundings, in the mountain region of central Italy. Attention was focussed on PM 10 , polycyclic aromatic hydrocarbons (PAHs) and regulated gaseous pollutants (nitrogen dioxide, ozone and benzene). Two in-field campaigns were carried out during the summer 2012 and the winter 2013. Contemporarily, air quality was monitored in Rome and other localities of Lazio region. In the summer, all pollutants, with the exception of ozone, were more abundant in Rome. On the other hand, in the winter, PAH concentration was higher in Leonessa (15.8 vs. 7.0 ng/m 3 ), while PM 10 was less concentrated (22 vs. 34 μg/m 3 ). Due to lack of other important sources and to limited impact of vehicle traffic, biomass burning was identified as the major PAH source in Leonessa during the winter. This hypothesis was confirmed by PAH molecular signature of PM 10 (i.e. concentration diagnostic ratios and 206 ion mass trace in the chromatograms). A similar phenomenon (i.e. airborne particulate levels similar to those of the capital city but higher PAH loads) was observed in other locations of the province, suggesting that uncontrolled biomass burning contributed to pollution across the Rome metropolitan area.
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specific air pollution concentration at a particular air quality monitoring location. (2) Demonstration to... exceptional event caused a specific air pollution concentration in excess of one or more national ambient air... specific air pollution concentration in excess of one or more national ambient air quality standards at a...
40 CFR 60.2975 - What equations must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 60.2975 What equations must I use? (a) Percent oxygen. Adjust all pollutant concentrations to 7 percent oxygen using equation 1 of this section. ER16DE05.000 Where: Cadj = pollutant concentration adjusted to 7 percent oxygen Cmeas = pollutant concentration measured on a dry basis (20.9-7) = 20.9...
NASA Astrophysics Data System (ADS)
Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal
2003-10-01
Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, S.B.; Miller, D.J.; Louie, P.K.K.
1996-05-01
Vapor-phase and suspended particulate (<50 {mu}m) samples were collected on polyurethane foam (PUF) and quartz fiber filters in rural North Dakota to determine the air concentrations of pesticides in an area where agriculture is a primary source of semivolatile pollutants. Samples were collected at two sites from 1992 to 1994 that were at least 0.4 km from the nearest farmed fields and known application of pesticides, and analyzed for 22 different organochlorine, triazine, and acid herbicide pesticides. Fourteen pesticides were found above the detection limits (typically <1 pg/m{sup 3}). Concentrations of polychlorinated biphenyl (PCB) congeners were much lower (<50 pg/m{supmore » 3} in all cases) than many of the pesticides. These results demonstrate that pesticides are among the most prevalent chlorinated semivolatile pollutants present in rural North Dakota, that significant transport of pesticides occurs both in the vapor-phase and on suspended particulate matter, and that blown soil may be a significant mechanism for introducing pesticides into surface and ground waters. 32 refs., 2 figs., 4 tabs.« less
Impacts of Realistic Urban Heating. Part II: Air Quality and City Breathability
NASA Astrophysics Data System (ADS)
Nazarian, Negin; Martilli, Alberto; Norford, Leslie; Kleissl, Jan
2018-03-01
Urban morphology and inter-building shadowing result in a non-uniform distribution of surface heating in urban areas, which can significantly modify the urban flow and thermal field. In Part I, we found that in an idealized three-dimensional urban array, the spatial distribution of the thermal field is correlated with the orientation of surface heating with respect to the wind direction (i.e. leeward or windward heating), while the dispersion field changes more strongly with the vertical temperature gradient in the street canyon. Here, we evaluate these results more closely and translate them into metrics of "city breathability," with large-eddy simulations coupled with an urban energy-balance model employed for this purpose. First, we quantify breathability by, (i) calculating the pollutant concentration at the pedestrian level (horizontal plane at z≈ 1.5 -2 m) and averaged over the canopy, and (ii) examining the air exchange rate at the horizontal and vertical ventilating faces of the canyon, such that the in-canopy pollutant advection is distinguished from the vertical removal of pollution. Next, we quantify the change in breathability metrics as a function of previously defined buoyancy parameters, horizontal and vertical Richardson numbers (Ri_h and Ri_v , respectively), which characterize realistic surface heating. We find that, unlike the analysis of airflow and thermal fields, consideration of the realistic heating distribution is not crucial in the analysis of city breathability, as the pollutant concentration is mainly correlated with the vertical temperature gradient (Ri_v ) as opposed to the horizontal (Ri_h ) or bulk (Ri_b ) thermal forcing. Additionally, we observe that, due to the formation of the primary vortex, the air exchange rate at the roof level (the horizontal ventilating faces of the building canyon) is dominated by the mean flow. Lastly, since Ri_h and Ri_v depend on the meteorological factors (ambient air temperature, wind speed, and wind direction) as well as urban design parameters (such as surface albedo), we propose a methodology for mapping overall outdoor ventilation and city breathability using this characterization method. This methodology helps identify the effects of design on urban microclimate, and ultimately informs urban designers and architects of the impact of their design on air quality, human health, and comfort.
In situ assessment of phytotechnologies for multicontaminated soil management.
Ouvrard, S; Barnier, C; Bauda, P; Beguiristain, T; Biache, C; Bonnard, M; Caupert, C; Cébron, A; Cortet, J; Cotelle, S; Dazy, M; Faure, P; Masfaraud, J F; Nahmani, J; Palais, F; Poupin, P; Raoult, N; Vasseur, P; Morel, J L; Leyval, C
2011-01-01
Due to human activities, large volumes of soils are contaminated with organic pollutants such as polycyclic aromatic hydrocarbons, and very often by metallic pollutants as well. Multipolluted soils are therefore a key concern for remediation. This work presents a long-term evaluation of the fate and environmental impact of the organic and metallic contaminants of an industrially polluted soil under natural and plant-assisted conditions. A field trial was followed for four years according to six treatments in four replicates: unplanted, planted with alfalfa with or without mycorrhizal inoculation, planted with Noccaea caerulescens, naturally colonized by indigenous plants, and thermally treated soil planted with alfalfa. Leaching water volumes and composition, PAH concentrations in soil and solutions, soil fauna and microbial diversity, soil and solution toxicity using standardized bioassays, plant biomass, mycorrhizal colonization, were monitored. Results showed that plant cover alone did not affect total contaminant concentrations in soil. However, it was most efficient in improving the contamination impact on the environment and in increasing the biological diversity. Leaching water quality remained an issue because of its high toxicity shown by micro-algae testing. In this matter, prior treatment of the soil by thermal desorption proved to be the only effective treatment.
Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang
2016-02-01
Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Zhao, Laijun
2018-02-01
China's Beijing-Tianjin-Hebei (BTH) region suffers from the country's worst air pollution. The problem has caused widespread concern both at home and abroad. Based on long-term and massive data mining of PM2.5 and PM10 concentration, we found that these pollutants showed similar variations in four seasons, but the most severe pollution was in winter. Through cluster analysis of the winter daily average concentration (DAC) of the two pollutants, we defined regions with similar variations in pollutant concentrations in winter. For the most polluted cities in BTH, the relationship between correlation coefficients for winter DAC and the distance between cities revealed that PM2.5 has regional, large-scale characteristics, with concentrated outbreaks, whereas PM10 has local, small-scale characteristics, with outbreaks at multiple locations. By selecting the key cities with the strongest linear relationship between the pollutant's DAC of each city and the daily individual air quality index values of the BTH region and through cluster analysis on the correlations between the pollutant DACs of the key cities, we defined regional divisions suitable for Joint Prevention and Control of Atmospheric Pollution (JPCAP) program to control PM2.5 and PM10. Comprehensively considering the degree of influence of regional atmospheric pollution control (RAPC) on air quality in BTH, as well as the elasticity and urgency of RAPC, we defined the control grades of the JPCAP regions. We found both the regions and corresponding control grades were consistent for PM2.5 and PM10. The thinking and methods of atmospheric pollution control we proposed will have broad significance for implementation of RAPC in other regions around the world.
Hu, Pengjie; Ouyang, Younan; Wu, Longhua; Shen, Libo; Luo, Yongming; Christie, Peter
2015-01-01
Pot and field experiments were conducted to investigate the effects of water regimes on the speciation and accumulation of arsenic (As) and cadmium (Cd) in Brazilian upland rice growing in soils polluted with both As and Cd. In the pot experiment constant and intermittent flooding treatments gave 3-16 times higher As concentrations in soil solution than did aerobic conditions but Cd showed the opposite trend. Compared to arsenate, there were more marked changes in the arsenite concentrations in the soil solution as water management shifted, and therefore arsenite concentrations dominated the As speciation and bioavailability in the soil. In the field experiment As concentrations in the rice grains increased from 0.14 to 0.21 mg/kg while Cd concentrations decreased from 0.21 to 0.02 mg/kg with increasing irrigation ranging from aerobic to constantly flooding conditions. Among the various water regimes the conventional irrigation treatment produced the highest rice grain yield of 6.29 tons/ha. The As speciation analysis reveals that the accumulation of dimethylarsinic acid (from 11.3% to 61.7%) made a greater contribution to the increase in total As in brown rice in the intermittent and constant flooding treatments compared to the intermittent-aerobic treatment. Thus, water management exerted opposite effects on Cd and As speciation and bioavailability in the soil and consequently on their accumulation in the upland rice. Special care is required when irrigation regime methods are employed to mitigate the accumulation of metal(loid)s in the grain of rice grown in soils polluted with both As and Cd. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Petalas, Christos; Tsihrintzis, Vassilios A.; Pisinaras, Vassilios
2006-03-01
The assessment of groundwater vulnerability to pollution aims at highlighting areas at a high risk of being polluted. This study presents a methodology, to estimate the risk of an aquifer to be polluted from concentrated and/or dispersed sources, which applies an overlay and index method involving several parameters. The parameters are categorized into three factor groups: factor group 1 includes parameters relevant to the internal aquifer system’s properties, thus determining the intrinsic aquifer vulnerability to pollution; factor group 2 comprises parameters relevant to the external stresses to the system, such as human activities and rainfall effects; factor group 3 incorporates specific geological settings, such as the presence of geothermal fields or salt intrusion zones, into the computation process. Geographical information systems have been used for data acquisition and processing, coupled with a multicriteria evaluation technique enhanced with fuzzy factor standardization. Moreover, besides assigning weights to factors, a second set of weights, i.e., order weights, has been applied to factors on a pixel by pixel basis, thus allowing control of the level of risk in the vulnerability determination and the enhancement of local site characteristics. Individual analysis of each factor group resulted in three intermediate groundwater vulnerability to pollution maps, which were combined in order to produce the final composite groundwater vulnerability map for the study area. The method has been applied in the region of Eastern Macedonia and Thrace (Northern Greece), an area of approximately 14,000 km2. The methodology has been tested and calibrated against the measured nitrate concentration in wells, in the northwest part of the study area, providing results related to the aggregation and weighting procedure.
Pedersen, Marie; Siroux, Valérie; Pin, Isabelle; Charles, Marie Aline; Forhan, Anne; Hulin, Agnés; Galineau, Julien; Lepeule, Johanna; Giorgis-Allemand, Lise; Sunyer, Jordi; Annesi-Maesano, Isabella; Slama, Rémy
2013-10-01
Spatially-resolved air pollution models can be developed in large areas. The resulting increased exposure contrasts and population size offer opportunities to better characterize the effect of atmospheric pollutants on respiratory health. However the heterogeneity of these areas may also enhance the potential for confounding. We aimed to discuss some analytical approaches to handle this trade-off. We modeled NO2 and PM10 concentrations at the home addresses of 1082 pregnant mothers from EDEN cohort living in and around urban areas, using ADMS dispersion model. Simulations were performed to identify the best strategy to limit confounding by unmeasured factors varying with area type. We examined the relation between modeled concentrations and respiratory health in infants using regression models with and without adjustment or interaction terms with area type. Simulations indicated that adjustment for area limited the bias due to unmeasured confounders varying with area at the costs of a slight decrease in statistical power. In our cohort, rural and urban areas differed for air pollution levels and for many factors associated with respiratory health and exposure. Area tended to modify effect measures of air pollution on respiratory health. Increasing the size of the study area also increases the potential for residual confounding. Our simulations suggest that adjusting for type of area is a good option to limit residual confounding due to area-associated factors without restricting the area size. Other statistical approaches developed in the field of spatial epidemiology are an alternative to control for poorly-measured spatially-varying confounders. © 2013 Elsevier Ltd. All rights reserved.
Chikere, Chioma Blaise; Azubuike, Christopher Chibueze; Fubara, Evan Miebaka
2017-06-01
Acute and chronic pollution of environments with crude oil does not bode well for biota living within the vicinity of polluted environments. This is due to environmental and public health concerns on the negative impact of crude oil pollution on living organisms. Enhancing microbial activities by adding nutrients and other amendments had proved effective in pollutant removal during bioremediation. This study was carried out to determine how microbial group respond during remediation by enhanced natural attenuation (RENA) during a field-scale bioremediation. Crude oil-polluted soil samples were collected (before, during, and after remediation) from a site undergoing remediation by enhanced natural attenuation (RENA) at Ikarama Community, Bayelsa State, Nigeria, and were analyzed for total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH), and a shift in microbial community. The gas chromatography-flame ionization detector (GC-FID) results showed that the pollutant concentrations (TPH and PAH) reduced by 98 and 85%, respectively, after the remediation. Culturable hydrocarbon utilizing bacteria (CHUB) was highest (8.3 × 10 4 cfu/g) for sample collected during the remediation studies, whilst sample collected after remediation had low CHUB (6.1 × 10 4 cfu/g) compared to that collected before remediation (7.7 × 10 4 cfu/g). Analysis of 16S rRNA of the isolated CHUB showed they belonged to eight bacterial genera namely: Achromobacter, Alcaligenes, Azospirillus, Bacillus, Lysinibacillus, Ochrobactrum, Proteus, and Pusillimonas, with Alcaligenes as the dominant genus. In this study, it was observed that the bacterial community shifted from mixed group (Gram-positive and -negative) before and during the remediation, to only the latter group after the remediation studies. The betaproteobacteria groups were the dominant isolated bacterial phylotype. This study showed that RENA is an effective method of reducing pollutant concentration in crude oil-polluted sites, and could be applied to other polluted sites in the Niger Delta region of Nigeria to mitigate the devastating effects of crude oil pollution.
Huang, Guowen; Lee, Duncan; Scott, Marian
2015-01-01
The long-term health effects of air pollution can be estimated using a spatio-temporal ecological study, where the disease data are counts of hospital admissions from populations in small areal units at yearly intervals. Spatially representative pollution concentrations for each areal unit are typically estimated by applying Kriging to data from a sparse monitoring network, or by computing averages over grid level concentrations from an atmospheric dispersion model. We propose a novel fusion model for estimating spatially aggregated pollution concentrations using both the modelled and monitored data, and relate these concentrations to respiratory disease in a new study in Scotland between 2007 and 2011. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Long-Term Oil Pollution and In Situ Microbial Response of Groundwater in Northwest China.
Sun, Yujiao; Lu, Sidan; Zhao, Xiaohui; Ding, Aizhong; Wang, Lei
2017-05-01
Potential threats exist where groundwater is polluted by high concentrations of oil compounds (980.20 mg L -1 the highest TPHs). An abandoned petrochemical plant in Lanzhou City, where long-term petrochemical products leakage contaminated the groundwater, was used as a field site in this study. To determine the extent of pollution and find an effective solution, chemical techniques combined with molecular biological techniques were used to survey the migration and decomposition of pollutants. Moreover, Illumina Sequencing was employed to reveal the microbial changes of different sites. Light-chain alkanes (mostly C6-C9), most benzene compounds, and some polycyclic aromatic hydrocarbons (naphthalene, 2-methylnaphthalene) mainly polluted the source. C29 to C36 and chlorobenzenes (hexachlorocyclohexane) polluted the secondary polluted sites. Moreover, chloralkane (trichloroethane and dichloroethane), benzene derivatives (trimethylbenzene and butylbenzene), and PAHs (fluorene and phenanthrene) were present in the other longtime-contaminated water. The bacterial genera are closely related with the chemical matters, and different groups of microorganisms gather in the sample sites that are polluted with different kinds of oil. The biodiversity and abundance of observed species change with pollution conditions. The dominant phyla (81%) of the bacterial community structure are Proteobacteria (62.2% of the total microbes), Bacteroidetes (8.85%), Actinobacteria (6.70%), and Choloroflexi (3.03%). Pseudomonadaceae is significant in the oil-polluted source and Comamonadaceae is significant in the secondary polluted (migrated oil) sample; these two genera are natural decomposers of refractory matters. Amycolatopsis, Rhodocyclaceae, Sulfurimonas, and Sulfuricurvum are the dominant genera in the long-migrated oil-polluted samples. Bioavailability of the oil-contaminated place differs with levels of pollution and cleaning the worse-polluted sites by microbes is more difficult.
Chemotactic selection of pollutant degrading soil bacteria
Hazen, Terry C.
1994-01-01
A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.
Chemotactic selection of pollutant degrading soil bacteria
Hazen, T.C.
1991-03-04
A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.
NASA Astrophysics Data System (ADS)
Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas
2013-04-01
In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.
Pannullo, Francesca; Lee, Duncan; Neal, Lucy; Dalvi, Mohit; Agnew, Paul; O'Connor, Fiona M; Mukhopadhyay, Sabyasachi; Sahu, Sujit; Sarran, Christophe
2017-03-27
Estimating the long-term health impact of air pollution in a spatio-temporal ecological study requires representative concentrations of air pollutants to be constructed for each geographical unit and time period. Averaging concentrations in space and time is commonly carried out, but little is known about how robust the estimated health effects are to different aggregation functions. A second under researched question is what impact air pollution is likely to have in the future. We conducted a study for England between 2007 and 2011, investigating the relationship between respiratory hospital admissions and different pollutants: nitrogen dioxide (NO 2 ); ozone (O 3 ); particulate matter, the latter including particles with an aerodynamic diameter less than 2.5 micrometers (PM 2.5 ), and less than 10 micrometers (PM 10 ); and sulphur dioxide (SO 2 ). Bayesian Poisson regression models accounting for localised spatio-temporal autocorrelation were used to estimate the relative risks (RRs) of pollution on disease risk, and for each pollutant four representative concentrations were constructed using combinations of spatial and temporal averages and maximums. The estimated RRs were then used to make projections of the numbers of likely respiratory hospital admissions in the 2050s attributable to air pollution, based on emission projections from a number of Representative Concentration Pathways (RCP). NO 2 exhibited the largest association with respiratory hospital admissions out of the pollutants considered, with estimated increased risks of between 0.9 and 1.6% for a one standard deviation increase in concentrations. In the future the projected numbers of respiratory hospital admissions attributable to NO 2 in the 2050s are lower than present day rates under 3 Representative Concentration Pathways (RCPs): 2.6, 6.0, and 8.5, which is due to projected reductions in future NO 2 emissions and concentrations. NO 2 concentrations exhibit consistent substantial present-day health effects regardless of how a representative concentration is constructed in space and time. Thus as concentrations are predicted to remain above limits set by European Union Legislation until the 2030s in parts of urban England, it will remain a substantial health risk for some time.
Potential effects of sulfur pollutants on grape production in New York State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knudson, D.A.; Viessman, S.
1983-01-01
This paper presents the results of a prototype analysis of sulfur pollutants on graph production in New York State. Principal grape production areas for the state are defined and predictions of sulfur dioxide concentrations associated with present and projected sources are computed. Sulfur dioxide concentrations are based on the results of a multi-source dispersion model, whereas concentrations for other pollutants are derived from observations. This information is used in conjunction with results from experiments conducted to identify threshold levels of damage and/or injury to a variety of grape species to pollutants. Determination is then made whether the subject crop ismore » at risk from present and projected concentrations of pollutants.« less
Identifying heavy metal levels in historical flood water deposits using sediment cores.
Lintern, Anna; Leahy, Paul J; Heijnis, Henk; Zawadzki, Atun; Gadd, Patricia; Jacobsen, Geraldine; Deletic, Ana; Mccarthy, David T
2016-11-15
When designing mitigation and restoration strategies for aquatic systems affected by heavy metal contamination, we must first understand the sources of these pollutants. In this study, we introduce a methodology that identifies the heavy metal levels in floodplain lake sediments deposited by one source; fluvial floods. This is done by comparing sediment core heavy metal profiles (i.e., historical pollution trends) to physical and chemical properties of sediments in these cores (i.e., historical flooding trends). This methodology is applied to Willsmere and Bolin Billabongs, two urban floodplain lakes (billabongs) of the Yarra River (South-East Australia). Both billabongs are periodically inundated by flooding of the Yarra River and one billabong (Willsmere Billabong) is connected to an urban stormwater drainage network. 1-2-m long sediment cores (containing sediment deposits up to 500 years old) were taken from the billabongs and analysed for heavy metal concentrations (arsenic, chromium, copper, lead, nickel, zinc). In cores from both billabongs, arsenic concentrations are high in the flood-borne sediments. In Bolin Billabong, absolute metal levels are similar in flood and non-flood deposits. In Willsmere Billabong, absolute copper, lead and zinc levels were generally lower in fluvial flood-borne sediments in the core compared to non-fluvial sediments. This suggests that heavy metal concentrations in Bolin Billabong sediments are relatively similar regardless of whether or not fluvial flooding is occurring. However for Willsmere Billabong, heavy metal concentrations are high when overland runoff, direct urban stormwater discharges or atmospheric deposition is occurring. As such, reducing the heavy metal concentrations in these transport pathways will be of great importance when trying to reduce heavy metal concentrations in Willsmere Billabong sediments. This study presents a proof-of-concept that can be applied to other polluted aquatic systems, to understand the importance of river floods in the contamination of the bed sediments of aquatic systems. As a cost effective and less time consuming alternative to extensive field monitoring, our proposed method can be used to identify the key sources of pollution and therefore support the development of effective management strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finite Difference Formulation for Prediction of Water Pollution
NASA Astrophysics Data System (ADS)
Johari, Hanani; Rusli, Nursalasawati; Yahya, Zainab
2018-03-01
Water is an important component of the earth. Human being and living organisms are demand for the quality of water. Human activity is one of the causes of the water pollution. The pollution happened give bad effect to the physical and characteristic of water contents. It is not practical to monitor all aspects of water flow and transport distribution. So, in order to help people to access to the polluted area, a prediction of water pollution concentration must be modelled. This study proposed a one-dimensional advection diffusion equation for predicting the water pollution concentration transport. The numerical modelling will be produced in order to predict the transportation of water pollution concentration. In order to approximate the advection diffusion equation, the implicit Crank Nicolson is used. For the purpose of the simulation, the boundary condition and initial condition, the spatial steps and time steps as well as the approximations of the advection diffusion equation have been encoded. The results of one dimensional advection diffusion equation have successfully been used to predict the transportation of water pollution concentration by manipulating the velocity and diffusion parameters.
