Science.gov

Sample records for pollutants biological degradation

  1. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  2. Ozonisation coupled with biological degradation for treatment of phenolic pollutants: a mechanistically based study.

    PubMed

    Amat, Ana M; Arques, Antonio; Beneyto, Higinio; García, Ana; Miranda, Miguel A; Seguí, Sergio

    2003-10-01

    Phenolic acids constitute an important group of pollutants which are reluctant to biological treatment. Solutions containing a mixture of cinnamic acid, p-coumaric acid, caffeic acid and ferulic acid were submitted to ozonisation. Then, the changes in biodegradability along the process were studied by means of respirometry. There is an optimum ozone dosage in the interval 3-5 min of treatment which allows to achieve the maximum increase in biodegradability (more than 10 times) and a high efficiency of the ozonisation process (COD decreases to a half of its initial value). Further ozonisation does not help to increase biodegradability and is clearly disadvantageous. Similar results are obtained with actual samples of olive oil wastewaters. This behaviour is explained based on the formation of highly biodegradable benzaldehydes as key ozonisation intermediates, in the early reaction stages.

  3. Biological effects and subsequent economic effects and losses from marine pollution and degradations in marine environments: Implications from the literature.

    PubMed

    Ofiara, Douglas D; Seneca, Joseph J

    2006-08-01

    This paper serves as the missing piece in a more fuller understanding about economic losses from marine pollution, and demonstrates what losses have been estimated in the literature. Biological effects from marine pollution are linked with resulting economic effects and losses. The merging of these two areas is usually absent in studies of marine pollution losses. The literature has examined several effects due to marine pollution: damages due to harvest closures-restrictions, damages from consumption of unsafe seafood, damages due to decreased recreational activity, and damages related to waterfront real estate adjacent to contaminated water. Overall, marine pollution can and has resulted in sizable economic effects and losses. On the basis of the literature there is adequate justification for public policy actions to curb marine pollution, require inspection of seafood for toxic substances, and preserve marine water quality and sensitive marine environments.

  4. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  5. Biology and Water Pollution Control.

    ERIC Educational Resources Information Center

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  6. Biological monitoring of airborne pollution

    SciTech Connect

    Ditz, D.W. )

    1990-01-01

    Common plants such as grasses, mosses, and even goldenrod may turn out to have a new high-tech role as monitors of airborne pollution from solid waste incinerators. Certain plants that respond to specific pollutants can provide continuous surveillance of air quality over long periods of time: they are bio-indicators. Other species accumulate pollutants and can serve as sensitive indicators of pollutants and of food-chain contamination: they are bio-accumulators. Through creative use of these properties, biological monitoring can provide information that cannot be obtained by current methods such as stack testing.

  7. Biological monitors of pollution

    SciTech Connect

    Root, M.

    1990-02-01

    This article discusses the use of biological monitors to assess the biological consequences of toxicants in the environment, such as bioavailability, synergism, and bioaccumulation through the food web. Among the organisms discussed are fly larvae, worms, bees, shellfish, fishes, birds (starlings, owls, hawks, songbirds) and mammals (rabbits, field mice, shrews).

  8. Method of degrading pollutants in soil

    DOEpatents

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  9. Method of degrading pollutants in soil

    DOEpatents

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  10. "Shoot and Sense" Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples.

    PubMed

    Rojas, D; Jurado-Sánchez, B; Escarpa, A

    2016-04-01

    A novel Janus micromotor-based strategy for the direct determination of diphenyl phthalate (DPP) in food and biological samples is presented. Mg/Au Janus micromotors are employed as novel analytical platforms for the degradation of the non-electroactive DPP into phenol, which is directly measured by difference pulse voltammetry on disposable screen-printed electrodes. The self-movement of the micromotors along the samples result in the generation of hydrogen microbubbles and hydroxyl ions for DPP degradation. The increased fluid transport improves dramatically the analytical signal, increasing the sensitivity while lowering the detection potential. The method has been successfully applied to the direct analysis of DPP in selected food and biological samples, without any sample treatment and avoiding any potential contamination from laboratory equipment. The developed approach is fast (∼5 min) and accurate with recoveries of ∼100%. In addition, efficient propulsion of multiple Mg/Au micromotors in complex samples has also been demonstrated. The advantages of the micromotors-assisted technology, i.e., disposability, portability, and the possibility to carry out multiple analysis simultaneously, hold considerable promise for its application in food and biological control in analytical applications with high significance. PMID:26938969

  11. "Shoot and Sense" Janus Micromotors-Based Strategy for the Simultaneous Degradation and Detection of Persistent Organic Pollutants in Food and Biological Samples.

    PubMed

    Rojas, D; Jurado-Sánchez, B; Escarpa, A

    2016-04-01

    A novel Janus micromotor-based strategy for the direct determination of diphenyl phthalate (DPP) in food and biological samples is presented. Mg/Au Janus micromotors are employed as novel analytical platforms for the degradation of the non-electroactive DPP into phenol, which is directly measured by difference pulse voltammetry on disposable screen-printed electrodes. The self-movement of the micromotors along the samples result in the generation of hydrogen microbubbles and hydroxyl ions for DPP degradation. The increased fluid transport improves dramatically the analytical signal, increasing the sensitivity while lowering the detection potential. The method has been successfully applied to the direct analysis of DPP in selected food and biological samples, without any sample treatment and avoiding any potential contamination from laboratory equipment. The developed approach is fast (∼5 min) and accurate with recoveries of ∼100%. In addition, efficient propulsion of multiple Mg/Au micromotors in complex samples has also been demonstrated. The advantages of the micromotors-assisted technology, i.e., disposability, portability, and the possibility to carry out multiple analysis simultaneously, hold considerable promise for its application in food and biological control in analytical applications with high significance.

  12. Zinc oxide tetrapods as efficient photocatalysts for organic pollutant degradation

    NASA Astrophysics Data System (ADS)

    Liu, Fangzhou; Leung, Yu Hang; Djurisić, Aleksandra B.; Liao, Changzhong; Shih, Kaimin

    2014-03-01

    Bisphenol A (BPA) and other organic pollutants from industrial wastewater have drawn increasing concern in the past decades regarding their environmental and biological risks, and hence developing strategies of effective degradation of BPA and other organic pollutants is imperative. Metal oxide nanostructures, in particular titanium oxide (TiO2) and zinc oxide (ZnO), have been demonstrated to exhibit efficient photodegradation of various common organic dyes. ZnO tetrapods are of special interest due to their low density of native defects which consequently lead to lower recombination losses and higher photocatalytic efficiency. Tetrapods can be obtained by relatively simple and low-cost vapor phase deposition in large quantity; the micron-scale size would also be advantageous for catalyst recovery. In this study, the photodegradation of BPA with ZnO tetrapods and TiO2 nanostructures under UV illumination were compared. The concentration of BPA dissolved in DI water was analyzed by high-performance liquid chromatography (HPLC) at specified time intervals. It was observed that the photocatalytic efficiency of ZnO tetrapods eventually surpassed Degussa P25 in free-standing form, and more than 80% of BPA was degraded after 60 min. Photodegradation of other organic dye pollutants by tetrapods and P25 were also examined. The superior photocatalytic efficiency of ZnO tetrapods for degradation of BPA and other organic dye pollutants and its correlation with the material properties were discussed.

  13. Biocarrier composition for and method of degrading pollutants

    DOEpatents

    Fliermans, C.B.

    1994-01-01

    The present invention relates to biocarrier compositions that attract and bond pollutant-degrading antigens that will degrade the pollutants. Biocarriers are known generally as a variety of inert or semi-inert compounds or structures having the ability to sequester (attract), hold and biomagnify (enhance) specific microorganisms within their structure. Glass or polystyrene beads are the most well known biocarriers. The biocarrier, which is preferably in the form of glass microspheres, is coated with an antibody or group of antibodies that attract and react specifically with certain pollutant-degrading antigens. The antibody, once bonded to the biocarrier, is used by the composition to attract and bond those pollutant-degrading antigens. Each antibody is specific for an antigen that is specific for a given pollutant. The resulting composition is subsequently exposed to an environment contaminated with pollutants for degradation. In the preferred use, the degrading composition is formed and then injected directly into or near a plume or source of contamination.

  14. Mobilization of Pollutant-Degrading Bacteria by Eukaryotic Zoospores.

    PubMed

    Sungthong, Rungroch; van West, Pieter; Heyman, Fredrik; Jensen, Dan Funck; Ortega-Calvo, Jose Julio

    2016-07-19

    The controlled mobilization of pollutant-degrading bacteria has been identified as a promising strategy for improving bioremediation performance. We tested the hypothesis whether the mobilization of bacterial degraders may be achieved by the action of eukaryotic zoospores. We evaluated zoospores that are produced by the soil oomycete Pythium aphanidermatum as a biological vector, and, respectively, the polycyclic aromatic hydrocarbon (PAH)-degrading bacteria Mycobacterium gilvum VM552 and Pseudomonas putida G7, acting as representative nonflagellated and flagellated species. The mobilization assay was performed with a chemical-in-capillary method, in which zoospores mobilized bacterial cells only when they were exposed to a zoospore homing inducer (5% (v/v) ethanol), which caused the tactic response and settlement of zoospores. The mobilization was strongly linked to a lack of bacterial motility, because the nonflagellated cells from strain M. gilvum VM552 and slightly motile, stationary-phase cells from P. putida G7 were mobilized effectively, but the actively motile, exponentially grown cells of P. putida G7 were not mobilized. The computer-assisted analysis of cell motility in mixed suspensions showed that the swimming rate was enhanced by zoospores in stationary, but not in exponentially grown, cells of P. putida G7. It is hypothesized that the directional swimming of zoospores caused bacterial mobilization through the thrust force of their flagellar propulsion. Our results suggest that, by mobilizing pollutant-degrading bacteria, zoospores can act as ecological amplifiers for fungal and oomycete mycelial networks in soils, extending their potential in bioremediation scenarios. PMID:27286642

  15. ELECTROCHEMICAL DEGRADATION OF PERSISTANCE POLLUTANTS IN GROUNDWATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical Degradation (ECD) utilizes redox potential at the anode and the cathode to oxidize and/or reduce organic contaminants. ECD of environmentally persistence pollutants such chlorinate solvents, PCBs, and PAHs, although theoretically possible, has not been experimenta...

  16. Biological degradation of plastics: a comprehensive review.

    PubMed

    Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia

    2008-01-01

    Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.

  17. Dye Degradation by Fungi: An Exercise in Applied Science for Biology Students

    ERIC Educational Resources Information Center

    Lefebvre, Daniel D.; Chenaux, Peter; Edwards, Maureen

    2005-01-01

    An easily implemented practical exercise in applied science for biology students is presented that uses fungi to degrade an azo-dye. This is an example of bioremediation, the employment of living organisms to detoxify or contain pollutants. Its interdisciplinary nature widens students' perspectives of biology by exposing them to a chemical…

  18. Biological indicators and biological effects of estuarine/coastal pollution

    SciTech Connect

    Sindermann, C.J. )

    1988-10-01

    Sustained interest in and concern about the health status of the aquatic environment has resulted in extensive research focused on (1) effects of pollution on survival, growth, and reproduction of resource species at all life stages; (2) diseases of fish and shellfish, as they may be related to pollution and as they may serve as indicators of environmental stress; and (3) contaminant body burdens in fish and shellfish - their effects on the aquatic animals and their potential effects on humans. Effects, lethal and sublethal, of pollutants on life history stages of fish and shellfish have been documented, as have impacts on local stocks in badly degraded habitats, but as yet there has been no adequate quantitative demonstration of effects on entire aquatic species - probably because of the difficulty in sorting out relative effects of many environmental factors that influence abundance. Sublethal effects, especially those that result in disease, have been examined intensively, and some diseases and disease syndromes have been associated statistically with pollution. Other pollution indicators (biochemical, physiological, genetic, behavioral, and ecological) have also received some attention, as have body burdens of contaminants in aquatic species. Research, especially that conducted during the past decade, has done much to clarify the many pathways and toxic effects of contaminants on aquatic animals, and has also helped to identify mechanisms for survival of fish and shellfish in the presence of environmental changes caused by human activities.

  19. Biological degradation of TNT-contaminated soil

    SciTech Connect

    Manning, J.F.; Boopathy, R.

    1995-12-31

    The concept of using biological slurry reactors to remediate soil contaminated with TNT has been investigated at the laboratory scale. Important parameters include an organic co-substrate and appropriate amounts of nitrogen and phosphorus added as nutrients. Normally, the degradation requires an organic co-substrate. The type of co-substrate can have a significant impact on the rate and extent of degradation. Succinate, malate, molasses, and glucose are all acceptable co-substrates. Molasses, or succinate with added yeast extract and/or peptone, provides superior rates of removal. Consortia of microorganisms isolated from various sites can also degrade TNT. To exploit the microbial system, laboratory scale soil slurry reactors have been operated, achieving reductions in TNT concentrations on the order of 90-99% from initial TNT concentrations of 7,000-10,000 mg/kg. Laboratory scale tests have shown that all of the intermediates can be removed by microbial degradation. Laboratory reactors operated with 15% volume replacement one, two, or three times a week achieved removal of 95-99% of the TNT in the feed soil. This system can reduce TNT concentrations to less than 20 mg/kg in treated soil. In particular, operation of the reactors in an aerobic-anoxic sequenced pattern promotes the conversion of TNT to CO{sub 2} and microbial biomass. Radiolabeling studies demonstrated that 50% of the TNT is mineralized, with 30% of the original labeled TNT being converted to microbial biomass. To take advantage of this technology, a field demonstration in which the soil slurry reactor is being used to degrade explosives-contaminated soil is currently being conducted.

  20. Bioremediation via in situ microbial degradation of organic pollutants.

    PubMed

    Vogt, Carsten; Richnow, Hans Hermann

    2014-01-01

    Contamination of soil and natural waters by organic pollutants is a global problem. The major organic pollutants of point sources are mineral oil, fuel components, and chlorinated hydrocarbons. Research from the last two decades discovered that most of these compounds are biodegradable under anoxic conditions. This has led to the rise of bioremediation strategies based on the in situ biodegradation of pollutants. Monitored natural attenuation is a concept by which a contaminated site is remediated by natural biodegradation; to evaluate such processes, a combination of chemical and microbiological methods are usually used. Compound specific stable isotope analysis emerged as a key method for detecting and quantifying in situ biodegradation. Natural attenuation processes can be initiated or accelerated by manipulating the environmental conditions to become favorable for indigenous pollutant degrading microbial communities or by adding externally breeded specific pollutant degrading microorganisms; these techniques are referred to as enhanced natural attenuation. Xenobiotic micropollutants, such as pesticides or pharmaceuticals, contaminate diffusively large areas in low concentrations; the biodegradation pattern of such contaminations are not yet understood. PMID:24337042

  1. Air pollutants degrade floral scents and increase insect foraging times

    NASA Astrophysics Data System (ADS)

    Fuentes, Jose D.; Chamecki, Marcelo; Roulston, T.'ai; Chen, Bicheng; Pratt, Kenneth R.

    2016-09-01

    Flowers emit mixtures of scents that mediate plant-insect interactions such as attracting insect pollinators. Because of their volatile nature, however, floral scents readily react with ozone, nitrate radical, and hydroxyl radical. The result of such reactions is the degradation and the chemical modification of scent plumes downwind of floral sources. Large Eddy Simulations (LES) are developed to investigate dispersion and chemical degradation and modification of floral scents due to reactions with ozone, hydroxyl radical, and nitrate radical within the atmospheric surface layer. Impacts on foraging insects are investigated by utilizing a random walk model to simulate insect search behavior. Results indicate that even moderate air pollutant levels (e.g., ozone mixing ratios greater than 60 parts per billion on a per volume basis, ppbv) substantially degrade floral volatiles and alter the chemical composition of released floral scents. As a result, insect success rates of locating plumes of floral scents were reduced and foraging times increased in polluted air masses due to considerable degradation and changes in the composition of floral scents. Results also indicate that plant-pollinator interactions could be sensitive to changes in floral scent composition, especially if insects are unable to adapt to the modified scentscape. The increase in foraging time could have severe cascading and pernicious impacts on the fitness of foraging insects by reducing the time devoted to other necessary tasks.

  2. EFFECTS OF POLLUTANTS ON BIOLOGICAL SYSTEMS. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979

    SciTech Connect

    Authors, Various

    1980-10-01

    Planning a rational energy future requires anticipating the environmental consequences of various technologies. This is difficult to do with precision as the effects of pollutants are often determined by interactions between and among complex physical (abiotic) and biological (biotic) systems. A given pollutant may affect human beings through direct exposure or indirectly through inducing changes to biological systems which humans need to utilize. The concentration of a toxin in the food chain or the destruction of organisms necessary for the maintenance of high quality water are examples of indirect effects. Pollutants can be transformed and/or degraded as they establish residence in various components of an ecosystem. Anticipation and amelioration of pollutant effects involves the integration of a vast range of data. This data includes: (1) physical and chemical characterization cf the pollutant as it enters the environment; (2) determining effects on the various components (biotic and abiotic) within the context of the functioning ecosystem of interest; (3) transformation in movements and/or degradation of the pollutant within that ecosystem and within specific organisms and physical components; and (4) determining a detailed biochemical and biological picture of the interactions of pollutants with particular organisms and/or their cellular components judged salient for various processes. The major programs described below are designed to answer parts of the above fundamental questions relevant to pollutants generated by energy related technologies. Their emphasis is on anticipating consequences to the biological components of various ecosystems. The work ranges from studies involving parts of a single cell (the membranes) to studies involving the whole ecosystem (in the pelagic zone of a lake). The programs take advantage of expertise and technical abilities present at LBL. Two small exploratory projects which were of brief duration and not related to

  3. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.

    PubMed

    Zhang, Jingli; Cao, Zhanping; Zhang, Hongwei; Zhao, Lianmei; Sun, Xudong; Mei, Feng

    2013-11-15

    The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10(-2) h(-1), 19.73 × 10(-2) h(-1) and 3.54 × 10(-2) h(-1), respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants.

  4. The Practice of Water Pollution Biology.

    ERIC Educational Resources Information Center

    Mackenthun, Kenneth M.

    Water pollution techniques and practices, including data analysis, interpretation and display are described in this book intended primarily for the biologist inexperienced in this work, and for sanitary engineers, chemists, and water pollution control administrators. The characteristics of aquatic environments, their biota, and the effects of…

  5. The Degradation of Organic Pollutants by Bubble Discharge in Water

    NASA Astrophysics Data System (ADS)

    Zhu, Linan; Wang, Yongjun; Ren, Zhijun; Liu, Guifang; Kang, Kai

    2013-10-01

    Organic pollutants could be degraded by using bubble discharge in water with gas aeration in the discharge reactor and more plasma can be generated in the discharge process. When pulsed high voltage was applied between electrodes with gas aerated into the reactor, it showed that bubbles were broken, which meant that breakdown took place. It could also be observed that the removal rate of phenol increased with increasing discharge voltage or pulse frequency, and with reducing initial phenol concentration or solution electric conductivity. It could remove more amount of phenol by oxygen aeration. With increasing oxygen flow rate, the removal rate increased. There was little difference with air or nitrogen aeration for phenol removal. The solution temperature after discharge increased to a great extent. However, this part of energy consumption did not contribute to the reaction, which led to a reduction in the energy utilization efficiency.

  6. Biological degradation and solubilisation of coal.

    PubMed

    Sekhohola, Lerato M; Igbinigie, Eric E; Cowan, A Keith

    2013-06-01

    This review focuses on ligninolytic fungi, soil bacteria, plants and root exudates in the degradation and solubilisation of low grade and waste coal and the interaction between these mutualistic biocatalysts. Coal represents a considerable portion of the total global fossil fuel reserve and continued demand for, and supply of this resource generates vast quantities of spoil and low grade waste. Large scale bioremediation technologies for the beneficiation of waste coal have unfortunately not yet been realised despite the many discoveries of microorganisms capable of lignite, lignin, and humic acid breakdown. Even so, solubilisation and depolymerization of low grade coal appears to involve either ligninolytic enzyme action or the production of alkaline substances or both. While the precise mechanism of coal biosolubilisation is unclear, a model for the phyto-biodegradation of low rank coal by mutualistic interaction between ligninolytic microorganisms and higher plants is proposed. Based on accumulated evidence this model suggests that solubilisation and degradation of lignite and waste coals commences upon plant root exudate and ligninolytic microorganism interaction, which is mutualistic, and includes soil bacteria and both mycorrhizal and non-mycorrhizal fungi. It is envisaged that this model and its further elaboration will aid in the development of functional technologies for commercial bioremediation of coal mine spoils, contribute to soil formation, and the overall biogeochemistry of organic carbon in the global ecosystem.

  7. Optical thickness as related to pollutant episodes and the concentration of visibility degrading pollutants

    NASA Technical Reports Server (NTRS)

    Prospero, J. M.; Savoie, D.; Snowdon, T.; Ewbank, P.

    1983-01-01

    A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water.

  8. Impact of sources of environmental degradation on microbial community dynamics in non-polluted and metal-polluted soils.

    PubMed

    Epelde, Lur; Martín-Sánchez, Iker; González-Oreja, José A; Anza, Mikel; Gómez-Sagasti, María T; Garbisu, Carlos

    2012-09-01

    Soils are currently being degraded at an alarming rate due to increasing pressure from different sources of environmental degradation. Consequently, we carried out a 4-month microcosm experiment to measure the impact of different sources of environmental degradation (biodiversity loss, nitrogen deposition and climate change) on soil health in a non-polluted (non-degraded) and a heavily metal-polluted (degraded) soil, and to compare their responses. To this aim, we determined a variety of soil microbial properties with potential as bioindicators of soil health: basal respiration; β-glucosaminidase and protease activities; abundance (Q-PCR) of bacterial, fungal and chitinase genes; richness (PCR-DGGE) of fungal and chitinase genes. Non-polluted and metal-polluted soils showed different response microbial dynamics when subjected to sources of environmental degradation. The non-polluted soil appeared resilient to "biodiversity loss" and "climate change" treatments. The metal-polluted soil was probably already too severely affected by the presence of high levels of toxic metals to respond to other sources of stress. Our data together suggests that soil microbial activity and biomass parameters are more sensitive to the applied sources of environmental degradation, showing immediate responses of greater magnitude, while soil microbial diversity parameters do not show such variations.

  9. Role of Ubiquitin-Mediated Degradation System in Plant Biology

    PubMed Central

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K.; Gupta, Aditya K.; Bhatt, Tarun K.

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  10. Role of Ubiquitin-Mediated Degradation System in Plant Biology.

    PubMed

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K; Gupta, Aditya K; Bhatt, Tarun K

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  11. Quantitation and detection of vanadium in biologic and pollution materials

    NASA Technical Reports Server (NTRS)

    Gordon, W. A.

    1974-01-01

    A review is presented of special considerations and methodology for determining vanadium in biological and air pollution materials. In addition to descriptions of specific analysis procedures, general sections are included on quantitation of analysis procedures, sample preparation, blanks, and methods of detection of vanadium. Most of the information presented is applicable to the determination of other trace elements in addition to vanadium.

  12. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  13. New Photocatalysis for Effective Degradation of Organic Pollutants in Water

    NASA Astrophysics Data System (ADS)

    Zarei Chaleshtori, M.; Saupe, G. B.; Masoud, S.

    2009-12-01

    The presence of harmful compounds in water supplies and in the discharge of wastewater from chemical industries, power plants, and agricultural sources is a topic of global concern. The processes and technologies available at the present time for the treatment of polluted water are varied that include traditional water treatment processes such as biological, thermal and chemical treatment. All these water treatment processes, have limitations of their own and none is cost effective. Advanced oxidation processes have been proposed as an alternative for the treatment of this kind of wastewater. Heterogeneous photocatalysis has recently emerged as an efficient method for purifying water. TiO2 has generally been demonstrated to be the most active semiconductor material for decontamination water. One significant factor is the cost of separation TiO2, which is generally a powder having a very small particle size from the water after treatment by either sedimentation or ultrafiltration. The new photocatalyst, HTiNbO5, has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification since it has high surface area and relatively large particle size. The larger particle sizes of the porous materials facilitate catalyst removal from a solution, after purification has taken place. It can be separated from water easily than TiO2, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. These materials are characterized and tested as water decontamination photocatalysts. The new catalyst exhibited excellent catalytic activity, but with a strong pH dependence on the photo efficiency. These results suggest that elimination of the ion exchange character of the catalyst may greatly improve its performance at various pHs. This new research proposes to study the effects of a topotactic dehydration reaction on these new porous material catalysts.

  14. Biological degradation and composition of sweet potato biomass - errata

    NASA Astrophysics Data System (ADS)

    Trotman, A. A.; Almazan, A. M.; Alexander, A. D.; Loretan, P. A.; Zhou, X.; Lu, J. Y.

    1996-01-01

    Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System as envisioned by the U.S. National Aeronautics and Space Administration. In studies conducted with biodegradative microorganisms indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degC were optimal for degradation. The composition of the biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in their ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog 4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.

  15. Biological degradation and composition of inedible sweetpotato biomass.

    PubMed

    Trotman, A A; Almazan, A M; Alexander, A D; Loretan, P A; Zhou, X; Lu, J Y

    1996-01-01

    Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degrees C were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog--4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.

  16. Biological degradation and composition of inedible sweetpotato biomass

    NASA Technical Reports Server (NTRS)

    Trotman, A. A.; Almazan, A. M.; Alexander, A. D.; Loretan, P. A.; Zhou, X.; Lu, J. Y.

    1996-01-01

    Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degrees C were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sulfate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog--4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.

  17. Biological degradation and composition of inedible sweetpotato biomass

    NASA Astrophysics Data System (ADS)

    Trotman, A. A.; Almazan, A. M.; Alexander, A. D.; Loretan, P. A.; Zhou, X.; Lu, J. Y.

    1996-01-01

    Many challenges are presented by biological degradation in a bioregenerative Controlled Ecological Life Support System (CELSS) as envisioned by the U.S. National Aeronautics and Space Administration (NASA). In the studies conducted with biodegradative microorganism indigenous to sweetpotato fields, it was determined that a particle size of 75 microns and incubation temperature of 30 degC were optimal for degradation. The composition of the inedible biomass and characterization of plant nutrient solution indicated the presence of potential energy sources to drive microbial transformations of plant waste. Selected indigenous soil isolates with ligno-cellulolytic or sufate-reducing ability were utilized in biological studies and demonstrated diversity in ability to reduce sulfate in solution and to utilize alternative carbon sources: a lignin analog-4-hydroxy, 3-methoxy cinnamic acid, cellulose, arabinose, glucose, sucrose, mannitol, galactose, ascorbic acid.

  18. Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Bacteria Isolated from Light Oil Polluted Soils

    NASA Astrophysics Data System (ADS)

    Ohnuma, T.; Suto, K.; Inoue, C.

    2007-03-01

    Polycyclic aromatic hydrocarbons (PAHs) have polluted soil and groundwater widely and for long term because of their low solubility at normal temperature. Several microorganisms, such as Pseudomonas sp., Sphigomonas sp., a white-rot fungus and so on, being able to decompose PAHs, have been isolated and researched. This study reported to investigate biodegradation of low molecule PAH by isolated bacteria from light oil polluted soil. 12 isolates were obtained from a light oil polluted soil using naphthalene, fluorene and anthracene as sole carbon source, of which 4 isolates grew with naphthalene, 4 isolates did with fluorene and 4 isolates did with anthracene. Among them 3 isolates showed the ability to degrade phenanthrene additionally. These phenanthrene degradation and growth rates were almost same as that of S. yanoikuyae (DSM6900), which is the typical bacteria of PAHs degrader. Therefore, the isolate seemed to have an expectation for PAHs degradation.

  19. Photocatalytic degradation of pollutants from Elcogas IGCC power station effluents.

    PubMed

    Durán, A; Monteagudo, J M; San Martín, I; García-Peña, F; Coca, P

    2007-06-01

    The aim of this work is to improve the quality of water effluents coming from Elcogas IGCC power station (Puertollano, Spain) with the purpose of fulfilling future more demanding normative, using heterogeneous photocatalytic oxidation processes (UV/H(2)O(2)/TiO(2) or ZnO). The efficiency of photocatalytic degradation for the different catalysts (TiO(2) and ZnO) was determined from the analysis of the following parameters: cyanides, formates and ammonia content. In a first stage, the influence of two parameters (initial concentration of H(2)O(2) and amount of catalyst) on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. pH was always kept in a value >9.5 to avoid gaseous HCN formation. The degradation of cyanides and formates was found to follow pseudo-first order kinetics. Experimental kinetic constants were fitted using neural networks (NNs). The mathematical model reproduces experimental data within 90% of confidence and allows the simulation of the process for any value of parameters in the experimental range studied. Moreover, a measure of the saliency of the input variables was made based upon the connection weights of the neural networks, allowing the analysis of the relative relevance of each variable with respect to the others. Results showed that the photocatalytic process was effective, being the degradation rate of cyanides about five times higher when compared to removal of formates. Finally, the effect of lowering pH on the degradation of formates was evaluated after complete cyanides destruction was reached (10 min of reaction). Under the optimum conditions (pH 5.2, [H(2)O(2)]=40 g/l; [TiO(2)]=2g/l), 100% of cyanides and 92% of initial NH(3) concentration are degraded after 10 min, whereas 35 min are needed to degrade 98% of formates. PMID:17118539

  20. Sensitized photolysis as pretreatment to biological degradation of trichlorobenzenes

    SciTech Connect

    Kim, Jae Hyoun.

    1991-01-01

    The role of photolysis as pretreatment process was examined for the biological degradation of trichlorobenzenes (TCBs), namely 1,2,3-, 1,2,4- and 1,3,5-trichlorobenzenes. Initially, direct and indirect photolysis experiments were conducted using aqueous solutions with 1% acetonitrile of the three isomers of trichlorobenzenes with and without sensitizers. The sensitizers used were Fenton's reagent, nitrite, triethylamine, humic acid and TiO{sub 2}. The photochemical experiments were performed using laboratory simulated sunlight and the kinetic rates for these processes were calculated. The effect of photolysis on the biological degradation chlorobenzenes were examined using a chemical activation system (CAS) which consists of EDTA, ferrous sulfate, ascorbic acid, catalase and H{sub 2}O{sub 2} in potassium phosphate buffer (monobasic) and a primary sewage effluent. Initially, kinetic rates by CAS biodegradation and primary sewage were obtained and compared. In general, the rates of biodegradation were greater in the test media with catalase. The rate of transformation in CAS was enhanced in the order: monoCB < 1,2,3-TCB < 1,2,4-TCB < 1,3,5-TCB; whereas, when CAS was used as a control, the kinetic rates in the presence of catalase increased in the sequence: 1,2,3-TCB, 1,3,5-TCB < 1,2,4-TCB < MonoCB. Photolysis studied in concert with the biological systems showed significant enhancement of the degradation rate of trichlorobenzenes. The photolysis rates were higher for those with sensitized photolysis. This study shows that photolysis can be used as a pretreatment of enhancing biodegradation of trichlorobenzenes in aqueous systems.

  1. Bacterial degradation of naproxen--undisclosed pollutant in the environment.

    PubMed

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2014-12-01

    The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments.

  2. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts

    NASA Astrophysics Data System (ADS)

    MeenaKumari, M.; Philip, Daizy

    2015-01-01

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au3+ and Ag+ is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  3. Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts.

    PubMed

    MeenaKumari, M; Philip, Daizy

    2015-01-25

    We present for the first time biogenic reduction and stabilization of gold and silver ions at room temperature using fruit juice of Punica granatum. The formation, morphology and crystalline structure of the synthesized nanoparticles are determined using UV-Visible, XRD and TEM. An attempt to reveal the partial role of phenolic hydroxyls in the reduction of Au(3+) and Ag(+) is done through FTIR analysis. The synthesized nanoparticles are used as potential catalysts in the degradation of a cationic phenothiazine dye, an anionic mono azo dye and a cationic fluorescent dye. The calculated values of percentage removal of dyes and the rate constants from pseudo first order kinetic data fit give a comparative study on degradation of organic dyes in presence of prepared gold and silver nanoparticles.

  4. Bacterial degradation of naproxen--undisclosed pollutant in the environment.

    PubMed

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2014-12-01

    The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments. PMID:25026371

  5. Radiation Induced Degradation of Organic Pollutants in Waters and Wastewaters.

    PubMed

    Wojnárovits, László; Takács, Erzsébet

    2016-08-01

    In water treatment by ionizing radiation, and also in other advanced oxidation processes, the main goal is to destroy, or at least to deactivate harmful water contaminants: pharmaceutical compounds, pesticides, surfactants, health-care products, etc. The chemical transformations are mainly initiated by hydroxyl radicals, and the reactions of the formed carbon centered radicals with dissolved oxygen basically determine the rate of oxidation. The concentration of the target compounds is generally very low as compared to the concentration of such natural 'impurities' as chloride and carbonate/bicarbonate ions or the dissolved humic substances (generally referred to as dissolved organic carbon), which consume the majority of the hydroxyl radicals. The different constituents compete for reacting with radicals initiating the degradation. This manuscript discusses the radiation chemistry of this complex system. It includes the reactions of the primary water radiolysis intermediates (hydroxyl radical, hydrated electron/hydrogen atom), the reactions of radicals that form in radical transfer reactions (dichloride-, carbonate- and sulfate radical anions) and also the contribution to the degradation of organic compounds of such additives as hydrogen peroxide, ozone or persulfate. PMID:27573402

  6. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    NASA Astrophysics Data System (ADS)

    Nadejde, C.; Neamtu, M.; Schneider, R. J.; Hodoroaba, V.-D.; Ababei, G.; Panne, U.

    2015-10-01

    The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L-1 at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  7. Arsenite oxidation-enhanced photocatalytic degradation of phenolic pollutants on platinized TiO2.

    PubMed

    Kim, Jaesung; Kim, Jungwon

    2014-11-18

    The effect of As(III) on the photocatalytic degradation of phenolic pollutants such as 4-chlorophenol (4-CP) and bisphenol A (BPA) in a suspension of platinized TiO2 (Pt/TiO2) was investigated. In the presence of As(III), the photocatalytic degradation of 4-CP and BPA was significantly enhanced, and the simultaneous oxidation of As(III) to As(V) was also achieved. This positive effect of As(III) on the degradation of phenolic pollutants is attributed to the adsorption of As(V) (generated from As(III) oxidation) on the surface of Pt/TiO2, which facilitates the production of free OH radicals ((•)OHf) that are more reactive than surface-bound OH radicals ((•)OHs) toward phenolic pollutants. The generation of (•)OHf was indirectly verified by using coumarin as an OH radical trapper and comparing the yields of coumarin--OH adduct (i.e., 7-hydroxycoumarin) formed in the absence and presence of As(V). In repeated cycles of 4-CP degradation, the degradation efficiency of 4-CP gradually decreased in the absence of As(III), whereas it was mostly maintained in the presence of As(III), which was either initially present or repeatedly injected at the beginning of each cycle. The positive effect of As(III) on 4-CP degradation was observed over a wide range of As(III) concentrations (up to mM levels) with Pt/TiO2. However, a high concentration of As(III) (hundreds of μM) inhibited the degradation of 4-CP with bare TiO2. Therefore, Pt/TiO2 can be proposed as a practical photocatalyst for the simultaneous oxidation of phenolic pollutants and As(III) in industrial wastewaters.

  8. Natural polymers supported copper nanoparticles for pollutants degradation

    NASA Astrophysics Data System (ADS)

    Haider, Sajjad; Kamal, Tahseen; Khan, Sher Bahadar; Omer, Muhammad; Haider, Adnan; Khan, Farman Ullah; Asiri, Abdullah M.

    2016-11-01

    In this report, chitosan (CS) was adhered on cellulose microfiber mat (CMM) to prepare CS-CMM. This was used as host for copper (Cu) nanoparticles preparation. After adsorption of Cu2+ ions from an aqueous solution of CuSO4, the metal ions entrapped in CS coating layer was treated with sodium borohydride (NaBH4) to prepare Cu nanoparticles loaded CS-CMM (Cu/CS-CMM). Fourier transform infrared spectroscopy, and X-ray diffraction confirmed the formation of Cu/CS-CMM hybrid. Scanning electron microscopy analysis was performed to reveal the morphology of the prepared catalyst. The prepared Cu/CS-CMM was employed as a catalyst for the degradation of nitro-aromatic compounds of 2-nitrophenol (2NP) and 4-nitrophenol (4NP) as well as an organic cresyl blue (CB) dye. Remarkably, the turnover frequency in the case of 2NP and 4NP using Cu/CS-CMM reaches 103.3 and 88.6 h-1, outperforming previously reported Cu nanoparticles immobilized in hydrogel-based catalytic systems. The rate constants for 2NP, 4NP and CB were 1.2 × 10-3 s-1, 2.1 × 10-3 s-1 and, 1.3 × 10-3 s-1, respectively. Besides, we discussed the separation of the catalyst from the reaction mixture and its re-usability.

  9. Biological Degradation of 2,4,6-Trinitrotoluene

    PubMed Central

    Esteve-Núñez, Abraham; Caballero, Antonio; Ramos, Juan L.

    2001-01-01

    Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve

  10. Biological degradation of 2,4,6-trinitrotoluene.

    PubMed

    Esteve-Núñez, A; Caballero, A; Ramos, J L

    2001-09-01

    Nitroaromatic compounds are xenobiotics that have found multiple applications in the synthesis of foams, pharmaceuticals, pesticides, and explosives. These compounds are toxic and recalcitrant and are degraded relatively slowly in the environment by microorganisms. 2,4,6-Trinitrotoluene (TNT) is the most widely used nitroaromatic compound. Certain strains of Pseudomonas and fungi can use TNT as a nitrogen source through the removal of nitrogen as nitrite from TNT under aerobic conditions and the further reduction of the released nitrite to ammonium, which is incorporated into carbon skeletons. Phanerochaete chrysosporium and other fungi mineralize TNT under ligninolytic conditions by converting it into reduced TNT intermediates, which are excreted to the external milieu, where they are substrates for ligninolytic enzymes. Most if not all aerobic microorganisms reduce TNT to the corresponding amino derivatives via the formation of nitroso and hydroxylamine intermediates. Condensation of the latter compounds yields highly recalcitrant azoxytetranitrotoluenes. Anaerobic microorganisms can also degrade TNT through different pathways. One pathway, found in Desulfovibrio and Clostridium, involves reduction of TNT to triaminotoluene; subsequent steps are still not known. Some Clostridium species may reduce TNT to hydroxylaminodinitrotoluenes, which are then further metabolized. Another pathway has been described in Pseudomonas sp. strain JLR11 and involves nitrite release and further reduction to ammonium, with almost 85% of the N-TNT incorporated as organic N in the cells. It was recently reported that in this strain TNT can serve as a final electron acceptor in respiratory chains and that the reduction of TNT is coupled to ATP synthesis. In this review we also discuss a number of biotechnological applications of bacteria and fungi, including slurry reactors, composting, and land farming, to remove TNT from polluted soils. These treatments have been designed to achieve

  11. Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins.

    PubMed

    Lindsey, Michele E; Xu, Guoxiang; Lu, Jia; Tarr, Matthew A

    2003-05-20

    The effectiveness and selectivity of Fenton degradation of hydrophobic organic compounds (HOCs) can be improved by simultaneous complexation of Fe(2+) and the organic compound with a cyclodextrin or derivatized cyclodextrin. Such selective complexation of a target substrate and a catalytic metal is a crude mimic of enzyme systems. Both beta-cyclodextrin and carboxymethyl-beta-cyclodextrin (CMCD) were able to simultaneously complex Fe(2+) and an aromatic hydrocarbon, such as phenol, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls (PCBs). Degradation of compounds included in cyclodextrins was unaffected by hydroxyl radical scavengers, indicating that the radical was formed at the ternary complex (HOC-cyclodextrin-iron) and in close proximity to the included molecule. Without cyclodextrins, humic acid (HA) decreased degradation efficiency. However, in the presence of CMCD, HA did not inhibit degradation of the target compound. CMCD is capable of removing HOCs from HA binding sites while at the same time complexing Fe(2+). PCBs sorbed to glass were resistant to Fenton degradation, but were significantly degraded using a cyclodextrin modified Fenton system. In all of these systems, the ternary HOC-cyclodextrin-iron complexes effectively direct hydroxyl radical reaction toward the HOC, increasing the efficiency of Fenton degradation. One potential application of such targeted degradation systems is the in situ remediation of hydrophobic organic pollutants in contaminated soil and groundwater or in industrial waste streams.

  12. Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation.

    PubMed

    Nascimento, Ulisses M; Azevedo, Eduardo B

    2013-01-01

    This review assesses microwaves (MW) coupled to advanced oxidation processes (AOPs) for pollutants degradation, as well as the basic theory and mechanisms of MW dielectric heating. We addressed the following couplings: MW/H2O2, MW/UV/H2O2, MW/Fenton, MW/US, and MW/UV/TiO2, as well as few studies that tested alternative oxidants and catalysts. Microwave Discharge Electrodeless Lamps (MDELs) are being extensively used with great advantages over ballasts. In their degradation studies, researchers generally employed domestic ovens with minor adaptations. Non-thermal effects and synergies between UV and MW radiation play an important role in the processes. Published papers so far report degradation enhancements between 30 and 1,300%. Unfortunately, how microwaves enhance pollutants is still obscure and real wastewaters scarcely studied. Based on the results surveyed in the literature, MW/AOPs are promising alternatives for treating/remediating environmental pollutants, whenever one considers high degradation yields, short reaction times, and small costs.

  13. Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil.

    PubMed

    Johnsen, Anders R; de Lipthay, Julia R; Sørensen, Søren J; Ekelund, Flemming; Christensen, Peter; Andersen, Ole; Karlson, Ulrich; Jacobsen, Carsten S

    2006-03-01

    Diffuse pollution with polycyclic aromatic hydrocarbons (PAHs) of topsoil in urban regions has caused increasing concerns in recent years. We simulated diffuse pollution of soil in microcosms by spiking sandy topsoil (A-horizon) and coarse, mineral subsoil (C-horizon) with street dust (PM63) isolated from municipal street sweepings from central Copenhagen. The microbial communities adapted to PAH degradation in microcosms spiked with street dust in both A-horizon and C-horizon soils, in spite of low PAH-concentrations. The increased potential for PAH degradation was demonstrated on several levels: by slowly diminishing PAH-concentrations, increased mineralization of 14C-PAHs, increasing numbers of PAH degraders and increased prevalence of nah and pdo1 PAH degradation genes, i.e. the microbial communities quickly adapted to PAH degradation. Three- and 4-ring PAHs from the street dust were biodegraded to some extent (10-20%), but 5- and 6-ring PAHs were not biodegraded in spite of frequent soil mixing and high PAH degradation potentials. In addition to biodegradation, leaching of 2-, 3- and 4-ring PAHs from the A-horizon to the C-horizon seems to reduce PAH-levels in surface soil. Over time, levels of 2-, 3- and 4-ring PAHs in surface soil may reach equilibrium between input and the combination of biodegradation and leaching. However, levels of the environmentally critical 5- and 6-ring PAHs will probably continue to rise. We presume that sorption to black carbon particles is responsible for the persistence and low bioaccessibility of 5- and 6-ring PAHs in diffusely polluted soil.

  14. COP-compost: a software to study the degradation of organic pollutants in composts.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance

  15. Uncertainty in degradation rates for organic micro-pollutants during full-scale sewage sludge composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe G; Habib, Kashif; Iqbal, Tariq; Nizami, Abdul Sattar

    2016-10-01

    Composting can potentially remove organic pollutants in sewage sludge. When estimating pollutant removal efficiency, knowledge of estimate uncertainty is important for understanding estimate reliability. In this study the uncertainty (coefficient of variation, CV) in pollutant degradation rate (K1) and relative concentration at 35days of composting (C35/C0) was evaluated. This was done based on recently presented pollutant concentration data, measured under full-scale composting conditions using two different sampling methods for a range of organic pollutants commonly found in sewage sludge. Non-parametric statistical procedures were used to estimate CV values for K1 and C35/C0 for individual pollutants. These were then used to compare the two sampling methods with respect to CV and to determine confidence intervals for average CV. Results showed that sampling method is crucial for reducing uncertainty. The results further indicated that it is possible to achieve CV values for both K1 and C35/C0 of about 15%. PMID:27342191

  16. Isothermal titration calorimetry - a new method for the quantification of microbial degradation of trace pollutants.

    PubMed

    Mariana, F; Buchholz, F; Harms, H; Yong, Z; Yao, J; Maskow, T

    2010-07-01

    The environmental fate and, in particular, biodegradation rates of hydrophobic organic compounds (HOC) are of high interest due to the ubiquity, persistence, and potential health effects of these compounds. HOC tend to interact with bioreactor materials and sampling devices and are frequently volatile, so that conventionally derived degradation parameters are often biased. We report on the development and validation of a novel calorimetric approach that serves to gain real time information on the kinetics and the physiology of HOC bioconversion in aqueous systems while overcoming weaknesses of conventional biodegradation experiments. Soil bacteria Mycobacterium frederiksbergense LB501T, Rhodococcus erythropolis K2-3 and Pseudomonas putida G7 were exposed to pulsed titrations of dissolved anthracene, 4-(2,4-dichlorophenoxy)butyric acid or naphthalene, respectively, and the thermal responses were monitored. The combinations of strains and pollutants were selected as examples for complete and partial biodegradation and complete degradation with storage product formation, respectively. Heat production signals were interpreted thermodynamically and in terms of Michaelis-Menten kinetics. The half-saturation constant k(D) and the degradation rate r(D)(Max) were derived. Comparison with conventional methods shows the suitability to extract kinetic degradation parameters of organic trace pollutants from simple ITC experiments, while thermodynamic interpretation provided further information about the metabolic fate of HOC compounds.

  17. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  18. Selenium: environmental significance, pollution, and biological treatment technologies.

    PubMed

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  19. Sonochemical degradation of the pharmaceutical fluoxetine: Effect of parameters, organic and inorganic additives and combination with a biological system.

    PubMed

    Serna-Galvis, Efraím A; Silva-Agredo, Javier; Giraldo-Aguirre, Ana L; Torres-Palma, Ricardo A

    2015-08-15

    Fluoxetine (FLX), one of the most widely used antidepressants in the world, is an emergent pollutant found in natural waters that causes disrupting effects on the endocrine systems of some aquatic species. This work explores the total elimination of FLX by sonochemical treatment coupled to a biological system. The biological process acting alone was shown to be unable to remove the pollutant, even under favourable conditions of pH and temperature. However, sonochemical treatment (600 kHz) was shown to be able to remove the pharmaceutical. Several parameters were evaluated for the ultrasound application: the applied power (20-60 W), dissolved gas (air, Ar and He), pH (3-11) and initial concentration of fluoxetine (2.9-162.0 μmol L(-1)). Additionally, the presence of organic (1-hexanol and 2-propanol) and inorganic (Fe(2+)) compounds in the water matrix and the degradation of FLX in a natural mineral water were evaluated. The sonochemical treatment readily eliminates FLX following a kinetic Langmuir. After 360 min of ultrasonic irradiation, 15% mineralization was achieved. Analysis of the biodegradability provided evidence that the sonochemical process transforms the pollutant into biodegradable substances, which can then be mineralized in a subsequent biological treatment.

  20. Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome.

    PubMed

    Fodelianakis, S; Antoniou, E; Mapelli, F; Magagnini, M; Nikolopoulou, M; Marasco, R; Barbato, M; Tsiola, A; Tsikopoulou, I; Giaccaglia, L; Mahjoubi, M; Jaouani, A; Amer, R; Hussein, E; Al-Horani, F A; Benzha, F; Blaghen, M; Malkawi, H I; Abdel-Fattah, Y; Cherif, A; Daffonchio, D; Kalogerakis, N

    2015-04-28

    Oil-polluted sediment bioremediation depends on both physicochemical and biological parameters, but the effect of the latter cannot be evaluated without the optimization of the former. We aimed in optimizing the physicochemical parameters related to biodegradation by applying an ex-situ landfarming set-up combined with biostimulation to oil-polluted sediment, in order to determine the added effect of bioaugmentation by four allochthonous oil-degrading bacterial consortia in relation to the degradation efficiency of the indigenous community. We monitored hydrocarbon degradation, sediment ecotoxicity and hydrolytic activity, bacterial population sizes and bacterial community dynamics, characterizing the dominant taxa through time and at each treatment. We observed no significant differences in total degradation, but increased ecotoxicity between the different treatments receiving both biostimulation and bioaugmentation and the biostimulated-only control. Moreover, the added allochthonous bacteria quickly perished and were rarely detected, their addition inducing minimal shifts in community structure although it altered the distribution of the residual hydrocarbons in two treatments. Therefore, we concluded that biodegradation was mostly performed by the autochthonous populations while bioaugmentation, in contrast to biostimulation, did not enhance the remediation process. Our results indicate that when environmental conditions are optimized, the indigenous microbiome at a polluted site will likely outperform any allochthonous consortium.

  1. Biological approaches for polychlorinated biphenyl degradation. Book chapter

    SciTech Connect

    Unterman, R.; Bedard, D.L.; Brennan, M.J.; Bopp, L.H.; Mondello, F.J.

    1993-01-01

    It will be important in the future to evaluate genetically engineered PCB-degradative strains for their ability to degrade PCBs as actually found in the environment. The integration of genetic and soil studies is a logical and practical extension of important and promising research on PCB biodegradation. Thus, the authors are now in a position to exploit the potential of modern biotechnology for destroying environmental contaminants such as PCBs.

  2. Behavior of pollutant-degrading microorganisms in aquifers: Predictions for genetically engineered organisms

    USGS Publications Warehouse

    Krumme, M.L.; Smith, R.L.; Egestorff, J.; Thiem, S.M.; Tiedje, J.M.; Timmis, K.N.; Dwyer, D.F.

    1994-01-01

    Bioremediation via environmental introductions of degradative microorganisms requires that the microbes survive in substantial numbers and effect an increase in the rate and extent of pollutant removal. Combined field and microcosm studies were used to assess these abilities for laboratory-grown bacteria. Following introduction into a contaminated aquifer, viable cells of Pseudomonas sp. B13 were present in the contaminant plume for 447 days; die-off was rapid in pristine areas. In aquifer microcosms, survival of B13 and FR120, a genetically engineered derivative of B13 having enhanced catabolic capabilities for substituted aromatics, was comparable to B13 field results; both bacteria degraded target pollutants in microcosms made with aquifer samples from the aerobic zone of the pollutant plume. Results suggest that field studies with nonrecombinant microorganisms may be coupled to laboratory studies with derivative strains to estimate their bioremediative efficacy. Furthermore, laboratory strains of bacteria can survive for extended periods of time in nature and thus may have important bioremediative applications. ?? 1994 American Chemical Society.

  3. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. PMID:27214000

  4. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    PubMed

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-01

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  5. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants.

    PubMed

    Liu, Xian-Wei; Sun, Xue-Fei; Li, Dao-Bo; Li, Wen-Wei; Huang, Yu-Xi; Sheng, Guo-Ping; Yu, Han-Qing

    2012-09-15

    The electro-Fenton process is efficient for degradation of organic pollutants, but it suffers from the high operating costs due to the need of power investment. Here, a new anodic Fenton system is developed for energy-saving and efficient treatment of organic pollutants by incorporating microbial fuel cell (MFC) into an anodic Fenton process. This system is composed of an anodic Fenton reactor and a two-chamber air-cathode MFC. The power generated from a two-chamber MFC is used to drive the anodic Fenton process for Acid Orange 7 (AO7) degradation through accelerating in situ generation of Fe(2+) from sacrificial iron. The kinetic results show that the MFC-assisted anodic Fenton process system had a significantly higher pseudo-first-order rate constant than those for the chemical Fenton methods. The electrochemical analysis reveals that AO7 did not hinder the corrosion of iron. The anodic Fenton process was influenced by the MFC performance. It was also found that increasing dissolved oxygen in the cathode improved the MFC power density, which in turn enhanced the AO7 degradation rate. These clearly demonstrate that the anodic Fenton process could be integrated with MFC to develop a self-sustained system for cost-effective and energy-saving electrochemical wastewater treatment.

  6. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil.

    PubMed

    Lladó, S; Covino, S; Solanas, A M; Viñas, M; Petruccioli, M; D'annibale, A

    2013-03-15

    High recalcitrant characteristics and low bioavailability rates due to aging processes can hinder high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) bioremediation in real industrial polluted soils. With the aim of reducing the residual fraction of total petroleum hydrocarbons (TPH) and (HMW-PAHs) in creosote-contaminated soil remaining after a 180-d treatment in a pilot-scale biopile, either biostimulation (BS) of indigenous microbial populations with a lignocellulosic substrate (LS) or fungal bioaugmentation with two strains of white-rot fungi (WRF) (i.e., Trametes versicolor and Lentinus tigrinus) were comparatively tested. The impact of bivalent manganese ions and two mobilizing agents (MAs) (i.e., Soybean Oil and Brij 30) on the degradation performances of biostimulated and bioaugmented microcosms was also compared. The results reveal soil colonization by both WRF strains was clearly hampered by an active native soil microbiota. In fact, a proper enhancement of native microbiota by means of LS amendment promoted the highest biodegradation of HMW-PAHs, even of those with five aromatic rings after 60 days of treatment, but HMW-PAH-degrading bacteria were specifically inhibited when non-ionic surfactant Brij 30 was amended. Effects of bioaugmentation and other additives such as non-ionic surfactants on the degrading capability of autochthonous soil microbiota should be evaluated in polluted soils before scaling up the remediation process at field scale.

  7. Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil.

    PubMed

    Lladó, S; Covino, S; Solanas, A M; Viñas, M; Petruccioli, M; D'annibale, A

    2013-03-15

    High recalcitrant characteristics and low bioavailability rates due to aging processes can hinder high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) bioremediation in real industrial polluted soils. With the aim of reducing the residual fraction of total petroleum hydrocarbons (TPH) and (HMW-PAHs) in creosote-contaminated soil remaining after a 180-d treatment in a pilot-scale biopile, either biostimulation (BS) of indigenous microbial populations with a lignocellulosic substrate (LS) or fungal bioaugmentation with two strains of white-rot fungi (WRF) (i.e., Trametes versicolor and Lentinus tigrinus) were comparatively tested. The impact of bivalent manganese ions and two mobilizing agents (MAs) (i.e., Soybean Oil and Brij 30) on the degradation performances of biostimulated and bioaugmented microcosms was also compared. The results reveal soil colonization by both WRF strains was clearly hampered by an active native soil microbiota. In fact, a proper enhancement of native microbiota by means of LS amendment promoted the highest biodegradation of HMW-PAHs, even of those with five aromatic rings after 60 days of treatment, but HMW-PAH-degrading bacteria were specifically inhibited when non-ionic surfactant Brij 30 was amended. Effects of bioaugmentation and other additives such as non-ionic surfactants on the degrading capability of autochthonous soil microbiota should be evaluated in polluted soils before scaling up the remediation process at field scale. PMID:23416485

  8. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. PMID:21377794

  9. The impact of different reference panels on spectral reflectance coefficients of some biological water pollutants

    NASA Astrophysics Data System (ADS)

    Jenerowicz, Agnieszka; Walczykowski, Piotr

    2015-10-01

    Monitoring of water environment and ecosystem, detecting water contaminants and understanding water quality parameters are most important tasks in water management and protection of whole aquatic environment. Detection of biological contaminants play a very important role in preserving human health and water management. To obtain accurate and precise results of determination of the level of biological contamination and to distinguish its type it is necessary to determine precisely spectral reflectance coefficients of several water biological pollutants with inter alia spectroradiometer. This paper presents a methodology and preliminary results of acquisition of spectral reflectance coefficients with different reference panels (e.g. with 5%, 20%, 50%, 80% and 96% of reflectivity) of several biological pollutants. The authors' main task was to measure spectral reflectance coefficients of different biological water pollutants with several reference panels and to select optimal reference standard, which would allow for distinguish different types of several biological contaminants. Moreover it was necessary to indicate the spectral range in which it is possible to discriminate investigated samples of biological contaminants. By conducting many series of measurements of several samples of different types of biological pollutants, authors had concluded how the reflectivity of reference panel influences the accuracy of acquisition of spectral reflectance coefficients. This research was crucial in order to be able to distinguish several types of biological pollutants and to determine the useful spectral range for detection of different kinds of biological contaminants with multispectral and hyperspectral imagery.

