Sample records for polluted boundary layer

  1. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  2. First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Boynard, Anne; Clerbaux, Cathy; Clarisse, Lieven; Safieddine, Sarah; Pommier, Matthieu; Van Damme, Martin; Bauduin, Sophie; Oudot, Charlotte; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Coheur, Pierre-François

    2014-05-01

    An extremely severe and persistent smog episode occurred in January 2013 over China. The levels of air pollution have been dangerously high, reaching 40 times recommended safety levels and have affected health of millions of people. China faced one of the worst periods of air quality in recent history and drew worldwide attention. This pollution episode was caused by the combination of anthropogenic emissions and stable meteorological conditions (absence of wind and temperature inversion) that trapped pollutants in the boundary layer. To characterize this episode, we used the IASI (Infrared Atmospheric Sounding Interferometer) instrument onboard the MetOp-A platform. IASI observations show high concentrations of key trace gases such as carbon monoxide (CO), sulfur dioxide (SO2) and ammonia (NH3) along with ammonium sulfate aerosol. We show that IASI is able to detect boundary layer pollution in case of large negative thermal contrast combined with high levels of pollution. Our findings demonstrate the ability of thermal infrared instrument such as IASI to monitor boundary layer pollutants, which can support air quality evaluation and management.

  3. Enhanced air pollution via aerosol-boundary layer feedback in China.

    PubMed

    Petäjä, T; Järvi, L; Kerminen, V-M; Ding, A J; Sun, J N; Nie, W; Kujansuu, J; Virkkula, A; Yang, X-Q; Fu, C B; Zilitinkevich, S; Kulmala, M

    2016-01-12

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m(-3), but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

  4. Trade cumulus clouds embedded in a deep regional haze: Results from Indian Ocean CARDEX experiment

    NASA Astrophysics Data System (ADS)

    Wilcox, E. M.; Thomas, R. M.; Praveen, P. S.; Pistone, K.; Bender, F.; Feng, Y.; Ramanathan, V.

    2013-12-01

    During the winter monsoon, trade cumulus clouds over the North Indian Ocean are embedded within a deep regional haze described as an atmospheric brown cloud. While the trade-cu clouds are largely confined to the marine boundary layer, the sooty brown cloud extends from the boundary layer to as high as 3 km; well above the tops of the cumulus. The boundary layer pollution is persistent and limits drizzle in the cumulus over a period of greater than a month at the Maldives Climate Observatory located at Hanimaadhoo Island. The elevated haze from 1 to 3 km altitude is episodic and strongly modulated by synoptic variability in the 700 hPa flow. The elevated plume enhances heating above the marine boundary layer through daytime absorption of sunlight by the haze particles. The interplay between the microphysical modification of clouds by boundary layer pollution and the episodic elevated heating by the atmospheric brown cloud are explored in in-situ observations from UAVs and surface remote sensing during the CARDEX field campaign of winter 2012 and supported by multi-year analysis of satellite remote sensing observations. These observations document the variability in pollution at the surface and above the marine boundary layer and the effects of pollution on the microphysics of the trade-cu clouds, the depth of the marine boundary layer, the liquid water path of trade-cu clouds, and the profile of turbulent moisture flux through the boundary layer. The consequences of these effects for the radiative forcing of regional climate will be discussed.

  5. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  6. A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian;  Gasparovic, Richard F.;  Pockalny, Robert A.

    2000-08-01

    A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

  7. Characterizing the structure of the atmospheric boundary layer under heavy pollution over urban area, Beijing, China

    NASA Astrophysics Data System (ADS)

    WANG, L.; Gao, Z.; Huang, M.; Fan, S.; Miao, S.

    2017-12-01

    A better understanding of the interactions between the occurrence of air pollution and the structure of the atmospheric boundary layer (ABL) is very important for the air-pollution-relevant investigations. In this study, the ABL structure was studied by using a Doppler lidar, a Depolarization lidar and the 325-m meteorological tower in Beijing during the winter 2016-2017, in particular during heavy polluted episodes. The planetary boundary layer (PBL) depth was estimated by using lidar data. The characteristics of wind, temperature and relative humidity at 15 levels, turbulence transport and radiation balance at three levels (47, 140 and 280 m) were analyzed by using the observational data collected on the 325-m meteorological tower.

  8. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  9. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NASA Astrophysics Data System (ADS)

    Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.

    2016-05-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.

  10. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  11. Elucidating the relationship between aerosol concentration and summertime boundary layer structure in central China.

    PubMed

    Liu, Lin; Guo, Jianping; Miao, Yucong; Liu, Lin; Li, Jian; Chen, Dandan; He, Jing; Cui, Chunguang

    2018-06-11

    Wuhan, a megacity in central China, suffers from frequent aerosol pollution and is accompanied by meteorological factors at both synoptic and local scales. Partly due to the lack of appropriate observations of planetary boundary layer (PBL), the associations between synoptic conditions, PBL, and pollution there are not yet fully understood. Thus, systematic analyses were conducted using the fine-resolution soundings, surface meteorological measurements, and aerosol observations in Wuhan during summer for the period 2013-2016, in combination with T-mode principal component analysis and simulations of backward trajectory. The results showed that the variations of boundary layer height (BLH) not only modulated the diurnal variation of PM 2.5 concentration in Wuhan, but also the daily pollution level. Five different synoptic patterns during summer in Wuhan were identified from reanalysis geopotential height fields. Among these synoptic patterns, two types characterized by northeasterly prevailing winds, were found to be associated with heavy pollution in Wuhan. Driven by the northeasterly winds, the polluted air mass from the heavily polluted regions could be easily transported to Wuhan, such as North China Plain and Yangtze River Delta. Such regional transports of pollutants must be partly responsible for the aerosol pollution in Wuhan. In addition, these two synoptic patterns were also featured by the relatively high cloud cover and low boundary layer height in Wuhan, which would favor the occurrence of pollution there. Overall, this study has important implications for understanding the important roles of meteorological factors in modulating aerosol pollution in central China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  13. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  15. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  16. The innovative concept of three-dimensional hybrid receptor modeling

    NASA Astrophysics Data System (ADS)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  17. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  18. Process analysis of characteristics of the boundary layer during a heavy haze pollution episode in an inland megacity, China.

    PubMed

    Wang, Shan; Liao, Tingting; Wang, Lili; Sun, Yang

    2016-02-01

    Ground observation data from 8 meteorological stations in Xi'an, air mass concentration data from 13 environmental quality monitoring sites in Xi'an, as well as radiosonde observation and wind profile radar data, were used in this study. Thereby, the process, causes and boundary layer meteorological characteristics of a heavy haze episode occurring from 16 to 25 December 2013 in Xi'an were analyzed. Principal component analysis showed that this haze pollution was mainly caused by the high-intensity emission and formation of gaseous pollutants (NO2, CO and SO2) and atmospheric particles (PM2.5 (fine particles) and PM10 (respirable suspended particle). The second cause was the relative humidity and continuous low temperature. The third cause was the allocation of the surface pressure field. The presence of a near-surface temperature inversion at the boundary layer formed favorable stratification conditions for the formation and maintenance of heavy haze pollution. The persistent thick haze layer weakened the solar radiation. Meanwhile, a warming effect in the urban canopy layer and in the transition zone from the urban friction sublayer to the urban canopy was indicated. All these conditions facilitated the maintenance and reinforcement of temperature inversion. The stable atmospheric stratification finally acted on the wind field in the boundary layer, and further weakened the exchange capacity of vertical turbulence. The superposition of a wind field with the horizontal gentle wind induced the typical air stagnation and finally caused the deterioration of air quality during this haze event. Copyright © 2015. Published by Elsevier B.V.