Roles of Meteorology in Changes of Air Pollutants Concentrations in China from 2010 to 2015
NASA Astrophysics Data System (ADS)
Wang, P.; Kota, S. H.; Hu, J.; Ying, Q.; Zhang, H.
2017-12-01
Tremendous efforts have been made to control the severe air pollution in China in recent years. However, no significant improvement was observed according to annual fine particulate matter (PM2.5) concentrations and the concentrations in severe air pollution events in winter. This is partially due to the role of meteorology, which affects the emission, transport, transformation, and deposition of air pollutants. In this study, simulation of air pollutants over China was conducted for six years from 2010 to 2015 with constant anthropogenic emissions to verify the changes of air pollutants due to meteorology changes only. Model performance was validated by comparing with meteorological observations and air pollutants measures from various sources. Four different regions/cities were selected to understand the changes in wind, mixing layer height, temperature, and relative humanity at different seasons. The changes in concentrations of pollutants including PM2.5 and its chemical components and ozone were analyzed and associated with meteorological changes. This study would provide information for designing effective control strategies in different areas with the consideration of meteorological and climate changes.
NASA Astrophysics Data System (ADS)
Wen-feng, Tang; You-biao, Hu
2018-05-01
This paper studies the characteristics of atmospheric pollutant (SO2, NO2, PM2.5 and PM10) and the effects of rainfall on the removal of atmospheric pollutants. The results show atmospheric pollutants concentration vary in different seasons and functional area: atmospheric pollutants concentration in summer and autumn is lower than that in winter and spring; the concentration of SO2 and NO2 in coal-chemical industry areas and light industrial areas is higher, the concentration difference of PM2.5 and PM10 in different functional areas is very small, the removal efficiency of rainfall on atmospheric pollutant is gradually improved with the increasing of daily rainfall, rainfall intensity and rainfall duration, the ability of rainfall to remove pollutants tends to be stable after daily rainfall and rainfall intensity exceeds 30mm and 20mm/h respectively, the effect of rainfall on the removal of PM2.5 was slightly worse than the effect of rainfall on other atmospheric pollutants, the rainfall duration should be 60min, 60min and 80min respectively when the effect of rainfall on NO2, PM10 and SO2 tends to be stable.
Yang, Zhongshan; Wang, Jian
2017-10-01
Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
van Pinxteren, D.; Brüggemann, E.; Gnauk, T.; Iinuma, Y.; Müller, K.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Herrmann, H.
2009-01-01
Beijing, the capital of China, faces severe air pollution problems, resulting from a steep economic growth during the past decades. To better characterize the processes leading to the frequently observed high concentrations of air pollutants on a regional scale, the international field campaign "Campaigns of Air Quality Research in Beijing and Surrounding Region 2006" (CAREBeijing-2006) was conducted in summer 2006. In this contribution, we present chemical data of size-resolved particles, obtained by a five-stage Berner impactor during 3 weeks at both an urban and suburban site in the area of Beijing, China. The samples were analyzed for inorganic ions (Cl-, SO42-, NO3-, NH4+, K+, Ca2+, Na+, and Mg2+), carbon sum parameters (OC, EC, and WSOC), and a variety of organic compounds such as dicarboxylic acids, alkanes, PAHs, and, for the first time in China, nitrooxy-organosulfates. On average, the observed PM10 (where PM is particulate matter) mass concentrations were 133 μg m-3 and 112 μg m-3 at the urban and suburban site, respectively. A high influence of meteorology on the PM pollution was observed and is discussed. The highest concentrations of both PM mass and particle constituents were observed when sampled air masses originated south of Beijing and moved over the area with low wind speeds. During such periods, a strong increase of daytime concentrations of the secondary ions sulfate, nitrate, ammonium, and also some dicarboxylic acids could be observed. A strong diurnal variation of particle sulfate concentration with increasing values from morning to afternoon was observed during an intensive period, which could be attributed to regional production. Similar observations were made for oxalic acid. Generally, water-soluble organic carbon concentrations were enhanced by a factor of 2 in fine particles during the studied period of intense photochemistry. Elemental carbon, alkanes, and PAHs showed clear nighttime concentration maxima obviously due to enhanced emissions and a relatively low mixing volume during night. For the newly studied compound group of nitrooxy-organosulfates, qualitative data can be presented indicating an influence of nighttime chemistry and/or anthropogenic activities on their concentrations. The investigation of an intense nucleation and particle growth event revealed that the youngest particles largely consist of ammonium sulfate and primary carbonaceous material, with a possible contribution of secondary organic compounds.
Salam, Mir Md Abdus; Kaipiainen, Erik; Mohsin, Muhammad; Villa, Aki; Kuittinen, Suvi; Pulkkinen, Pertti; Pelkonen, Paavo; Mehtätalo, Lauri; Pappinen, Ari
2016-12-01
Salix schwerinii was tested in a pot experiment to assess plant growth performance i.e., relative height and dry biomass and the potential for heavy metal uptake in soils polluted with chromium, zinc, copper, nickel and total petroleum hydrocarbons. The soil used in the pot experiment was collected from a landfill area in Finland. Peat soil was added at different quantities to the polluted soil to stimulate plant growth. The plants were irrigated with tap water or processed water (municipal waste water) to further investigate the effects of nutrient loading on plant biomass growth. The soil was treated at two pH levels (4 and 6). The results showed that the addition of 40-70% peat soil at pH 6 to a polluted soil, and irrigation with processed water accelerated plant growth and phytoextraction efficiency. In the pot experiment, Salix grown in chromium, zinc, copper, nickel and total petroleum hydrocarbons -contaminated field soil for 141 days were unaffected by the contaminated soil and took up excess nutrients from the soil and water. Total mean chromium concentration in the plant organs ranged from 17.05 to 250.45 mg kg -1 , mean zinc concentration ranged from 142.32 to 1616.59 mg kg -1 , mean copper concentration ranged from 12.11 to 223.74 mg kg -1 and mean nickel concentration ranged from 10.11 to 75.90 mg kg -1 . Mean chromium concentration in the plant organs ranged from 46 to 94%, mean zinc concentration ranged from 44 to 76%, mean copper concentration ranged from 19 to 54% and mean nickel concentration ranged from 8 to 21% across all treatments. Under the different treatments, chromium was taken up by Salix in the largest quantities, followed by zinc, copper and nickel respectively. Salix also produced a moderate reduction in total petroleum total petroleum hydrocarbons in the polluted soil. The results from the pot experiment suggest that Salix schwerinii has the potential to accumulate significant amounts of chromium, zinc, copper and nickel. However, long term research is needed to verify the phytoextraction abilities of Salix observed in the pot experiment. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 463.34 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...
Yu, Kewei; Delaune, Ronald D; Tao, Rui; Beine, Robert L
2008-01-01
A watershed analysis of nonpoint-source pollution associated with sugarcane (Saccharum officinarum L.) production was conducted. Runoff water samples following major rainfall events from two representative sugarcane fields (SC1 and SC2) were collected and analyzed. The impact of runoff on two receiving water bodies, St. James canal (SJC) and Bayou Chevreuil (BC) in a drainage basin (Baratarian Basin), was studied. Results show that runoff flow/rainfall ratios at the SC1 were significantly higher (P < 0.0001, n = 14) than at the SC2, probably mainly due to higher sand content and higher infiltration rate of surface soil at the SC2. In runoff water samples, total suspended solids (TSS) showed a significant correlation with the concentrations of N and P. Sugarcane runoff showed a direct impact on the SJC and BC locations where seasonal variations of pollutant concentrations in the waters followed the patterns of runoff loadings. Swamp forest runoff (SFR) location showed a buffering effect of forested wetlands on water quality with the lowest measured pollutant concentrations. The ratios in total N/total P and in inorganic N/organic N in runoff waters indicated that fertilization in spring greatly contributed to the temporal increase of N loadings, especially in forms of inorganic N. Isotope signature of (15)N-nitrate in the water samples verified that the nitrate was derived from fertilizers and was consumed during transportation. Both N and P concentrations in the receiving water bodies were above the eutrophic level. During the study period, herbicide concentrations in the receiving water bodies rarely exceeded the drinking water standards.
Assessment of regional air quality by a concentration-dependent Pollution Permeation Index
Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang
2016-01-01
Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations. PMID:27731344
The application of an improved gas and aerosol collector for ambient air pollutants in China
NASA Astrophysics Data System (ADS)
Dong, Huabin; Zeng, Limin; Zhang, Yuanhang; Hu, Min; Wu, Yusheng
2016-04-01
An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed by Peking University based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98 %) and particulate sulfate (as high as 99.5 %). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. From 2008 to 2015, dozens of big field campaigns (rural and coastal sites) were executed in different parts of China, the GAC-IC system took the chance having its field measurement performance checked repeatedly and provided high quality data in ambient conditions either under high loadings of pollutants or background area. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer, the HONO analyzer, a filter sampler, Aerosol Mass Spectrometer (AMS), etc. over a wide range of concentrations and proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation. During these years of applications of GAC-IC in those field campaigns, we found some problems of several instruments running under field environment and some interesting results could also be drew from the large amount of data measured in near 20 provinces of China. Detail results will be demonstrated on the poster afterwards.
Novel Apparatus for the Real-Time Quantification of Dissolved Gas Concentrations and Isotope Ratios
NASA Astrophysics Data System (ADS)
Gupta, M.; Leen, J.; Baer, D. S.; Owano, T. G.; Liem, J.
2013-12-01
Measurements of dissolved gases and their isotopic composition are critical in studying a variety of phenomena, including underwater greenhouse gas generation, air-surface exchange, and pollution migration. These studies typically involve obtaining water samples from streams, lakes, or ocean water and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line methodology is time consuming, significantly limits the number of the samples that can be measured and thus severely inhibits detailed spatial and temporal mapping of gas concentrations and isotope ratios. In this work, we describe the development of a new membrane-based degassing device that interfaces directly to Los Gatos Research (cavity enhanced laser absorption or Off-Axis ICOS) gas analyzers (cavity enhanced laser absorption or Off-Axis ICOS analyzers) to create an autonomous system that can continuously and quickly measure concentrations and isotope ratios of dissolved gases in real time in the field. By accurately controlling the water flow rate through the membrane degasser, gas pressure on the outside of the membrane, and water pressure on the inside of the membrane, the system is able to generate precise and highly reproducible results. Moreover, by accurately measuring the gas flow rates in and out of the degasser, the gas-phase concentrations (ppm) could be converted into dissolved gas concentrations (nM). We will present detailed laboratory test data that quantifies the linearity, precision, and dynamic range of the system for the concentrations and isotope ratios of dissolved methane, carbon dioxide, and nitrous oxide. By interfacing the degassing device to a novel cavity-enhanced spectrometer (developed by LGR), preliminary data will also be presented for dissolved volatile organics (VOC) and other pollutants. Finally, the system was deployed shipboard, and field deployment data will also be presented.
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Johnson, Michael; Litton, Charles D.; Lam, Nicholas L.; Pennise, David; Smith, Kirk R.
2017-01-01
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley—in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions—has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO2-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them. PMID:28812989
Pillarisetti, Ajay; Allen, Tracy; Ruiz-Mercado, Ilse; Edwards, Rufus; Chowdhury, Zohir; Garland, Charity; Hill, L Drew; Johnson, Michael; Litton, Charles D; Lam, Nicholas L; Pennise, David; Smith, Kirk R
2017-08-16
Over the last 20 years, the Kirk R. Smith research group at the University of California Berkeley-in collaboration with Electronically Monitored Ecosystems, Berkeley Air Monitoring Group, and other academic institutions-has developed a suite of relatively inexpensive, rugged, battery-operated, microchip-based devices to quantify parameters related to household air pollution. These devices include two generations of particle monitors; data-logging temperature sensors to assess time of use of household energy devices; a time-activity monitoring system using ultrasound; and a CO₂-based tracer-decay system to assess ventilation rates. Development of each system involved numerous iterations of custom hardware, software, and data processing and visualization routines along with both lab and field validation. The devices have been used in hundreds of studies globally and have greatly enhanced our understanding of heterogeneous household air pollution (HAP) concentrations and exposures and factors influencing them.
IASI Satellite Observation and Forecast of Pollutants
NASA Astrophysics Data System (ADS)
Clerbaux, C.; Boynard, A.; George, M.; Hadji-Lazaro, J.; Safieddine, S.; Viatte, C.; Clarisse, L.; Pierre-Francois, C.; Hurtmans, D.; van Damme, M.; Wespes, C.; Whitburn, S.
2017-12-01
The IASI family of instruments has been sounding the atmosphere since 2006 onboard the Metop satellite series. Using the radiance data recorded in the thermal infrared spectral range, concentrations for atmospheric pollutants such as carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2) and ammonia (NH3) can be derived. IASI CO and O3 fields are assimilated in regional and global models in order to predict air quality over Europe. Enhanced levels of pollutants are detected in near-real time, and can be followed at city, country and continent levels. This talk will present the findings for an extended time period (2008-2017), and will review the IASI capability to observe exceptional events both at the local and regional scales, as well as seasonal variations due other dynamic patterns (monsoon, ENSO, …). Progresses and current limitations to derive long term trends will also be discussed.
Assessment of Exposure of Elementary Schools to Traffic Pollution by GIS Methods.
Štych, Přemysl; Šrámková, Denisa; Braniš, Martin
2016-06-01
The susceptibility of children to polluted air has been pointed out several times in the past. Generally, children suffer from higher exposure to air pollutants than adults because of their higher physical activity, higher metabolic rate and the resultant increase in minute ventilation. The aim of this study was to examine the exposure characteristics of public elementary schools in Prague (the capital of the Czech Republic). The exposure was examined by two different methods: by the proximity of selected schools to major urban roads and their location within the modeled urban PM10 concentration fields. We determined average daily traffic counts for all roads within 300 m of 251 elementary schools using the national road network database and geographic information system and calculated by means of GIS tools the proximity of the schools to the roads. In the second method we overlapped the GIS layer of predicted annual urban PM10 concentration field with that of geocoded school addresses. The results showed that 208 Prague schools (almost 80%) are situated in a close proximity (<300 m) of roads exhibiting high traffic loads. Both methods showed good agreement in the proportion of highly exposed schools at risk; however, we found significant differences in the locations of schools at risk determined by the two methods. We argue that results of similar proximity studies should be treated with caution before they are used in risk based decision-making process, since different methods may provide different outcomes. Copyright© by the National Institute of Public Health, Prague 2015.
Nayeb Yazdi, Mohammad; Delavarrafiee, Maryam; Arhami, Mohammad
2015-12-15
A field sampling campaign was implemented to evaluate the variation in air pollutants levels near a highway in Tehran, Iran (Hemmat highway). The field measurements were used to estimate road link-based emission factors for average vehicle fleet. These factors were compared with results of an in tunnel measurement campaign (in Resalat tunnel). Roadside and in-tunnel measurements of carbon monoxide (CO) and size-fractionated particulate matter (PM) were conducted during the field campaign. The concentration gradient diagrams showed exponential decay, which represented a substantial decay, more than 50-80%, in air pollutants level in a distance between 100 and 150meters (m) of the highway. The changes in particle size distribution by distancing from highway were also captured and evaluated. The results showed particle size distribution shifted to larger size particles by distancing from highway. The empirical emission factors were obtained by using the roadside and in tunnel measurements with a hypothetical box model, floating machine model, CALINE4, CT-EMFAC or COPERT. Average CO emission factors were estimated to be in a range of 4 to 12g/km, and those of PM10 were 0.1 to 0.2g/km, depending on traffic conditions. Variations of these emission factors under real working condition with speeds were determined. Copyright © 2015 Elsevier B.V. All rights reserved.
Light-absorbing Aerosol Properties in the Kathmandu Valley during SusKat-ABC Field Campaign
NASA Astrophysics Data System (ADS)
Kim, S.; Yoon, S.; Kim, J.; Cho, C.; Jung, J.
2013-12-01
Light-absorbing aerosols, such as black carbon (BC), are major contributors to the atmospheric heating and the reduction of solar radiation reaching at the earth's surface. In this study, we investigate light-absorption and scattering properties of aerosols (i.e., BC mass concentration, aerosol solar-absorption/scattering efficiency) in the Kathmandu valley during Sustainable atmosphere for the Kathmandu valley (SusKat)-ABC campaign, from December 2012 to February 2013. Kathmandu City is among the most polluted cities in the world. However, there are only few past studies that provide basic understanding of air pollution in the Kathmandu Valley, which is not sufficient for designing effective mitigation measures (e.g., technological, financial, regulatory, legal and political measures, planning strategies). A distinct diurnal variation of BC mass concentration with two high peaks observed during wintertime dry monsoon period. BC mass concentration was found to be maximum around 09:00 and 20:00 local standard time (LST). Increased cars and cooking activities including substantial burning of wood and other biomass in the morning and in the evening contributed to high BC concentration. Low BC concentrations during the daytime can be explain by reduced vehicular movement and cooking activities. Also, the developmements of the boundary layer height and mountain-valley winds in the Kathmandu Valley paly a crucial role in the temproal variation of BC mass concentrations. Detailed radiative effects of light-absorbing aerosols will be presented.
NASA Astrophysics Data System (ADS)
Tarasov, D. A.; Buevich, A. G.; Sergeev, A. P.; Shichkin, A. V.; Baglaeva, E. M.
2017-06-01
Forecasting the soil pollution is a considerable field of study in the light of the general concern of environmental protection issues. Due to the variation of content and spatial heterogeneity of pollutants distribution at urban areas, the conventional spatial interpolation models implemented in many GIS packages mostly cannot provide appreciate interpolation accuracy. Moreover, the problem of prediction the distribution of the element with high variability in the concentration at the study site is particularly difficult. The work presents two neural networks models forecasting a spatial content of the abnormally distributed soil pollutant (Cr) at a particular location of the subarctic Novy Urengoy, Russia. A method of generalized regression neural network (GRNN) was compared to a common multilayer perceptron (MLP) model. The proposed techniques have been built, implemented and tested using ArcGIS and MATLAB. To verify the models performances, 150 scattered input data points (pollutant concentrations) have been selected from 8.5 km2 area and then split into independent training data set (105 points) and validation data set (45 points). The training data set was generated for the interpolation using ordinary kriging while the validation data set was used to test their accuracies. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. The predictive accuracy of both models was confirmed to be significantly higher than those achieved by the geostatistical approach (kriging). It is shown that MLP could achieve better accuracy than both kriging and even GRNN for interpolating surfaces.
NASA Astrophysics Data System (ADS)
Yu, Haofei
Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification, on air quality, pollution exposure, and exposure inequality were explored. Major findings include slightly higher pollutant emissions, with the exception of hydrocarbons, due to the managed lane project. Results also show that ambient concentration contributions from on-road mobile sources are disproportionate to their emissions. Additionally, processes not captured by the CALPUFF model, such as atmospheric formation, contribute substantially to ambient concentration levels of the secondary pollutants such as acetaldehyde and formaldehyde. Exposure inequalities for NOx, 1,3-butadiene, and benzene air pollution were found for black, Hispanic, and low income (annual household income less than $20,000) subgroups at both short-term and long-term temporal scales, which is consistent with previous findings. Exposure disparities among the subgroups are complex, and sometimes reversed for acetaldehyde and formaldehyde, due primarily to their distinct concentration distributions. Compact urban form was found to result in lower average NOx and benzene concentrations, but higher exposure for all pollutants except for NOx when compared to sprawl urban form. Evidence suggests that exposure inequalities differ between sprawl and compact urban forms, and also differ by pollutants, but are generally consistent at both short and long-term temporal scales. In addition, vehicle fleet electrification was found to result in generally lower average pollutant concentrations and exposures, except for NOx. However, the elimination of on-road mobile source emissions does not substantially reduce exposure inequality. Results and findings from this work can be applied to assist transportation infrastructure and urban planning. In addition, method developed here can be applied elsewhere for better characterization of air pollution concentrations, exposure and related inequalities.
Field measurements of the ambient ozone formation potential in Beijing during winter
NASA Astrophysics Data System (ADS)
Crilley, Leigh; Kramer, Louisa; Thomson, Steven; Lee, James; Squires, Freya; Bloss, William
2017-04-01
The air quality issues in Beijing have been well-documented, and the severe air pollution levels result in a unique chemical mix in the urban boundary layer, both in terms of concentration and composition. As many of the atmospheric chemical process are non-linear and interlinked, this makes predictions difficult for species formed in atmosphere, such as ozone, requiring field measurements to understand these processes in order to guide mitigation efforts. To investigate the ozone formation potential of ambient air, we employed a custom built instrument to measure in near real time the potential for in situ ozone production, using an artificial light source. Our results are thus indicative of the ozone formation potential for the sampled ambient air mixture. Measurements were performed as part of the Air Pollution and Human Health (APHH) field campaign in November / December 2016 at a suburban site in central Beijing. We also conducted experiments to examine the ozone production sensitivity to NOx. We will present preliminarily results from ambient sampling and NOx experiments demonstrating changes in the ozone production potential during clean and haze periods in Beijing.