  10. Degradation of Curcumin: From Mechanism to Biological Implications.

    PubMed

    Schneider, Claus; Gordon, Odaine N; Edwards, Rebecca L; Luis, Paula B

    2015-09-01

    Curcumin is the main bioactive ingredient in turmeric extract and widely consumed as part of the spice mix curry or as a dietary supplement. Turmeric has a long history of therapeutic application in traditional Asian medicine. Biomedical studies conducted in the past two decades have identified a large number of cellular targets and effects of curcumin. In vitro curcumin rapidly degrades in an autoxidative transformation to diverse chemical species, the formation of which has only recently been appreciated. This paper discusses how the degradation and metabolism of curcumin, through products and their mechanism of formation, provide a basis for the interpretation of preclinical data and clinical studies. It is suggested that the previously unrecognized diversity of its degradation products could be an important factor in explaining the polypharmacology of curcumin. PMID:25817068

  11. Degradation of curcumin: From mechanism to biological implications

    PubMed Central

    Schneider, Claus; Gordon, Odaine N.; Edwards, Rebecca L.; Luis, Paula B.

    2016-01-01

    Curcumin is the main bioactive ingredient in turmeric extract and widely consumed as part of the spice mix curry or as dietary supplement. Turmeric has a long history of therapeutic application in traditional Asian medicine. Biomedical studies conducted in the past two decades have identified a large number of cellular targets and effects of curcumin. In vitro curcumin rapidly degrades in an autoxidative transformation to diverse chemical species, formation of which has only recently been appreciated. We discuss how degradation and metabolism of curcumin, through products and their mechanism of formation, provide a basis for the interpretation of preclinical data and clinical studies. We suggest that the previously unrecognized diversity of its degradation products could be an important factor in explaining the polypharmacology of curcumin. PMID:25817068

  12. Degradation of Curcumin: From Mechanism to Biological Implications.

    PubMed

    Schneider, Claus; Gordon, Odaine N; Edwards, Rebecca L; Luis, Paula B

    2015-09-01

    Curcumin is the main bioactive ingredient in turmeric extract and widely consumed as part of the spice mix curry or as a dietary supplement. Turmeric has a long history of therapeutic application in traditional Asian medicine. Biomedical studies conducted in the past two decades have identified a large number of cellular targets and effects of curcumin. In vitro curcumin rapidly degrades in an autoxidative transformation to diverse chemical species, the formation of which has only recently been appreciated. This paper discusses how the degradation and metabolism of curcumin, through products and their mechanism of formation, provide a basis for the interpretation of preclinical data and clinical studies. It is suggested that the previously unrecognized diversity of its degradation products could be an important factor in explaining the polypharmacology of curcumin.

  13. Potential particulate pollution derived from UV-induced degradation of odorous dimethyl sulfide.

    PubMed

    Qiao, Liping; Chen, Jianmin; Yang, Xin

    2011-01-01

    UV-induced degradation of odorous dimethyl sulfide (DMS) was carried out in a static White cell chamber with UV irradiation. The combination of in situ Fourier transform infrared (FT-IR) spectrometer, gas chromatograph-mass spectrometer (GC-MS), wide-range particle spectrometer (WPS) technique, filter sampling and ion chromatographic (IC) analysis was used to monitor the gaseous and potential particulate products. During 240 min of UV irradiation, the degradation efficiency of DMS attained 20.9%, and partially oxidized sulfur-containing gaseous products, such as sulfur dioxide (SO2), carbonyl sulfide (OCS), dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2) and dimethyl disulfide (DMDS) were identified by in situ FT-IR and GC-MS analysis, respectively. Accompanying with the oxidation of DMS, suspended particles were directly detected to be formed by WPS techniques. These particles were measured mainly in the size range of accumulation mode, and increased their count median diameter throughout the whole removal process. IC analysis of the filter samples revealed that methanesulfonic acid (MSA), sulfuric acid (H2SO4) and other unidentified chemicals accounted for the major non-refractory compositions of these particles. Based on products analysis and possible intermediates formed, the degradation pathways of DMS were proposed as the combination of the O(1D)- and the OH- initiated oxidation mechanisms. A plausible formation mechanism of the suspended particles was also analyzed. It is concluded that UV-induced degradation of odorous DMS is potentially a source of particulate pollutants in the atmosphere.

  14. Appetite for danger - genetic potential for PCP degradation at historically polluted groundwater sites

    NASA Astrophysics Data System (ADS)

    Mikkonen, Anu; Yläranta, Kati; Tiirola, Marja; Romantschuk, Martin; Sinkkonen, Aki

    2016-04-01

    Pentachlorophenol (PCP) is a priority pollutant of exclusively anthropogenic origin. Formerly used commonly in timber preservatives, PCP has persisted at polluted groundwater sites decades after its use was banned, typically as the last detectable contaminant component. Notorious for its toxicity and poor biodegradability, little is known about the genetic potential and pathways for PCP degradation in the environment. The only fully characterized mineralization pathway is initiated by the enzyme coded by chromosomal pcpB gene, previously detected in PCP degrading Sphingomonadaceae bacteria isolated at two continents. However, there is no information about the abundance or diversity of any PCP degradation related gene at contaminated sites in situ. Our aim was to assess whether pcpB and/or sphingomonads seem to play a role in in situ degradation of PCP, by studying whether pcpB i) is detectable at chlorophenol-polluted groundwater sediments, ii) responds to PCP concentration changes, and iii) shows correlation with the abundance of sphingomonads or a specific sphingomonad genus. Novel protocols for quantification and profiling of pcpB, with primers covering full known diversity, were developed and tested at two sites in Finland with well-documented long-term chlorophenol contamination history: Kärkölä and Pursiala. High throughput sequencing complemented characterization of the total bacterial community and pcpB gene pool. The relative abundance of pcpB in bacterial community was associated with spatial variability in groundwater PCP concentration in Pursiala, and with temporal differences in groundwater PCP concentration in Kärkölä. T-RFLP fingerprinting results indicated and Ion Torrent PGM and Sanger sequencing confirmed the presence of a single phylotype of pcpB at both geographically distant, historically contaminated sites, matching the one detected previously in Canadian bioreactor clones and Kärkölä bioreactor isolates. Sphingomonad abundance

  15. [Analysis and research on the degradation and migration of organic pollutants in textile wastewater treatment process by GC-MS].

    PubMed

    Liu, Wei-jing; Zhang, Long; Wu, Wei; Tu, Yong

    2010-04-01

    In order to analyze the advantages/disadvantages of the combined treatment process between "physicochemical + biochemical" and "biochemical + physicochemical" in treatment of textile wastewater, gas chromatography-mass spectrometry (GC-MS) was used to determine the degradation process of organic pollutants in this two totally different treatment processes. The same analysis was also conducted to the sludge and discharged water. The results showed that the "physicochemical + biochemical" process displayed a poorer effect than "biochemical + physicochemical" in degrading the organic pollutants. The latter was 6.2% higher than the former in removing the organic pollutants averagely. The difference was mainly manifested in the efficiency of anaerobic hydrolysis in the two coupled processes. Moreover, the implement of "physicochemical + biochemical" process resulted in the migration of plenty of typical organic pollutants to sludge from primary coagulation sedimentation process and to the discharged water, which would cause secondary pollution easily.

  16. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    PubMed

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all.

  17. Photocatalytic activity of porous multiwalled carbon nanotube-TiO2 composite layers for pollutant degradation.

    PubMed

    Zouzelka, Radek; Kusumawati, Yuly; Remzova, Monika; Rathousky, Jiri; Pauporté, Thierry

    2016-11-01

    TiO2 nanoparticles are suitable building blocks nanostructures for the synthesis of porous functional thin films. Here we report the preparation of films using brookite, P25 titania and anatase pristine nanoparticles and of nanocomposite layers combining anatase nanoparticles and multi-walled carbon nanotube (MWCNT) at various concentrations. The structure and phase composition of the layers were characterized by X-ray diffraction and Raman spectroscopy. Their morphology and texture properties were determined by scanning electron microscopy and krypton adsorption experiments, respectively. Additionally to a strong absorption in the UV range, the composites exhibited light absorption in the visible range as well. The photocatalytic performance of the layers was tested in the degradation of aqueous solutions of 4-chlorophenol serving as a model of an eco-persistent pollutant. Besides the determination of the decrease in the concentration of 4-chlorophenol, also the formation of intermediate degradation products, namely hydroquinone and benzoquinone, was followed. The presence of MWCNTs had a beneficial effect on the photocatalytic performance, a marked increase in the photocatalytic degradation rate constant being observed even at very low concentrations of MWCNTs. Compared to a P25 reference layer, the first order rate reaction constant increased by about 100% for the composite films containing MWCNTs at concentrations above 0.6 wt%. The key parameters for the enhancement of the photocatalytic performance are discussed. The presence of carbon nanotubes influences beneficially the degradation of 4-chlorophenol by an attack of the primarily photoproduced hydroxyl radicals onto the 4-chlorophenol molecules. The degradation due to the direct charge transfer is practically not influenced at all. PMID:27262272

  18. Development of MCM-41 based catalysts for the photo-Fenton's degradation of dye pollutants

    NASA Astrophysics Data System (ADS)

    Lam, Leung Yuk Frank

    The continuous advancement in most industries has resulted in serious water pollution problems. The industrial effluents contain a variety of highly toxic organics such as dye pollutants. Numerous processes have been demonstrated for treating such pollutants. Among them, photo-Fenton's reaction is effective for organic mineralization by hydroxyl radicals generated from the Fenton's reagents (Fe2+ and H2O2). However, there is a drawback in that it requires a separation system to recover the homogeneous ferrous ion in the treated wastewater. In this research, new heterogeneous Fenton's catalysts are developed to solve such a problem and to achieve an efficient mineralization of dye pollutants. Two methods for catalyst preparation, including sol-gel hydrothermal (SG) and metal-organic chemical vapor deposition (MOCVD) techniques, were studied in this work. For SG-prepared catalysts, the iron element was successfully doped into the MCM-41 structure. These catalysts demonstrated a good catalytic efficiency but leaching of metal ions from the developed catalyst was found. In the MOCVD technique, a rotated tubular reactor system was developed to synthesize Fe/MCM-41 catalyst with uniform metal dispersion. It was found that using oxygen as a carrier gas during metal deposition was able to increase the stability of the deposited metal. In degradation of a model dye pollutant, Orange II, a total of 85% TOC mineralization was achieved at pH 3. A disadvantage of using Fe/MCM-41 was the reduced efficiency at higher pH. Cu/MCM-41 was thus developed and showed better catalytic activities than Fe/MCM-41 at neutral pH. Having the specific catalytic properties of Fe/MCM-41 and Cu/MCM-41, bimetallic (Fe+Cu) catalysts supported on MCM-41 were developed which show better activities in the Orange II mineralization than those monometallic (Fe or Cu) catalysts. The preparation conditions of the catalysts were experimentally optimized. The effects of catalyst dosage, metal loading

  19. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    PubMed

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12. PMID:24946709

  20. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    PubMed

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.

  1. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles

    PubMed Central

    Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G.

    2014-01-01

    Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. PMID:24772055

  2. Piezo impedance sensors to monitor degradation of biological structure

    NASA Astrophysics Data System (ADS)

    Annamdas, Kiran Kishore Kumar; Annamdas, Venu Gopal Madhav

    2010-04-01

    In some countries it is common to have wooden structures in their homes, especially Japan. However, metals and its alloys are the most widely used engineering materials in construction of any military or civil structure. Re-visiting natural disasters like the recent Haiti earthquake (12 Jan 2010) or Katrina (cyclones) reminds the necessity to have better housing infrastructure with robust monitoring systems. Traditionally wood (green material) was accepted as excellent rehabilitation material, after any disaster. In recent times, the recycling materials extracted from inorganic, biodegradable wastes are converted into blocks or sheets, and are also used to assist public in rehabilitation camps. The key issue which decreases the life of these rehabilitated structure including green materials (like wood) is unnecessary degradation or deterioration over time due to insect or acid attack or rain/ice fall. The recycling material also needs monitoring to protect them against acid or rain/ice attacks. Thus, a few health monitoring techniques have emerged in the recent past. Electromechanical Impedance technique is one such technique, which is simple but robust to detect variations in the integrity of structures. In this paper, impedance based piezoceramic sensor was bonded on wooden sample, which was subjected to degradation in presence of acids. Variations in mass of plank are studied.

  3. Pollutional haze and COPD: etiology, epidemiology, pathogenesis, pathology, biological markers and therapy.

    PubMed

    Wang, Fei; Ni, Song-Shi; Liu, Hua

    2016-01-01

    In recent years, serious pollutional haze occurs in the mainland of China thanks to the development of urbanization and industrialization. There is a close relationship between air pollution and the occurrence and development of chronic obstructive pulmonary disease (COPD), but there are some new characteristics in some aspects of COPD associated with pollutional haze compared with COPD induced by traditional physical and chemical factors. This article attempts to summarize the new progress from these new features of COPD related to pollutional haze, focus on etiology, epidemiology, pathogenesis, pathology, biological markers and therapy.

  4. Pollutional haze and COPD: etiology, epidemiology, pathogenesis, pathology, biological markers and therapy

    PubMed Central

    Wang, Fei; Ni, Song-Shi

    2016-01-01

    In recent years, serious pollutional haze occurs in the mainland of China thanks to the development of urbanization and industrialization. There is a close relationship between air pollution and the occurrence and development of chronic obstructive pulmonary disease (COPD), but there are some new characteristics in some aspects of COPD associated with pollutional haze compared with COPD induced by traditional physical and chemical factors. This article attempts to summarize the new progress from these new features of COPD related to pollutional haze, focus on etiology, epidemiology, pathogenesis, pathology, biological markers and therapy. PMID:26904250

  5. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  6. Highly efficient degradation of dye pollutants by Ce-doped MoO₃ catalyst at room temperature.

    PubMed

    Jin, Yujian; Li, Na; Liu, Haiqiu; Hua, Xia; Zhang, Qiuying; Chen, Mindong; Teng, Fei

    2014-09-14

    In order to efficiently degrade organic pollutants via an easily operated method, Ce-doped MoO3 (Ce(x)/MoO3) samples are synthesized by a simple impregnation method. The samples are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), nitrogen sorption isotherms and UV-vis diffused reflectance spectra (UV-DRS), total organic carbon (TOC), infrared spectroscopy (IR) and mass spectrometry (MS) analyses. Furthermore, we have mainly investigated the degradation of different dye pollutants by the Ce(x)/MoO3 samples, including cationic methylene blue (MB), anionic methyl orange (MO), neutral phenol, and a MB-MO mixture dye. For the single-component MB and MO dyes, the highest degradation efficiencies are achieved by Ce(5)/MoO3 and Ce(10)/MoO3 samples. For the MB-MO mixture dyes, the highest degradation efficiency for MB is achieved by a Ce(10)/MoO3 sample. It is surprising that the degradation efficiency of MB in the MB-MO mixture dye solution is higher than that in the single-component MB dye solution, which has been mainly ascribed to the promoting effect of MO. Moreover, a plausible degradation mechanism of the dyes has been proposed and discussed. It should be noted that the degradation reaction is carried out at room temperature and normal atmospheric pressure, and without light irradiation. As a result, this degradation reaction is obviously different from the conventional thermally activated heterogeneous catalysis (or photocatalysis), in which thermal energy (or light irradiation) is indispensable; also different from a sorption technology, in which the pollutants cannot be degraded, but only transformed from one phase to another one. Thus, the reported degradation reaction is a quite promising environmental cleaning technology, which could be widely practically applied.

  7. Thickness-dependent photocatalytic performance of graphite oxide for degrading organic pollutants under visible light.

    PubMed

    Oh, Junghoon; Chang, Yun Hee; Kim, Yong-Hyun; Park, Sungjin

    2016-04-28

    Photocatalysts use sustainable solar light energy to trigger various catalytic reactions. Metal-free nanomaterials have been suggested as cost-effective and environmentally friendly photocatalysts. In this work, we propose thickness-controlled graphite oxide (GO) as a metal-free photocatalyst, which is produced by exfoliating thick GO particles via stirring and sonication. All GO samples exhibit photocatalytic activity for degrading an organic pollutant, rhodamine B under visible light, and the thickest sample shows the best catalytic performance. UV-vis-NIR diffuse reflectance absorption spectra indicate that thicker GO samples absorb more vis-NIR light than thinner ones. Density-functional theory calculations show that GO has a much smaller band gap than that of single-layer graphene oxide, and thus suggest that the largely-reduced band gap is responsible for this trend of light absorption. PMID:27040040

  8. Photocatalytic degradation of bezacryl yellow in batch reactors--feasibility of the combination of photocatalysis and a biological treatment.

    PubMed

    Khenniche, Lamia; Favier, Lidia; Bouzaza, Abdelkrim; Fourcade, Florence; Aissani, Farida; Amrane, Abdeltif

    2015-01-01

    A combined process coupling photocatalysis and a biological treatment was investigated for the removal of Bezacryl yellow (BZY), an industrial-use textile dye. Photocatalytic degradation experiments of BZY were carried out in two stirred reactors, operating in batch mode with internal or external irradiation. Two photocatalysts (TiO2P25 and TiO2PC500) were tested and the dye degradation was studied for different initial pollutant concentrations (10-117 mg L(-1)). A comparative study showed that the photocatalytic degradation led to the highest degradation and mineralization yields in a stirred reactor with internal irradiation in the presence of the P25 catalyst. Regardless of the photocatalyst, discoloration yields up to 99% were obtained for 10 and 20 mg L(-1) dye concentrations in the reactor with internal irradiation. Moreover, the first-order kinetic and Langmuir-Hinshelwood models were examined by using the nonlinear method for different initial concentrations and showed that the two models lead to completely different predicted kinetics suggesting that they were completely different.According to the BOD5/ Chemical oxygen demand (COD) ratio, the non-treated solution (20 mg L(-1) of BZY) was estimated as non-biodegradable. After photocatalytic pretreatment of bezacryl solution containing 20 mg/L of initial dye, the biodegradability test showed a BOD5/COD ratio of 0.5, which is above the limit of biodegradability (0.4). These results were promising regarding the feasibility of combining photocatalysis and biological mineralization for the removal of BZY.

  9. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments.

    PubMed

    Guibert, Lilian M; Loviso, Claudia L; Borglin, Sharon; Jansson, Janet K; Dionisi, Hebe M; Lozada, Mariana

    2016-01-01

    We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.

  10. Nanomaterial based detection and degradation of biological and chemical contaminants in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Jayamohan, Harikrishnan

    Monitoring and remediation of environmental contaminants (biological and chemical) form the crux of global water resource management. There is an extant need to develop point-of-use, low-power, low-cost tools that can address this problem effectively with minimal environmental impact. Nanotechnology and microfluidics have made enormous advances during the past decade in the area of biosensing and environmental remediation. The "marriage" of these two technologies can effectively address some of the above-mentioned needs. In this dissertation, nanomaterials were used in conjunction with microfluidic techniques to detect and degrade biological and chemical pollutants. In the first project, a point-of-use sensor was developed for detection of trichloroethylene (TCE) from water. A self-organizing nanotubular titanium dioxide (TNA) synthesized by electrochemical anodization and functionalized with photocatalytically deposited platinum (Pt/TNA) was applied to the detection. The morphology and crystallinity of the Pt/TNA sensor was characterized using field emission scanning electron microscope, energy dis- persive x-ray spectroscopy, and X-ray diffraction. The sensor could detect TCE in the concentrations ranging from 10 to 1000 ppm. The room-temperature operation capability of the sensor makes it less power intensive and can potentially be incorporated into a field-based sensor. In the second part, TNA synthesized on a foil was incorporated into a flow-based microfluidic format and applied to degradation of a model pollutant, methylene blue. The system was demonstrated to have enhanced photocatalytic performance at higher flow rates (50-200 muL/min) over the same microfluidic format with TiO2 nanoparticulate (commercial P25) catalyst. The microfluidic format with TNA catalyst was able to achieve 82% fractional conversion of 18 mM methylene blue in comparison to 55% in the case of the TiO2 nanoparticulate layer at a flow rate of 200 L/min. The microfluidic device was

  11. Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants.

    PubMed

    Qi, Chengdu; Liu, Xitao; Ma, Jun; Lin, Chunye; Li, Xiaowan; Zhang, Huijuan

    2016-05-01

    Increasing attention has been paid to environmentally friendly activation methods of peroxymonosulfate (PMS) in advanced oxidation processes (AOPs) for organic pollutant elimination. This work demonstrates that Base can be applied as a novel activator for PMS. The Base/PMS system, at ambient temperature, was able to degrade a variety of organic pollutants, including acid orange 7 (AO7), phenol and bisphenol A. In subsequent experiments with AO7, the decolorization rates for AO7 followed pseudo-first-order kinetics, with rate constant values ranging from 0.0006 to 0.1749 min(-1) depending on the operating parameters (initial PMS, Base, AO7 concentrations and reaction temperature). Furthermore, the mechanism for PMS activation by the Base was elucidated by radical scavenger (tert-butyl alcohol, methanol, sodium azide and p-benzoquinone) and electron spin resonance trapping studies. The results revealed that superoxide anion radical and singlet oxygen other than sulfate radical were the primary reactive oxygen species in the Base/PMS system. The findings of this study present a new pathway for PMS activation and provide useful information for the treatment of wastewater. PMID:26946115

  12. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    PubMed

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation.

  13. Solar photo-ozonation: A novel treatment method for the degradation of water pollutants.

    PubMed

    Chávez, Ana M; Rey, Ana; Beltrán, Fernando J; Álvarez, Pedro M

    2016-11-01

    The decomposition of aqueous ozone by UV-vis radiation has been investigated with focus on the impact of ozone photolysis on the degradation of water pollutants during solar ozonation processes. The apparent first-order rate constants of the decomposition of ozone (kobs) have been determined at various pHs in the 4-9 range using radiation of different wavelengths in the UV-vis range. It was found that UVA-visible radiation (λ>320nm) highly enhanced ozone decomposition, especially at pH 4, for which kobs was three-folded with respect to the process in the absence of radiation. Hydrogen peroxide was identified as a main intermediate of ozone photo-decomposition at pH 4. Experiments of degradation of oxalic acid by ozone showed that solar irradiation brings about an increase in the hydroxyl radical to ozone exposures ratio (Rct). Finally, photo-ozonation (λ>300nm) was shown advantageous over single ozonation in the mineralization of a selection of emerging contaminants (metoprolol, ibuprofen, N,N-diethyl-meta-toluamide and clofibric acid) in both ultrapure water and a synthetic secondary effluent. Thus, TOC removal in 2-h treatments increased from 10 to 25% in the absence of radiation to about 50% in the presence of radiation. PMID:27258212

  14. Highly Efficient Photocatalysts and Continuous-Flow Photocatalytic Reactors for Degradation of Organic Pollutants in Wastewater.

    PubMed

    Chang, Sujie; Yang, Xiaoqiu; Sang, Yuanhua; Liu, Hong

    2016-09-01

    One of the most important applications for photocatalysis is engineered water treatment that photodegrades organic pollutants in wastewater at low cost. To overcome the low efficiency of batch degradation methods, continuous-flow photocatalytic reactors have been proposed and have become the most promising method for mass water treatment. However, most commercial semiconductor photocatalysts are granular nanoparticles with low activity and a narrow active light wavelength band; this creates difficulties for direct use in continuous-flow photocatalytic reactors. Therefore, a high-performance photodegradation photocatalyst with proper morphology or structure is key for continuous photocatalytic degradation. Moreover, a well-designed photocatalytic device is another important component for continuous-flow photocatalysis and determines the efficiency of photocatalysis in practical water treatment. This review describes the basic design principles and synthesis of photocatalysts with excellent performance and special morphologies suitable for a filtering photocatalysis process. Certain promising continuous photodegradation reactors are also categorized and summarized. Additionally, selected scientific and technical problems that must be urgently solved are suggested. PMID:27389817

  15. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions.

    PubMed

    Castillo, Jean Manuel; Casas, Jaime; Romero, Esperanza

    2011-12-15

    Endosulfan is a lypophilic persistent organic pollutant (POP) that has caused widespread concern due to its persistence in the environment, toxicity and bioaccumulation in living organisms. The aim of this study is to isolate endosulfan-degrading bacteria taken from five coffee farms historically exposed to this insecticide which could be used in future remediation strategies. The biodegradation capability of the isolated strain as well as endosulfan's impact on some of the strain's biological functions was studied. Endosulfan and its metabolites were analyzed using TLC and GC-MS. The isolated strain, capable of growing in a liquid culture treated with this insecticide as the sole sulfur source rather than a carbon source, was selected for further study. The isolated bacterium is Gram-negative, having the morphological and biochemical characteristics of Azotobacter sp. The remaining concentrations after 6 days, using 2 and 10 mg l(-1) of endosulfan, were 57.6 and 72.3% respectively, and the degradation constants were 0.12 d(-1) and 0.26 d(-1). Four metabolites were detected, one of which was identified as endosulfan ether. Endosulfan reduced nitrogenase activity but had no impact on indole 3-acetic acid production. Thus, these results suggest that this strain has the potential to act as a biocatalyst in endosulfan degradation. PMID:22033355

  16. Biological effects of mercury pollution. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-08-01

    The bibliography contains citations concerning biological and biochemical effects of mercury pollutants on humans, animals, and plants. References cover long-term and short-term experiments, biochemical reaction kinetics, pollution sources, and ecosystems. Mercury poisoning, metabolism, and related diseases are described. Carcinogenicity testing, health risk and assessment, and the effects on food chains are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. An efficient PAH-degrading Lentinus (Panus) tigrinus strain: effect of inoculum formulation and pollutant bioavailability in solid matrices.

    PubMed

    Covino, Stefano; Cvancarová, Monika; Muzikár, Milan; Svobodová, Katerina; D'annibale, Alessandro; Petruccioli, Maurizio; Federici, Federico; Kresinová, Zdena; Cajthaml, Tomás

    2010-11-15

    This study comparatively investigated the PAH degradation ability of Lentinus tigrinus and Irpex lacteus in a historically polluted soil and creosote-impregnated shavings. With this regard, the effect of type of inoculum carrier (i.e., wheat straw, corn cobs and commercial pellets) and contaminant bioavailability was thoroughly determined. Although degradation performances of L. tigrinus were not significantly affected by the type of the support, they were invariably better than those of I. lacteus on both the polluted soil and the creosote-impregnated shavings. Although degradation efficiencies of all fungal microcosms were highly and significantly correlated with bioavailability, certain PAHs, such as chrysene and benzo[a]pyrene, were removed by L. tigrinus from the polluted soil at amounts that exceeded about 2.3-fold their respective bioavailabilities. Degradation of PAHs was negatively correlated with their organic carbon sorption coefficients (K(oc)) and hydrophobicity (logP). The strength of linear association with the latter parameter, however, was not affected by the type of contaminated matrix in L. tigrinus-based microcosms while it was significantly larger in the historically polluted soil than in the creosote-impregnated shavings in I. lacteus ones. PMID:20728989

  18. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.

    PubMed

    Albers, Christian Nyrop; Feld, Louise; Ellegaard-Jensen, Lea; Aamand, Jens

    2015-10-15

    Groundwater is an important drinking water resource. Yet, this resource is threatened by pollution from chemicals, such as pesticides and their degradation products. To investigate the potential for remediation of groundwater polluted by trace concentrations of the pesticide residue 2,6-dichlorobenzamide (BAM), we established a pilot waterworks including two sand filters. The waterworks treated groundwater polluted with 0.2 μg/L BAM at flow conditions typical for rapid sand filters. Bioaugmentation of the sand filter with a specific BAM-degrading bacterium (Aminobacter sp. MSH1) resulted in significant BAM degradation to concentrations below the legal threshold level (0.1 μg/L), and this without adverse effects on other sand filter processes such as ammonium and iron oxidation. However, efficient degradation for more than 2-3 weeks was difficult to maintain due to loss of MSH1-bacteria, especially during backwashing. By limiting backwash procedures, the period of degradation was prolonged, but bacteria (and hence degradation activity) were still lost with time. Protozoa were observed to grow in the filters to a density that contributed significantly to the general loss of bacteria from the filters. Additionally, the concentration of easily assimilable organic carbon (AOC) in the remediated water may have been too low to sustain a sufficient population of degrader bacteria in the filter. This study shows that scaling up is not trivial and shortcomings in transferring degradation rates obtained in batch experiments to a rapid sand filter system are discussed. Further optimization is necessary to obtain and control more temporally stable systems for water purification. However, for the first time outside the laboratory and at realistic conditions a potential for the biodegradation of recalcitrant micropollutants in bioaugmented rapid sand filters is shown.

  19. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.

    PubMed

    Albers, Christian Nyrop; Feld, Louise; Ellegaard-Jensen, Lea; Aamand, Jens

    2015-10-15

    Groundwater is an important drinking water resource. Yet, this resource is threatened by pollution from chemicals, such as pesticides and their degradation products. To investigate the potential for remediation of groundwater polluted by trace concentrations of the pesticide residue 2,6-dichlorobenzamide (BAM), we established a pilot waterworks including two sand filters. The waterworks treated groundwater polluted with 0.2 μg/L BAM at flow conditions typical for rapid sand filters. Bioaugmentation of the sand filter with a specific BAM-degrading bacterium (Aminobacter sp. MSH1) resulted in significant BAM degradation to concentrations below the legal threshold level (0.1 μg/L), and this without adverse effects on other sand filter processes such as ammonium and iron oxidation. However, efficient degradation for more than 2-3 weeks was difficult to maintain due to loss of MSH1-bacteria, especially during backwashing. By limiting backwash procedures, the period of degradation was prolonged, but bacteria (and hence degradation activity) were still lost with time. Protozoa were observed to grow in the filters to a density that contributed significantly to the general loss of bacteria from the filters. Additionally, the concentration of easily assimilable organic carbon (AOC) in the remediated water may have been too low to sustain a sufficient population of degrader bacteria in the filter. This study shows that scaling up is not trivial and shortcomings in transferring degradation rates obtained in batch experiments to a rapid sand filter system are discussed. Further optimization is necessary to obtain and control more temporally stable systems for water purification. However, for the first time outside the laboratory and at realistic conditions a potential for the biodegradation of recalcitrant micropollutants in bioaugmented rapid sand filters is shown. PMID:26125500

  20. Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine

    PubMed Central

    Gurusamy, Raman; Natarajan, Sakthivel

    2013-01-01

    Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788

  1. Degradative Enzymes from the Pharmacy or Health Food Store: Interesting Examples for Introductory Biology Laboratories

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    2007-01-01

    Degradative enzymes in over-the-counter products from pharmacies and health food stores provide good examples of biological catalysis. These include [beta]-galactosidase in Lactaid[TM], [alpha]-galactosidase in Beano[R], [alpha]-amylase and proteases in digestive aids, and proteases in contact lens cleaners. These enzymes can be studied…

  2. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).

    PubMed

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. PMID:23791043

  3. The Complete Multipartite Genome Sequence of Cupriavidus necator JMP134, a Versatile Pollutant Degrader

    SciTech Connect

    Lykidis, Athanasios; Perez-Pantoja, Danilo; Ledger, Thomas; Mavromatis, Kostantinos; Anderson, Iain J.; Ivanova, Natalia N.; Hooper, Sean D.; Lapidus, Alla; Lucas, Susan; Gonzalez, Bernardo; Kyrpides, Nikos C.

    2010-02-01

    Cupriavidus necator JMP134 (formerly Ralstonia eutropha JMP134) is a Gram-negative {beta}-proteobacterium able to degrade a variety of chloroaromatic compounds and chemically-related pollutants. It was originally isolated based on its ability to use 2,4 dichlorophenoxyacetic acid (2,4-D) as a sole carbon and energy source [1]. In addition to 2,4-D, this strain can also grow on a variety of aromatic substrates, such as 4-chloro-2-methylphenoxyacetate (MCPA), 3-chlorobenzoic acid (3-CB) [2], 2,4,6-trichlorophenol [3], and 4-fluorobenzoate [4]. The genes necessary for 2,4-D utilization have been identified. They are located in two clusters on plasmid pPJ4: tfd{sub I} and tfd{sub II} [5,6,7,8]. The sequence and analysis of plasmid pJP4 was reported and a congruent model for bacterial adaptation to chloroaromatic pollutants was proposed [9]. According to this model, catabolic gene clusters assemble in a modular manner into broad-host-range plasmid backbones by means of repeated chromosomal capture events. Cupriavidus and related Burkholderia genomes are typically multipartite, composed of two large replicons (chromosomes) accompanied by classical plasmids. Previous work with Burkholderia xenovorans LB400 revealed a differential gene distribution with core functions preferentially encoded by the larger chromosome and secondary functions by the smaller [10]. It has been proposed that the secondary chromosomes in many bacteria originated from ancestral plasmids which, in turn, had been the recipient of genes transferred earlier from ancestral primary chromosomes [11]. The existence of multiple Cupriavidus and Burkholderia genomes provides the opportunity for comparative studies that will lead to a better understanding of the evolutionary mechanisms for the formation of multipartite genomes and the relation with biodegradation abilities.

  4. Influence of biological oxygen demand degradation patterns on water-quality modeling for rivers running through urban areas.

    PubMed

    Fan, Chihhao; Wang, Wei-Shen

    2008-10-01

    Water-quality modeling has been used as a support tool for water-resources management. The Streeter-Phelps (SP) equation is one often-used algorithm in river water-quality simulation because of its simplicity and ease in use. To characterize the river dissolved oxygen (DO) sag profile, it only considers that the first-order biological oxygen demand (BOD) degradation and atmospheric reaeration are the sink and source in a river, respectively. In the river water-quality calculation, the assumption may not always provide satisfactory simulation due to an inappropriate description of BOD degradation. In the study, various patterns of BOD degradation were combined with the oxygen reaeration to simulate the DO sag profile in a river. Different BOD degradation patterns used include the first-order decay, mixed second-order decay, and oxygen-inhibition decay. The results shows that the oxygen-inhibition SP equation calculates higher BOD and DO concentration, while the mixed second SP equation calculates the least among the three tested models. In river-water calculation of Keelung River, the SP and oxygen-inhibition SP equations calculate similar BOD and DO concentrations, and the mixed second SP equation calculates the least BOD and DO concentration. The pollution loading of BOD and atmospheric reaeration constant are the two important factors that have significant impacts on aqueous DO concentration. In the field application, it is suggested that the mixed second SP equation be employed in water-quality simulation when the monitoring data exhibits a faster trend in BOD decay. The oxygen-inhibition SP equation may calculate the water quality more accurately when BOD decay is slower.

  5. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  6. Degradation of organic pollutants in Mediterranean forest soils amended with sewage sludge.

    PubMed

    Francisca Gomez-Rico, M; Font, Rafael; Vera, Jose; Fuentes, David; Disante, Karen; Cortina, Jordi

    2008-05-01

    The degradation of two groups of organic pollutants in three different Mediterranean forest soils amended with sewage sludge was studied for nine months. The sewage sludge produced by a domestic water treatment plant was applied to soils developed from limestone, marl and sandstone, showing contrasting alkalinity and texture. The compounds analysed were: linear alkylbenzene sulphonates (LAS) with a 10-13 carbon alkylic chain, and nonylphenolic compounds, including nonylphenol (NP) and nonylphenol ethoxylates with one and two ethoxy groups (NP1EO+NP2EO). These compounds were studied because they frequently exceed the limits proposed for sludge application to land in Europe. After nine months, LAS decomposition was 86-96%, and NP+NP1EO+NP2EO decomposition was 61-84%, which can be considered high. Temporal trends in LAS and NP+NP1EO+NP2EO decomposition were similar, and the concentrations of both types of compounds were highly correlated. The decomposition rates were higher in the period of 6-9 months (summer period) than in the period 0-6 months (winter+spring period) for total LAS and NP+NP1EO+NP2EO. Differences in decay rates with regard to soil type were not significant. The average values of decay rates found are similar to those observed in agricultural soils. PMID:18329688

  7. Degradation of biological weapons agents in the environment: implications for terrorism response.

    PubMed

    Stuart, Amy L; Wilkening, Dean A

    2005-04-15

    We investigate the impact on effective terrorism response of the viability degradation of biological weapons agents in the environment. We briefly review the scientific understanding and modeling of agent environmental viability degradation. In general, agent susceptibility to viability loss is greatest for vegetative bacteria, intermediate for viruses, and least for bacterial spores. Survival is greatest in soil and progressively decreases in the following environments: textiles, water, hard surfaces, and air. There is little detailed understanding of loss mechanisms. We analyze the time behavior and sensitivity of four mathematical models that are used to represent environmental viability degradation (the exponential, probability, and first- and second-order catastrophic decay models). The models behave similarly at short times (<30 min for our example case) but diverge to significantly different values at intermediate to long times. Hence, for a release event in which the majority of atmospheric exposure or deposition occurs oververy short times, the current response models likely provide a good representation of the hazard. For longer time phenomena, including decontamination, the current model capabilities are likely insufficient. Finally, we implement each model in a simple numerical integration of anthrax dispersion, viability degradation, and dose response. Decay models spanning the current knowledge of airborne degradation result in vastly different predicted hazard areas. This confounds attempts to determine necessary medical and decontamination measures. Hence,the current level of understanding and representation of environmental viability degradation in response models is inadequate to inform appropriate emergency response measures.

  8. Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants

    PubMed Central

    Neumann, Dominik; Heuer, Anke; Hemkemeyer, Michael; Martens, Rainer; Tebbe, Christoph C

    2014-01-01

    Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63–2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus (Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. 14C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation. PMID:24430482

  9. Biological removal of arsenic pollution by soil fungi.

    PubMed

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.

  10. Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils.

    PubMed

    Maestre, Fernando T; Martín, Noelia; Díez, Beatriz; López-Poma, Rosario; Santos, Fernando; Luque, Ignacio; Cortina, Jordi

    2006-10-01

    Biological soil crusts are very sensitive to human-induced disturbances and are in a degraded state in many areas throughout their range. Given their importance in the functioning of arid and semiarid ecosystems, restoring these crusts may contribute to the recovery of ecosystem functionality in degraded areas. We conducted a factorial microcosm experiment to evaluate the effects of inoculation type (discrete fragments vs slurry), fertilization (control vs addition of composted sewage sludge), and watering frequency (two vs five times per week) on the cyanobacterial composition, nitrogen fixation, chlorophyll content, and net CO2 exchange rate of biological soil crusts inoculated on a semiarid degraded soil from SE Spain. Six months after the inoculation, the highest rates of nitrogen fixation and chlorophyll a content were found when the biological crusts were inoculated as slurry, composted sewage sludge was added, and the microcosms were watered five times per week. Net CO2 exchange rate increased when biological crusts were inoculated as slurry and the microcosms were watered five times per week. Denaturing gradient gel electrophoresis fingerprints and phylogenetic analyses indicated that most of the cyanobacterial species already present in the inoculated crust had the capability to spread and colonize the surface of the surrounding soil. These analyses showed that cyanobacterial communities were less diverse when the microcosms were watered five times per week, and that watering frequency (followed in importance by the addition of composted sewage sludge and inoculation type) was the treatment that most strongly influenced their composition. Our results suggest that the inoculation of biological soil crusts in the form of slurry combined with the addition of composted sewage sludge could be a suitable technique to accelerate the recovery of the composition and functioning of biological soil crusts in drylands. PMID:16710791

  11. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wenchao; Li, Fang; Zhang, Dieqing; Leung, Dennis Y. C.; Li, Guisheng

    2016-01-01

    CdSe nanoparticles enhanced TiO2 nanotube arrays electrodes (CdSe/TNTAs) were explored as the photoanode for driving the photoelectrocatalytic (PEC) generation of hydrogen and simultaneous degradation of organic pollutants in a PEC system. The evolution hydrogen and the simultaneous degradation of organic pollutants were performed in an electrolytic cell (three electrodes system) under visible-light (λ > 400 nm). Such CdSe/TiO2 based PEC system exhibited both high efficiency of hydrogen generation and effective oxidation of methyl orange (MO). Such high PEC performance of CdSe/TNTAs was attributed to the high dispersity of CdSe nanoparticles on both outside and inside of the pore walls of TiO2 nanotube arrays, the strong combination and heterojunctions between CdSe and TiO2 through Cdsbnd O bonds via electrodeposition with ion-exchange method.

  12. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria▿

    PubMed Central

    Johnsen, Anders R.; Schmidt, Stine; Hybholt, Trine K.; Henriksen, Sidsel; Jacobsen, Carsten S.; Andersen, Ole

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation. A nonprimed control microcosm containing pristine soil artificially polluted with PAHs showed only small increases in the numbers of culturable PAH degraders and no pdo1 genes. Initial PAH degradation rates were highest in the primed microcosm, but later, the degradation rates were comparable in primed and nonprimed soil. Thus, the proliferation and persistence of the introduced, soil-adapted degraders had only a marginal effect on PAH degradation. Given the small effect of priming with bioremediated soil and the likely presence of PAH degraders in almost all PAH-contaminated soils, it seems questionable to prime PAH-contaminated soil with bioremediated soil as a means of large-scale soil bioremediation. PMID:17209064

  13. In situ combined chemical and biological assessment of estrogenic pollution in a water recycling system.

    PubMed

    Chi, Yulang; Huang, Qiansheng; Zhang, Huanteng; Chen, Yajie; Dong, Sijun

    2016-05-01

    Estrogenic pollution and its control in aquatic systems have drawn substantial attention around the world. The chemical and biological assessment approaches currently utilized in the laboratory or field cannot give an integrated assessment of the pollution when used separately. In this study, in situ chemical and biological methods were combined to detect pollution in a water recycling system. Data for the water quality index (WQI) demonstrated that the water treatment resulted in the decline of pollution from upstream to downstream. Wild male Nile tilapia, Oreochromis niloticus, was sampled in June and September. The concentrations of four common endocrine disrupting chemicals (EDCs) were determined in the tilapia liver by chromatographic analysis methods. The level of 17β-estradiol (E2) declined from upstream to downstream in both months. In contrast, the levels of bisphenol A (BPA), di-(2-ethylhcxyl) phthalate (DEHP), and perfluorooctane sulfonate (PFOS) did not display this declining tendency. The highest relative expression of vitellogenin 1 (VTG1) was observed in tilapia from upstream, then the level significantly decreased along the water system. The relative expression levels of CYP1A1 in the water system were also significantly higher than that of the control. However, no declining trend could be observed along the water system. The change of VTG1 expression corresponded well with that of E2 levels in the tilapia liver. Overall, our study assessed the pollution by endocrine disruptors using chemical and biological data with good correspondence. This study also demonstrated the effectiveness of the water recycling system in eliminating estrogen pollution in municipal sewage. PMID:27155427

  14. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials.

    PubMed

    Att, Wael; Hori, Norio; Takeuchi, Masato; Ouyang, Jianyong; Yang, Yang; Anpo, Masakazu; Ogawa, Takahiro

    2009-10-01

    The shelf life of implantable materials has rarely been addressed. We determined whether osteoconductivity of titanium is stable over time. Rat bone marrow-derived osteoblasts were cultured on new titanium disks (immediately after acid-etching), 3-day-old (stored after acid-etching for 3 days in dark ambient conditions), 2-week-old, and 4-week-old disks. Protein adsorption capacity, and osteoblast migration, attachment, spread, proliferation and mineralization decreased substantially on old titanium surfaces in an age-dependent manner. When the 4-week-old implants were placed into rat femurs, the biomechanical strength of bone-titanium integration was less than half that for newly processed implants at the early healing stage. More than 90% of the new implant surface was covered by newly generated bone compared to 58% for 4-week-old implants. This time-dependent biological degradation was also found for machined and sandblasted titanium surfaces and was associated with progressive accumulation of hydrocarbon on titanium surfaces. The new surface could attract osteoblasts even under a protein-free condition, but its high bioactivity was abrogated by masking the surface with anions. These results uncover an aging-like time-dependent biological degradation of titanium surfaces from bioactive to bioinert. We also suggest possible underlying mechanisms for this biological degradation that provide new insights into how we could inadvertently lose, and conversely, maximize the osteoconductivity of titanium-based implant materials.

  15. Mechanistic insight into sono-enzymatic degradation of organic pollutants with kinetic and thermodynamic analysis.

    PubMed

    Malani, Ritesh S; Khanna, Swati; Chakma, Sankar; Moholkar, Vijayanand S

    2014-07-01

    In this paper, we have attempted to get a physical insight into process of sono-enzymatic treatment for degradation of recalcitrant organic pollutants. Decolourization of an azo dye has been used as model reaction with different experimental protocols that alter characteristics of ultrasound and cavitation phenomena in the system. Experimental data is analyzed to determine kinetic and thermodynamic parameters of decolorization process. The trends observed in kinetic and thermodynamic parameters of decolourization are essentially manifestations of the dominating mechanism of the decolorization of the textile dye (or nature of prevalent chemical reaction in the system), viz. either molecular reaction due to enzyme or radical reaction due to transient cavitation. The activation energy for sonochemical protocol is negative, which indicates instantaneity of the radical reactions. The frequency factor is also low, which is attributed to high instability of radicals. For enzymatic and sono-enzymatic protocols, activation energy is positive with higher frequency factor. Enthalpy change for sonochemical protocol is negative, while that for enzymatic and sono-enzymatic protocols is positive. The net entropy change for sonochemical protocol is more negative than enzymatic or sono-enzymatic protocol due to differences in prevalent chemical mechanism of dye decolorization. Due to inverse variations of frequency factor and activation energy, marginal rise in reaction kinetics is seen for sono-enzymatic protocol, as compared to enzymatic treatment alone. Due to inverse variations of enthalpy and entropy change, net Gibbs energy change in all experimental protocols shows little variation indicating synergism of the mechanism of ultrasound and enzyme. PMID:24548544

  16. [Effects of Oil Pollutants on the Performance of Marine Benthonic Microbial Fuel Cells and Its Acceleration of Degradation].

    PubMed

    Meng, Yao; Fu, Yu-bin; Liang, Sheng-kang; Chen, Wei; Liu, Zhao-hui

    2015-08-01

    Degradation of oil pollutants under the sea is slow for its oxygen-free environment which has caused long-term harm to ocean environment. This paper attempts to accelerate the degradation of the sea oil pollutants through electro catalysis by using the principle of marine benthonic microbial fuel cells (BMFCs). The influence of oil pollutants on the battery performance is innovatively explored by comparing the marine benthonic microbial fuel cells ( BMFCs-A) containing oil and oil-free microbial fuel cells (BMFCs-B). The acceleration effect of BMFCs is investigated by the comparison between the oil-degrading rate and the number of heterotrophic bacteria of the BMFCs-A and BMFCs-B on their anodes. The results show that the exchange current densities in the anode of the BMFCs-A and BMFCs-B are 1. 37 x 10(-2) A x m(-2) and 1.50 x 10(-3) A x m(-2) respectively and the maximum output power densities are 105.79 mW x m(-2) and 83.60 mW x m(-2) respectively. The exchange current densities have increased 9 times and the maximum output power density increased 1. 27 times. The anti-polarization ability of BMFCs-A is improved. The heterotrophic bacteria numbers of BMFCs-A and BMFCs-C on their anodes are (66 +/- 3.61) x 10(7) CFU x g(-1) and (7.3 +/- 2.08) x 10(7) CFU x g(-1) respectively and the former total number has increased 8 times, which accelerates the oil-degrading rate. The degrading rate of the oil in the BMFCs-A is 18.7 times higher than that in its natural conditions. The BMFCs can improve its electrochemical performance, meanwhile, the degradation of oil pollutants can also be accelerated. A new model of the marine benthonic microbial fuel cells on its acceleration of oil degradation is proposed in this article.

  17. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    PubMed

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    elevated exposure levels or in combination with other stresses such as drought, freezing, or pathogens. The notable exceptions are the acid/aluminum effects on aquatic organisms, which can be lethal at levels of acidity observed in many surface waters in the region. Although the effects are often subtle, they are important to biological conservation. Changes in species composition caused by terrestrial or aquatic acidification or eutrophication can propagate throughout the food webs to affect many organisms beyond those that are directly sensitive to the pollution. Likewise, sublethal doses of toxic pollutants may reduce the reproductive success of the affected organisms or make them more susceptible to potentially lethal pathogens. Many serious gaps in knowledge that warrant further research were identified. Among those gaps are the effects of acidification, ozone, and mercury on alpine systems, effects of nitrogen on species composition of forests, effects of mercury in terrestrial food webs, interactive effects of multiple pollutants, and interactions among air pollution and other environmental changes such as climate change and invasive species. These gaps in knowledge, coupled with the strong likelihood of impacts on ecosystems that have not been studied in the region, suggests that current knowledge underestimates the actual impact of air pollutants on biodiversity. Nonetheless, because known or likely impacts of air pollution on the biodiversity and function of natural ecosystems are widespread in the Northeast and Mid-Atlantic regions, the effects of air pollution should be considered in any long-term conservation strategy. It is recommended that ecologically relevant standards, such as "critical loads," be adopted for air pollutants and the importance of long-term monitoring of air pollution and its effects is emphasized.

  18. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    PubMed

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs. PMID:26331631

  19. Carbon Nanotube Degradation in Macrophages: Live Nanoscale Monitoring and Understanding of Biological Pathway.

    PubMed

    Elgrabli, Dan; Dachraoui, Walid; Ménard-Moyon, Cécilia; Liu, Xiao Jie; Bégin, Dominique; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Alloyeau, Damien

    2015-10-27

    Despite numerous applications, the cellular-clearance mechanism of multiwalled carbon nanotubes (MWCNTs) has not been clearly established yet. Previous in vitro studies showed the ability of oxidative enzymes to induce nanotube degradation. Interestingly, these enzymes have the common capacity to produce reactive oxygen species (ROS). Here, we combined material and life science approaches for revealing an intracellular way taken by macrophages to degrade carbon nanotubes. We report the in situ monitoring of ROS-mediated MWCNT degradation by liquid-cell transmission electron microscopy. Two degradation mechanisms induced by hydroxyl radicals were extracted from these unseen dynamic nanoscale investigations: a non-site-specific thinning process of the walls and a site-specific transversal drilling process on pre-existing defects of nanotubes. Remarkably, similar ROS-induced structural injuries were observed on MWCNTs after aging into macrophages from 1 to 7 days. Beside unraveling oxidative transformations of MWCNT structure, we elucidated an important, albeit not exclusive, biological pathway for MWCNT degradation in macrophages, involving NOX2 complex activation, superoxide production, and hydroxyl radical attack, which highlights the critical role of oxidative stress in cellular processing of MWCNTs.

  20. Photocatalytic Performances of Ag3PO4 Polypods for Degradation of Dye Pollutant under Natural Indoor Weak Light Irradiation.

    PubMed

    Teng, Fei; Liu, Zailun; Zhang, An; Li, Min

    2015-08-18

    It is still a big challenge for Ag3PO4 to be applied in practice mainly because of its low stability resistant to photo corrosion, although it is an efficient photocatalyst. Herein, we have mainly investigated its activity and stability under indoor weak light for the degradation of dye pollutants. It is amazing that under indoor weak light irradiation, rhodamine B (RhB) can be completely degraded by Ag3PO4 polypods after 36 h, but only 18% of RhB by N-doped TiO2 after 120 h. It is found that under indoor weak light irradiation, the degradation rate (0.08099 h(-1)) of RhB over Ag3PO4 polypods are 46 times higher than that (0.00173 h(-1)) of N-doped TiO2. The high activity of Ag3PO4 polypods are mainly attributed to the three-dimensional branched nanostructure and high-energy {110} facets exposed. After three cycles, surprisingly, Ag3PO4 polypods show a high stability under indoor weak light irradiation, whereas Ag3PO4 have been decomposed into Ag under visible light irradiation with an artificial Xe light source. This natural weak light irradiation strategy could be a promising method for the other unstable photocatalysts in the degradation of environmental pollutants.

  1. Bio-silica coated with amorphous manganese oxide as an efficient catalyst for rapid degradation of organic pollutant.

    PubMed

    Dang, T D; Banerjee, A N; Cheney, M A; Qian, S; Joo, S W; Min, B K

    2013-06-01

    A novel rapid green one-step method is developed for the preparation of bio-silica coated with amorphous MnO2 nanoparticles by treating bio-silica with an acidic permanganate solution. The method developed has the advantage of selectively coating the surface of either one or both sides of the porous silica structure with a thin catalytic active amorphous MnO2 layer in a controlled way. The uncoated and MnO2 coated bio-silica are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The catalytic activity of amorphous MnO2-coated bio-silica is examined by degrading organic dye at ambient condition. The as-synthesized samples show highly efficient and rapid degradation of Rhodamine B. The simplicity and cost-effectiveness of the materials and method can be very useful for highly efficient degradation of organic pollutants for environmental remediation. PMID:23434705

  2. A review of Central European methods for the biological estimation of water pollution levels*

    PubMed Central

    Bick, Hartmut

    1963-01-01

    With the increasing amount and variety of pollution of surface and other waters in the modern world, there is an increasing need for simple, rapid and reliable methods for assessing the degree of purity or contamination of water. Partly for historical reasons, chemical methods have been used more widely than biological ones, although the latter possess certain advantages not shared by the former. Much important work on the biological assessment of water pollution has been done in Central Europe, and the author of this paper reviews the more significant of the modern methods evolved there. Some are ecological, some physiological; and certain of them merit consideration as standardizable procedures, applicable over a wider range of waters than those for which they were developed. To this end it will be necessary to conduct carefully controlled field trials under varying climatic and other conditions. PMID:14058231

  3. Simultaneous degradation of a mixture of solvents in a biological trickling filter: Dichloromethane and methylmethacrylate

    SciTech Connect

    Okkerse, W.J.H.; Osinga-Kuipers, B.; Ottengraf, S.P.P. |

    1997-12-31

    An artificial waste gas containing dichloromethane (DCM), the target compound, and methylmethacrylate (MMA) was treated in a biological trickling filter (BTF). This type of waste gas is encountered in the plastic and coating industry. After an initial five months period at a constant DCM load of 80 g/(m{sup 3} {center_dot} h) MMA was added to the waste gas and its influence upon the DCM degradation was studied. Three different MMA loads were applied: 10, 20 and 30 g/(m{sup 3} {center_dot} h). The DCM elimination over the filter decreased at an increasing MMA load, but in all filters it reached a stable but lower level than before MMA addition. Clogging was observed at all three MMA concentrations applied. It has been speculated by what mechanistic effects the changes in the biofilm performance is brought about. Batch experiments with biofilm material taken from the BTF and short term BTF experiments were carried out to characterize the MMA degradation in the BTF`s. They showed that the first step in the MMA degradation is a rapid hydrolyzation into methanol and methacrylic acid (MCA). During normal operation the hydrolyzation intermediates are completely degraded in the BTF. A sudden increase in the MMA load, however, caused the accumulation of the intermediate methacrylic acid (MCA) in the liquid phase. Investigations of the MMA degradation of the liquid phase showed that the bulk of the MMA hydrolyzation occurred by biomass suspended in the liquid phase, instead of in the biofilm. This in contrast to the DCM degradation that was concentrated in the biofilm.

  4. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell.