  19. Influence of trans-boundary air pollution from China on multi-day high PM10 episodes in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Oh, H. R.; Ho, C. H.; Kim, J.; Chen, D.; Lee, S.; Choi, Y. S.; Chang, L. S.; Song, C. K.

    2014-12-01

    Air quality problems have become a serious global issue as it causes over 3 million deaths per year all over the world. With generations of massive air pollutants in China, the effects of trans-boundary transports of air pollutants on human health have become a serious international concern in East Asia. However, only a limited number of studies are available for providing scientific evidences for quantifying the sources and transports of air pollutants over major countries in East Asia. Here, it is shown that particulate matters originated from China played major role in the occurrence of multi-day (≥ 4 days) severe air pollution episodes in Seoul, Korea, in which the concentration of particulate matter of diameters ≤ 10 μm exceeds 100 μg m-3. Observations show that these multi-day severe air quality episodes occur when a strong high-pressure system resides over the eastern China - Korea region. Such a weather condition confines air pollutants within the atmospheric boundary layer and spread them by slow westerlies within the boundary layer from China into the neighboring countries. Understanding such dynamical processes is a key for advancing the predictability of trans-boundary air pollutants and their health impacts in East Asia as well as developing international measures to improve air quality for the region.

  20. Combined effect of boundary layer recirculation factor and stable energy on local air quality in the Pearl River Delta over southern China.

    PubMed

    Li, Haowen; Wang, Baomin; Fang, Xingqin; Zhu, Wei; Fan, Qi; Liao, Zhiheng; Liu, Jian; Zhang, Asi; Fan, Shaojia

    2018-03-01

    Atmospheric boundary layer (ABL) has a significant impact on the spatial and temporal distribution of air pollutants. In order to gain a better understanding of how ABL affects the variation of air pollutants, atmospheric boundary layer observations were performed at Sanshui in the Pearl River Delta (PRD) region over southern China during the winter of 2013. Two types of typical ABL status that could lead to air pollution were analyzed comparatively: weak vertical diffusion ability type (WVDAT) and weak horizontal transportation ability type (WHTAT). Results show that (1) WVDAT was featured by moderate wind speed, consistent wind direction, and thick inversion layer at 600~1000 m above ground level (AGL), and air pollutants were restricted in the low altitudes due to the stable atmospheric structure; (2) WHTAT was characterized by calm wind, varied wind direction, and shallow intense ground inversion layer, and air pollutants accumulated in locally because of strong recirculation in the low ABL; (3) recirculation factor (RF) and stable energy (SE) were proved to be good indicators for horizontal transportation ability and vertical diffusion ability of the atmosphere, respectively. Combined utilization of RF and SE can be very helpful in the evaluation of air pollution potential of the ABL. Air quality data from ground and meteorological data collected from radio sounding in Sanshui in the Pearl River Delta showed that local air quality was poor when wind reversal was pronounced or temperature stratification state was stable. The combination of horizontal and vertical transportation ability of the local atmosphere should be taken into consideration when evaluating local environmental bearing capacity for air pollution.

  1. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  2. TURBULENCE PARAMETERS IMPACTING DISPERSION IN AN URBAN CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    Turbulence measurements of the three dimensional wind components were collected by an instrumented research aircraft on 7 days in August 1976. These aircraft flights were conducted as part of the Regional Air Pollution Study (RAPS) urban boundary layer field program in St. Louis,...

  3. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Zhao, Chun; Li, Xiaolan; Zhang, Gen; Wei, Wei; Ma, Yanjun

    2018-05-01

    The northeastern China frequently experiences severe aerosol pollution in winter under unfavorable meteorological conditions. How and to what extent the meteorological factors affect the air quality there are not yet clearly understood. Thus, this study investigated the impacts of synoptic patterns on the aerosol transport and planetary boundary layer (PBL) structure in Shenyang from 1 to 3 December 2016, using surface observations, sounding measurements, satellite data, and three-dimensional simulations. Results showed that the aerosol pollution occurred in Shenyang was not only related to the local emissions, but also contributed by trans-boundary transport of aerosols from the Beiijng-Tianjin-Hebei (BTH) region. In the presence of the westerly and southwesterly synoptic winds, the aerosols emitted from BTH could be brought to Shenyang. From December 2 to 3, the aerosols emitted from BTH accounted for ∼20% of near-surface PM2.5 in Shenyang. In addition, the large-scale synoptic forcings could affect the vertical mixing of pollutants through modulating the PBL structure in Shenyang. The westerly and southwesterly synoptic winds not only brought the aerosols but also the warmer air masses from the southwest regions to Shenyang. The strong warm advections above PBL could enhance the already existing thermal inversion layers capping over PBL in Shenyang, leading to the suppressions of PBL. Both the trans-boundary transport of aerosols and the suppressions of PBL caused by the large-scale synoptic forcings should be partly responsible for the poor air quality in Shenyang, in addition to the high pollutant emissions. The present study revealed the physical mechanisms underlying the aerosol pollution in Shenyang, which has important implications for better forecasting and controlling the aerosols pollution.

  4. Turbulence and pollutant transport in urban street canyons under stable stratification: a large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Li, X.

    2014-12-01

    Thermal stratification of the atmospheric surface layer has strong impact on the land-atmosphere exchange of turbulent, heat, and pollutant fluxes. Few studies have been carried out for the interaction of the weakly to moderately stable stratified atmosphere and the urban canopy. This study performs a large-eddy simulation of a modeled street canyon within a weakly to moderately stable atmosphere boundary layer. To better resolve the smaller eddy size resulted from the stable stratification, a higher spatial and temporal resolution is used. The detailed flow structure and turbulence inside the street canyon are analyzed. The relationship of pollutant dispersion and Richardson number of the atmosphere is investigated. Differences between these characteristics and those under neutral and unstable atmosphere boundary layer are emphasized.

  5. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    EPA Science Inventory

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  6. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    NASA Astrophysics Data System (ADS)

    Aggarwal, Monika; Whiteway, James; Seabrook, Jeffrey; Gray, Lawrence; Strawbridge, Kevin B.

    2016-06-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  7. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment

  8. Tracking atmospheric boundary layer in tehran using combined lidar remote sensing and ground base measurements

    NASA Astrophysics Data System (ADS)

    Panahifar, Hossein; Khalesifard, Hamid

    2018-04-01

    The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.

  9. Boundary layer height determination from Lidar for improving air pollution episode modelling: development of new algorithm and evaluation

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, Z.; Zhang, W.; Gbaguidi, A.; Sugimoto, N.; Matsui, I.; Wang, X.; Yele, S.