Gaseous elemental mercury (GEM) fluxes over canopy of two typical subtropical forests in south China
NASA Astrophysics Data System (ADS)
Yu, Qian; Luo, Yao; Wang, Shuxiao; Wang, Zhiqi; Hao, Jiming; Duan, Lei
2018-01-01
Mercury (Hg) exchange between forests and the atmosphere plays an important role in global Hg cycling. The present estimate of global emission of Hg from natural source has large uncertainty, partly due to the lack of chronical and valid field data, particularly for terrestrial surfaces in China, the most important contributor to global atmospheric Hg. In this study, the micrometeorological method (MM) was used to continuously observe gaseous elemental mercury (GEM) fluxes over forest canopy at a mildly polluted site (Qianyanzhou, QYZ) and a moderately polluted site (Huitong, HT, near a large Hg mine) in subtropical south China for a full year from January to December in 2014. The GEM flux measurements over forest canopy in QYZ and HT showed net emission with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively. Daily variations of GEM fluxes showed an increasing emission with the increasing air temperature and solar radiation in the daytime to a peak at 13:00, and decreasing emission thereafter, even as a GEM sink or balance at night. High temperature and low air Hg concentration resulted in the high Hg emission in summer. Low temperature in winter and Hg absorption by plant in spring resulted in low Hg emission, or even adsorption in the two seasons. GEM fluxes were positively correlated with air temperature, soil temperature, wind speed, and solar radiation, while it is negatively correlated with air humidity and atmospheric GEM concentration. The lower emission fluxes of GEM at the moderately polluted site (HT) when compared with that in the mildly polluted site (QYZ) may result from a much higher adsorption fluxes at night in spite of a similar or higher emission fluxes during daytime. This shows that the higher atmospheric GEM concentration at HT restricted the forest GEM emission. Great attention should be paid to forests as a crucial increasing Hg emission source with the decreasing atmospheric GEM concentration in polluted areas because of Hg emission abatement in the future.
Jamaati, Hamidreza; Attarchi, Mirsaeed; Hassani, Somayeh; Farid, Elham; Seyedmehdi, Mohammad; Salimi Pormehr, Pegah
2018-06-03
Studies on the trend of air pollution in Tehran as one of the most polluted metropolis in the world are scant, and today Tehran is known for its high levels of air pollution. In this study, the trend of air pollution concentration was evaluated over the past 10 years (2004-2015). The data were collected from 22 stations of the Air Quality Control Company. Daily concentrations of CO, NO2, SO2, O3, PM10 were analyzed using SPSS 16 based on the statistical method, repeated measures, and intra-group test to determine the pattern of each pollutant changes. As a result of the 22 air pollution monitoring stations, NO2 and SO2 concentrations have been increasing over the period of 10 years. The highest anomaly is related to SO2. The CO concentrations represent a descending pattern over the period, although there was a slight increase in 2013 and 2014. The ozone concentrations declined in the following years. The average concentration of PM10 has been rising during the period. Also we evaluated changes of each pollutant in different months and calculated the number of clean, healthy, unhealthy days for sensitive, unhealthy, very unhealthy, and dangerous groups. The study findings illustrated the necessity for larger investment in air pollution abatement. Over ally, trends have been progressed to worsening, the number of healthy days has been declined and the number of unhealthy days has been increased in recent years.
Application of a Three-Layer Photochemical Box Model in an Athens Street Canyon.
Proyou, Athena G; Ziomas, Loannis C; Stathopoulos, Antony
1998-05-01
The aim of this paper is to show that a photochemical box model could describe the air pollution diurnal profiles within a typical street canyon in the city of Athens. As sophisticated three-dimensional dispersion models are computationally expensive and they cannot serve to simulate pollution levels in the scale of an urban street canyon, a suitably modified three-layer photochemical box model was applied. A street canyon of Athens with heavy traffic was chosen to apply the aforementioned model. The model was used to calculate pollutant concentrations during two days with meteorological conditions favoring pollutant accumulation. Road traffic emissions were calculated based on existing traffic load measurements. Meteorological data, as well as various pollutant concentrations, in order to compare with the model results, were provided by available measurements. The calculated concentrations were found to be in good agreement with measured concentration levels and show that, when traffic load and traffic composition data are available, this model can be used to predict pollution episodes. It is noteworthy that high concentrations persisted, even after additional traffic restriction measures were taken on the second day because of the high pollution levels.
NASA Astrophysics Data System (ADS)
Clavner, Michal; Cotton, William R.; van den Heever, Susan C.; Saleeby, Stephen M.; Pierce, Jeffery R.
2018-01-01
Mesoscale Convective Systems (MCSs) are important contributors to rainfall in the High Plains of the United States and elsewhere in the world. It is therefore of interest to understand how different aerosols serving as cloud condensation nuclei (CCN) may impact the total amount, rates and spatial distribution of precipitation produced by MCSs. In this study, different aerosol concentrations and their effects on precipitation produced by an MCS are examined by simulating the 8 May 2009 "Super-Derecho" MCS using the Regional Atmospheric Modeling System (RAMS), a cloud-resolving model (CRM) with sophisticated aerosol and microphysical parameterizations. Three simulations were conducted that differed only in the initial concentration, spatial distribution, and chemical composition of aerosols. Aerosol fields were derived from the output of GEOS-Chem, a 3D chemical transport numerical model. Results from the RAMS simulations show that the total domain precipitation was not significantly affected by variations in aerosol concentrations, however, the pollution aerosols altered the precipitation characteristics. The more polluted simulations exhibited higher precipitation rates, higher bulk precipitation efficiency, a larger area with heavier precipitation, and a smaller area with lighter precipitation. These differences arose as a result of aerosols enhancing precipitation in the convective region of the MCS while suppressing precipitation from the MCS's stratiform-anvil. In the convective region, several processes likely contributed to an increase of precipitation. First, owing to the very humid environment of this storm, the enhanced amount of cloud water available to be collected overwhelmed the reduction in precipitation efficiency associated with the aerosol-induced production of smaller droplets which led to a net increase in the conversion of cloud droplets to precipitation. Second, higher aerosol concentrations led to invigoration of convective updrafts which enhanced precipitation in accordance to the convective invigoration hypothesis. The reduction in stratiform precipitation in the more polluted simulations was found to be attributed to the presence of greater aerosol number concentrations that reduced both collision-coalescence and riming. Analysis of back trajeocty flow showed that the air feeding the stratiform-anvil originated within the free troposphere, by mesoscale ascent. Therefore, increased aerosol pollution at higher elevations impacted the stratiform precipitation formation within the simulated MCS. As a consequence, the more polluted simulations produced the smallest precipitation from the MCS stratiform-anvil region. In Part II the impact of aerosols on the severe winds produced by this storm is examined.
Wu, Dan; Xu, Yuan; Zhang, Shiqiu
2015-02-01
By following an empirical approach, this study proves that joint regional air pollution control (JRAPC) in the Beijing-Tianjin-Hebei region will save the expense on air pollution control compared with a locally-based pollution control strategy. The evidences below were found. (A) Local pollutant concentration in some of the cities is significantly affected by emissions from their surrounding areas. (B) There is heterogeneity in the marginal pollutant concentration reduction cost among various districts as a result of the cities' varying contribution of unit emission reduction to the pollutant concentration reduction, and their diverse unit cost of emission reduction brought about by their different industry composition. The results imply that the cost-efficiency of air pollution control will be improved in China if the conventional locally based regime of air pollution control can shift to a regionally based one. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Comparability of river suspended-sediment sampling and laboratory analysis methods
Groten, Joel T.; Johnson, Gregory D.
2018-03-06
Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.
Liu, Yiming; Hong, Yingying; Fan, Qi; Wang, Xuemei; Chan, Pakwai; Chen, Xiaoyang; Lai, Anqi; Wang, Mingjie; Chen, Xunlai
2017-10-15
Located in the Southern China monsoon region, pollution days in Pearl River Delta (PRD) were classified into "Western type", "Central type" or "Eastern type", with a relative percentage of 67%, 24% and 9%, respectively. Using this classification system, three typical pollution events were selected for numerical simulations using the WRF-Chem model. The source sensitivity method for anthropogenic emissions of PM 2.5 and its precursors was applied to identify the source-receptor relationships for PM 2.5 among 9 cities in PRD. For "Western type" case, the PRD region was under control of a high-pressure system with easterly prevailing winds. The PM 2.5 concentrations in the western PRD region were higher than those in the eastern region, with emissions from cities in the eastern PRD region having higher contributions. Within the PRD's urban cluster, PM 2.5 in Huizhou, Dongguan and Shenzhen was mainly derived from local emissions, whereas the PM 2.5 in the other cities was primarily derived from external transport. For "Eastern type" case, the PRD was influenced by Typhoon Soulik with westerly prevailing winds. Emissions from cities in the western PRD region had the highest impacts on the overall PM 2.5 concentration. PM 2.5 in Jiangmen and Foshan was primarily derived from local emissions. Regarding "Central type" case, the PRD region was under control of a uniform pressure field with low wind speed. PM 2.5 concentrations of each city were primarily caused by local emissions. Overall, wind flows played a significant role in the transport and spatial distribution of PM 2.5 across the PRD region. Ideally, local governments would be wise to establish joint prevention and control measures to reduce regional atmospheric pollution, especially for "Western type" pollution. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Chao; Henderson, Barron H; Wang, Dongfang; Yang, Xinyuan; Peng, Zhong-Ren
2016-09-15
Intra-urban assessment of air pollution exposure has become a priority study while international attention was attracted to PM2.5 pollution in China in recent years. Land Use Regression (LUR), which has previously been proved to be a feasible way to describe the relationship between land use and air pollution level in European and American cities, was employed in this paper to explain the correlations and spatial variations in Shanghai, China. PM2.5 and NO2 concentrations at 35-45 monitoring locations were selected as dependent variables, and a total of 44 built environmental factors were extracted as independent variables. Only five factors showed significant explanatory value for both PM2.5 and NO2 models: longitude, distance from monitors to the ocean, highway intensity, waterbody area, and industrial land area for PM2.5 model; residential area, distance to the coast, industrial area, urban district, and highway intensity for NO2 model. Respectively, both PM2.5 and NO2 showed anti-correlation with coastal proximity (an indicator of clean air dilution) and correlation with highway and industrial intensity (source indicators). NO2 also showed significant correlation with local indicators of population density (residential intensity and urban classification), while PM2.5 showed significant correlation with regional dilution (longitude as a indicator of distance from polluted neighbors and local water features). Both adjusted R squared values were strong with PM2.5 (0.88) being higher than NO2 (0.62). The LUR was then used to produce continuous concentration fields for NO2 and PM2.5 to illustrate the features and, potentially, for use by future studies. Comparison to PM2.5 studies in New York and Beijing show that Shanghai PM2.5 pollutant distribution was more sensitive to geographic location and proximity to neighboring regions. Copyright © 2015. Published by Elsevier B.V.
Effects of cattle manure on erosion rates and runoff water pollution by faecal coliforms.
Ramos, M C; Quinton, J N; Tyrrel, S F
2006-01-01
The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.
Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille
2015-11-01
Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Eon S.; Ranasinghe, Dilhara R.; Ahangar, Faraz Enayati; Amini, Seyedmorteza; Mara, Steven; Choi, Wonsik; Paulson, Suzanne; Zhu, Yifang
2018-02-01
Traffic-related air pollutants are a significant public health concern, particularly near freeways. Previous studies have suggested either soundwall or vegetation barriers might reduce the near-freeway air pollution. This study aims to investigate the effectiveness of a combination of both soundwall and vegetation barrier for reducing ultrafine particles (UFPs, diameter ≤ 100 nm) and PM2.5 (diameter ≤ 2.5 μm) concentrations. Concurrent data collection was carried out at both upwind and downwind fixed locations approximately 10-15 m away from the edge of two major freeways in California. This study observed that the reduction of UFP and PM2.5 was generally greater with the combination barrier than with either soundwall or vegetation alone. Since there were no non-barrier sites at the study locations, the reductions reported here are all in relative terms. The soundwall barrier was more effective for reducing PM2.5 (25-53%) than UFPs (0-5%), and was most effective (51-53% for PM2.5) when the wind speed ranged between 1 and 2 m/s. Under the same range of wind speed, the vegetation barrier had little effect (0-5%) on reducing PM2.5; but was effective at reducing UFP (up to 50%). For both types of roadside barrier, decreasing wind speed resulted in greater net reduction of UFPs (i.e., total number particle concentrations; inversely proportional). This trend was observed, however, only within specific particle size ranges (i.e., diameter < 20 nm for the soundwall barrier and 12-60 nm for the vegetation barrier). Out of these size ranges, the reduction of UFP concentration was proportional to increasing wind speed. Overall findings of this study support positive effects of soundwall and vegetation barriers for near-freeway air pollution mitigation.
NASA Astrophysics Data System (ADS)
Holmes, Heather A.
Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on comparing two gaseous dry deposition models to determine the fluxes of gaseous elemental mercury and reactive gaseous mercury using the measured concentrations and calculated deposition velocities for each species. Results indicate a large dependence on coupled physical, chemical and biological interactions for atmospheric processes, signifying the need for interdisciplinary collaboration.
Chau, N D G; Sebesvari, Z; Amelung, W; Renaud, F G
2015-06-01
Pollution of drinking water sources with agrochemicals is often a major threat to human and ecosystem health in some river deltas, where agricultural production must meet the requirements of national food security or export aspirations. This study was performed to survey the use of different drinking water sources and their pollution with pesticides in order to inform on potential exposure sources to pesticides in rural areas of the Mekong River delta, Vietnam. The field work comprised both household surveys and monitoring of 15 frequently used pesticide active ingredients in different water sources used for drinking (surface water, groundwater, water at public pumping stations, surface water chemically treated at household level, harvested rainwater, and bottled water). Our research also considered the surrounding land use systems as well as the cropping seasons. Improper pesticide storage and waste disposal as well as inadequate personal protection during pesticide handling and application were widespread amongst the interviewed households, with little overall risk awareness for human and environmental health. The results show that despite the local differences in the amount and frequency of pesticides applied, pesticide pollution was ubiquitous. Isoprothiolane (max. concentration 8.49 μg L(-1)), fenobucarb (max. 2.32 μg L(-1)), and fipronil (max. 0.41 μg L(-1)) were detected in almost all analyzed water samples (98 % of all surface samples contained isoprothiolane, for instance). Other pesticides quantified comprised butachlor, pretilachlor, propiconazole, hexaconazole, difenoconazole, cypermethrin, fenoxapro-p-ethyl, tebuconazole, trifloxystrobin, azoxystrobin, quinalphos, and thiamethoxam. Among the studied water sources, concentrations were highest in canal waters. Pesticide concentrations varied with cropping season but did not diminish through the year. Even in harvested rainwater or purchased bottled water, up to 12 different pesticides were detected at concentrations exceeding the European Commission's parametric guideline values for individual or total pesticides in drinking water (0.1 and 0.5 μg L(-1); respectively). The highest total pesticide concentration quantified in bottled water samples was 1.38 μg L(-1). Overall, we failed to identify a clean water source in the Mekong Delta with respect to pesticide pollution. It is therefore urgent to understand further and address drinking water-related health risk issues in the region.
Shi, X; Zhou, J L; Zhao, H; Hou, L; Yang, Y
2014-09-01
Polar organic chemical integrative sampler (POCIS) was used in assessing the occurrence and risk of 12 widely used antibiotics and 5 most potent endocrine disrupting chemicals (EDCs) in the Yangtze Estuary, China. During laboratory validation, the kinetics of pollutant uptake by POCIS were linear, and the sampling rates of most compounds were raised by flow rate and salinity, reaching the highest values at salinity 14‰. The sampling rates varied with the target compounds with the EDCs showing the highest values (overall average=0.123Ld(-1)), followed by chloramphenicols (0.100Ld(-1)), macrolides (0.089Ld(-1)), and finally sulfonamides (0.056Ld(-1)). Validation in the Yangtze Estuary in 2013 showed that the field sampling rates were significantly greater for all compounds except bisphenol A, in comparison to laboratory results, and high-frequency spot sampling is critical for fully validating the passive sampler. The field studies show that antibiotics were widely detected in the Yangtze Estuary, with concentrations varying from below quantification to 1613ngL(-1), suggesting their widespread use and persistence in estuarine waters. The dominating pollutants in July were sulfonamides with a total concentration of 258ngL(-1) and in October were macrolides with a total concentration of 350ngL(-1). The calculation of risk quotient suggested that sulfapyridine, sulfaquinoxaline and erythromycin-H2O may have caused medium damage to sensitive organisms such as fish. Copyright © 2014. Published by Elsevier Ltd.
Joint analysis of air pollution in street canyons in St. Petersburg and Copenhagen
NASA Astrophysics Data System (ADS)
Genikhovich, E. L.; Ziv, A. D.; Iakovleva, E. A.; Palmgren, F.; Berkowicz, R.
The bi-annual data set of concentrations of several traffic-related air pollutants, measured continuously in street canyons in St. Petersburg and Copenhagen, is analysed jointly using different statistical techniques. Annual mean concentrations of NO 2, NO x and, especially, benzene are found systematically higher in St. Petersburg than in Copenhagen but for ozone the situation is opposite. In both cities probability distribution functions (PDFs) of concentrations and their daily or weekly extrema are fitted with the Weibull and double exponential distributions, respectively. Sample estimates of bi-variate distributions of concentrations, concentration roses, and probabilities of concentration of one pollutant being extreme given that another one reaches its extremum are presented in this paper as well as auto- and co-spectra. It is demonstrated that there is a reasonably high correlation between seasonally averaged concentrations of pollutants in St. Petersburg and Copenhagen.
Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City.
Fan, Jin; Yue, Xiaoying; Jing, Yi; Chen, Qiang; Wang, Shigong
2014-02-01
Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 microg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.
A stress ecology framework for comprehensive risk assessment of diffuse pollution.
van Straalen, Nico M; van Gestel, Cornelis A M
2008-12-01
Environmental pollution is traditionally classified as either localized or diffuse. Local pollution comes from a point source that emits a well-defined cocktail of chemicals, distributed in the environment in the form of a gradient around the source. Diffuse pollution comes from many sources, small and large, that cause an erratic distribution of chemicals, interacting with those from other sources into a complex mixture of low to moderate concentrations over a large area. There is no good method for ecological risk assessment of such types of pollution. We argue that effects of diffuse contamination in the field must be analysed in the wider framework of stress ecology. A multivariate approach can be applied to filter effects of contaminants from the many interacting factors at the ecosystem level. Four case studies are discussed (1) functional and structural properties of terrestrial model ecosystems, (2) physiological profiles of microbial communities, (3) detritivores in reedfield litter, and (4) benthic invertebrates in canal sediment. In each of these cases the data were analysed by multivariate statistics and associations between ecological variables and the levels of contamination were established. We argue that the stress ecology framework is an appropriate assessment instrument for discriminating effects of pollution from other anthropogenic disturbances and naturally varying factors.
Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters
NASA Astrophysics Data System (ADS)
Mamouri, R. E.; Ansmann, A.
2015-12-01
We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.
Measurement of NOx and CO Fluxes from a Tall Tower in Beijing.
NASA Astrophysics Data System (ADS)
Squires, F. A.; Drysdale, W. S.; Hamilton, J.; Lee, J. D.; Vaughan, A. R.; Wild, O.; Mullinger, N.; Nemitz, E.; Metzger, S.; Zhang, Q.
2017-12-01
China's air quality problems are well publicised; in 2010, 1.2 million premature deaths were attributed to outdoor air pollution in China. One of the major air quality issues is high concentrations of nitrogen oxides (NOx). China is the largest NOx emitter, contributing an estimated 18 % to global NOx emissions. Beijing itself is reported to have NO2 concentrations 42 % higher than the annual national standard. Given the high levels of pollution, increased focus has been placed on improving emissions estimates which are typically developed using a `bottom-up' approach where emissions are predicted from their sources. Emission inventories in China have large uncertainties and are rapidly changing with time in response to economic development, environmental regulation and new technologies. In fact, China is the largest contributor to the uncertainty in the source and the magnitude of air pollutants in air quality models. Recent studies have shown a discrepancy between NOx inventories and measured NOx emissions for UK cities, highlighting the limitations of bottom-up emissions inventories and the importance of accurate measurement data to improve the estimates. 5 Hz measurements of NOx and CO concentration were made as part of the Air Pollutants in Beijing (AIRPOLL-Beijing) project during two field campaigns in Nov-Dec 2016 and May-June 2017. Sampling took place from an inlet co-located with a sonic anemometer at 102 m on a meteorological tower in central Beijing. Analysis of the covariance between vertical wind speed and concentration enabled the calculation of emission flux, with an estimated footprint of between 2 - 5 km from the tower (which typically included some major ring roads and expressways). Fluxes were quantified using the continuous wavelet transformation (CWT) method, which enabled one minute resolved fluxes to be calculated. These data were compared to existing emissions estimates from the Multi-resolution Emission Inventory for China (MEIC). It is anticipated that this work will be used to evaluate the accuracy of emissions inventories for Beijing and to develop improved emissions estimates.
Long-term contamination in a recovered area affected by a mining spill.
Martín Peinado, F J; Romero-Freire, A; García Fernández, I; Sierra Aragón, M; Ortiz-Bernad, I; Simón Torres, M
2015-05-01
Soil pollution from the spill of Aznalcóllar mine (S Spain) was monitored by analysing polluted soils in 1998, 1999, and 2004. Following the methodology used in previous studies, in 2013 we conducted a new sampling and analysis of the soils affected by the spill and the data were compared with those of 2004. The results confirm that the pH tended to rise and concentration of pollutants tended to diminish over time. In 2013, the total concentration of pollutants was within the normal range for uncontaminated soils and close to the background concentration of the soils prior to the spill; while the soluble concentration of pollutants was clearly below the toxic level. These results indicate that remediation measures implemented have been effective. However, the removal of tailings (first remediation measure applied) was deficient and in many places the tailings were mixed with the soil. The high concentration of sulphides and metal(loid)s in the tailings gave rise to spots with very acidic and highly polluted soils devoid of vegetation. In 2013, fifteen years after the spill, these spots of bare soils remain a major source of pollution from which pollutants are scattered through the solid and liquid phases of runoff water, requiring action to immobilize pollutants and encourage the restoration of vegetation on these soils. In this type of pollution in a Mediterranean environment, the complete removal of tailings is more important than the speed at which they are removed. Copyright © 2015 Elsevier B.V. All rights reserved.