    PubMed

    Du, Yue; Feng, Yujie; Qu, Youpeng; Liu, Jia; Ren, Nanqi; Liu, Hong

    2014-07-01

    The photoelectrochemical cell (PEC) is a promising tool for the degradation of organic pollutants and simultaneous electricity recovery, however, current cathode catalysts suffer from high costs and short service lives. Herein, we present a novel biocathode coupled PEC (Bio-PEC) integrating the advantages of photocatalytic anode and biocathode. Electrochemical anodized TiO2 nanotube arrays fabricated on Ti substrate were used as Bio-PEC anodes. Field-emission scanning electron microscope images revealed that the well-aligned TiO2 nanotubes had inner diameters of 60-100 nm and wall-thicknesses of about 5 nm. Linear sweep voltammetry presented the pronounced photocurrent output (325 μA/cm(2)) under xenon illumination, compared with that under dark conditions. Comparing studies were carried out between the Bio-PEC and PECs with Pt/C cathodes. The results showed that the performance of Pt/C cathodes was closely related with the structure and Pt/C loading amounts of cathodes, while the Bio-PEC achieved similar methyl orange (MO) decoloration rate (0.0120 min(-1)) and maximum power density (211.32 mW/m(2)) to the brush cathode PEC with 50 mg Pt/C loading (Brush-PEC, 50 mg). The fill factors of Bio-PEC and Brush-PEC (50 mg) were 39.87% and 43.06%, respectively. The charge transfer resistance of biocathode was 13.10 Ω, larger than the brush cathode with 50 mg Pt/C (10.68 Ω), but smaller than the brush cathode with 35 mg Pt/C (18.35 Ω), indicating the comparable catalytic activity with Pt/C catalyst. The biocathode was more dependent on the nutrient diffusion, such as nitrogen and inorganic carbon, thus resulting in relatively higher diffusion resistance compared to the brush cathode with 50 mg Pt/C loading that yielded similar MO removal and power output. Considering the performance and cost of PEC system, the biocathode was a promising alternative for the Pt/C catalyst. PMID:24863439

  5. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell.

    PubMed

    Du, Yue; Feng, Yujie; Qu, Youpeng; Liu, Jia; Ren, Nanqi; Liu, Hong

    2014-07-01

    The photoelectrochemical cell (PEC) is a promising tool for the degradation of organic pollutants and simultaneous electricity recovery, however, current cathode catalysts suffer from high costs and short service lives. Herein, we present a novel biocathode coupled PEC (Bio-PEC) integrating the advantages of photocatalytic anode and biocathode. Electrochemical anodized TiO2 nanotube arrays fabricated on Ti substrate were used as Bio-PEC anodes. Field-emission scanning electron microscope images revealed that the well-aligned TiO2 nanotubes had inner diameters of 60-100 nm and wall-thicknesses of about 5 nm. Linear sweep voltammetry presented the pronounced photocurrent output (325 μA/cm(2)) under xenon illumination, compared with that under dark conditions. Comparing studies were carried out between the Bio-PEC and PECs with Pt/C cathodes. The results showed that the performance of Pt/C cathodes was closely related with the structure and Pt/C loading amounts of cathodes, while the Bio-PEC achieved similar methyl orange (MO) decoloration rate (0.0120 min(-1)) and maximum power density (211.32 mW/m(2)) to the brush cathode PEC with 50 mg Pt/C loading (Brush-PEC, 50 mg). The fill factors of Bio-PEC and Brush-PEC (50 mg) were 39.87% and 43.06%, respectively. The charge transfer resistance of biocathode was 13.10 Ω, larger than the brush cathode with 50 mg Pt/C (10.68 Ω), but smaller than the brush cathode with 35 mg Pt/C (18.35 Ω), indicating the comparable catalytic activity with Pt/C catalyst. The biocathode was more dependent on the nutrient diffusion, such as nitrogen and inorganic carbon, thus resulting in relatively higher diffusion resistance compared to the brush cathode with 50 mg Pt/C loading that yielded similar MO removal and power output. Considering the performance and cost of PEC system, the biocathode was a promising alternative for the Pt/C catalyst.

  6. Degradation of 3-chloro-4-hydroxybenzoic acid in biological treated effluent by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Chu, Libing; Wang, Jianlong

    2016-02-01

    Gamma irradiation-induced degradation of a chlorinated aromatic compound, 3-chloro-4-hydroxybenzoic acid (CHBA) in biological treated effluent was studied and the results were compared with those obtained in deionized water. Gamma irradiation led to a complete decomposition of CHBA and a partial mineralization in the treated effluent. The removal of CHBA followed the pseudo first-order reaction kinetic model and the rate constant in the treated effluent was 1.7-3.5 times lower than that in deionized water. The CHBA degradation rate was higher at acidic condition than at neutral and alkaline conditions. The radiolytic yield, G-value for CHBA degradation was lower in the treated effluent, which decreased with increase in absorbed doses and increased with increase in initial concentrations of CHBA. The degradation mechanism of CHBA using gamma irradiation was proposed through the oxidation by -OH and reduction by eaq- and H- radicals. As exposed to gamma irradiation, dechlorination takes place rapidly and combines with the oxidation and cleavage of the aromatic ring, producing chloride ions, small carboxylic acids, acetaldehyde and other intermediates into the solution.

  7. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  8. Pollution

    ERIC Educational Resources Information Center

    Terry, Luther L.

    1970-01-01

    Our mechanized environment has produced a variety of man-made pollutants. Prevention of pollution and resulting health hazards is a primary challenge. The Federal Government undertakes a large responsibility in the field of environmental control. (CK)

  9. Biological denitrification in wastewater treatment. (Latest citations from pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning the biological removal of nitrogen-containing compounds from wastewater. Activated sludge processes for industrial and municipal wastewater treatment are discussed. The citations examine processes to identify the most effective microorganisms for biological degradation and the factors which can accelerate or inhibit decomposition. The results of pilot-plant studies, and the experiences derived from full-scale industrial installations are presented.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Optical properties of dissolved organic matter (DOM): Effects of biological and photolytic degradation

    USGS Publications Warehouse

    Hansen, Angela; Kraus, Tamara; Pellerin, Brian; Fleck, Jacob; Downing, Bryan D.; Bergamaschi, Brian

    2016-01-01

    Advances in spectroscopic techniques have led to an increase in the use of optical properties (absorbance and fluorescence) to assess dissolved organic matter (DOM) composition and infer sources and processing. However, little information is available to assess the impact of biological and photolytic processing on the optical properties of original DOM source materials. We measured changes in commonly used optical properties and indices in DOM leached from peat soil, plants, and algae following biological and photochemical degradation to determine whether they provide unique signatures that can be linked to original DOM source. Changes in individual optical parameters varied by source material and process, with biodegradation and photodegradation often causing values to shift in opposite directions. Although values for different source materials overlapped at the end of the 111-day lab experiment, multivariate statistical analyses showed that unique optical signatures could be linked to original DOM source material even after degradation, with 17 optical properties determined by discriminant analysis to be significant (p<0.05) in distinguishing between DOM source and environmental processing. These results demonstrate that inferring the source material from optical properties is possible when parameters are evaluated in combination even after extensive biological and photochemical alteration.

  11. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye.

    PubMed

    Paździor, Katarzyna; Klepacz-Smółka, Anna; Ledakowicz, Stanisław; Sójka-Ledakowicz, Jadwiga; Mrozińska, Zdzisława; Zyłła, Renata

    2009-04-01

    The anaerobic biological azo dyes reduction process was successfully applied to decolourization of the concentrates from the nanofiltration treatment of real textile effluents. The anaerobic phase was followed by aerobic oxidation aimed at the destruction of the aromatic amine released from azo dye. In the first experiment sequential batch reactor (SBR) combining both the anaerobic and aerobic phase in one unit was used. In the second one the anaerobic stage was separated from the aerobic one. The anaerobic phase fulfilled its aim (decolourization) in both systems (over 90%). In opposite, the aromatic amine was completely degraded in the aerobic reactor (two-sludge system), whereas the orthanilic acid was not degraded (during the aerobic phase) in SBR reactor. The COD reduction was also higher in the two-sludge system than in SBR.

  12. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability.

    PubMed

    García-Delgado, Carlos; Yunta, Felipe; Eymar, Enrique

    2015-12-30

    This study investigates the effect of three spent Agaricus bisporus substrate (SAS) application methods on bioremediation of soil multi-polluted with Pb and PAH from close to a shooting range with respect natural attenuation (SM). The remediation treatments involve (i) use of sterilized SAS to biostimulate the inherent soil microbiota (SSAS) and two bioaugmentation possibilities (ii) its use without previous treatment to inoculate A. bisporus and inherent microbiota (SAS) or (iii) SAS sterilization and further A. bisporus re-inoculation (Abisp). The efficiency of each bioremediation microcosm was evaluated by: fungal activity, heterotrophic and PAH-degrading bacterial population, PAH removal, Pb mobility and soil eco-toxicity. Biostimulation of the native soil microbiology (SSAS) achieved similar levels of PAH biodegradation as SM and poor soil detoxification. Bioaugmented microcosms produced higher PAH removal and eco-toxicity reduction via different routes. SAS increased the PAH-degrading bacterial population, but lowered fungal activity. Abisp was a good inoculum carrier for A. bisporus exhibiting high levels of ligninolytic activity, the total and PAH-degrading bacteria population increased with incubation time. The three SAS applications produced slight Pb mobilization (<0.3%). SAS sterilization and further A. bisporus re-inoculation (Abisp) proved the best application method to remove PAH, mainly BaP, and detoxify the multi-polluted soil.

  13. Degradation of Terrace Risers: Analysis of Hillslope Diffusion due to Physical, Biological and Climatic Processes

    NASA Astrophysics Data System (ADS)

    Clarke, B. A.; Burbank, D. A.

    2005-12-01

    River-cut terrace risers form at a known initial geometry. Their subsequent degradation, from down-slope transport of sediment, is an aggregate of hillslope processes, mainly attributed to particle-by-particle gravitational unraveling and biological disturbances. This study examines the ability of linear, non-linear, and geometric models to quantify terrace degradation through time and accurately depict the resulting geomorphic form. In addition to the physical processes, the effects of microclimate, due to slope aspect and inclination, strongly affect local degradation rates. By comparing terraces risers from the Ohau River in the McKenzie Basin, New Zealand, where there are no native burrowing mammals, to terraces from Grand Teton National Park, North America, we can compare factors affecting hillslope diffusion and perhaps isolate localized effects on degradation rates and terrace profile form due to burrowing mammals and microclimate. Preliminary analysis of terrace profiles in both regions reveals asymmetric slope and curvature profiles between the upper and lower portion of the terrace risers, as well as correlations between diffusion rates and terrace height. Analysis of profile slope and curvature suggests a non-linear relation between sediment flux and gradient, and imply a heterogeneous diffusion coefficient over the length of individual profiles, caused by varying intensities of dominant transport processes. Initial results suggest that increases in sediment transport rates due to burrowing mammals are minimal. Increases in sediment flux due to burrowing mammals are masked by more dominant gravitational unraveling processes and the effect of terrace height and microclimate. Additionally, the diffusion coefficient, which controls the efficiency of degradation, may vary over the length of the profile, thus creating distinct asymmetries in slope and curvature. Through the analysis of terraces of known age, the results of this study are used to back

  14. Biological Assessment to Support Ecological Recovery of a Degraded Headwater System

    NASA Astrophysics Data System (ADS)

    Longing, Scott D.; Haggard, Brian E.

    2010-09-01

    An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the

  15. An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO3 Nanoparticles.

    PubMed

    da Silva, Luís F; Lopes, Osmando F; de Mendonça, Vagner R; Carvalho, Kele T G; Longo, Elson; Ribeiro, Caue; Mastelaro, Valmor R

    2016-05-01

    Strontium titanate nanoparticles have attracted much attention due to their physical and chemical properties, especially as photocatalysts under ultraviolet irradiation. In this paper, we analyze the effect of heating rate during the crystallization process of SrTiO3 nanoparticles in the degradation of organic pollutants. The relationship between structural, morphological and photocatalytic properties of the SrTiO3 nanoparticles was investigated using different techniques. Transmission electron microscopy and N2 adsorption results show that particle size and surface properties are tuned by the heating rate of the SrTiO3 crystallization process. The SrTiO3 nanoparticles showed good photoactivity for the degradation of methylene blue, rhodamine B and methyl orange dyes, driven by a nonselective process. The SrTiO3 sample with the largest particle size exhibited higher photoactivity per unit area, independent of the molecule to be degraded. The results pointed out that the photodegradation of methylene blue dye catalyzed by SrTiO3 is caused by the action of valence band holes (direct pathway), and the indirect mechanism has a negligible effect, i.e. degradation by O2 (-•) and (•) OH radicals attack.

  16. {gamma} Irradiation-induced degradation of organochlorinated pollutants in fatty esters and in Cod

    SciTech Connect

    Lepine, F.L.; Brochu, F.; Milot, S.

    1995-02-01

    The {gamma} irradiation-induced degradation of 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT), 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (DDD), and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) dissolved in methyl myristate and methyl oleate was studied. DDT and DDE produced DDD and 2,2-bis(4-chlorophenyl)chloroethylene (DDMU) respectively, in agreement with a previous study performed with aliphatic solvents. The degradation of these two former compounds was larger in methyl myristate than in methyl oleate and addition products between methyl myristate and the organochlorines were found. While DDD, DDE, and many PCB congeners in a cod sample were not measurably degraded at 15 KGy, DDT underwent 30% degradation. 9 refs., 1 fig., 2 tabs.

  17. Adverse effects of air pollutants on wood products and a method for preventing resulting degradation

    SciTech Connect

    Chao, W.Y.

    1992-01-01

    A study of wood surface in hostile environments was undertaken to elucidate the degradation mechanism and develop a method to protect wood in outdoor applications. In this investigation, wood was exposed to SO[sub 2] and NO[sub 2] in the presence and absence of ultraviolet light for up to 4 weeks. The effect of the simulated acid rain on wood with and without an epoxy film was evaluated by intermittent spraying of the wood with either sulfuric, nitric acid or water and irradiated with and without the xenon light in a weatherometer for up to 8 weeks. The surface properties of degraded wood and protective epoxy films were analyzed. UV light changed the wood color. The samples lost weight and generated water-soluble degradation products after the photoirradiation. Sulfur dioxide lighted the wood color; nitrogen dioxide changed wood color to brown. Wood increased its weight during the exposure of SO[sub 2] and NO[sub 2], however, the presence of such gases triggered photo-induced degradation. Lignin was degraded and carbonyl groups were formed at irradiated wood. Sulfur and nitrogen dioxides reduced the intensity of carbonyl groups due to degradative hydrolysis. Water-soluble products were derived from polysaccharides and lignin, nitric acid, sulfuric acid and its dissociated ions. During the simulated acidic weathering, xenon light changed the wood color. The color change rate of earlywood was greater than latewood. The presence of acids and water facilitated the wood degradation, and eventually caused leaching. The primary photodegradation phenomena of lignin was confirmed by the FTIR and UV analyses of the irradiated samples. Transparent anhydride-cured epoxy films partially protected wood against the acidic degradation and photoirradiation. Epoxy film cracked, yellowed and had O-ring shapes cavities after the exposure. Salol-added film provided the best protection for wood, followed by a film without an UV stabilizer and Tinuvin 770-added film last.

  18. A novel method developed for estimating mineralization efficiencies and its application in PC and PEC degradations of large molecule biological compounds with unknown chemical formula.

    PubMed

    Li, Guiying; Liu, Xiaolu; An, Taicheng; Wong, Po Keung; Zhao, Huijun

    2016-05-15

    A new method to estimate the photocatalytic (PC) and photoelectrocatalytic (PEC) mineralization efficiencies of large molecule biological compounds with unknown chemical formula in water was firstly developed and experimentally validated. The method employed chemical oxidation under the standard dichromate chemical oxygen demand (COD) conditions to obtain QCOD values of model compounds with unknown chemical formula. The measured QCOD values were used as the reference to replace QCOD values of model compounds for calculation of the mineralization efficiencies (in %) by assuming the obtained QCOD values are the measure of the theoretical charge required for the complete mineralization of organic pollutants. Total organic carbon (TOC) was also employed as a reference to confirm the mineralization capacity of dichromate chemical oxidation. The developed method was applied to determine the degradation extent of model compounds, such as bovine serum albumin (BSA), lecithin and bacterial DNA, by PC and PEC. Incomplete PC mineralization of all large molecule biological compounds was observed, especially for BSA. But the introduction of electrochemical technique into a PC oxidation process could profoundly improve the mineralization efficiencies of model compounds. PEC mineralization efficiencies of bacterial DNA was the highest, while that of lecithin was the lowest. Overall, PEC degradation method was found to be much effective than PC method for all large molecule biological compounds investigated, with PEC/PC mineralization ratios followed an order of BSA > lecithin > DNA.

  19. Investigating and evaluating surface water pollution: The integrated chemical and biological approach

    SciTech Connect

    Michaelidou, S.C.

    1995-12-31

    Surface water can get contaminated from diffused and point sources of pollution. The implementation therefore of both biological and chemical methods is essential. The efficiency of the integrated approach in evaluating surface water pollution in Cyprus will be presented. The use of biofractionation to select the most toxic fraction increases cost-effectiveness. To get maximum information and certainty at minimum cost, a Tier Approach is applied for the evaluation of Industrial and Pesticide Pollution and to assess possible ecotoxicological effects. On the first Tier biofractionation is applied in combination with the measurement of aggregated parameters related to industrial pollution e.g. TOX, General FID/GC profile of base/neutral extracts, HPLC screening with multidetection systems (UV and Fluorescence detector) to identify the presence of major pollutants groups of intermediate to high polarity, i.e. acids, aldehydes/ketones, phenols, PAHs, phthalates etc., and purge and trap for volatiles (VOCs). Under the same Tier most of the metals are screened by ICP and pesticides by multi-residues methods. Under the 1st Tier the basic 99% Microtox test is carried out directly on water samples or fractions and the solid phase Microtox test on sediments. Mutagenicity testing (Mutatox) is also applied. The 2nd Tier (more specific oriented) is based on results from Tier 1 and comprises an extensive testing of group parameters identified at Tier 1 and a confirmatory stage using GC/MS or HPLC Photodiode Array detection. Water concentrates on XAD are tested by Microtox to evaluate pT values (potential Toxicity value). The overall assessment is done based not only on numerical criteria (limits) which are not always sufficient, but also on narrative criteria according to the international practice. This work indicates the capabilities of integrating approaches in evaluating environmental problems.

  20. Integrated assessment of oil pollution using biological monitoring and chemical fingerprinting.

    PubMed

    Lewis, Ceri; Guitart, Carlos; Pook, Chris; Scarlett, Alan; Readman, James W; Galloway, Tamara S

    2010-06-01

    A full assessment of the impact of oil and chemical spills at sea requires the identification of both the polluting chemicals and the biological effects they cause. Here, a combination of chemical fingerprinting of surface oils, tissue residue analysis, and biological effects measures was used to explore the relationship between spilled oil and biological impact following the grounding of the MSC Napoli container ship in Lyme Bay, England in January 2007. Initially, oil contamination remained restricted to a surface slick in the vicinity of the wreck, and there was no chemical evidence to link biological impairment of animals (the common limpet, Patella vulgata) on the shore adjacent to the oil spill. Secondary oil contamination associated with salvage activities in July 2007 was also assessed. Chemical analyses of aliphatic hydrocarbons and terpanes in shell swabs taken from limpet shells provided an unequivocal match with the fuel oil carried by the ship. Corresponding chemical analysis of limpet tissues revealed increased concentrations of polycyclic aromatic hydrocarbons (PAHs) dominated by phenanthrene and C1 to C3 phenanthrenes with smaller contributions from heavier molecular weight PAHs. Concurrent ecotoxicological tests indicated impairment of cellular viability (p < 0.001), reduced immune function (p < 0.001), and damage to DNA (Comet assay, p < 0.001) in these animals, whereas antioxidant defenses were elevated relative to un-oiled animals. These results illustrate the value of combining biological monitoring with chemical fingerprinting for the rapid identification of spilled oils and their sublethal impacts on biota in situ.

  1. Photocatalytic degradation of water organic pollutants. Kinetic modeling and energy efficiency

    SciTech Connect

    Serrano, B.; Lasa, H. de

    1997-11-01

    Photocatalytic conversion of a model pollutant (methylene blue) is studied in a novel Photo-CREC reactor unit. The experiments developed allow one to investigate the suitability of an heterogeneous reaction model which accounts for the concentrations of the model pollutant both in the bulk and on the mesh--TiO{sub 2}. In additional, a photochemical-thermodynamic efficiency factor (PTEF) is further examined, with the help of the enthalpy of {sup {sm_bullet}}OH formation from water and oxygen and based on the analysis in the light energy absorbed by the mesh. The resulting PTEF is a dimensionless parameter and has to be calculated at high enough model pollutant concentrations, that is, at conditions where zero-order reactions prevail. The PTEF values found in the Photo-CREC unit with the incorporated recent technical improvements are in the 0.0182 level, and this represents quantum yields of 6.31% of the so-called ideal efficiency.

  2. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  3. Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil.

    PubMed

    Zhao, Jian-Kang; Li, Xiao-Ming; Ai, Guo-Min; Deng, Ye; Liu, Shuang-Jiang; Jiang, Cheng-Ying

    2016-11-15

    Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the primary process of removing PAHs from environments. The metabolic pathway of PAHs in pure cultures has been intensively studied, but cooperative metabolisms at community-level remained to be explored. In this study, we determined the dynamic composition of a microbial community and its metabolic intermediates during fluoranthene degradation using high-throughput metagenomics and gas chromatography-mass spectrometry (GC-MS), respectively. Subsequently, a cooperative metabolic network for fluoranthene degradation was constructed. The network shows that Mycobacterium contributed the majority of ring-hydroxylating and -cleavage dioxygenases, while Diaphorobacter contributed most of the dehydrogenases. Hyphomicrobium, Agrobacterium, and Sphingopyxis contributed to genes encoding enzymes involved in downstream reactions of fluoranthene degradation. The contributions of various microbial groups were calculated with the PICRUSt program. The contributions of Hyphomicrobium to alcohol dehydrogenases were 62.4% in stage 1 (i.e., when fluoranthene was rapidly removed) and 76.8% in stage 3 (i.e., when fluoranthene was not detectable), respectively; the contribution of Pseudomonas were 6.6% in stage 1 and decreased to 1.2% in subsequent stages. To the best of the author's knowledge, this report describes the first cooperative metabolic network to predict the contributions of various microbial groups during PAH-degradation at community-level. PMID:27415596

  4. Evaluating the biological activity of oil-polluted soils using a complex index

    NASA Astrophysics Data System (ADS)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  5. [Preparation of mixed crystal TiO2 nanoparticles and photocatalytic degradation of toxic organic pollutants].

    PubMed

    Deng, An-Ping; Yang, Jing; Wang, Shu-Lian; Huang, Ying-Ping; Yang, Yong

    2010-12-01

    Mixed crystal TiO2 nanoparticles were prepared from a precursor of TiO2 by hydrothermal-steam method. The effects of the reaction temperature and the reaction time on the photocatalytic activity of the brookite TiO2 were studied. The TiO2 samples were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Photocatalytic degradation of organic dye sulforhodamine B (SRB) under UV light (lambda < or = 387 nm) was used as probe reaction to evaluate the properties of the TiO2. The result showed that TiO2 prepared under 150 degrees C for 24 h had high photocatalytic activity. The size of the mixed crystal TiO2 was 14.20 nm. Brookite and anatase phase of the mixed crystal TiO2 were 63.6% and 36.4%, respectively. The dye discoloration and degradation rates were tracked, and the intermediate products hydrogen peroxide (H2O2) and hydrogen radicals (*OH) were determined during the photocatalytic experiments. The results indicated that photocatalytic degradation of brookite TiO2 mainly referred to the *OH radical mechanism. After 5 h, the mineralization and oxidation rates of SRB and 2,4-DCP mineralization were 89% and 78%, respectively. The catalyst showed good stability with no significant changes in catalytic properties after 5 cycles of SRB photocatalytic degradation experiments.

  6. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil

    PubMed Central

    Ren, Gaidi; Ren, Wenjie; Teng, Ying; Li, Zhengao

    2015-01-01

    Understanding the potential for Polycyclic aromatic hydrocarbons (PAH) degradation by indigenous microbiota and the influence of PAHs on native microbial communities is of great importance for bioremediation and ecological evaluation. Various studies have focused on the bacterial communities in the environment where obvious PAH degradation was observed, little is known about the microbiota in the soil where poor degradation was observed. Soil microcosms were constructed with a red soil by supplementation with a high-molecular-weight PAH (pyrene) at three dosages (5, 30, and 70 mg ⋅ kg-1). Real-time PCR was used to evaluate the changes in bacterial abundance and pyrene dioxygenase gene (nidA) quantity. Illumina sequencing was used to investigate changes in diversity, structure, and composition of bacterial communities. After 42 days of incubation, no evident degradation was observed. The poor degradation ability was associated with the stability or significant decrease of abundance of the nidA gene. Although the abundance of the bacterial 16S rRNA gene was not affected by pyrene, the bacterial richness and diversity were decreased with increasing dosage of pyrene and the community structure was changed. Phylotypes affected by pyrene were comprehensively surveyed: (1) at the high taxonomic level, seven of the abundant phyla/classes (relative abundance >1.0%) including Chloroflexi, AD3, WPS-2, GAL5, Alphaproteobacteria, Actinobacteria, and Deltaproteobacteria and one rare phylum Crenarchaeota were significantly decreased by at least one dosage of pyrene, while three phyla/classes (Acidobacteria, Betaproteobacteria, and Gammaproteobacteria) were significantly increased; and (2) at the lower taxonomic level, the relative abundances of twelve orders were significantly depressed, whereas those of nine orders were significantly increased. This work enhanced our understanding of the biodegradation potential of pyrene in red soil and the effect of pyrene on soil ecosystems

  7. The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions.

    PubMed

    Novotný, Ceněk; Trošt, Nina; Šlušla, Martin; Svobodová, Kateřina; Mikesková, Hana; Válková, Hana; Malachová, Kateřina; Pavko, Aleksander

    2012-06-01

    Biodegradation potential of Dichomitus squalens in biofilm cultures and rotating biological contactor (RBC) was investigated. The fungus formed thick biofilms on inert and lignocellulosic supports and exhibited stable activities of laccase and manganese peroxidase to reach 40-62 and 25-32% decolorization of anthraquinone Remazol Brilliant Blue R and heterocyclic phthalocyanine dyes, respectively. The decolorization ceased when glucose concentration dropped to 1 mmol l(-1). In RBC reactor, respective decolorizations of Remazol Brilliant Blue R and heterocyclic Methylene Blue and Azure B dyes (50 mg l(-1)) attained 99%, 93%, and 59% within 7, 40 and 200 h. The fungus exhibited tolerance to coliform and non-coliform bacteria on rich organic media, the inhibition occurred only on media containing tryptone and NaCl. The degradation efficiency in RBC reactor, capability to decolorize a wide range of dye structures and tolerance to bacterial stress make D. squalens an organism applicable to remediation of textile wastewaters.

  8. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    SciTech Connect

    Remec, Igor; Rosseel, Thomas M; Field, Kevin G; Pape, Yann Le

    2016-01-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete with a particular focus on radiation-induced effects. Based on the projected neutron fluence (E > 0.1 MeV) values in the concrete biological shields of the US PWR fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to assure reliable risk assessment for NPPs extended operation.

  9. Biological degradation of catechol in wastewater using the sequencing continuous-inflow reactor (SCR).

    PubMed

    Aghapour, Ali Ahmad; Moussavi, Gholamreza; Yaghmaeian, Kamyar

    2013-05-24

    Catechol is used in many industries. It can be removed from wastewater by various methods but biological processes are the most superior and commonly used technology. The SCR is a modified form of SBR used to degrade catechol. The objective of this study was to investigate the performance of SCR for biodegradation and mineralization of catechol under various inlet concentrations (630-1500 mg/L) and hydraulic retention times (HRT) (18-9 h). This study used a bench scale SCR setup to test catechol degradation. The acclimation time of biomass for catechol at degradation at 630 mg/L was 41 d. The SCR operating cycle time was 6 h and the consecutive times taken for aerating, settling and decanting were 4, 1.5 and 0.5 h, respectively. This study investigated the effects of inlet catechol concentration (630-1560 mg/L) and HRT (18-9 h). The average catechol removal efficiencies in steady-state conditions of 630, 930, 12954 and 1559 mg/L of catechol were 98.5%, 98.5%, 98.2% and 96.9% in terms catechol and 97.8%, 97.7%, 96.4% and 94.3% for COD, respectively. SCR with acclimated biomasses could effectively remove the catechol and the corresponding COD from wastewater with concentrations of up to 1560, at the loading rate of 5.38 kg COD/m3.d and at a HRT of up to 13 h. The HRT was determined as an important variable affecting catechol removal from wastewater. Reducing the HRT to below 13 h led to reduced removal of catechol and COD.

  10. An enzyme-based DNA preparation method for application to forensic biological samples and degraded stains.

    PubMed

    Lounsbury, Jenny A; Coult, Natalie; Miranian, Daniel C; Cronk, Stephen M; Haverstick, Doris M; Kinnon, Paul; Saul, David J; Landers, James P

    2012-09-01

    Extraction of DNA from forensic samples typically uses either an organic extraction protocol or solid phase extraction (SPE) and these methods generally involve numerous sample transfer, wash and centrifugation steps. Although SPE has been successfully adapted to the microdevice, it can be problematic because of lengthy load times and uneven packing of the solid phase. A closed-tube enzyme-based DNA preparation method has recently been developed which uses a neutral proteinase to lyse cells and degrade proteins and nucleases [14]. Following a 20 min incubation of the buccal or whole blood sample with this proteinase, DNA is polymerase chain reaction (PCR)-ready. This paper describes the optimization and quantitation of DNA yield using this method, and application to forensic biological samples, including UV- and heat-degraded whole blood samples on cotton or blue denim substrates. Results demonstrate that DNA yield can be increased from 1.42 (±0.21)ng/μL to 7.78 (±1.40)ng/μL by increasing the quantity of enzyme per reaction by 3-fold. Additionally, there is a linear relationship between the amount of starting cellular material added and the concentration of DNA in the solution, thereby allowing DNA yield estimations to be made. In addition, short tandem repeat (STR) profile results obtained using DNA prepared with the enzyme method were comparable to those obtained with a conventional SPE method, resulting in full STR profiles (16 of 16 loci) from liquid samples (buccal swab eluate and whole blood), dried buccal swabs and bloodstains and partial profiles from UV or heat-degraded bloodstains on cotton or blue denim substrates. Finally, the DNA preparation method is shown to be adaptable to glass or poly(methyl methacrylate) (PMMA) microdevices with little impact on STR peak height but providing a 20-fold reduction in incubation time (as little as 60 s), leading to a ≥1 h reduction in DNA preparation time.

  11. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor.

    PubMed

    Jeswani, Hansa; Mukherji, Suparna

    2012-05-01

    The degradation of phenolics, heterocyclics and polynuclear aromatic hydrocarbons (PAHs) in a synthetic biomass gasifier wastewater with average COD of 1388 mg/L was studied in a three stage rotating biological contactor (RBC) using the pyrene degrader, Exiguobacterium aurantiacum and activated sludge consortia (1:3 v/v). As the organic loading rate (OLR) was varied from 3.3 to 14 g/m(2)/d, the COD removal ranged from 63.3% to 92.6%. Complete removal of all the constituents was observed at the lowest OLR of 3.3g/m(2)/d. At 24h hydraulic retention time (HRT) and OLR of 6.6g/m(2)/d complete removal of pyridine, quinoline and benzene and 85-96% removal of phenol, naphthalene, phenanthrene, fluoranthene and pyrene was observed. E. aurantiacum was found to be the dominant bacteria in the biofilm. Clark's model provided good fits to data for all the three stages of the RBC.

  12. Microwave-assisted chemical oxidation of biological waste sludge: simultaneous micropollutant degradation and sludge solubilization.

    PubMed

    Bilgin Oncu, Nalan; Akmehmet Balcioglu, Isil

    2013-10-01

    Microwave-assisted hydrogen peroxide (MW/H2O2) treatment and microwave-assisted persulfate (MW/S2O8(2-)) treatment of biological waste sludge were compared in terms of simultaneous antibiotic degradation and sludge solubilization. A 2(3) full factorial design was utilized to evaluate the influences of temperature, oxidant dose, and holding time on the efficiency of these processes. Although both MW/H2O2 and MW/S2O8(2-) yielded ≥97% antibiotic degradation with 1.2g H2O2 and 0.87 g S2O8(2-) per gram total solids, respectively, at 160 °C in 15 min, MW/S2O8(2-) was found to be more promising for efficient sludge treatment at a lower temperature and a lower oxidant dosage, as it allows more effective activation of persulfate to produce the SO4(-) radical. Relative to MW/H2O2, MW/S2O8(2-) gives 48% more overall metal solubilization, twofold higher improvement in dewaterability, and the oxidation of solubilized ammonia to nitrate in a shorter treatment period. PMID:23928124

  13. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms.

    PubMed

    Taha, Mohamed; Shahsavari, Esmaeil; Al-Hothaly, Khalid; Mouradov, Aidyn; Smith, Andrew T; Ball, Andrew S; Adetutu, Eric M

    2015-04-01

    Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bacterial and 18 fungal isolates were quantitatively screened individually for the saccharification of four different ball-milled straw substrates: wheat, rice, sugarcane, and pea straw. Rice and sugarcane straws which had similar Fourier transform-infrared spectroscopy profiles were more degradable, and resulted in more hydrolytic enzyme production than wheat and pea straws. Crude enzyme produced on native straws performed better than those on artificial substrates (such as cellulose and xylan). Four fungal and five bacterial isolates were selected (based on their high strawase activities) for constructing dual and triple microbial combinations to investigate microbial synergistic effects on saccharification. Combinations such as FUNG16-FUNG17 (Neosartorya fischeri-Myceliophthora thermophila) and RMIT10-RMIT11 (Aeromonas hydrophila-Pseudomonas poae) enhanced saccharification (3- and 6.6-folds, respectively) compared with their monocultures indicating the beneficial effects of synergism between those isolates. Dual isolate combinations were more efficient at straw saccharification than triple combinations in both bacterial and fungal assays. Overall, co-culturing can result in significant increases in saccharification which may offer significant commercial potential for the use of microbial consortia. PMID:25724976

  14. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization.

    PubMed

    Zhang, Yongming; Sun, Xia; Chen, Lujun; Rittmann, Bruce E

    2012-02-01

    An integrated photocatalytic-biological reactor (IPBR) was used for accelerated degradation and mineralization of 2,4,6-trichlorophenol (TCP) through simultaneous, intimate coupling of photocatalysis and biodegradation in one reactor. Intimate coupling was realized by circulating the IPBR's liquid contents between a TiO(2) film on mat glass illuminated by UV light and honeycomb ceramics as biofilm carriers. Three protocols-photocatalysis alone (P), biodegradation alone (B), and integrated photocatalysis and biodegradation (photobiodegradation, P&B)-were used for degradation of different initial TCP concentrations. Intimately coupled P&B also was compared with sequential P and B. TCP removal by intimately coupled P&B was faster than that by P and B alone or sequentially coupled P and B. Because photocatalysis relieved TCP inhibition to biodegradation by decreasing its concentration, TCP biodegradation could become more important over the full batch P&B experiments. When phenol, an easy biodegradable compounds, was added to TCP in order to promote TCP mineralization by means of secondary utilization, P&B was superior to P and B in terms of mineralization of TCP, giving 95% removal of chemical oxygen demand. Cl(-) was only partially released during P experiments (24%), and this corresponded to its poor mineralization in P experiments (32%). Thus, intimately coupled P&B in the IPBR made it possible obtain the best features of each: rapid photocatalytic transformation in parallel with mineralization of photocatalytic products.

  15. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms.

    PubMed

    Taha, Mohamed; Shahsavari, Esmaeil; Al-Hothaly, Khalid; Mouradov, Aidyn; Smith, Andrew T; Ball, Andrew S; Adetutu, Eric M

    2015-04-01

    Lignocellulosic waste (LCW) is an abundant, low-cost, and inedible substrate for the induction of lignocellulolytic enzymes for cellulosic bioethanol production using an efficient, environmentally friendly, and economical biological approach. In this study, 30 different lignocellulose-degrading bacterial and 18 fungal isolates were quantitatively screened individually for the saccharification of four different ball-milled straw substrates: wheat, rice, sugarcane, and pea straw. Rice and sugarcane straws which had similar Fourier transform-infrared spectroscopy profiles were more degradable, and resulted in more hydrolytic enzyme production than wheat and pea straws. Crude enzyme produced on native straws performed better than those on artificial substrates (such as cellulose and xylan). Four fungal and five bacterial isolates were selected (based on their high strawase activities) for constructing dual and triple microbial combinations to investigate microbial synergistic effects on saccharification. Combinations such as FUNG16-FUNG17 (Neosartorya fischeri-Myceliophthora thermophila) and RMIT10-RMIT11 (Aeromonas hydrophila-Pseudomonas poae) enhanced saccharification (3- and 6.6-folds, respectively) compared with their monocultures indicating the beneficial effects of synergism between those isolates. Dual isolate combinations were more efficient at straw saccharification than triple combinations in both bacterial and fungal assays. Overall, co-culturing can result in significant increases in saccharification which may offer significant commercial potential for the use of microbial consortia.

  16. INFLUENCE OF ENVIRONMENTAL CHANGES ON DEGRADATION OF CHIRAL POLLUTANTS IN SOILS

    EPA Science Inventory

    Numerous anthropogenic chemicals of environmental concern- including some phenoxy acid herbicides, organophosphorus insecticides, polychlorinated biphenyls, phthalates, freon substi- tutes and some DDT derivatives- are chiral. Their potential biological effects, such as toxicity,...

  17. Coal mining activities change plant community structure due to air pollution and soil degradation.

    PubMed

    Pandey, Bhanu; Agrawal, Madhoolika; Singh, Siddharth

    2014-10-01

    The aim of this study was to investigate the effects of coal mining activities on the community structures of woody and herbaceous plants. The response of individual plants of community to defilement caused by coal mining was also assessed. Air monitoring, soil physico-chemical and phytosociological analyses were carried around Jharia coalfield (JCF) and Raniganj coalfield. The importance value index of sensitive species minified and those of tolerant species enhanced with increasing pollution load and altered soil quality around coal mining areas. Although the species richness of woody and herbaceous plants decreased with higher pollution load, a large number of species acclimatized to the stress caused by the coal mining activities. Woody plant community at JCF was more affected by coal mining than herbaceous community. Canonical correspondence analysis revealed that structure of herbaceous community was mainly driven by soil total organic carbon, soil nitrogen, whereas woody layer community was influenced by sulphur dioxide in ambient air, soil sulphate and soil phosphorus. The changes in species diversity observed at mining areas indicated an increase in the proportion of resistant herbs and grasses showing a tendency towards a definite selection strategy of ecosystem in response to air pollution and altered soil characteristics.

  18. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration. PMID:27184147

  19. Influence of supporting electrolyte in electricity generation and degradation of organic pollutants in photocatalytic fuel cell.

    PubMed

    Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Voon, Chun-Hong; Yusuf, Sara Yasina; Yusoff, Nik Athirah; Lee, Sin-Li

    2016-08-01

    This study investigated the effect of different supporting electrolyte (Na2SO4, MgSO4, NaCl) in degradation of Reactive Black 5 (RB5) and generation of electricity. Zinc oxide (ZnO) was immobilized onto carbon felt acted as photoanode, while Pt-coated carbon paper as photocathode was placed in a single chamber photocatalytic fuel cell, which then irradiated by UV lamp for 24 h. The degradation and mineralization of RB5 with 0.1 M NaCl rapidly decreased after 24-h irradiation time, followed by MgSO4, Na2SO4 and without electrolyte. The voltage outputs for Na2SO4, MgSO4 and NaCl were 908, 628 and 523 mV, respectively, after 24-h irradiation time; meanwhile, their short-circuit current density, J SC, was 1.3, 1.2 and 1.05 mA cm(-2), respectively. The power densities for Na2SO4, MgSO4 and NaCl were 0.335, 0.256 and 0.245 mW cm(-2), respectively. On the other hand, for without supporting electrolyte, the voltage output and short-circuit current density was 271.6 mV and 0.055 mA cm(-2), respectively. The supporting electrolyte NaCl showed greater performance in degradation of RB5 and generation of electricity due to the formation of superoxide radical anions which enhance the degradation of dye. The mineralization of RB5 with different supporting electrolyte was measured through spectrum analysis and reduction in COD concentration.

  20. Analysis of organic pollutant degradation in pulsed plasma by coherent anti-Stokes Raman spectroscopy

    SciTech Connect

    Bratescu, Maria Antoneta; Hieda, Junko; Umemura, Tomonari; Saito, Nagahiro; Takai, Osamu

    2011-05-15

    The degradation of p-benzoquinone (p-BQ) in water was investigated by the coherent anti-Stokes Raman spectroscopy (CARS) method, in which the change of the anti-Stokes signal intensity corresponding to the vibrational transitions of the molecule is monitored during and after solution plasma processing (SPP). In the beginning of SPP treatment, the CARS signal intensity of the ring vibrational molecular transitions at 1233 and 1660 cm{sup -1} increases under the influence of the electric field of the plasma, depending on the delay time between the plasma pulse and the laser firing pulse. At the same time, the plasma contributes to the degradation of p-BQ molecules by generating hydrogen and hydroxyl radicals, which decompose p-BQ into different carboxylic acids. After SPP, the CARS signal intensity of the vibrational bands of p-BQ ceased and the degradation of p-BQ was confirmed by UV-visible absorption spectroscopy and liquid chromatography analysis.

  1. Design of a Metal Oxide-Organic Framework (MoOF) Foam Microreactor: Solar-Induced Direct Pollutant Degradation and Hydrogen Generation.

    PubMed

    Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei

    2015-12-16

    A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly.

  2. Fabrication of Ag/TiO2 nanotube array with enhanced photo-catalytic degradation of aqueous organic pollutant

    NASA Astrophysics Data System (ADS)

    Ma, Jie; Yang, Mingxuan; Sun, Yiran; Li, Chenlu; Li, Qiang; Gao, Fangfang; Yu, Fei; Chen, Junhong

    2014-04-01

    In this paper, the fabrication of Ag/TiO2 nanotube arrays and their photo-catalytic activity have been studied. The SEM, TEM and XRD were performed to characterize the morphology and crystalline phase of the TiO2 nanotube array and Ag/TiO2 nanotube array. Ag nanoparticles with different loadings, which are aimed to suppress the electron-hole recombination so as to enhance the photo-catalytic oxidation efficiency, were systematically coated onto TiO2 nanotubes. The photo-catalytic activity of these nano-materials was evaluated by the degradation of two different pollutants: methyl orange and glyphosate. The effects of various parameters, such as the amount of the photo-catalyst, the illumination time, and pH value on the photo-catalytic oxidation activity, were studied.

  3. Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations--a critical review.

    PubMed

    Mouele, Emile S Massima; Tijani, Jimoh O; Fatoba, Ojo O; Petrik, Leslie F

    2015-12-01

    The growing global drinking water crisis requires the development of novel advanced, sustainable, and cost-effective water treatment technologies to supplement the existing conventional methods. One such technology is advanced oxidation based on dielectric barrier discharge (DBD). DBD such as single and double planar and single and double cylindrical dielectric barrier configurations have been utilized for efficient degradation of recalcitrant organic pollutants. The overall performance of the different DBD system varies and depends on several factors. Therefore, this review was compiled to give an overview of different DBD configurations vis-a-viz their applications and the in situ mechanism of generation of free reactive species for water and wastewater treatment. Our survey of the literature indicated that application of double cylindrical dielectric barrier configuration represents an ideal and viable route for achieving greater water and wastewater purification efficiency.

  4. Fundamental understanding of the thermal degradation mechanisms of waste tires and their air pollutant generation in a N2 atmosphere.

    PubMed

    Kwon, Eilhann; Castaldi, Marco J

    2009-08-01

    The thermal decomposition of waste tires has been characterized via thermo-gravimetric analysis (TGA) tests, and significant mass loss has been observed between 300 and 500 degrees C. A series of gas chromatography-mass spectrometer (GC-MS) measurements, in which the instrument was coupled to a TGA unit, have been carried out to investigate the thermal degradation mechanisms as well as the air pollutant generation including volatile organic carbons (VOCs) and polycyclic aromatic hydrocarbons (PAHs) in a nitrogen atmosphere. In order to understand fundamental information on the thermal degradation mechanisms of waste tires, the main constituents of tires, poly-isoprene rubber (IR) and styrene butadiene rubber (SBR), have been studied under the same conditions. All of the experimental work indicated that the bond scission on each monomer of the main constituents of tires was followed by hydrogenation and gas phase reactions. This helped to clarify the independent pathways and species attributable to IR and SBR during the pyrolysis process. To extend that understanding to a more practical level, a flow-through reactor was used to test waste tire, SBR and IR samples in the temperature range of 500-800 degrees C at a heating rate of approximately 200 degrees C. Lastly, the formation of VOCs (approximately 1-50 PPMV/10 mg of sample) and PAHs (approximately 0.2-7 PPMV/10 mg of sample) was observed at relatively low temperatures compared to conventional fuels, and its quantified concentration was significantly high due to the chemical structure of SBR and IR. The measurement of chemicals released during pyrolysis suggests not only a methodology for reducing the air pollutants but also the feasibility of petrochemical recovery during thermal treatment.

  5. Plant volatiles in a polluted atmosphere: stress response and signal degradation

    PubMed Central

    Blande, James D.; Holopainen, Jarmo K.; Niinemets, Ülo

    2014-01-01

    Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore-feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and function in the process of plant defence. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses, which can have complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant’s volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. They may also react with volatiles in the atmosphere; such is the case for ozone, nitrogen oxides, hydroxyl radicals and other oxidizing atmospheric species. These reactions result in breakdown products, which may themselves be perceived by community members as informative signals. In this review we demonstrate the complex interplay between stress, emitted signals and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals. PMID:24738697

  6. Photocatalytic cementitious materials: influence of the microstructure of cement paste on photocatalytic pollution degradation.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-12-01

    Incorporation of nanophotocatalysts into cementitious materials is an important development in the field of photocatalytic pollution mitigation. In this study, the photocatalytic nitrogen oxides (NO(x)) conversion by titanium dioxide (TiO(2)) blended cement pastes was used as a standard process to evaluate the internal factors that may influence the depollution performance. The chemical composition and microstructure of the TiO(2) modified cement pastes were characterized and analyzed. The active photocatalytic sites related to the surface area of TiO(2) are the key factor in determining the photocatalytic activity. Ordinary Portland cement pastes showed lower photocatalytic activity than white cement pastes probably due to the influence of minor metallic components. X-ray diffraction and thermal gravity analysis demonstrated that TiO(2) was chemically stable in the hydrated cement matrix. The NO(x) removal ability decreased with the increase of curing age. This could be attributed to the cement hydration products which filled up capillary pores forming diffusion barriers to both reactants and photons. It was also proved that surface carbonation could reduce the photocatalytic pollution removal efficiency after the hydration of cement.

  7. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. PMID:24779765

  8. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal.

  9. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.

    PubMed

    Yang, Yawei; Que, Wenxiu; Zhang, Xinyu; Xing, Yonglei; Yin, Xingtian; Du, Yaping

    2016-11-01

    Vertically-aligned ZnO nanorod arrays on a fluorine-doped tin oxide glass substrate were homogeneously coated with visible light active CuInS2 quantum dots by using a controllable electrophoretic deposition strategy. Compared with the pure ZnO nanorod arrays, the formation of high-quality ZnO/CuInS2 heterojunction with well-matched band energy alignment expanded the light absorption from ultraviolet to visible region and facilitated efficient charge separation and transportation, thus yielding remarkable enhanced photoelectrochemical performance and photocatalytic activities for methyl orange and 4-chlorophenol degradation. The ZnO/CuInS2 film with the deposition duration of 80min showed the highest degradation rate and photocurrent density (0.95mA/cm(2)), which was almost 6.33 times higher than that of the pure ZnO nanorod arrays film. The CuInS2 QDs sensitized ZnO nanorod arrays film was proved to be a superior structure for photoelectrochemical and photocatalytic applications due to the optimized CuInS2 loading and well-maintained one-dimensional nanostructure. PMID:27322900

  10. Primary and complex stressors in polluted mediterranean rivers: Pesticide effects on biological communities

    NASA Astrophysics Data System (ADS)

    Ricart, Marta; Guasch, Helena; Barceló, Damià; Brix, Rikke; Conceição, Maria H.; Geiszinger, Anita; José López de Alda, Maria; López-Doval, Julio C.; Muñoz, Isabel; Postigo, Cristina; Romaní, Anna M.; Villagrasa, Marta; Sabater, Sergi

    2010-03-01

    SummaryWe examined the presence of pesticides in the Llobregat river basin (Barcelona, Spain) and their effects on benthic biological communities (invertebrates and diatoms). The Llobregat river is one of Barcelona's major drinking water resources. It has been highly polluted by industrial, agricultural, and urban wastewaters, and—as a typical Mediterranean river—is regularly subjected to periodic floods and droughts. Water scarcity periods result in reduced water flow and dilution capacity, increasing the potential environmental risk of pollutants. Seven sites were selected, where we analysed the occurrence of 22 pesticides (belonging to the classes of triazines, organophosphates, phenylureas, anilides, chloroacetanilides, acidic herbicides and thiocarbamates) in the water and sediment, and the benthic community structure. Biofilm samples were taken to measure several metrics related to both the algal and bacterial components of fluvial biofilms. Multivariate analyses revealed a potential relationship between triazine-type herbicides and the distribution of the diatom community, although no evidence of disruption in the invertebrate community distribution was found. Biofilm metrics were used as response variables rather than abundances of individual species to identify possible cause-effect relationships between pesticide pollution and biotic responses. Certain effects of organophosphates and phenylureas in both structural and functional aspects of the biofilm community were suggested, but the sensitivity of each metric to particular stressors must be assessed before we can confidently assign causality. Complemented with laboratory experiments, which are needed to confirm causality, this approach could be successfully incorporated into environmental risk assessments to better summarise biotic integrity and improve the ecological management.

  11. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea.

    PubMed

    Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J

    2015-05-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.

  12. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea.

    PubMed

    Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J

    2015-05-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean. PMID:25251384

  13. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea

    PubMed Central

    Chronopoulou, Panagiota-Myrsini; Sanni, Gbemisola O; Silas-Olu, Daniel I; van der Meer, Jan Roelof; Timmis, Kenneth N; Brussaard, Corina P D; McGenity, Terry J

    2015-01-01

    The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean. PMID:25251384

  14. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    SciTech Connect

    Edlund, A.; Jansson, J.

    2008-05-01

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and this reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.

  15. Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review.

    PubMed

    Yu, Xinmin; Zhou, Minghua; Hu, Youshuang; Groenen Serrano, K; Yu, Fangke

    2014-01-01

    Boron-doped diamond (BDD) is playing an important role in environmental electrochemistry and has been successfully applied to the degradation of various bio-refractory organic pollutants. However, the review concerning recent progress in this research area is still very limited. This mini-review updated recent advances on the removal of three kinds of bio-refractory wastewaters including pharmaceuticals, pesticides, and dyes using BDD electrode. It summarized the important parameters in three electrochemical oxidation processes, i.e., anodic oxidation (AO), electro-Fenton (EF), and photoelectro-Fenton (PEF) and compared their different degradation mechanisms and behaviors. As an attractive improvement of PEF, solar photoelectro-Fenton using sunlight as UV/vis source presented cost-effectiveness, in which the energy consumption for enrofloxacin removal was 0.246 kWh/(g TOC), which was much lower than that of 0.743 and 0.467 kWh/(g TOC) by AO and EF under similar conditions. Finally the existing problems and future prospects in research were suggested. PMID:24777320

  16. Bile fluorescence and some early biological effects in fish as indicators of pollution by xenobiotics

    SciTech Connect

    Britvic, S.; Lucic, D.; Kurelec, B. )

    1993-04-01

    Simple measurement of bile fluorescence in fish has been proposed as a means for determining exposure to certain waterborne chemicals. This proposal was based on the data obtained by chemical determination of metabolites of compounds to which fish were exposed. Because exposures to most of these compounds cause some profound biological effects in fish, the authors studied the correlation between the increase in bile fluorescence, the induction of liver benzo[a]pyrene monooxygenase (BaPMO) activity, and the increase in the potential of liver to bioactivate promutagenic benzo[a]pyrene to Salmonella typhimurium TA100 mutagens. Carp exposed to diesel-2 oil, crude oil, or to a flow of polluted river water simultaneously increased severalfold the levels of all three parameters in a dose- and time-dependent manner. During the recovery from exposure, the levels of bile fluorescence and the BaPMO activity declined and by day 15 reached their natural, preexposure levels. The level of bioactivation potential, however, remained at the higher, induced level throughout the recovery period of 15 d. Seven fish species living in polluted Sava River (near Zagreb, Croatia) revealed severalfold increased levels of these parameters, as compared to their levels in fish living in the reference Korana River (near Karlovac, Croatia) or to their levels in control carp. These results give quantitatively new support to the idea of using simple measurements of fluorescence of diluted bile as a rapid and cheap complementary investigative tool for monitoring and assessment studies.

  17. Alkali metal ion induced cube shaped mesoporous hematite particles for improved magnetic properties and efficient degradation of water pollutants.

    PubMed

    Roy, Mouni; Naskar, Milan Kanti

    2016-07-27

    Mesoporous cube shaped hematite (α-Fe2O3) particles were prepared using FeCl3 as an Fe(3+) precursor and 1-butyl-3-methylimidazolium bromide (ionic liquid) as a soft template in the presence of different alkali metal (lithium, sodium and potassium) acetates, under hydrothermal conditions at 150 °C/4 h followed by calcination at 350 °C. The formation of the α-Fe2O3 phase in the synthesized samples was confirmed by XRD, FTIR and Raman spectroscopy. Unlike K(+) ions, intercalation of Li(+) and Na(+) ions occurred in α-Fe2O3 crystal layers as evidenced by XRD and Raman spectroscopy. Electron microscopy (FESEM and TEM) images showed the formation of cube-like particles of different sizes in the presence of Li(+), Na(+) and K(+) ions. The mesoporosity of the products was confirmed by N2 adsorption-desorption studies, while their optical properties were analyzed by UV-DRS. Na(+) ion intercalated α-Fe2O3 microcubes showed improved coercivity (5.7 kOe) due to increased strain in crystals, and shape and magnetocrystalline anisotropy. Temperature dependent magnetization of the samples confirmed the existence of Morin temperature in the range of 199-260 K. Catalytic degradation of methylene blue (MB), a toxic water pollutant, was studied using the synthesized products via a heterogeneous photo-Fenton process. The degradation products were traced by electrospray ionization-mass spectrometry (ESI-MS). The α-Fe2O3 microcubes obtained in the presence of Na(+) ions exhibited a more efficient degradation of MB to non-toxic open chain products. PMID:27406648

  18. CARBON LOSS AND OPTICAL PROPERTY CHANGES DURING LONG-TERM PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF ESTUARINE DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    Terrestrially derived dissolved organic matter (DOM) impacts the optical properties of coastal seawater and affects carbon cycling on a global scale. We studied sequential long-term photochemical and biological degradation of estuarine dissolved organic matter from the
    Satilla...

  19. A biological quality index for volcanic Andisols and Aridisols (Canary Islands, Spain): variations related to the ecosystem degradation.

    PubMed

    Armas, Cecilia María; Santana, Bayanor; Mora, Juan Luis; Notario, Jesús Santiago; Arbelo, Carmen Dolores; Rodríguez-Rodríguez, Antonio

    2007-05-25

    The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree.

  20. PHOTOCHEMICAL AND BIOLOGICAL DEGRADATION OF CDOM IN WATERS FROM SELECTED COASTAL REGIONS OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Biological and photochemical degradation of colored dissolved organic matter (CDOM) were investigated in controlled experiments using waters from southeastern U.S. estuaries, from the Mississippi River plume and Gulf of Mexico, and from the coastal shelf region in the Florida Key...