    2017-12-01

    Predicting air pollution events in low atmosphere over megacities requires thorough understanding of the tropospheric dynamic and chemical processes, involving notably, continuous and accurate determination of the boundary layer height (BLH). Through intensive observations experimented over Beijing (China), and an exhaustive evaluation existing algorithms applied to the BLH determination, persistent critical limitations are noticed, in particular over polluted episodes. Basically, under weak thermal convection with high aerosol loading, none of the retrieval algorithms is able to fully capture the diurnal cycle of the BLH due to pollutant insufficient vertical mixing in the boundary layer associated with the impact of gravity waves on the tropospheric structure. Subsequently, a new approach based on gravity wave theory (the cubic root gradient method: CRGM), is developed to overcome such weakness and accurately reproduce the fluctuations of the BLH under various atmospheric pollution conditions. Comprehensive evaluation of CRGM highlights its high performance in determining BLH from Lidar. In comparison with the existing retrieval algorithms, the CRGM potentially reduces related computational uncertainties and errors from BLH determination (strong increase of correlation coefficient from 0.44 to 0.91 and significant decreases of the root mean square error from 643 m to 142 m). Such newly developed technique is undoubtedly expected to contribute to improve the accuracy of air quality modelling and forecasting systems.

  10. On the usefulness of an airborne lidar for O3 layer analysis in the free troposphere and the planetary boundary layer.

    PubMed

    Ancellet, G; Ravetta, F

    2003-02-01

    Ozone vertical profiling with a lidar is well adapted to the spatial and temporal O3 variability analysis either in the free troposphere, when studying the respective impact of chemical production and dynamical processes, or in the planetary boundary layer (PBL) when characterizing the diurnal evolution of ozone plumes during pollution episodes. Comparisons with other measuring techniques (ozonesonde and aircraft in-situ measurements) demonstrate the lidar ability to characterize narrow layers (< 500 m) with a good accuracy (deltaO3 < 5-10 ppb). Application of airborne or ground-based operation of the CNRS airborne ozone lidar show its ability (i) to observe O3 layering above the PBL during two field experiments held to study air pollution in the Po Valley, Northern Italy, and the city of Marseille, Southern France, (ii) to improve airborne campaign planning (real time information on position of O3 layers) and analysis (three-dimensional perspective for layers detected by in-situ measurements) when chemical characterization of narrow O3 layers in the free troposphere is sought, (iii) to map O3 inhomogeneity down to an horizontal scale of 10-20 km within or above the polluted PBL by airborne measurements. For O3 pollution studies, understanding the origin and the life cycle of O3 layering is the first priority, and in this case the optimum use of the lidar remains the continuous operation of a ground-based instrument.

  11. Improved Specification of Transboundary Air Pollution over the Gulf of Mexico Using Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; Khan, M. N.; Park, Y. H.; McNider, R. T.; Cameron, B.

    2010-12-01

    The assessment of potential environmental impact of oil and gas operations in the Gulf of Mexico (GoM) and in particular the onshore air quality impact of such operations is important to State and Federal regulatory agencies. In adapting sound policies for control strategies, it is crucial to assess the impact of local pollution versus transboundary air pollution, and in a region such as GoM with scarce monitoring capability over open waters such distinctions represents a challenge. Furthermore, GoM region can be impacted by the recirculation of pollution in the southeastern United States. The current study examines the efficacy of utilizing the newly available satellite observations of aerosols and trace gases in air quality impacts assessment for addressing these issues. In particular, ozone profiles from the Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) onboard Aura and aerosol products from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites were utilized in a modeling study during August 2006. The satellite observations were used in the specification of the background and lateral boundary and also once daily for the re-adjustment of the concentration fields. The results were then evaluated against ozonesonde and surface observations. The utilization of OMI ozone profiles significantly improved model performance in the free troposphere and the use of MODIS aerosol products substantially enhanced model prediction of aerosols in the boundary layer. Neither OMI nor TES provide adequate information in the boundary layer with respect to O3 and as a result they can only marginally impact ozone predictions in the boundary layer. The utilization of the satellite data for lateral boundary condition (BC) was helpful in the realization of transboundary transport of pollution. The hypothesis that the recirculation of pollution from Northeast Corridor can play a role over the Gulf of Mexico was tested and model simulations showed evidence of such possibility. The episodic transport of pollution by easterlies over the GoM and the southeastern region suggests that in particular the specification of the lateral boundaries and the background air in modeling practices in this region is important. The use of MODIS aerosol products explained episodic transport of pollution from the domain boundary over the Gulf of Mexico. The incorporation of satellite data relied on a key assumption that the aerosol partitioning within the model is reliable. Therefore, while the prediction of PM2.5 total mass was substantially improved, aerosol speciation remains a challenge.

  12. Investigation of the atmospheric boundary layer dynamics during the ESCOMPTE campaign

    NASA Astrophysics Data System (ADS)

    Saïd, F.; Brut, A.; Campistron, B.; Cousin, F.

    2007-03-01

    This paper presents some results about the behavior of the atmospheric boundary layer observed during the ESCOMPTE experiment. This campaign, which took place in south-eastern France during summer 2001, was aimed at improving our understanding of pollution episodes in relation to the dynamics of the lower troposphere. Using a large data set, as well as a simulation from the mesoscale non-hydrostatic model Meso-NH, we describe and analyze the atmospheric boundary layer (ABL) development during two specific meteorological conditions of the second Intensive Observation Period (IOP). The first situation (IOP2a, from 22 June to 23 June) corresponds to moderate, dry and cold northerly winds (end of Mistral event), coupled with a sea-breeze in the lower layer, whereas sea-breeze events with weak southerly winds occurred during the second part of the period (IOP2b, from 24 June to 26 June). In this study, we first focus on the validation of the model outputs with a thorough comparison of the Meso-NH simulations with fields measurements on three days of the IOP: 22 June, 23 June and 25 June. We also investigate the structure of the boundary layer on IOP2a when the Mistral is superimposed on a sea breeze. Then, we describe the spatial and diurnal variability of the ABL depths over the ESCOMPTE domain during the whole IOP. This step is essential if one wants to know the depth of the layer where the pollutants can be diluted or accumulated. Eventually, this study intends to describe the ABL variability in relation to local or mesoscale dynamics and/or induced topographic effects, in order to explain pollution transport processes in the low troposphere.

  13. Wind direction variability in Afternoon and Sunset Turbulence

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Mahrt, Larry

    2014-05-01

    Understanding wind direction (WD) variability better is important for several reasons. Air pollution models need information about how variable wind direction is in different conditions (Davies and Thomson 1999). Accurate predictions of dispersion are important for human health and safety and allow for adaptation planning (Nagle et al. 2011). Other applications include horizontal diffusion, efficiency and fatigue of wind machines and air-sea interaction (Mahrt 2011). Most studies of wind direction variability have focused on nocturnal conditions because of greater variability in light winds. Modelling WD variability in transition periods when both mean wind speed and variance of the wind components are in a state of change can, however, also be very challenging and has not been the focus of earlier studies. The evening transitioning to the nocturnal boundary layer can play an important role in the diffusion process of pollutants and scalars emitted at surface and transported within the atmosphere. The Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign that took place in southern France in June and July 2011 focused on the decaying turbulence of the late afternoon boundary layer and related issues (Lothon et al. 2012). We analyse field measurements from BLLAST to investigate WD variability in the evening transition period. Standard deviations of horizontal wind direction fluctuations in the lowest 60 m of the boundary layer have been examined for dependence on mean wind speed, higher order moments and averaging time. Measurement results are interpreted using measured and idealized probability density functions of horizontal wind vectors. These are also used to develop analytical functions describing how WD variability depends on wind speed, variance and other controlling factors in the atmospheric boundary layer. References: Davies B.M., Thomson D.J., 1999. Comparison of some parameterizations of wind direction variability with observations, Atmospheric Enviroment 33, 4909-4917. Lothon M. et al., 2012. The Boundary-Layer Late Afternoon and Sunset Turbulence field experiment, Proc. of the 20th Symposium on Boundary-Layers and Turbulence, 7-13 July, Boston, MA, USA. Mahrt L., 2011. Surface Wind Direction Variability, Journal of Applied Meteorology and Climatology 50. 144-152. Nagle J.C., 2011. Adapting to Pollution, Research Roundtable on Climate Change, Adaptation, and Enviromental Law, Northwestern Law Searle Center, Legal and Regulatory Studies 7-18 April, IL, USA.