Shu, Shi; Zhu, Wei; Wang, Shengwei; Ng, Charles Wang Wai; Chen, Yunmin; Chiu, Abraham Chung Fai
2018-01-15
Groundwater pollution by leachate leakage is one of the most common environmental hazards associated with municipal solid waste (MSW) landfill sites. However, landfill leachate contains a large variety of pollutants with widely different concentrations and biotoxicity. Thus, selecting leachate pollutant indicators and levels for identifying breakthrough of barrier systems are key factors in assessing their breakthrough times. This study investigated the transport behavior of leachate pollutants through landfill barrier systems using centrifuge tests and numerical modeling. The overall objective of this study is to investigate breakthrough mechanism to facilitate the establishment of a consistent pollutant threshold concentration for use as a groundwater pollution alert. The specific objective of the study is to identify which pollutant and breakthrough threshold concentration should be used as an indicator in the transport of multiple pollutants through a landfill barrier system. The threshold concentration from the Chinese groundwater quality standards was used in the analysis of the properties of leachates from many landfill sites in China. The time for the chemical oxygen demand (COD) to reach the breakthrough threshold concentration at the bottom of a 2m compacted clay liner was 1.51years according to centrifuge tests, and 1.81years according to numerical modeling. The COD breakthrough times for single and double composite liners were within the range of 16 and 36.58years. Of all the pollutants, COD was found to consistently reach the breakthrough threshold first. Therefore, COD can be selected as the key indicator for pollution alerts and used to assess the environmental risk posed by MSW landfill sites. Copyright © 2017. Published by Elsevier B.V.
Vegetation sampling for the screening of subsurface pollution
NASA Astrophysics Data System (ADS)
Karlson, U. G.; Petersen, M. D.; Algreen, M.; Rein, A.; Sheehan, E.; Limmer, M. A.; Burken, J. G.; Mayer, P.; Trapp, S.
2012-04-01
Measurement of vegetation samples has been reported as an alternative, cheap method to drilling for exploring subsurface pollution. The purpose of this presentation is to give an update on some further developments of this field method - faster sampling and improved analysis for chlorinated solvents, and application of phytomonitoring to heavy metal contamination. Rapid analysis of trees for chlorinated solvents was facilitated by employing automated headspace SPME-GC/ECD, resulting in a detection limit of 0.87 and 0.04 μg/kg fresh weight of wood for TCE and PCE, respectively, which is significantly lower than we have reported earlier, using manual injection of 1mL headspace air into a GC/MS. Technical details of the new method will be presented. As an even more direct alternative, time weighted average SPME analysis has been developed for in planta sampling of trees, using novel polydimethylsiloxane/carboxen SPME fibres designed for field application. In a different study, trees growing on a former dump site in Norway were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and zinc (Zn). Concentrations in wood were in averages (dw) 30 mg/kg for Zn, 2 mg/kg for Cu, and <1 mg/kg for Cd, Cr, As and Ni. For all except one case, mean concentrations from the dump site were higher than those from a unpolluted reference site, but the difference was small and not always significant. Differences between tree species were typically higher than differences between the polluted and the unpolluted site. As all these elements occur naturally, and Cu, Ni, and Zn are essential elements, all trees will have a natural background of these elements, and the occurrence alone does not indicate soil pollution. For the interpretation of the results, a comparison to wood samples from an unpolluted reference site with the same tree species and similar soil conditions is required. This makes the tree core screening method less reliable for heavy metals than, e.g., for chlorinated solvents.
NASA Astrophysics Data System (ADS)
Ren, Jingye; Zhang, Fang; Wang, Yuying; Collins, Don; Fan, Xinxin; Jin, Xiaoai; Xu, Weiqi; Sun, Yele; Cribb, Maureen; Li, Zhanqing
2018-05-01
Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external-internal size-resolved, abbreviated as EI-SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p/m) were 0.90 - 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT-BK scheme) shows good closure with RCCN_p/m of 1.0 -1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT-SR scheme) achieves better closure than the INT-BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI-SR and INT-SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p/m of 0.66 - 0.75) when using the schemes of external mixtures with bulk (EXT-BK scheme) or size-resolved composition (EXT-SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.
Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities
Lv, Baolei; Cai, Jun; Xu, Bing; Bai, Yuqi
2017-01-01
Long-term air quality observations are seldom analyzed from a dynamic view. This study analyzed fine particulate matter (PM2.5) pollution processes using long-term PM2.5 observations in three Chinese cities. Pollution processes were defined as linearly growing PM2.5 concentrations following the criteria of coefficient of determination R2 > 0.8 and duration time T ≥ 18 hrs. The linear slopes quantitatively measured pollution levels by PM2.5 concentrations rising rates (PMRR, μg/(m3·hr)). The 741, 210 and 193 pollution processes were filtered out, respectively, in Beijing (BJ), Shanghai (SH), and Guangzhou (GZ). Then the relationships between PMRR and wind speed, wind direction, 24-hr backward points, gaseous pollutants (CO, NO2 and SO2) concentrations, and regional PM2.5 levels were studied. Inverse relationships existed between PMRR and wind speed. The wind directions and 24-hr backward points converged in specific directions indicating long-range transport. Gaseous pollutants concentrations increased at variable rates in the three cities with growing PMRR values. PM2.5 levels at the upwind regions of BJ and SH increased at high PMRRs. Regional transport dominated the PM2.5 pollution processes of SH. In BJ, both local contributions and regional transport increased during high-PMRR pollution processes. In GZ, PM2.5 pollution processes were mainly caused by local emissions. PMID:28440282
Hazard Assessment of Chemical Air Contaminants Measured in Residences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logue, J.M.; McKone, T.E.; Sherman, M. H.
2010-05-10
Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes.more » Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Wang, Tao; Tham, Yee Jun; Xue, Likun; Wang, Zhe; Wang, Xinfeng; Wang, Weihao; Wang, Hao; Yun, Hui; Lu, Keding; Shao, Min; Louie, Peter K. K.; Blake, Donald R.; Brown, Steven S.; Zhang, Yuanhang
2016-04-01
Nitryl chloride (ClNO2) - a trace gas produced from heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosols containing chorine - can significantly affect radical budget and concentrations of ozone and other secondary pollutants. However, the abundance, formation kinetics, and impact of ClNO2are not fully understood under different environmental conditions. This presentation gives an overview of recent field campaigns of ClNO2 and related chemical constituents in China, including one at a mountain top (957 m a.s.l) in Hong Kong of South China in winter 2013 and three in North China (urban Ji'nan, semi-rural Wangdu, and Mt Tai (1534 m a.s.l)) in summer 2014. ClNO2 and N2O5 were measured with a chemical ionization mass spectrometry (CIMS) system with iodide as the primary ions. Ambient concentrations of several hundreds ppts and up to 4.7 ppbv of ClNO2were observed in these locations, suggesting existence of elevated ClNO2 in both coastal and inland atmospheres of China. Measurements in North China exhibited generally low concentrations of N2O5, indicative of its fast uptake of on aerosols under aerosol and humid conditions. Indications of anthropogenic sources of chloride were observed at all these sites. The impact of photolysis of ClNO2 on radical budget and ozone enhancement was assessed with a MCM model which was updated with detailed chlorine chemistry and constrained by measurement data for the southern and a northern site. The results show that the ClNO2 could increase ozone production by 2-16% in the following day. Overall, our study re-affirms the need to include ClNO2 related reactions in photochemical models for prediction of ground-level ozone in polluted environments.
Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena
2016-02-01
Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.
NASA Astrophysics Data System (ADS)
Morris, Eleanor; Evans, Mathew
2017-04-01
Pollutant emissions from West African cities are forecast to increase rapidly in future years because of extensive economic and population growth, together with poorly regulated industrialisation and urbanisation. Observational constraints in this region are few, leading to poor understanding of present-day air pollution in this region. To increase our understanding of the processes controlling air pollutants over the region, airborne observations were made from three research aircraft based out of Lomé, Togo during the DACCIWA field campaign in June-July 2016. A new 0.25x0.3125 degree West Africa regional version of the GEOS-Chem offline chemical transport model has also been developed to explore the processes controlling pollutants over the region. We evaluate the model using the aircraft data and focus on primary (CO, SO2, NOx, VOCs) and secondary pollutants (O3, aerosol). We find significant differences between the model and the measurements for certain primary compounds which is indicative of significant uncertainties in the base (EDGAR) emissions. For CO (a general tracer of pollution) we evaluate the role of different emissions sources (transport, low temperature combustion, power generation) in determining its concentration in the region. We conclude that the leading cause of uncertainty in our simulation is associated with the emissions datasets and explore the impact of using differing datasets.
Space-Time Urban Air Pollution Forecasts
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.; Soares, A.
2012-04-01
Air pollution, like other natural phenomena, may be considered a space-time process. However, the simultaneous integration of time and space is not an easy task to perform, due to the existence of different uncertainties levels and data characteristics. In this work we propose a hybrid method that combines geostatistical and neural models to analyze PM10 time series recorded in the urban area of Lisbon (Portugal) for the 2002-2006 period and to produce forecasts. Geostatistical models have been widely used to characterize air pollution in urban areas, where the pollutant sources are considered diffuse, and also to industrial areas with localized emission sources. It should be stressed however that most geostatistical models correspond basically to an interpolation methodology (estimation, simulation) of a set of variables in a spatial or space-time domain. The temporal prediction of a pollutant usually requires knowledge of the main trends and complex patterns of physical dispersion phenomenon. To deal with low resolution problems and to enhance reliability of predictions, an approach based on neural network short term predictions in the monitoring stations which behave as a local conditioner to a fine grid stochastic simulation model is presented here. After the pollutant concentration is predicted for a given time period at the monitoring stations, we can use the local conditional distributions of observed values, given the predicted value for that period, to perform the spatial simulations for the entire area and consequently evaluate the spatial uncertainty of pollutant concentration. To attain this objective, we propose the use of direct sequential simulations with local distributions. With this approach one succeed to predict the space-time distribution of pollutant concentration that accounts for the time prediction uncertainty (reflecting the neural networks efficiency at each local monitoring station) and the spatial uncertainty as revealed by the spatial variograms. The dataset used consists of PM10 concentrations recorded hourly by 12 monitoring stations within the Lisbon's area, for the period 2002-2006. In addition, meteorological data recorded at 3 monitoring stations and boundary layer height (BLH) daily values from the ECMWF (European Centre for Medium Weather Forecast), ERA Interim, were also used. Based on the large-scale standard pressure fields from the ERA40/ECMWF, prevailing circulation patterns at regional scale where determined and used on the construction of the models. After the daily forecasts were produced, the difference between the average maps based on real observations and predicted values were determined and the model's performance was assessed. Based on the analysis of the results, we conclude that the proposed approach shows to be a very promising alternative for urban air quality characterization because of its good results and simplicity of application.
NASA Astrophysics Data System (ADS)
Tan, Zhaofeng; Lu, Keding; Ma, Xuefei; Birger, Bohn; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Yuhan; Novelli, Anna; Rohrer, Franz; Shao, Min; Wang, Haichao; Wu, Yusheng; Zeng, Limin; Kiendler-Scharr, Astrid; Wahner, Andreas; Zhang, Yuanhang
2017-04-01
A comprehensive field campaign was carried out in winter 2016 in Huairou, a small town located 60 km northeast of Beijing downtown. Concentrations of OH, HO2and RO2 radicals were measured by a laser induced fluorescence instrument. Radical concentrations were smaller than during summer because of reduced solar radiation. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. Chemical modulation measurements were applied on a few days showing no significant OH interference for different chemical conditions. HONO and HCHO photolysis were found to be the most important primary source of ROx radicals. OH reactivity, the inverse of the OH radical lifetime, was also measured by a laser-photolysis and laser induced fluorescence instrument. In general, CO and NOx were the dominated OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations in the moderate NOx conditions but has difficulty in both the low and high NOx regimes. The underestimation of RO2 radical concentrations in the high NOx conditions indicate a missing RO2 source.
Marchiol, L; Fellet, G; Perosa, D; Zerbi, G
2007-05-01
Using the perspective of full scale application of phytoremediation techniques, research is focusing on the optimization of agronomic practices. Two annual high biomass yield crops, Sorghum bicolor and Helianthus annuus, were grown in a polymetallic soil. The experimental site, polluted by pyrite cinders, is located in an industrial site that has been listed in the clean-up national priority list since 2001. Specific aims of this work were to observe the concentration of metals in plants during the crop cycle and to establish the amount of metal removed by the crops. The field trial, arranged in a randomized block design, started in 2005. The concentrations of heavy metals in the soil were: As 309, Cd 4.29, Co 50.9, Cu 1527 and Zn 980mg kg(-1). The crops grown on the polluted soil received mineral fertilization (Fert) and organic amendment (Org), while plants in control soil (Ctrl) did not receive anything. The plots were watered during the crop cycle during two drought periods, using a sprinkler irrigation system. The phytoextraction potential of crops was estimated during the whole growth cycle and the plant biomass that was collected in each sampling date was ICP-analyzed. Plant-biomass growth curves were obtained. The concentrations of the metals in the shoots and in the total plant biomass were recorded. Finally, the metal removal was calculated for the harvestable parts of the crops. The amelioration of the nutritive status of the substrate that resulted, was highly effective for the biomass yield. However, fertilization and soil amendment did not heighten the concentration of metals in the harvestable tissue of the plants during the crop cycle. In some cases, organic matter appeared to bind the elements making them less available for the plants. The evaluation of the potential of phytoremediation of our plants compared to other crops in terms of metal removal was positive. Our results of metal removal are consistent with the results from other in situ experiments. The Zn removal by S. bicolor and H. annuus reached about 2000g ha(-1) and 1000g ha(-1), respectively.
Trends in atmospheric particulate matter in Dhaka, Bangladesh, and the vicinity.
Rana, Md Masud; Sulaiman, Norela; Sivertsen, Bjarne; Khan, Md Firoz; Nasreen, Sabera
2016-09-01
Dhaka and its neighboring areas suffer from severe air pollution, especially during dry season (November-April). We investigated temporal and directional variations in particulate matter (PM) concentrations in Dhaka, Gazipur, and Narayanganj from October 2012 to March 2015 to understand different aspects of PM concentrations and possible sources of high pollution in this region. Ninety-six-hour backward trajectories for the whole dry season were also computed to investigate incursion of long-range pollution into this area. We found yearly PM10 concentrations in this area about three times and yearly PM2.5 concentrations about six times greater than the national standards of Bangladesh. Dhaka and its vicinity experienced several air pollution episodes in dry season when PM2.5 concentrations were 8-13 times greater than the World Health Organization (WHO) guideline value. Higher pollution and great contribution of PM2.5 most of the time were associated with the north-westerly wind. Winter (November to January) was found as the most polluted season in this area, when average PM10 concentrations in Dhaka, Gazipur, and Narayanganj were 257.1, 240.3, and 327.4 μg m(-3), respectively. Pollution levels during wet season (May-October) were, although found legitimate as per the national standards of Bangladesh, exceeded WHO guideline value in 50 % of the days of that season. Trans-boundary source identifications using concentration-weighted trajectory method revealed that the sources in the eastern Indian region bordering Bangladesh, in the north-eastern Indian region bordering Nepal and in Nepal and its neighboring areas had high probability of contributing to the PM pollutions at Gazipur station.
NASA Astrophysics Data System (ADS)
Zhang, Qunfang; Zhu, Yifang
2010-01-01
Increasing evidence has demonstrated toxic effects of vehicular emitted ultrafine particles (UFPs, diameter < 100 nm), with the highest human exposure usually occurring on and near roadways. Children are particularly at risk due to immature respiratory systems and faster breathing rates. In this study, children's exposure to in-cabin air pollutants, especially UFPs, was measured inside four diesel-powered school buses. Two 1990 and two 2006 model year diesel-powered school buses were selected to represent the age extremes of school buses in service. Each bus was driven on two routine bus runs to study school children's exposure under different transportation conditions in South Texas. The number concentration and size distribution of UFPs, total particle number concentration, PM 2.5, PM 10, black carbon (BC), CO, and CO 2 levels were monitored inside the buses. The average total particle number concentrations observed inside the school buses ranged from 7.3 × 10 3 to 3.4 × 10 4 particles cm -3, depending on engine age and window position. When the windows were closed, the in-cabin air pollutants were more likely due to the school buses' self-pollution. The 1990 model year school buses demonstrated much higher air pollutant concentrations than the 2006 model year ones. When the windows were open, the majority of in-cabin air pollutants came from the outside roadway environment with similar pollutant levels observed regardless of engine ages. The highest average UFP concentration was observed at a bus transfer station where approximately 27 idling school buses were queued to load or unload students. Starting-up and idling generated higher air pollutant levels than the driving state. Higher in-cabin air pollutant concentrations were observed when more students were on board.
Zarei, Mehdi; Hempel, Stefan; Wubet, Tesfaye; Schäfer, Tina; Savaghebi, Gholamreza; Jouzani, Gholamreza Salehi; Nekouei, Mojtaba Khayam; Buscot, François
2010-08-01
Abundance and diversity of arbuscular mycorrhizal fungi (AMF) associated with dominant plant species were studied along a transect from highly lead (Pb) and zinc (Zn) polluted to non-polluted soil at the Anguran open pit mine in Iran. Using an established primer set for AMF in the internal transcribed spacer (ITS) region of rDNA, nine different AMF sequence types were distinguished after phylogenetic analyses, showing remarkable differences in their distribution patterns along the transect. With decreasing Pb and Zn concentration, the number of AMF sequence types increased, however one sequence type was only found in the highly contaminated area. Multivariate statistical analysis revealed that further factors than HM soil concentration affect the AMF community at contaminated sites. Specifically, the soils' calcium carbonate equivalent and available P proved to be of importance, which illustrates that field studies on AMF distribution should also consider important environmental factors and their possible interactions. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Yongku; Seo, Young-Kyo; Baek, Sung-Ok
2013-12-01
Although large quantities of air pollutants are released into the atmosphere, they are partially monitored and routinely assessed for their health implications. This paper proposes a statistical model describing the temporal behavior of hazardous air pollutants (HAPs), which can have negative effects on human health. Benzo[a]pyrene (BaP) is selected for statistical modeling. The proposed model incorporates the linkage between BaP and meteorology and is specifically formulated to identify meteorological effects and allow for seasonal trends. The model is used to estimate and forecast temporal fields of BaP conditional on observed (or forecasted) meteorological conditions, including temperature, precipitation, wind speed, and air quality. The effects of BaP on human health are examined by characterizing health indicators, namely the cancer risk and the hazard quotient. The model provides useful information for the optimal monitoring period and projection of future BaP concentrations for both industrial and residential areas in Korea.
Study on The Application of Composed TiO2-diatomite in The Removal of Phenol in Water
NASA Astrophysics Data System (ADS)
Liu, S.; Li, J.
2017-10-01
As an environmentally friendly pollution control technology, TiO2 photocatalytic technology has a broad prospect in the field of environmental protection. In this paper, composed nano-TiO2-diatomite were prepared by depositing TiO2 nanoparticles on the surface of diatomite microparticles. The nano-TiO2/diatomite composed photocatalyst is used to remove phenol in water in a specific designed reaction box under 4 different operation factors such as different reaction time, different pollutant concentration, different UV light powers and different amount of catalytic powder. The experimental results indicate that the phenol removal percentages are influenced by the reaction time most significantly, the second is the phenol concentration, the next one is the photocatalyst amount and the UV light powers’ effect is quite limited. Tthe degradation of phenol typically slows down at the reaction time about 30 or 60 minutes. Besides that, the phenol removal kinetic removal rates were also investigated.
Chen, Cheng-long; Gao, Ming; Ni, Jiu-pai; Xie, De-ti; Deng, Hua
2016-05-15
As an independent water-collecting area, small catchment is the source of non-point source pollution in Three Gorges Region. Choosing 3 kinds of the most representative land-use types and using them to lay monitoring points of overland runoff within the small catchment of Wangjiagou in Fuling of Three Gorges Region, the author used the samples of surface runoff collected through the twelve natural rainfalls from May to December to analyze the feature of spatial-temporal change of Nitrogen's losses concentrations under the influence of different land use types and the hillslopes and small catchments composed by those land use types, revealing the relation between different land-use types and Nitrogen's losses of small catchments in Three Gorges Region. The result showed: the average losses concentration of TN showed the biggest difference for different land use types during the period of spring crops, and the average value of dry land was 1. 61 times and 6.73 times of the values of interplanting field of mulberry and paddy field, respectively; the change of the losses concentration of TN was most conspicuous in the 3 periods of paddy field. The main element was NO₃⁻-N, and the relation between TN and NO₃⁻-N showed a significant linear correlation. TN's and NO₃⁻-N's losses concentrations were significantly and positively correlated with the area ratio of corn and mustard, but got a significant negative correlation with the area ratio of paddy and mulberry; NH₄⁺-N's losses concentrations got a significant positive correlation with the area ratio of mustard. Among all the hillslopes composed by different land use types, TN's average losses concentration of surface runoff of the hillslope composed by interplantating field of mulberry and paddy land during the three periods was the lowest, and the values were 2.55, 11.52, 8.58 mg · L⁻¹, respectively; the hillslope of rotation plough land of corn and mustard had the maximum value, and the values were 27.51, 25.11, 27.11 mg · L⁻¹, respectively; different land use types and spatial combination ways of subcatchment had a greater influence on TN's losses concentrations, so using a reasonable way to adjust land use structure and spatial arrangement of whole catchment was an effective measure to control the source of non-point source pollution of Three Gorges Region.