  1. Degradation of atrazine by microbial consortium in an anaerobic submerged biological filter.

    PubMed

    Nasseri, Simin; Baghapour, Mohammad Ali; Derakhshan, Zahra; Faramarzian, Mohammad

    2014-09-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) (ATZ) is one of the components of S-triazine. Due to its certain characteristics, ATZ causes pollution in various ecosystems and has been of concern for its probable carcinogenic effects on humans. Researchers have used chemical and physical methods for removing ATZ from the environment. Although these methods are quick, they have not been capable of complete mineralization. Therefore, researchers are looking for methods with lower energy consumption and cost and higher efficiency. In this study, biodegradation of ATZ by microbial consortium was evaluated in the aquatic environment. The present study aimed to evaluate the efficiency of ATZ removal from aqueous environments by using an anaerobic submerged biological filter in four concentration levels of atrazine and three hydraulic retention times. The maximum efficiencies of ATZ and soluble chemical oxygen demand (SCOD) were 51.1 and 45.6%, respectively. There was no accumulation of ATZ in the biofilm and the loss of ATZ in the control reactor was negligible. This shows that ATZ removal in this system was due to biodegradation. Furthermore, the results of modeling showed that the Stover-Kincannon model had desirable fitness (R² > 99%) in loading ATZ in this biofilter.

  2. Treatment of pharmaceutical wastewater using interior micro-electrolysis/Fenton oxidation-coagulation and biological degradation.

    PubMed

    Xu, Xiaoyi; Cheng, Yao; Zhang, Tingting; Ji, Fangying; Xu, Xuan

    2016-06-01

    The synthesis of steroid hormones produces wastewater that is difficult to manage and characterize due to its complex components and high levels of toxicity and bio-refractory compounds. In this work, interior micro-electrolysis (IME) and Fenton oxidation-coagulation (FOC) were investigated as wastewater pretreatment processes in combination with biological treatments using a hydrolysis acidification unit (HA) and two-stage biological contact oxidation (BCO) in laboratory and field experiments. In laboratory experiments with an average initial COD load of about 15,000 mg/L, pH of 4, Fe-C/water (V/V) ratio of 1:1, air/water ratio of 10, and reaction time of 180 min, IME achieved a COD removal efficiency of 31.8% and a 1.7-fold increase in the BOD5/COD (B/C) ratio of wastewater. The Fe(2+) concentration of 458.5 mg/L in the IME effluent meets the requirements of the Fenton oxidation (FO) process. FOC further reduced the COD with an efficiency of 30.1%, and the B/C ratio of the wastewater reached 0.59. Excitation-emission matrix (EEM) analysis showed that complex higher molecular weight organic compounds in the wastewater were degraded after the pretreatment process. In addition, a field experiment with a continuous flow of 96 m(3)/d was conducted for over 90 d. The combined process system operated steadily, though the Fe-C fillings should be soaked in a sulfuric acid solution (5‰) for 12 h to recover activity every two weeks. The COD and BOD5 concentrations in the final effluent were less than 90 mg/L and 15 mg/L, respectively. PMID:26953729

  3. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μmbiological waste (spent AC) from BAC process.

  4. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    PubMed

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications.

  5. Characterization of Radiation Fields in Biological Shields of Nuclear Power Plants for Assessing Concrete Degradation

    NASA Astrophysics Data System (ADS)

    Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Le Pape, Yann

    2016-02-01

    Life extensions of nuclear power plants to 60 and potentially 80 years of operation have renewed interest in long-term material degradation. One material being considered is concrete, with a particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database and a reliable determination of relevant neutron fluence energy cutoff value are necessary to ensure reliable risk assessment for extended operation of nuclear power plants. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  6. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents.

    PubMed

    Li, Jinxing; Singh, Virendra V; Sattayasamitsathit, Sirilak; Orozco, Jahir; Kaufmann, Kevin; Dong, Renfeng; Gao, Wei; Jurado-Sanchez, Beatriz; Fedorak, Yuri; Wang, Joseph

    2014-11-25

    Threats of chemical and biological warfare agents (CBWA) represent a serious global concern and require rapid and efficient neutralization methods. We present a highly effective micromotor strategy for photocatalytic degradation of CBWA based on light-activated TiO2/Au/Mg microspheres that propel autonomously in natural water and obviate the need for external fuel, decontaminating reagent, or mechanical agitation. The activated TiO2/Au/Mg micromotors generate highly reactive oxygen species responsible for the efficient destruction of the cell membranes of the anthrax simulant Bacillus globigii spore, as well as rapid and complete in situ mineralization of the highly persistent organophosphate nerve agents into nonharmful products. The water-driven propulsion of the TiO2/Au/Mg micromotors facilitates efficient fluid transport and dispersion of the photogenerated reactive oxidative species and their interaction with the CBWA. Coupling of the photocatalytic surface of the micromotors and their autonomous water-driven propulsion thus leads to a reagent-free operation which holds a considerable promise for diverse "green" defense and environmental applications. PMID:25289459

  7. High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures.

    PubMed

    Li, Qian; Zhang, Ning; Yang, Yong; Wang, Guozhong; Ng, Dickon H L

    2014-07-29

    Porous graphitic carbon nitride was synthesized by controllable thermal polymerization of urea in air. Their textural, electrical, and optical properties were tuned by varying the heating rate. The presence of proper residual oxygen in carbon nitride matrix had enhanced light absorption and inhibited the recombination of charge carriers. Furthermore, the MoS2 nanosheets were coupled into the carbon nitride to form MoS2/C3N4 heterostructures via a facile ultrasonic chemical method. The optimized MoS2/C3N4 heterostructure with 0.05 wt % MoS2 showed a reaction rate constant as high as 0.301 min(-1), which was 3.6 times that of bare carbon nitride. As analyzed by SEM, TEM, UV-vis absorption, PL and photoelectrochemical measurements, intimate contact interface, extended light response range, enhanced separation speed of charge carriers, and high photocurrent density upon MoS2 coupling led to the photocatalytic promotion of the MoS2/C3N4 heterostructures. In this architecture, MoS2 served as electron trapper to extend the lifetime of separated electron-hole pairs. Meanwhile, the accumulated holes on the surface of carbon nitride oxidized the organic dye directly, which was a predominant process in the photodegradation of organic pollutants in water treatment. The promotional mechanisms and principles reported here would have great significance in heterogeneous photocatalysis.

  8. Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Lucas, Daniel; Barón, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodríguez-Mozaz, Sara; Eljarrat, Ethel; Díaz-Cruz, M Silvia; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2014-09-01

    The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge. PMID:24582425

  9. Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Lucas, Daniel; Barón, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodríguez-Mozaz, Sara; Eljarrat, Ethel; Díaz-Cruz, M Silvia; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2014-09-01

    The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge.

  10. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    NASA Astrophysics Data System (ADS)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  11. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils.

    PubMed

    Alrumman, Sulaiman A; Hesham, Abd El-Latif; Alamri, Saad A

    2016-01-01

    In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies.

  12. Isolation, fingerprinting and genetic identification of indigenous PAHs degrading bacteria from oil-polluted soils.

    PubMed

    Alrumman, Sulaiman A; Hesham, Abd El-Latif; Alamri, Saad A

    2016-01-01

    In the present study, thirty five bacterial isolates were obtained from hydrocarbon-contaminated soil samples using an enrichment method. These isolates were tested to grow on mineral salt medium containing anthracene or phenanthrene as sole carbon source. Only five isolates showed the ability to degrade these compounds. RAPD-PCR fingerprinting was carried out for the five isolates, and the DNA patterns revealed that there was no similarity among the examined bacteria whenever the RFLP using four restriction enzymes HaeIII, Msp1, Hinf1 and Taq1 failed to differentiate among them. Five bacterial isolates were grown in high concentration of anthracene and phenanthrene (4% w/v). Two bacterial isolates were selected due to their high ability to grow in the presence of high concentrations of anthracene and phenanthrene. The isolates were identified as Bacillus flexus and Ochrobactrum anthropi, based on DNA sequencing of amplified 16S rRNA gene and phylogenetic analysis. Finally, the ability of these bacterial strains to tolerate and remove different PAHs looked promising for application in bioremediation technologies. PMID:26930863

  13. Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae).

    PubMed

    Sorensen, Mary A; Parker, David R; Trumble, John T

    2009-02-01

    Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4(-)), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.

  14. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence.

  15. Applications of Cu{sub 2}O octahedral particles on ITO glass in photocatalytic degradation of dye pollutants under a halogen tungsten lamp

    SciTech Connect

    Zhai, Wei; Sun, Fengqiang; Chen, Wei; Zhang, Lihe; Min, Zhilin; Li, Weishan

    2013-11-15

    Graphical abstract: - Highlights: • Photocatalytic activity of Cu{sub 2}O octahedral microcrystals on ITO glass was studied. • They showed high abilities in degradation of methylene blue in the presence of H{sub 2}O{sub 2}. • H{sub 2}O{sub 2} amount could affect the degradation efficiency. • Such particles could be easily recycled and still kept high activity. • Many dye pollutants and their mixtures could be efficiently degraded. - Abstract: Cu{sub 2}O octahedral microcrystals were prepared on the ITO glass by galvanostatic electrodeposition in CuSO{sub 4} solution with poly(vinylpryrrolidone) as the surfactant. By controlling the electrodeposition time, the microcrystals could be randomly distributed on the ITO glass and separated from each other, resulting in as many as possible (1 1 1) crystalline planes were exposed. Such microcrystals immobilized on ITO glass were employed in photodegradation of dye pollutants in the presence of H{sub 2}O{sub 2} under a 150 W halogen tungsten lamp. The photodegradation of methylene blue was taken as an example to evaluate the photocatalytic activities of the octahedral Cu{sub 2}O microcrystals. Effects of electrodeposition time and H{sub 2}O{sub 2} amount on the degradation efficiency was discussed, giving the optimum conditions and the corresponding degradation mechanism. The catalyst showed high ability in degradation of methylene blue, methyl orange, rhodamine B, eosin B and their mixtures under identical conditions.

  16. [VOLATILE FATTY ACIDS IN SALIVA--BIOLOGICAL MARKERS FOR ASSESSMENT OF DRINKING WATER POLLUTANTS ON CHILDREN].

    PubMed

    Akaizina, A E; Akaizin, E S; Starodumov, V L

    2015-01-01

    The use of modern methods of analysis is aimed to the search of ultimately novel biological markers. Volatile fatty acids in saliva were not used previously for the assessment of the effects of contaminating substances in the drinking water on the body of children. The aim of the study is to investigate the informative value of volatile fatty acids in saliva as biological markers of the impact for the assessment of the exposure to contaminating substances in the drinking water on the body of children. Hygienic assessment of drinking water quality was made according to data of the own research of drinking water from centralized supply system of the city of Ivanovo. For the comparison of indices there was investigated the drinking water from wells at the village Podvyaznovsky of the Ivanovo region. In the Ivanovo water from the distributing network of centralized drinking water supply system of the city of Ivanovo, there were identified indices of the permanganate oxidation and the total concentration of residual chlorine exceeding norms, and also chloroform and carbon tetrachloride were in concentrations not exceeding the norms. Studied by us the samples of drinking water from Podvyaznovsky village wells, the water met the standards for all investigated parameters. The was studied the informative value of volatile fatty acids in the saliva of children aged 9-14 years from the city of Ivanovo and the Podvyaznovsky village, Ivanovo region. There was established the fall in acetic, butyric, isovaleric acids and the total amount of volatile fatty acids in the saliva in children of the city of Ivanovo, consuming water treated with chlorine of Ivanovo centralized drinking water supply system. Indices of volatile fatty acids in saliva are informative for the assessment of the impact of organic pollutants, residual chlorine and organic chlorine compounds of drinking water on the body of children.

  17. Impact of soil structure heterogeneity on the degradation of organic pollutants at the centimeter scale : 3D Modeling using graph based method

    NASA Astrophysics Data System (ADS)

    Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia

    2014-05-01

    Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.

  18. Degradation and behavior of natural steroid hormones in cow manure waste during biological treatments and ozone oxidation.

    PubMed

    Ermawati, Rahyani; Morimura, Shigeru; Tang, Yueqin; Liu, Kai; Kida, Kenji

    2007-01-01

    An efficient treatment process for screened cow manure waste, particularly for the degradation of natural steroid hormones, was developed. The first step in this process was a draw-and-fill process for thermophilic anaerobic digestion. After fourfold dilution with tap water, continuous feeding was performed for the aerobic treatment of the effluent from the anaerobic treatment. Batchwise ozone oxidation was then carried out for the degradation of the natural steroid hormones that remained in the effluent from the aerobic treatment. A yeast two-hybrid assay was performed to evaluate hormonal degradation. Significant reductions in the concentrations of total VFA, BOD(5), COD(Cr), TOC, TS, VSS, and natural steroid hormones were demonstrated in the effluent from the biological treatments. The removal ratios of such concentrations were 99.7%, 90%, 79%, 84%, 51%, 58%, and 99%, respectively. Although the concentrations of the remaining TOC and COD(Cr) remained constant, natural steroid hormones were completely removed by ozone oxidation.

  19. Distribution features of biological hazardous pollutants in residential environments in Korea.

    PubMed

    Lee, Cheol Min; Hong, Soo Jong; Kim, Yoon Shin; Park, Gee Yong; Nam Goung, Sun Ju; Kim, Kyung Hwan

    2014-01-01

    This research has been conducted continuously since 2009 as part of a cohort of studies examining relationships between asthma and genetic factors, dietary habits, and environmental factors. Based on data from environmental research on house dust mites and endotoxins, which are widely known as pollutants in bedding that cause asthma in pregnant women and children, this work was conducted to obtain basic data that can be used in future cohort studies that analyze links between distribution of biological hazards and physical features of residential environments. The detection rates of house dust mite allergens, Der p1 and Der f1, were 52.7 and 86.5%, respectively, indicating that Der f1 is a dominant species in domestic indoor environments. According to comparisons between concentrations of house dust mites and endotoxins in bedding of pregnant women and children, Der p1 and endotoxins showed significantly lower concentrations in bedding of pregnant women compared with those in bedding of children, whereas Der f1 showed no significant difference in concentration according to bedding.

  20. Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton.

    PubMed

    Nizzetto, Luca; Gioia, Rosalinda; Li, Jun; Borgå, Katrine; Pomati, Francesco; Bettinetti, Roberta; Dachs, Jordi; Jones, Kevin C

    2012-03-20

    The goal of this study was to experimentally assess the coupling between primary producer biomass dynamics and the distribution and fate of persistent organic pollutants (POPs) in a lake pelagic ecosystem. This was done by following the short-term evolution of polychlorinated biphenyl (PCB) concentrations in water and biota (phytoplankton and zooplankton) and the variability of bioconcentration (BCF), biomagnification (BMF), and bioaccumulation (BAF) factors during the development of a typical spring ecological progression in which the phytoplankton bloom is followed by a peak in the zooplankton abundance. The bulk of compounds with log K(OW) > 6.5 in the lake epilimnion was mainly associated with primary producer biomass. The phytoplankton biological pump was a major driver of POP export from the epilimnion, causing the decline of dissolved-phase concentrations. The BCF of phytoplankton for the more hydrophobic PCBs showed minima during the period of biomass climax. The concentration in the zooplankton of all selected PCBs sharply declined from March to May, with BAFs having minima in the post algal bloom phase. Biomagnification occurred during the pre algal bloom and algal bloom phases but appeared to be absent during the post algal bloom. This study highlights the occurrence of a prompt and complex response in the fate and distribution of POPs to dynamic biogeochemical control. Within the frame of the ecological succession, phytoplankton and zooplankton biomass dynamics produced bioaccumulation metrics varying over 1-2 orders of magnitude in the time frame of a few weeks and resulted in reduced trophic web exposure.

  1. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    PubMed

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  2. Marine biodegradation: Chemical pollutants. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the biological degradation of marine pollutants. The citations explore the microbial breakdown of petroleum, herbicides, pesticides, polychlorinated biphenyls and other hazardous materials. The chemical details of biotransformation, and the development of microorganisms capable of degrading pollutants are presented. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  3. Biological Monitoring of Air Pollutants and Its Influence on Human Beings.

    PubMed

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases.

  4. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  5. Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation.

    PubMed

    Feng, Yujie; Liu, Junfeng; Zhu, Limin; Wei, Jinzhi

    2013-01-01

    The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment.

  6. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    NASA Astrophysics Data System (ADS)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  7. Tailoring the degradation and biological response of a magnesium-strontium alloy for potential bone substitute application.

    PubMed

    Han, Junjie; Wan, Peng; Ge, Ye; Fan, Xinmin; Tan, Lili; Li, Jianjun; Yang, Ke

    2016-01-01

    Bone defects are very challenging in orthopedic practice. There are many practical and clinical shortcomings in the repair of the defect by using autografts, allografts or xenografts, which continue to motivate the search for better alternatives. The ideal bone grafts should provide mechanical support, fill osseous voids and enhance the bone healing. Biodegradable magnesium-strontium (Mg-Sr) alloys demonstrate good biocompatibility and osteoconductive properties, which are promising biomaterials for bone substitutes. The aim of this study was to evaluate and pair the degradation of Mg-Sr alloys for grafting with their clinical demands. The microstructure and performance of Mg-Sr alloys, in vitro degradation and biological properties including in vitro cytocompatibility and in vivo implantation were investigated. The results showed that the as-cast Mg-Sr alloy exhibited a rapid degradation rate compared with the as-extruded alloy due to the intergranular distribution of the second phase and micro-galvanic corrosion. However, the initial degradation could be tailored by the coating protection, which was proved to be cytocompatible and also suitable for bone repair observed by in vivo implantation. The integrated fracture calluses were formed and bridged the fracture gap without gas bubble accumulation, meanwhile the substitutes simultaneously degraded. In conclusion, the as-cast Mg-Sr alloy with coating is potential to be used for bone substitute alternative. PMID:26478374

  8. A metabolomic study on the biological effects of metal pollutions in oysters Crassostrea sikamea.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-01-15

    Metal pollution has become a great threat to organisms in the estuaries in South China. In the present study, the oysters Crassostrea sikamea were collected from one clean (Jiuzhen) and five metal polluted sites (Baijiao, Fugong, Gongqian, Jinshan and Songyu). The tissue metal concentrations in oysters indicated that the five metal sites were polluted by several metals, including Cr, Ni, Co, Cu, Zn, Ag, Cd and Pb with different patterns. Especially, Cu and Zn were the major contaminants in Baijiao, Fugong and Jinshan sites. The metabolic responses in oysters C. sikamea indicated that the metal pollutions in BJ, FG, JS and SY sites induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. However, the metal pollution in GQ site mainly influenced the osmotic regulation in the oysters C. sikamea. This study demonstrates that NMR-based metabolomics is useful to characterize metabolic responses induced by metal pollution.

  9. Linkage of bioaccumulation and biological effects to changes in pollutant loads in south San Francisco Bay

    USGS Publications Warehouse

    Hornberger, M.I.; Luoma, S.N.; Cain, D.J.; Parchaso, F.; Brown, C.L.; Bouse, R.M.; Wellise, C.; Thompson, J.K.

    2000-01-01

    The developed world has invested billions of dollars in waste treatment since the 1970s; however, changes in ecological or biological responses are rarely associated with reductions in metal pollutants. Here we present a novel, 23-yr time series of environmental change from a San Francisco Bay mudflat located 1 km from the discharge of a suburban domestic sewage treatment plant. Samples of surface sediment, the bioindicator Macoma balthica, and metals loading data were used to establish links between discharge, bioaccumulation, and effects. Mean annual Ag concentrations in M. balthica were 106 ??g/g in 1978 and 3.67 ??g/g in 1998. Concentrations of Cu declined from 287 ??g/g in 1980 to a minimum of 24 ??g/g in 1991. Declining Cu bioaccumulation was strongly correlated with decreasing Cu loads from the plant between 1977 and 1998. Relationships with bioaccumulation and total annual precipitation suggested that inputs from nonpoint sources were most important in controlling Zn bioavailability during the same period. Ecoepidemiological criteria were used to associate failed gamete production in M. balthica to a metals-enriched environment. Reproduction persistently failed between the mid-1970s and mid-1980s; it recovered after metal contamination declined. Other potential environmental causes such as food availability, sediment chemistry, or seasonal salinity fluctuations were not related to the timing of the change in reproductive capability. The results establish an associative link, suggesting that it is important to further investigate the chemical interference of Cu and/or Ag with invertebrate reproduction at relatively moderate levels of environmental contamination.

  10. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers?

    PubMed

    Elliott, John E; Levac, Joshua; Guigueno, Mélanie F; Shaw, D Patrick; Wayland, Mark; Morrissey, Christy A; Muir, Derek C G; Elliott, Kyle H

    2012-09-01

    Persistent organic pollutants (POPs) can be transported long distances and deposited into alpine environments via cold trapping and snow scavenging processes. Here we examined biotic and abiotic factors determining contaminant variability of wildlife in alpine ecosystems. We measured POPs in eggs and plasma of an apex predator, the osprey (Pandion haliaetus) breeding in 15 mountainous watersheds across a broad latitudinal, longitudinal and altitudinal range in western Canada. After accounting for proximate biotic factors such as trophic level (δ(15)N) and carbon source (δ(13)C), variability in contaminant concentrations, including ΣDDT (sum of trichlorodiphenylethane-related compounds), toxaphene, hexachlorobenzene (HCB), total chlordane, and ΣPCBs (polychlorinated biphenyls) in osprey tissues was explained by interactions among relative size of watersheds, water bodies, elevation, and glacial input. ΣDDT in nestling plasma, for example, decreased with lake elevation, probably as a result of local past inputs from agricultural or public health usage at lower altitude sites. In contrast, toxaphene, never used as an insecticide in western Canada, increased with elevation and year-round snow and ice cover in both plasma and eggs, indicating long-range atmospheric sources as dominant for toxaphene. Lower chlorinated PCBs in plasma tended to decrease with elevation and ice cover consistent with published data and model outcomes. Temporal trends of POPs in osprey eggs are coincident with some modeled predictions of release from melting glaciers due to climate change. Currently we suggest that contaminants largely are released through annual snowpack melt and deposited in large lower elevation lakes, or some smaller lakes with poor drainage. Our study highlights the importance of understanding how biological processes integrate physical when studying the environmental chemistry of wildlife.

  11. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures.

    PubMed

    Dong, Haoran; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Chang; He, Xiaoxiao; He, Yan

    2015-08-01

    The pollutants classified as "persistent organic pollutants (POPs)", are being subject to high concern among the scientific community due to their persistence in the environment. TiO2-based photocatalytic process has shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology to remove POPs in sewage to overcome the shortcomings of the conventional technologies. However, this technology suffers from some main technical barriers that impede its commercialization, i.e., the inefficient exploitation of visible light, low adsorption capacity for hydrophobic contaminants, uniform distribution in aqueous suspension and post-recovery of the TiO2 particles after water treatment. To improve the photocatalytic efficiency of TiO2, many studies have been carried out with the aim of eliminating the limitations mentioned above. This review summarizes the recently developed countermeasures for improving the performance of TiO2-based photocatalytic degradation of organic pollutants with respect to the visible-light photocatalytic activity, adsorption capacity, stability and separability. The performance of various TiO2-based photocatalytic processes for POPs degradation and the underlying mechanisms were summarized and discussed. The future research needs for TiO2-based technology are suggested accordingly. This review will significantly improve our understanding of the process of photocatalytic degradation of POPs by TiO2-based particles and provide useful information to scientists and engineers who work in this field.

  12. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures.

    PubMed

    Dong, Haoran; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Chang; He, Xiaoxiao; He, Yan

    2015-08-01

    The pollutants classified as "persistent organic pollutants (POPs)", are being subject to high concern among the scientific community due to their persistence in the environment. TiO2-based photocatalytic process has shown a great potential as a low-cost, environmentally friendly and sustainable treatment technology to remove POPs in sewage to overcome the shortcomings of the conventional technologies. However, this technology suffers from some main technical barriers that impede its commercialization, i.e., the inefficient exploitation of visible light, low adsorption capacity for hydrophobic contaminants, uniform distribution in aqueous suspension and post-recovery of the TiO2 particles after water treatment. To improve the photocatalytic efficiency of TiO2, many studies have been carried out with the aim of eliminating the limitations mentioned above. This review summarizes the recently developed countermeasures for improving the performance of TiO2-based photocatalytic degradation of organic pollutants with respect to the visible-light photocatalytic activity, adsorption capacity, stability and separability. The performance of various TiO2-based photocatalytic processes for POPs degradation and the underlying mechanisms were summarized and discussed. The future research needs for TiO2-based technology are suggested accordingly. This review will significantly improve our understanding of the process of photocatalytic degradation of POPs by TiO2-based particles and provide useful information to scientists and engineers who work in this field. PMID:25980914

  13. Compound-specific stable isotope analysis of herbicides in stream water: a combined monitoring and modeling approach to assess pollutant degradation at catchment scale

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie; Van der Velde, Ype; Elsayed, Omniea; Imfeld, Gwenael; Lefrancq, Marie; Payraudeau, Sylvain; Van Breukelen, Boris

    2014-05-01

    Compound-specific stable isotope analysis (CSIA) measures the isotopic composition of a compound, i.e. the relative abundance of light and heavy stable isotopes of an element contained in the compound (e.g. 12C and 13C). As degradation processes may induce a change in isotopic composition (i.e. isotope fractionation), CSIA allows distinguishing degradation from non-destructive processes such as dilution or sorption. CSIA can be combined with model-assisted interpretation to evaluate degradation of contaminants in the environment. Although CSIA methods have also been developed for diffuse pollutants such as pesticides and nitrate, they have not yet been continuously applied in monitoring of diffuse pollution in surface water. Results of a virtual experiment of isotope fractionation at hillslope scale have suggested that CSIA qualifies as a feasible and useful complement to concentration measurements of diffuse pollutants (Lutz et al., 2013). We now present the first continuously measured concentration and carbon CSIA data of herbicides from a 49-ha agricultural catchment (Alsace, France). Stream concentrations of two chloroacetanilide herbicides, i.e. S-metolachlor and acetochlor, were highest (65 μg/L) following an extreme rainfall event in the first month after herbicide application, and subsequently decreased to background concentration level (0.1 μg/L). This decrease was accompanied by an increase of more than 2 ‰ in carbon isotope ratios, which was also observed in surface runoff samples from a plot experiment in the study catchment. The increase of carbon isotope ratios over time indicates the occurrence of herbicide degradation during transport to the stream, and thus demonstrates the advantage of CSIA over pesticide concentration measurements only. Despite providing evidence of herbicide degradation, the field CSIA data do not allow for a comprehensive characterization of herbicide sources, fate and transport in the study catchment. Therefore, we

  14. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology.

    PubMed

    Kim, Seong-Jae; Kweon, Ohgew; Jones, Richard C; Freeman, James P; Edmondson, Ricky D; Cerniglia, Carl E

    2007-01-01

    Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the beta-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation. PMID:17085566

  15. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO{sub 2} nanotube arrays

    SciTech Connect

    Wu Hongjun; Zhang Zhonghai

    2011-12-15

    The photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant were achieved on TiO{sub 2} nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. The TiO{sub 2} nanotube arrays (TiO{sub 2} NTs) were fabricated by a two-step anodization method. The TiO{sub 2} NTs prepared in two-step anodization process (2-step TiO{sub 2} NTs) showed much better surface smoothness and tube orderliness than TiO{sub 2} NTs prepared in one-step anodization process (1-step TiO{sub 2} NTs). In the photoelectrochemical water splitting and simultaneous photoelectrocatalytic decomposition process, the 2-step TiO{sub 2} NTs electrode showed both highest photo-conversion efficiency of 1.25% and effective photodecomposition efficiency with existing of methylene blue (MB) as sacrificial agent and as pollutant target. Those results implied that the highly ordered nanostructures provided direct pathway and uniform electric field distribution for effective charges transfer, as well as superior capabilities of light harvesting. - Graphical Abstract: The photoelectrochemical water splitting for hydrogen generation and simultaneous photoelectrocatalytic degradation of organic pollutant (methylene blue) were achieved on TiO{sub 2} nanotube electrodes with double purposes of environmental protection and renewable energy production under illumination of simulated solar light. Highlights: Black-Right-Pointing-Pointer TiO{sub 2} nanotube arrays were fabricated by a two-step anodization method. Black-Right-Pointing-Pointer Hydrogen generation and organic pollutant degradation were achieved on TiO{sub 2} NTs. Black-Right-Pointing-Pointer Highest photoconversion efficiency of 1.25% was achieved. Black-Right-Pointing-Pointer Increasing orderliness will increase photocatalytic activity of TiO{sub 2} NTs.

  16. Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst.

    PubMed

    Zhang, Ai-Yong; Wang, Wei-Kang; Pei, Dan-Ni; Yu, Han-Qing

    2016-04-01

    Photocatalyst plays a vital role in the photochemical water treatment. To improve the visible-light photoactivity of TiO2 for refractory pollutant degradation, CdS/TiO2 hybrids with different nanostructures have been prepared, but usually suffer from a low photocatalytic degradation efficiency and a rapid photocorrosion. In this work, we developed a synergistic ZnO/CdS/TiO2 hybrid, which could act as a robust and self-protected photocatalyst for water purification without additional sacrificial reagents. This was attributed to the two different junction mechanisms in one single hybrid. Photons were selectively adsorbed by ZnO and CdS, then, the electrons with a low reductive activity in ZnO recombined directly with the holes with a low oxidative activity in CdS, whereas the holes with a high oxidative activity in ZnO and the electrons with a high reductive activity in CdS were captured for catalytic reaction. The superiority of the novel ZnO/CdS/TiO2 hybrid over the traditional CdS/TiO2 hybrid in both photocatalytic activity and anti-photocorrosion capacity was demonstrated in the degradation of Atrazine and Rhodamine B, two typical refractory organic pollutants, and the treatment of real textile wastewater under solar light irradiation. The developed ZnO/CdS/TiO2 hybrid exhibited an excellent potential for the degradation of refractory pollutants, and provided a new way to advance intrinsically solar-susceptible catalyst for photochemical wastewater treatment.

  17. Vector Biology: Tyrosine Degradation Protects Blood Feeders from Death via La Grande Bouffe.

    PubMed

    Kopáček, Petr; Perner, Jan

    2016-08-22

    Blood-feeding arthropods digest vast amounts of host-blood nutrients. A new study suggests that tyrosine degradation is essential for the survival of blood-fed kissing bugs, mosquitoes, and ticks. This finding presents a promising target for the control of these disease vectors. PMID:27554655

  18. EFFECTS OF HABITAT DEGRADATION ON BIOLOGICAL ENDPOINTS IN THE SOUTH FORK BROAD RIVER BASIN, GEORGIA

    EPA Science Inventory

    Many of the streams of the lower Piedmont ecoregion in Georgia have been negatively impacted to some degree by habitat degradation due primarily to sedimentation. The South Fork of the Broad River watershed has been designated as sediment impacted under Section 303(d) of the Clea...

  19. Effect of the pollution level on the functional bacterial groups aiming at degrading bisphenol A and nonylphenol in natural biofilms of an urban river.

    PubMed

    Cai, Wei; Li, Yi; Wang, Peifang; Niu, Lihua; Zhang, Wenlong; Wang, Chao

    2016-08-01

    Bisphenol A (BPA) and 4-nonylphenol (NP) are ubiquitous pollutants with estrogenic activity in aquatic environment and have attracted global concern due to their disruption of endocrine systems. This study investigated the spatial distribution characteristics of the bacterial groups involved in the degradation of BPA and NP within biofilms in an urban river using terminal restriction fragment length polymorphism based on 16S rRNA gene sequences. The effects of the pollution level and water parameters on these groups were also assessed. Hierarchical cluster analysis grouped the sampling sites into three clusters reflecting their varying nutrient pollution levels of relatively slight pollution (SP), moderate pollution (MP), and high pollution (HP) based on water quality data and Environmental Quality Standard for Surface Water of China (GB3838-2002). The BPA and NP concentration in river water ranged from 0.8 to 77.5 and 10.2 to 162.9 ng L(-1), respectively. Comamonadaceae, Pseudomonadaceae, Alcaligenaceae, Bacillaceae, Sphingomonadacea, Burkholderiaceae, and Rhizobiaceae were the dominant bacterial taxa involved in BPA and NP degradation, comprising an average of 9.8, 8.1, 7.6, 6.7, 6.2, 4.1, and 2.8 % of total sequences, respectively. The total abundance of these groups showed a slight upward trend and subsequently rapidly decreased with increasing pollution levels. The average proportion of Comamonadaceae in MP river sections was almost 1.5-2 times than that in SP or HP one. The distribution of functional groups was found related to environmental variables, especially pH, conductivity, ammonium nitrogen (NH3-N), and BPA. The abundance of Comamonadaceae and Rhizobiaceae was both closely related to higher values of pH and conductivity as well as lower concentrations of NP and BPA. Alcaligenaceae and Pseudomonadaceae were associated with higher concentrations of TP and CODMn and inversely correlated with DO concentration. This study might provide effective data on

  20. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    PubMed

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists. PMID:26566643

  1. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    PubMed

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists.

  2. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation).

  3. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.

    PubMed

    Mena, Esperanza; Ruiz, Clara; Villaseñor, José; Rodrigo, Manuel A; Cañizares, Pablo

    2015-01-01

    Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation). PMID:25262485

  4. Micro-organic pollutants and biological response of mussels in marinas and ship building/breaking yards in Turkey.

    PubMed

    Okay, O S; Karacık, B; Güngördü, A; Ozmen, M; Yılmaz, A; Koyunbaba, N C; Yakan, S D; Korkmaz, V; Henkelmann, B; Schramm, K-W

    2014-10-15

    Concentrations of PAHs, PCBs and OCPs in sediments and mussels (caged and/or native) were determined at 16 stations in six major sites of coastal Turkey. The biological effects of pollution were evaluated using sediment toxicity tests and enzyme activity assays. EROD, PROD, GST, AChE, CaE, and GR activities were evaluated using the digestive glands of mussels. The total PAH concentrations in the sediments varied between nd and 79,674 ng g(-1) dw, while the total OCP concentrations were in the range of nd to 53.7 ng g(-1) dw. The total PAH concentrations in mussels varied between 22.3 and 37.4 ng g(-1) ww. The average concentrations of total PCBs in mussels were 2795 pg g(-1) ww in the shipyard, 797 pg g(-1) ww in Marina 2 and 53 pg g(-1) ww in Marina 1 stations. The results of whole-sediment toxicity tests showed a strong correlation between toxicity test results and pollutant concentrations. Selected cytosolic enzyme activities in digestive glands differed significantly depending on localities. These differences in enzyme activities were mainly related to the different pollutant levels of the sampling sites. The micro-organic contaminant profile patterns, toxicity tests and biomarker studies showed that shipyards and shipbreaking yards are the major potential sources of organic pollution in coastal areas.

  5. A novel visible light-driven Ag3PO4/SBA-15 nanocomposite: Preparation and application in the photo-degradation of pollutants

    NASA Astrophysics Data System (ADS)

    Chai, Yuanyuan; Wang, Li; Ren, Jia; Dai, Wei-Lin

    2015-01-01

    A novel visible light-driven environmental-benign Ag3PO4/SBA-15 nanocomposite photo-catalyst was synthesized for the photo-degradation of pollutants. The exploration on adsorption and photo-catalysis of dye or organic pollution for the nanocomposite was carried out. The adsorption capability for Ag3PO4/SBA-15 nanocomposite increases by 3 times compared with that of the Ag3PO4 particles. The photo-catalytic activity of nanocomposite is higher than pristine Ag3PO4 nanoparticle for the degradation of RhB or MO under visible light irradiation (λ > 420 nm). The effect of Ag3PO4 loading on the catalytic performance was also studied. The results show that the optimum degradation is achieved over 20% Ag3PO4/SBA-15. Compared to pure Ag3PO4 nanoparticle, the most efficient catalyst showed 8 times higher photo-catalytic activity for the degradation of RhB. The Ag3PO4/SBA-15 catalysts were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and N2-adsorption-desorption isotherms (BET). A possible mechanism scheme regarding photo-degradation enhancement induced by dye enrichments has been proposed on the Ag3PO4/SBA-15 nanocomposite. Additionally, the SBA-15 support can enhance the efficiency of separation of catalyst from the reaction mixture, implying that the Ag3PO4 loading on the SBA-15 catalyst will not result in the extra environment and health problems and reduce the cost of wastewater treatment.

  6. Magnetic recoverable MnFe₂O₄ and MnFe₂O₄-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants.

    PubMed

    Yao, Yunjin; Cai, Yunmu; Lu, Fang; Wei, Fengyu; Wang, Xiaoyao; Wang, Shaobin

    2014-04-15

    Magnetic iron based materials are generally effective for many catalytic reactions and can be magnetically recovered after application, showing advantages than other metal oxides. In the present work, magnetic MnFe2O4 nanoparticle and MnFe2O4-reduced graphene oxide (rGO) hybrid were prepared and used as catalysts to activate peroxymonosulfate (PMS) to oxidatively degrade various organic pollutants in water. From a process of chemical deposition and reduction, MnFe2O4-rGO hybrids were produced with nanosized MnFe2O4 particles (ca. 13.2 nm). It was found that MnFe2O4 or MnFe2O4-rGO presented high activity in activating PMS to produce sulfate radicals for degradation of organic dyes (Methyl violet, Methyl orange, Methylene blue, Orange II and Rhodamine B) and could be separated with a magnet without any loss. The reaction kinetics, effect of different ion species CL(-),HCO3(-),CH3COO(-)and NO3(-) and Cl(-) strength, reaction temperature (25-65°C), catalytic stability, as well as degradation mechanism were comprehensively studied. The lower activation energy on MnFe2O4-rGO (25.7 kJ/mol) justify the higher chemical performance than that of MnFe2O4 (31.7 kJ/mol), suggesting that graphene plays a significant role in the enhanced degradation of dyes. More importantly, the as-prepared MnFe2O4 and MnFe2O4-rGO hybrid exhibited stable performance to remove the organic pollutants in wastewater with easy recycling and good stability by successive degradation experiments. PMID:24548886

  7. Magnetic recoverable MnFe₂O₄ and MnFe₂O₄-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants.

    PubMed

    Yao, Yunjin; Cai, Yunmu; Lu, Fang; Wei, Fengyu; Wang, Xiaoyao; Wang, Shaobin

    2014-04-15

    Magnetic iron based materials are generally effective for many catalytic reactions and can be magnetically recovered after application, showing advantages than other metal oxides. In the present work, magnetic MnFe2O4 nanoparticle and MnFe2O4-reduced graphene oxide (rGO) hybrid were prepared and used as catalysts to activate peroxymonosulfate (PMS) to oxidatively degrade various organic pollutants in water. From a process of chemical deposition and reduction, MnFe2O4-rGO hybrids were produced with nanosized MnFe2O4 particles (ca. 13.2 nm). It was found that MnFe2O4 or MnFe2O4-rGO presented high activity in activating PMS to produce sulfate radicals for degradation of organic dyes (Methyl violet, Methyl orange, Methylene blue, Orange II and Rhodamine B) and could be separated with a magnet without any loss. The reaction kinetics, effect of different ion species CL(-),HCO3(-),CH3COO(-)and NO3(-) and Cl(-) strength, reaction temperature (25-65°C), catalytic stability, as well as degradation mechanism were comprehensively studied. The lower activation energy on MnFe2O4-rGO (25.7 kJ/mol) justify the higher chemical performance than that of MnFe2O4 (31.7 kJ/mol), suggesting that graphene plays a significant role in the enhanced degradation of dyes. More importantly, the as-prepared MnFe2O4 and MnFe2O4-rGO hybrid exhibited stable performance to remove the organic pollutants in wastewater with easy recycling and good stability by successive degradation experiments.

  8. Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects.

    PubMed

    Sarkar, Devanand; Fisher, Paul B

    2006-05-01

    Identification of small inhibitory RNAs and microRNA established that regulation of RNA metabolism plays an essential role in controlling intracellular biochemical processes. Interferons induce a number of RNA degradation enzymes involved in innate immunity by degrading viral RNAs. We cloned human polynucleotide phosphorylase (hPNPase(old-35)), a type I interferon-inducible 3'-5' exoribonuclease, as a transcript induced during terminal differentiation and senescence, two physiological processes marked by irreversible growth arrest. Our studies in the last four years show that hPNPase(old-35) plays an essential role in mediating IFN-mediated growth inhibition and its upregulation might mediate chronic inflammatory pathological processes during aging. The present review recaps these findings and provides a framework for the future understanding of the versatile functions of this interesting molecule. PMID:16687933

  9. Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?

    PubMed Central

    Tridico, Silvana R.; Koch, Sandra; Michaud, Amy; Thomson, Gordon; Kirkbride, K. Paul; Bunce, Michael

    2014-01-01

    Although the taphonomic (post-mortem) degradation processes relevant to teeth and bones have been well described, those taking place with regards to mammalian hairs have not been characterized to the same extent. This present article describes, in detail, microscopic changes resulting from the actions of biological agents that digest and degrade hairs. The most noteworthy and prevalent agents responsible for the destruction of hair structure are fungi, which use a range of strategies to invade and digest hairs. One of the most important finds to emerge from this study is that taphonomic structures and processes can easily be interpreted by the unwary as ‘real’, or as class characteristics for a particular animal taxon. Moreover, under certain conditions, ‘taphonomic’ processes normally associated with the dead are also present on the hairs of the living. This work will improve the reliability of hair examinations in forensic, archaeological and palaeontological applications—in addition, the finding has relevance in the protection of mammalian collections susceptible to infestation. This article also addresses the popular myth that ancient peoples were often red-haired and discusses phenomena responsible for this observation. Insights gained from detailed characterization of taphonomic processes in 95 hairs from a variety of species demonstrate the range and breadth of degradative effects on hair structure and colour. Lastly, the study demonstrates that hairs often tell a story and that there is value of extracting as much morphological data as possible from hairs, prior to destructive sampling for biomolecules. PMID:25339725

  10. Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?

    PubMed

    Tridico, Silvana R; Koch, Sandra; Michaud, Amy; Thomson, Gordon; Kirkbride, K Paul; Bunce, Michael

    2014-12-01

    Although the taphonomic (post-mortem) degradation processes relevant to teeth and bones have been well described, those taking place with regards to mammalian hairs have not been characterized to the same extent. This present article describes, in detail, microscopic changes resulting from the actions of biological agents that digest and degrade hairs. The most noteworthy and prevalent agents responsible for the destruction of hair structure are fungi, which use a range of strategies to invade and digest hairs. One of the most important finds to emerge from this study is that taphonomic structures and processes can easily be interpreted by the unwary as 'real', or as class characteristics for a particular animal taxon. Moreover, under certain conditions, 'taphonomic' processes normally associated with the dead are also present on the hairs of the living. This work will improve the reliability of hair examinations in forensic, archaeological and palaeontological applications-in addition, the finding has relevance in the protection of mammalian collections susceptible to infestation. This article also addresses the popular myth that ancient peoples were often red-haired and discusses phenomena responsible for this observation. Insights gained from detailed characterization of taphonomic processes in 95 hairs from a variety of species demonstrate the range and breadth of degradative effects on hair structure and colour. Lastly, the study demonstrates that hairs often tell a story and that there is value of extracting as much morphological data as possible from hairs, prior to destructive sampling for biomolecules.

  11. Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution.

    PubMed

    Rashed, M N

    2001-04-01

    Cadmium and lead were determined in different tissues (muscle, gill, stomach, intestine. liver, vertebral column and scales) of Tilapia nilotica from the High Dam Lake, Aswan (Egypt) to assess the lake water pollution with those toxic metals. Fish samples were chosen from different ages and weights to be analyzed along with samples of the aquatic plant (Najas armeta), sediment and lake water. The results showed that cadmium and lead concentrations were higher in fish scales and vertebral column than in the other parts of the fish. Cadmium and lead levels in High Dam lake water and fish (Tilapia nilotica) were a result of the pollution which uptakes from aquatic plants, sediments and gasoline containing lead that leaks from fishery boats. Tilapia nilotica fish was used as a good bio-assay indicator for the lake pollution with cadmium and lead. The fish muscles in this study were in the safety baseline levels for man consumption.

  12. Northern fulmars as biological monitors of trends of plastic pollution in the eastern North Pacific.

    PubMed

    Avery-Gomm, Stephanie; O'Hara, Patrick D; Kleine, Lydia; Bowes, Victoria; Wilson, Laurie K; Barry, Karen L

    2012-09-01

    Marine plastic debris is a global issue, which highlights the need for internationally standardized methods of monitoring plastic pollution. The stomach contents of beached northern fulmar (Fulmarus glacialis) have proven a cost-effective biomonitor in Europe. However, recent information on northern fulmar plastic ingestion is lacking in the North Pacific. We quantified the stomach contents of 67 fulmars from beaches in the eastern North Pacific in 2009-2010 and found that 92.5% of fulmars had ingested an average of 36.8 pieces, or 0.385 g of plastic. Plastic ingestion in these fulmars is among the highest recorded globally. Compared to earlier studies in the North Pacific, our findings indicate an increase in plastic ingestion over the past 40 years. This study substantiates the use of northern fulmar as biomonitors of plastic pollution in the North Pacific and suggests that the high levels of plastic pollution in this region warrant further monitoring.

  13. Bacterial Communities in Polluted Seabed Sediments: A Molecular Biology Assay in Leghorn Harbor

    PubMed Central

    Verni, Franco; Petroni, Giulio

    2013-01-01

    Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of Proteobacteria and the high percentage of Bacteroidetes in all sites. The approach highlighted similar bacterial communities between samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution. PMID:24227997

  14. Effects of organic pollution on biological communities of marine biofilm on hard substrata.

    PubMed

    Sanz-Lázaro, C; Fodelianakis, S; Guerrero-Meseguer, L; Marín, A; Karakassis, I

    2015-06-01

    We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions.

  15. On the Heat Stability of Amyloid-Based Biological Activity: Insights from Thermal Degradation of Insulin Fibrils

    PubMed Central

    Surmacz-Chwedoruk, Weronika; Malka, Iwona; Bożycki, Łukasz; Nieznańska, Hanna; Dzwolak, Wojciech

    2014-01-01

    Formation of amyloid fibrils in vivo has been linked to disorders such as Alzheimer’s disease and prion-associated transmissible spongiform encephalopathies. One of the characteristic features of amyloid fibrils is the high thermodynamic stability relative both to native and disordered states which is also thought to underlie the perplexingly remarkable heat resistance of prion infectivity. Here, we are comparing high-temperature degradation of native and fibrillar forms of human insulin. Decomposition of insulin amyloid has been studied under helium atmosphere and in the temperature range from ambient conditions to 750°C using thermogravimetry and differential scanning calorimetry coupled to mass spectrometry. While converting native insulin into amyloid does upshift onset of thermal decomposition by ca. 75°C, fibrils remain vulnerable to covalent degradation at temperatures below 300°C, as reflected by mass spectra of gases released upon heating of amyloid samples, as well as morphology and infrared spectra of fibrils subjected to incubation at 250°C. Mass spectra profiles of released gases indicate that degradation of fibrils is much more cooperative than degradation of native insulin. The data show no evidence of water of crystallization trapped within insulin fibrils. We have also compared untreated and heated amyloid samples in terms of capacity to seed daughter fibrils. Kinetic traces of seed-induced insulin fibrillation have shown that the seeding potency of amyloid samples decreases significantly already after exposure to 200°C, even though corresponding electron micrographs indicated persisting fibrillar morphology. Our results suggest that amyloid-based biological activity may not survive extremely high temperature treatments, at least in the absence of other stabilizing factors. PMID:24466022

  16. Degradation of organic pollutants in/on snow and ice by singlet molecular oxygen (¹O₂*) and an organic triplet excited state.

    PubMed

    Bower, Jonathan P; Anastasio, Cort

    2014-04-01

    Singlet molecular oxygen (¹O₂*) can be a significant sink for a variety of electron-rich pollutants in surface waters and atmospheric drops. We recently found that ¹O₂* concentrations are enhanced by up to a factor of 10(4) on illuminated ice compared to in the equivalent liquid solution, suggesting that ¹O₂* could be an important oxidant for pollutants in snow. To examine this, here we study the degradation of three model organic pollutants: furfuryl alcohol (to represent furans), tryptophan (for aromatic amino acids), and bisphenol A (for phenols). Each compound was studied in illuminated aqueous solution and ice containing Rose Bengal (RB, a sensitizer for ¹O₂*) and sodium chloride (to adjust the concentration of total solutes). The RB-mediated loss of each organic compound is enhanced on illuminated ice compared to in solution, by factors of 6400 for furfuryl alcohol, 8300 for tryptophan, and 50 for bisphenol A for ice containing 0.065 mM total solutes. Rates of loss of furfuryl alcohol and tryptophan decrease at a higher total solute concentration, in qualitative agreement with predictions from freezing-point depression. In contrast, the loss of bisphenol A on ice is independent of total solute concentration. Relative to liquid tests, the enhanced loss of tryptophan on ice during control experiments made with deoxygenated solutions and solutions in D₂O show that the triplet excited state of Rose Bengal may also contribute to loss of pollutants on ice. PMID:24487942

  17. Degradation of organic pollutants in/on snow and ice by singlet molecular oxygen (¹O₂*) and an organic triplet excited state.

    PubMed

    Bower, Jonathan P; Anastasio, Cort

    2014-04-01

    Singlet molecular oxygen (¹O₂*) can be a significant sink for a variety of electron-rich pollutants in surface waters and atmospheric drops. We recently found that ¹O₂* concentrations are enhanced by up to a factor of 10(4) on illuminated ice compared to in the equivalent liquid solution, suggesting that ¹O₂* could be an important oxidant for pollutants in snow. To examine this, here we study the degradation of three model organic pollutants: furfuryl alcohol (to represent furans), tryptophan (for aromatic amino acids), and bisphenol A (for phenols). Each compound was studied in illuminated aqueous solution and ice containing Rose Bengal (RB, a sensitizer for ¹O₂*) and sodium chloride (to adjust the concentration of total solutes). The RB-mediated loss of each organic compound is enhanced on illuminated ice compared to in solution, by factors of 6400 for furfuryl alcohol, 8300 for tryptophan, and 50 for bisphenol A for ice containing 0.065 mM total solutes. Rates of loss of furfuryl alcohol and tryptophan decrease at a higher total solute concentration, in qualitative agreement with predictions from freezing-point depression. In contrast, the loss of bisphenol A on ice is independent of total solute concentration. Relative to liquid tests, the enhanced loss of tryptophan on ice during control experiments made with deoxygenated solutions and solutions in D₂O show that the triplet excited state of Rose Bengal may also contribute to loss of pollutants on ice.

  18. Enhanced photocatalytic activity for degrading pollutants of g-C3N4 by promoting oxygen adsorption after H3BO3 modification

    NASA Astrophysics Data System (ADS)

    Li, Chengming; Raziq, Fazal; Liu, Chong; Li, Zhijun; Sun, Liqun; Jing, Liqiang

    2015-12-01

    The g-C3N4 has been modified by a hydrothermal post treatment with orthoboric acid. It is shown that the surface modification with an appropriate amount of orthoboric acid obviously enhances the surface photovoltage responses of g-C3N4, clearly indicating that the separation of photogenerated charges is greatly improved. This is well responsible for the enhanced photocatalytic activities for degrading representative gas-phase acetaldehyde, and liquid-phase phenol. Moreover, it is demonstrated that the amount of O2 adsorbed on the surfaces of g-C3N4 is greatly increased after H3BO3 modification based on the O2 temperature-programmed desorption curves. It is suggested that the orthoboric acid modification favors O2 adsorption to promote the photogenerated electrons captured for improved photocatalytic activities. This work would provide feasible routes to further improve the photocatalytic performance of semiconductors for degrading pollutants.

  19. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    PubMed

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2015-11-20

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales.

  20. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater.

    PubMed

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens; Albers, Christian Nyrop

    2016-02-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 10(5) degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  1. Establishment of Bacterial Herbicide Degraders in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater

    PubMed Central

    Feld, Louise; Nielsen, Tue Kjærgaard; Hansen, Lars Hestbjerg; Aamand, Jens

    2015-01-01

    In this study, we investigated the establishment of natural bacterial degraders in a sand filter treating groundwater contaminated with the phenoxypropionate herbicides (RS)-2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and (RS)-2-(2,4-dichlorophenoxy)propanoic acid (DCPP) and the associated impurity/catabolite 4-chlorophenoxypropanoic acid (4-CPP). A pilot facility was set up in a contaminated landfill site. Anaerobic groundwater was pumped up and passed through an aeration basin and subsequently through a rapid sand filter, which is characterized by a short residence time of the water in the filter. For 3 months, the degradation of DCPP, MCPP, and 4-CPP in the sand filter increased to 15 to 30% of the inlet concentration. A significant selection for natural bacterial herbicide degraders also occurred in the sand filter. Using a most-probable-number (MPN) method, we found a steady increase in the number of culturable phenoxypropionate degraders, reaching approximately 5 × 105 degraders per g sand by the end of the study. Using a quantitative PCR targeting the two phenoxypropionate degradation genes, rdpA and sdpA, encoding stereospecific dioxygenases, a parallel increase was observed, but with the gene copy numbers being about 2 to 3 log units higher than the MPN. In general, the sdpA gene was more abundant than the rdpA gene, and the establishment of a significant population of bacteria harboring sdpA occurred faster than the establishment of an rdpA gene-carrying population. The identities of the specific herbicide degraders in the sand filter were assessed by Illumina MiSeq sequencing of 16S rRNA genes from sand filter samples and from selected MPN plate wells. We propose a list of potential degrader bacteria involved in herbicide degradation, including representatives belonging to the Comamonadaceae and Sphingomonadales. PMID:26590282

  2. Optimization and application of TiO₂/Ti-Pt photo fuel cell (PFC) to effectively generate electricity and degrade organic pollutants simultaneously.

    PubMed

    Li, Kan; Zhang, Hongbo; Tang, Tiantian; Xu, Yunlan; Ying, Diwen; Wang, Yalin; Jia, Jinping

    2014-10-01

    A TiO2/Ti-Pt photo fuel cell (PFC) was established to generate electricity and degrade organic pollutants simultaneously. The electricity generation was optimized through investigation the influences of photoanode calcination temperature and dissolve oxygen on the resistances existing in PFC. TiO2 light quantum yield was also improved in PFC which resulted in a higher PC degradation efficiency. Two kinds of real textile wastewaters were also employed in this PFC system, 62.4% and 50.0% Coulombic efficiency were obtained for 8 h treatment. These refractory wastewaters with high salinity may become good fuels in PFC because a) TiO2 has no selectivity and can degrade nearly any organic substance, b) no more electrolyte is needed due to the high salinity, c) the energy in wastes can be recovered to generate electricity. The electricity generated by the PFC was further applied on a TiO2/Ti rotating disk photoelectrocatalytic reactor. A bias voltage between 0.6 and 0.75 V could be applied and the PC degradation efficiency was significantly improved. This result was similar with that obtained by a 0.7 V DC power.

  3. Biological cycling of carbon and nitrogen to reduce agricultural pollution by nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon and nitrogen are two key elements of global significance, playing large roles in the production of food, feed, fiber, and fuel for human existence, as well as providing numerous other ecosystem services. Although nitrogen is often a limiting element in natural systems, it can become a pollut...

  4. SMOG CHAMBERS: A TOOL TO EXAMINE EFFECTS OF PHOTOCHEMICALLY AGED AIR POLLUTANTS ON BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Irradiative exposure chambers or 'Smog chambers' have been used at the University of North Carolina for over 30 years to study photochemically active mixtures of volatile organic compounds and their transformation products (a significant sub-set of Hazardous Air Pollutants, HAPs)...