  14. Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016

    NASA Astrophysics Data System (ADS)

    Zhong, Junting; Zhang, Xiaoye; Dong, Yunsheng; Wang, Yaqiang; Liu, Cheng; Wang, Jizhi; Zhang, Yangmei; Che, Haochi

    2018-01-01

    In January 2013, February 2014, December 2015 and December 2016 to 10 January 2017, 12 persistent heavy aerosol pollution episodes (HPEs) occurred in Beijing, which received special attention from the public. During the HPEs, the precise cause of PM2.5 explosive growth (mass concentration at least doubled in several hours to 10 h) is uncertain. Here, we analyzed and estimated relative contributions of boundary-layer meteorological factors to such growth, using ground and vertical meteorological data. Beijing HPEs are generally characterized by the transport stage (TS), whose aerosol pollution formation is primarily caused by pollutants transported from the south of Beijing, and the cumulative stage (CS), in which the cumulative explosive growth of PM2.5 mass is dominated by stable atmospheric stratification characteristics of southerly slight or calm winds, near-ground anomalous inversion, and moisture accumulation. During the CSs, observed southerly weak winds facilitate local pollutant accumulation by minimizing horizontal pollutant diffusion. Established by TSs, elevated PM2.5 levels scatter more solar radiation back to space to reduce near-ground temperature, which very likely causes anomalous inversion. This surface cooling by PM2.5 decreases near-ground saturation vapor pressure and increases relative humidity significantly; the inversion subsequently reduces vertical turbulent diffusion and boundary-layer height to trap pollutants and accumulate water vapor. Appreciable near-ground moisture accumulation (relative humidity > 80 %) would further enhance aerosol hygroscopic growth and accelerate liquid-phase and heterogeneous reactions, in which incompletely quantified chemical mechanisms need more investigation. The positive meteorological feedback noted on PM2.5 mass explains over 70 % of cumulative explosive growth.

  15. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    NASA Astrophysics Data System (ADS)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  16. Oscillation of Surface PM2.5 Concentration Resulting from an Alternation of Easterly and Southerly Winds in Beijing: Mechanisms and Implications

    NASA Astrophysics Data System (ADS)

    Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi

    2018-04-01

    We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  18. Aerosol and ozone distributions over the western North Atlantic during WATOX-86

    NASA Astrophysics Data System (ADS)

    Bridgman, H. A.; Schnell, Russell C.; Bodhaine, B. A.; Oltmans, S. J.

    1988-03-01

    On January 4, 6, 8, and 9, 1986, a series of National Oceanic and Atmospheric Administration WP-3D research flights was conducted over the western Atlantic Ocean 200-300 km off the coast of North America from Nova Scotia to Georgia as part of the Western Atlantic Ocean Experiment (WATOX). Rights were made perpendicular to NW airflow to establish the flux of gas and aerosol emissions off the North American continent to the ocean. Representative condensation nucleus (CN) concentrations averaged 150-250 cm-3 in the free troposphere in clean conditions, but in atmospheric layers containing anthropogenic air pollution transported from long distances, CN concentrations reached 6500 cm-3. In the marine boundary layer, CN concentrations averaged 500 to 750 cm-3 under relatively clean conditions, and 1500 to 3000 cm-3 in polluted air. Aerosol scattering extinction (bsp) ranged from 70 × 10-6 m-1 in the marine boundary layer to 20 × 10-6 m-1 in the free troposphere. Aerosol bsp was not as responsive to changes in atmospheric structure as CN although factor-of-2 changes across the marine boundary layer were observed. Aerosol size spectra in the marine boundary layer were an order of magnitude greater than those in the free troposphere. Consistent peaks in the volume spectra between 8 and 10 μm diameter established the importance of sea salt as a major aerosol component. Ozone profiles in the free troposphere, normally in the 30-40 ppb range, exhibited laminae of enhanced concentrations (up to 70 ppb) at moisture boundaries, suggesting that active ozone production was occurring at these levels. Ozone concentrations within the marine boundary layer were generally lower than in the free troposphere.

  19. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    PubMed

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  20. Numerical study of the effects of local atmospheric circulations on a pollution event over Beijing-Tianjin-Hebei, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Chen, Bicheng; Zheng, Hui; Zhao, Jingchuan

    2015-04-01

    Currently, the Chinese central government is considering plans to build a trilateral economic sphere in the Bohai Bay area, including Beijing, Tianjin and Hebei (BTH), where haze pollution frequently occurs. To achieve sustainable development, it is necessary to understand the physical mechanism of the haze pollution there. Therefore, the pollutant transport mechanisms of a haze event over the BTH region from 23 to 24 September 2011 were studied using the Weather Research and Forecasting model and the FLEXible-PARTicle dispersion model to understand the effects of the local atmospheric circulations and atmospheric boundary layer structure. Results suggested that the penetration by sea-breeze could strengthen the vertical dispersion by lifting up the planetary boundary layer height (PBLH) and carry the local pollutants to the downstream areas; in the early night, two elevated pollution layers (EPLs) may be generated over the mountain areas: the pollutants in the upper EPL at the altitude of 2-2.5 km were favored to disperse by long-range transport, while the lower EPL at the altitude of 1 km may serve as a reservoir, and the pollutants there could be transported downward and contribute to the surface air pollution. The intensity of the sea-land and mountain-valley breeze circulations played an important role in the vertical transport and distribution of pollutants. It was also found that the diurnal evolution of the PBLH is important for the vertical dispersion of the pollutants, which is strongly affected by the local atmospheric circulations and the distribution of urban areas. Copyright © 2015. Published by Elsevier B.V.

  1. Impacts of meteorological conditions on wintertime PM2.5 pollution in Taiyuan, North China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Guo, Jianping; Yan, Yan; Huang, Shunxiang; Zhang, Gen; Zhang, Yong; Lou, Mengyun

    2018-05-23

    Taiyuan frequently experiences heavy PM 2.5 pollution in winter under unfavorable meteorological conditions. To understand how the meteorological factors influence the pollution in Taiyuan, this study involved a systematic analysis for a continuous period from November 2016 to January 2017, using near-surface meteorological observations, radiosonde soundings, PM 2.5 measurements, and three-dimension numerical simulation, in combination with backward trajectory calculations. The results show that PM 2.5 concentration positively correlates with surface temperature and relative humidity and anti-correlates with near-surface wind speed and boundary layer height (BLH). The low BLH is often associated with a strong thermal inversion layer capping over. In addition to the high local emissions, it is found that under certain synoptic conditions, the southwesterly and southerly winds could bring pollutants from Linfen to Taiyuan, leading to a near-surface PM 2.5 concentration higher than 200 μg m -3 . Another pollution enhancing issue is due to the semi-closed basin of Taiyuan affecting the planetary boundary layer (PBL): the surrounding mountains favor the formation of a cold air pool in the basin, which inhibits vertical exchanges of heat, flux, and momentum between PBL and the free troposphere, resulting in stagnant conditions and poor air quality in Taiyuan. These findings can be utilized to improve the understanding of PM 2.5 pollution in Taiyuan, to enhance the accuracy of forecasting pollution, and to provide scientific support for policy makers to mitigate the pollution.