Loflen, Chad L; Buck, Travis; Bonnema, Autumn; Heim, Wesley A
2018-03-01
While the California spiny lobster (Panulirus interruptus) is an important commercial and recreational fishery species in California, there is a lack of data on bioaccumulation for the species. This study examined pollutant tissue concentrations in lobsters from San Diego Bay, California. Observed lobster pollutant tissue concentrations in tail muscle were compared to State of California pollutant advisory levels. Concentrations were then used to conduct risk assessment using catch data from the California Department of Fish and Wildlife. Study results found little bioaccumulation of organic pollutants in tail tissue, likely due to low observed lipids. Mercury was present, predominantly in methyl form, at concentrations above advisory levels. Recreational catch data for San Diego Bay showed increased non-cancer risk for fishers at the 90th percentile or greater of reported annual catch. Further studies should focus on non-tail tissues, as exploratory whole lobster samples (n = 2) showed elevated organic pollutants and metals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ambient and household air pollution: complex triggers of disease
Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.
2014-01-01
Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, W.A.; Congdon, J.; Ray, J.K.
2000-04-01
Amphibian malformations have recently received much attention from the scientific community, but few studies have provided evidence linking environmental pollution to larval amphibian malformations in the field. The authors document an increased incidence of axial malformations in bullfrog larvae (Rana catesbeiana) inhabiting two sites contaminated with coal combustion wastes. In the polluted sites, 18 and 37% of larvae exhibited lateral curvatures of the spine, whereas zero and 4% of larvae from two reference sites had similar malformations. Larvae from the most heavily polluted site had significantly higher tissue concentrations of potentially toxic trace elements, including As, Cd, Se, Cu, Cr,more » and V, compared with conspecifics from the reference sites. In addition, malformed larvae from the cost contaminated site had decreased swimming speeds compared with those of normal larvae from the same site. The authors hypothesize that the complex mixture of contaminants produced by coal combustion is responsible for the high incidence of malformations and associated effects on swimming performance.« less
Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee
2017-12-22
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.
Effects of moving-vehicle wakes on pollutant dispersion inside a highway road tunnel.
Bhautmage, Utkarsh; Gokhale, Sharad
2016-11-01
This study investigates the pollutant dispersion in a highway road tunnel in the presence of moving-vehicle wakes by a relative-velocity approach using 3-D CFD (3-Dimensional Computational Fluid Dynamics). The turbulent behavior of airflow around different-shaped vehicles and its impact on the pollutant dispersion have been studied. The different-shaped vehicle geometries were extracted, and simplified and dimensioned basing the typical vehicles on Indian roads. The model has been verified with the literature data of static pressure around a moving vehicle body before applying to simulate concentrations, and validated with on-site data at two locations. The results showed that wakes varied with the size, shape and speed of vehicles. The mixed-traffic flow produced higher near-field wakes and accelerated the piston effect, pushing pollutants toward the tunnel roof and out of exit portal in short-time. The findings have particular significance in the studies related to dispersion inside the tunnels having a mixed traffic of different dimensions and shape. Copyright © 2016 Elsevier Ltd. All rights reserved.
Guan, Xiangyu; Liu, Fei; Xie, Yuxuan; Zhu, Lingling; Han, Bin
2013-08-01
Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.
2017-01-01
Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems’ hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field. PMID:29271952
NASA Technical Reports Server (NTRS)
Yang, Kai; Dickerson, Russell R.; Carn, Simon A.; Ge, Cui; Wang, Jun
2013-01-01
Severe smog episodes over China in January 2013 received worldwide attention. This air pollution was distinguished by heavy loadings of fine particulate matter and SO2. To characterize these episodes, we employed the Ozone Mapping and Profiler Suite, Nadir Mapper (OMPS NM), an ultraviolet (UV) spectrometer flying on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft since October 2011. We developed an advanced algorithm to quantify SO2 in the lower troposphere and achieved high-quality retrievals from OMPS NM, which are characterized by high precision, approx. 0.2 Dobson Units (DU; 1 DU = 2.69 x 10(exp 16) molecules/sq cm) for instantaneous field of view SO2 data and low biases (within +/-0.2 DU). Here we report SO2 retrievals and UV aerosol index data for these pollution events. The SO2 columns and the areas covered by high pollutant concentrations are quantified; the results reveal for the first time the full extent (an area of approx. 10(exp 6) sq km containing up to 60 kt of SO2) of these episodes.
Weissmannová, Helena Doležalová; Pavlovský, Jiří
2017-11-07
This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.
Guagliardi, Ilaria; Cicchella, Domenico; De Rosa, Rosanna; Buttafuoco, Gabriele
2015-07-01
Exposure to lead (Pb) may affect adversely human health. Mapping soil Pb contents is essential to obtain a quantitative estimate of potential risk of Pb contamination. The main aim of this paper was to determine the soil Pb concentrations in the urban and peri-urban area of Cosenza-Rende to map their spatial distribution and assess the probability that soil Pb concentration exceeds a critical threshold that might cause concern for human health. Samples were collected at 149 locations from residual and non-residual topsoil in gardens, parks, flower-beds, and agricultural fields. Fine earth fraction of soil samples was analyzed by X-ray Fluorescence spectrometry. Stochastic images generated by the sequential Gaussian simulation were jointly combined to calculate the probability of exceeding the critical threshold that could be used to delineate the potentially risky areas. Results showed areas in which Pb concentration values were higher to the Italian regulatory values. These polluted areas were quite large and likely, they could create a significant health risk for human beings and vegetation in the near future. The results demonstrated that the proposed approach can be used to study soil contamination to produce geochemical maps, and identify hot-spot areas for soil Pb concentration. Copyright © 2015. Published by Elsevier B.V.
Daily and peak 1 h indoor air pollution and driving factors in a rural Chinese village.
Fischer, Susan L; Koshland, Catherine P
2007-05-01
We investigate wintertime indoor air quality and personal exposures to carbon monoxide (CO) in a rural village in Jilin province, where relatively homogeneous climatic and sociocultural factors facilitate investigation of household structural, fuel-related, and behavioral determinants of air pollution as well as relationships between different measures of air quality. Our time-resolved wintertime measurements of carbon monoxide and respirable particles (RSP) enable exploration of peak pollution periods in a village in Jilin Province, China, characterized by household use of both coal and biomass, as well as several "improved" (gas or electric) fuels. Our data indicate a 6-fold increase in peak 1 h PM (1.9 mg/m3) concentrations relative to 24 h mean PM (0.31 mg/m3). Peak 1 h CO concentrations (20.5 ppm) routinely approached and often (27%) exceeded the World Health Organization's 1 h guideline of 26 ppm, although the vast majority (95%) of kitchens were within China's residential indoor air quality guideline for CO on a 24 h basis. Choice of heating fuel and household smoking status were significant predictors of indoor air quality. Whether solid or "improved" (gas or electric) fuel was used for cooking had an even stronger effect, but in the opposite direction from expected, on both peak and daily average measures of air pollution. Peak pollution period concentrations of CO and PM were strongly correlated to daily concentrations of CO and RSP, respectively. Our results suggestthat due to the primary role of heating as a determinant of wintertime indoor air quality in northern Chinese villages, health-oriented interventions limited to provision of improved cooking fuel are insufficient. Our results illustrate that peak pollution periods may routinely exceed exposure regulations and evacuation limits, although this and previous studies document typical 24 h CO concentrations in rural Chinese kitchens to be within guidelines. Within a given village and for a given pollutant, daily pollutant concentrations may be strong predictors of peak pollution period concentrations.
NASA Astrophysics Data System (ADS)
Vierheilig, Julia; Reischer, Georg H.; Farnleitner, Andreas H.
2010-05-01
Characterisation of microbial faecal hazards in water is a fundamental aspect for target-orientated water resources management to achieve appropriate water quality for various purposes like water supply or agriculture and thus to minimize related health risks. Nowadays the management of water resources increasingly demands detailed knowledge on the extent and the origin of microbial pollution. Cultivation of standard faecal indicator bacteria, which has been used for over a century to test the microbiological water quality, cannot sufficiently meet these challenges. The abundant intestinal bacterial populations are very promising alternative targets for modern faecal indication systems. Numerous assays for the detection of genetic markers targeting source-specific populations of the phylum Bacteroidetes have been developed in recent years. In some cases markers for total faecal pollution were also proposed in order to relate source-specific marker concentrations to general faecal pollution levels. However, microbial populations in intestinal and non-intestinal systems exhibit a dazzling array of diversity and molecular analysis of microbial faecal pollution has been based on a fragmentary puzzle of very limited sequence information. The aim of this study was to test the available qPCR-based methods detecting genetic Bacteroidetes markers for total faecal pollution in terms of their value and specificity as indicators of faecal pollution. We applied the AllBac (Layton et al., 2006) the BacUni (Kildare et al., 2007) and the Bacteroidetes (Dick and Field, 2004) assays on soil DNA samples. Samples were collected in well characterised karst spring catchments in Austria's Eastern Calcareous Alps. They were at various levels of altitude between 800 and 1800 meters above sea level and from several different habitats (woodland, alpine pastures, krummholz). In addition we tried to choose sampling sites representing a presumptive gradient of faecal pollution levels. For example sites with obvious faecal influence (e.g. right next to a cowpat) were included as well as more pristine sites without faecal influence from large animals (e.g. fenced areas). Surprisingly, results from investigations with the AllBac assay showed concentrations of the total faecal marker in soil in the range of 106 to 109 Marker Equivalents per g of soil, which is equal or only slightly lower than the concentrations of this particular marker in faeces or raw sewage. Preliminary results from the other tested assays seem to confirm that the targeted markers are also highly abundant in soils. In addition, the markers were present in comparable concentrations in soils from pristine locations as well as in soils under the potential influence of faeces giving a strong indication that these methods also target non-intestinal, autochthonous soil populations. In contrast, source-specific markers (ruminant-specific BacR and human-specific BacH, Reischer et al., 2007, 2006) could only be detected in 30 to 50% of the soil samples at concentrations close to the detection limit, which is at least four orders of magnitude lower than in faecal samples of the respective target sources, ruminant animals and humans. The achieved results call the applicability of the proposed qPCR-based assays for total faecal pollution into question. In fact the assays do not seem to be specific for intestinal Bacteroidetes populations at all and the respective marker concentration levels in pristine soils negate their applicability in the investigated areas. This study also emphasizes the need to test the specificity and sensitivity of qPCR-based assays for total faecal pollution on the local level and especially against non-intestinal environmental samples, which might contribute to marker levels in the aquatic compartment. In conclusion there is a strong demand for marker-based detection techniques for total faecal pollution in water quality monitoring and risk assessment but currently none of the tested assays seems to meet the methodical requirements.
NASA Astrophysics Data System (ADS)
Zeng, C.
2015-12-01
The North China Plain is one of the main grain producing areas of China, but is also a severe straw burning zone. Winter wheat and summer corn harvests in this area usually occur from the beginning of Jun and Oct, respectively. After harvest, farmers usually burn out the remaining straw for convenience. However, straw burning can release a large quantity of air pollutants and can consequently result in a significant deterioration in regional air quality. To monitor the impact of straw burning on particulate pollution, daily MODIS thermal anomaly products (MOD14 and MYD14) were used to identify dates and regions of straw burning. Then the corresponding MODIS AOD products (MOD04 and MYD04) and particulate matter (PM) concentration observations from ground stations were integrated using a geostatistical method. By combining the accurate station-based PM observations and satellite data of well spatial coverage, PM concentration distribution maps were generated. Meanwhile, NCEP reanalysis data were used to obtain the corresponding surface wind pattern maps. Preliminary results show that satellite and station-based observations can indicate the impact of straw burning on PM pollution during harvest time. Air qualities during these times are obviously affected by the straw burning and surface wind field. Moreover, the air quality of the southeast study region is susceptible to the straw burning in adjacent areas due to the characteristic of the terrain.
He, Lin; Chen, Hui; Rangognio, Jérôme; Yahyaoui, Abderrazak; Colin, Patrice; Wang, Jinhe; Daële, Véronique; Mellouki, Abdelwahid
2018-01-15
To expand our knowledge of regional fine particles in Central France (Centre-Val de Loire region), a field observation study of PM 2.5 was carried out at Verneuil site (46.81467N, 2.61012E, 180m.a.s.l.) from 2011 to 2014. The mass concentrations of water-soluble inorganic ions (WSIIs), organic carbon (OC), elemental carbon (EC) and biomass burning tracer (Levoglucosan) in PM 2.5 were measured. Annual average PM 2.5 mass concentrations were 11.8, 9.5, 12.6 and 10.2μg·m -3 in 2011, 2012, 2013 and 2014, respectively, three of four higher than the WHO guideline of 10μg·m -3 . Secondary inorganic aerosol (SIA) and organic matter (OM) appeared to be the major components in PM 2.5 in Verneuil, contributing 30.1-41.8% and 36.9-46.3%, respectively. Main chemical species were observed in the following order: winter≥spring>autumn>summer. Backward atmospheric trajectories were performed using Hysplit model and suggested that the PM 2.5 pollutants caused by atmospheric transport were mainly originated from European inland, mainly east to north-east areas. During the observation period, five pollution events were reported and indicated that not only the polluted air masses from central Europe but also the biomass burning from East Europe significantly influenced the air quality in Verneuil site. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Perrin, J. L.; Raïs, N.; Chahinian, N.; Moulin, P.; Ijjaali, M.
2014-03-01
Oued Fez (one of the Sebou River tributaries - Morocco) allowed us to study and quantify the effect of the lack of wastewater treatment on surface water quality in semi-arid hydrological context. The analysis is based on field data collected from June 2009 to December 2011. Concentration and load patterns of nitrogen, phosphorus and chromium (used in the processing of leather) are compared in stable hydrological conditions during low flow and high flow periods in an eight-location sampling network. The Oued Fez and the Sebou River are characterised by severe pollution downstream from the city of Fez, particularly TN (mainly NH4 and Norg), TP (mainly Ppart) and TCr. The most polluted sites are those directly under the influence of domestic and industrial waste water inputs, particularly tannery effluents. Obviously, the concentrations measured at these locations are above all environmental quality standards. Pollutant loads are very heavy in the Sebou River and can contaminate the river course for kilometres. Moreover, as the water of the Sebou River is used for the irrigation of vegetables, serious problems of public health could arise. A better understanding of contaminant dynamics and self-purifying processes in these rivers will help implement actions and steps aimed at improving water quality in the Sebou River, which is the primary water supply source in Morocco and is used for agricultural and industrials purposes as well as for drinking water.
Immunomodulation by Persistent Organic Pollutants
Persistent organic pollutants (POPs) are widely distnbuted in the environment, are resistant to degradation, and increase in concentration (biomagnify) in the food chain. Concentrations in apical predators may be tens to hundreds of times greater than concentrations in their pref...
Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons
NASA Astrophysics Data System (ADS)
Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.
2016-12-01
The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.
Sandy beach molluscs as possible bio-indicators of metal pollution 1. field survey. [South Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watling, H.R.; Watling, R.J.
A great variety of molluscs occur around the South African coast, extending as it does from the sub-tropical environment of Natal to the temperate environment of the Cape. The potential of many of these molluscs as bio-indicators has been discussed in general terms on the basis of the reported use of related species (DARRACOTT and WATLING 1975) and certain of these, among them the bivalve Donax serra and gastropod Bullia rhodostoma, have been included in the national marine pollution monitoring program. The aims of this preliminary investigation are: to determine the metal concentrations in D. serra and B. rhodostoma growingmore » along a 500 km stretch of the southern African coast, supplementing data from sediment and water sampling surveys of the same region; and to determine in laboratory studies whether these molluscs accumulate metals, thus meeting some at least of the criteria for monitoring organisms. The field survey data are presented in this paper.« less
Effect of substrate depth and rain-event history on the pollutant abatement of green roofs.
Seidl, Martin; Gromaire, Marie-Christine; Saad, Mohamed; De Gouvello, Bernard
2013-12-01
This study compares the effectiveness of two different thickness of green roof substrate with respect to nutrient and heavy metal retention and release. To understand and evaluate the long term behaviour of green roofs, substrate columns with the same structure and composition as the green roofs, were exposed in laboratory to artificial rain. The roofs act as a sink for C, N, P, zinc and copper for small rain events if the previous period was principally dry. Otherwise the roofs may behave as a source of pollutants, principally for carbon and phosphorus. Both field and column studies showed an important retention for Zn and Cu. The column showed, however, lower SS, DOC and metal concentrations in the percolate than could be observed in the field even if corrected for run-off. This is most probably due to the difference in exposition history and weathering processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Logue, Jennifer M; Klepeis, Neil E; Lobscheid, Agnes B; Singer, Brett C
2014-01-01
Residential natural gas cooking burners (NGCBs) can emit substantial quantities of pollutants, and they are typically used without venting range hoods. We quantified pollutant concentrations and occupant exposures resulting from NGCB use in California homes. A mass-balance model was applied to estimate time-dependent pollutant concentrations throughout homes in Southern California and the exposure concentrations experienced by individual occupants. We estimated nitrogen dioxide (NO2), carbon monoxide (CO), and formaldehyde (HCHO) concentrations for 1 week each in summer and winter for a representative sample of Southern California homes. The model simulated pollutant emissions from NGCBs as well as NO2 and CO entry from outdoors, dilution throughout the home, and removal by ventilation and deposition. Residence characteristics and outdoor concentrations of NO2 and CO were obtained from available databases. We inferred ventilation rates, occupancy patterns, and burner use from household characteristics. We also explored proximity to the burner(s) and the benefits of using venting range hoods. Replicate model executions using independently generated sets of stochastic variable values yielded estimated pollutant concentration distributions with geometric means varying by <10%. The simulation model estimated that-in homes using NGCBs without coincident use of venting range hoods-62%, 9%, and 53% of occupants are routinely exposed to NO2, CO, and HCHO levels that exceed acute health-based standards and guidelines. NGCB use increased the sample median of the highest simulated 1-hr indoor concentrations by 100, 3,000, and 20 ppb for NO2, CO, and HCHO, respectively. Reducing pollutant exposures from NGCBs should be a public health priority. Simulation results suggest that regular use of even moderately effective venting range hoods would dramatically reduce the percentage of homes in which concentrations exceed health-based standards.
Analysis of major air pollutants and submicron particles in New York City and Long Island
NASA Astrophysics Data System (ADS)
Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.
2017-01-01
A year-long sampling campaign of major air pollutants and submicron particle number size distributions was conducted at two sites taken as representative of city-wide air quality in New York City and Long Island, respectively. A number of species were quantified with hourly time resolution, including particle number concentrations in 6 size ranges (20-30 nm, 30-50 nm, 50-70 nm, 70-100 nm, 100-200 nm, and >200 nm), nitrogen oxides, sulfur dioxide, ozone, carbon monoxide, methane, non-methane hydrocarbons, PM2.5 mass concentration and some PM major components (sulfate, organic and elemental carbon). Hourly concentrations of primary and secondary organic carbon were estimated using the EC tracer method. Data were matched with weather parameters and air parcel back-trajectories. A series of tools were thus applied to: (i) study the seasonal, weekly, diurnal cycles of pollutants; (ii) investigate the relationships amongst pollutants through correlation and lagged correlation analyses; (iii) depict the role of atmospheric photochemical processes; (iv) examine the location of the potential sources by mean of conditional bivariate probability function analysis and (v) investigate the role of regional transport of air masses to the concentrations of analyzed species. Results indicate that concentrations of NOx, SO2, CO, non-methane hydrocarbons, primary OC and EC are predominantly determined by local sources, but are also affected by regional transports of polluted air masses. On the contrary, the transport of continental polluted air masses has a main effect in raising the concentrations of secondary PM2.5 (sulfate and secondary organic carbon). By providing direct information on the concentrations and trends of key pollutants and submicron particle number concentrations, this study finally enables some general considerations about air quality status and atmospheric processes over the New York City metropolitan area.
NASA Astrophysics Data System (ADS)
Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.
2015-12-01
Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.
NASA Astrophysics Data System (ADS)
Zarauz, Jorge V.
The health and environmental conditions in the Central Andes city La Oroya, Peru, have been seriously damaged by the heavy metal mining activities in the region. The situation has been exacerbated by the complex topography, which prevents proper mixing and dissolution of particles and gases released into the atmosphere. Understanding how pollutants are dispersed in populated regions, especially in complex terrain, would help to create mitigation strategies. The present study uses CALPUFF and HYSPLIT dispersion/deposition models to estimate sulfur dioxide (SO2) dispersion from the main stack of the La Oroya metallurgical plant. Due to the lack of meteorological data in the area, the Weather Research and Forecasting model (WRF) is used with observational nudging for temperature, relative humidity, and wind fields of three surface meteorological stations specifically installed for the study. The pollutant dispersion models are sensitive to a precise estimation of the turbulent vertical transport of mass, energy and moisture in the low atmosphere; therefore, two planetary boundary layer (PBL) schemes are tested, the Mellor-Yamada-Janjic and Yonsei University models. The dispersion models are run and results compared with field measurements at La Oroya, and Huancayo. The observation-nudging and YSU scheme considerably improved the prognostic variables. CALPUFF and HYSPLIT models showed similar patterns; however, HYSPLIT overestimated SO2 concentrations for low PBLs. Moreover, recent enhancements on spectral, spatial and temporal resolution of atmospheric scanning sensors of chemical constituents from the space, have led to detecting trace gases of anthropogenic origin in the lower troposphere. This contribution also explores the SO2 level 2 dataset from Ozone Mapping Instrument (OMI), in conjunction with atmospheric optical depth and Angstrom coefficient data products, extracted from MODerate Resolution Imaging Spectroradiometer (MODIS) to estimate SO2 loads in the PBL for clear and turbid atmospheric conditions. A narrow temporal sampling (three days) with no clear atmospheres and best sensor viewing geometry are examined and compared with a pollutant dispersion and deposition model (CALPUFF) and field observations. The efficacy of the developed method is further examined incorporating synchronous wind vectors, and daily accumulated precipitation derived from Tropical Rainfall Measuring Mission (TRMM) data. The source and trajectories of SO2 concentrations are detected by satellite based observations, and the pollutant plume is correctly traced downwind. Then, the spatial patterns of SO2 loads are analyzed for clear atmospheres and optimal viewing conditions (for 55 samples found in 467 days) and compared with field measurements. A logarithmic model is found between in situ observations and OMI estimations. The correlation can be increased when Angstrom exponents are between 0.7 and 1 and a linear relationship obtained when very high SO2 loads are extracted. Results show that the spatio-temporal dynamics of SO2 as monitored from space is in agreement with both field measurements and CALPUFF, which takes into account topography and wind field patterns. The study concludes that anthropogenic pollutants, i.e., SO2, and its trajectory can be monitored from OMI sensor even for turbid sky conditions. Findings of the research have great potential in public health managements and predictions.