  5. Enhancing the biological activity of chitosan and controlling the degradation by nanoscale interaction with bioglass.

    PubMed

    Ravarian, Roya; Craft, Michaela; Dehghani, Fariba

    2015-09-01

    A nonuniform degradation of physical mixture of organic-inorganic biomaterials increases their risk of failure. In this study a chemical bonding between chitosan and bioglass was used as an alternative product to address this issue. To prepare a homogenous composite, chitosan was functionalized with γ-glycidoxypropyl trimethoxysilane and chemically bonded with bioglass during sol-gel method. The gelation time of these hybrids samples was optimized by varying parameters such as composition of chitosan and temperature. It was shown that gelation time was reduced from 7 days for pure bioglass at 25°C to less than six minutes at 70°C for chitosan 40 vol % bioglass hybrid. Furthermore, the enzymatic degradation after 4 weeks was decreased from 80% mass loss for pure chitosan to 32% for chitosan 40 vol % bioglass hybrid. The results of in vitro study demonstrated that the presence of nanoscale interaction enhanced the bioactivity of chitosan. Additionally, hybrid scaffolds were fabricated with pore sizes in the range of 200-400 µm. These scaffolds were prepared by the addition of sodium bicarbonate during sol-gel method as a gas foaming agent and a neutralizer that resulted in decreasing the gelation time of hybrids to less than three minutes. The hybrids fabricated in this study possessed superior characteristics compared to chitosan, also physical mixture of chitosan-bioglass and are promising alternatives for bone tissue engineering applications. PMID:25690303

  6. Use of surfactants to improve the biological degradation of petroleum hydrocarbons in a field site study.

    PubMed

    Martienssen, M; Schirmer, M

    2007-05-01

    Mineral oil products are produced and utilized to a large extent. During the production, storage, filling up and utilization many spills occurred during the last decades. As a result, mineral oil contamination is recently one of the main problems in soil remediation. The predominant portion of the different oil components is easily degradable by microorganisms. But, its biodegradation in natural environments is often limited by the availability of the substrate to the microorganisms or by limited concentrations of nutrients and electron acceptors. Thus, the optimization of the environmental conditions can significantly improve the efficiency of degradation in both soil and groundwater (Enhanced Natural Attenuation approach). One major limiting factor in terms of the bioavailability of mineral oil is its limited solubility in water. Enhancing the solubility of the contaminants e.g. by the use of surfactants can significantly improve the efficiency of biodegradation. But, for the purpose of bioremediation only those surfactants should be used that are themselves completely biodegradable. Moreover, they have to be compatible to the surfaces of the bacteria. These requirements are met by biosurfactants and by those surfactants that contain structures comparable to naturally occurring microbial surfactants. The efficiency of such a close-to-nature surfactant (BioVersal FW) has been demonstrated for the in situ remediation of a highly contaminated site at Halle/S. (Germany). During the field scale investigation up to 50 g hydrocarbons per kg soil were eliminated over a period of 15 months.

  7. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution

    PubMed Central

    Ramakrishnan, Jayapradha; Balakrishnan, Hariram; Raja, Selvaraj Thirupathi Kumara; Sundararamakrishnan, Natarajan; Renganathan, Sadagoban; Radha, Venkatesh Nagarajan

    2011-01-01

    A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l). The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing. PMID:24031698

  8. Formulation of economical microbial feed using degraded chicken feathers by a novel Streptomyces sp: mitigation of environmental pollution.

    PubMed

    Ramakrishnan, Jayapradha; Balakrishnan, Hariram; Raja, Selvaraj Thirupathi Kumara; Sundararamakrishnan, Natarajan; Renganathan, Sadagoban; Radha, Venkatesh Nagarajan

    2011-07-01

    A new Streptomyces sp. IF 5 was isolated from the feather dumped soil and found to have a tremendous keratinase activity. The strain enabled the degradation of the chicken feathers very effectively in 60 h. The 16S rRNA sequence of 1474 bp long was submitted to the National centre for Biotechnological information. The keratinolytic activity in the culture medium was 1181 U/ml. The release and analyses of sulphydryl groups in the culture medium evident the degradation activity by the Streptomyces sp. IF 5. The idea of the present study was to use the degraded chicken feathers as the substrate for the growth and cultivation of microorganisms. We have designed a very economical culture medium that includes the usage of some basal salts alone and degraded chicken feathers (10 g/l). The results of the specific growth rate of the tested microbes confirm the usage of the new designed medium for microbial culturing.

  9. Mechanical strength vs. degradation of a biologically-derived surgical mesh over time in a rodent full thickness abdominal wall defect.

    PubMed

    Costa, A; Naranjo, J D; Turner, N J; Swinehart, I T; Kolich, B D; Shaffiey, S A; Londono, R; Keane, T J; Reing, J E; Johnson, S A; Badylak, S F

    2016-11-01

    The use of synthetic surgical mesh materials has been shown to decrease the incidence of hernia recurrence, but can be associated with undesirable effects such as infection, chronic discomfort, and adhesion to viscera. Surgical meshes composed of extracellular matrix (i.e., biologically-derived mesh) are an alternative to synthetic meshes and can reduce some of these undesirable effects but are less frequently used due to greater cost and perceived inadequate strength as the mesh material degrades and is replaced by host tissue. The present study assessed the temporal association between mechanical properties and degradation of biologic mesh composed of urinary bladder matrix (UBM) in a rodent model of full thickness abdominal wall defect. Mesh degradation was evaluated for non-chemically crosslinked scaffolds with the use of (14)C-radiolabeled UBM. UBM biologic mesh was 50% degraded by 26 days and was completely degraded by 90 days. The mechanical properties of the UBM biologic mesh showed a rapid initial decrease in strength and modulus that was not proportionately associated with its degradation as measured by (14)C. The loss of strength and modulus was followed by a gradual increase in these values that was associated with the deposition of new, host derived connective tissue. The strength and modulus values were comparable to or greater than those of the native abdominal wall at all time points. PMID:27619242

  10. Isolation of nitrobenzene degrading strain Pseudomonas NB001 and application in the bioremediation of polluted water body.

    PubMed

    Li, Mingtang; Cui, Juntao; Wang, Jihong; Wang, Jia; Hao, Linlin

    2012-01-01

    A bacterium using nitrobenzene (NB) as a sole source of carbon, nitrogen and energy was isolated from NB-contaminated water body by the enrichment technology. It was identified as Pseudomonas NB001 by the phylogenetic analysis based on 16S rDNA sequence and the biochemical and physiological characteristics. Degradation of NB by strain NB001 was concomitant with the release of nitrite. Activities of catechol2,3-dioxygenase in strain NB001 cells grown in the culture fluid were higher than that in cells under any other conditions (P < 0.05). Under the pure culture conditions, 98.4% of NB at initial concentration of 50 mg L(-1) was removed in 136 hours. Glucose at starting concentration of 100 mg L(-1) delayed the onset of the exponential phase of NB degradation and weakened the degradation ability of per cell in the pure culture systems. In the river water, 89.5% of NB was degraded in 8 days. Suspended matter obviously increased the degradation rate of NB in the early stages, but decreased in the final stages. Cd(2+) and Hg(2+) significantly weakened the ability of the strain to degrade NB at initial concentrations of 10.0 mg L(-1) and 5.0 mg L(-1), respectively. The results would offer useful information for the application of strain NB001 in the bioremediation or the control of NB-contaminated environment. PMID:22217084

  11. Application of Fenton's reagent as a pretreatment step in biological degradation of polyaromatic hydrocarbons

    SciTech Connect

    Kelley, R.L.; Gauger, W.K.; Srivastava, V.J.

    1990-01-01

    Fenton's reagent (H{sub 2}O{sub 2} and Fe{sup ++}) has been used for chemical oxidation of numerous organic compounds in water treatment schemes. In this study, the Institute of Gas Technology (IGT) applied Fenton's treatment to polynuclear aromatic hydrocarbons (PAHs) and PAH-contaminated soils. Fenton's treatment was very reactive with PAHs, causing rapid modification of the parental compounds to oxidized products and complete degradation to CO{sub 2}. This treatment was more effective on chemically reactive PAHs, such as benzo(a)pyrene and phenanthrene. Important parameters and conditions for Fenton's treatment of PAHs in solution and soil matrices have been identified. As much as 99% of the PAHs on soil matrices can be removed by treatment with Fenton's reagent. 28 refs., 13 figs., 1 tab.

  12. On the multiscale origins of fracture resistance in human bone and its biological degradation

    SciTech Connect

    Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.

    2012-03-09

    Akin to other mineralized tissues, human cortical bone can resist deformation and fracture due to the nature of its hierarchical structure, which spans the molecular to macroscopic length-scales. Deformation at the smallest scales, mainly through the composite action of the mineral and collagen, contributes to bone?s strength or intrinsic fracture resistance, while crack-tip shielding mechanisms active on the microstructural scale contribute to the extrinsic fracture resistance once cracking begins. The efficiency with which these structural features can resist fracture at both small and large length-scales becomes severely degraded with such factors as aging, irradiation and disease. Indeed aging and irradiation can cause changes to the cross-link profile at fibrillar length-scales as well as changes at the three orders of magnitude larger scale of the osteonal structures, both of which combine to inhibit the bone's overall resistance to the initiation and growth of cracks.

  13. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure.

    PubMed

    Møller, Henrik B; Sommer, Sven G; Ahring, Birgitte K

    2004-01-01

    Storage of manure makes a significant contribution to global methane (CH4) emissions. Anaerobic digestion of pig and cattle manure in biogas reactors before outside storage might reduce the potential for CH4 emissions. However, manure pre-stored at 15 to 20 degrees C in buildings before anaerobic digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20 degrees C for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage. The results show substantial methane and carbon dioxide production from animal manure in an open fed-batch system kept at 15 to 20 degrees C, even for short storage times, but the influence of temperature was not significant at storage times of <30 d. During long-term storage (90 d), a strong influence of temperature on the MCF value, especially for pig manure, was observed.

  14. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators.

    PubMed

    Cébron, Aurélie; Cortet, Jérôme; Criquet, Stéven; Biaz, Asmaa; Calvert, Virgile; Caupert, Cécile; Pernin, Céline; Leyval, Corinne

    2011-11-01

    A large number of soil bioindicators were used to assess biological diversity and activity in soil polluted with polycyclic aromatic hydrocarbons (PAHs) and the same soil after thermal desorption (TD) treatment. Abundance and biodiversity of bacteria, fungi, protozoa, nematodes and microarthropods, as well as functional parameters such as enzymatic activities and soil respiration, were assessed during a two year period of in situ monitoring. We investigated the influence of vegetation (spontaneous vegetation and Medicago sativa) and TD treatment on biological functioning. Multivariate analysis was performed to analyze the whole data set. A principal response curve (PRC) technique was used to evaluate the different treatments (various vegetation and contaminated vs. TD soil) contrasted with control (bare) soil over time. Our results indicated the value of using a number of complementary bioindicators, describing both diversity and functions, to assess the influence of vegetation on soil and discriminate polluted from thermal desorption (TD)-treated soil. Plants had an influence on the abundance and activity of all organisms examined in our study, favoring the whole trophic chain development. However, although TD-treated soil had a high abundance and diversity of microorganisms and fauna, enzymatic activities were weak because of the strong physical and chemical modifications of this soil.

  15. Metaproteomics and metabolomics analyses of chronically petroleum‐polluted sites reveal the importance of general anaerobic processes uncoupled with degradation

    PubMed Central

    Bargiela, Rafael; Herbst, Florian‐Alexander; Martínez‐Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N.; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M.; Golyshin, Peter N.

    2015-01-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi‐enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large‐scale chronic pollution is yet to be defined, particularly in anaerobic and micro‐aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen‐depleted petroleum‐polluted sediments. PMID:26201687

  16. Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation.

    PubMed

    Bargiela, Rafael; Herbst, Florian-Alexander; Martínez-Martínez, Mónica; Seifert, Jana; Rojo, David; Cappello, Simone; Genovese, María; Crisafi, Francesca; Denaro, Renata; Chernikova, Tatyana N; Barbas, Coral; von Bergen, Martin; Yakimov, Michail M; Ferrer, Manuel; Golyshin, Peter N

    2015-10-01

    Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.

  17. Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.

    1972-01-01

    There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.

  18. Linking ambient particulate matter pollution effects with oxidative biology and immune responses.

    PubMed

    Kelly, Frank J; Fussell, Julia C

    2015-03-01

    Exposure to combustion-related particulate matter (PM), at concentrations experienced by populations throughout the world, contributes to pulmonary and cardiac disease through multiple mechanistic pathways that are complex and interdependent. Current evidence supports an interactive chain of events linking pollution-induced pulmonary and systemic oxidative stress, inflammatory events, and translocation of particle constituents with an associated risk of vascular dysfunction, atherosclerosis, altered cardiac autonomic function, and ischemic cardiovascular and obstructive pulmonary diseases. Because oxidative stress is believed to play such an instrumental role in these pathways, the capacity of particulate pollution to cause damaging oxidative reactions (the oxidative potential) has been used as an effective exposure metric, identifying toxic components and sources within diverse ambient PM mixes that vast populations are subjected to-from traffic emissions on busy roads in urban areas to biomass smoke that fills homes in rural areas of the developing world.

  19. [Monitoring of wokplace air and coveralls pollution with mercury, and its content of biologic materials in workers engaged into caustic soda production].

    PubMed

    Lisetskaya, L G; Meshakova, N M; Shayakhmetov, S F

    2015-01-01

    The article covers retrospective evaluation of workplace air pollution with mercury in caustic production, and mercury content of swabs from coveralls and of biologic materials in the workers under study. The highest mercury content of biologic materials (blood, hair) was seen in workers of electrolysis workshop and mercury-containing sludge regeneration workshop. The authors revealed correlation between individual value of exposure to mercury and mercury content of biologic materials.

  20. Effects of air emissions on wildlife resources. Air pollution and acid rain report No. 1

    SciTech Connect

    Newman, J.R.

    1980-05-01

    This publication describes in general the pathways of contamination, direct and indirect effects of air emissions on wildlife resources, and the potential use of wildlife as biological indicators of air quality degradation. Also included in the report are summaries of air pollution incidents involving wildlife, responses of wildlife to air pollution, major target systems of selected air pollutants, and information on the capacity of some air pollutants to accumulate in body tissues.

  1. Caddisfly larvae as biological indicators of Pb pollution in an Austrian river

    SciTech Connect

    Koeck, G.; Pesendorfer, C.; Hofer, R.

    1995-12-31

    Caddisfly larvae (Trichoptera, Limnephilidae) were used as biomonitors of Pb pollution in an Austrian river. Pb-contaminated industrial effluents from a glass-manufacturing firm led to very high Pb concentrations in the sediment (up to 1,400 {micro}g.g{sup {minus}1} Pb, dry weight, in the clay fraction). Pb concentration in pooled samples of insect larvae from different sites were investigated during three consecutive years (1990--1992) to study time trends of Pb contamination after installation of a water purification plant (end of 1990). In 1990 Pb concentration of larvae from a sampling site downstream close to the pollution source were magnitudes higher (276 {micro}g.g{sup {minus}1} Pb, dry weight) than at an upstream reference site (6 {micro}g g{sup {minus}1} Pb, dry weight). However, after installation of the water purification plant, Pb concentration in caddisfly larvae decreased continuously by a constant rate of 64% per year. In 1992 Pb burden of the larvae amounted to only 13% of the Pb concentration in 1990. Pb burden of caddisfly larvae reflected the Pb contamination of the river even in 60 km distance from the pollution source. The study indicates caddisfly larvae to be valuable biomonitoring organisms of metal contamination in freshwater ecosystems.

  2. Bismuth oxychloride modified titanium phosphate nanoplates: A new p-n type heterostructured photocatalyst with high activity for the degradation of different kinds of organic pollutants.

    PubMed

    Ao, Yanhui; Bao, Jiaqiu; Wang, Peifang; Wang, Chao; Hou, Jun

    2016-08-15

    In this work, BiOCl modified titanium phosphate nanoplates (BiOCl/TP) composite photocatalysts with p-n heterojunctions were prepared by a in-situ growth method. The morphology, crystal structure and optical properties of the prepared samples were characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), UV-vis diffuse reflectance spectrometry (DRS). Rhodamine B (RhB), reactive brilliant Red X-3B (X-3B), methylene blue (MB), ciprofloxacin (CIP) and phenol were used to investigate the photocatalytic performance of the prepared samples under ultraviolet light irradiation. Results showed that the BiOCl/TP exhibited much higher activity for the degradation of all these model organic pollutants than pure TP. The mechanism for the enhancement of the photocatalytic performance was established with the help of the results of photocurrent measurements and Photoluminescence spectra. The results illustrated that the enhanced activity could be attributed to the formation of p-n heterojunctions between p-type BiOCl and n-type titanium phosphate, which effectively suppressed the recombination of photo-induced electron-hole pairs. Furthermore, the possible photocatalytic mechanisms on the degradation of the organic pollutants were also proposed.

  3. Bioaugmentation of biological contact oxidation reactor (BCOR) with phenol-degrading bacteria for coal gasification wastewater (CGW) treatment.

    PubMed

    Fang, Fang; Han, Hongjun; Zhao, Qian; Xu, Chunyan; Zhang, Linghan

    2013-12-01

    This study was conducted to evaluate the performance of the biological contact oxidation reactor (BCOR) treating coal gasification wastewater (CGW) after augmented with phenol degrading bacteria (PDB). The PDB were isolated with phenol, 4-methyl phenol, 3,5-dimethyl phenol and resorcinol as carbon resources. Much of the refractory phenolic compounds were converted into easily-biodegradable compounds in spite of low TOC removal. The bioaugmentation with PDB significantly enhanced the removal of COD, total phenols (TP) and NH3-N, with efficiencies from 58% to 78%, 66% to 80%, and 5% to 25%, respectively. In addition, the augmented BCOR exhibited strong recovery capability in TP and COD removal while recovery of NH3-N removal needed longer time. Microbial community analysis revealed that the PDB presented as dominant populations in the bacteria consortia, which in turn determined the overall performance of the system.

  4. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis.

  5. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  6. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70 %. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature. PMID:26359182

  7. Enhancing the biological degradability of sulfamethoxazole by ionizing radiation treatment in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sági, Gyuri; Kovács, Krisztina; Bezsenyi, Anikó; Csay, Tamás; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Changes of biodegradability and toxicity were followed up on aqueous solutions of sulfamethoxazole (SMX), during ionizing radiation treatment. The biodegradability of SMX (0.1 mmol dm-3) was specified by five-day biological oxygen demand (BOD5), using municipal activated sludge, and the results showed an improvement with applying only 0.4 kGy dose. BOD5 further increased with prolonged irradiation, indicating a conversion of SMX, a non-biodegradable compound, to biologically treatable substances. At 2.5 kGy dose, the BOD5/COD ratio increased from 0 to 0.16. The total organic carbon (TOC) content showed a decrease of only 15% at this point, thus high degree of mineralization is not necessary to make SMX digestible for the low concentrations of microorganisms used during BOD5 measurements. Increment in respiration inhibition of municipal activated sludge was observed with increasing the dose. The EC50 values showed a decrease of one order of magnitude when changing the dose from 0.4 kGy to 2.5 kGy. The increase of inhibition and formation of H2O2 showed a strong correlation.

  8. Kinetics of the aerobic biological degradation of shredded municipal solid waste in liquid phase.

    PubMed

    Liwarska-Bizukojc, Ewa; Bizukojc, Marcin; Ledakowicz, Stanislaw

    2002-04-01

    The organic fraction of municipal solid waste (OFMSW) should be utilised by means of biological methods. The biodegradation of solid wastes can be intensified owing to application of the bioreactors. Estimation of the optimum values of the organic load is one of the most important tasks for the aerobic biodegradation processes. The kinetic model of biological oxidation of the organic wastes has been presented in this paper. The experiments were carried out in batch 6-l working volume stirred tank bioreactors at constant temperature of 25 degrees C. Initial total solids have been at the levels of 15, 19, 34, 55 and 66 g l(-1). The kinetics of microbial decomposition of organic substances was described by means of an unstructured model. The satisfactory time courses for substrate chemical oxygen demand in the solid (CODs) and liquid phase (CODL) and biomass concentration (RNA) have been achieved. Also, the influence of the initial TS on the kinetics of the biodegradation process was investigated and the optimum value of initial TS for this type of processes was estimated at 34-55 g l(-1).

  9. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70 %. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature.

  10. Bioresources for control of environmental pollution.

    PubMed

    Sana, Barindra

    2015-01-01

    Environmental pollution is one of the biggest threats to human beings. For practical reasons it is not possible to stop most of the activities responsible for environmental pollution; rather we need to eliminate the pollutants. In addition to other existing means, biological processes can be utilized to get rid of toxic pollutants. Degradation, removal, or deactivation of pollutants by biological means is known as bioremediation. Nature itself has several weapons to deal with natural wastage and some of them are equally active for eliminating nonnatural pollutants. Several plants, microorganisms, and some lower eukaryotes utilize environmental pollutants as nutrients and some of them are very efficient for decontaminating specific types of pollutants. If exploited properly, these natural resources have enough potential to deal with most elements of environmental pollution. In addition, several artificial microbial consortia and genetically modified organisms with high bioremediation potential were developed by application of advanced scientific tools. On the other hand, natural equilibria of ecosystems are being affected by human intervention. Rapid population growth, urbanization, and industrialization are destroying ecological balances and the natural remediation ability of the Earth is being compromised. Several potential bioremediation tools are also being destroyed by biodiversity destruction of unexplored ecosystems. Pollution management by bioremediation is highly dependent on abundance, exploration, and exploitation of bioresources, and biodiversity is the key to success. Better pollution management needs the combined actions of biodiversity conservation, systematic exploration of natural resources, and their exploitation with sophisticated modern technologies.

  11. Photodegradation of fluorene in aqueous solution: Identification and biological activity testing of degradation products.

    PubMed

    Kinani, Said; Souissi, Yasmine; Kinani, Aziz; Vujović, Svetlana; Aït-Aïssa, Sélim; Bouchonnet, Stéphane

    2016-04-15

    Degradation of fluorene under UV-vis irradiation in water was investigated and structural elucidation of the main photoproducts was achieved using gas chromatography coupled with mass spectrometry. Twenty-six photoproducts were structurally identified, mainly on the basis of electron ionization mass spectra interpretation. The main generated transformation products are hydroxy derivatives. Some secondary photoproducts including fluorenone, hydroxy fluorenone, 2-biphenyl carboxylic acid, biphenylene, methanol fluorene congeners and hydroxy fluorene dimers were also observed. A photodegradation pathway was suggested on the basis of the chemical structures of photoproducts. Fluorene as well as its main photoproducts for which chemical standards were commercially available were tested for their ability to elicit cytotoxic, estrogenic and dioxin-like activity by using in vitro cell-based bioassays. None of the tested compounds was cytotoxic at concentrations up to 100 μM. However, 2-hydroxyfluorene and 3-hydroxyfluorene exerted significant estrogenic and dioxin-like activity on a concentration range of 3-30 μM, while fluorene and 9-hydroxyfluorene were weakly or not active, respectively, in our assays. This supports the view that photodegradation processes can generate by-products of higher toxicological concern than the parent compound and strengthens the need to further identify transformation products in the aquatic environment.

  12. [Effects of dissolved oxygen in the oxic parts of A/O reactor on degradation of organic pollutants and analysis of microbial community for treating petrochemical wastewater].

    PubMed

    Ding, Peng-Yuan; Chu, Li-Bing; Zhang, Nan; Wang, Xing; Wang, Jian-Long

    2015-02-01

    Effects of dissolved oxygen (DO) on the biodegradation of organic pollutants were investigated using A/O reactors for the treatment of actual petrochemical wastewater. Two A/O reactors, DO were controlled at 2-3 mg x L(-1) in the oxic parts of reactor A and 5-6 mg x L(-1) of reactor B, were operated in parallel for comparison. The nearly a half of year operation results showed that the effluent COD in reactor A (72.5 ± 14.8 mg x L(-1)) was slightly higher than that in reactor B (68.7 ± 14.6 mg x L(-1)) at a HRT of 20 h. The average COD removal efficiencies were 67.0% and 68.8%, respectively. The effluent ammonium concentration was maintained at 0.8 mg x L(-1) and approximately 95% of ammonium removal was achieved. The effluent BOD, concentration was lower than 5 mg x L(-1). This indicated that the organic pollutants could be degraded thoroughly by the A/O processes, which were affected slightly by DO. Results of 454 pyrosequencing analysis of the sludge in oxic parts showed that at the phylum levels, sequences belonged to Proteobacteria, Planctomycetes and Bacteroidetes were abundant with 58.7% and 59.2%, 14.7% and 12.7%, 10.8% and 12.4% of total bacterial sequences in reactor A and B, respectively. Ammonium oxidation bacteria Nitrosomonas, nitrite oxidizing bacteria Nitrospira and obligate aerobic bacteria were highly enriched in reactor B with high DO levels, while the anaerobic denitrifiers Azospira and Acidovora were highly enriched in reactor A with low DO levels. The identified bacteria belonged to genera Novosphingobium, Comamonas, Sphingobium and Altererythrobacter were reported to degrade PAHs, chloronitrobenzene, pesticides and petroleum, which contributed to the degradation of petrochemical wastewater.

  13. Poly(L-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle.

    PubMed

    Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien

    2012-01-01

    The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at 46° C. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer. PMID:22297224

  14. Herbivory-associated degradation of tomato trichomes and its impact on biological control of Aculops lycopersici.

    PubMed

    van Houten, Y M; Glas, J J; Hoogerbrugge, H; Rothe, J; Bolckmans, K J F; Simoni, S; van Arkel, J; Alba, J M; Kant, M R; Sabelis, M W

    2013-06-01

    Tomato plants have their leaves, petioles and stems covered with glandular trichomes that protect the plant against two-spotted spider mites and many other herbivorous arthropods, but also hinder searching by phytoseiid mites and other natural enemies of these herbivores. This trichome cover creates competitor-free and enemy-free space for the tomato russet mite (TRM) Aculops lycopersici (Acari: Eriophyidae), being so minute that it can seek refuge and feed inbetween the glandular trichomes on tomato cultivars currently used in practice. Indeed, several species of predatory mites tested for biological control of TRM have been reported to feed and reproduce when offered TRM as prey in laboratory experiments, yet in practice these predator species appeared to be unable to prevent TRM outbreaks. Using the phytoseiid mite, Amblydromalus limonicus, we found exactly the same, but also obtained evidence for successful establishment of a population of this predatory mite on whole plants that had been previously infested with TRM. This successful establishment may be explained by our observation that the defensive barrier of glandular plant trichomes is literally dropped some time after TRM infestation of the tomato plants: the glandular trichome heads first rapidly develop a brownish discoloration after which they dry out and fall over onto the plant surface. Wherever TRM triggered this response, predatory mites were able to successfully establish a population. Nevertheless, biological control was still unsuccessful because trichome deterioration in TRM-infested areas takes a couple of days to take effect and because it is not a systemic response in the plant, thereby enabling TRM to seek temporary refuge from predation in pest-free trichome-dense areas which continue to be formed while the plant grows. We formulate a hypothesis unifying these observations into one framework with an explicit set of assumptions and predictions to be tested in future experiments.

  15. In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants

    SciTech Connect

    Pfahler, P.L.

    1981-01-01

    In vitro pollen germination in maize was evaluated as a method of assessing the mutagenic and physiological effects of environmental pollutants on higher organisms. The extent of mutations was effectively determined by testing sporophytes homozygous for the mutated allele. Physiological effects were effectively determined when chemical agents were added directly into the in vitro medium. Exposure of pollen grains during in vitro germination to ultraviolet radiation in the range 280-320 nm produced little or no change in the germination or rupture percentage but a sharp decrease in pollen tube growth after 1 hr.

  16. Ion trap LC/MS characterisation of toxic polar organic pollutants in colour photographic wastewaters and monitoring of their chemical degradation.

    PubMed

    Lunar, L; Rubio, S; Pérez-Bendito, D

    2004-02-01

    Liquid chromatography/electrospray ionisation-ion trap mass spectrometry (LC/ESI-ITMS) with positive mode of operation was successfully applied to the characterisation of aromatic amines and chelating agents in colour photographic wastewaters. In addition to residual ingredients, monomers and dimers of sulphonated aromatic amines were the main toxic polar organic pollutants found. Oxidation of wastewater components by the Fenton-like reagent (Fe3+ + H2O2) was investigated by continuously pumping a solution of hydrogen peroxide. Iron concentration, present in the wastewater as ferric carboxylate complexes, was typically above 1 g l(-1), and therefore addition of Fe3+ was not necessary for treatment. Operating variables like reagent feeding concentration and flowrate, temperature and pH were studied. The overall chemical oxygen demand (COD) removal reached 90% after 7.5 h of treatment when the dosage of hydrogen peroxide was 230 g per litre of effluent, the pH was about 4 and the temperature was 60 degrees C. The absence of toxics in the treated effluents was confirmed by the Photobacterium phosphoreum luminescence reduction test. Monitoring of the chemical degradation of aromatic amines and chelating agents by LC/ESI-ITMS proved that the Fenton's like reagent was effective in degrading them. Propylenediamine tetraacetic acid (PDTA) was found to be the more recalcitrant compound, however about 97% of degradation was achieved after 7.5 hours of treatment.

  17. Self-assembly graphitic carbon nitride quantum dots anchored on TiO2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light.

    PubMed

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-10-01

    In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  18. Carbon-dot-decorated TiO₂ nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria.

    PubMed

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-18

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e(-)/h(+) pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  19. Ternary ZnO/Ag3VO4/Fe3O4 nanocomposites: Novel magnetically separable photocatalyst for efficiently degradation of dye pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Shekofteh-Gohari, Maryam; Habibi-Yangjeh, Aziz

    2015-10-01

    In this work, we successfully prepared a series of novel magnetically separable ZnO/Ag3VO4/Fe3O4 nanocomposites by a facile refluxing method using Fe3O4, zinc nitrate, silver nitrate, ammonium metavanadate, and sodium hydroxide as starting materials without using any post preparation treatments. The microstructure, purity, morphology, spectroscopic, and magnetic properties of the prepared samples were studied using XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, PL, and VSM techniques. The ZnO/Ag3VO4/Fe3O4 nanocomposite with 8:1 weight ratio of ZnO/Ag3VO4 to Fe3O4 has the superior activity in degradation of rhodamine B under visible-light irradiation. Photocatalytic activity of this nanocomposite is about 11.5-fold higher than that of the ZnO/Fe3O4 nanocomposite. The results showed that the preparation time and calcination temperature significantly affect on the photocatalytic activity. The trapping experiments revealed that superoxide ions and holes have major influence on the degradation reaction. Furthermore, the enhanced activity of the nanocomposite for degradation of two more dye pollutants was confirmed. Finally, the nanocomposite was magnetically separated from the treated solution after four successive cycles.

  20. Carbon-dot-decorated TiO2 nanotube arrays used for photo/voltage-induced organic pollutant degradation and the inactivation of bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Lingyan; Sun, Hanjun; Ren, Jinsong; Qu, Xiaogang

    2016-03-01

    Photoluminescent carbon dots (c-dots) have recently attracted growing interest as a new member of the carbon-nanomaterial family. Here, we report for the first time that c-dot-decorated TiO2 nanotube arrays (c-dot/TiNTs) exhibit highly enhanced abilities regarding photo/voltage-induced organic pollutant degradation and bacterial inactivation. By applying UV irradiation (365 nm) or an electrochemical potential over 3 V (versus Ag/AgCl), an organic dye and a herbicide were efficiently degraded. Moreover, the inactivation of Gram-positive S. aureus and Gram-negative E. coli bacteria was realized on a c-dot/TiNT film. The c-dots were able to absorb light efficiently resulting in multiple exciton generation and also a reduction in the recombination of the e-/h+ pair produced in c-dot/TiNT film during photo/voltage-induced degradation. It was also possible to readily regenerate the surface using ultraviolet light irradiation, leaving the whole film structure undamaged and with high reproducibility and stability.

  1. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9.

  2. TAML/H2O2 Oxidative Degradation of Metaldehyde: Pursuing Better Water Treatment for the Most Persistent Pollutants.

    PubMed

    Tang, Liang L; DeNardo, Matthew A; Gayathri, Chakicherla; Gil, Roberto R; Kanda, Rakesh; Collins, Terrence J

    2016-05-17

    The extremely persistent molluscicide, metaldehyde, widely used on farms and gardens, is often detected in drinking water sources of various countries at concentrations of regulatory concern. Metaldehyde contamination restricts treatment options. Conventional technologies for remediating dilute organics in drinking water, activated carbon, and ozone, are insufficiently effective against metaldehyde. Some treatment plants have resorted to effective, but more costly UV/H2O2. Here we have examined if TAML/H2O2 can decompose metaldehyde under laboratory conditions to guide development of a better real world option. TAML/H2O2 slowly degrades metaldehyde to acetaldehyde and acetic acid. Nuclear magnetic resonance spectroscopy ((1)H NMR) was used to monitor the degradation-the technique requires a high metaldehyde concentration (60 ppm). Within the pH range of 6.5-9, the reaction rate is greatest at pH 7. Under optimum conditions, one aliquot of TAML 1a (400 nM) catalyzed 5% degradation over 10 h with a turnover number of 40. Five sequential TAML aliquots (2 μM overall) effected a 31% removal over 60 h. TAML/H2O2 degraded metaldehyde steadily over many hours, highlighting an important long-service property. The observation of metaldehyde decomposition under mild conditions provides a further indication that TAML catalysis holds promise for advancing water treatment. These results have turned our attention to more aggressive TAML activators in development, which we expect will advance the observed technical performance. PMID:27088657

  3. BIODEGRADATION OF ENVIRONMENTAL POLLUTANTS BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOPORIUM: INVOLVEMENT OF THE LIGNIN DEGRADING SYSTEM

    EPA Science Inventory

    The white-rot fungus Phanrochaete chrysosporium has the ability to degrade a wide variety of structurally diverse organic compounds, including a number of environmentally persistent organopollutants. The unique biodegradative abilities of this fungus appears to be depend...

  4. A new alkali-activated steel slag-based cementitious material for photocatalytic degradation of organic pollutant from waste water.

    PubMed

    Zhang, Yao Jun; Liu, Li Cai; Xu, Yong; Wang, Ya Chao; Xu, De Long

    2012-03-30

    A new type of Ni,Ca-cementitious material was firstly synthesized via a two-step reaction of alkali-activated steel slag polymerization and ion exchange. The XRF results showed that almost all the Na(+) ions in the matrix of Na,Ca-cementitious material were replaced by Ni(2+) ions at room temperature. The new hydrated products of metahalloysite (Si(2)Al(2)O(5)(OH)(4)) and calcium silicate hydrate (CSH) were formed in the Na,Ca-cementitious material. The diffuse reflectance UV-vis near infrared ray spectrum was blue-shifted due to the strong interaction between Ni(2+) and negative charge of [AlO(4)](5-) tetrahedron in the framework of cementitious material. The Ni,Ca-cementitious material was used as a catalyst for the photocatalytic degradation of methylene blue dye and showed a degradation rate of 94.39% under UV irradiation. The high photocatalytic degradation activity was suggested to be the synergistic effect of the cementitious matrix, Ni(2+) ions and the iron oxides of wustite (FeO) and calcium iron oxide (Ca(2)Fe(2)O(5)) from the steel slag. A probable mechanism of photocatalytic oxidative degradation was proposed.

  5. A novel hybrid nano zerovalent iron initiated oxidation--biological degradation approach for remediation of recalcitrant waste metalworking fluids.

    PubMed

    Jagadevan, Sheeja; Jayamurthy, Manickam; Dobson, Peter; Thompson, Ian P

    2012-05-01

    Disposal of operationally exhausted metal working fluids (MWF) through a biological route is an attractive option, since it is effective with relatively low energy demands. However, it is enormously challenging since these fluids are chemically complex, including the addition of toxic biocides which are added specifically to retard bio-deterioration whilst the fluids are operational. Nano-sized elemental iron represents a new generation of environmental remediation technologies. Laboratory scale batch studies were performed to test the degradation ability of a semi-synthetic metalworking fluid (MWF) wastewater (which was found to be resistant to initial bacterial treatment in specifically established bioreactors) by employing a novel hybrid approach. The approach was to combine the synergistic effects of nano zerovalent iron (nZVI) induced oxidation, followed by biodegradation, specifically for the remediation of recalcitrant components of MWF effluent. Addition of nZVI particles to oxygenated wastewater resulted in oxidation of organic contaminants present. Our studies confirmed 78% reduction in chemical oxygen demand (COD) by nZVI oxidation at pH 3.0 and 67% reduction in neutral pH (7.5), and 85% concurrent reduction in toxicity. Importantly, this low toxicity made the nZVI treated effluent more amenable for a second stage biological oxidation step. An overall COD reduction of 95.5% was achieved by the novel combined treatment described, demonstrating that nZVI oxidation can be exploited for enhancing the biodegradability of a recalcitrant wastewater in treatment processes. PMID:22365368

  6. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    , which increased phosphatase activity in the compost amended soil. Plant growth was significantly higher in amended soils than in the control, but it is remarkable that the mulch type "forest chopped residue" had a negative effect on vegetation growth. The addition of organic amendments, especially compost from the organic fraction of domestic wastes, is beneficial to restore degraded or man-made soils from quarrying areas because they stimulate microbial growth and activity, resulting in mineralization of nutrients necessary for plants and increasing soil fertility and quality. However, after 5 years the effects of the mulch "forest chopped residue", on the improvement of soil or substrate quality are not clear.

  7. Degradation of bare and silanized silicon wafer surfaces by constituents of biological fluids.

    PubMed

    Dekeyser, C M; Buron, C C; Derclaye, S R; Jonas, A M; Marchand-Brynaert, J; Rouxhet, P G

    2012-07-15

    The 24 h stability of bare silicon wafers as such or silanized with CH(3)O-(CH(2)-CH(2)-O)(n)-C(3)H(6)-trichlorosilane (n=6-9) was investigated in water, NaCl, phosphate and carbonate solutions, and in phosphate buffered saline (PBS) at 37 °C (close to biological conditions regarding temperature, high ionic strength, and pH). The resulting surfaces were analyzed using ellipsometry, X-ray Reflectometry (XRR), X-ray Photoelectron Spectroscopy (XPS), and Atomic Force Microscopy (AFM). Incubation of the silanized wafers in phosphate solution and PBS provokes a detachment of the silane layer. This is due to a hydrolysis of Si-O bonds which is favored by the action of phosphate, also responsible for a corrosion of non-silanized wafers. The surface alteration (detachment of silane layer and corrosion of the non-silanized wafer) is also important with carbonate solution, due to a higher pH (8.3). The protection of the silicon oxide layer brought by silane against the action of the salts is noticeable for phosphate but not for carbonate.

  8. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation.

    PubMed

    Ballesteros Martín, M M; Sánchez Pérez, J A; García Sánchez, J L; Montes de Oca, L; Casas López, J L; Oller, I; Malato Rodríguez, S

    2008-06-30

    Biodegradability of aqueous solutions of the herbicide alachlor and the fungicide pyrimethanil, partly treated by photo-Fenton, and the effect of photoreaction intermediates on growth and DOC removal kinetics of the bacteria Pseudomonas putida CECT 324 are demonstrated. Toxicity of 30-120 mg L(-1) alachlor and pyrimethanil has been assayed in P. putida. The biodegradability of photocatalytic intermediates found at different photo-treatment times was evaluated for each pesticide. At a selected time during batch-mode phototreatment, larger-scale biodegradation kinetics were analysed in a 12 L bubble column bioreactor. Both alachlor and pyrimethanil are non-toxic for P. putida CECT 324 at the test concentrations, but they are not biodegradable. A approximately 100 min photo-Fenton pre-treatment was enough to enhance biodegradability, the biological oxidation response being dependent on the pesticide tested. The different alachlor and pyrimethanil respiration and carbon uptake rates in pre-treated solutions are related to change in the growth kinetics of P. putida. Reproducible results have shown that P. putida could be a suitable microorganism for determining photo-Fenton pre-treatment time. PMID:18162295

  9. Biological activity resulting from exposure to aquatic environmental genotoxic pollutants in northern Egypt.

    PubMed

    Saad, A A; El-Sikaily, A M; Kholeif, S F; Khalil, E S; Mahrous, H S; Al-Zabedi, E M S; Kassem, H A

    2010-01-01

    We estimated pollution in Lake Edku and the Mediterranean Sea, El-Maadiya Region, with 3 aromatic amines (1-naphthylamine, 2-naphthylamine and benzidine) in the muscle tissue of fish. There were marked seasonal variations in the aromatic amine levels. We also determined oxidative stress (blood glutathione, and catalase activity) and genotoxic effects (chromosomal aberrations and urinary metabolites) in fishermen from each area. The fishermen suffered from oxidative stress and had high levels of the urinary metabolite sulfanilamide [mean (microg/mg creatinine): Lake Edku 20.7, Mediterranean 14.5, controls 5.3]. Frequencies for total chromosomal aberrations were significantly raised in the peripheral blood lymphocytes of fishermen in both areas [frequency (per 100 metaphases): Mediterranean 67, Lake Edku 45, controls 14]. PMID:20214163

  10. Biological risk, source and pollution history of organochlorine pesticides (OCPs) in the sediment in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Yuan, Xin; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Li, Yang

    2015-07-15

    In the last century, organochlorine pesticides (OCPs) have been extensively used, especially in South China, to promote crop yield. In view of their toxicity, persistence and bioavailability, however, the Chinese government has attempted to regulate their production and use. We aimed to examine the biological risk, source and pollution history of OCPs in the sediment in Nansha mangrove which is located in the industrial region in South China. Results showed that HCHs and DDTs, mainly originating from lindane and technical DDT respectively, were the dominant OCPs, but their concentrations were too low to cause adverse effects on biota. In the last decade, the total concentration of HCHs showed a decreasing trend, whereas DDTs remained stable, despite their limited input. This suggests that management of HCHs was effective, while more management efforts should be put on DDTs, especially the use of dicofol and technical DDT, in future.

  11. Biological risk, source and pollution history of organochlorine pesticides (OCPs) in the sediment in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Yuan, Xin; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Li, Yang

    2015-07-15

    In the last century, organochlorine pesticides (OCPs) have been extensively used, especially in South China, to promote crop yield. In view of their toxicity, persistence and bioavailability, however, the Chinese government has attempted to regulate their production and use. We aimed to examine the biological risk, source and pollution history of OCPs in the sediment in Nansha mangrove which is located in the industrial region in South China. Results showed that HCHs and DDTs, mainly originating from lindane and technical DDT respectively, were the dominant OCPs, but their concentrations were too low to cause adverse effects on biota. In the last decade, the total concentration of HCHs showed a decreasing trend, whereas DDTs remained stable, despite their limited input. This suggests that management of HCHs was effective, while more management efforts should be put on DDTs, especially the use of dicofol and technical DDT, in future. PMID:26021291

  12. Indoor air pollution evaluation with emphasize on HDI and biological assessment of HDA in the polyurethane factories.

    PubMed

    Mirmohammadi, Mirtaghi; Hakimi Ibrahim, M; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2010-06-01

    Today, many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them which is widely used in the polyurethane factories is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Hexamethylene diamine (HDA) is metabolite of hexamethylene diisocyanate (HDI). It is an excretory material by worker's urine who is exposed to HDI. Around 100 air samples were collected from five defined factories by midget impinger which contained dimethyl sulfoxide absorbent as a solvent and tryptamine as reagent. Samples were analyzed by high-performance liquid chromatography with EC\\UV detector using NIOSH 5522 method of sampling. Also, 50 urine samples collected from workers were also analyzed using William's biological analysis method. The concentration of HDI into all air samples were more than 88 microg/m(3), and they have shown high concentration of pollutant in the workplaces in comparison with NIOSH standard, and all of the workers' urine were contaminated by HDA. The correlation and regression test were used to obtain statistical model for HDI and HDA, which is useful for the prediction of diisocyanates pollution situation in the polyurethane factories.

  13. Breeding biology and relation of pollutants to black skimmers and gull-billed terns in South Carolina

    USGS Publications Warehouse

    Blus, Lawrence J.; Stafford, Charles J.

    1980-01-01

    The breeding biology and relation of pollutants to black skimmers (Ryn chops niger) and gull-billed terns (Gelochelidon nilotica) were investigated in South Carolina from 1969 through 1975. With few exceptions, the two species nested together in colonies located on barrier islands. We located 10 colonies, 7 of which were on the Cape Romain National Wildlife Refuge (Cape Romain); references were located that described nesting on seven other islands in South Carolina that no longer support colonies. Gull-billed terns nested from early May through July; the skimmers started later (late May) but also continued later (early September). Both species nested in areas subject to tidal flooding, and the two species persisted in nesting in several colonies despite intense predation by rats and gulls. Estimated reproductive success varied greatly from year to year and colony to colony; success in most colonies seemed low, particularly for the gull-billed tern. Residues of organochlorine pollutants in several eggs seemed of sufficient magnitude to induce adverse effects on reproductivity and eggshell thickness: however, the overall effect of organochlorines appeared negligible. Maximum numbers of nests located in a single year were 790 for the skimmer and 340 for the gull-billed tern: the total breeding population in South Carolina is unknown. Although nesting islands at Cape Romain and Deveaux Bank are sanctuaries for nesting birds, both species will continue to lose nesting habitat as additional sea islands are developed and inhabited by man.

  14. Mycoplasma hyorhinis markedly degrades β-amyloid peptides in vitro and ex vivo: a novel biological approach for treating Alzheimer’s disease?

    PubMed Central

    Habib, Ahsan; Deng, Juan; Hou, Huayan; Zou, Qiang; Giunta, Brian; Wang, Yan-Jiang; Obregon, Demian; Sawmiller, Darrell; Li, Song; Mori, Takashi; Tan, Jun

    2013-01-01

    Accumulation of amyloid-β (Aβ) peptides (predominantly Aβ40, 42) and their aggregation into plaques in the brain are thought to be the one of the major causes of Alzheimer’s disease (AD). Originally discovered in our Chinese hamster ovary (CHO) cell line stably expressing human wild-type amyloid precursor protein (APP) (CHO/APPwt) cultures devoid of Aβ production, we found that Mycoplasma selectively degrades soluble Aβ in a time and dose (colony forming unit) dependent manner. Moreover, we fully characterized the Mycoplasma species as Mycoplasma hyorhinis (M. hyorhinis) by genetic and colony morphological analyses by light microscopy. Most interestingly, we attenuated the pathogenicity of M. hyorhinis by γ irradiation (3.5 Gy), and found that its ability to degrade Aβ was retained. On the other hand, heated and sonicated M. hyorhinis failed to retain this ability to degrade Aβ, suggesting that this degradation requires viable cells and likely a biologically active signaling pathway. In addition, we found that M. hyorhinis can degrade Aβ produced in AD model mice (PSAPP mice) ex vivo. Finally, we found that irradiated (non-pathogenic) M. hyorhinis also can degrade Aβ produced in PSAPP mice in vivo. These studies suggest that irradiated (non-pathogenic) M. hyorhinis can be a novel and alternative biological strategy for AD treatment. PMID:24093060

  15. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    PubMed

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum. PMID:26288572

  16. Molecular application for identification of polycyclic aromatic hydrocarbons degrading bacteria (PAHD) species isolated from oil polluted soil in Dammam, Saud Arabia.

    PubMed

    Ibrahim, Mohamed M; Al-Turki, Ameena; Al-Sewedi, Dona; Arif, Ibrahim A; El-Gaaly, Gehan A

    2015-09-01

    Soil contamination with petroleum hydrocarbon products such as diesel and engine oil is becoming one of the major environmental problems. This study describes hydrocarbons degrading bacteria (PHAD) isolated from long-standing petrol polluted soil from the eastern region, Dammam, Saudi Arabia. The isolated strains were firstly categorized by accessible shape detection, physiological and biochemistry tests. Thereafter, a technique established on the sequence analysis of a 16S rDNA gene was used. Isolation of DNA from the bacterial strains was performed, on which the PCR reaction was carried out. Strains were identified based on 16S rDNA sequence analysis, As follows amplified samples were spontaneously sequenced automatically and the attained results were matched to open databases. Among the isolated bacterial strains, S1 was identified as Staphylococcus aureus and strain S1 as Corynebacterium amycolatum.

  17. Denitrification in wastewater treatment (excluding biological methods). (Latest citations from pollution abstracts). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning chemical and physical methods for the removal of nitrogen-containing compounds from wastewater. Filtration, absorption, air-lift loop reactors, and fluidized bed processes are among the techniques presented. The citations cover process design, evaluation, economic analysis, and applications in the treatment of industrial and municipal wastewaters. Special attention is given to the use of computers for process automation and mathematical simulation of denitrification processes. Biological denitrification methods are referenced in a related bibliography.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Denitrification in wastewater treatment (excluding biological methods). (Latest citations from Pollution abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning chemical and physical methods for the removal of nitrogen-containing compounds from wastewater. Filtration, absorption, air-lift loop reactors, and fluidized bed processes are among the techniques presented. The citations cover process design, evaluation, economic analysis, and applications in the treatment of industrial and municipal wastewaters. Special attention is given to the use of computers for process automation and mathematical simulation of denitrification processes. Biological denitrification methods are referenced in a related bibliography. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  19. Combined use of GIS and environmental indicators for assessment of chemical, physical and biological soil degradation in a Spanish Mediterranean region.

    PubMed

    de Paz, José-Miguel; Sánchez, Juan; Visconti, Fernando

    2006-04-01

    Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to

  20. Anaerobic degradation of anionic surfactants by indigenous microorganisms from sediments of a tropical polluted river in Brazil.

    PubMed

    Duarte, Iolanda Cristina Silveira; de Franca, Paula; Okada, Dagoberto Yukio; Do Prada, Pierre Ferreira; Varesche, Maria Bernadete Amancio

    2015-03-01

    Linear alkylbenzene sulfonate (LAS) is widely used in the formulation of domestic and industrial cleaning products, the most synthetic surfactants used worldwide. These products can reach water bodies through the discharge of untreated sewage or non-effective treatments. This study evaluates the ability of the microorganisms found in the Tiete river sediment to degrade this synthetic surfactant. The experiment was conducted in a bioreactor, operated in batch sequences under denitrifying conditions, with cycles of 24 hours and stirring at 150rpm, using 430 mL of sediments and 1 070mL of a synthetic substrate consisting of yeast extract, soluble starch, sodium bicarbonate and sucrose. LAS was added at different concentrations of l5mg/L and 30mg/L. The reactor operation was divided into the biomass adaptation to the synthetic substrate without LAS and three experimental conditions: a) addition of l5mg/L of LAS; b) 50% reduction the co-substrate concentration and 15 mg/L of LAS, and c) addition of 30mg/L of LAS and 100% co-substrate concentration. The results showed that the degradation efficiency of LAS was directly related to the addition of co-substrates and the population of denitrifying bacteria. The removal of LAS and nitrate can be achieved simultaneously in wastewater with low organic loads. The reduction in the co-substrates concentration was directly influenced by the number of denitrifying bacteria (2.2x10(13) to 1.0 x 10(8) MPN/gTVS), and consequently, LAS degradation (60.1 to 55.4%). The sediment microorganisms in the Tiete river can be used as an alternative inoculum in the treatment of wastewater with nitrate and LAS contamination. PMID:26299133

  1. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant.

    PubMed

    Li, Dong; Jia, Jialin; Zhang, Yuhang; Wang, Na; Guo, Xiaolei; Yu, Xiujuan

    2016-09-01

    Nano-graphite(Nano-G)/TiO2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO2 nanoparticles with an average diameter of 10nm were dispersed uniformly on the thickness of 2-3nm Nano-G, and TiOC bond was formed. The absorption edge of Nano-G/TiO2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO2 electrode. Nano-G/TiO2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO2 and Nano-G electrode, respectively. The highly efficient and stable PEC activity of Nano-G/TiO2 photoelectrode was attributed to the synergy effect between photocatalysis and electrocatalysis, as well as enhanced light absorption ability and higher separation efficiency of photogenerated charge carriers. Moreover, contribution of series of reactive species to the PEC degradation of Nano-G/TiO2 photoelectrode was determined.

  2. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant.

    PubMed

    Li, Dong; Jia, Jialin; Zhang, Yuhang; Wang, Na; Guo, Xiaolei; Yu, Xiujuan

    2016-09-01

    Nano-graphite(Nano-G)/TiO2 composite photoelectrode was fabricated via sol-gel reaction, followed by the hot-press approach. The morphology, structure and light absorption capability of composite was characterized by various characterizations. The photoelectrochemical property and photoelectrocatalytic(PEC) activity of photoelectrode were also investigated. Results revealed that anatase TiO2 nanoparticles with an average diameter of 10nm were dispersed uniformly on the thickness of 2-3nm Nano-G, and TiOC bond was formed. The absorption edge of Nano-G/TiO2 photoelectrode was red-shifted towards low energy region and the enhanced visible light absorption was obtained. The charge transfer resistance of Nano-G/TiO2 photoelectrode was significantly decreased after the addition of Nano-G. And its transient photoinduced current was 10.5 times the value achieved using TiO2 electrode. Nano-G/TiO2 photoelectrode displayed greatly enhanced PEC activity of 99.2% towards the degradation of phenol, which was much higher than the 29.1% and 58.3% degradation seen on TiO2 and Nano-G electrode, respectively. The highly efficient and stable PEC activity of Nano-G/TiO2 photoelectrode was attributed to the synergy effect between photocatalysis and electrocatalysis, as well as enhanced light absorption ability and higher separation efficiency of photogenerated charge carriers. Moreover, contribution of series of reactive species to the PEC degradation of Nano-G/TiO2 photoelectrode was determined. PMID:27149660

  3. Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods

    NASA Astrophysics Data System (ADS)

    Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.

    2015-06-01

    The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.

  4. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    SciTech Connect

    Henderson, R.F.

    1995-02-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two.

  5. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    PubMed

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy. PMID:27483773

  6. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization.

    PubMed

    Smolders, R; Bervoets, L; De Coen, W; Blust, R

    2004-05-01

    Organisms exposed to suboptimal environments incur a cost of dealing with stress in terms of metabolic resources. The total amount of energy available for maintenance, growth and reproduction, based on the biochemical analysis of the energy budget, may provide a sensitive measure of stress in an organism. While the concept is clear, linking cellular or biochemical responses to the individual and population or community level remains difficult. The aim of this study was to validate, under field conditions, using cellular energy budgets [i.e. changes in glycogen-, lipid- and protein-content and mitochondrial electron transport system (ETS)] as an ecologically relevant measurement of stress by comparing these responses to physiological and organismal endpoints. Therefore, a 28-day in situ bioassay with zebra mussels (Dreissena polymorpha) was performed in an effluent-dominated stream. Five locations were selected along the pollution gradient and compared with a nearby (reference) site. Cellular Energy Allocation (CEA) served as a biomarker of cellular energetics, while Scope for Growth (SFG) indicated effects on a physiological level and Tissue Condition Index and wet tissue weight/dry tissue weight ratio were used as endpoints of organismal effects. Results indicated that energy budgets at a cellular level of biological organization provided the fastest and most sensitive response and energy budgets are a relevant currency to extrapolate cellular effects to higher levels of biological organization within the exposed mussels.

  7. The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: an application in photocatalysis

    NASA Astrophysics Data System (ADS)

    Shang, Meng; Wang, Wenzhong; Sun, Songmei; Gao, Erping; Zhang, Zhijie; Zhang, Ling; O'Hayre, Ryan

    2013-05-01

    This work demonstrates a novel multifunctional nanofibrous mat for photocatalytic applications based on TiO2 nanocables functionalized by Ag nanoparticles and coated with a thin (~2 nm) graphitic shell. In this mat, which was realized by an electrospinning technique, each component serves a unique function: the carbon coating acts as both an adsorption material for capturing pollutants and as a charge-transfer material, the Ag nanoparticles act as a visible-light sensitizing agent and also as a charge-transfer material, finally the TiO2 nanocable mat acts as a UV sensitive photocatalytic matrix and as the flexible substrate for the other functional components. This multicomponent nanocable mat exhibits excellent photocatalytic activity under simulated solar irradiation for the degradation of model pollutants including RhB and phenol. The significant photocatalytic properties are attributed to the synergetic effect of the three functional components and the unique charge transport ``freeway'' property of the nanofibrous mat. In addition, the porous carbon coating infiltrated into the nanocable matrix endows the mat with excellent flexibility and enables robust, large-area (10 × 10 cm) fabrication, representing a significant advantage over previous brittle ceramic nanofibrous mat photocatalyst substrates. This study provides new insight into the design and preparation of an advanced, yet commercially practical and scaleable photocatalytic composite membrane material. The as-prepared photocatalytic mat might also be of interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology.