  2. Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City

    NASA Astrophysics Data System (ADS)

    Velasco, E.; Márquez, C.; Bueno, E.; Bernabé, R. M.; Sánchez, A.; Fentanes, O.; Wöhrnschimmel, H.; Cárdenas, B.; Kamilla, A.; Wakamatsu, S.; Molina, L. T.

    2007-08-01

    The evolution of ozone and 13 volatile organic compounds (VOCs) in the boundary layer of Mexico City was investigated during 2000-2004 to improve our understanding of the complex interactions between those trace gases and meteorological variables, and their influence on the air quality of a polluted megacity. A tethered balloon, fitted with electrochemical and meteorological sondes, was used to obtain detailed vertical profiles of ozone and meteorological parameters up to 1000 m above ground during part of the diurnal cycle (02:00-18:00 h). VOCs samples were collected up to 200 m by pumping air to canisters with a Teflon tube attached to the tether line. Overall, features of these profiles were found to be consistent with a simple picture of nighttime trapping of ozone in an upper residual layer and of VOCs in a shallow unstable layer above the ground. After sunrise an ozone balance is determined by photochemical production, entrainment from the upper residual layer and destruction by titration with NO, delaying the ground-level ozone rise by 2 h. The subsequent evolution of the conductive boundary layer and vertical distribution of pollutants are discussed in terms of the energy balance, the presence of turbulence and the atmospheric stability.

  3. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    NASA Astrophysics Data System (ADS)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  4. Nineteenth century Parisian smoke variations inferred from Eiffel Tower atmospheric electrical observations

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Aplin, K. L.

    Atmospheric electrical measurements provide proxy data from which historic smoke pollution levels can be determined. This approach is applied to infer autumnal Parisian smoke levels in the 1890s, based on atmospheric electric potential measurements made at the surface and the summit of the Eiffel Tower (48.7°N, 2.4°E). A theoretical model of the development of the autumn convective boundary layer is used to determine when local pollution effects dominated the Eiffel Tower potential measurements. The diurnal variation of the Eiffel Tower potential showed a single oscillation, but it differs from the standard oceanic air potential gradient (PG) variations during the period 09-17 UT, when the model indicates that the Eiffel Tower summit should be within the boundary layer. Outside these hours, the potential changes closely follow the clean air PG variation: this finding is used to calibrate the Eiffel Tower measurements. The surface smoke pollution concentration found during the morning maximum was 60±30 μg m -3, substantially lower than the values previously inferred for Kew in 1863. A vertical smoke profile was also derived using a combination of the atmospheric electrical data and boundary layer meteorology theory. Midday smoke concentration decreased with height from 60 μg m -3 at the surface to 15 μg m -3 at the top of the Eiffel Tower. The 19th century PG measurements in both polluted and clean Parisian air present a unique resource for European air pollution and atmospheric composition studies, and early evidence of the global atmospheric electrical circuit.

  5. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Huebert, B. J.; Schiff, H. I.; Vay, S. A.; Vanbramer, S. E.; Hastie, D. R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO3) were made in the free troposphere as well as in the boundary layer. Marine HNO3 measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO3 average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO3 average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO3. The distribution of continental boundary layer HNO3 data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO3 and anthropogenic activity.

  6. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  7. Experimental Findings from Aircraft Measurements in the Residual Layer

    NASA Astrophysics Data System (ADS)

    Caputi, D.; Conley, S. A.; Faloona, I. C.; Trousdell, J.

    2016-12-01

    The southern San Joaquin Valley of California is home to some of the highest ozone pollution in the United States. Thus, a complete understanding of boundary layer dynamics in this area during high ozone events is crucial for better ozone forecasting and effective attainment planning. This work will discuss the results from five aircraft deployments, spanning two summers, in which a Mooney aircraft operated by Scientific Aviation Inc. was flown between Fresno and Bakersfield throughout the diurnal cycle, measuring ozone, NOx, and methane. Under a simple budgeting model, changes in any species within the boundary layer can occur from advection, chemical production or loss, surface fluxes or deposition, and entrainment between the boundary layer and free troposphere. The advection of ozone appears to be most appreciable at night with stronger winds in the residual layer, and are on the order of 2 to 4 ppb hr-1. The nighttime chemical loss of ozone due to interaction with NO2 can be estimated by simple numerical modeling of observed quantities and reaction rates, and is found to often roughly compensate for the advection, with typical calculated values of -1 to -3 ppb hr-1. The mixing component is more difficult to directly quantify, but attempts are being made to estimate eddy viscosity by solving for this term in the budget equation. Additionally, small-scale features, such as nocturnal elevated mixed layers, localized BRN (bulk Richardson number) minimums, and low level jets are spotted in systematic ways throughout the flight data, and it is speculated that these may have a role in the transfer of ozone from the residual layer to the surface layer. Ultimately, the preliminary data is promising for the eventual goal of linking together the observed boundary layer evolution with ozone production during air pollution episodes.

  8. Sorption-induced effects of humic substances on mass transfer of organic pollutants through aqueous diffusion boundary layers: the example of water/air exchange.

    PubMed

    Ramus, Ksenia; Kopinke, Frank-Dieter; Georgi, Anett

    2012-02-21

    This study examines the effect of dissolved humic substances (DHS) on the rate of water-gas exchange of organic compounds under conditions where diffusion through the aqueous boundary layer is rate-determining. A synthetic surfactant was applied for comparison. Mass-transfer coefficients were determined from the rate of depletion of the model compounds by means of an apparatus containing a stirred aqueous solution with continuous purging of the headspace above the solution. In addition, experiments with continuous passive dosing of analytes into the water phase were conducted to simulate a system where thermodynamic activity of the chemical in the aqueous phase is identical in the presence and absence of DHS. The experimental results show that DHS and surfactants can affect water-gas exchange rates by the superposition of two mechanisms: (1) hydrodynamic effects due to surface film formation ("surface smoothing"), and (2) sorption-induced effects. Whether sorption accelerates or retards mass transfer depends on its effect on the thermodynamic activity of the pollutant in the aqueous phase. Mass transfer will be retarded if the activity (or freely dissolved concentration) of the pollutant is decreased due to sorption. If it remains unchanged (e.g., due to fast equilibration with a sediment acting as a large source phase), then DHS and surfactant micelles can act as an additional shuttle for the pollutants, enhancing the flux through the boundary layer.

  9. Assessment of planetary boundary layer and residual layer heights in the Northeastern U.S. using Lidar, a network of surface observations, and the WRF-STILT model

    NASA Astrophysics Data System (ADS)

    Barrera, Y.; Nehrkorn, T.; Hegarty, J. D.; Wofsy, S. C.; Gottlieb, E.; Sargent, M. R.; Decola, P.; Jones, T.