Yeo, Bee Geok; Takada, Hideshige; Hosoda, Junki; Kondo, Atsuko; Yamashita, Rei; Saha, Mahua; Maes, Thomas
2017-08-01
Oil pollution in the marine environment is an unavoidable problem due to chronic input from local sources, particularly in urban areas and oil spills. Oil pollution not only causes immediate physical damages to surrounding wildlife but also some components, including higher molecular weight PAHs, can persist in the environment for many years and pose insidious threats to the ecosystem. Long-term and nontargeted monitoring of oil pollution is important. This paper examines the ability of International Pellet Watch (IPW) for initial identification and monitoring of oil pollution by analysing PAHs and hopanes in plastic pellet samples collected globally by volunteers. PAH concentrations with the sum of 28 parent and methyl PAHs vary geographically, ranging from 0.035 to 24.4 µg/g-pellet, in line with the presence or absence of local oil pollution sources, such as oil refineries or oil spill sites. This suggests that PAHs can be used to monitor petroleum pollution in IPW. A colour-coded categorization for PAH concentrations within IPW monitoring also is established to facilitate data presentation and understanding. PAH concentrations are generally higher in Western Europe, especially around the North Sea shorelines, moderate in East Asia and North America, and lower in South East Asia, Oceania, South America, and Africa. Hopane concentrations, with a smaller spatial variation (1.7-101 µg/g-pellet), showed no spatial pattern. This result and the poor correlation between hopanes and PAHs suggest that hopane concentrations alone are unsuited to identify petroleum pollution. However, hopane compositions can be used for fingerprinting sources of oil pollution. Thus, both PAHs and hopanes in IPW allow for low cost, remote monitoring of global oil pollution.
Chapa-Vargas, Leonardo; Mejia-Saavedra, Jose J; Monzalvo-Santos, Karina; Puebla-Olivares, Fernando
2010-01-01
This investigation was undertaken to determine the concentrations of lead in bird blood samples from a mining region in central Mexico and to compare concentrations among several different feeding guilds. The study took place in the Mexican state of San Luis Potosi in a region known as "Villa de la Paz." This is one of the most intensely exploited mining regions in central Mexico and has been actively mined for over four centuries. Lead concentrations from bird blood samples taken from four polluted sites were significantly higher than those from a control, unpolluted site (F = 6.3, P < 0.0002). Similarly, mean blood lead concentrations in birds from a highly polluted site were higher than those from a site that has intermediate pollution levels (P < 0.05). In addition, samples from insectivorous birds had significantly lower lead concentrations compared to granivores, frugivores-insectivores, and omnivores (F = 4.86, P = 0.004), and a large proportion of all individuals had blood lead concentrations indicative of low, sub-lethal toxic effects. Finally, in two polluted sites, remarkably small numbers of insectivore-frugivores, and granivores were trapped, and in one polluted site a large number of insectivores was trapped (X(2) = 29.9, P = 0.03), and no differences in proportions of migrants and non-migrants were found among sampling sites (X(2) = 0.6, P = 0.96). To date, it has not been determined to what extent constant exposure to these levels of pollution can influence health at the individual level, lifespan, and, therefore, population demography of birds from this region.
Effect of Water Nutrient Pollution on Long-Term Corrosion of 90:10 Copper Nickel Alloy
Melchers, Robert E.
2015-01-01
Due to their good corrosion resistance, copper and copper alloys such as 90:10 Cu-Ni are used extensively in high-quality marine and industrial piping systems and also in marine, urban, and industrial environments. Their corrosion loss and pitting behaviour tends to follow a bi-modal trend rather than the classic power law. Field data for 90:10 copper nickel immersed in natural seawater are used to explore the effect of water pollution and in particular the availability of critical nutrients for microbiologically induced corrosion. It is shown, qualitatively, that increased dissolved inorganic nitrogen increases corrosion predominantly in the second, long-term, mode of the model. Other, less pronounced, influences are salinity and dissolved oxygen concentration. PMID:28793696
Imhof, David; Weingartner, Ernest; Ordónez, Carlos; Gehrig, Robert; Hill, Matz; Buchmann, Brigitte; Baltensperger, Urs
2005-11-01
Extended field measurements of particle number (size distribution of particle diameters, D, in the range between 18 nm and 10 microm), surface area concentrations, and PM1 and PM10 mass concentrations were performed in Switzerland to determine traffic emissions using a comprehensive set of instruments. Measurements took place at roads with representative traffic regimes: at the kerbside of a motorway (120 km h(-1)), a highway (80-100 km h(-1)), and in an urban area with stop-and-go traffic (0-50 km h(-1)) regulated by light signals. Mean diurnal variations showed that the highest pollutant concentrations were during the morning rush hours, especially of the number density in the nanoparticle size range (D <50 nm). From the differences between up- and downwind concentrations (or differences between kerbside and background concentrations for the urban site), "real-life" emission factors were derived using NOx concentrations to calculate dilution factors. Particle number and volume emission factors of different size ranges (18-50 nm, 18-100 nm, and 18-300 nm) were derived for the total vehicle fleet and separated into a light-duty (LDV) and a heavy-duty vehicle (HDV) contribution. The total particle number emissions per vehicle were found to be about 11.7-13.5 x 10(14) particles km(-1) for constant speed (80-120 km h(-1) and 3.9 x 10(14) particles km(-1) for urban driving conditions. LDVs showed higher emission factors at constant high speed than under urban disturbed traffic flow. In contrast, HDVs emitted more air pollutants during deceleration and acceleration processes in stop-and-go traffic than with constant speed of about 80 km h(-1). On average, one HDV emits a 10-30 times higher amount of particulate air pollutants (in terms of both number and volume) than one LDV.
Michikawa, Takehiro; Morokuma, Seiichi; Nitta, Hiroshi; Kato, Kiyoko; Yamazaki, Shin
2017-06-13
Numerous earlier studies examining the association of air pollution with maternal and foetal health estimated maternal exposure to air pollutants based on the women's residential addresses. However, residential addresses, which are personally identifiable information, are not always obtainable. Since a majority of pregnant women reside near their delivery hospitals, the concentrations of air pollutants at the respective delivery hospitals may be surrogate markers of pollutant exposure at home. We compared air pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital with those measured at the closest monitoring stations to the respective residential postal code regions of pregnant women in Fukuoka. Aggregated postal code data for the home addresses of pregnant women who delivered at Kyushu University Hospital in 2014 was obtained from Kyushu University Hospital. For each of the study's 695 women who resided in Fukuoka Prefecture, we assigned pollutant concentrations measured at the nearest monitoring station to Kyushu University Hospital and pollutant concentrations measured at the nearest monitoring station to their respective residential postal code regions. Among the 695 women, 584 (84.0%) resided in the proximity of the nearest monitoring station to hospital or one of the four other stations (as the nearest stations to their respective residential postal code region) in Fukuoka city. Pearson's correlation for daily mean concentrations among the monitoring stations in Fukuoka city was strong for fine particulate matter (PM 2.5 ), suspended particulate matter (SPM), and photochemical oxidants (Ox) (coefficients ≥0.9), but moderate for coarse particulate matter (the result of subtracting the PM 2.5 from the SPM concentrations), nitrogen dioxide, and sulphur dioxide. Hospital-based and residence-based concentrations of PM 2.5 , SPM, and Ox were comparable. For PM 2.5 , SPM, and Ox, exposure estimation based on the delivery hospital is likely to approximate that based on the home of pregnant women.
Ciejka, Elżbieta; Kowalczyk, Agata; Gorąca, Anna
2014-01-01
Free radicals are atoms, molecules or their fragments, whose excess leads to the development of oxidative stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, as well as aging of organisms. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic fields are the major exogenous sources of free radicals. The low frequency mag- netic field is commonly applied in physiotherapy. The aim of the present study was to evaluate the effect of extremely low frequency magnetic field (1L.F-MF) on the concentration ofsullhydryl groups (-SH) and proteins in liver tissues of experimental animals de- pending on the time of exposure to the field. Twenty one Sprague-D)awley male rats, aged 3-4 months were randomly divided into 3 experimental groups (each containing 7 animals): controls (group I), the rats exposed to IEI.F-MF of 40 Hz, 7 mT (this kind of the ELF-MF is mostly used in magnetotherapy), 30 min/day for 2 weeks (group II) and the rats exposed to 40 Hz, 7 mT for 60 min/day for 2 weeks (group III). The concentrations of proteins and sulfhydryl groups in the liver tissues were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks caused a significant increase in the concentration of-SH groups and total protein levels in the liver tissues. The study results suggest that exposure to magnetic fields leads to the development of adaptive mechanisms to maintain the balance in the body oxidation-reduction and in the case of the studied parameters does not depend on the time of exposure.
Rai, Prabhat Kumar
2008-01-01
The level of heavy metal pollution in Singrauli, an industrial region in India, was assessed and the phytoremediation capacity of a small water fern, Azolla pinnata R.BR (Azollaceae), was observed to purify waters polluted by two heavy metals, i.e., mercury (Hg) and cadmium (Cd) under a microcosm condition. Azolla pinnata is endemic to India and is an abundant and easy-growing free-floating water fern usually found in the rice fields, polluted ponds, and reservoirs of India. The fern was grown in 24 40-L aquariums containing Hg2+ and Cd2+ ions each in concentrations of 0.5, 1.0, and 3.0 mgL(-1) during the course of this study. The study revealed an inhibition of Azolla pinnata growth by 27.0-33.9% with the highest in the presence of Hg (II) ions at 0.5 mgL(-1) in comparison to the control After 13 days of the experiment, metal contents in the solution were decreased up to 70-94%. In the tissues of Azolla pinnata, the concentration of selected heavy metals during investigation was recorded between 310 and 740 mgKg(-1) dry mass, with the highest levelfoundfor Cd (II) treatment at 3.0 mgL(-1) containing a metal solution.
Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem.
Kong, Xiao; Jin, Decai; Jin, Shulan; Wang, Zhigang; Yin, Huaqun; Xu, Meiying; Deng, Ye
2018-04-10
Phthalate esters (PAEs) are a type of plasticizer that has aroused great concern due to their mutagenic, teratogenic, and carcinogenic effects, wherefore dibutyl phthalate (DBP) and other PAEs have been listed as priority pollutants. In this study, the impacts of DBP on a soil-vegetable ecosystem were investigated. The results showed that DBP could accumulate within vegetable tissues, and the accumulative effect was enhanced with higher levels of DBP contamination in soils. DBP accumulation also decreased vegetable quality in various ways, including decreased soluble protein content and increased nitrate content. The diversity of bacteria in soils gradually decreased with increasing DBP concentration, while no clear association with endophytic bacteria was observed. Also, the relative abundance, structure, and composition of soil bacterial communities underwent successional change during the DBP degradation period. The variation of bulk soil bacterial community was significantly associated with DBP concentration, while changes in the rhizosphere soil bacteria community were significantly associated with the properties of both soil and vegetables. The results indicated that DBP pollution could increase the health risk from vegetables and alter the biodiversity of indigenous bacteria in soil-vegetable ecosystems, which might further alter ecosystem functions in agricultural fields. Copyright © 2018 Elsevier B.V. All rights reserved.
Stability of the surface layer and its relation to the dispersion of primary pollutants in St. Louis
NASA Technical Reports Server (NTRS)
Remsberg, E. E.; Woodbury, G. E.
1983-01-01
The effects of atmospheric stability on the dispersion of primary pollutants such as CO, total hydrocarbons (THC), and NO were examined in St. Louis. The pollutant levels were measured at 25 stations, temperature at 12 stations at 5 and 30 m height, and wind speed and direction at the 30 m level at 12 stations. Correlation coefficients were generated for pairs of the vertical temperature differences, the log of the mean wind speed reciprocal, the bulk Richardson number, and specific pollutant concentrations. A high correlation was obtained between the thermal stability and the urban concentration of the primary pollutants in the lowest part of the boundary layer. A restricted nighttime dispersion of the pollutants was observed, indicating near-ground increased concentrations at times when the source emissions actually decrease.
Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu
2008-02-01
Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.
Land cover and air pollution are associated with asthma hospitalisations: A cross-sectional study.
Alcock, Ian; White, Mathew; Cherrie, Mark; Wheeler, Benedict; Taylor, Jonathon; McInnes, Rachel; Otte Im Kampe, Eveline; Vardoulakis, Sotiris; Sarran, Christophe; Soyiri, Ireneous; Fleming, Lora
2017-12-01
There is increasing policy interest in the potential for vegetation in urban areas to mitigate harmful effects of air pollution on respiratory health. We aimed to quantify relationships between tree and green space density and asthma-related hospitalisations, and explore how these varied with exposure to background air pollution concentrations. Population standardised asthma hospitalisation rates (1997-2012) for 26,455 urban residential areas of England were merged with area-level data on vegetation and background air pollutant concentrations. We fitted negative binomial regression models using maximum likelihood estimation to obtain estimates of asthma-vegetation relationships at different levels of pollutant exposure. Green space and gardens were associated with reductions in asthma hospitalisation when pollutant exposures were lower but had no significant association when pollutant exposures were higher. In contrast, tree density was associated with reduced asthma hospitalisation when pollutant exposures were higher but had no significant association when pollutant exposures were lower. We found differential effects of natural environments at high and low background pollutant concentrations. These findings can provide evidence for urban planning decisions which aim to leverage health co-benefits from environmental improvements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation study on the impact of air distribution on formaldehyde pollutant distribution in room
NASA Astrophysics Data System (ADS)
Wu, Jingtao; Wang, Jun; Cheng, Zhu
2017-01-01
In this paper, physical and mathematical model of a room was established based on the Airpak software. The velocity distribution, air age distribution, formaldehyde concentration distribution and Predicted Mean Vote(PMV), Predicted Percentage Dissatisfied(PPD) distribution in the ward of a hospital were simulated. In addition, the air volume was doubled, the change of indoor pollutant concentration distribution was simulated. And further, the change of air age was simulated. Through the simulation, it can help arrange the position of the air supply port, so it is very necessary to increase the comfort of the staff in the room. Finally, through the simulation of pollutant concentration distribution, it can be seen that when concentration of indoor pollutants was high, the supply air flow rate should be increased appropriately. Indoor pollutant will be discharged as soon as possible, which is very beneficial to human body health.
Zhang, Jiangshe; Ding, Weifu
2017-01-01
With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034
MacNeill, M; Dobbin, N; St-Jean, M; Wallace, L; Marro, L; Shin, T; You, H; Kulka, R; Allen, R W; Wheeler, A J
2016-10-01
Traffic emissions have been associated with a wide range of adverse health effects. Many schools are situated close to major roads, and as children spend much of their day in school, methods to reduce traffic-related air pollutant concentrations in the school environment are warranted. One promising method to reduce pollutant concentrations in schools is to alter the timing of the ventilation so that high ventilation time periods do not correspond to rush hour traffic. Health Canada, in collaboration with the Ottawa-Carleton District School Board, tested the effect of this action by collecting traffic-related air pollution data from four schools in Ottawa, Canada, during October and November 2013. A baseline and intervention period was assessed in each school. There were statistically significant (P < 0.05) reductions in concentrations of most of the pollutants measured at the two late-start (9 AM start) schools, after adjusting for outdoor concentrations and the absolute indoor-outdoor temperature difference. The intervention at the early-start (8 AM start) schools did not have significant reductions in pollutant concentrations. Based on these findings, changing the timing of the ventilation may be a cost-effective mechanism of reducing traffic-related pollutants in late-start schools located near major roads. © 2015 Her Majesty the Queen in Right of Canada. Indoor Air published by John Wiley & Sons Ltd. Reproduced with the permission of the Minister of Health Canada.
40 CFR 50.14 - Treatment of air quality monitoring data influenced by exceptional events.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EPA's satisfaction that emissions from fireworks displays caused a specific air pollution... to EPA's satisfaction that such event caused a specific air pollution concentration at a particular... pollution concentration in excess of one or more national ambient air quality standards at a particular air...
Air pollution epidemiologic research has often utilized ambient air concentrations measured from centrally located monitors as a surrogate measure of exposure to these pollutants. Associations between these ambient concentrations and health outcomes such as lung function, hospita...
NASA Astrophysics Data System (ADS)
Li, Qilu; Wang, Yan; Luo, Chunling; Li, Jun; Zhang, Gan
2017-05-01
In this study, 52 paired gas and particle samples were collected from a suburban field in Guangzhou in 2012 using a high-volume active air sampler; they were then analysed for 30 polychlorinated biphenyl (PCB) congeners via gas chromatography with tandem mass spectrometry. Total PCB concentrations ranged from 97.4 to 853 pg m-3. This was a moderate level compared with other cities, undeveloped areas, and electronic waste disposal sites. Atmospheric concentrations of PCBs did not exhibit notable diurnal or seasonal variations, except for a few high measurement. Tetra- and tri-CBs were the predominant PCB compounds, with an average combined contribution of 81.9%. CB-77 was the dominant congener in the particle phase due to a few samples with extremely high mass fraction of CB-77 and relatively low concentrations of other PCBs. Based on measurements of pollution characteristics including diurnal and seasonal variations, we used correlation analysis, principal component analysis and back trajectory modeling to deduce that electronic manufacturing and recycling activities, pigment/paint production, and waste incineration plants are possible sources of PCBs in Guangzhou. Of these sources, the high observed contributions of CB-77 originated mainly from the pigment/paint industry.
Antolín-Rodríguez, Juan M; Sánchez-Báscones, Mercedes; Martín-Ramos, Pablo; Bravo-Sánchez, Carmen T; Martín-Gil, Jesús
2016-06-01
Polychlorinated biphenyl (PCB) pollution related to the use of organic waste as fertilizers in agricultural soils is a cause of major concern. In the study presented herein, PCB concentration was studied through a field trial conducted in two agricultural soils in the province of Palencia (Spain) over a 4-year period, assessing the impact of irrigation and of different types of organic waste materials. The amounts of organic waste added to the soil were calculated according to the nitrogen needs of the crop, and the concentration of PCBs was determined before and after the application of the organic waste. The resulting persistence of the total PCB content in the agricultural soils, compared with the PCB concentration in the original soils, ranged from 27% to 90%, with the lowest value corresponding to irrigated soils treated with municipal solid waste compost (MSWC) and the highest value to non-irrigated soils treated with composted sewage sludge (CSS). An estimate of the PCB content in agricultural soils after the application of organic waste materials until year 2050 was obtained, resulting in a value below 5 ng·g(-1), considered a background value for soils in sites far away from potential pollution sources.
NASA Astrophysics Data System (ADS)
Fedorovich, E.; Thäter, J.
Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.
Wu, Bin; Chen, Tongbin
2010-01-01
Follow-up investigation on hair arsenic concentration was conducted in an arsenic heavily polluted area of southern China in 2002 and 2006. The results showed that the geometric mean of hair arsenic concentration decreased from 2.95 mg/kg in 2002 to 1.78 mg/kg in 2006, when the percentage of the population with levels over 1 mg/kg only decreased from 93.4% in 2002 to 80.5% in 2006. Over this four-year period, the population with high arsenic concentrations decreased significantly while there was no obvious change in hair arsenic concentration for people who had relatively low concentrations. In terms of age distribution, young and old people had higher hair arsenic concentrations than the middle-aged. All of these results showed that it is difficult to reverse the negative impact of arsenic pollution on human health. Arsenic pollution has a long-term continuous influence on the health of local residents.
Field Testing of Activated Carbon Mixing and In Situ Stabilization of PCBs in Sediment
2009-05-01
hazardous emissions and residuals were produced by this in situ treatment technology during the demonstration. 8.2 Other Regulatory Issues The...dibenzofuran concentrations in grebes, ducks and their prey near Port Alberni, British Columbia, Canada. Marine Pollution Bulletin 1993, 26, 431-435. (44...system HASP – Health and Safety Plan HAZWOPER – Hazardous Waste Operations and Emergency Response HPS – Hunters Point Shipyard HSO – Site Health
1985-09-01
the presence of high concentrations of polychlorinated biphenyls, polynuclear aromatic hydrocarbons , and heavy metals including Cu, 69 - >- j :ij...34Measurement of the Responses of Individuals to Environmental Stress and Pollution: Studies With Bivalve Molluscs ," Philosophical Transactions Royal...Gilfillan, E.S. 1980. "The Use of Scope-for-growth Measurements in Monitoring Petroleum
Polo-Cavia, Nuria; Burraco, Pablo; Gomez-Mestre, Ivan
2016-03-01
Recent studies suggest that direct mortality and physiological effects caused by pollutants are major contributing factors to global amphibian decline. However, even sublethal concentrations of pollutants could be harmful if they combined with other factors to cause high mortality in amphibians. Here we show that sublethal concentrations of pollutants can disrupt the ability of amphibian larvae to recognize predators, hence increasing their risk of predation. This effect is indeed much more important since very low amounts of pollutants are ubiquitous, and environmental efforts are mostly directed towards preventing lethal spills. We analyzed the effects of two common contaminants (humic acid and ammonium nitrate) on the ability of tadpoles of the western spadefoot toad (Pelobates cultripes) to recognize chemical cues from a common predator, nymphs of the dragonfly Anax imperator. We compared the swimming activity of tadpoles in the presence and absence of water-borne chemical cues from dragonflies at different concentrations of humic acid and ammonium nitrate. Tadpoles reduced swimming activity in response to predator cues in the absence of pollutants, whereas they remained unresponsive to these cues when either humic acid or ammonium nitrate was added to the water, even at low concentrations. Moreover, changes in tadpole activity associated with the pollutants themselves were non-significant, indicating no toxic effect. Alteration of the natural chemical environment of aquatic systems by pollutants may be an important contributing cause for declines in amphibian populations, even at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Honglei; Zhu, Bin; Shen, Lijuan; Kang, Hanqing
2012-01-01
To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60-70 and 200-300 nm, respectively. Aerosol concentration is 10(4) cm(-3) x nm(-1) on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, O3 is hardly affected. The impact of crop residual burning on fine particles (< 2.1 microm) is larger than on coarse particles (> 2.1 microm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K+, Cl-, Na+, and F- and has a weak impact on the size distributions of NH4+, Ca2+, NO3- and SO4(2-).
Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather
2014-01-01
In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.
Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling
2015-09-01
Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.
Sow, Ai Yin; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir
2013-12-01
The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
Hautala, E L; Rekilä, R; Tarhanen, J; Ruuskanen, J
1995-01-01
A vertical snow-sampling method, where a sample was taken throughout the snowpack, was used to estimate the pollutant load on a roadside where average daily traffic density was about 9100 motor vehicles. The snow samples were collected at two sites, forest and open field, at two distances of 10 and 30 m from the road. The concentrations of inorganic anions (Cl(-), NO(-)(3), SO(2-)(4)), total N, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated phenols (PCPhs) were analysed. The results suggest that on roadsides there is a deposition caused by road traffic emissions and winter maintenance which exceeds normal background deposition. Inorganic anions mainly in particle form, originating from winter maintenance, are deposited near the road. PAHs with low molecular weight (=252) are mainly in gaseous form and are deposited further away from the road. Also, some PCPhs show similar behaviour. The dispersion is different at the forest site than at the open-field site. Our results also indicate that the vertical snow-sampling method can be used in studying pollutant load from traffic near the roads. However, studies should focus on individual PAH or PCPh compounds as markers of highway pollution. The deposition of mixtures of compounds does not bring sufficient information in the light of present knowledge.
Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter
2017-11-07
In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.
NASA Astrophysics Data System (ADS)
Yuan, Mengqi; Wang, You; Zhou, Bin; Jian, Xiaoyang; Dong, Wenlong; Tang, Xuexi
2017-09-01
Organic pollution is a serious environmental problem in coastal areas and it is important to establish quantitative methods for monitoring this pollution. This study screened a series of sensitive biomarkers to construct an integrated biomarker response (IBR) index using Mytilus edulis. Mussels were exposed to the polycyclic aromatic hydrocarbon anthracene under controlled laboratory conditions and the activities of components of the glutathione antioxidant system, and the concentrations of oxidative-damage markers, were measured in the gills and digestive glands. Anthracene exposure resulted in increased levels of malondialdehyde (MDA) and superoxide radicals (O 2 • ), indicating that oxidative damage had occurred. Correspondingly, anthracene exposure induced increased activities of glutathione S-transferase (GST), glutathione peroxidase (GPx) and reduced glutathione (GSH) in digestive glands, and GPx and glutathione reductase (GR) in gills, consistent with stimulation of the antioxidant system. A field experiment was set up, in which mussels from a relatively clean area were transplanted to a contaminated site. One month later, the activities of GST, GPx and GR had increased in several tissues, particularly in the digestive glands. Based on the laboratory experiment, an IBR, which showed a positive relationship with anthracene exposure, was constructed. The IBR is suggested to be a potentially useful tool for assessing anthracene pollution.
The criterial optics of oceans and glaciers with technogenic pollutions
NASA Astrophysics Data System (ADS)
Merzlikin, V. G.; Ilushin, Ya. A.; Olenin, A. L.; Sidorov, O. V.; Tovstonog, V. A.
2017-02-01
Effective diagnostics of natural and technogenic pollutions of the ocean and forming snow-ice cover is considered on the basis of priority observation and registration of the changing optical characteristics of the seawater and glaciers. The paper discusses Influence of abnormal optical properties on overheating of the seawater subsurface layer and appearance of significant irradiated oceanic deep horizons up to 100 m. Additional heating of atmosphere, strengthening of hurricanes during a storm, tornadogenesis, generation of dehydrated convective air flows at a calm and effect of overcooling deep seawater is analyzed using the scheme of calculated heat budget and temperature distributions under combined solar and atmospheric exposure. The authors propose to use their unique deep hydrological multi-channel probe for synchronous and independent registration of optical, temperature and other standard hydro physical characteristics developed by Shirshov Institute of Oceanology. The paper presents calculation algorithm of real variability of spatial and temporal temperature field due to influence of registered concentration field of foreign substances in the seawater irrespective of its hydrodynamic conditions. Inphase or antiphase changes of fixed temperature gradients and transparency for polluted seawater has been explained as the result of the various contributions of scattering and absorption within attenuation processes of probing radiation for the local volume at a specified depth.
2014-01-01
Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818
Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E
2014-04-16
Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.
Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong
Wong, T. W.; Lau, T. S.; Yu, T. S.; Neller, A.; Wong, S. L.; Tam, W.; Pang, S. W.
1999-01-01
OBJECTIVE: To investigate short term effects of concentrations of pollutants in ambient air on hospital admissions for cardiovascular and respiratory diseases in Hong Kong. METHODS: Retrospective ecological study. A Poisson regression was performed of concentrations of daily air pollutant on daily counts of emergency hospital admissions in 12 major hospitals. The effects of time trend, season, and other cyclical factors, temperature, and humidity were accounted for. Autocorrelation and overdispersion were corrected. Daily concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), and particulate matter < 10 microns in aerodynamic diameter (PM10) were obtained from seven air monitoring stations in Hong Kong in 1994 and 1995. Relative risks (RR) of respiratory and cardiovascular disease admissions (for an increase of 10 micrograms/m3 in concentration of air pollutant) were calculated. RESULTS: Significant associations were found between hospital admissions for all respiratory diseases, all cardiovascular diseases, chronic obstructive pulmonary diseases, and heart failure and the concentrations of all four pollutants. Admissions for asthma, pneumonia, and influenza were significantly associated with NO2, O3, and PM10. Relative risk (RR) for admissions for respiratory disease for the four pollutants ranged from 1.013 (for SO2) to 1.022 (for O3), and for admissions for cardiovascular disease, from 1.006 (for PM10) to 1.016 (for SO2). Those aged > or = 65 years were at higher risk. Significant positive interactions were detected between NO2, O3, and PM10, and between O3 and winter months. CONCLUSIONS: Adverse health effects are evident at current ambient concentrations of air pollutants. Further reduction in air pollution is necessary to protect the health of the community, especially that of the high risk group. PMID:10658547
Dou, Ming; Zhang, Yan; Zuo, Qiting; Mi, Qingbin
2015-08-01
The construction of sluices creates a strong disturbance in water environmental factors within a river. The change in water pollutant concentrations of sluice-controlled river reaches (SCRRs) is more complex than that of natural river segments. To determine the key factors affecting water pollutant concentration changes in SCRRs, river reaches near the Huaidian Sluice in the Shaying River of China were selected as a case study, and water quality monitoring experiments based on different regulating modes were implemented in 2009 and 2010. To identify the key factors affecting the change rates for the chemical oxygen demand of permanganate (CODMn) and ammonia nitrogen (NH3-N) concentrations in the SCRRs of the Huaidian Sluice, partial correlation analysis, principal component analysis and principal factor analysis were used. The results indicate four factors, i.e., the inflow quantity from upper reaches, opening size of sluice gates, water pollutant concentration from upper reaches, and turbidity before the sluice, which are the common key factors for the CODMn and NH3-N concentration change rates. Moreover, the dissolved oxygen before a sluice is a key factor for the permanganate concentration from CODMn change rate, and the water depth before a sluice is a key factor for the NH3-N concentration change rate. Multiple linear regressions between the water pollutant concentration change rate and key factors were established via multiple linear regression analyses, and the quantitative relationship between the CODMn and NH3-N concentration change rates and key affecting factors was analyzed. Finally, the mechanism of action for the key factors affecting the water pollutant concentration changes was analyzed. The results reveal that the inflow quantity from upper reaches, opening size of sluice gates, permanganate concentration from CODMn from upper reaches and dissolved oxygen before the sluice have a negative influence and the turbidity before the sluice has a positive influence on the permanganate concentration from CODMn change rates and that the opening size of sluice gates, NH3-N concentration from upper reaches, and water depth before the sluice have a negative influence and the inflow quantity from upper reaches and turbidity before the sluice have a positive influence on the NH3-N concentration change rates, which provides a scientific grounding for pollution control and sluice operations in SCRRs.
Removal of phenol by activated alumina bed in pulsed high-voltage electric field.
Zhu, Li-nan; Ma, Jun; Yang, Shi-dong
2007-01-01
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
NASA Astrophysics Data System (ADS)
Lou, Jincheng; Tilton, Nils
2017-11-01
Membrane distillation (MD) is a method of desalination with boundary layers that are challenging to simulate. MD is a thermal process in which warm feed and cool distilled water flow on opposite sides of a hydrophobic membrane. The temperature difference causes water to evaporate from the feed, travel through the membrane, and condense in the distillate. Two challenges to MD are temperature and concentration polarization. Temperature polarization represents a reduction in the transmembrane temperature difference due to heat transfer through the membrane. Concentration polarization describes the accumulation of solutes near the membrane. These phenomena reduce filtration and lead to membrane fouling. They are difficult to simulate due to the coupling between the velocity, temperature, and concentration fields on the membrane. Unsteady regimes are particularly challenging because noise at the outlets can pollute the near-membrane flow fields. We present the development of a finite-volume method for the simulation of fluid flow, heat, and mass transport in MD systems. Using the method, we perform a parametric study of the polarization boundary layers, and show that the concentration boundary layer shows self-similar behavior that satisfies power laws for the downstream growth. Funded by the U.S. Bureau of Reclamation.
[Characterization and source apportionment of pollutants in urban roadway runoff in Chongqing].
Zhang, Qian-Qian; Wang, Xiao-Ke; Hao, Li-Ling; Hou, Pei-Qiang; Ouyang, Zhi-Yun
2012-01-01
By investigating surface runoff from urban roadway in Chongqing, we assessed the characteristics of surface runoff pollution and the effect of rainfall intensity and antecedent dry weather period on water quality. Using multivariate statistical analysis of data of runoff quality, potential pollutants discharged from urban roadway runoff were identified. The results show that the roadway runoff has high levels of COD, TP and TN, the EMC were 60.83-208.03 mg x L(-1), 0.47-1.01 mg x L(-1) and 2.07-5.00 mg x L(-1) respectively, being the main pollutants; The peaks of pollutant concentration are ahead of or synchronous with the peak of runoff volume; the peaks of pollutant concentrations are mostly occurred within 10 minutes of rainfall. The heavy metal concentrations fluctuate dentately during runoff proceeding. Two potential pollution sources to urban roadway runoff apportioned by using principal component analysis are: vehicle's traffic loss and atmospheric dry and wet deposition, and municipal wastes.
NASA Astrophysics Data System (ADS)
Yagüe, Carlos; Román-Cascón, Carlos; Sastre, Mariano; Maqueda, Gregorio; Arrillaga, Jon A.; Artiñano, Begoña; Díaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Borge, Rafael; Narros, Adolfo; Pérez, Javier; Quaassdorff, Christina
2017-04-01
Air pollution is a major problem in the city of Madrid during weak synoptic forcing, since the presence of atmospheric stability conditions often develops night surface-based thermal inversions and subsidence inversions during daytime for several consecutive days, reaching high levels of NOx and Particulate Matter (PM) concentration. In this context, the TECNAIRE-CM (Innovative technologies for the assessment and improvement of urban air quality) research project has developed two field campaigns along 2015 (winter and summer) in a hot spot in the city of Madrid (Fernández Ladreda square). This hot spot includes one important intersection of different streets and also the start of the A42 motorway, which crosses down the square through a tunnel of about 150 m length. Besides, the location has numerous traffic lights and a lot of pedestrians walking in the vicinity. In addition to direct measurements related to air quality, data from different meteorological variables were recorded in order to characterize the atmospheric conditions. Moreover, two sonic anemometers where deployed to carry out a micrometeorological assessment of physical processes that take place in the urban atmospheric surface layer (TKE, friction velocity and sensible heat flux were evaluated). The evolution of the turbulence will be analyzed and compared for both campaigns (winter and summer), searching for the key seasonal differences as well as the importance of the different scales influencing the diffusion of pollutants (from multi resolution flux decomposition -MRFD- analysis). Specific case studies corresponding to high levels of pollution will be studied in detailed, to understand local pollution dynamics under the influence of both high traffic density and low turbulence situations. This work has been financed by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).
Wang, Ting; Xie, Shao-dong
2010-03-01
In order to investigate the vehicle pollution situation in the streets in Beijing and the abatement during the Olympic Games, the OSPM model was applied to calculate the concentrations of PM10, CO, NO2 and O3 inside the urban streets of Beijing before and during the Olympic traffic controlling period in July, 2008. The modeled concentrations before the traffic control are 146 micog/m3, 3.83 mg/m3, 114.4 microg/m3 and 4.71 x 10(-1), while after the traffic control are 112 microg/m3, 3.16 mg/m3, 102.4 microg/m3 and 5.31 x 10(-9) , with the reduction rates of 23.4%, 20.5%, 10.5% and -12.5%, respectively. The research on these concentration changes and the daily variations of the pollutants reveals: the concentration of PM10 is most influenced by the traffic control; the concentration of CO presents the most similar daily variation with the traffic flow; the reduction of NO2 concentration is limited, indicating the influence of other factors other than the traffic emission; the concentration of O3 increases after the traffic control, which means the traffic management measures can not abate the O3 pollution in the street. Furthermore, the comparison between the calculation results in different types of street canyons reveals that the fleet composition and street geometry impact the concentration changes. In a word, the vehicle pollution inside the streets of Beijing before the traffic control is relatively serious, as the concentrations of PM10, CO and NO2, all approach or exceed the Grade II National Air Quality Standard; the traffic control measures take effect in reducing the primary pollutants, but the secondary pollutants may increase after the traffic control.
NASA Technical Reports Server (NTRS)
Sparks, E.
1977-01-01
OEDOGONIUM cardiacum exposed to varying concentrations of sodium cyanide for 15 day periods exhibited both morphological and physiological alterations. Organisms were exposed to the pollutant in concentrations of 1, 10, 25, 50, and 100 parts per million. Exposure period for organisms in each concentration was 15 days. As the concentration of the pollutant increased fragmentation also increased. Exposure also caused organisms to lose chlorophyll. The third morphological alteration was the incidence of rupture. Physiological effects altered by exposure included: reduced oxygen evolution, retardation of starch production and death. Death occurs when organisms are exposed to high concentrations over the total 15 day period.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Federally Promulgated Water Quality Standards § 131.38 Establishment of Numeric Criteria for priority toxic pollutants for the State... Concentration (CMC) equals the highest concentration of a pollutant to which aquatic life can be exposed for a...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
40 CFR 463.24 - New source performance standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...
NASA Technical Reports Server (NTRS)
Duerr, R. A.
1975-01-01
A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.
Leitte, Arne Marian; Schlink, Uwe; Herbarth, Olf; Wiedensohler, Alfred; Pan, Xiao-Chuan; Hu, Min; Richter, Matthia; Wehner, Birgit; Tuch, Thomas; Wu, Zhijun; Yang, Minjuan; Liu, Liqun; Breitner, Susanne; Cyrys, Josef; Peters, Annette; Wichmann, H-Erich; Franck, Ulrich
2011-04-01
The link between concentrations of particulate matter (PM) and respiratory morbidity has been investigated in numerous studies. The aim of this study was to analyze the role of different particle size fractions with respect to respiratory health in Beijing, China. Data on particle size distributions from 3 nm to 1 µm; PM10 (PM ≤ 10 µm), nitrogen dioxide (NO(2)), and sulfur dioxide concentrations; and meteorologic variables were collected daily from March 2004 to December 2006. Concurrently, daily counts of emergency room visits (ERV) for respiratory diseases were obtained from the Peking University Third Hospital. We estimated pollutant effects in single- and two-pollutant generalized additive models, controlling for meteorologic and other time-varying covariates. Time-delayed associations were estimated using polynomial distributed lag, cumulative effects, and single lag models. Associations of respiratory ERV with NO(2) concentrations and 100-1,000 nm particle number or surface area concentrations were of similar magnitude-that is, approximately 5% increase in respiratory ERV with an interquartile range increase in air pollution concentration. In general, particles < 50 nm were not positively associated with ERV, whereas particles 50-100 nm were adversely associated with respiratory ERV, both being fractions of ultrafine particles. Effect estimates from two-pollutant models were most consistent for NO(2). Present levels of air pollution in Beijing were adversely associated with respiratory ERV. NO(2) concentrations seemed to be a better surrogate for evaluating overall respiratory health effects of ambient air pollution than PM(10) or particle number concentrations in Beijing.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions. PMID:26760509
Richmond-Bryant, Jennifer; Hahn, Intaek; Fortune, Christopher R; Rodes, Charles E; Portzer, Jeffrey W; Lee, Sangdon; Wiener, Russell W; Smith, Luther A; Wheeler, Michael; Seagraves, Jeremy; Stein, Mark; Eisner, Alfred D; Brixey, Laurie A; Drake-Richman, Zora E; Brouwer, Lydia H; Ellenson, William D; Baldauf, Richard
2009-12-01
The Brooklyn Traffic Real-Time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) field study examined indoor and outdoor exposure to traffic-generated air pollution by studying the individual processes of generation of traffic emissions, transport and dispersion of air contaminants along a roadway, and infiltration of the contaminants into a residence. Real-time instrumentation was used to obtain highly resolved time-series concentration profiles for a number of air pollutants. The B-TRAPPED field study was conducted in the residential Sunset Park neighborhood of Brooklyn, NY, USA, in May 2005. The neighborhood contained the Gowanus Expressway (Interstate 278), a major arterial road (4(th) Avenue), and residential side streets running perpendicular to the Gowanus Expressway and 4(th) Avenue. Synchronized measurements were obtained inside a test house, just outside the test house façade, and along the urban residential street canyon on which the house was located. A trailer containing Federal Reference Method (FRM) and real-time monitors was located next to the Gowanus Expressway to assess the source. Ultrafine particulate matter (PM), PM(2.5), nitrogen oxides (NO(x)), sulfur dioxide (SO(2)), carbon monoxide (CO), carbon dioxide (CO(2)), temperature, relative humidity, and wind speed and direction were monitored. Different sampling schemes were devised to focus on dispersion along the street canyon or infiltration into the test house. Results were obtained for ultrafine PM, PM(2.5), criteria gases, and wind conditions from sampling schemes focused on street canyon dispersion and infiltration. For comparison, the ultrafine PM and PM(2.5) results were compared with an existing data set from the Los Angeles area, and the criteria gas data were compared with measurements from a Vancouver epidemiologic study. Measured ultrafine PM and PM(2.5) concentration levels along the residential urban street canyon and at the test house façade in Sunset Park were demonstrated to be comparable to traffic levels at an arterial road and slightly higher than those in a residential area of Los Angeles. Indoor ultrafine PM levels were roughly 3-10 times lower than outdoor levels, depending on the monitor location. CO, NO(2), and SO(2) levels were shown to be similar to values that produced increased risk of chronic obstructive pulmonary disease hospitalizations in the Vancouver studies.
Liu, Hai-Ying; Skjetne, Erik; Kobernus, Mike
2013-11-04
We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations.
NASA Astrophysics Data System (ADS)
Verney-Carron, A.; Dutot, A. L.; Lombardo, T.; Chabas, A.
2012-07-01
Soiling results from the deposition of pollutants on materials. On glass, it leads to an alteration of its intrinsic optical properties. The nature and intensity of this phenomenon mirrors the pollution of an environment. This paper proposes a new statistical model in order to predict the evolution of haze (H) (i.e. diffuse/direct transmitted light ratio) as a function of time and major pollutant concentrations in the atmosphere (SO2, NO2, and PM10 (Particulate Matter < 10 μm)). The model was parameterized by using a large set of data collected in European cities (especially, Paris and its suburbs, Athens, Krakow, Prague, and Rome) during field exposure campaigns (French, European, and international programs). This statistical model, called NEUROPT-Glass, comes from an artificial neural network with two hidden layers and uses a non-linear parametric regression named Multilayer Perceptron (MLP). The results display a high determination coefficient (R2 = 0.88) between the measured and the predicted hazes and minimizes the dispersion of data compared to existing multilinear dose-response functions. Therefore, this model can be used with a great confidence in order to predict the soiling of glass as a function of time in world cities with different levels of pollution or to assess the effect of pollution reduction policies on glass soiling problems in urban environments.
Medical aspects of atmosphere pollution in Tbilisi, Georgia.
Lagidze, Lamzira; Matchavariani, Lia; Tsivtsivadze, Nodar; Khidasheli, Nargiz; Paichadze, Nino; Motsonelidze, Nargiz; Vakhtangishvili, Maia
2015-01-01
Climate change and its impact on ecosystems is one of the main problem of 21st century. Increase in green house gas in the atmosphere was regarded as an important cause. Atmospheric composition had significantly changed due to intensive technogenic pollution. Increase in aerosol (solid, liquid and gas) concentration had serious impact on human health and raised the level of risk factors for longevity of life. Despite, global character of climatic change and its intensity in numerous ways was influenced by local specificity of regions, their geographical location and meteorological factors. A study on the atmospheric quality (quantitative and percentage estimation of aerosols) of Georgia was carried out. Also the assessment of impact of meteorological and ecological conditions on human health was made for Tbilisi city. A relation between contaminants and meteorological factors was evaluated, particularly gas pollutants were strongly correlated with each other due to their photochemical activity; positive correlation (0.65; 0.69) between air temperature and pollutants. All the contaminants showed negative correlation with relative humidity, due to hydrolyzing ability. On the basis of multi-factorial statistical analysis, correlation between ambulance call, weather type, atmosphere pollution index, change in ground ozone quantity and earth magnetic field were determined. Atmospheric pollution due to dust, carbon, sulfur and nitrogen oxides, ground ozone quantity in Tbilisi significantly exceeded maximum permissible level, that effected human health.