  8. Heterogeneous activation of H2O2 by defect-engineered TiO(2-x) single crystals for refractory pollutants degradation: A Fenton-like mechanism.

    PubMed

    Zhang, Ai-Yong; Lin, Tan; He, Yuan-Yi; Mou, Yu-Xuan

    2016-07-01

    The heterogeneous catalyst plays a key role in Fenton-like reaction for advanced oxidation of refractory pollutants in water treatment. Titanium dioxide (TiO2) is a typical semiconductor with high industrial importance due to its earth abundance, low cost and no toxicity. In this work, it is found that TiO2 can heterogeneously activate hydrogen peroxide (H2O2, E°=1.78 eV), a common chemical oxidant, to efficiently generate highly-powerful hydroxyl radical, OH (E(0)=2.80 eV), for advanced water treatment, when its crystal shape, exposed facet and oxygen-stoichiometry are finely tuned. The defect-engineered TiO2 single crystals exposed by high-energy {001} facets exhibited an excellent Fenton-like activity and stability for degrading typical refractory organic pollutants such as methyl orange and p-nitrophenol. Its defect-centered Fenton-like superiority is mainly attributed to the crystal oxygen-vacancy, single-crystalline structure and exposed polar {001} facet. Our findings could provide new chance to utilize TiO2 for Fenton-like technology, and develop novel heterogeneous catalyst for advanced water treatment.

  9. The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: an application in photocatalysis.

    PubMed

    Shang, Meng; Wang, Wenzhong; Sun, Songmei; Gao, Erping; Zhang, Zhijie; Zhang, Ling; O'Hayre, Ryan

    2013-06-01

    This work demonstrates a novel multifunctional nanofibrous mat for photocatalytic applications based on TiO2 nanocables functionalized by Ag nanoparticles and coated with a thin (~2 nm) graphitic shell. In this mat, which was realized by an electrospinning technique, each component serves a unique function: the carbon coating acts as both an adsorption material for capturing pollutants and as a charge-transfer material, the Ag nanoparticles act as a visible-light sensitizing agent and also as a charge-transfer material, finally the TiO2 nanocable mat acts as a UV sensitive photocatalytic matrix and as the flexible substrate for the other functional components. This multicomponent nanocable mat exhibits excellent photocatalytic activity under simulated solar irradiation for the degradation of model pollutants including RhB and phenol. The significant photocatalytic properties are attributed to the synergetic effect of the three functional components and the unique charge transport "freeway" property of the nanofibrous mat. In addition, the porous carbon coating infiltrated into the nanocable matrix endows the mat with excellent flexibility and enables robust, large-area (10 × 10 cm) fabrication, representing a significant advantage over previous brittle ceramic nanofibrous mat photocatalyst substrates. This study provides new insight into the design and preparation of an advanced, yet commercially practical and scaleable photocatalytic composite membrane material. The as-prepared photocatalytic mat might also be of interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology.

  10. Novel TiO2/C nanocomposites: synthesis, characterization, and application as a photocatalyst for the degradation of organic pollutants.

    PubMed

    da Costa, Elias; Zamora, Patricio P; Zarbin, Aldo J G

    2012-02-15

    Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts. PMID:22056275

  11. Assessment of degradation potential of aliphatic hydrocarbons by autochthonous filamentous fungi from a historically polluted clay soil.

    PubMed

    Covino, Stefano; D'Annibale, Alessandro; Stazi, Silvia Rita; Cajthaml, Tomas; Čvančarová, Monika; Stella, Tatiana; Petruccioli, Maurizio

    2015-02-01

    The present work was aimed at isolating and identifying the main members of the mycobiota of a clay soil historically contaminated by mid- and long-chain aliphatic hydrocarbons (AH) and to subsequently assess their hydrocarbon-degrading ability. All the isolates were Ascomycetes and, among them, the most interesting was Pseudoallescheria sp. 18A, which displayed both the ability to use AH as the sole carbon source and to profusely colonize a wheat straw:poplar wood chip (70:30, w/w) lignocellulosic mixture (LM) selected as the amendment for subsequent soil remediation microcosms. After a 60 d mycoaugmentation with Pseudoallescheria sp. of the aforementioned soil, mixed with the sterile LM (5:1 mass ratio), a 79.7% AH reduction and a significant detoxification, inferred by a drop in mortality of Folsomia candida from 90 to 24%, were observed. However, similar degradation and detoxification outcomes were found in the non-inoculated incubation control soil that had been amended with the sterile LM. This was due to the biostimulation exerted by the amendment on the resident microbiota, fungi in particular, the activity and density of which were low, instead, in the non-amended incubation control soil.

  12. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation

    NASA Astrophysics Data System (ADS)

    Zhu, Chaosheng; Zhang, Lu; Jiang, Bo; Zheng, Jingtang; Hu, Ping; Li, Sujuan; Wu, Mingbo; Wu, Wenting

    2016-07-01

    In this study, highly efficient visible-light-driven Ag3PO4/MoS2 composite photocatalysts with different weight ratios of MoS2 were prepared via the ethanol-water mixed solvents precipitation method and characterized by ICP, XRD, HRTEM, FE-SEM, BET, XPS, UV-vis DRS and PL analysis. Under visible-light irradiation, Ag3PO4/MoS2 composites exhibit excellent photocatalytic activity towards the degradation of organic pollutants in aqueous solution. The optimal composite with 0.648 wt% MoS2 content exhibits the highest photocatalytic activity, which can degrade almost all MB under visible-light irradiation within 60 min. Recycling experiments confirmed that the Ag3PO4/MoS2 catalysts had superior cycle performance and stability. The photocatalytic activity enhancement of Ag3PO4/MoS2 photocatalysts can be mainly ascribed to the efficient separation of photogenerated charge carriers and the stronger oxidation and reduction ability through a Z-scheme system composed of Ag3PO4, Ag and MoS2, in which Ag particles act as the charge separation center. The high photocatalytic stability is due to the successful inhibition of the photocorrosion of Ag3PO4 by transferring the photogenerated electrons of Ag3PO4 to MoS2. The evidence of the Z-scheme photocatalytic mechanism of the composite photocatalysts could be obtained from the active species trapping experiments and the photoluminescence technique.

  13. Assessment of biological effects of environmental pollution in Mersin Bay (Turkey, northeastern Mediterranean Sea) using Mullus barbatus and Liza ramada as target organisms.

    PubMed

    Yılmaz, Doruk; Kalay, Mustafa; Dönmez, Erdem; Yılmaz, Nejat

    2016-01-01

    The increasing emphasis on the assessment and monitoring of marine ecosystems has revealed the need to use appropriate biological indicators for these areas. Enzyme activities and histopathology are increasingly being used as indicators of environmental stress since they provide a definite biological end-point of pollutant exposure. As part of an ecotoxicological assessment of Mersin Bay, EROD enzyme activity and histopathological response in selected organs and tissues of two species of fish, Mullus barbatus (red mullet) and Liza ramada (thinlip grey mullet), captured from area were examined. Pollutant (Organochlorines (OC), alkylphenols (APs) and BPA) levels and biomarker responses in tissue samples were evaluated together for their potential to alter the metabolism and cellular aspects in liver and gonad. Elevated induction of EROD activity and histopathological alterations in contaminated samples from Mersin Bay was observed compared to reference site indicating the exposure to potential pollutants.

  14. Simultaneous determination of indoor ammonia pollution and its biological metabolite in the human body with a recyclable nanocrystalline lanthanide-functionalized MOF

    NASA Astrophysics Data System (ADS)

    Hao, Ji-Na; Yan, Bing

    2016-01-01

    A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability.A Eu3+ post-functionalized metal-organic framework of nanosized Ga(OH)bpydc(Eu3+@Ga(OH)bpydc, 1a) with intense luminescence is synthesized and characterized. Luminescence measurements reveal that 1a can detect ammonia gas selectively and sensitively among various indoor air pollutants. 1a can simultaneously determine a biological ammonia metabolite (urinary urea) in the human body, which is a rare example of a luminescent sensor that can monitor pollutants in the environment and also detect their biological markers. Furthermore, 1a exhibits appealing features including high selectivity and sensitivity, fast response, simple and quick regeneration, and excellent recyclability. Electronic supplementary information (ESI) available: Experimental section; XPS spectra; N2 adsorption-desorption isotherms; ICP data; SEM image; PXRD patterns and other luminescence data. See DOI: 10.1039/c5nr06066d

  15. Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Bálint, Beatrix; Guba, Zoltán; Sümeghy, Zoltán

    2011-08-01

    The aim of the study is to analyse the joint effect of biological (pollen) and chemical air pollutants, as well as meteorological variables, on the hospital admissions of respiratory problems for the Szeged region in Southern Hungary. The data set used covers a nine-year period (1999-2007) and is unique in the sense that it includes—besides the daily number of respiratory hospital admissions—not just the hourly mean concentrations of CO, PM 10, NO, NO 2, O 3 and SO 2 with meteorological variables (temperature, global solar flux, relative humidity, air pressure and wind speed), but two pollen variables ( Ambrosia and total pollen excluding Ambrosia) as well. The analysis was performed using three age categories for the pollen season of Ambrosia and the pollen-free season. Meteorological elements and air pollutants are clustered in order to define optimum environmental conditions of high patient numbers. ANOVA was then used to determine whether cluster-related mean patient numbers differ significantly. Furthermore, two novel procedures are applied here: factor analysis including a special transformation and a time-varying multivariate linear regression that makes it possible to determine the rank of importance of the influencing variables in respiratory hospital admissions, and also compute the relative importance of the parameters affecting respiratory disorders. Both techniques revealed that Ambrosia pollen is an important variable that influences hospital admissions (an increase of 10 pollen grains m -3 can imply an increase of around 24% in patient numbers). The role of chemical and meteorological parameters is also significant, but their weights vary according to the seasons and the methods. Clearer results are obtained for the pollination season of Ambrosia. Here, a 10 μg m -3 increase in O 3 implies a patient number response from -17% to +11%. Wind speed is a surprisingly important variable, where a 1 m s -1 rise may result in a hospital admission

  16. Hierarchical {001}-faceted BiOBr microspheres as a novel biomimetic catalyst: dark catalysis towards colorimetric biosensing and pollutant degradation

    NASA Astrophysics Data System (ADS)

    Li, Lili; Ai, Lunhong; Zhang, Caihong; Jiang, Jing

    2014-04-01

    In recent years, considerable effort has been devoted to finding novel enzyme mimetics with improved catalytic activities. However, the insightful understanding of such catalytic process is still elusive. In this paper, we report for the first time a typical photoactive layer-structured BiOBr as a novel biomimetic catalyst possessing highly efficient intrinsic peroxidase-like activity. Moreover, we have experimentally achieved high dark peroxidase-like catalytic activity in BiOBr microspheres and provided some new insights into the light-enhanced peroxidase-like catalytic property. On the basis of a typical color reaction derived from catalytic oxidation of peroxidase substrates over BiOBr microspheres with H2O2, the simple and sensitive colorimetric assays for detection of H2O2, glucose and ascorbic acid were successfully established. More interestingly, the BiOBr microspheres showed strong ability towards activation of H2O2, displaying excellent dark catalytic activity for the degradation of organic dye. It is therefore believed that our findings in this study could open up the possibility of utilizing BiOBr as enzymatic mimics in biotechnology and environmental remediation.In recent years, considerable effort has been devoted to finding novel enzyme mimetics with improved catalytic activities. However, the insightful understanding of such catalytic process is still elusive. In this paper, we report for the first time a typical photoactive layer-structured BiOBr as a novel biomimetic catalyst possessing highly efficient intrinsic peroxidase-like activity. Moreover, we have experimentally achieved high dark peroxidase-like catalytic activity in BiOBr microspheres and provided some new insights into the light-enhanced peroxidase-like catalytic property. On the basis of a typical color reaction derived from catalytic oxidation of peroxidase substrates over BiOBr microspheres with H2O2, the simple and sensitive colorimetric assays for detection of H2O2, glucose and

  17. Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats.

    PubMed

    Omar, Wael A; Zaghloul, Khalid H; Abdel-Khalek, Amr A; Abo-Hegab, S

    2013-11-01

    Lake Qaroun is an inland lake at the lowest part of El-Fayoum depression, Egypt. It receives agricultural and domestic non-treated drainage waters, which are also used for aquaculture in Qaroun area. The results of the present study aimed to provide comparable data between wild (collected from Lake Qaroun) and cultured (collected from Qaroun fish farms and the reference site) Nile tilapia Oreochromis niloticus and mullet Mugil cephalus, as indicators of natural and anthropogenic impacts on aquatic ecosystem as well as to evaluate the human hazard index associated with fish consumption. Metal concentrations in fish tissues showed a species-specific bioaccumulation pattern. Statistically significant differences were observed in the mean metal concentrations with lower bioavailability in M. cephalus compared with O. niloticus in internal vital organs (liver, kidney, and muscle) but much higher in external organs (gill and skin). Histopathological alterations and evident damages were observed in gill, liver, and kidney of both species collected from Lake Qaroun and Qaroun fish farms compared with those from the reference site. The results showed significant increase of plasma aspartate aminotransferase and alanine aminotransferase activity as well as creatinine and uric acid concentration in both fish species from polluted locations. The human health hazard index showed that the cumulative risk greatly increases with increasing fish consumption rate, thus yielding an alarming concern for consumer health.

  18. Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core-shell magnetic copper alginate beads.

    PubMed

    Le, Thao Thanh; Murugesan, Kumarasamy; Lee, Chung-Seop; Vu, Chi Huong; Chang, Yoon-Seok; Jeon, Jong-Rok

    2016-09-01

    Immobilization of laccase has been highlighted to enhance their stability and reusability in bioremediation. In this study, we provide a novel immobilization technique that is very suitable to real wastewater treatment. A perfect core-shell system composing copper alginate for the immobilization of laccase (Lac-beads) was produced. Additionally, nFe2O3 was incorporated for the bead recycling through magnetic force. The beads were proven to immobilize 85.5% of total laccase treated and also to be structurally stable in water, acetate buffer, and real wastewater. To test the Lac-beads reactivity, triclosan (TCS) and Remazol Brilliant Blue R (RBBR) were employed. The Lac-beads showed a high percentage of TCS removal (89.6%) after 8h and RBBR decolonization at a range from 54.2% to 75.8% after 4h. Remarkably, the pollutants removal efficacy of the Lac-beads was significantly maintained in real wastewater with the bead recyclability, whereas that of the corresponding free laccase was severely deteriorated. PMID:27240236

  19. Temporal and geographical distributions of epilithic sodium dodecyl sulfate-degrading bacteria in a polluted South Wales river

    SciTech Connect

    Anderson, D.J.; Day, M.J.; Russell, N.J.; White, G.F.

    1988-02-01

    Epilithic bacteria were isolated nonselectively from riverbed stones and examined by gel zymography for their ability to produce alkylsulfatase (AS) enzymes and thus to metabolize alkyl sulfate surfactants such as sodium dodecyl sulfate. The percentages of AS+ isolates from stone epilithon at five sites from the source to the river mouth were measured on five sampling days spread over 1 year. The results showed that (i) the prevalence of epilithic AS+ strains (as a percentage of all isolates) was much higher at polluted sites than at the source; (ii) when averaged over the whole river, percentages of AS+ strains were significantly higher at the end of summer compared with either the preceding or the following winter; (iii) analysis of site-sampling time interactions indicated that water quality factors (e.g., biochemical oxygen demand and dissolved oxygen concentration) rather than climatic factors determined the distributions of epilithic AS+ isolates; (iv) constitutive strains were the most prevalent (7.2% of all isolates), with smaller numbers of isolates with inducible (4.5%) and repressible (1.7%) enzymes.

  20. Hierarchical {001}-faceted BiOBr microspheres as a novel biomimetic catalyst: dark catalysis towards colorimetric biosensing and pollutant degradation.

    PubMed

    Li, Lili; Ai, Lunhong; Zhang, Caihong; Jiang, Jing

    2014-05-01

    In recent years, considerable effort has been devoted to finding novel enzyme mimetics with improved catalytic activities. However, the insightful understanding of such catalytic process is still elusive. In this paper, we report for the first time a typical photoactive layer-structured BiOBr as a novel biomimetic catalyst possessing highly efficient intrinsic peroxidase-like activity. Moreover, we have experimentally achieved high dark peroxidase-like catalytic activity in BiOBr microspheres and provided some new insights into the light-enhanced peroxidase-like catalytic property. On the basis of a typical color reaction derived from catalytic oxidation of peroxidase substrates over BiOBr microspheres with H2O2, the simple and sensitive colorimetric assays for detection of H2O2, glucose and ascorbic acid were successfully established. More interestingly, the BiOBr microspheres showed strong ability towards activation of H2O2, displaying excellent dark catalytic activity for the degradation of organic dye. It is therefore believed that our findings in this study could open up the possibility of utilizing BiOBr as enzymatic mimics in biotechnology and environmental remediation. PMID:24637562

  1. Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds.

    PubMed

    Malhautier, Luc; Soupramanien, Alexandre; Bayle, Sandrine; Rocher, Janick; Fanlo, Jean-Louis

    2015-01-01

    This study deals with the potential of biological processes combining a biotrickler and a biofilter to treat a mixture of sulphur-reduced compounds including dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and hydrogen sulphide (H2S). As a reference, duplicated biofilters were implemented, and operating conditions were similar for all bioprocesses. The first step of this work was to determine the efficiency removal level achieved for each compound of the mixture and in a second step, to assess the longitudinal distribution of biodegradation activities and evaluate the total bacteria, Hyphomicrobium sp. and Thiobacillus thioparus densities along the bed height. A complete removal of hydrogen sulphide is reached at the start of the experiment within the first stage (biotrickler) of the coupling. This study highlighted that the coupling of a biotrickling filter and a biofilter is an interesting way to improve both removal efficiency levels (15-20% more) and kinetics of recalcitrant sulphur compounds such as DMS and DMDS. The total cell densities remained similar (around 1 × 10(10) 16S recombinant DNA (rDNA) copies g dry packing material) for duplicated biofilters and the biofilter below the biotrickling filter. The relative abundances of Hyphomicrobium sp. and T. thioparus have been estimated to an average of 10 ± 7.0 and 0.23 ± 0.07%, respectively, for all biofilters. Further investigation should allow achieving complete removal of DMS by starting the organic sulphur compound degradation within the first stage and surveying microbial community structure colonizing this complex system. PMID:24898634

  2. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example).

    PubMed

    Filipović Marijić, Vlatka; Dragun, Zrinka; Sertić Perić, Mirela; Matoničkin Kepčija, Renata; Gulin, Vesna; Velki, Mirna; Ečimović, Sandra; Hackenberger, Branimir K; Erk, Marijana

    2016-07-01

    In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality.

  3. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example).

    PubMed

    Filipović Marijić, Vlatka; Dragun, Zrinka; Sertić Perić, Mirela; Matoničkin Kepčija, Renata; Gulin, Vesna; Velki, Mirna; Ečimović, Sandra; Hackenberger, Branimir K; Erk, Marijana

    2016-07-01

    In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality. PMID:27060638

  4. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    PubMed

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  5. Potentiality of Eisenia fetida to degrade disposable paper cups-an ecofriendly solution to solid waste pollution.

    PubMed

    Arumugam, Karthika; Ganesan, Seethadevi; Muthunarayanan, Vasanthy; Vivek, Swabna; Sugumar, Susila; Munusamy, Vivekanadhan

    2015-02-01

    The aim of the present study was to subject the post-consumer waste, namely paper cups for vermicomposting along with cow dung in three different ratios for a period of 90-140 days employing Eisenia fetida. The post-consumer wastes are a menace in many developing countries including India. This waste was provided as feed for earthworms and was converted to vermicompost. Vermicompost prepared with paper cup waste was analyzed for their physicochemical properties. Based on the physicochemical properties, it was evident that the best manure is obtained from type A (paper cup/cow dung in the ratio 1:1) than type B (paper cup/cow dung in the ratio 1.5:0.5) and type C (paper cup/cow dung in the ratio 0.5:1.5). The results showed that earthworms accelerated the rate of mineralization and converted the wastes into compost with needed elements which could support the growth of crop plants. The predominant bacterial strains in the vermicompost were characterized biochemically as well as by 16S ribosomal RNA (rRNA) gene sequencing. The bacterial strains like Bacillus anthracis (KM289159), Bacillus endophyticus (KM289167), Bacillus funiculus (KM289165), Virigibacillius chiquenigi (KM289163), Bacillus thuringiensis (KM289164), Bacillus cereus (KM289160), Bacillus toyonensis (KM289161), Acinetobacter baumanni (KM289162), and Lactobacillus pantheries (KM289166) were isolated and identified from the final compost. The total protein content of E. fetida involved in vermicomposting was extracted, and the banding pattern was analyzed. During final stages of vermicomposting, it was observed that the earthworm did not act on the plastic material coated inside the paper cups and stagnated it around the rim of the tub. Further, the degradation of paper cup waste was confirmed by Fourier transform infrared spectroscopy analysis. Hence, vermicomposting was found to be an effective technology for the conversion of the paper cup waste material into a nutrient-rich manure, a value

  6. In vivo degradation behavior and biological activity of some new Mg-Ca alloys with concentration's gradient of Si for bone grafts

    NASA Astrophysics Data System (ADS)

    Trincă, Lucia Carmen; Fântânariu, Mircea; Solcan, Carmen; Trofin, Alina Elena; Burtan, Liviu; Acatrinei, Dumitru Mihai; Stanciu, Sergiu; Istrate, Bogdan; Munteanu, Corneliu

    2015-10-01

    Magnesium based alloys, especially Mg-Ca alloys, are biocompatible substrates with mechanical properties similar to those of bones. The biodegradable alloys of Mg-Ca provide sufficient mechanical strength in load carrying applications as opposed to biopolymers and also they avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. The main issue facing a biodegradable Mg-Ca alloy is the fast degradation in the aggressive physiological environment of the body. The alloy's corrosion is proportional with the dissolution of the Mg in the body: the reaction with the water generates magnesium hydroxide and hydrogen. The accelerated corrosion will lead to early loss of the alloy's mechanical integrity. The degradation rate of an alloy can be improved mainly through tailoring the composition and by carrying out surface treatments. This research focuses on the ability to adjust degradation rate of Mg-Ca alloys by an original method and studies the biological activity of the resulted specimens. A new Mg-Ca alloy, with a Si gradient concentration from the surface to the interior of the material, was obtained. The surface morphology was investigated using scanning electron microscopy (VegaTescan LMH II, SE detector, 30 kV), X-ray diffraction (X'Pert equipment) and energy dispersive X-ray (Bruker EDS equipment). In vivo degradation behavior, biological compatibility and activity of Mg-Ca alloys with/without Si gradient concentration were studied with an implant model (subcutaneous and bony) in rats. The organism response to implants was characterized by using radiological (plain X-rays and computed tomography), biochemical and histological methods of investigation. The results sustained that Si gradient concentration can be used to control the rate of degradation of the Mg-Ca alloys for enhancing their biologic activity in order to facilitate bone tissue repair.

  7. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene.

    PubMed

    Chen, Hao; Carroll, Kenneth C

    2016-08-01

    We evaluated three types of functionalized, graphene-based materials for activating persulfate (PS) and removing (i.e., sorption and oxidation) sulfamethoxazole (SMX) as a model emerging contaminant. Although advanced oxidative water treatment requires PS activation, activation requires energy or chemical inputs, and toxic substances are contained in many catalysts. Graphene-based materials were examined herein as an alternative to metal-based catalysts. Results show that nitrogen-doped graphene (N-GP) and aminated graphene (NH2-GP) can effectively activate PS. Overall, PS activation by graphene oxide was not observed in this study. N-GP (50 mg L(-1)) can rapidly activate PS (1 mM) to remove >99.9% SMX within 3 h, and NH2-GP (50 mg L(-1)) activated PS (1 mM) can also remove 50% SMX within 10 h. SMX sorption and total removal was greater for N-GP, which suggests oxidation was enhanced by increasing proximity to PS activation sites. Increasing pH enhanced the N-GP catalytic ability, and >99.9% SMX removal time decreased from 3 h to 1 h when pH increased from 3 to 9. However, the PS catalytic ability was inhibited at pH 9 for NH2-GP. Increases in ionic strength (100 mM NaCl or Na2SO4) and addition of radical scavengers (500 mM ethanol) both had negligible impacts on SMX removal. With bicarbonate addition (100 mM), while the catalytic ability of N-GP remained unaltered, NH2-GP catalytic ability was inhibited completely. Humic acid (250 mg L(-1)) was partially effective in inhibiting SMX removal in both N-GP and NH2-GP systems. These results have implications for elucidating oxidant catalysis mechanisms, and they quantify the ability of functionalization of graphene with hetero-atom doping to effectively catalyze PS for water treatment of organic pollutants including emerging contaminants. PMID:27179328

  8. Enhanced Biological Trace Organic Contaminant Removal: A Lab-Scale Demonstration with Bisphenol A-Degrading Bacteria Sphingobium sp. BiD32.

    PubMed

    Zhou, Nicolette A; Gough, Heidi L

    2016-08-01

    Discharge of trace organic contaminants (TOrCs) from wastewater treatment plants (WWTPs) may contribute to deleterious effects on aquatic life. Release to the environment occurs both through WWTP effluent discharge and runoff following land applications of biosolids. This study introduces Enhanced Biological TOrC Removal (EBTCR), which involves continuous bioaugmentation of TOrC-degrading bacteria for improved removal in WWTPs. Influence of bioaugmentation on enhanced degradation was investigated in two lab-scale sequencing batch reactors (SBRs), using bisphenol A (BPA) as the TOrC. The reactors were operated with 8 cycles per day and at two solids retention times (SRTs). Once each day, the test reactor was bioaugmented with Sphingobium sp. BiD32, a documented BPA-degrading culture. After bioaugmentation, BPA degradation (including both the dissolved and sorbed fractions) was 2-4 times higher in the test reactor than in a control reactor. Improved removal persisted for >5 cycles following bioaugmentation. By the last cycle of the day, enhanced BPA removal was lost, although it returned with the next bioaugmentation. A net loss of Sphingobium sp. BiD32 was observed in the reactors, supporting the original hypothesis that continuous bioaugmentation (rather than single-dose bioaugmentation) would be required to improve TOrCs removal during wastewater treatment. This study represents a first demonstration of a biologically based approach for enhanced TOrCs removal that both reduces concentrations in wastewater effluent and prevents transfer to biosolids. PMID:27338240

  9. Microbially influenced degradation of concrete structures

    NASA Astrophysics Data System (ADS)

    Rogers, Robert D.; Hamilton, Melinda A.; Nelson, Lee O.

    1998-03-01

    Steel reinforced concrete is the most widely used construction material in the world. The economic costs of repair or replacement of environmentally damaged concrete structures is astronomical. For example, half of the concrete bridges in the Federal Department of Transportation highway system are in need of major repairs. Microbially influenced degradation of concrete (MID) is one of the recognized degradative processes known to adversely affect concrete integrity. It is not possible to assign a specific percent of effect to any of these processes. However, MID has been shown to be as aggressive as any of the physical/chemical phenomena. In addition, the possibility exists that there is a synergism which results in cumulative effects from all the processes. Three groups of bacteria are known to promote MID. Of these, sulfur-oxidizing bacteria (SOB) are the most aggressive. Much is known about the nutritional needs of these bacteria. However, there has not been a biological linkage established between the presence of environmental, polluting sulfur sources and the degradation of concrete structures. It has been shown that the environmental pollutants sulfur dioxide and sulfite can be utilized by active SOB for the biological production of sulfuric acid. Therefore, it is not a reach of reality to assume that SOB exposed to these pollutants could have a major impact on the degradation of concrete structures. But, until the environment sulfur loop is closed it will not be possible to calculate how important SOB activity is in initiating and promoting damage.

  10. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse.

  11. Efficient photocatalytic degradation of organic pollutants by magnetically recoverable nitrogen-doped TiO2 nanocomposite photocatalysts under visible light irradiation.

    PubMed

    Hamzezadeh-Nakhjavani, Sahar; Tavakoli, Omid; Akhlaghi, Seyed Parham; Salehi, Zeinab; Esmailnejad-Ahranjani, Parvaneh; Arpanaei, Ayyoob

    2015-12-01

    Preparation of novel nanocomposite particles (NCPs) with high visible-light-driven photocatalytic activity and possessing recovery potential after advanced oxidation process (AOP) is much desired. In this study, pure anatase phase titania (TiO2) nanoparticles (NPs) as well as three types of NCPs including nitrogen-doped titania (TiO2-N), titania-coated magnetic silica (Fe3O4 cluster@SiO2@TiO2 (FST)), and a novel magnetically recoverable TiO2 nanocomposite photocatalyst containing nitrogen element (Fe3O4 cluster@SiO2@TiO2-N (FST-N)) were successfully synthesized via a sol-gel process. The photocatalysts were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM) with an energy-dispersive X-ray (EDX) spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The photocatalytic activity of as-prepared samples was further investigated and compared with each other by degradation of phenol, as a model for the organic pollutants, in deionized (DI) water under visible light irradiation. The TiO2-N (55 ± 1.5%) and FST-N (46 ± 1.5%) samples exhibited efficient photocatalytic activity in terms of phenol degradation under visible light irradiation, while undoped samples were almost inactive under same operating conditions. Moreover, the effects of key operational parameters, the optimum sample calcination temperature, and reusability of FST-N NCPs were evaluated. Under optimum conditions (calcination temperature of 400 °C and near-neutral reaction medium), the obtained results revealed efficient degradation of phenol for FST-N NCPs under visible light irradiation (46 ± 1.5%), high yield magnetic separation and efficient reusability of FST-N NCPs (88.88% of its initial value) over 10 times reuse. PMID:26206125

  12. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude). PMID:26087933

  13. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangepollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100

  14. Dynamics of the biological properties of soil and the nutrient release of Amorpha fruticosa L. litter in soil polluted by crude oil.

    PubMed

    Zhang, Xiaoxi; Liu, Zengwen; Luc, Nhu Trung; Liang, Xiao; Liu, Xiaobo

    2015-11-01

    Litter from Amorpha fruticosa, a potential phytoremediating plant, was collected and used in a decomposition experiment that involved the litterbag in soil polluted by crude oil. The dynamics of the biological properties of soil and the nutrient release of the litter were detected. The results indicated that (1) in lightly polluted soil (LP, petroleum concentration was 15 g kg(-1)), the bacteria (including actinomycetes), and fungi populations were significant higher than those in unpolluted soil (CK) at the 1st month after pollution, and the bacteria (including actinomycetes) populations were higher than those in the CK at the 6th and 12th months. In moderately polluted soil (MP, 30 g kg(-1)), the bacteria (including actinomycetes) populations were higher than those in the CK at the 1st and 6th months, whereas only the actinomycetes population was greater than that in the CK at the 12th month. In seriously polluted soil (SP, 45 g kg(-1)), only the fungi population was higher than that in the CK at the 6th month. (2) The activities of soil protease, carboxymethyl cellulase, and sucrase were generally inhibited in polluted soil. Peroxidase activity was generally inhibited in the LP and MP soil, and polyphenol oxidase activity was inhibited in the SP soil at 6-12 months. (3) At the end of litter decomposition, the LP soil significantly increased the release rate of all nutrients, except for K. The MP soil reduced the release rate of Fe and Mn, whereas it increased that of C and Cu. The SP soil decreased the release rate of all nutrients except for Cu and Zn. In conclusion, SP by crude oil would lead to limitations in the release of nutrients from the litter and to decreases in the community stability of a phytoremediating plant. A. fruticosa could only be used in phytoremediation of polluted soil at concentrations below 45 g kg(-1) (crude).

  15. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a rangepollutants in the effluent were below 210ng/L. WWTP 2 showed high emerging pollutant removals, compared to those of WWTP 1, due to a greater activity of the simultaneous nitrification-denitrification processes, hydraulic retention time, and solids retention time. The compounds that were more persistent with removals below 50% in both effluents were: carbamazepine, dehydronifedipine, meprobamate, sertraline, propranolol, propoxyphene, norverapamil, diazepam, alprazolam, sulfamethoxazole, metoprolol, ofloxacin, norfloxacin, fluoxetine, erythromycin-H2O, diphenhydramine, dehydronifedipine, clarithromycin, hydrochlorothiazide, and albuterol. The application of neutral Fenton reaction as post-treatment for the two effluents from the WWTPs is promising for the removal of emerging pollutants (up to 100

  16. Bacterial degradation of chlorophenols and their derivatives

    PubMed Central

    2014-01-01

    Chlorophenols (CPs) and their derivatives are persistent environmental pollutants which are used in the manufacture of dyes, drugs, pesticides and other industrial products. CPs, which include monochlorophenols, polychlorophenols, chloronitrophenols, chloroaminophenols and chloromethylphenols, are highly toxic to living beings due to their carcinogenic, mutagenic and cytotoxic properties. Several physico-chemical and biological methods have been used for removal of CPs from the environment. Bacterial degradation has been considered a cost-effective and eco-friendly method of removing CPs from the environment. Several bacteria that use CPs as their sole carbon and energy sources have been isolated and characterized. Additionally, the metabolic pathways for degradation of CPs have been studied in bacteria and the genes and enzymes involved in the degradation of various CPs have been identified and characterized. This review describes the biochemical and genetic basis of the degradation of CPs and their derivatives. PMID:24589366

  17. [Literature review of pollutants

    SciTech Connect

    1999-08-01

    This review focuses on the following: the measurement and monitoring of pollutants; treatment systems, including physicochemical processes, as well as biological processes; industrial wastes (management); hazardous wastes (waste management as well as remediation); and the fate and effects of pollutants.

  18. Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives

    PubMed Central

    Abou Neel, Ensanya A.; Salih, Vehid; Revell, Peter A.; Young, Anne M.

    2012-01-01

    The aim of this study was to investigate the effect of reactive mono- and tricalcium phosphate addition on the mechanical, surface free energy, degradation and cell compatibility properties of poly(lactide-co-propylene glycol-co-lactide) dimethacrylate (PPGLDMA) thin films. Dry composites containing up to 70 wt.% filler were in a flexible rubber state at body temperature. Filler addition increased the initial strength and Young’s modulus and reduced the elastic and permanent deformation under load. The polymer had high polar surface free energy, which might enable greater spread upon bone. This was significantly reduced by filler addition but not by water immersion for 7 days. The samples exhibited reduced water sorption and associated bulk degradation when compared with previous work with thicker samples. Their cell compatibility was also improved. Filler raised water sorption and degradation but improved cell proliferation. The materials are promising bone adhesive candidates for low-load-bearing areas. PMID:21884829

  19. Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives.

    PubMed

    Abou Neel, Ensanya A; Salih, Vehid; Revell, Peter A; Young, Anne M

    2012-01-01

    The aim of this study was to investigate the effect of reactive mono- and tricalcium phosphate addition on the mechanical, surface free energy, degradation and cell compatibility properties of poly(lactide-co-propylene glycol-co-lactide) dimethacrylate (PPGLDMA) thin films. Dry composites containing up to 70 wt.% filler were in a flexible rubber state at body temperature. Filler addition increased the initial strength and Young's modulus and reduced the elastic and permanent deformation under load. The polymer had high polar surface free energy, which might enable greater spread upon bone. This was significantly reduced by filler addition but not by water immersion for 7 days. The samples exhibited reduced water sorption and associated bulk degradation when compared with previous work with thicker samples. Their cell compatibility was also improved. Filler raised water sorption and degradation but improved cell proliferation. The materials are promising bone adhesive candidates for low-load-bearing areas. PMID:21884829

  20. Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives.

    PubMed

    Abou Neel, Ensanya A; Salih, Vehid; Revell, Peter A; Young, Anne M

    2012-01-01

    The aim of this study was to investigate the effect of reactive mono- and tricalcium phosphate addition on the mechanical, surface free energy, degradation and cell compatibility properties of poly(lactide-co-propylene glycol-co-lactide) dimethacrylate (PPGLDMA) thin films. Dry composites containing up to 70 wt.% filler were in a flexible rubber state at body temperature. Filler addition increased the initial strength and Young's modulus and reduced the elastic and permanent deformation under load. The polymer had high polar surface free energy, which might enable greater spread upon bone. This was significantly reduced by filler addition but not by water immersion for 7 days. The samples exhibited reduced water sorption and associated bulk degradation when compared with previous work with thicker samples. Their cell compatibility was also improved. Filler raised water sorption and degradation but improved cell proliferation. The materials are promising bone adhesive candidates for low-load-bearing areas.

  1. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    PubMed

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  2. Degradation and biological properties of Ca-P contained micro-arc oxidation self-sealing coating on pure magnesium for bone fixation

    PubMed Central

    Wang, Weidan; Wan, Peng; Liu, Chen; Tan, Lili; Li, Weirong; Li, Lugee; Yang, Ke

    2015-01-01

    Poor corrosion resistance is one of the main disadvantages for biodegradable magnesium-based metals, especially applied for bone fixation, where there is a high demand of bio-mechanical strength and stability. Surface coating has been proved as an effective method to control the in vivo degradation. In this study a Ca-P self-sealing micro-arc oxidation (MAO) coating was studied to verify its efficacy and biological properties by in vitro and in vivo tests. It was found that the MAO coating could effectively retard the degradation according to immersion and electrochemical tests as well as 3D reconstruction by X-ray tomography after implantation. The MAO coating exhibited no toxicity and could stimulate the new bone formation. Therefore, the Ca-P self-sealing MAO coating could be a potential candidate for application of biodegradable Mg-based implant in bone fixations. PMID:26816635

  3. Degradation of recalcitrant organic contaminants by solar photocatalysis.

    PubMed

    Mansouri, L; Bousselmi, L; Ghrabi, A

    2007-01-01

    Biological pre-treated landfill leachates of Djebel Chakir contains some macromolecular organic substances that are resistant to biological degradation. The aim of the present work is to assess the feasibility of removing refractory organic pollutants in biological pre-treated landfill leachate by solar photocatalyse process. Leachate pollutant contents are studied to assess their contribution to leachate pollution and their treatability by solar photocatalyse process. Phenol is chosen as model of pollutants, to evaluate its removal and the efficiency of the photocatalytic system. The experiments were carried out in suspended photocatalytic reactor, using TiO2 Degussa P25, under sunlight illumination (UV-A: 15-31 W/cm2). Under optimum operational conditions, applied to single reactant (phenol), the system presents a TOC removal of 90% (the degradation follows a first-order kinetic). Based on the TOC removal, the results shows that the degradation of biological pre-treated leachate follows a zero-order kinetic. After 5 h of sunlight exposure, 74% of COT is removed. The TOC removal is the best without any correction of the pH and at the TiO2 concentration of 2.5 g/L. The photocatalytic degradation of organic contaminants as well as the formation and disappearance of the by-products were followed by GC/MS. The solar photocatalysis processes induce several modifications of the matrix leading to more biodegradable forms: all the remaining and new compounds generated after the biological pre-treatment of leachate are degraded and other types of organics appear, mainly carboxylic acid, aliphatic hydrocarbons and phtalic acids.

  4. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish.

    PubMed Central

    Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P

    1999-01-01

    The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of

  5. AICE Survey of USSR Air Pollution Literature, Volume 15: A Third Compilation of Technical Reports on the Biological Effects and the Public Health Aspects of Atmospheric Pollutants.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Ten papers were translated: Maximum permissible concentrations of noxious substances in the atmospheric air of populated areas; Some aspects of the biological effect of microconcentrations of two chloroisocyanates; The toxicology of low concentrations of aromatic hydrocarbons; Chronic action of low concentrations of acrolein in air on the…

  6. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications.

    PubMed

    Jha, Niraj Kumar; Jha, Saurabh Kumar; Kumar, Dhiraj; Kejriwal, Noopur; Sharma, Renu; Ambasta, Rashmi K; Kumar, Pravir

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative process primarily characterized by amyloid-β (Aβ) agglomeration, neuroinflammation, and cognitive dysfunction. The prominent cause for dementia is the deposition of Aβ plaques and tau-neurofibrillary tangles that hamper the neuronal organization and function. Aβ pathology further affects numerous signaling cascades that disturb the neuronal homeostasis. For instance, Aβ deposition is responsible for altered expression of insulin encoding genes that lead to insulin resistance, and thereby affecting insulin signaling pathway and glucose metabolism in the brain. As a result, the common pathology of insulin resistance between Type-2 diabetes mellitus and AD has led AD to be proposed as a form of diabetes and termed 'Type-3 diabetes'. Since accumulation of Aβ is the prominent cause of neuronal toxicity in AD, its clearance is the prime requisite for therapeutic prospects. This purpose is expertly fulfilled by the potential role of Aβ degrading enzymes such as insulin degrading enzyme (IDE) and Neprilysin (NEP). Therefore, their molecular study is important to uncover the proteolytic and regulatory mechanism of Aβ degradation. Herein, (i) In silico sequential and structural analysis of IDE and NEP has been performed to identify the molecular entities for proteolytic degradation of Aβ in the AD brain, (ii) to analyze their catalytic site to demonstrate the enzymatic action played by IDE and NEP, (iii) to identify their structural homologues that could behave as putative partners of IDE and NEP with similar catalytic action and (iv) to illustrate various IDE- and NEP-mediated therapeutic approaches and factors for clearing Aβ in AD.

  7. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: A cell-adhesive and plasmin-degradable biosynthetic material for tissue repair

    NASA Astrophysics Data System (ADS)

    Halstenberg, Sven

    2002-01-01

    The goal of the research presented in this dissertation was to create a biomimetic artificial material that exhibits functions of extracellular matrix relevant for improved nerve regeneration. Neural adhesion peptides were photoimmobilized on highly crosslinked poly(ethylene glycol)-based substrates that were otherwise non-adhesive. Neurons adhered in two-dimensional patterns for eleven hours, but no neurites extended. To enable neurite extension and nerve regeneration in three dimensions, and to address the need for specifically cell adhesive and cell degradable materials for clinical applications in tissue repair in general, an artificial protein was recombinantly expressed and purified that consisted of a repeating amino acid sequence based on fibrinogen and anti-thrombin III. The recombinant protein contained integrin-binding RGD sites, plasmin degradation sites, heparin binding sites, and six thiol-containing cysteine residues as grafting sites for poly(ethylene glycol) diacrylate via Michael-type conjugate addition. The resulting protein-graft-poly(ethylene glycol)acrylates were crosslinked by photopolymerization to form hydrogels. Although three-dimensional, RGD mediated and serine protease-dependent ingrowth of human fibroblasts into protein-graft-poly(ethylene glycol) hydrogels occurred, only surface neurite outgrowth was observed from chick dorsal root ganglia. Axonal outgrowth depended on the concentration of matrix-bound heparin, suggesting that improved mechanical strength of the hydrogels and possible immobilization of neuroactive factors due to the presence of heparin promoted neurite outgrowth. Together, the above results show that specific biological functions can be harnessed by protein-graft-poly(ethylene glycol) hydrogels to serve as matrices for tissue repair and regeneration. In particular, the two design objectives, specific cell adhesion and degradability by cell-associated proteases, were fulfilled by the material. In the future, this and

  8. Dynamics of ecological and biological characteristics of soddy-podzolic soils under long-term oil pollution

    NASA Astrophysics Data System (ADS)

    Petrov, A. M.; Versioning, A. A.; Karimullin, L. K.; Akaikin, D. V.; Tarasov, O. Yu.

    2016-07-01

    The dynamics of respiratory and enzyme activities and toxicological properties of loamy-sandy and loamy soddy-podzolic soils (Retisols) under the long-term influence of oil pollution were studied. The concentrations of the pollutant, at which the activity (the ability of self-purification) of the indigenous soil microflora is preserved, were determined. The dynamics of the decrease of oil product content and the time of elimination of the toxic effects on higher plants at the initial pollutant contents were revealed. The parameters of the respiratory and enzyme activities in the course of the 365-day experiment showed that the microbial community of the loamy-sandy soil was more sensitive to oil pollution. The phytotoxic characteristics of the oil-containing loamy-sandy and loamy soils did not correlate with their respiratory and enzyme activities. This fact testifies to some differences in the mechanisms of their influence on living organisms with different organizational levels and to the necessity of taking into account a complex of parameters when assessing the state of the soils under the long-term effects of oil and its products.

  9. Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways.

    PubMed

    Trefault, N; De la Iglesia, R; Molina, A M; Manzano, M; Ledger, T; Pérez-Pantoja, D; Sánchez, M A; Stuardo, M; González, B

    2004-07-01

    Ralstonia eutropha JMP134 (pJP4) is a useful model for the study of bacterial degradation of substituted aromatic pollutants. Several key degrading capabilities, encoded by tfd genes, are located in the 88 kb, self-transmissible, IncP-1 beta plasmid pJP4. The complete sequence of the 87,688 nucleotides of pJP4, encoding 83 open reading frames (ORFs), is reported. Most of the coding sequence corresponds to a well-conserved IncP-1 beta backbone and the previously reported tfd genes. In addition, we found hypothetical proteins putatively involved in the transport of aromatic compounds and short-chain fatty acid oxidation. ORFs related to mobile elements, including the Tn501-encoded mercury resistance determinants, an IS1071-based composite transposon and a cryptic class II transposon, are also present in pJP4. These mobile elements are inefficient in transposition and are located in two regions of pJP4 that are rich in remnants of lateral gene transfer events. pJP4 plasmid was able to capture chromosomal genes and form hybrid plasmids with the IncP-1 alpha plasmid RP4. These observations are integrated into a model for the evolution of pJP4, which reveals mechanisms of bacterial adaptation to degrade pollutants. PMID:15186344

  10. Magnetic CoFe2O4 nanoparticles supported on titanate nanotubes (CoFe2O4/TNTs) as a novel heterogeneous catalyst for peroxymonosulfate activation and degradation of organic pollutants.

    PubMed

    Du, Yunchen; Ma, Wenjie; Liu, Pingxin; Zou, Bohua; Ma, Jun

    2016-05-01

    Magnetic spinel ferrites, as heterogeneous catalysts to generate powerful radicals from peroxymonosulfate (PMS) for the degradation of organic pollutants, have received much attention in recent years due to the characteristic of environmental benefits. In this study, with titanate nanotubes (TNTs) as catalyst support, a novel CoFe2O4/TNTs hybrid was constructed by an impregnation-calcination method. Characterization results revealed that TNTs support could promise small size and good dispersion of CoFe2O4 nanoparticles. Compared to the pure CoFe2O4, the as-prepared CoFe2O4/TNTs not only exhibited better performance in catalytic decomposition of Rhodamine B, but also realized higher total organic carbon removal and less cobalt leaching, which could be attributed to the enhanced catalytic ability from smaller CoFe2O4 nanoparticles and the unique ion-exchange ability from TNTs support. Some influential factors, including reaction temperature, dosages of PMS and CoFe2O4/TNTs, and pH values were investigated and analyzed. Moreover, CoFe2O4/TNTs maintained its catalytic efficiency during the repeated batch experiments and also displayed functional advantages in the catalytic degradation of phenol. We believe the CoFe2O4/TNTs hybrid can be an efficient and green heterogeneous catalyst for the degradation of organic pollutants, and this study provides insights into the rational design and development of alternative catalysts for wastewater treatment. PMID:26808243

  11. Speciation and formation of iodinated trihalomethane from microbially derived organic matter during the biological treatment of micro-polluted source water.

    PubMed

    Wei, Yuanyuan; Liu, Yan; Ma, Luming; Wang, Hongwu; Fan, Jinhong; Liu, Xiang; Dai, Rui-Hua

    2013-09-01

    Water sources are micro-polluted by the increasing range of anthropogenic activities around them. Disinfection byproduct (DBP) precursors in water have gradually expanded from humic acid (HA) and fulvic acid to other important sources of potential organic matter. This study aimed to provide further insights into the effects of microbially derived organic matter as precursors on iodinated trihalomethane (I-THM) speciation and formation during the biological treatment of micro-polluted source water. The occurrence of I-THMs in drinking water treated by biological processes was investigated. The results showed for the first time that CHCl2I and CHBrClI are emerging DBPs in China. Biological pre-treatment and biological activated carbon can increase levels of microbes, which could serve as DBP precursors. Chlorination experiments with bovine serum albumin (BSA), starch, HA, deoxyribonucleic acid (DNA), and fish oil, confirmed the close correlation between the I-THM species identified during the treatment processes and those predicted from the model compounds. The effects of iodide and bromide on the I-THM speciation and formation were related to the biochemical composition of microbially derived organic precursors. Lipids produced up to 16.98μgL(-1) of CHCl2I at an initial iodide concentration of 2mgL(-1). HA and starch produced less CHCl2I at 3.88 and 3.54μgL(-1), respectively, followed by BSA (1.50μgL(-1)) and DNA (1.35μgL(-1)). Only fish oil produced I-THMs when iodide and bromide were both present in solution; the four other model compounds formed brominated species.

  12. Degradation of the electrospun silica nanofiber in a biological medium for primary hippocampal neuron – effect of surface modification

    PubMed Central

    Feng, Z Vivian; Chen, Wen Shuo; Keratithamkul, Khomson; Stoick, Michael; Kapala, Brittany; Johnson, Eryn; Huang, An-Chi; Chin, Ting Yu; Chen-Yang, Yui Whei; Yang, Mong-Lin

    2016-01-01

    In this work, silica nanofibers (SNFs) were prepared by an electrospinning method and modified with poly-d-lysine (PDL) or (3-aminopropyl) trimethoxysilane (APTS) making biocompatible and degradable substrates for neuronal growth. The as-prepared SNF, modified SNF-PDL, and SNF-APTS were evaluated using scanning electron microscopy, nitrogen adsorption/desorption isotherms, contact angle measurements, and inductively coupled plasma atomic emission spectroscopy. Herein, the scanning electron microscopic images revealed that dissolution occurred in a corrosion-like manner by enlarging porous structures, which led to loss of structural integrity. In addition, covalently modified SNF-APTS with more hydrophobic surfaces and smaller surface areas resulted in significantly slower dissolution compared to SNF and physically modified SNF-PDL, revealing that different surface modifications can be used to tune the dissolution rate. Growth of primary hippocampal neuron on all substrates led to a slower dissolution rate. The three-dimensional SNF with larger surface area and higher surface density of the amino group promoted better cell attachment and resulted in an increased neurite density. This is the first known work addressing the degradability of SNF substrate in physiological conditions with neuron growth in vitro, suggesting a strong potential for the applications of the material in controlled drug release. PMID:27013873

  13. Degradation of the electrospun silica nanofiber in a biological medium for primary hippocampal neuron - effect of surface modification.

    PubMed

    Feng, Z Vivian; Chen, Wen Shuo; Keratithamkul, Khomson; Stoick, Michael; Kapala, Brittany; Johnson, Eryn; Huang, An-Chi; Chin, Ting Yu; Chen-Yang, Yui Whei; Yang, Mong-Lin

    2016-01-01

    In this work, silica nanofibers (SNFs) were prepared by an electrospinning method and modified with poly-d-lysine (PDL) or (3-aminopropyl) trimethoxysilane (APTS) making biocompatible and degradable substrates for neuronal growth. The as-prepared SNF, modified SNF-PDL, and SNF-APTS were evaluated using scanning electron microscopy, nitrogen adsorption/desorption isotherms, contact angle measurements, and inductively coupled plasma atomic emission spectroscopy. Herein, the scanning electron microscopic images revealed that dissolution occurred in a corrosion-like manner by enlarging porous structures, which led to loss of structural integrity. In addition, covalently modified SNF-APTS with more hydrophobic surfaces and smaller surface areas resulted in significantly slower dissolution compared to SNF and physically modified SNF-PDL, revealing that different surface modifications can be used to tune the dissolution rate. Growth of primary hippocampal neuron on all substrates led to a slower dissolution rate. The three-dimensional SNF with larger surface area and higher surface density of the amino group promoted better cell attachment and resulted in an increased neurite density. This is the first known work addressing the degradability of SNF substrate in physiological conditions with neuron growth in vitro, suggesting a strong potential for the applications of the material in controlled drug release. PMID:27013873

  14. Cometabolic degradation of chlorinated aromatic compounds.

    PubMed

    Jechorek, M; Wendlandt, K-D; Beck, M

    2003-04-10

    The degradation of chlorobenzene was investigated with the specially chosen strain Methylocystis sp. GB 14 DSM 12955, using 23 ml headspace vials and in a soil column filled with quaternary aquifer material from a depth of 20 m. A long-term experiment was carried out in this column, situated in a mobile test unit at a contaminated location in Bitterfeld (Germany). Groundwater polluted by chlorobenzene was continuously fed through the column, through which a mixture comprising 4% CH(4) and 96% air was bubbled. Chlorobenzene was oxidized by up to 80% under pure culture conditions in the model experiments and was completely degraded under the mixed culture conditions of the column experiments. Over a period of 4 months, the stability of the biological system was monitored regularly by analyzing the sMMO activity as well as by classical microbiological and molecular biological methods.

  15. Environmental parameters of the Tennessee River in Alabama. 2: Physical, chemical, and biological parameters. [biological and chemical effects of thermal pollution from nuclear power plants on water quality

    NASA Technical Reports Server (NTRS)

    Rosing, L. M.

    1976-01-01

    Physical, chemical and biological water quality data from five sites in the Tennessee River, two in Guntersville Reservoir and three in Wheeler Reservoir were correlated with climatological data for three annual cycles. Two of the annual cycles are for the years prior to the Browns Ferry Nuclear Power Plant operations and one is for the first 14 months of Plant operations. A comparison of the results of the annual cycles indicates that two distinct physical conditions in the reservoirs occur, one during the warm months when the reservoirs are at capacity and one during the colder winter months when the reservoirs have been drawn-down for water storage during the rainy months and for weed control. The wide variations of physical and chemical parameters to which the biological organisms are subjected on an annual basis control the biological organisms and their population levels. A comparison of the parameters of the site below the Power plant indicates that the heated effluent from the plant operating with two of the three reactors has not had any effect on the organisms at this site. Recommendations given include the development of prediction mathematical models (statistical analysis) for the physical and chemical parameters under specific climatological conditions which affect biological organisms. Tabulated data of chemical analysis of water and organism populations studied is given.

  16. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy.

    PubMed

    Paoli, Luca; Loppi, Stefano

    2008-09-01

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution.

  17. Eutrophication. [Water pollution

    SciTech Connect

    Medine, A.J.; Porcella, D.B.

    1982-06-01

    A literature review dealing with the process of eutrophication with respect to the sources and transport of pollutants is presented. Topics include the mathematical modeling of nutrient loading, eutrophication, and aquatic ecosystems. Biological and environmental indicators of eutrophication are reviewed, and the interactions between various chemical and biological pollutants are considered. Several lake management projects are discussed. (KRM)

  18. [Treatment of oilfield produced water by biological methods-constructed wetland process and degradation characteristics of organic substances].

    PubMed

    Huang, Xiang-feng; Shen, Jie; Wen, Yue; Liu, Jia; Lu, Li-jun; Zhou, Qi

    2010-02-01

    Hydrolysis acidification-aerobic-constructed wetland process and hydrolysis acidification-constructed wetland were used to treat oilfield produced water after the pretreatment of oil separation-coagulation. Gas chromatography-mass spectrometry was used to study the degradation characteristics of organic substances during the treatment process. The results showed that COD and ammonia nitrogen of both the two process effluents were below 80 mg/L and 15 mg/L, respectively, when HRT was 20 h for hydrolysis acidification, 10 h for aeration and 2 d for constructed wetlands or when HRT was 20 h for hydrolysis acidification and 4 d for constructed wetland. The results of GC-MS analysis showed that biodegradability of the oil produced water was significantly improved in hydrolysis acidification. Substantial removal of benzene compounds was achieved in aerobic and constructed wetland. PMID:20391699

  19. Study of the accumulation of air pollution by the biological indicators, using 14 MeV neutron activation

    NASA Astrophysics Data System (ADS)

    Senhou, A.; Khoukhi, T. El; Chouak, A.; Cherkaoui, R. El Moursili; Yahiaoui, A. El; Lferde, M.