    2015-12-01

    Simulation of the planetary boundary layer (PBL) and residual layer (RL) are key requirements for forecasting air quality in cities and detecting transboundary air pollution events. This study combines information from a network of Mini Micropulse Lidar (MPL) instruments, the CALIOP satellite, meteorological and air pollution measuring sensors, and a particle-transport model to critically test mesoscale transport models at the regional level. Aerosol backscattering measurements were continuously taken with MPL units in various locations within the Northeastern U.S., between September 2012 to August 2015. Data is analyzed using wavelet covariance transforms and image processing techniques. Initial results for the city of Boston show a PBL growth rate between approx. 150 and 300 meters per hour, in the morning to early afternoon (~12-19 UTC). The RL was present throughout the night and day at approx. 1.3 to 2.0 km. Transboundary air pollution events were detected and quantified, and variations in concentrations of greenhouse gases and aerosols were also evaluated. Results were compared to information retrieved from Weather and Research Forecasting (WRF) model and the Stochastic Time-Inverted Lagrangian Transport (STILT) model.

  10. Aircraft observations of East-Asian cyclone induced uplift and long-range transport of polluted boundary layer air to the lowermost stratosphere

    NASA Astrophysics Data System (ADS)

    Schlager, Hans; Arnold, Frank; Aufmhoff, Heinrich; Baumann, Robert; Priola, Lisa; Roiger, Anke; Sailer, Tomas; Wirth, Martin; Schumann, Ulrich

    2013-04-01

    We report on the airborne detection of a large-scale stratified pollution layer in the lowermost stratosphere which contained increased concentrations of sulfur dioxide, reactive nitrogen, water vapour and sulfate aerosols. The measurements were performed over Central Europe with a chemical ionization mass spectrometer and a high spectral resolution Lidar on board the new German research aircraft HALO. Transport model simulations indicate the East-Asian planetary boundary layer (PBL) as the source region of this layer. The PBL air was uplifted by an East Asian warm conveyor belt (WCB) and thereafter experienced mostly horizontal transport and dispersion covering significant part of the northern hemisphere. The pollution layer extent up to 2 km above the thermal tropopause and appears to be trapped in the upper part of the tropopause inversion layer (TIL). Accompanying chemistry and aerosol model simulations indicate efficient SO2 conversion to sulfuric acid during the horizontal transport in the TIL, accelerated by increased OH resulting from the increased water vapour. Low temperature and increased water vapour led to efficient binary H2SO4/H2O nucleation. The uplifted anthropogenic nitrogen oxides experienced OH and particle mediated conversion to HNO3. The layer of sulfate particles formed in the upper part of the TIL was observed in the Lidar backscatter signal. Since mid-latitude East Asia is a region with very large SO2 emissions and a very high frequency of WCBs, SO2 uplift into the lowermost stratosphere from this region may occur frequently, eventually leading very often to corresponding pollution layers in the northern-hemisphere TIL.

  11. Characteristics of Boundary Layer Structure during a Persistent Haze Event in the Central Liaoning City Cluster, Northeast China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolan; Wang, Yangfeng; Shen, Lidu; Zhang, Hongsheng; Zhao, Hujia; Zhang, Yunhai; Ma, Yanjun

    2018-04-01

    The characteristics of boundary layer structure during a persistent regional haze event over the central Liaoning city cluster of Northeast China from 16 to 21 December 2016 were investigated based on the measurements of particulate matter (PM) concentration and the meteorological data within the atmospheric boundary layer (ABL). During the observational period, the maximum hourly mean PM2.5 and PM10 concentrations in Shenyang, Anshan, Fushun, and Benxi ranged from 276 to 355 μg m-3 and from 378 to 442 μg m-3, respectively, and the lowest hourly mean atmospheric visibility (VIS) in different cities ranged from 0.14 to 0.64 km. The central Liaoning city cluster was located in the front of a slowly moving high pressure and was mainly controlled by southerly winds. Wind speed (WS) within the ABL (< 2 km) decreased significantly and WS at 10-m height mostly remained below 2 m s-1 during the hazy episodes, which was favorable for the accumulation of air pollutants. A potential temperature inversion layer existed throughout the entire ABL during the earlier hazy episode [from 0500 Local Time (LT) 18 December to 1100 LT 19 December], and then a potential temperature inversion layer developed with the bottom gradually decreased from 900 m to 300 m. Such a stable atmospheric stratification further weakened pollutant dispersion. The atmospheric boundary layer height (ABLH) estimated based on potential temperature profiles was mostly lower than 400 m and varied oppositely with PM2.5 in Shenyang. In summary, weak winds due to calm synoptic conditions, strong thermal inversion layer, and shallow atmospheric boundary layer contributed to the formation and development of this haze event. The backward trajectory analysis revealed the sources of air masses and explained the different characteristics of the haze episodes in the four cities.

  12. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    EPA Science Inventory

    Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric B...

  13. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-10-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (<60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Niña) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  14. Transport Pathways for Asian Pollution Outflow Over the Pacific: Interannual and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Yu; Jacob, Daniel J.; Bey, Isabelle; Yantosca, Robert M.; Duncan, Bryan N.; Sachse, Glen W.

    2003-01-01

    The meteorological pathways contributing to Asian pollution outflow over the Pacific are examined with a global three-dimensional model analysis of CO observations from the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission (February-April 2001). The model is used also to place the TRACE-P observations in an interannual (1994-2001) and seasonal context. The major process driving Asian pollution outflow in spring is frontal lifting ahead of southeastward-moving cold fronts (the leading edge of cold surges) and transport in the boundary layer behind the cold fronts. Orographic lifting over central and eastern China combines with the cold fronts to promote the transport of Chinese pollution to the free troposphere. Outflow of seasonal biomass burning in Southeast Asia during spring takes place mostly by deep convection but also by northeastward transport and frontal lifting, mixing with the anthropogenic outflow. Boundary layer outflow over the western Pacific is largely devoid of biomass burning influence. European and African (biomass burning) plumes in Asian outflow during TRACE-P were weak (less than 60 ppbv and 20 ppbv CO, respectively) and were not detectable in the observations because of superposition of the much larger Asian pollution signal. Spring 2001 (La Nina) was characterized by unusually frequent cold surge events in the Asian Pacific rim and strong convection in Southeast Asia, leading to unusually strong boundary layer outflow of anthropogenic emissions and convective outflow of biomass burning emissions in the upper troposphere. The Asian outflow flux of CO to the Pacific is found to vary seasonally by a factor of 3-4 (maximum in March and minimum in summer). The March maximum results from frequent cold surge events and seasonal biomass burning emissions.

  15. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.

  16. Wind-Tunnel Modeling of Flow Diffusion over an Urban Complex.

    DTIC Science & Technology

    URBAN AREAS, *ATMOSPHERIC MOTION, *AIR POLLUTION, ATMOSPHERIC MOTION, WIND TUNNEL MODELS, HEAT, DIFFUSION , TURBULENT BOUNDARY LAYER, WIND, SKIN FRICTION, MATHEMATICAL MODELS, URBAN PLANNING, INDIANA.

  17. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    NASA Astrophysics Data System (ADS)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant influence on air quality due to inversion cap over the valley. Nevertheless, formation of an inversion showed strong diurnal variability. For example, on the 18th Feb. early morning shallow inversion quickly disappeared within less than 2 hours. According to this study tethered balloon measurements has proved to be a good tool for completion comprehensive ground air quality measurements.