2013-01-01
We propose a new approach to assess the impact of traffic-related air pollution on public health by mapping personal trajectories using mobile phone tracking technology in an urban environment. Although this approach is not based on any empirical studies, we believe that this method has great potential and deserves serious attention. Mobile phone tracking technology makes it feasible to generate millions of personal trajectories and thereby cover a large fraction of an urban population. Through analysis, personal trajectories are not only associated to persons, but it can also be associated with vehicles, vehicle type, vehicle speed, vehicle emission rates, and sources of vehicle emissions. Pollution levels can be estimated by dispersion models from calculated traffic emissions. Traffic pollution exposure to individuals can be estimated based on the exposure along the individual human trajectories in the estimated pollution concentration fields by utilizing modelling tools. By data integration, one may identify trajectory patterns of particularly exposed human groups. The approach of personal trajectories may open a new paradigm in understanding urban dynamics and new perspectives in population-wide empirical public health research. This new approach can be further applied to individual commuter route planning, land use planning, urban traffic network planning, and used by authorities to formulate air pollution mitigation policies and regulations. PMID:24188173
Baldauf, Richard; Thoma, Eben; Hays, Michael; Shores, Richard; Kinsey, John; Gullett, Brian; Kimbrough, Sue; Isakov, Vlad; Long, Thomas; Snow, Richard; Khlystov, Andrey; Weinstein, Jason; Chen, Fu-Lin; Seila, Robert; Olson, David; Gilmour, Ian; Cho, Seung-Hyun; Watkins, Nealson; Rowley, Patricia; Bang, John
2008-07-01
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.
NASA Astrophysics Data System (ADS)
Shairsingh, Kerolyn K.; Jeong, Cheol-Heon; Wang, Jonathan M.; Evans, Greg J.
2018-06-01
Vehicle emissions represent a major source of air pollution in urban districts, producing highly variable concentrations of some pollutants within cities. The main goal of this study was to identify a deconvolving method so as to characterize variability in local, neighbourhood and regional background concentration signals. This method was validated by examining how traffic-related and non-traffic-related sources influenced the different signals. Sampling with a mobile monitoring platform was conducted across the Greater Toronto Area over a seven-day period during summer 2015. This mobile monitoring platform was equipped with instruments for measuring a wide range of pollutants at time resolutions of 1 s (ultrafine particles, black carbon) to 20 s (nitric oxide, nitrogen oxides). The monitored neighbourhoods were selected based on their land use categories (e.g. industrial, commercial, parks and residential areas). The high time-resolution data allowed pollutant concentrations to be separated into signals representing background and local concentrations. The background signals were determined using a spline of minimums; local signals were derived by subtracting the background concentration from the total concentration. Our study showed that temporal scales of 500 s and 2400 s were associated with the neighbourhood and regional background signals respectively. The percent contribution of the pollutant concentration that was attributed to local signals was highest for nitric oxide (NO) (37-95%) and lowest for ultrafine particles (9-58%); the ultrafine particles were predominantly regional (32-87%) in origin on these days. Local concentrations showed stronger associations than total concentrations with traffic intensity in a 100 m buffer (ρ:0.21-0.44). The neighbourhood scale signal also showed stronger associations with industrial facilities than the total concentrations. Given that the signals show stronger associations with different land use suggests that resolving the ambient concentrations differentiates which emission sources drive the variability in each signal. The benefit of this deconvolution method is that it may reduce exposure misclassification when coupled with predictive models.
Li, Tianxin; Li, Li; Song, Hongqing; Meng, Linglong; Zhang, Shuli; Huang, Gang
2016-01-01
This study focused on using analytical and numerical models to develop and manage groundwater resources, and predict the effects of management measurements in the groundwater system. Movement of contaminants can be studied based on groundwater flow characteristics. This study can be used for prediction of ion concentration and evaluation of groundwater pollution as the theoretical basis. The Yimin open-pit mine is located in the northern part of the Inner Mongolia Autonomous Region of China. High concentrations of iron and manganese are observed in Yimin open-pit mine because of exploitation and pumping that have increased the concentration of the ions in groundwater. In this study, iron was considered as an index of contamination, and the solute model was calibrated using concentration observations from 14 wells in 2014. The groundwater flow model and analytical solutions were used in this study to forecast pollution concentration and variation trend after calibration. With continuous pumping, contaminants will migrate, and become enriched, towards the wellhead in the flow direction. The concentration of the contaminants and the range of pollution increase with the flow rate increased. The suitable flow rate of single well should be <380 m/day at Yimin open-pit for the standard value of pollution concentration.
Muniesa, Maite; Lucena, Francisco; Blanch, Anicet R; Payán, Andrey; Jofre, Juan
2012-12-01
Water contaminated with human faeces is a risk to human health and management of water bodies can be improved by determining the sources of faecal pollution. Field studies show that existing methods are insufficient and that different markers are required. This study proposes the combined use of two microbial indicators, the concentrations of which are presented as ratios. This provides a more reliable approach to identifying faecal sources as it avoids variation due to treatment or ageing of the contamination. Among other indicators, bacteriophages have been proposed as rapid and cheap indicators of faecal pollution. Samples analysed in this study were derived from wastewater treatment plants (raw sewage, secondary and tertiary effluents and raw sewage sludge) river water, seawater and animal related wastewater. The abundance ratios of faecal coliforms and Bacteroides phages, either strain RYC2056 (non-specific for faecal origin) or strain GA17 (specific for human pollution), and among somatic coliphages and phages infecting both Bacteroides strains, were evaluated. The results indicate that the ratio of somatic coliphages and phages infecting Bacteroides strain GA17, which is specific to human faecal sources, provides a robust method for discriminating samples, even those presenting different levels and ages of pollution, and allows samples polluted with human faeces to be distinguished from those containing animal faecal pollution. This method allows the generation of numerical data that can be further applied to numerical methods for faecal pollution discrimination. Copyright © 2012 Elsevier Ltd. All rights reserved.
Development of improved wildfire smoke exposure estimates for health studies in the western U.S.
NASA Astrophysics Data System (ADS)
Ivey, C.; Holmes, H.; Loria Salazar, S. M.; Pierce, A.; Liu, C.
2016-12-01
Wildfire smoke exposure is a significant health concern in the western U.S. because large wildfires have increased in size and frequency over the past four years due to drought conditions. The transport phenomena in complex terrain and timing of the wildfire emissions make the smoke plumes difficult to simulate using conventional air quality models. Monitoring data can be used to estimate exposure metrics, but in rural areas the monitoring networks are too sparse to calculate wildfire exposure metrics for the entire population in a region. Satellite retrievals provide global, spatiotemporal air quality information and are used to track pollution plumes, estimate human exposures, model emissions, and determine sources (i.e., natural versus anthropogenic) in regulatory applications. Particulate matter (PM) exposures can be estimated using columnar aerosol optical depth (AOD), where satellite AOD retrievals serve as a spatial surrogate to simulate surface PM gradients. These exposure models have been successfully used in health effects studies in the eastern U.S. where complex mountainous terrain and surface reflectance do not limit AOD retrival from satellites. Using results from a chemical transport model (CTM) is another effective method to determine spatial gradients of pollutants. However, the CTM does not adequately capture the temporal and spatial distribution of wildfire smoke plumes. By combining the spatiotemporal pollutant fields from both satellite retrievals and CTM results with ground based pollutant observations the spatial wildfire smoke exposure model can be improved. This work will address the challenge of understanding the spatiotemporal distributions of pollutant concentrations to model human exposures of wildfire smoke in regions with complex terrain, where meteorological conditions as well as emission sources significantly influence the spatial distribution of pollutants. The focus will be on developing models to enhance exposure estimates of elevated PM and ozone concentrations from wildfire smoke plumes in the western U.S.
NASA Astrophysics Data System (ADS)
Upton, T. L.
2015-12-01
Advances in the field of environmental magnetism have led to exciting new applications for this field. Magnetic minerals are ubiquitous in the environment and tend to have an affinity for heavy metals. It has been demonstrated that magnetic properties are often significantly related to concentrations of heavy metals and/or pollution loading index (PLI). As a result, magnetic techniques have been used as proxy for determining hot spots of several types of pollution produced from a diversity of anthropogenic sources. Magnetic measurements are non-destructive and relatively inexpensive compared to geochemical analyses. The utility of environmental magnetic methods varies widely depending on biological, chemical and physical processes that create and transform soils and sediments. Applications in the direction of mapping heavy metals have been studied and shown to be quite useful in countries such as China and India but to date, little research has been done in the US. As such, there is need to expand the scope of research to a wider range of soil types and land uses, especially within the US. This study investigates the application of environmental magnetic techniques to mapping of heavy metal concentrations and PLI at the Formosa Mine Superfund Site, an abandoned mine about 25 miles southwest of Roseburg, OR. Using hotspot analysis, correlation and cluster analyses, interactions between metals and magnetic parameters are examined in relation to environmental factors such as proximity to seeps and adits. Preliminary results suggest significant correlation of magnetic susceptibility with certain heavy metals, signifying that magnetic methods may be useful in mapping heavy metal hotspots at this site.
NASA Astrophysics Data System (ADS)
Lakey, P. S. J.; Berkemeier, T.; Tong, H.; Arangio, A. M.; Lucas, K.; Poeschl, U.; Shiraiwa, M.
2016-12-01
The inhalation of air pollutants such as O3 and particulate matter can lead to the formation of reactive oxygen species (ROS) which can cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. Although the chemical processes that lead to ROS formation within the ELF upon inhalation of pollutants are well understood qualitatively, ROS concentrations within the ELF have hardly been quantified so far. The kinetic multi-layer model of surface and bulk chemistry in the epithelial lining fluid (KM-SUB-ELF) has been developed to describe chemical reactions and mass transport and to quantify ROS production rates and concentrations within the epithelial lining fluid. KM-SUB-ELF simulations suggest that O3 will rapidly saturate the ELF whereas antioxidants and surfactant species are effective scavengers of OH. High ambient concentrations of O3 can lead to the depletion of surfactants and antioxidants within the ELF, potentially leading to oxidative stress. KM-SUB-ELF reproduced measurements for the formation of H2O2 and OH due to the presence of iron, copper and quinones in surrogate lung lining fluid. This enabled ROS production rates and concentrations in the ELF to be quantified. We found that in polluted megacities the ROS concentration in the ELF due to inhalation of pollutants was at least as high as the concentrations in the ELF of patients suffering from respiratory diseases. Cu and Fe are found to be the most important redox-active aerosol components for ROS production upon inhalation of PM2.5 in polluted regions. Therefore, a reduction in the emission of Cu and Fe should be major targets of air pollution control. Chemical exposure-response relations provide a quantitative basis for assessing the relative importance of specific air pollutants in different regions of the world, showing that aerosol-induced epithelial ROS levels in polluted megacity air can be several orders of magnitude higher than in pristine rainforest air.
Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua
2016-01-01
Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osawa, Takahito; Hatsukawa, Yuichi; Appel, Peter W. U.; Matsue, Hideaki
2011-04-01
The authors have established a method of determining mercury and gold in severely polluted environmental samples using prompt gamma-ray analysis (PGA) and instrumental neutron activation analysis (INAA). Since large amounts of mercury are constantly being released into the environment by small-scale gold mining in many developing countries, the mercury concentration in tailings and water has to be determined to mitigate environmental pollution. Cold-vapor atomic absorption analysis, the most pervasive method of mercury analysis, is not suitable because tailings and water around mining facilities have extremely high mercury concentrations. On the other hand, PGA can determine high mercury concentrations in polluted samples as it has an appropriate level of sensitivity. Moreover, gold concentrations can be determined sequentially by using INAA after PGA. In conclusion, the analytical procedure established in this work using PGA and INAA is the best way to evaluate the degree of pollution and the tailing resource value. This method will significantly contribute to mitigating problems in the global environment.
Santamans, Anna C.; Boluda, Rafael; Picazo, Antonio; Gil, Carlos; Ramos-Miras, Joaquín; Tejedo, Pablo; Pertierra, Luis R.; Benayas, Javier
2017-01-01
The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins’ faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the soil bacterial community. PMID:28813428
Pan, Long; Yao, Enjian; Yang, Yang
2016-12-01
With the rapid development of urbanization and motorization in China, traffic-related air pollution has become a major component of air pollution which constantly jeopardizes public health. This study proposes an integrated framework for estimating the concentration of traffic-related air pollution with real-time traffic and basic meteorological information and also for further evaluating the impact of traffic-related air pollution. First, based on the vehicle emission factor models sensitive to traffic status, traffic emissions are calculated according to the real-time link-based average traffic speed, traffic volume, and vehicular fleet composition. Then, based on differences in meteorological conditions, traffic pollution sources are divided into line sources and point sources, and the corresponding methods to determine the dynamic affecting areas are also proposed. Subsequently, with basic meteorological data, Gaussian dispersion model and puff integration model are applied respectively to estimate the concentration of traffic-related air pollution. Finally, the proposed estimating framework is applied to calculate the distribution of CO concentration in the main area of Beijing, and the population exposure is also calculated to evaluate the impact of traffic-related air pollution on public health. Results show that there is a certain correlation between traffic indicators (i.e., traffic speed and traffic intensity) of the affecting area and traffic-related CO concentration of the target grid, which indicates the methods to determine the affecting areas are reliable. Furthermore, the reliability of the proposed estimating framework is verified by comparing the predicted and the observed ambient CO concentration. In addition, results also show that the traffic-related CO concentration is higher in morning and evening peak hours, and has a heavier impact on public health within the Fourth Ring Road of Beijing due to higher population density and higher CO concentration under calm wind condition in this area. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun
2015-04-01
In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be reduced by 17.2% and 14.7%, respectively. The new standard could reduce nitrogen deposition pollution in China. By 2020, for S2, the area with a nitrogen deposition concentration >2.0 tons·km-2 and the total nitrogen deposition in China would be reduced by 28.6% and 16.8%, respectively. The new standards could reduce sulfur deposition pollution in China. By 2020, for S2, the area with a sulfur deposition >1.5 tons·km-2 and the total sulfur deposition in China would be reduced by 55.3% and 21.0%, respectively.
Tsai, Jiun-Horng; Chang, Li-Peng; Chiang, Hung-Lung
2014-10-01
The size distribution of particulate mass and water-soluble ionic constituents and their gaseous precursors was investigated in a subtropical area, southern Taiwan. Field sampling and chemical analysis of particulate matter (PM) were conducted using a Micro Orifice Uniform Deposition Impactor (MOUDI) and a Nano-MOUDI, and gaseous pollutants were determined by a denuder-filter pack system. PM size mass distribution, mass concentration and ionic species concentration were measured during the day and at night in the winter and summer. Average PM concentrations in the winter were as high as 132 ± 42 μg/m(3), and PM mass concentrations in the summer were as low as 38 ± 19 μg/m(3). Generally, PM concentration was 111 ± 60 μg/m(3) at night, which was 20% higher than that in the daytime. The size-segregated mass distribution of PM mass concentration was over 85% in the 0.1-3.2 μm range. Ammonium, nitrate, and sulfate were the dominant water-soluble ionic species in PM, contributing 34%-48% of PM mass. High ammonia (12.9-49 μg/m(3)) and SO2 (2.6-27 μg/m(3)) were observed in the gas precursors. The molar ratio [Formula: see text] was 3.18 ± 1.20 at PM1.0, which indicated that the PM was rich in ammonium. Therefore, the excess ammonium could neutralize nitrate to form ammonium nitrate, after the more stable ammonium sulfate and ammonium bisulfate formation. Copyright © 2014 Elsevier B.V. All rights reserved.
The Nevada Rural Ozone Initiative: Field measurements of surface ozone in rural settings
NASA Astrophysics Data System (ADS)
Fine, R.; Gustin, M. S.; Weiss-Penzias, P. S.; Jaffe, D. A.; Peterson, C.
2011-12-01
The Nevada Rural Ozone Initiative (NVROI) focuses on measuring ozone and other parameters at rural sites across Nevada. The project was prompted by observations of elevated ozone concentrations at Great Basin National Park (GBNP), a remote location at the eastern boundary of the state. Past CASTNET data collected at GBNP demonstrated that the area will be out of attainment if the new ozone NAAQS are established at any values between 60 and 70 ppb. To examine the ozone sources we have augmented the CASTNET data at GBNP with measurements at additional sites. NVROI field sites are situated between 1390 and 2080 meters above sea level along transects consistent with the prevailing wind directions across the state. Data collection began in July 2011. Measurements indicate significant variability in the diel pattern of ozone concentrations between field sites suggesting that site specific physicochemical characteristics, free tropospheric inputs, and regional transport of air pollutants all influence observed values at these background sites. Ancillary gas, particulate matter, and meteorological parameters will be coupled with trajectory analyses to investigate the influence of local, regional, and long range sources on background ozone concentrations.
Huck, J J; Whyatt, J D; Coulton, P; Davison, B; Gradinar, A
2017-03-01
This work investigates the potential of combining the outputs of multiple low-cost sensor technologies for the direct measurement of spatio-temporal variations in phenomena that exist at the interface between our bodies and the environment. The example used herein is the measurement of personal exposure to traffic pollution, which may be considered as a function of the concentration of pollutants in the air and the frequency and volume of that air which enters our lungs. The sensor-based approach described in this paper removes the 'traditional' requirements either to model or interpolate pollution levels or to make assumptions about the physiology of an individual. Rather, a wholly empirical analysis into pollution exposure is possible, based upon high-resolution spatio-temporal data drawn from sensors for NO 2 , nasal airflow and location (GPS). Data are collected via a custom smartphone application and mapped to give an unprecedented insight into exposure to traffic pollution at the individual level. Whilst the quality of data from low-cost miniaturised sensors is not suitable for all applications, there certainly are many applications for which these data would be well suited, particularly those in the field of citizen science. This paper demonstrates both the potential and limitations of sensor-based approaches and discusses the wider relevance of these technologies for the advancement of citizen science.
Particulate Matter Pollution and its Regional Transport in the Mid-Atlantic States
NASA Astrophysics Data System (ADS)
He, H.; Goldberg, D. L.; Hembeck, L.; Canty, T. P.; Vinciguerra, T.; Ring, A.; Salawitch, R. J.; Dickerson, R. R.
2015-12-01
Particulate matter (PM) causes negative effects on human health, impair visibility in scenic areas, and affect regional/global climate. PM can be formed through chemical changes of precursors, including biogenic VOCs and anthropogenic SO2 and NOx often from fossil fuel combustion. In the past decades, PM pollution in the US has improved substantially. However, some areas in the Mid-Atlantic States are still designated as 'moderate' nonattainment by EPA. We utilize datasets obtained during the NASA 2011 DISCOVER-AQ campaign to characterize the composition and distribution of summertime PM pollution in the Mid-Atlantic States. Aircraft measurements and OMI satellite retrieval of major anthropogenic precursors (NO2 and SO2) are analyzed to investigate the regional transport of PM precursors from upwind sources. We compare PM concentration and chemical composition observed during the field campaign to CMAQ simulations with the latest EPA emission inventory. Specifically, we focus on the secondary organic aerosol (SOA) chemistry in CMAQ simulations using various biogenic VOCs estimates from the MEGAN and BEIS models. Airborne PM observations including PILS measurements from DISCOVER-AQ campaign and OMI retrievals of HCHO are also used to validate and improve the representation of SOA chemistry and PM pollution within CMAQ. The comparison reveals the source and evolution of PM pollution in the Mid-Atlantic States.
Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António
2016-04-01
Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, p<0.05). Porto Bordalo exhibited the highest median concentrations of Zn (0.14 mgL-1), possibly derived from the major road, and dissolved phosphorus (0.07 mgL-1). The latter may be linked to human activities, such as terrace and car washing, as overland flow from impervious surfaces was observed to discharge directly into the stream, whereas in other sub-catchments it mostly disperses into pervious soils. Pastoral activities in agricultural fields adjacent to the stream led to highest median concentrations of N-Nk and N-NH4 recorded at ESAC (1.34 mgL-1and 0.41 mgL-1, respectively). Hydrological regime exerted a major influence on water quality dynamics. COD and nutrient variables (N-Nk, N-NH4, N-NO3 and P) attained highest concentrations after the summer. Low discharges led to high pollutant concentrations at baseflow of N-NH4 in ESAC and Porto Bordalo (up to 1.63 mgL-1 and 1.04 mgL-1, respectively). The first storm events after the summer led to flushing of accumulated pollutants to produce serious concentrations of N-Nk in Porto Bordalo (2.05 mgL-1) and Zn at ESAC and Porto Bordalo (up to 0.55 mgL-1 and 0.59 mgL-1, respectively), all recorded at peak flows. In wettest periods, greater flow connectivity over the hillslopes led to pollutant concentrations of N-Nk at ESAC, Espírito Santo and Quinta (up to 2.07 mgL-1, 2.54 mgL-1 and 2.83 mgL-1, respectively). Also high levels of Cu and Zn occurred at ESAC (1.74 mgL-1and 0.77 mgL-1) during the falling limb. Baseflow chemistry was influenced by bedrock, with highest median concentrations of Ca and Mg, lowest values of Na, and higher pH recorded in limestone (p<0.05). Information about the spatio-temporal dynamics of pollutants, linked to urban patterns and storm drainage system, should help enable urban planners to minimize adverse impacts of urbanization on water quality.