    2001-06-01

    14 MeV neutron activation analysis was used to determine air polluting elements in samples of mosses, lichens and tree barks, collected from different regions in Morocco. The analysis of spectra shows clearly that the elements Mg, Al, Si, Cl, J, Ca, Ti and Fe can easily be determined by 14 NAA with good precision, while results for Zn, Rb, Sr, Ba and La are less precise. Curves showing correlation between Al and Mg concentrations are given for different sites.

  20. Development of biological indices for identifying and evaluating impacts of pollutants on freshwater ecosystems. Final report, June 1975-October 1980

    SciTech Connect

    Cairns, J. Jr.; Cherry, D.S.

    1980-09-30

    The ten Research Areas reported included: (1) the development of functional indices for identifying and evaluating impacts of pollutants on Aufwuchs communities, (2) relationship of protozoan colonization rates to the eutrophication process, (3) testing of methods to determine the functioning of zooplankton communities subjected to entrainment stress, (4) the use of the first steps of detritus processing (microbial decomposition) as a technique for assessing pollutional stress on aquatic communities in a river system, (5) relationship of protozoan invasion and extinction rate to the eutrophication process, (6) extension of present early colonization studies to the simultaneous evaluation of natural environmental parameters and power plant effluents and application of the early colonization approach to microbial communities in streams of the New River drainage, (7) testing of single species-community responses of protozoans from selected heavy metals, (8) the effects of selected power plant pollutants on grazer utilization of Aufwuchs, (9) investigation of bioconcentration and bioaccumulation mechanisms of the Asiatic clam (Corbicula fluminea) populations in field artificial streams and laboratory microcosms with reference to physical chemistry and diet alterations, and (10) investigation of the homeostatic regulation in bluegill sunfish following acute hypothermal shock and to other power plant related effluents.

  1. Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants

    NASA Astrophysics Data System (ADS)

    Wepener, V.; van Vuren, J. H. J.; Chatiza, F. P.; Mbizi, Z.; Slabbert, L.; Masola, B.

    Effluents are a main source of direct and continuous input of pollutants in aquatic ecosystems. Relating observed effects to specific pollutants or even classes of pollutants remains a very difficult task due to the usually unknown, complex and often highly variable composition of effluents. It is recognized that toxicants interfere with organism integrity at the biochemical level and give rise to effects at the individual level and is manifested in reduced ecologically relevant characteristics such as growth, reproduction and survival, and ultimately at the ecosystem level. By integrating multiple endpoints at different ecologically relevant levels of organization within one test organism, it should be possible to gain understanding in how different levels of organization within this organism respond to toxic exposure and how responses at these different levels are interrelated. This paper presents results from a field study in the Rietvlei Wetland system, Gauteng, South Africa using the freshwater mollusk ( Melanoides tuberculata) and freshwater fish ( Oreochromis mossambicus) as bioindicator organisms. Active biomonitoring (ABM) exposures were conducted where organisms were exposed for 28 days in an effluent dominated river during high flow conditions in April 2003. The river receives effluent from a wastewater treatment plant and an industrial complex, so that up to 75% of the total flow of the river is effluent-based. Effects of field exposure were determined using cellular biomarkers e.g. DNA damage, HSP 70, metallothionein, acetylcholine esterase, lactate dehydrogenase and ethoxyresorufin-o-deethylase activity. The results clearly indicate that although the traditional mortality-based whole effluent toxicity testing did not indicate any toxicity, the in situ exposed organisms were stressed. A multivariate statistical approach was particularly useful for integrating the biomarker responses and highlighting sites at which more detailed analysis of chemical

  2. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation. PMID:27348482

  3. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.

    PubMed

    Arabzadeh, Abbas; Salimi, Abdollah

    2016-10-01

    In this study, one-dimensional CdS nanowires@TiO2 nanoparticles core-shell structures (1D CdS NWs@TiO2 NPs) were synthesized by a facile wet chemical-solvothermal method. The different aspects of the properties of CdS NWs@TiO2 NPs were surveyed by using a comprehensive range of characterization techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, scanning electron microscopy (SEM), fluorescence spectroscopy, energy dispersive X-ray spectroscopy (EDX), Cyclic Voltammetry (CV) and amperometry. The as-prepared nanostructure was applied as an effective photocatalyst for degradation of methyl orange (MO), methylene blue (MB) and rhodamine B (Rh B) under visible and sunlight irradiation. The results indicated significantly enhanced photocatalytic activity of CdS NWs@TiO2 NPs for degradation of MO, MB and Rh B compared to CdS NWs. The enhanced photocatalytic activity could be attributed to the enhanced sunlight absorbance and the efficient charge separation of the formed heterostructure between CdS NWs and TiO2. The results showed that MO, Rh B and MB were almost completely degraded after 2, 2 and 3min of exposure to sunlight, respectively; while under visible light irradiation (3W blue LED lamp) the dyes were decomposed with less half degradation rate. The catalytic activity was retained even after three degradation cycles of organic dyes, demonstrating that the proposed nanocomposite can be effectively used as efficient photocatalyst for removal of environmental pollutions caused by organic dyes under sunlight irradiation and it could be an important addition to the field of wastewater treatment. We hope the present study may open a new window of such 1-D semiconductor nanocomposites to be used as visible light photocatalysts in the promising field of organic dyes degradation.

  4. Degradation and COD removal of catechol in wastewater using the catalytic ozonation process combined with the cyclic rotating-bed biological reactor.

    PubMed

    Aghapour, Ali Ahmad; Moussavi, Gholamreza; Yaghmaeian, Kamyar

    2015-07-01

    The effect of ozonation catalyzed with MgO/granular activated carbon (MgO/GAC) composite as a pretreatment process on the performance of cyclic rotating-bed biological reactor (CRBR) for the catechol removal from wastewater has been investigated. CRBR with acclimated biomasses could efficiently remove catechol and its related COD from wastewater at organic loading rate (OLR) of 7.82 kg COD/m(3).d (HRT of 9 h). Then, OLR increased to 15.64 kg COD/m(3).d (HRT of 4.5 h) and CRBR failed. Catalytic ozonation process (COP) used as a pre-treatment and could improve the performance of the failed CRBR. The overall removal efficiency of the combined process attained respective steady states of 91% and 79% for degradation and COD removal of catechol. Therefore, the combined process is more effective in degradation and COD removal of catechol; it is also a viable alternative for upgrading industrial wastewater treatment plant.

  5. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials. PMID:26513317

  6. Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Boaventura, Rui A R; Maldonado-Hódar, F J; Madeira, Luís M

    2016-01-15

    This work deals with the treatment of a recalcitrant effluent, from the dyeing stage of acrylic fibres, by combination of the heterogeneous Fenton's process in a continuous stirred tank reactor (CSTR) with biological degradation in a sequential batch reactor (SBR). Three different catalysts (a commercial Fe/ZSM-5 zeolite and two distinct Fe-containing activated carbons - ACs - prepared by wet impregnation of iron acetate and iron nitrate) were employed on the Fenton's process, and afterwards a parametric study was carried out to determine the effect of the main operating conditions, namely the hydrogen peroxide feed concentration, temperature and contact time. Under the best operating conditions found, using the activated carbon impregnated with iron nitrate, 62.7% of discolouration and 39.9% of total organic carbon (TOC) reduction were achieved, at steady-state. Furthermore, a considerable increase in the effluent's biodegradability was attained (BOD5:COD ratio increased from <0.001 to 0.27 and SOUR - specific oxygen uptake rate - from <0.2 to 11.1 mg O2/(gVSS·h)), alongside a major decrease in its toxicity (from 92.1 to 94.0% of Vibrio fischeri inhibition down to 6.9-9.9%). This allowed the application of the subsequent biological degradation stage. The combination of the two processes provided a treated effluent that clearly complies with the legislated discharge limits. It was also found that the iron leaching from the three catalysts tested was very small in all runs, a crucial factor for the stability and long-term use of such materials.

  7. [Influence of multimetallic pollution of environmental objects on changes in the trace element composition of the biological media in children].

    PubMed

    Zaĭtseva, N V; Ulanova, T S; Plakhova, L V; Suetina, G N

    2004-01-01

    The paper shows guidelines used to develop a procedure for detecting heavy metals in biological fluids (urine, bile, gastric juice, blood, hair, placenta, meconium, breast milk) by atomic absorption spectrophotometry at the level of 10(-1)-10(-3) microg/ml(-1) with the maximum analysis error of 17.9%. It also proposes guidelines for determining (calculating) the regional background levels of metals in the biological media of children (in case of the Perm Region). The guidelines have been used to compare the ecological situation in large industrial towns of the Perm Region in compliance with the standard levels of metals in the biological media. The results of studies of risk groups, such as lying women and neonatal infants, show a number of relationships and regularities that lie in diminishing the barrier function of the placenta in the mother-newborn system in a poor environmental area.

  8. An integrated chemical-biological study using caged mussels (Mytilus trossulus) along a pollution gradient in the Archipelago Sea (SW Finland, Baltic Sea).

    PubMed

    Lehtonen, Kari K; Turja, Raisa; Budzinski, Hélène; Devier, Marie-Hélène

    2016-08-01

    Mussels (Mytilus trossulus) were caged along a known pollution gradient in the inner Archipelago Sea (northern Baltic Sea) and retrieved after 71 and 121 d for the measurement of selected chemical contaminants in tissues and biological endpoints including biochemical biomarkers and growth. Additional samples were collected during the growth season from a native mussel population at an alleged reference site. Elevated concentrations of numerous contaminants (e.g., PAH) were observed in spring, apparently due to the loss of tissue mass during the winter, while also the levels of many biomarkers (e.g., glutathione S-transferase activity) were elevated. Spatial and temporal changes in the accumulation of contaminants and biological parameters were observed with some of them (e.g., growth) linked to seasonal changes in environmental factors. The results underline the importance of understanding the effects of seasonal natural factors on the growth dynamics and general condition of mussels when assessing tissue concentrations of contaminants and biological effects. PMID:27337550

  9. Biological vulnerabilities of National Park Service Class I areas to atmospheric pollutants: Environmental Sciences Division publication No. 2646

    SciTech Connect

    Esserlieu, M.K.; Olson, R.J.

    1986-10-01

    The National Park Service (NPS) is responsible for managing 322 parks and other lands; 48 of the parks are designated as ''Class I'' areas under the requirements for prevention of significant deterioration (PSD) of the Clean Air Act. This designation is intended to protect the parks from sulfur dioxide (SO/sub 2/) and suspended particulates. Nonetheless, long-range transport of these and other pollutants, particularly ozone (O/sub 3/) and acidic deposition, potentially threatens the health and structure of ecosystems of these 48 Class I parks. This analysis quantifies and ranks their sensitivities to air pollutants; it also estimates relative risk to aid determination of priorities for monitoring and for more detailed analyses. Vulnerability was assessed by determining from literature sources the sensitivity of the dominant vascular plant species to SO/sub 2/ and O/sub 3/ and the sensitivity of lichens to SO/sub 2/. The additional sensitivity factor of surface water alkalinity was included to indicate potential vulnerability to acidic deposition. When these factors were compared with ambient air quality, the risks for potential impacts to these Class I parks were estimated.

  10. Advanced electro-Fenton degradation of biologically-treated coking wastewater using anthraquinone cathode and Fe-Y catalyst.

    PubMed

    Li, Haitao; Li, Yuping; Cao, Hongbin; Li, Xingang; Zhang, Yi

    2011-01-01

    The electrocatalytic activity of bare and 2-ethyl anthraquinone-modified graphite felt (2-EAQ/GF) toward oxygen reduction was investigated using a cyclic voltammetry technique in a neutral solution. The prepared cathodes were tested for electrogeneration of H2O2 and electro-Fenton oxidation (EFO) treatment of neutral coking wastewater (CW) after biological process, using a graphite anode and Fezeolite Y catalyst. The results showed that (i) H2O2 yield and current efficiency greatly depended on cathodic potential and materials; (ii) hydroxyl radicals, generated from Fe-zeolite Y-catalyzed H2O2 decomposition, played a great role in EFO treatment, while anodic direct and indirect oxidation was insignificant; (iii) chemical oxygen demand, total organic carbon (TOC) and acute toxicity of wastewater decreased by 40-50, 30-40 and 50-60%, respectively, and biodegradability increased after 1 h of EFO treatment. Due to the free-pH adjustment, EFO presents a potential engineering application for advanced treatment of CW. PMID:22053459

  11. [Storage of hydrocarbon-degrading bacteria].

    PubMed

    Bade, G M; Vecchioli, G I; del Panno, M T; Painceira, M T

    1994-01-01

    The storage in the laboratory of hydrocarbon degrading bacteria to be used in the decontamination of polluted sites or in the enhancement of biological treatment of industrial effluents was studied. Storage was carried out at 4 degrees C in nutrient agar and in a medium with selection pressure, liquid mineral medium with hydrocarbons. Storage at 4 degrees C with selection pressure and storage at -20 degrees C of 7 gram negative bacilli were compared. The former was the easiest method for preserving the greatest number of strains viable and active. PMID:7838975

  12. [Storage of hydrocarbon-degrading bacteria].

    PubMed

    Bade, G M; Vecchioli, G I; del Panno, M T; Painceira, M T

    1994-01-01

    The storage in the laboratory of hydrocarbon degrading bacteria to be used in the decontamination of polluted sites or in the enhancement of biological treatment of industrial effluents was studied. Storage was carried out at 4 degrees C in nutrient agar and in a medium with selection pressure, liquid mineral medium with hydrocarbons. Storage at 4 degrees C with selection pressure and storage at -20 degrees C of 7 gram negative bacilli were compared. The former was the easiest method for preserving the greatest number of strains viable and active.

  13. Persistent Organic Pollutants in albacore tuna (Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics.

    PubMed

    Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N

    2016-07-01

    The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination.

  14. Persistent Organic Pollutants in albacore tuna (Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics.

    PubMed

    Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N

    2016-07-01

    The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination. PMID:27084988

  15. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?

    PubMed

    Zhang, Yanhui; Tang, Zi-Rong; Fu, Xianzhi; Xu, Yi-Jun

    2010-12-28

    The nanocomposites of TiO(2)-graphene (TiO(2)-GR) have been prepared via a facile hydrothermal reaction of graphene oxide and TiO(2) in an ethanol-water solvent. We show that such a TiO(2)-GR nanocomposite exhibits much higher photocatalytic activity and stability than bare TiO(2) toward the gas-phase degradation of benzene, a volatile aromatic pollutant in air. By investigating the effect of different addition ratios of graphene on the photocatalytic activity of TiO(2)-GR systematically, we find that the higher weight ratio in TiO(2)-GR will decrease the photocatalytic activity. Analogous phenomenon is also observed for the liquid-phase degradation of dyes over TiO(2)-GR. In addition, the key features for TiO(2)-GR including enhancement of adsorptivity of pollutants, light absorption intensity, electron-hole pairs lifetime, and extended light absorption range have also been found in the composite of TiO(2) and carbon nanotubes (TiO(2)-CNT). These strongly manifest that TiO(2)-GR is in essence the same as other TiO(2)-carbon (carbon nanotubes, fullerenes, and activated carbon) composite materials on enhancement of photocatalytic activity of TiO(2), although graphene by itself has unique structural and electronic properties. Notably, this key fundamental question remains completely unaddressed in a recent report ( ACS Nano 2010 , 4 , 380 ) regarding liquid-phase degradation of dyes over the TiO(2)-GR photocatalyst. Thus, we propose that TiO(2)-GR cannot provide truly new insights into the fabrication of TiO(2)-carbon composite as high-performance photocatalysts. It is hoped that our work could avert the misleading message to the readership, hence offering a valuable source of reference on fabricating TiO(2)-carbon composites for their application as a photocatalyst in the environment cleanup. PMID:21117654

  16. Application of a biofilm formed by a mixture of yeasts isolated in Vietnam to degrade aromatic hydrocarbon polluted wastewater collected from petroleum storage.

    PubMed

    Nhi Cong, Le Thi; Ngoc Mai, Cung Thi; Thanh, Vu Thi; Nga, Le Phi; Minh, Nghiem Ngoc

    2014-01-01

    In this study, three good biofilm-forming yeast strains, including Candida viswanathii TH1, Candida tropicalis TH4 and Trichosporon asahii B1, were isolated from oil-contaminated water and sediment samples collected in coastal zones of Vietnam. These strains were registered in the GenBank database with the accession numbers JX129175, JX129176 and KC139404 for strain TH1, TH4 and B1, respectively. The biofilm formed by a mixture of these organisms degraded 90, 85, 82 and 67% of phenol, naphthalene, anthracene and pyrene, respectively, after a 7-day incubation period using an initial concentration of 600 ppm phenol and 200 ppm of each of the other compounds. In addition, this biofilm completely degraded these aromatic compounds, which were from wastewater collected from petroleum tanks in Do Xa, Hanoi after 14 days of incubation based on gas chromatography mass spectrometry analysis. To the best of our knowledge, reports on polycyclic aromatic hydrocarbon and phenol degradation by biofilm-forming yeasts are limited. The results obtained indicate that the biofilm formed by multiple yeast strains may considerably increase the degradation efficiency of aromatic hydrocarbon compounds, and may lead to a new approach for eliminating petroleum oil-contaminated water in Vietnam.

  17. Quantifying restoration success and recovery in a metal-polluted stream: A 17-year assessment of physicochemical and biological responses

    USGS Publications Warehouse

    Clements, W.H.; Vieira, N.K.M.; Church, S.E.

    2010-01-01

    Evaluating the effectiveness of stream restoration is often challenging because of the lack of pre-treatment data, narrow focus on physicochemical measures and insufficient post-restoration monitoring. Even when these fundamental elements are present, quantifying restoration success is difficult because of the challenges associated with distinguishing treatment effects from seasonal variation, episodic events and long-term climatic changes.2. We report results of one of the most comprehensive and continuous records of physical, chemical and biological data available to assess restoration success for a stream ecosystem in North America. Over a 17 year period we measured seasonal and annual changes in metal concentrations, physicochemical characteristics, macroinvertebrate communities, and brown trout Salmo trutta populations in the Arkansas River, a metal-contaminated stream in Colorado, USA.3. Although we observed significant improvements in water quality after treatment, the effectiveness of restoration varied temporally, spatially and among biological response variables. The fastest recovery was observed at stations where restoration eliminated point sources of metal contamination. Recovery of macroinvertebrates was significantly delayed at some stations because of residual sediment contamination and because extreme seasonal and episodic variation in metal concentrations prevented recolonization by sensitive species. Synthesis and applications. Because recovery trajectories after the removal of a stressor are often complex or nonlinear, long-term studies are necessary to assess restoration success within the context of episodic events and changes in regional climate. The observed variation in recovery among chemical and biological endpoints highlights the importance of developing objective criteria to assess restoration success. Although the rapid response of macroinvertebrates to reduced metal concentrations is encouraging, we have previously demonstrated that

  18. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India.

    PubMed

    Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita

    2013-05-01

    Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71). PMID:24617135

  19. Environmental and biological monitoring of persistent organic pollutants in waterbirds by non-invasive versus invasive sampling.

    PubMed

    Kocagöz, Rasih; Onmuş, Ortaç; Onat, İlgen; Çağdaş, Beste; Sıkı, Mehmet; Orhan, Hilmi

    2014-10-15

    Three main groups of persistent organic pollutants (POPs); namely organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) were quantified in water and sediment samples, as well as in various invasive and non-invasive samples from waterbirds in the Büyük Menderes River (BMR). Liver and muscle tissues, blood, and preen gland oil samples of yellow-legged gull (Larus michahellis) and Euroasian coot (Fulica atra) were collected both from the origin (Işıklı Lake) and the estuary (Söke) of the river, blood and preen gland oil samples of grey heron (Ardea cinerea) and pelican (Pelecanus crispus) were collected from the estuary only. In addition, non-hatched eggs from several above species and Mediterranean gull (Larus melanocephalus), in either station were collected. In all samples, POP contamination was measured and the potential usefulness of those invasive and non-invasive sampling for biomonitoring was evaluated. Activities of antioxidant enzymes were measured as potential indicators of POP exposure and of changes in the cellular defence. Venous blood proved to be a promising biomonitor for the concentrations in liver and muscle, especially for PCBs. Activities of antioxidant enzymes were correlated with the liver concentrations of several OCP congeners. The measured egg DDE concentrations were below the established threshold concentrations for the risk of hatch and reproductive success. PMID:24503014

  20. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India.

    PubMed

    Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita

    2013-05-01

    Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71).

  1. Simulation research on the natural degradation process of PBDEs in soil polluted by e-waste under increased concentrations of atmospheric O(3).

    PubMed

    Niu, Xiaojun; Liu, Chen; Song, Xiaofei

    2015-01-01

    There have been increased concerns regarding the effect of polybrominated diphenyl ethers (PBDEs) on the environment. These compounds are widely utilized by the electronics industry and also function as fire retardants. More data on the basic characteristics of PBDEs are needed to better understand and used to describe their environmental fate. The aim of this study was to investigate the degradation of BDE-209 with different degrees of bromination under changes in the atmospheric environment. BDE-209 was able to be removed quickly due to the strong oxidizing ability of ozone in the atmosphere environment. Less-brominated BDEs, ranging from BDE-28 to BDE-183, were formed progressively, and the reaction of ozone gradually occupied the main position along with an increase in ozone flow time. Degradation reaction rates of PBDEs increased with increasing ozone concentration but decreased with increasing soil depth. Under UV-irradiation, BDE-209 was quickly transformed into less-brominated BDEs and the photodegradation reactions were faster than solar irradiation. The conditions of high ground temperature in the summer and alkaline soil were both contributors to the degradation of PBDEs. These results could facilitate the improvement of waste treatment designs and lead to better predictions of the outcome of PBDEs in the environment.

  2. Enhanced photocatalytic performance of morphologically tuned Bi2S3 NPs in the degradation of organic pollutants under visible light irradiation.

    PubMed

    Sarkar, Arpita; Ghosh, Abhisek Brata; Saha, Namrata; Srivastava, Divesh N; Paul, Parimal; Adhikary, Bibhutosh

    2016-12-01

    Here in, morphologically tuned Bi2S3 NPs were successfully synthesized from a single-source precursor complex [Bi(ACDA)3] [HACDA=2-aminocyclopentene-1-dithiocarboxylic acid] by decomposing in various solvents using a simple solvothermal method. The as-obtained products were characterized by XRD, TEM, UV-vis spectroscopy and BET surface area measurements. Structural analyses revealed that the as-prepared Bi2S3 NPs can be tuned to different morphologies by varying various solvents and surfactants. The interplay of factors that influenced the size and morphology of the nanomaterials has been studied. Moreover, mastery over the morphology of nanoparticles enables control of their properties and enhancement of their usefulness for a given application. These materials emerged as a highly active visible light-driven photocatalyst towards degradation of methylene blue dye and the efficiencies are dependent on size and surface area of the NPs. In addition, photocatalytic degradation of highly toxic dichlorodiphenyltrichloroethane was studied using synthesized Bi2S3 NPs as catalyst and the rate of degradation has been found to be much better compared to that exhibited by commercial WO3. We believe that this new synthesis approach can be extended to the synthesis of other metal sulfide nanostructures and open new opportunities for device applications. PMID:27552413

  3. Simulation research on the natural degradation process of PBDEs in soil polluted by e-waste under increased concentrations of atmospheric O(3).

    PubMed

    Niu, Xiaojun; Liu, Chen; Song, Xiaofei

    2015-01-01

    There have been increased concerns regarding the effect of polybrominated diphenyl ethers (PBDEs) on the environment. These compounds are widely utilized by the electronics industry and also function as fire retardants. More data on the basic characteristics of PBDEs are needed to better understand and used to describe their environmental fate. The aim of this study was to investigate the degradation of BDE-209 with different degrees of bromination under changes in the atmospheric environment. BDE-209 was able to be removed quickly due to the strong oxidizing ability of ozone in the atmosphere environment. Less-brominated BDEs, ranging from BDE-28 to BDE-183, were formed progressively, and the reaction of ozone gradually occupied the main position along with an increase in ozone flow time. Degradation reaction rates of PBDEs increased with increasing ozone concentration but decreased with increasing soil depth. Under UV-irradiation, BDE-209 was quickly transformed into less-brominated BDEs and the photodegradation reactions were faster than solar irradiation. The conditions of high ground temperature in the summer and alkaline soil were both contributors to the degradation of PBDEs. These results could facilitate the improvement of waste treatment designs and lead to better predictions of the outcome of PBDEs in the environment. PMID:25465956

  4. Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway.

    PubMed

    Zhu, Zhexin; Chen, Yi; Gu, Yan; Wu, Fei; Lu, Wangyang; Xu, Tiefeng; Chen, Wenxing

    2016-04-15

    Iron (II) phthalocyanine (FePc) molecules were isolated in polyacrylonitrile (PAN) nanofibers by electrospinning to prevent the formation of dimers and oligomers. Carbamazepine (CBZ) and Rhodamine B (RhB) degradation was investigated during a Fenton-like process with FePc/PAN nanofibers. Classical quenching tests with isopropanol and electron paramagnetic resonance tests with 5,5-dimethyl-pyrroline-oxide as spin-trapping agent were performed to determine the formation of active species during hydrogen peroxide (H2O2) decomposition by FePc/PAN nanofibers. After eight recycles for CBZ degradation over the FePc/PAN nanofibers/H2O2 system, the removal ratios of CBZ remained at 99%. Seven by-products of RhB and twelve intermediates of CBZ were identified using ultra-performance liquid chromatography and high-resolution mass spectrometry. Pathways of CBZ and RhB degradation were proposed based on the identified intermediates. As the reaction proceeded, all CBZ and RhB aromatic nucleus intermediates decreased and were transformed to small acids, but also to potentially toxic epoxide-containing intermediates and acridine, because of the powerful oxidation ability of •OH in the catalytic system. PMID:26949842

  5. [Indoor pollution].

    PubMed

    Tarsitani, G

    1995-01-01

    The Author reports more important phases from the beginning of housing to now: the indoor pollution time. Shelter is a basic need; humans require protection against the elements, somewhere to store and prepare the food, and a secure place to raise offspring; but indoor environment is not always safe. It has been known since Hippocrates' time that housing conditions affect health. Today situation starts from the enormous growth of urbanization. At 1888 in Italy first legislation on health, including healthy building, has been issued. The prevention policies were based on local hygiene regulations. At present housing programmes of who stress the problem in consideration too of the great part of time that, in industrialized Countries, we all pass at home, in the indoor environment. Following the general introduction the Author relates on the features of indoor climate, that may be identical that out of doors, or may be modified by heating, cooling, humidification and ventilation. Larger commentaries are reported on indoor pollution and its increasing by modern technology producing several new hazards. Physical, chemical and biological indoor air pollutants, with their principal sources and health damages associated, are analyzed. In conclusion the author shows some data from a research on indoor pollution in the houses of Rome.

  6. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere.

    PubMed

    Nizzetto, Luca; Perlinger, Judith A

    2012-03-01

    An ecophysiological model of a structured broadleaved forest canopy was coupled to a chemical fate model of the air-canopy exchange of gaseous semivolatile chemicals to dynamically assess the short-term (hours) and medium term (days to season) air-canopy exchange and the influence of biological, climatic, and land cover drivers on the dynamics of the air-canopy exchange and on the canopy storage for airborne semivolatile pollutants. The chemical fate model accounts for effects of short-term variations in air temperature, wind speed, stomatal opening, and leaf energy balance, all as a function of layer in the canopy. Simulations showed the potential occurrence of intense short/medium term re-emission of pollutants having log K(OA) up to 10.7 from the canopy as a result of environmental forcing. In addition, relatively small interannual variations in seasonally averaged air temperature, canopy biomass, and precipitation can produce relevant changes in the canopy storage capacity for the chemicals. It was estimated that possible climate change related variability in environmental parameters (e.g., an increase of 2 °C in seasonally averaged air temperature in combination with a 10% reduction in canopy biomass due to, e.g., disturbance or acclimatization) may cause a reduction in canopy storage capacity of up to 15-25%, favoring re-emission and potential for long-range atmospheric transport. On the other hand, an increase of 300% in yearly precipitation can increase canopy sequestration by 2-7% for the less hydrophobic compounds. PMID:22304464

  7. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.

    PubMed

    Shanmugam, Mahalingam; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, Ramasamy

    2016-10-01

    Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment. PMID:27588719

  8. In-situ microwave synthesis of graphene-TiO2 nanocomposites with enhanced photocatalytic properties for the degradation of organic pollutants.

    PubMed

    Shanmugam, Mahalingam; Alsalme, Ali; Alghamdi, Abdulaziz; Jayavel, Ramasamy

    2016-10-01

    Graphene-titanium oxide (G-TiO2) nanocomposites were synthesized by a novel surfactant free, environmentally friendly one-port in-situ microwave method. The structure of the nanocomposite was characterized by the X-ray diffraction analysis and the morphology by using scanning electron microscopic and transmission electron microscopic images. The functional groups and carbon band structures were identified using FTIR and Raman spectral analysis. TiO2 nanoparticles in the size range of 5-10nm were distributed on the graphene sheets. The surface area of pure TiO2 and G-TiO2 nanocomposite was measured to be 20.11 and 173.76m(2)/g respectively. The pore volume and pore size of TiO2 were 0.018cm(3)/g and 1.5266nm respectively. G-TiO2 composite possesses higher pore volume (0.259cm(3)/g) and pore size 3.2075nm. The binding states of C, O and Ti of nanocomposite were analyzed by X-ray photoelectron spectroscopy, which confirmed the chemical bonding between graphene-TiO2. The photocatalytic activity of pure TiO2 and G-TiO2 nanocomposite was studied under UV and visible light irradiation sources with methylene blue dye. It has been observed that the degradation was faster in G-TiO2 nanocomposite than pure TiO2 nanoparticles. The rate constant and half life time were calculated from the kinetic studies of the degradation. The highest degradation efficiency of 97% was achieved in UV light and 96% for visible light irradiation with G-TiO2 as a catalyst. The studies reveal that G-TiO2 nanocomposite can be an effective catalyst for industrial waste water treatment.

  9. Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation.

    PubMed

    Yu, Xuelian; Shavel, Alexey; An, Xiaoqiang; Luo, Zhishan; Ibáñez, Maria; Cabot, Andreu

    2014-07-01

    Cu2ZnSnS4, based on abundant and environmental friendly elements and with a direct band gap of 1.5 eV, is a main candidate material for solar energy conversion through both photovoltaics and photocatalysis. We detail here the synthesis of quasi-spherical Cu2ZnSnS4 nanoparticles with unprecedented narrow size distributions. We further detail their use as seeds to produce CZTS-Au and CZTS-Pt heterostructured nanoparticles. Such heterostructured nanoparticles are shown to have excellent photocatalytic properties toward degradation of Rhodamine B and hydrogen generation by water splitting. PMID:24946131

  10. Cu(2)ZnSnS(4)-Pt and Cu(2)ZnSnS(4)-Au heterostructured nanoparticles for photocatalytic water splitting and pollutant degradation.

    PubMed

    Yu, Xuelian; Shavel, Alexey; An, Xiaoqiang; Luo, Zhishan; Ibáñez, Maria; Cabot, Andreu

    2014-07-01

    Cu2ZnSnS4, based on abundant and environmental friendly elements and with a direct band gap of 1.5 eV, is a main candidate material for solar energy conversion through both photovoltaics and photocatalysis. We detail here the synthesis of quasi-spherical Cu2ZnSnS4 nanoparticles with unprecedented narrow size distributions. We further detail their use as seeds to produce CZTS-Au and CZTS-Pt heterostructured nanoparticles. Such heterostructured nanoparticles are shown to have excellent photocatalytic properties toward degradation of Rhodamine B and hydrogen generation by water splitting.

  11. Illicit drugs as new environmental pollutants: cyto-genotoxic effects of cocaine on the biological model Dreissena polymorpha.

    PubMed

    Binelli, A; Pedriali, A; Riva, C; Parolini, M

    2012-03-01

    The increase in global consumption of illicit drugs has produced not only social and medical problems but also a potential new environmental danger. Indeed, it has been established that drugs consumed by humans end up in surface waters, after being carried through the sewage system. Although many studies to measure concentrations of several drugs of abuse in freshwater worldwide have been conducted, no data have been available to evaluate their potentially harmful effects on non-target organisms until now. The present study represents the first attempt to investigate the cyto-genotoxic effects of cocaine, one of the primary drugs consumed in Western Countries, in the biological model Dreissena polymorpha by the use of a biomarker battery. We performed the following tests on Zebra mussel hemocytes: the single cell gel electrophoresis (SCGE) assay, the apoptosis frequency evaluation and the micronucleus assay (MN test) for the evaluation of genotoxicity and the lysosomal membranes stability test (neutral red retention assay; NRRA) to identify the cocaine cytotoxicity. We exposed the molluscs for 96 h to three different nominal concentrations in water (40 ng L(-1); 220 ng L(-1); and 10 μg L(-1)). Cocaine caused significant (p<0.05) primary DNA damage in this short-term experiment, but it also caused a clear increase in micronucleated cells and a marked rise in apoptosis, which was evident in samples from even the lowest environmental cocaine concentration. Because cocaine decreased the stability of lysosomal membranes, we also highlighted its cytotoxicity and the possible implications of oxidative stress for the observed genotoxic effects. PMID:22119280

  12. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: An exploratory study

    SciTech Connect

    Steerenberg, P.A.; van Amelsvoort, L.; Lovik, M.; Hetland, R.B.; Alberg, T.; Halatek, T.; Bloemen, H.J.T.; Rydzynski, K.; Swaen, G.; Schwarze, P.; Dybing, E.; Cassee, F.R.

    2006-05-15

    Given that there are widely different prevalence rates of respiratory allergies and asthma between the countries of Europe and that exposure to ambient particulate matter (PM) is substantial in urban environments throughout Europe, an EU project entitled 'Respiratory Allergy and Inflammation Due to Ambient Particles' (RAIAP) was set up. The project focused on the role of physical and chemical composition of PM on release of cytokines of cells in vitro, on respiratory inflammation in vivo, and on adjuvant potency in allergy animal models. Coarse (2.5 - 10 {mu}m) and fine (0.15 - 2.5 {mu}m) particles were collected during the spring, summer and winter in Rome ( I), Oslo (N), Lodz (PL), and Amsterdam (NL). Markers within the same model were often well correlated. Markers of inflammation in the in vitro and in vivo models also showed a high degree of correlation. In contrast, correlation between parameters in the different allergy models and between allergy and inflammation markers was generally poor. This suggests that various bioassays are needed to assess the potential hazard of PM. The present study also showed that by clustering chemical constituents of PM based on the overall response pattern in the bioassays, five distinct groups could be identified. The clusters of traffic, industrial combustion and/or incinerators, and combustion of black and brown coal/wood smoke were associated primarily with adjuvant activity for respiratory allergy, whereas clusters of crustal of material and sea spray are predominantly associated with measures for inflammation and acute toxicity. The present study has shown that biological effect of PM can be linked to one or more PM emission sources and that this linkage requires a wide range of bioassays.

  13. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi2O2CO3 nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Zhu, Gangqiang; Hojamberdiev, Mirabbos; Gao, Jianzhi; Hao, Jing; Zhou, Jianping; Liu, Peng

    2016-05-01

    Single-crystalline bare Bi2O2CO3 (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi2O2CO3 (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi2O2CO3 flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV-vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi2O2CO3 under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  14. Ultrasonic-assisted one-pot preparation of ZnO/Ag3VO4 nanocomposites for efficiently degradation of organic pollutants under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Kiantazh, Fariba; Habibi-Yangjeh, Aziz

    2015-11-01

    We report a facile ultrasonic-assisted one-pot method for preparation of ZnO/Ag3VO4 nanocomposites with different mole fractions of silver vanadate. The preparation method has considerable merits such as short preparation time, large-scale, and one-pot strategy. The resultant samples were fairly characterized by means of XRD, EDX, SEM, TEM, UV-vis DRS, FT-IR, and PL techniques. Visible-light activity of the resultant samples was investigated by degradation of rhodamine B (RhB), methylene blue (MB), and methyl orange (MO). Among the prepared nanocomposites, the ZnO/Ag3VO4 nanocomposite with 0.073 mole fraction of Ag3VO4 exhibited the best activity and excessive amount of Ag3VO4 resulted in decrease of the activity. Photocatalytic activity of this nanocomposite under visible-light irradiation is about 21, 56, and 2.8-fold higher than that of the ZnO sample in degradation of RhB, MB, and MO, respectively. The highly enhanced activity of the nanocomposite was attributed to greater generation of electron-hole pairs, due to photosensitizing role of Ag3VO4 under visible-light irradiation, and efficiently separation of the photogenerated electron-hole pairs, due to formation of n-n heterojunction between the counterparts. Furthermore, it was revealed that the photocatalytic activity largely depends on ultrasonic irradiation time, calcination temperature, and scavengers of the reactive species.

  15. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  16. Water Pollution: Monitoring the Source.

    ERIC Educational Resources Information Center

    Wilkes, James W.

    1980-01-01

    Described is an advanced biology class project involving study of the effects of organic pollution on an aquatic ecosystem from an sewage treatment plant overflow to evaluate the chemical quality and biological activity of the river water. (DS)

  17. A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production.

    PubMed

    Li, Chunmei; Chen, Gang; Sun, Jingxue; Rao, Jiancun; Han, Zhonghui; Hu, Yidong; Zhou, Yansong

    2015-11-25

    The porous single-crystal-like micro/nanomaterials exhibited splendid intrinsic performance in photocatalysts, dye-sensitized solar cells, gas sensors, lithium cells, and many other application fields. Here, a novel mesoporous single-crystal-like Bi2WO6 tetragonal architecture was first achieved in the mixed molten salt system. Its crystal construction mechanism originated from the oriented attachment of nanosheet units accompanied by Ostwald ripening process. Additionally, the synergistic effect of mixed alkali metal nitrates and electrostatic attraction caused by internal electric field in crystal played a pivotal role in oriented attachment process of nanosheet units. The obtained sample displayed superior photocatalytic activity of both organic dye degradation and O2 evolution from water under visible light. We gained an insight into this unique architecture's impact on the physical properties, light absorption, photoelectricity, and luminescent decay, etc., that significantly influenced photocatalytic activity. PMID:26524604

  18. A Novel Mesoporous Single-Crystal-Like Bi2WO6 with Enhanced Photocatalytic Activity for Pollutants Degradation and Oxygen Production.

    PubMed

    Li, Chunmei; Chen, Gang; Sun, Jingxue; Rao, Jiancun; Han, Zhonghui; Hu, Yidong; Zhou, Yansong

    2015-11-25

    The porous single-crystal-like micro/nanomaterials exhibited splendid intrinsic performance in photocatalysts, dye-sensitized solar cells, gas sensors, lithium cells, and many other application fields. Here, a novel mesoporous single-crystal-like Bi2WO6 tetragonal architecture was first achieved in the mixed molten salt system. Its crystal construction mechanism originated from the oriented attachment of nanosheet units accompanied by Ostwald ripening process. Additionally, the synergistic effect of mixed alkali metal nitrates and electrostatic attraction caused by internal electric field in crystal played a pivotal role in oriented attachment process of nanosheet units. The obtained sample displayed superior photocatalytic activity of both organic dye degradation and O2 evolution from water under visible light. We gained an insight into this unique architecture's impact on the physical properties, light absorption, photoelectricity, and luminescent decay, etc., that significantly influenced photocatalytic activity.

  19. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation.

    PubMed

    Yu, Changlin; Wei, Longfu; Zhou, Wanqin; Dionysiou, Dionysios D; Zhu, Lihua; Shu, Qing; Liu, Hong

    2016-08-01

    A series of Ag2S-Ag2CO3 (4%, 8%, 16%, 32% and 40% Ag2S), Ag2CO3@Ag2S (32%Ag2S) and Ag2S@Ag2CO3 (32%Ag2S) composite photocatalysts were fabricated by coprecipitation or successive precipitation reaction. The obtained catalysts were analyzed by N2 physical adsorption, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and photocurrent test. Under visible light irradiation, the influences of Ag2S content and core-shell property on photocatalytic activity and stability were evaluated in studies focused on the degradation of methyl orange (MO) dye, phenol, and bisphenol A. Results showed that excellent photocatalytic performance was obtained over Ag2S/Ag2CO3 composite photocatalysts with respect to Ag2S and Ag2CO3. With optimal content of Ag2S (32 wt%), the Ag2S-Ag2CO3 showed the highest photocatalytic degradation efficiency. Moreover, the structured property of Ag2S/Ag2CO3 greatly influenced the activity. Compared with Ag2S-Ag2CO3 and Ag2CO3@Ag2S, core-shell like Ag2S@Ag2CO3 demonstrated the highest activity and stability. The main reason for the boosting of photocatalytic performance was due to the formation of Ag2S/Ag2CO3 well contacted interface and unique electron structures. Ag2S/Ag2CO3 interface could significantly increase the separation efficiency of the photo-generated electrons (e(-)) and holes (h(+)), and production of OH radicals. More importantly, the low solubility of Ag2S shell could effectively protect the core of Ag2CO3, which further guarantees the stability of Ag2CO3. PMID:27236845

  20. Regeneration of spent organoclays after the sorption of organic pollutants: A review.

    PubMed

    Zhu, Runliang; Zhu, Jianxi; Ge, Fei; Yuan, Peng

    2009-08-01

    Clay minerals modified with organic ions, also known as organoclays, have found applications in a wide range of organic pollution control fields because of their excellent sorption capacity towards organic pollutants. Regeneration of the spent organoclays after the sorption of organic pollutants is of great importance during their application in pollution control. In this review, the reported methods for the regeneration of the spent organoclays are summarized, including biological degradation, photo-assisted oxidation, chemical extraction/desorption, supercritical extraction, thermal desorption, et al. The characteristics and applications of these methods are briefly described. It shows that most of these methods have been developed for regenerating spent organoclays from wastewater treatment. The biological regeneration method, as an in situ, low cost and easy-operating method, is applicable for regenerating spent organoclays not only from wastewater treatment, but also from soil and groundwater remediation.

  1. Monitoring of Gasoline-ethanol Degradation In Undisturbed Soil

    NASA Astrophysics Data System (ADS)

    Österreicher-Cunha, P.; Nunes, C. M. F.; Vargas, E. A.; Guimarães, J. R. D.; Costa, A.

    Environmental contamination problems are greatly emphasised nowadays because of the direct threat they represent for human health. Traditional remediation methods fre- quently present low efficiency and high costs; therefore, biological treatment is being considered as an accessible and efficient alternative for soil and water remediation. Bioventing, commonly used to remediate petroleum hydrocarbon spills, stimulates the degradation capacity of indigenous microorganisms by providing better subsur- face oxygenation. In Brazil, gasoline and ethanol are mixed (78:22 v/v); some authors indicate that despite gasoline high degradability, its degradation in subsurface is hin- dered by the presence of much more rapidly degrading ethanol. Contaminant distribu- tion and degradation in the subsurface can be monitored by several physical, chemical and microbiological methodologies. This study aims to evaluate and follow the degra- dation of a gasoline-ethanol mixture in a residual undisturbed tropical soil from Rio de Janeiro. Bioventing was used to enhance microbial degradation. Shifts in bacte- rial culturable populations due to contamination and treatment effects were followed by conventional microbiology methods. Ground Penetrating Radar (GPR) measure- ments, which consist of the emission of electro-magnetic waves into the soil, yield a visualisation of contaminant degradation because of changes in soil conductivity due to microbial action on the pollutants. Chemical analyses will measure contaminant residue in soil. Our results disclosed contamination impact as well as bioventing stim- ulation on soil culturable heterotrophic bacterial populations. This multidisciplinary approach allows for a wider evaluation of processes occurring in soil.

  2. Immunomodulation by Persistent Organic Pollutants

    EPA Science Inventory

    Persistent organic pollutants (POPs) are widely distnbuted in the environment, are resistant to degradation, and increase in concentration (biomagnify) in the food chain. Concentrations in apical predators may be tens to hundreds of times greater than concentrations in their pref...

  3. Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants

    SciTech Connect

    Destaillats, Hugo; Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J.

    2008-03-01

    We studied the synthesis and photocatalytic activity of small-sized TiO{sub 2} supported on hectorite and kaolinite. Deposition of TiO{sub 2} on the clay mineral surface was conducted by using a sol-gel method with titanium isopropoxide as precursor. Anatase TiO{sub 2} particles formation was achieved by hydrothermal treatment at 180 C. Material characterization was conducted using XRD, SEM, XPS, ICP-OES, BET and porosimetry analysis. Efficiency in synthesizing clay-TiO{sub 2} composites depended strongly on the clay mineral structure. Incorporation of anatase in hectorite, an expandable clay mineral, was found to be very significant (> 36 wt.% Ti) and to be followed by important structural changes at the clay mineral surface. Instead, no major structural modifications of the clay were observed for kaolinite-TiO{sub 2}, as compared with the untreated material. Photocatalytic performance of clay-TiO{sub 2} composites was evaluated with ATR-FTIR following the oxidation of adsorbed toluene and d-limonene, two model air pollutants. In either case, the photocatalytic removal efficiency of these hydrophobic substrates by the synthesized clay-TiO{sub 2} composites was comparable to that observed using pure commercial TiO{sub 2} (Degussa P25).

  4. 3D TiO{sub 2} submicrostructures decorated by silver nanoparticles as SERS substrate for organic pollutants detection and degradation

    SciTech Connect

    Chen, Jianjun; Su, Huilan; You, Xueling; Gao, Jing; Lau, Woon Ming; Zhang, Di

    2014-01-01

    Graphical abstract: - Highlights: • Contrive a multifunctional SERS substrate with 3D sub-micrometer structure and multicomponent. • The blue wing of butterfly (Euploea mulciber) is used as template for Ag/TiO{sub 2} nanocomposites. • The 3D submicrostructures Ag/TiO{sub 2} presents superior SERS effect and photocatalytic activity. • Pave a facile route to prepare multifunctional material by utilizing smart structural designs in nature. - Abstract: The blue wing of butterfly Euploea mulciber is used as a template to generate Ag/TiO{sub 2} nanocomposites. Thereinto, Ag nanoparticles are deposited uniformly onto TiO{sub 2} substrate with three dimensional (3D) submicrometer structures. This unique 3D sub-micrometer structures featured with ridges, ribs and struts can provide a large number of active “hot spots” for enhanced Raman signal. Meanwhile, depositing Ag onto the TiO{sub 2} surface can greatly boost its SERS effect and photocatalytic activity by bringing additional electrons into the molecules and inhibiting electrons–holes recombination. Thus, the as-prepared 3D Ag/TiO{sub 2} submicrostructures can not only offer sensitive and reproducible SERS signals, but also present superior photocatalytic activity, which can be utilized to detect and eliminate organic pollutants.

  5. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route.

    PubMed

    Zhang, Jing-Jie; Wu, Yu-Hui; Mei, Jin-Ya; Zheng, Guang-Ping; Yan, Ting-Ting; Zheng, Xiu-Cheng; Liu, Pu; Guan, Xin-Xin

    2016-08-01

    A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles. PMID:27417708

  6. Preparation of flower-like TiO2 sphere/reduced graphene oxide composites for photocatalytic degradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Woong; Park, Mira; Kim, Hak Yong; Park, Soo-Jin

    2016-07-01

    In this study, novel flower-like TiO2 sphere (FTS)/reduced graphene oxide (rGO) composites (FTS-G) were synthesized via a hydrothermal method. The photocatalytic performance of the FTS-G composites was evaluated through the photodegradation of rhodamine B (Rh B) and trichloroethylene (TCE) under simulated solar light irradiation. The rGO to FTS ratio in the composites significantly affected photocatalytic activity. The photocatalytic activities of FTS-Gs in the degradation of Rh B and TCE were superior to that of pure FTS. Of all the FTS-G composites tested, FTS-G with 1 wt% rGO (FTS-G-1) had the greatest photocatalytic activity, while FTS-G composites with rGO contents over 1 wt% had lower photocatalytic activities. Additionally, it is expected that the synthesis of FTS with a high specific surface area and well-developed pore structure and simultaneous conversion of GO to graphene-like rGO without the use of strong reducing agents could be a promising strategy to prepare other carbon-based flower-like TiO2 sphere composite photocatalysts.

  7. Synergetic adsorption and photocatalytic degradation of pollutants over 3D TiO2-graphene aerogel composites synthesized via a facile one-pot route.

    PubMed

    Zhang, Jing-Jie; Wu, Yu-Hui; Mei, Jin-Ya; Zheng, Guang-Ping; Yan, Ting-Ting; Zheng, Xiu-Cheng; Liu, Pu; Guan, Xin-Xin

    2016-08-01

    A series of composites consisting of anatase TiO2 nanocrystals and three-dimensional (3D) graphene aerogel (TiO2-GA) were self-assembled directly from tetrabutyl titanate and graphene oxides via a one-pot hydrothermal process. TiO2 was found to uniformly distribute inside the 3D network of GA in the resulting composites with large surface areas (SBET > 125 m(2) g(-1)) and high pore volumes (Vp > 0.22 cm(3) g(-1)). In comparison with GA and TiO2, the composites possessed much higher adsorption capacities and visible light photocatalytic activity in the degradation of rhodamine B (RhB). With an initial concentration of 20.0 mg L(-1) of RhB, the adsorptive decolourization of RhB was as high as 95.1% and the total decolourization value reached up to 98.7% under visible light irradiation over 5.0 mg of the resulting composites. It was elucidated that the physical and chemical properties of the TiO2-GA composites could be ascribed to their unique 3D nanoporous structure with high surface areas and the synergetic activities of graphene nanosheets and TiO2 nanoparticles.

  8. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone.

    PubMed

    Thompson, Katherine C; Jones, Stephanie H; Rennie, Adrian R; King, Martin D; Ward, Andrew D; Hughes, Brian R; Lucas, Claire O M; Campbell, Richard A; Hughes, Arwel V

    2013-04-01

    The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.

  9. Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism, Stability, and Effects of pH and Bicarbonate Ions.

    PubMed

    Lei, Yang; Chen, Chuh-Shun; Tu, Yao-Jen; Huang, Yao-Hui; Zhang, Hui

    2015-06-01

    Magnetic CuO-Fe3O4 composite was fabricated by a simple hydrothermal method and characterized as a heterogeneous catalyst for phenol degradation. The effects of pH and bicarbonate ions on catalytic activity were extensively evaluated in view of the practical applications. The results indicated that an increase of solution pH and the presence of bicarbonate ions were beneficial for the removal of phenol in the CuO-Fe3O4 coupled with persulfate (PS) process. Almost 100% mineralization of 0.1 mM phenol can be achieved in 120 min by using 0.3 g/L CuO-Fe3O4 and 5.0 mM PS at pH 11.0 or in the presence of 3.0 mM bicarbonate. The positive effect of bicarbonate ion is probably due to the suppression of copper leaching as well as the formation of Cu(III). The reuse of catalyst at pH0 11.0 and 5.6 showed that the catalyst remains a high level of stability at alkaline condition (e.g., pH0 11.0). On the basis of the characterization of catalyst, the results of metal leaching and EPR studies, it is suggested that phenol is mainly destroyed by the surface-adsorbed radicals and Cu(III) resulting from the reaction between PS and Cu(II) on the catalyst. Taking into account the widespread presence of bicarbonate ions in waste streams, the CuO-Fe3O4/PS system may provide some new insights for contaminant removal from wastewater. PMID:25955238

  10. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  11. NON-POINT SOURCE POLLUTION

    EPA Science Inventory

    Non-point source pollution is a diffuse source that is difficult to measure and is highly variable due to different rain patterns and other climatic conditions. In many areas, however, non-point source pollution is the greatest source of water quality degradation. Presently, stat...

  12. Pollution of the marine environment

    SciTech Connect

    Malins, D.C.

    1980-01-01

    An interdisciplinary approach to identifying chemical pollution in the marine environment and assessing the effects of such pollution on living marine resources is described. Such a study requires knowing: what pollutants organisms are exposed to, which pollutants are accumulated; the fate of pollutants taken up by organisms, and biological changes caused by the pollutants. Analytical limitations of such studies are noted. Examples of specific interdisciplinary laboratory and field investigations are presented, for instance, the finding of liver tumors in flatfish that accumulated sediment-bound naphthalene.

  13. Measuring River Pollution

    ERIC Educational Resources Information Center

    Ayyavoo, Gabriel

    2004-01-01

    The Don River watershed is located within Canada's most highly urbanized area--metropolitan Toronto. Many residential and commercial uses, including alterations to the river's course with bridges, have had a significant impact on the Don's fauna and flora. Pollutants have degraded the river's water quality, a situation exacerbated by the…

  14. Decision criteria for the selection of wet oxidation and conventional biological treatment.

    PubMed

    Collado, Sergio; Laca, Adriana; Diaz, Mario

    2012-07-15

    The suitability of wet oxidation or biological treatments for the degradation of industrial wastewaters is here discussed. Advantages of these operations, either singly or in combination, are discussed on the basis of previous experimental results from laboratory and industry. Decision diagrams for the selection of conventional biological treatment, wet oxidation or a combination of both techniques are suggested according to the type of pollutant, its concentration and the wastewater flow rate.

  15. Biology of Pseudomonas stutzeri

    PubMed Central

    Lalucat, Jorge; Bennasar, Antoni; Bosch, Rafael; García-Valdés, Elena; Palleroni, Norberto J.

    2006-01-01

    Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri. PMID:16760312

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Water Pollution

    ERIC Educational Resources Information Center

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  18. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts.

    PubMed

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P < 0.05) in degrading AFB1 and AFB2, i.e., 90.4 and 88.6%, respectively. However, O. basilicum branch, C. fistula leaves and branch extracts proved to be less efficient in degrading these aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82-87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins.

  19. Soil Degradation: A North American perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be degraded through erosion and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices that supersede natural regeneration. Soil degradation reflects unsustainable resource management that is global in scope a...

  20. Effect of toluene as gaseous cosubstrate in bioremediation of hydrocarbon-polluted soil.

    PubMed

    Ortiz, Irmene; Velasco, Antonio; Revah, Sergio

    2006-04-17

    The stimulation of the microbial population by a more bioavailable supplementary carbon source and by a surfactant pretreatment was studied in petroleum hydrocarbon-polluted soils bioremediation. Two types of soils were used, Soil A which had been recently polluted and the aged Soil B. They contained 52.4 and 50.4 g of total petroleum hydrocarbons per kg of dry soil, respectively. The effect of passing a continuous small stream of air containing a low concentration of gaseous toluene through packed 0.5 l (Ø=5.5 cm) columns was studied. For Soil A, after 62 days the THPs degradation was 28% higher in the toluene treated columns than in controls. In aged Soil B the effect of toluene was not significant, probably due to bioavailability limitations. With Soil B, the combined effect of toluene as cosubstrate and a surfactant pretreatment was studied and the hydrocarbons degradation was 29% higher in the toluene-amended columns than in the controls. Toluene removal was higher than 99% in all cases. Surfactant addition increased hydrocarbon degradation when toluene was also added suggesting that the biological reaction was the limiting process. The study shows the possibilities of using gaseous substrates, such as toluene, for the in situ or ex situ treatment of petroleum hydrocarbon-polluted soil in processes limited by the biological reaction. The main advantage of the treatment is that the compound can be easily and directly delivered to the polluted soil through the venting system. PMID:16239067

  1. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  2. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts.