  18. Simple model for estimating dry deposition velocity of ozone and its destruction in a polluted nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Ho; Lai, Chin-Hsing; Wu, Yee-Lin; Chen, Ming-Jen

    2010-11-01

    Determining the destructions of both ozone and odd oxygen, O x, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of O x can also be determined simultaneously. The method is based on O 3 and NO 2 profiles and their surface measurements. Linkages between the dry deposition velocities of O 3 and NO 2 and between the dry deposition loss of O x and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O 3 dry deposition velocities from 0.13 to 0.19 cm s -1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of O x, dry deposition of NO 2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O 3 and O x in a polluted environment.

  19. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  20. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022). More stringent emission reduction measures will need to be conducted by the government.

  1. Stability of the surface layer and its relation to the dispersion of primary pollutants in St. Louis

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.; Woodbury, G. E.

    1983-01-01

    The effects of atmospheric stability on the dispersion of primary pollutants such as CO, total hydrocarbons (THC), and NO were examined in St. Louis. The pollutant levels were measured at 25 stations, temperature at 12 stations at 5 and 30 m height, and wind speed and direction at the 30 m level at 12 stations. Correlation coefficients were generated for pairs of the vertical temperature differences, the log of the mean wind speed reciprocal, the bulk Richardson number, and specific pollutant concentrations. A high correlation was obtained between the thermal stability and the urban concentration of the primary pollutants in the lowest part of the boundary layer. A restricted nighttime dispersion of the pollutants was observed, indicating near-ground increased concentrations at times when the source emissions actually decrease.

  2. Performance of WRF for Simulation of Mesoscale Meteorological Characteristics for Air Quality Assessment over Tropical Coastal City, Chennai

    NASA Astrophysics Data System (ADS)

    Madala, Srikanth; Srinivas, C. V.; Satyanarayana, A. N. V.

    2018-01-01

    The land-sea breezes (LSBs) play an important role in transporting air pollution from urban areas on the coast. In this study, the Advanced Research WRF (ARW) mesoscale model is used for predicting boundary layer features to understand the transport of pollution in different seasons over the coastal region of Chennai in Southern India. Sensitivity experiments are conducted with two non-local [Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2)] and three turbulence kinetic energy (TKE) closure [Mellor-Yamada-Nakanishi and Niino Level 2.5 (MYNN2) and Mellor-Yamada-Janjic (MYJ) and quasi-normal scale elimination (QNSE)], planetary boundary layer (PBL) parameterization schemes for simulating the thermodynamic structure, and low-level atmospheric flow in different seasons. Comparison of simulations with observations from a global positioning system (GPS) radiosonde, meteorological tower, automated weather stations, and Doppler weather radar (DWR)-derived wind data reveals that the characteristics of LSBs vary widely in different seasons and are more prominent during the pre-monsoon and monsoon seasons (March-September) with large horizontal and vertical extents compared to the post-monsoon and winter seasons. The qualitative and quantitative results indicate that simulations with ACM2 followed by MYNN2 and YSU produced various features of the LSBs, boundary layer parameters and the thermo-dynamical structure in better agreement with observations than other tested physical parameterization schemes. Simulations revealed seasonal variation of onset time, vertical extent of LSBs, and mixed layer depth, which would influence the air pollution dispersion in different seasons over the study region.

  3. Identification of free tropospheric air masses at the new Mt. Bachelor, Oregon observatory

    NASA Astrophysics Data System (ADS)

    Swarzendruber, P.; Weiss-Penzias, P.; Dennison, J.; Prestbo, E.; Jaffe, D.

    2004-12-01

    In February 2004, we established a new atmospheric observatory on the summit of Mt. Bachelor, Oregon in order to better understand the long range transport of chemicals and anthropogenic pollutants to North America. Previous work on the inflow to the Pacific Northwest (Weiss-Penzias 2004, 2003, Jaffe 2003) has been able to identify Asian influence on a costal site, but aircraft observations (Price et al. 2003, Kotchenruther et al 2001) and modeling work (Jaegle et al. 2003) have shown that transport events are much more frequent in the free troposphere. The detection of these pollution plumes in the planetary boundary layer is greatly complicated by the turbulent meteorology and complex chemistry of the boundary layer. The Mt. Bachelor Observatory (MBO) ( 2.7 km a.s.l.) was established to allow for continuous sampling at a site that likely experiences free tropospheric air a majority of the time. In order to help understand the influence of the boundary layer on the spring 2004 MBO observations, we have conducted a meteorological analysis for this period using several measured and modeled parameters. Our initial analysis of virtual soundings generated by the mesoscale NWP model, MM5 (University of Washington, Seattle), and of measured water vapor content, indicate that during the spring campaign (Mar-May), on at least 50% of the days, the daytime mixed layer height did not reach MBO before beginning to collapse at sunset into a shallow night time boundary layer. Thus, for the spring of 2004, we conclude that MBO experienced free-tropospheric air for more than 50% of the time; however, this is likely a lower limit. An objective analysis of water vapor and wind measurements with the goal of further improving the diagnosis of boundary layer influence will be presented along with their application to several long-range transport episodes at MBO. Additional measurements to be made at the site will hopefully allow us to make a more accurate assessment of the boundary layer height and its influence on the MBO observations. (See presentation by Weiss-Penzias et al., for a discussion of the chemical observations during this same time period.)

  4. A Study Of The Atmospheric Boundary Layer Using Radon And Air Pollutants As Tracers

    NASA Astrophysics Data System (ADS)

    Kataoka, Toshio; Yunoki, Eiji; Shimizu, Mitsuo; Mori, Tadashige; Tsukamoto, Osamu; Ohashi, Yukitaka, Sahashi, Ken; Maitani, Toshihiko; Miyashita, Koh'ichi; Iwata, Toru; Fujikawa, Yoko; Kudo, Akira; Shaw, Roger H.

    Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.

  5. Simulation of the ocean's spectral radiant thermal source and boundary conditions

    NASA Astrophysics Data System (ADS)

    Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra

    2013-05-01

    This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.

  6. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold advection induced by the large-scale synoptic forcing may have cooled the PBL, leading to an increase in near-surface stability and a decrease in the BLH in the afternoon. Moreover, when warm advection appeared simultaneously above the top level of the PBL, the thermal inversion layer capping the PBL may have been strengthened, resulting in the further suppression of PBL and thus the deterioration of aerosol pollution levels. This study has important implications for understanding the crucial roles that meteorological factors (at both synoptic and local scales) play in modulating and forecasting aerosol pollution in Beijing and its surrounding area.

  7. Numerical study of the effects of Planetary Boundary Layer structure on the pollutant dispersion within built-up areas.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu; Liu, Zhenxin; Zhang, Bihui

    2015-06-01

    The effects of different Planetary Boundary Layer (PBL) structures on pollutant dispersion processes within two idealized street canyon configurations and a realistic urban area were numerically examined by a Computational Fluid Dynamics (CFD) model. The boundary conditions of different PBL structures/conditions were provided by simulations of the Weather Researching and Forecasting model. The simulated results of the idealized 2D and 3D street canyon experiments showed that the increment of PBL instability favored the downward transport of momentum from the upper flow above the roof to the pedestrian level within the street canyon. As a result, the flow and turbulent fields within the street canyon under the more unstable PBL condition are stronger. Therefore, more pollutants within the street canyon would be removed by the stronger advection and turbulent diffusion processes under the unstable PBL condition. On the contrary, more pollutants would be concentrated in the street canyon under the stable PBL condition. In addition, the simulations of the realistic building cluster experiments showed that the density of buildings was a crucial factor determining the dynamic effects of the PBL structure on the flow patterns. The momentum field within a denser building configuration was mostly transported from the upper flow, and was more sensitive to the PBL structures than that of the sparser building configuration. Finally, it was recommended to use the Mellor-Yamada-Nakanishi-Niino (MYNN) PBL scheme, which can explicitly output the needed turbulent variables, to provide the boundary conditions to the CFD simulation. Copyright © 2015. Published by Elsevier B.V.