    PubMed

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L(-1) and AFB2; 50 μg L(-1)) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P < 0.05) in degrading AFB1 and AFB2, i.e., 90.4 and 88.6%, respectively. However, O. basilicum branch, C. fistula leaves and branch extracts proved to be less efficient in degrading these aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82-87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  3. Structural Analysis and Biological Toxicity of Aflatoxins B1 and B2 Degradation Products Following Detoxification by Ocimum basilicum and Cassia fistula Aqueous Extracts

    PubMed Central

    Iram, Wajiha; Anjum, Tehmina; Iqbal, Mazhar; Ghaffar, Abdul; Abbas, Mateen; Khan, Abdul Muqeet

    2016-01-01

    This study showed the comparison between Ocimum basilicum and Cassia fistula (leaves and branch) aqueous extracts for their ability to detoxify of aflatoxins B1 and B2 (AFB1; 100 μg L-1 and AFB2; 50 μg L-1) by In Vitro assays and decontamination studies. Results indicated that O. basilicum leaves extract was found to be highly significant (P < 0.05) in degrading AFB1 and AFB2, i.e., 90.4 and 88.6%, respectively. However, O. basilicum branch, C. fistula leaves and branch extracts proved to be less efficient in degrading these aflatoxins, under optimized conditions, i.e., pH 8, temperature 30°C and incubation period of 72 h. Moreover the antifungal activity of these plants extracts were also tested. The findings depicted that O. basilicum leaves extract showed maximum growth inhibition of aflatoxigenic isolates, i.e., 82–87% as compared to other tested plants extracts. The structural elucidation of degraded toxin products by LCMS/MS analysis showed that nine degraded products of AFB1 and AFB2 were formed. MS/MS spectra showed that most of the products were formed by the removal of double bond in the terminal furan ring and modification of lactone group indicating less toxicity as compared to parent compounds. Brine shrimps bioassay further confirmed the low toxicity of degraded products, showing that O. basilicum leaves extract can be used as an effective tool for the detoxification of aflatoxins. PMID:27471501

  4. Effects of mass transfer and light intensity on substrate biological degradation by immobilized photosynthetic bacteria within an annular fiber-illuminating biofilm reactor.

    PubMed

    Zhang, Chuan; Zhang, Huan; Zhang, Zhiping; Jiao, Youzhou; Zhang, Quanguo

    2014-02-01

    In this work, effects of mass transfer and light intensity on performance of substrate biodegradation by cell-immobilized photosynthetic bacteria were investigated within an annular fiber-illuminating bioreactor (AFIBR). In AFIBR, stable biofilm of photosynthetic bacteria was generated on the surface of side-glowing optical fiber to provide sufficient light supply and uniform light distribution in cell-immobilized zone for continuous substrate biodegradation during hydrogen production process. To optimize operation parameters for substrate degradation, a two-dimensional mass transfer model based on experimental data to describe coupled processes of substrate transfer and biodegradation in biofilm with substrate diffusion and convection in bulk flow region was proposed. Investigations on influences of substrate concentration, flow rate and light intensity were carried out. It was showed that the optimum operational parameters for the substrate degradation in the AFIBR are: 10g/l substrate concentration, 100ml/h flow rate and 3.1W/m(2) light intensity.

  5. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil.

    PubMed

    Rafiemanzelat, Fatemeh; Jafari, Mahboobeh; Emtiazi, Giti

    2015-10-01

    The present work for the first time investigates the effect of Bacillus amyloliquefaciens, M3, on a new poly(ether-urethane-urea) (PEUU). PEUU was synthesized via reaction of 4,4'-methylenebis(4-phenylisocyanate) (MDI), L-leucine anhydride cyclopeptide (LACP) as a degradable monomer and polyethylene glycol with molecular weight of 1000 (PEG-1000). Biodegradation of the synthesized PEUU as the only source for carbon and nitrogen for M3 was studied. The co-metabolism biodegradation of the polymer by this organism was also investigated by adding mannitol or nutrient broth to the basic media. Biodegradation of the synthesized polymer was followed by SEM, FT-IR, TGA, and XRD techniques. It was shown that incubation of PEUU with M3 resulted in a 30-44 % reduction in polymer's weight after 1 month. This study indicates that the chemical structure of PEUU significantly changes after exposure to M3 due to hydrolytic and enzymatic degradation of polymer chains. The results of this work supports the idea that this poly(ether-urethane) is used as a sole carbon source by M3 and this bacterium has a good capability for degradation of poly(ether-urethane)s.

  6. E-Alerts: Environmental pollution and control (water pollution and control). E-mail newsletter

    SciTech Connect

    1999-04-01

    Topics of discussion include the following: Pollution by municipal wastes, agricultural wastes, industrial wastes, mine wastes, radioactive contaminants; Chemistry and analysis of pollutants; Thermal pollution; Oil pollution; Control techniques and equipment; Sewage treatment; Industrial waste water pretreatment; Hydrology and limnology; Biological and ecological effects; Waste water reuse; Laws, legislation, and regulations; Public administration; Economics; Land use.

  7. The comet assay for the detection of genotoxic damage in the earthworms: a promising tool for assessing the biological hazards of polluted sites.

    PubMed

    Salagovic, J; Gilles, J; Verschaeve, L; Kalina, I

    1996-01-01

    The comet assay, a relatively new method for DNA strand break detection in individual cells, is becoming a major tool for environmental biomonitoring. One approach for assessing the possible environmental consequences of hazardous waste pollution involves the assessment of genotoxic damage (and other effects) in sentinel organism. The single cell gel electrophoresis (SCGE) technique or comet assay. because of its simplicity, sensitivity, and need for only small numbers of cells, has been suggested as an ideal technique for such studies. An important advantage of the technique is that it is applicable to any eukaryotic organism and cell type. Verschaeve et al. (1993) conducted a pilot study using alkaline comet assay to assess the extent of DNA damage in coelomic leucocytes (coelomocytes) of earthworms (Eisenia foetida) maintained in different soil samples as an indicator of soil pollution. The aim of our study was to evaluate the usefulness of monitoring single strand breaks in coelomocytes for assessing genotoxicity of pollutants in coke oven area. We exposed earthworms to samples of soils obtained from polluted areas of a coke oven. All samples gave a significantly higher comet tail moment that those obtained from worms kept in laboratory conditions (standard black earth = internal controls) and worms kept in soils from control areas (= external controls). Our results show that the comet assay applied to earthworm is very valuable for monitoring and detection of genotoxic compounds in terrestrial ecosystems. PMID:8831022

  8. PRESENTED AT TRIANGLE CONSORTIUM OF REPRODUCTIVE BIOLOGY, CHAPEL HILL, NC: GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    Exposure to episodic air pollution in the Czech Republic has been associated with abnormal semen quality and sperm DNA damage (EHP 108:887;2000). A subsequentlongitudinal study evaluated semenfrom 36 men sampled up to 7 times over a period of two years to capture exposures durin...

  9. Pollution effects on fisheries — potential management activities

    NASA Astrophysics Data System (ADS)

    Sindermann, C. J.

    1980-03-01

    Management of ocean pollution must be based on the best available scientific information, with adequate consideration of economic, social, and political realities. Unfortunately, the best available scientific information about pollution effects on fisheries is often fragmentary, and often conjectural; therefore a primary concern of management should be a critical review and assessment of available factual information about effects of pollutants on fish and shellfish stocks. A major problem in any such review and assessment is the separation of pollutant effects from the effects of all the other environmental factors that influence survival and well-being of marine animals. Data from long-term monitoring of resource abundance, and from monitoring of all determinant environmental variables, will be required for analyses that lead to resolution of the problem. Information must also be acquired about fluxes of contaminants through resource-related ecosystems, and about contaminant effects on resource species as demonstrated in field and laboratory experiments. Other possible management activities include: (1) encouragement of continued efforts to document clearly the localized and general effects of pollution on living resources; (2) continued pressure to identify and use reliable biological indicators of environmental degradation (indicators of choice at present are: unusually high levels of genetic and other anomalies in the earliest life history stages; presence of pollution-associated disease signs, particularly fin erosion and ulcers, in fish; and biochemical/physiological changes); and (3) major efforts to reduce inputs of pollutants clearly demonstrated to be harmful to living resources, from point sources as well as ocean dumping. Such pollution management activities, based on continuous efforts in stock assessment, environmental assessment, and experimental studies, can help to insure that rational decisions will be made about uses and abuses of coastal

  10. Environmental Pollution

    ERIC Educational Resources Information Center

    Breitbeil, Fred W., III

    1973-01-01

    Presents a thorough overview of the many factors contributing to air and water pollution, outlines the chemical reactions involved in producing toxic end-products, and describes some of the consequences of pollutants on human health and ecosystems. (JR)

  11. Social Pollution

    ERIC Educational Resources Information Center

    Esser, Aristide Henri

    1971-01-01

    Social pollution provides the matrix for the pollution of the physical environment. This stems from man's present inability to function synergistically. To find new freedoms in purposeful evolution, we will have to start cleansing our Mind. (Author/SD)

  12. Air pollution injury to plants

    SciTech Connect

    Seibert, R.J.

    1986-01-01

    The injuries to plants by oxidant air pollution can be used as biological indicators of pollution episodes. Bel W3 tobacco is often used as an indicator organism. Dogwood is another potential indicator organism. Specific growing procedures used for indicator organisms are described, as are diagnostic criteria for the type and extent of injuries.

  13. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Bonewald, Lynda F; Kuroki, Keiichi; Brown, Roger F

    2010-10-01

    In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. The results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. The results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects.

  14. Air Pollution.

    ERIC Educational Resources Information Center

    Barker, K.; And Others

    Pollution of the general environment, which exposes an entire population group for an indeterminate period of time, certainly constitutes a problem in public health. Serious aid pollution episodes have resulted in increased mortality and a possible relationship between chronic exposure to a polluted atmosphere and certain diseases has been…

  15. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  16. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  17. The Degradation of a Nation.

    ERIC Educational Resources Information Center

    Morozova, Galina Fedorouna

    1995-01-01

    Maintains that the process of national degradation is a real danger and concern of all Russian society. Discusses environmental concerns, such as water, soil, and air pollution; falling birth rates; aging of the population; crime; and decline in moral values. Concludes that it is imperative for all citizens to stop and reverse these trends. (CFR)

  18. Effects of mass transfer and light intensity on substrate biological degradation by immobilized photosynthetic bacteria within an annular fiber-illuminating biofilm reactor.

    PubMed

    Zhang, Chuan; Zhang, Huan; Zhang, Zhiping; Jiao, Youzhou; Zhang, Quanguo

    2014-02-01

    In this work, effects of mass transfer and light intensity on performance of substrate biodegradation by cell-immobilized photosynthetic bacteria were investigated within an annular fiber-illuminating bioreactor (AFIBR). In AFIBR, stable biofilm of photosynthetic bacteria was generated on the surface of side-glowing optical fiber to provide sufficient light supply and uniform light distribution in cell-immobilized zone for continuous substrate biodegradation during hydrogen production process. To optimize operation parameters for substrate degradation, a two-dimensional mass transfer model based on experimental data to describe coupled processes of substrate transfer and biodegradation in biofilm with substrate diffusion and convection in bulk flow region was proposed. Investigations on influences of substrate concentration, flow rate and light intensity were carried out. It was showed that the optimum operational parameters for the substrate degradation in the AFIBR are: 10g/l substrate concentration, 100ml/h flow rate and 3.1W/m(2) light intensity. PMID:24531266

  19. Mechanism of aerobic biological destabilisation of wool scour effluent emulsions.

    PubMed

    Poole, Andrew J; Cord-Ruwisch, Ralf; William Jones, F

    2005-07-01

    Wool scouring effluent is a highly polluted industrial wastewater in which the main pollutant, wool wax, is held in a stable oil-in-water emulsion by non-ionic detergent. The use of microbial action to cause emulsion destabilisation has been proposed as a new treatment strategy for this effluent stream. This strategy aims at improving aerobic treatment performance by physically removing the high-COD, slowly bio-degradable wool wax from the system without bio-degradation. The mechanism by which an aerobic-mixed culture destabilises the wool scouring effluent emulsion was investigated. Our results show that destabilisation is due to partial bio-degradation of both the scouring detergent and the wool wax. Cleavage of the wool wax esters was the first stage in wax degradation, when 40-50% of wax was de-emulsified. Over the same period, detergent degradation was low, at 7-21%. With further incubation, detergent degradation increased, aiding further breakdown of the emulsion. The degradation of the detergent, a nonylphenol ethoxylate, resulted in both a reduction in molar concentration (of up to 82%) and a shortening of the ethoxylate chain length. The latter reduced the hydrophile-lipophile balance (HLB) from 12 to approximately 7, thereby reducing the ability of the residual detergent to stabilise the emulsion. Analysis of the emulsified and de-emulsified wax fractions could not identify a group of compounds that were preferentially de-emulsified based on molecular weight or polarity. These findings will assist in using a de-emulsification strategy in both existing and new treatment systems in order to save on aeration costs and treatment times for biological treatment of this highly polluted wastewater. PMID:15979119

  20. Mechanism of aerobic biological destabilisation of wool scour effluent emulsions.

    PubMed

    Poole, Andrew J; Cord-Ruwisch, Ralf; William Jones, F

    2005-07-01

    Wool scouring effluent is a highly polluted industrial wastewater in which the main pollutant, wool wax, is held in a stable oil-in-water emulsion by non-ionic detergent. The use of microbial action to cause emulsion destabilisation has been proposed as a new treatment strategy for this effluent stream. This strategy aims at improving aerobic treatment performance by physically removing the high-COD, slowly bio-degradable wool wax from the system without bio-degradation. The mechanism by which an aerobic-mixed culture destabilises the wool scouring effluent emulsion was investigated. Our results show that destabilisation is due to partial bio-degradation of both the scouring detergent and the wool wax. Cleavage of the wool wax esters was the first stage in wax degradation, when 40-50% of wax was de-emulsified. Over the same period, detergent degradation was low, at 7-21%. With further incubation, detergent degradation increased, aiding further breakdown of the emulsion. The degradation of the detergent, a nonylphenol ethoxylate, resulted in both a reduction in molar concentration (of up to 82%) and a shortening of the ethoxylate chain length. The latter reduced the hydrophile-lipophile balance (HLB) from 12 to approximately 7, thereby reducing the ability of the residual detergent to stabilise the emulsion. Analysis of the emulsified and de-emulsified wax fractions could not identify a group of compounds that were preferentially de-emulsified based on molecular weight or polarity. These findings will assist in using a de-emulsification strategy in both existing and new treatment systems in order to save on aeration costs and treatment times for biological treatment of this highly polluted wastewater.

  1. Changes in the ecological and biological properties of ordinary chernozems polluted by heavy metals of the second hazard class (Mo, Co, Cr, and Ni)

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. I.; Evreinova, A. V.; Kazeev, K. Sh.; Val'Kov, V. F.

    2009-08-01

    The pollution of ordinary chernozems by heavy metals of the second hazard class (Mo, Co, Cr, and Ni) results in a decrease in the numbers of saprotrophic bacteria and fungi and bacteria of the Azotobacter genus; the catalase and invertase activities and the rates of the cellulose and urea decomposition also decrease. The soil phytotoxicity becomes higher. With respect to their ecological hazard, the studied heavy metals may be arranged into the following sequence: Cr > Co ≥ Ni > Mo.

  2. ENANTIOMER-SPECIFIC EFFECTS OF CHIRAL POLLUTANTS

    EPA Science Inventory

    Enantiomers, the mirror image isomers of chiral pollutants, are known to be selective in their interaction with other chiral molecules, including enzymes and other biochemicals. Considerable research has shown, for example, that chiral pesticides are degraded selectively by micr...

  3. Pollution of the marine environment

    SciTech Connect

    Malins, D.C.

    1980-01-01

    With 63,000 chemicals in common use, the task of identifying specific pollutants and their effects in relation to marine life is immense. The interdisciplinary approach to this complex issue includes studies in analytical chemistry, biochemistry, vertebrate and invertebrate pathology, electron microscopy, immunology, and behavioral biology. Primary concerns are whether pollutants are available to organisms and whether they are transferred through marine food webs. Studies on marine and estuarine pollution in the New York Bight and Puget Sound, Washington, are summarized. Among other results it is interactive effects between two pollutants in marine organism that account for substantial alterations in certain biochemical systems and in cellular morphology. (JGB)

  4. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].

    PubMed

    Yang, Yonggang; Sun, Guoping; Xu, Meiying

    2010-07-01

    Microbial fuel cells (MFCs) are bio-electrochemical reactors that have the capacity to convert chemical energy of biodegradable organic chemicals to electrical energy, and developed rapidly in the past few years. With an increasing concern for energy crisis and environment pollution, MFCs has became a promising technology in the researches of environment pollution treatments and biology electricity. In this paper, we offered a comprehensive review of the recent research progress of MFCs in environment pollution treatment, includes denitrification, desufurization, organic pollutants degradation, heavy metal reduction and landfill leachate treatment. Also, we pointed out the challenges and problems which were bottle necks for a wide application of MFCs and the potential future development. PMID:20815229

  5. Atmospheric pollution

    SciTech Connect

    Schlesinger, R.B. )

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  6. Atmospheric pollution.

    PubMed

    Schlesinger, R B

    1992-06-01

    Air pollution has been directly responsible for increases in mortality and morbidity in the general population during periods known as episodes, when pollutant levels were elevated well above those that occur on a regular basis. The major concern today regarding pollution and health is, however, more subtle--namely, whether the lower levels of pollution to which we are exposed daily are harmful to health. It is extremely difficult to relate specific health problems to specific pollutants, because other environmental and lifestyle factors may contribute to decrements in health. Furthermore, people are generally exposed to mixtures of pollutants, making it difficult to extract the effects caused by individual components, or to determine which combinations are the most hazardous. Community air pollution results from various sources: mobile sources, such as vehicles; stationary sources, such as power plants and factories; and indoor sources, such as building material. Complicating the picture is the fact that many chemicals released into the air may react, producing additional secondary pollutants. This article provides an overview of the major air pollutants that may be of concern in terms of public health.

  7. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  8. Particle Pollution

    MedlinePlus

    ... EPA Air Quality Index (AQI) tells you when air pollution is likely to reach levels that could be ... high, take steps to limit the amount of air you breathe in while you're outside. ... pollution levels are usually lower. Choose easier outdoor activities ( ...

  9. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  10. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  11. Total petroleum hydrocarbons and heavy metals in the surface sediments of Bohai Bay, China: long-term variations in pollution status and adverse biological risk.

    PubMed

    Zhou, Ran; Qin, Xuebo; Peng, Shitao; Deng, Shihuai

    2014-06-15

    Surface sediments collected from 2001 to 2011 were analyzed for total petroleum hydrocarbons (TPH) and five heavy metals. The sediment concentration ranges of TPH, Zn, Cu, Pb, Cd and Hg were 6.3-535 μg/g, 58-332 μg/g, 7.2-63 μg/g, 4.3-138 μg/g, 0-0.98μg/g, and 0.10-0.68 μg/g, respectively. These results met the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. However, based on the effects range-median (ERM) quotient method, the calculated values for all of the sampling sites were higher than 0.10, suggesting that there was a potential adverse biological risk in Bohai Bay. According to the calculated results, the biological risk decreased from 2001 to 2007 and increased afterwards. High-risk sites were mainly distributed along the coast. This study suggests that anthropogenic influences might be responsible for the potential risk of adverse biological effects from TPH and heavy metals in Bohai Bay.

  12. Permafrost Degradation and Stream Metabolism in the Arctic: The effect of thaw slump sedimentation on biological productivity and water quality in the Selawik River, Northwest Alaska

    NASA Astrophysics Data System (ADS)

    Calhoun, J. P.; Crosby, B. T.

    2011-12-01

    The Selawik River in northwest Alaska, drains ~12,500 km^2 of tree line spruce forest, upland tundra and lowland wetlands. Along the river corridor, high concentrations of fine sediment from a large, young, active retrogressive thaw slump alter the physical and ecological form and function of the stream. This disturbance impacts the entire downstream river corridor, affecting the viability of fish habitat and quality drinking water that subsistence-based native communities depend on. In anticipated warming scenarios, it can be expected that there will be an increase in both the frequency and magnitude of these permafrost degradation features, increasing the extent to which local villages and ecosystems are affected. Our study aims to improve our physical understanding of this system in order to provide biologists, land managers and city officials improved predictive capabilities. Whole stream metabolism (WSM) combines nutrient cycling and organic matter processing to provide an integrated measure of stream health. We utilized a suite of water quality data including temperature, dissolved oxygen, turbidity, pH, pressure, and conductance to calculate WSM values at two experimental reaches up and downstream of the slump over the past three summers. The immediate effects are large magnitude diurnal increases in turbidity, suppressed dissolved oxygen values, and strong attenuation of photosynthetically active radiation (PAR) with depth. We found from 2010 data that, on average, the waters downstream from the slump were 23 times more turbid, had roughly half the dissolved oxygen, and had 4.7 and 2.7 times lower gross primary production (GPP) and ecosystem respiration (ER) respectively. In the summer of 2011, we collected measurements of terrestrial PAR, subsurface PAR, dissolved oxygen and turbidity at multiple river depths at 5 experimental locations. Though turbidity varied roughly by two orders of magnitude and terrestrial PAR increased 850 times between solar

  13. [Biological treatments for contaminated soils: hydrocarbon contamination. Fungal applications in bioremediation treatment].

    PubMed

    Martín Moreno, Carmen; González Becerra, Aldo; Blanco Santos, María José

    2004-09-01

    Bioremediation is a spontaneous or controlled process in which biological, mainly microbiological, methods are used to degrade or transform contaminants to non or less toxic products, reducing the environmental pollution. The most important parameters to define a contaminated site are: biodegradability, contaminant distribution, lixiviation grade, chemical reactivity of the contaminants, soil type and properties, oxygen availability and occurrence of inhibitory substances. Biological treatments of organic contaminations are based on the degradative abilities of the microorganisms. Therefore the knowledge on the physiology and ecology of the biological species or consortia involved as well as the characteristics of the polluted sites are decisive factors to select an adequate biorremediation protocol. Basidiomycetes which cause white rot decay of wood are able to degrade lignin and a variety of environmentally persistent pollutants. Thus, white rot fungi and their enzymes are thought to be useful not only in some industrial process like biopulping and biobleaching but also in bioremediation. This paper provides a review of different aspects of bioremediation technologies and recent advances on ligninolytic metabolism research.

  14. [Analysis of characteristics and products of chlorobenzene degradation with dielectric barrier discharge].

    PubMed

    Jiang, Li-Ying; Cao, Shu-Ling; Zhu, Run-Ye; Chen, Jian-Meng; Su, Fei

    2015-03-01

    For non-biodegradable volatile organic compounds (VOCs) with low water solubility, the tradition biological method can not achieve a satisfactory removal efficiency, so development of high efficiency pre-treatment technology is a hot issue of research. In this experiment, using poor biodegradable chlorobenzene as the target pollutant and dielectric barrier discharge (DBD) non-thermal plasma as the pretreatment technology for biotrickling filter (BTF) , the effect of DBD on the degradation of chlorobenzene was studied by adjusting the technical parameters of DBD. The effects of the inlet concentration, residence time, humidity and peak voltage on decomposition efficiency were investigated and the decomposition products of chlorobenzene were analyzed. Experimental results showed that DBD could effectively remove waste gaseous chlorobenzene, the removal rate of chlorobenzene increased with the increasing peak voltage. When the peak voltage was ≥ 12kV, less effect of residence time on the degradation of chlorobenzene was found. The optimal humidity range of degradation chlorobenzene was 65% - 75%. Through the analysis of degradation products, the species and concentrations of degradation products increased with the increase of discharge voltage. The products were mainly consisted of organic acids and chlorinated hydrocarbons. The water solubility of degradation products was preferable. Furthermore, with the increase of discharge voltage, the biodegradability of degradation products became higher and higher and the biological toxicity was reduced. It had a promoting effect on the degradation of chlorobenzene when the voltage reached 20 kV. Meanwhile, the O3 concentration increased with the increasing discharge voltage and also enhanced with the rising humidity under the same voltage.

  15. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  16. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments.

    PubMed

    Silva-Castro, Gloria Andrea; Uad, Imane; Rodríguez-Calvo, Alfonso; González-López, Jesús; Calvo, Concepción

    2015-02-01

    This study investigated the response of autochthonous microorganisms of diesel polluted soils to land-farming treatments. Inorganic NPK (nitrogen, phosphorous, and potassium) fertilizer and Ivey surfactant were applied alone or in combination as biostimulating agents. The study was carried out in experimental separated land-farming plots performed with two soils: a sandy clay soil with low biological activity and a sandy clay soil with higher biological activity, contaminated with two concentrations of diesel: 10,000 and 20,000mgkg(-1). Bacterial growth, dehydrogenase activity and CO2 production were the biological parameters evaluated. Non-metric multidimensional scaling analysis proved that moisture content showed a tendency related to microbial growth and that heterotrophic and degrading microorganisms had the best relationship. Initial biological activity of soil influenced the response with 11.1% of variability attributed to this parameter. Soils with low activity had higher degree of response to nutrient addition. PMID:25486545

  17. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments.

    PubMed

    Silva-Castro, Gloria Andrea; Uad, Imane; Rodríguez-Calvo, Alfonso; González-López, Jesús; Calvo, Concepción

    2015-02-01

    This study investigated the response of autochthonous microorganisms of diesel polluted soils to land-farming treatments. Inorganic NPK (nitrogen, phosphorous, and potassium) fertilizer and Ivey surfactant were applied alone or in combination as biostimulating agents. The study was carried out in experimental separated land-farming plots performed with two soils: a sandy clay soil with low biological activity and a sandy clay soil with higher biological activity, contaminated with two concentrations of diesel: 10,000 and 20,000mgkg(-1). Bacterial growth, dehydrogenase activity and CO2 production were the biological parameters evaluated. Non-metric multidimensional scaling analysis proved that moisture content showed a tendency related to microbial growth and that heterotrophic and degrading microorganisms had the best relationship. Initial biological activity of soil influenced the response with 11.1% of variability attributed to this parameter. Soils with low activity had higher degree of response to nutrient addition.

  18. Digestion and degradation, air for life.

    PubMed

    Lettinga, G

    2001-01-01

    Anaerobic degradation of dead biomass is a natural gasification process, an anaerobic crematorium producing a very useful end-product composed of methane and carbon dioxide, generally polluted with small amounts of some malodorous and quite toxic volatile S-compounds. It leads to the production of essential building elements for new life. This exciting field became my faith, vision, hope and expectation. This paper intends to present a reflection of more than three decades of research, teaching and advertisement in the field of sustainable environmental protection technologies, particularly of systems based on anaerobic digestion and the biological sulphur cycle. Considerable progress has been made during these decades worldwide, both in the basic understanding of the various processes and concepts, but also in the implementation of these systems, despite the fact that particularly the implementation frequently proceeded very laboriously. The difficulties certainly can no longer be attributed to technological limitations and/or insufficient understanding of the microbiology and chemistry only, but mainly to the frustrating social rigidity and short-term self-interest in all sectors of our society. By combining anaerobic processes with other microbiological degradation or transformation processes, like those based on the biological sulphur cycle, micro-aerobic and conventional aerobic and anoxic processes, ideal conditions can be created to valorise residues (wastes) from domestic, industrial and agricultural origin. It is simply not just "technology", but also a route to achieve more sustainability and justice in society. It is a fight against conservative establishments. Decomposition, disintegration disbandment, it also stands for deliverance and liberation, space and air for continuation of life.

  19. [Comparison of efficiencies of oil-oxidizing Dietzia maris strain and stimulation of natural microbial communities in remediation of polluted soil].

    PubMed

    Pleshakova, E V; Dubrovskaia, E V; Turkovskaia, O V

    2008-01-01

    Two approaches to bioremediation of oil-polluted soils are compared: use of active degrader strain Dietzia maris AM3 and stimulation of natural microflora. Introduction of D. maris AM3 to soil freshly polluted with oil accelerated its remediation twofold within the first month in comparison with the stimulation. After three months, the purification degrees were approximately equal. By the end of bioremediation, the soil with the introduced strain had higher dehydrogenase and catalase activities. In soil with multiyear pollution, introduced strain D. maris AM3 did not affect the rate of oil product degradation, and no significant differences between the two bioremediation methods were detected in purification degree and biological activity of soil after three months.

  20. Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front - Degraded fucoxanthin pigments and the importance of microzooplankton grazing

    NASA Astrophysics Data System (ADS)

    Carreto, José I.; Montoya, Nora G.; Carignan, Mario O.; Akselman, Rut; Acha, E. Marcelo; Derisio, Carla

    2016-08-01

    The aim of this study was to investigate the biotic and abiotic factors controlling the spring phytoplankton blooms at the Patagonian shelf-break front (PSBF). Using a CHEMTAX analysis of HPLC pigment data and other methods, the biomass and spatial variability of plankton communities were studied in four sections (39-48°S) across the PSBF during October 2005. Environmental factors and the biomass and composition of plankton communities exhibited a marked spatial heterogeneity. The latitudinal and cross-shelf progression in the timing of the spring bloom initiation and the nutritive properties of the water masses (Subantarctic Shelf Waters and Malvinas Current Waters) seemed to be the key factors. Three plankton regions were distinguished: (a) Outer shelf (OS), (b) Shelf-break front (SBF) and (c) Malvinas Current (MC). At the highly stratified OS region, the post-bloom community showed low-biomasshigh-phytoplankton diversity formed mainly by small cells (haptophytes 30-62%, diatoms 17-49%, chlorophytes 0-34%, and prasinophytes 0-21% of total Chl a). High amounts of degraded fucoxanthin were found associated with the heterotrophic dinoflagellate, Protoperidinium capurroi. Grazing by this microheterotroph on the diatom population seemed to be the most important factor for the spring bloom decay at the OS. A remarkable quasi monospecific bloom (∼90%) of a nanodiatom (Thalassiosira bioculata var. raripora) associated with high Chl a (up to 20 mg m-3) occurred along (∼1000 km) the SBF and in the most northern extension of the MC. In the southern region, the bloom was developed under absent or incipient density stratification, increasing solar irradiance, high nitrate and phosphate availability, and low numbers of phytoplankton grazers. The average mixedlayer PAR irradiance (<2.0 mol quanta PAR m-2 d-1) and Si:N ratios (<0.2) were low, suggesting a diatom population limited by light and under progressive silicate limitation. The more stratified northern region of the

  1. Parasites of flounder (Platichthys flesus L.) from the German Bight, North Sea, and their potential use in biological effects monitoring. C. Pollution effects on the parasite community and a comparison to biomarker responses

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Zander, S.; Körting, W.; Broeg, K.; von Westernhagen, H.; Dizer, H.; Hansen, P. D.; Skouras, A.; Steinhagen, D.

    2003-10-01

    In the frame of an integrated biological effect monitoring programme, the parasite community of flounder (Platichthys flesus) was investigated at different locations in the German Bight from 1995 to 2000. In order to assess the impact of environmental contamination caused by anthropogenic activities on the parasite community, selected parasitological parameters that displayed significant differences between the sampling sites were subjected to correlation analyses with site-specific contamination and individual pollution loads of their fish hosts. In addition, correlation analyses were conducted with the responses of selected genetic, biochemical, histopathological, physiological and immunological parameters of fish, used as potential biomarkers. In total, 802 flounder were analysed for these parameters. Information on the chemical background at the sampling sites was derived from sediment samples and from 120 samples of blue mussel (Mytilus edulis) tissue, collected at each of the sampling sites. Based on chemical data available from the sediment and blue mussel samples, a pollution gradient could be established between the sampling sites for individual contaminants. The relative abundance of Acanthochondria cornuta, Cucullanus heterochrous and Zoogonoides viviparus, and the community measures species richness and number of heteroxenous species decreased with increasing concentrations of individual heavy metals or hydrocarbons in sediment and blue mussel samples. Most of the parasitological parameters significantly reflected the established site-specific contamination gradient, when data were pooled over all sampling campaigns. Significant correlations were also found with the contamination level of individual flounder. The parasitological parameters included the parasite species Lepeophtheirus pectoralis and Lernaeocera branchialis, which were not correlated to site-specific contamination. Several biomarkers were significantly correlated to the abundance of

  2. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.

    PubMed

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185

  3. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters.

    PubMed

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources.

  4. Community Analysis and Recovery of Phenol-degrading Bacteria from Drinking Water Biofilters

    PubMed Central

    Gu, Qihui; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Wu, Huiqing; Sun, Ming

    2016-01-01

    Phenol is a ubiquitous organic contaminant in drinking water. Biodegradation plays an important role in the elimination of phenol pollution in the environment, but the information about phenol removal by drinking water biofilters is still lacking. Herein, we study an acclimated bacterial community that can degrade over 80% of 300 mg/L phenol within 3 days. PCR detection of genotypes involved in bacterial phenol degradation revealed that the degradation pathways contained the initial oxidative attack by phenol hydroxylase, and subsequent ring fission by catechol 1,2-dioxygenase. Based on the PCR denatured gradient gel electrophoresis (PCR-DGGE) profiles of bacteria from biological activated carbon (BAC), the predominant bacteria in drinking water biofilters including Delftia sp., Achromobacter sp., and Agrobacterium sp., which together comprised up to 50% of the total microorganisms. In addition, a shift in bacterial community structure was observed during phenol biodegradation. Furthermore, the most effective phenol-degrading strain DW-1 that correspond to the main band in denaturing gradient gel electrophoresis (DGGE) profile was isolated and identified as Acinetobacter sp., according to phylogenetic analyses of the 16S ribosomal ribonucleic acid (rRNA) gene sequences. The strain DW-1 also produced the most important enzyme, phenol hydroxylase, and it also exhibited a good ability to degrade phenol when immobilized on granular active carbon (GAC). This study indicates that the enrichment culture has great potential application for treatment of phenol-polluted drinking water sources, and the indigenous phenol-degrading microorganism could recover from drinking water biofilters as an efficient resource for phenol removal. Therefore, the aim of this study is to draw attention to recover native phenol-degrading bacteria from drinking water biofilters, and use these native microorganisms as phenolic water remediation in drinking water sources. PMID:27148185

  5. Light Pollution

    ERIC Educational Resources Information Center

    Riegel, Kurt W.

    1973-01-01

    Outdoor lighting is light pollution which handicaps certain astronomical programs. Protective measures must be adopted by the government to aid observational astronomy without sacrificing legitimate outdoor lighting needs. (PS)

  6. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  7. Agricultural and urban pollution

    NASA Technical Reports Server (NTRS)

    Brehmer, M. L.

    1972-01-01

    The degradation produced by the introduction of agricultural and urban wastes into estuarine systems, with emphasis on the Chesapeake Bay area, is discussed. The subjects presented are: (1) effects of sediment loading and (2) organic and nutrient loading problems. The impact of high turbidity on the biological life of the bay is analyzed. The sources of nutrients which produce over-enrichment of the waters and the subsequent production of phytoplankton are examined.

  8. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  9. Hysterothylacium aduncum (Nematoda, Anisakidae) with a new host record from the common sole Solea solea (Soleidae) and its role as a biological indicator of pollution.

    PubMed

    Abdel-Ghaffar, Fathy; Abdel-Gaber, Rewaida; Bashtar, Abdel-Rahman; Morsy, Kareem; Mehlhorn, Heinz; Al Quraishy, Saleh; Saleh, Rehab

    2015-02-01

    Hysterothylacium aduncum (Nematoda, Anisakidae) was isolated from the intestine of the common sole Solea solea (Family, Soleidae) collected from coasts along Alexandria City at the Mediterranean Sea in Egypt, during the period from May to September 2013. Light and scanning electron microscopy revealed that this nematode parasite belongs to the family Anisakidae in the genus Hysterothylacium. The type species is named H. aduncum, based on the presence of three interlocked lips with the interlabium in between, the presence of cephalic papillae, and large numbers of caudal papillae in males. Body measurements showed that the male worms were smaller than females measuring 13.9-18 mm (16.2 ± 0.2) in length and 0.26-0.34 mm (0.30 ± 0.01) in width. Females measured 20.5-24.5 mm (22.7 ± 0.2) in length and 0.41-0.52 mm (0.45 ± 0.01) in width. The morphological characteristics of this species was confirmed by molecular analysis of 18S rDNA for these parasites followed by comparison between sequence data for them with those obtained from the Genbank showing that H. aduncum is deeply embedded in the genus Hysterothylacium with a sequence similarity between 95.5-94.3 % with close relationships to other H. aduncum specimens and Hysterothylacium sp.. Furthermore, it was shown that this parasitic nematode is able to accumulate larger concentrations of heavy metals such as Fe, Cu, Cd, and Ni within its tissues than of its host fish and thus it can be used as a useful bio-indicator of water pollution. PMID:25468378

  10. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor.

    PubMed

    Lay-Son, Meiling; Drakides, Christian

    2008-02-01

    Biological treatment of coke and steel-processing wastewaters has to satisfy both industrial economic needs and environmental protection regulations. Nevertheless, as some of the pollutants contained in these waters or produced during the treatment are highly toxic, an effective and safe treatment has proved to be difficult to obtain. This paper reports the study of a biological method for the treatment of wastewaters containing free cyanide, thiocyanate and ammonium (NH4). Laboratory-scale activated-sludge reactors were fed with a synthetic solution reproducing a steel-processing industrial wastewater and inoculated with the same industrial bacterial seeding used on-site (Ecosynergie Inc.). The results demonstrated that free cyanide and thiocyanate were efficiently degraded. Nevertheless, thiocyanate degradation and nitrification processes were actually inhibited by the free ammonia form (NH3) in place of the ionized NH4 form (NH4+) currently dosed and often unproperly named "ammonia" [IUPAC, 1997. In: McNaught, A.D., Wilkinson, A. (compilers). Compendium of Chemical Terminology. Royal Society of Chemistry, Cambridge, UK]. Optimum degradation rates were obtained for very narrow ranges of ammonia nitrogen (NH3-N) concentrations. This result can be explained by the role of pH, which mainly controls the NH3/NH4 equilibrium. Pollutants and NH3 concentrations influenced degradation rates of main pollutants. This influence was determined and expressed through elementary equations. Although the Michaelis-Menten equation could have been used to describe thiocyanate degradation, a Haldane-inhibition model was used to satisfactorily describe cyanide degradation. On the other hand, a slightly modified Haldane model was applied to describe both NH4 oxidation using NH3-N as substrate and thiocyanate degradation using NH3-N as inhibitor. These findings emphasize the role of pH on degradation rates and allow one to optimize operational conditions in the biological treatment of

  11. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    PubMed

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons. PMID:26387318

  12. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    PubMed

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  13. Effects of urbanization and urban stream restoration on the physical and biological structure of stream ecosystems.

    PubMed

    Violin, Christy R; Cada, Peter; Sudduth, Elizabeth B; Hassett, Brooke A; Penrose, David L; Bernhardt, Emily S

    2011-09-01

    Streams, as low-lying points in the landscape, are strongly influenced by the stormwaters, pollutants, and warming that characterize catchment urbanization. River restoration projects are an increasingly popular method for mitigating urban insults. Despite the growing frequency and high expense of urban stream restoration projects, very few projects have been evaluated to determine whether they can successfully enhance habitat structure or support the stream biota characteristic of reference sites. We compared the physical and biological structure of four urban degraded, four urban restored, and four forested streams in the Piedmont region of North Carolina to quantify the ability of reach-scale stream restoration to restore physical and biological structure to urban streams and to examine the assumption that providing habitat is sufficient for biological recovery. To be successful at mitigating urban impacts, the habitat structure and biological communities found in restored streams should be more similar to forested reference sites than to their urban degraded counterparts. For every measured reach- and patch-scale attribute, we found that restored streams were indistinguishable from their degraded urban stream counterparts. Forested streams were shallower, had greater habitat complexity and median sediment size, and contained less-tolerant communities with higher sensitive taxa richness than streams in either urban category. Because heavy machinery is used to regrade and reconfigure restored channels, restored streams had less canopy cover than either forested or urban streams. Channel habitat complexity and watershed impervious surface cover (ISC) were the best predictors of sensitive taxa richness and biotic index at the reach and catchment scale, respectively. Macroinvertebrate communities in restored channels were compositionally similar to the communities in urban degraded channels, and both were dissimilar to communities in forested streams. The

  14. Degradation and resilience of soils

    PubMed Central

    Lal, R.

    1997-01-01

    Debate on global soil degradation, its extent and agronomic impact, can only be resolved through understanding of the processes and factors leading to establishment of the cause-effect relationships for major soils, ecoregions, and land uses. Systematic evaluation through long-term experimentation is needed for establishing quantitative criteria of (i) soil quality in relation to specific functions; (ii) soil degradation in relation to critical limits of key soil properties and processes; and (iii) soil resilience in relation to the ease of restoration through judicious management and discriminate use of essential input. Quantitative assessment of soil degradation can be obtained by evaluating its impact on productivity for different land uses and management systems. Interdisciplinary research is needed to quantify soil degradation effects on decrease in productivity, reduction in biomass, and decline in environment quality throught pollution and eutrophication of natural waters and emission of radiatively-active gases from terrestrial ecosystems to the atmosphere. Data from long-term field experiments in principal ecoregions are specifically needed to (i) establish relationships between soil quality versus soil degradation and soil quality versus soil resilience; (ii) identify indicators of soil quality and soil resilience; and (iii) establish critical limits of important properties for soil degradation and soil resilience. There is a need to develop and standardize techniques for measuring soil resilience.

  15. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    PubMed

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  16. Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial--biodegradability enhancement and evolution profile of trace pollutants.

    PubMed

    Silva, Tânia F C V; Silva, M Elisabete F; Cunha-Queda, A Cristina; Fonseca, Amélia; Saraiva, Isabel; Sousa, M A; Gonçalves, C; Alpendurada, M F; Boaventura, Rui A R; Vilar, Vítor J P

    2013-10-15

    A multistage treatment system, at a scale close to the industrial, was designed for the treatment of a mature raw landfill leachate, including: a) an activated sludge biological oxidation (ASBO), under aerobic and anoxic conditions; b) a solar photo-Fenton process, enhancing the bio-treated leachate biodegradability, with and without sludge removal after acidification; and c) a final polishing step, with further ASBO. The raw leachate was characterized by a high concentration of humic substances (HS) (1211 mg CHS/L), representing 39% of the dissolved organic carbon (DOC) content, and a high nitrogen content, mainly in the form of ammonium nitrogen (>3.8 g NH4(+)-N/L). In the first biological oxidation step, a 95% removal of total nitrogen and a 39% mineralization in terms of DOC were achieved, remaining only the recalcitrant fraction, mainly attributed to HS (57% of DOC). Under aerobic conditions, the highest nitrification rate obtained was 8.2 mg NH4(+)-N/h/g of volatile suspended solids (VSS), and under anoxic conditions, the maximum denitrification rate obtained was 5.8 mg (NO2(-)-N + NO3(-)-N)/h/g VSS, with a C/N consumption ratio of 2.4 mg CH3OH/mg (NO2(-)-N + NO3(-)-N). The precipitation of humic acids (37% of HS) after acidification of the bio-treated leachate corresponds to a 96% DOC abatement. The amount of UV energy and H2O2 consumption during the photo-Fenton reaction was 30% higher in the experiment without sludge removal and, consequently, the reaction velocity was 30% lower. The phototreatment process led to the depletion of HS >80%, of low-molecular-weight carboxylate anions >70% and other organic micropollutants, thus resulting in a total biodegradability increase of >70%. The second biological oxidation allowed to obtain a final treated leachate in compliance with legal discharge limits regarding water bodies (with the exception of sulfate ions), considering the experiment without sludge. Finally, the high efficiency of the overall treatment

  17. Urban pollution.

    PubMed

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc.

  18. Urban pollution.

    PubMed

    Sancini, Angela; Tomei, Francesco; Tomei, Gianfranco; Caciari, Tiziana; Di Giorgio, Valeria; André, Jean-Claude; Palermo, Paola; Andreozzi, Giorgia; Nardone, Nadia; Schifano, Maria Pia; Fiaschetti, Maria; Cetica, Carlotta; Ciarrocca, Manuela

    2012-01-01

    Air pollution represents a health risk for people living in urban environment. Urban air consists in a complex mixture of chemicals and carcinogens and its effects on health can be summarized in acute respiratory effects, neoplastic nonneoplastic (e.g. chronic bronchitis) chronic respiratory effects, and effects on other organs and systems. Air pollution may be defined according to origin of the phenomena that determine it: natural causes (natural fumes, decomposition, volcanic ash) or anthropogenic causes which are the result of human activities (industrial and civil emissions). Transport is the sector that more than others contributes to the deterioration of air quality in cities. In this context, in recent years, governments of the territory were asked to advance policies aimed at solving problems related to pollution. In consideration of the many effects on health caused by pollution it becomes necessary to know the risks from exposure to various environmental pollutants and to limit and control their effects. Many are the categories of "outdoor" workers, who daily serve the in urban environment: police, drivers, newsagents, etc. PMID:22888729

  19. Microbial degradation of dibenzothiophene by nocardioides

    SciTech Connect

    Sandhya, S.; Prabu, S.K.; Sundari, R.B.T.

    1995-10-01

    The atmospheric sulfur pollution is one of the major problem world is facing today. Combustion of low quality fossil fuels emit sulfur dioxide gas. Precombustion desulfurization of fuel is a solution for reduction of atmospheric sulfur pollution. Anactinomycetes, Nocardioides sp has been isolated from soil by enrichment culture technique for the biodegradation of heterocyclic sulfur compound, dibenzothiophene (DBT). Resting cell suspension can degrade DBT with the release of sulfate. The investigation on DBT degradation by Nocardioides has shown that the organism has got the potential for desulfurization of petroleum crude. 14 refs., 3 figs., 1 tab.

  20. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  1. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment.

    PubMed

    Li, Chunyan; Li, Yue; Cheng, Xiaosong; Feng, Liping; Xi, Chuanwu; Zhang, Ying

    2013-03-01

    In this study, a unique biofilm consisting of three bacterial strains with high biofilm-forming capability (Bacillus subtilis E2, E3, and N4) and an acetonitrile-degrading bacterium (Rhodococcus rhodochrous BX2) was established for acetonitrile-containing wastewater treatment. The results indicated that this biofilm exhibited strong resistance to acetonitrile loading shock and displayed a typical spatial and structural heterogeneity and completely depleted the initial concentration of acetonitrile (800mgL(-1)) within 24h in a moving-bed-biofilm reactor (MBBR) after operation for 30days. The immobilization of BX2 cells in the biofilm was confirmed by PCR-DGGE. It has been demonstrated that biofilm-forming bacteria can promote the immobilization of contaminant-degrading bacteria in the biofilms and can subsequently improve the degradation of contaminants in wastewater. This approach offers a novel strategy for enhancing biological oxidation of toxic pollutants in wastewater. PMID:23376196

  2. Monitoring Anaerobic TCE Degradation by Evanite Cultre in Column Packed with TCE-Contaminated Soil

    NASA Astrophysics Data System (ADS)

    Ko, J.; Han, K.; Ahn, G.; Park, S.; Kim, N.; Ahn, H.; Kim, Y.

    2011-12-01

    Trichloroethylene (TCE) is a long-term common groundwater pollutant because the compound with high density is slowly released into groundwater. Physical and chemical remediation processes have been used to clean-up the contaminant, but novel remediation technology is required to overcome a low efficiency of the traditional treatment process. Many researchers focused on biological process using an anaerobic TCE degrading culture, dehalococcoides spp., but it still needs to evaluate whether the process can be applied into field scale under aerobic condition. Therefore, in this work we examined two different types (i.e., Natural attenuation and bioaugmentation) of biological remediation process in anaerobic column packed with TCE-contaminated soil. A TCE degradation by indigenous microorganisms was confirmed by monitoring TCE and the metabolites (c-DCE, VC, ETH). However, TCE was transformed and stoichiometry amount of c-DCE was produced, and VC and ETH was not detected. To test bioaugmentation of Evanite culture containing dehalococcoides spp., Evanite culture was injected into the column and TCE degradation to c-DCE, VC, ETH was monitored. We are evaluating the transport of the Evanite culture in the column by measuring TCE and VC reductases. In the result, the TCE was completely degraded to ETH using hydrogen as electron donor generate by hydrogen-production fermentation from formate.

  3. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.

  4. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. PMID:22309478

  5. Catabolism and biotechnological applications of cholesterol degrading bacteria

    PubMed Central

    García, J. L.; Uhía, I.; Galán, B.

    2012-01-01

    Summary Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. PMID:22309478

  6. Integrated chemical-biological treatment of benzo[a]pyrene

    SciTech Connect

    Zeng, Yu; Hong, P.K.A.; Wavrek, D.A.

    2000-03-01

    Benzo[a]pyrene of natural and anthropogenic sources is one of the toxic, mutagenic, polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants. This study focuses on an integrated treatment of benzo[a]pyrene involving sequential chemical oxidation and biological degradation. The objectives are to (1) provide mechanistic details in the ozone-mediated degradation of benzo[a]pyrene in the aqueous phase, (2) test the biodegradability of resultant intermediates, and (3) test the feasibility for the coupled chemical-biological treatment of the five-ring PAH. Batch and packed column reactors were used to examine the degradation pathways of benzo[a]pyrene subject to ozonation in the aqueous phase. After different ozonation times, samples containing reaction intermediates and byproducts from both reactors were collected, identified for organic contents, and further biologically inoculated to determine their biodegradability. The O{sub 3}-pretreated samples were incubated for 5, 10, 15, and 20 days; afterward biochemical oxygen demand (BOD), chemical oxygen demand (COD), and E. coli toxicity tests were conducted along with qualitative and quantitative determinations of benzo[a]pyrene, intermediates, and reaction products by GC/FID and GC/MS methods. Prevalent intermediates identified at different stages included ring-opened aldehydes, phthalic derivatives, and aliphatics. The degradation of benzo[a]pyrene is primarily initiated via O{sub 3}-mediated ring-opening, followed by O{sub 3} and hydroxyl radical fragmentation, and ultimately brought to complete mineralization primarily via hydroxyl radicals. Intermediates formed during chemical oxidation were biodegradable with a measured first-order rate constant (k{sub 0}) of 0.18 day{sup {minus}1}. The integrated chemical-biological system seems feasible for treating recalcitrant compounds, while pretreatment by chemical oxidation appears useful in promoting soluble intermediates from otherwise highly insoluble

  7. Photocatalytic Degradation of Azo Dyes using Doped Titania Fibers

    NASA Astrophysics Data System (ADS)

    Shanmugasundaram, Prasad

    Photo-catalytic degradation using semiconductor particle as dispersion in aqueous medium has been gaining increased attention over the past several years. Their versatility in application makes them unique along with their easy processing techniques and low cost. Titania semiconductor is one of the most important members of this family. It has been widely used for various applications ranging from environmental to bio-medical. Titanium dioxide has gained importance as an effective photo-catalyst because of its advantages over other semiconductor oxides which include high photo-stability, inexpensive, reusable property, chemical and biological inertness, high reactivity, non-toxicity, corrosion resistance, operation at ambient temperatures and its ability to treat trace level pollutants. Its use as a photocatalyst is primarily because of its band gap of 3.0-3.3 eV which can be effectively activated under ultraviolet radiation (wavelength lambda < 400 nm), which leads to electron jump from valence to conduction band. This project aims at developing electrospun titania fibers doped with copper in order to study and demonstrate photocatalytic activity in the visible light spectrum, resulting in quick formation of holes which are ready to react with water to form -OH radicals. A comparative study of pure titania and copper doped titania for degradation of azo dyes were carried out. SEM, EDAX, XRD were carried out to thoroughly understand the structure of the fibers. The photocatalytic activity measurements for different dyes were noted using Uv-Vis method. The fibers when fully developed will be disposable photocatalytic materials for degrading dyes, Organic pollutants and for bio-medical applications when exposed to visible light.

  8. Nature or petrochemistry?-biologically degradable materials.

    PubMed

    Mecking, Stefan

    2004-02-20

    Naturally occurring polymers have been utilized for a long time as materials, however, their application as plastics has been restricted because of their limited thermoplastic processability. Recently, the microbial synthesis of polyesters directly from carbohydrate sources has attracted considerable attention. The industrial-scale production of poly(lactic acid) from lactic acid generated by fermentation now provides a renewable resources-based polyester as a commodity plastic for the first time. The biodegradability of a given material is independent of its origin, and biodegradable plastics can equally well be prepared from fossil fuel feedstocks. A consideration of the overall carbon dioxide emissions and consumption of non-renewable resources over the entire life-cycle of a product is not necessarily favorable for plastics based on renewable resources with current technology-in addition to the feedstocks for the synthesis of the polymer materials, the feedstock for generation of the overall energy required for production and processing is decisive.

  9. Nature or petrochemistry?-biologically degradable materials.

    PubMed

    Mecking, Stefan

    2004-02-20

    Naturally occurring polymers have been utilized for a long time as materials, however, their application as plastics has been restricted because of their limited thermoplastic processability. Recently, the microbial synthesis of polyesters directly from carbohydrate sources has attracted considerable attention. The industrial-scale production of poly(lactic acid) from lactic acid generated by fermentation now provides a renewable resources-based polyester as a commodity plastic for the first time. The biodegradability of a given material is independent of its origin, and biodegradable plastics can equally well be prepared from fossil fuel feedstocks. A consideration of the overall carbon dioxide emissions and consumption of non-renewable resources over the entire life-cycle of a product is not necessarily favorable for plastics based on renewable resources with current technology-in addition to the feedstocks for the synthesis of the polymer materials, the feedstock for generation of the overall energy required for production and processing is decisive. PMID:14983440

  10. Environmental degradation and environmental threats in China.

    PubMed

    Wang, Ying

    2004-01-01

    The article presents a review of environmental degradation and its threats in China. Air pollution, water pollution, deforestation, soil degradation, sand depositing in dams, decaying urban infrastructure, and more and more hazards such as floods, landslides and soil erosion are major consequences of environmental degradation and are making tremendous loss both in life and property. Through investigation, the author found that poor air quality in the large cities; water pollution in the downstream of many rivers; the multiple problems of many mining areas; lack of access to fresh water; decaying sewage systems; and the disastrous impact of these environmental degradations on public health and agricultural products in many provinces is rather serious. Relationship of environmental degradation and natural hazards is close; more attention should be put in environmental degradation that may surpass economy progress if the trend continues. It is therefore imperative that Chinese government undertake a series of prudent actions now that will enable to be in the best possible position when the current environmental crisis ultimately passes.

  11. Olive plants (Olea europaea L.) as a bioindicator for pollution.

    PubMed

    Eliwa, Amal Mohamed; Kamel, Ehab Abdel-Razik

    2013-06-15

    In the present work, olive plant (Olea europaea L.) was used as a biological indicator for pollution in which, molecular and physiological parameters were studied. Olive plants were collected from polluted and non-polluted areas in Jeddah - Saudi Arabia, traffic area as an air polluted area, sewage treatment station as water polluted area, industrial area as solid waste polluted, costal area as marine polluted area and an area without a direct source of pollution far away from the city center, which was used as control. These changes conducted with nucleic acid content, minerals content, pigments and some growth parameters. Results showed significant reductions in DNA and RNA contents under all polluted sites. Mineral contents were varied widely depending on the different pollutants and locations of olive plant. Generally, micro-elements varied (increase/decrease) significantly within collected samples and the source of pollution. All growth parameters were decreased significantly within the studied samples of all pollutant areas except the relative water content was increased. The content of chlorophyll a has decreased highly significantly in all polluted leaves. While the content of chlorophyll b has increased significantly in all polluted leaves especially in air polluted leaves. The total content of carotenoid pigments has decreased highly significantly in all polluted leaves. It was concluded that olive plant can be used as a biological indicator to the environmental pollutants.

  12. Water Pollution

    MedlinePlus

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  13. Pollution Solution

    ERIC Educational Resources Information Center

    Vannan, Donald A.

    1972-01-01

    Stresses briefly the need for individuals' actions for controlling the environmental pollution. A number of projects are suggested for teachers to involve children in this area. Simulated discussion groups of sellers'' and consumers, use of pictures, onion juice, and a water filtration contest are a few of the sources used. (PS)

  14. MOLD POLLUTION

    EPA Science Inventory

    Mold pollution is the growth of molds in a building resulting in a negative impact on the use of that structure. The negative impacts generally fall into two categories: destruction of the structure itself and adverse health impacts on the building's occupants. It is estimated...

  15. Coloured ornamental traits could be effective and non-invasive indicators of pollution exposure for wildlife

    PubMed Central

    Lifshitz, Natalia; St Clair, Colleen Cassady

    2016-01-01

    Growth in human populations causes habitat degradation for other species, which is usually gauged b