  8. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog

    NASA Astrophysics Data System (ADS)

    Li, Juan; Fu, Qingyan; Huo, Juntao; Wang, Dongfang; Yang, Wen; Bian, Qinggen; Duan, Yusen; Zhang, Yihua; Pan, Jun; Lin, Yanfen; Huang, Kan; Bai, Zhipeng; Wang, Sheng-Hsiang; Fu, Joshua S.; Louie, Peter K. K.

    2015-12-01

    A Tethered balloon-based field campaign was launched for the vertical observation of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon observation and ground-based observation synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind profiles showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon vertical profiles during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 μg/m3 due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was observed from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC profiles measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong vertical convection was responsible for a well mixing of BC particles in the whole measured column. BC profiles were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC vertical distributions. Profiles at night showed strong gradients from the relatively high surface concentrations to low concentrations near the top of the boundary layer around 200 m. Above the boundary layer, BC increased with altitudes and reached a maximum at the top of 1000 m. Prevailing sea breeze within the boundary layer was mainly responsible for the quick cleanup of BC in the lower altitudes. In contrast, continental outflow via regional transport was the major cause of the enhanced BC aloft. This study provides a first insight of the black carbon vertical profiles over Eastern China, which will have significant implications for narrowing the gaps between the source emissions and observations as well as improving estimations of BC radiative forcing and regional climate.

  9. Entrainment and Optical Properties of an Elevated Canadian Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Doddridge, B. G.; Marufu, L. T.; Torres, O.; Welton, E. J.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently mixed to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  10. Entrainment and Optical Properties of an Elevated Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Marufu, L. T.; Torres, O.; Welton, E. J.; Doddridge, B. G.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently transported to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  11. Can the physical properties associated with uncertainties in the NASA MODIS AOD retrievals in the western U.S. be determined?

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2016-12-01

    Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.

  12. On the Pollutant Plume Dispersion in the Urban Canopy Layer over 2D Idealized Street Canyons: A Large-Eddy Simulation Approach

    NASA Astrophysics Data System (ADS)

    Wong, Colman C. C.; Liu, Chun-Ho

    2010-05-01

    Anthropogenic emissions are the major sources of air pollutants in urban areas. To improve the air quality in dense and mega cities, a simple but reliable prediction method is necessary. In the last five decades, the Gaussian pollutant plume model has been widely used for the estimation of air pollutant distribution in the atmospheric boundary layer (ABL) in an operational manner. Whereas, it was originally designed for rural areas with rather open and flat terrain. The recirculating flows below the urban canopy layer substantially modify the near-ground urban wind environment and so does the pollutant distribution. Though the plume height and dispersion are often adjusted empirically, the accuracy of applying the Gaussian pollutant plume model in urban areas, of which the bottom of the flow domain consists of numerous inhomogeneous buildings, is unclear. To elucidate the flow and pollutant transport, as well as to demystify the uncertainty of employing the Gaussian pollutant plume model over urban roughness, this study was performed to examine how the Gaussian-shape pollutant plume in the urban canopy layer is modified by the idealized two-dimensional (2D) street canyons at the bottom of the ABL. The specific objective is to develop a parameterization so that the geometric effects of urban morphology on the operational pollutant plume dispersion models could be taken into account. Because atmospheric turbulence is the major means of pollutant removal from street canyons to the ABL, the large-eddy simulation (LES) was adopted to calculate explicitly the flows and pollutant transport in the urban canopy layer. The subgrid-scale (SGS) turbulent kinetic energy (TKE) conservation was used to model the SGS processes in the incompressible, isothermal conditions. The computational domain consists of 12 identical idealized street canyons of unity aspect ratio which were placed evenly in the streamwise direction. Periodic boundary conditions (BCs) for the flow were applied in the horizontal and the spanwise directions. The prevalent wind was driven by a background pressure gradient in the roughness sublayer only, no background force was prescribed inside the street canyons. While the periodic BC of pollutant was used in the spanwise direction, zero pollutant and an open BC were applied, respectively, at the inflow and outflow of the streamwise extent to avoid pollutant being reflected back into the computational domain. The ground of the first street canyon was assigned as the pollutant source on which a BC of constant pollutant concentration was prescribed. The LES results showed that, in the neutrally stratified ABL, the pollutant distribution in the urban canopy layer resembled the Gaussian plume shape in general even recirculating flows were observed in the street canyons. The roof-level horizontal profile of pollutant concentration in the streamwise direction showed that the sharp drop on the leeward side of each street canyon was likely caused by the air and pollutant entrainments. On the windward side of each street canyon, a mild increase in pollutant concentration was observed that did not follow the Gaussian plume closely. Those deviations extended to a certain height over the roof level of the street canyons. It in turn suggests that the Gaussian pollutant plume model should be applied with caution in the urban canopy layer in the vicinity over urban roughness. To further analyze the effects of urban roughness on the plume dispersion in detail, a few LES calculations with different aspect ratios are currently being undertaken so as to compare with the current LES results.

  13. New Boundary Layer Facility at Andøya, 69N 16E

    NASA Astrophysics Data System (ADS)

    Gausa, M. A.; Reuder, J.; Blindheim, S.

    2016-12-01

    The present presentation introduces an inative for a new boundary layer research facility on the island of Andøya (69N,16E) in Norway. The facility will appreciate international cooperation and contributions.Most boundary layer observatories (as e.g. the Lindenberg Observatory in Germany, the Cabauw facility in the Netherlands, or the Boulder Atmospheric Observatory in the US) are located in mid latitudes. Arctic or sub-arctic stations are rare or not representative due to their location in valleys (e.g. Ny Ålesund). In addition, most of the existing sites are representative for a continental boundary layer and do not allow to observe coupling processes to the free troposphere and the upper atmosphere. The island of Andøya has a unique location at 69N. To the West, Andøya is open to the Norwegian Sea. Its orology maintains an almost undisturbed marine boundary on the foreseen location under SW and W wind weather conditions. Due to rugged mountains, other wind directions provide a more transformed PBL. The understanding of the Planetary Boundary Layer (PBL), in particular with respect to turbulence and turbulent exchange processes, is crucial for a wide range of science fields and environmental monitoring tasks: To name a few: basic atmospheric science, monitoring of pollutants, weather forecast, and climate projection. The PBL is consequently research focus for several research groups, which investigate the empirical and theoretical description of this complex height region. In particular, in high latitudes this lowermost layer of the atmosphere the understanding is poor. The following research topics of the new facility are foreseen: present climate projections show their largest bias in polar regions; this is mostly attributed to inappropriate parameterization of PBL processes in the numerical models forecasts of extreme weather events at high latitudes, e.g. of Polar lows with their potential of hazards for infrastructure and traffic, are still poor for the same reason natural aerosols and anthropogenic pollutants form and change in the PBL due to chemical and coagulation processes upward transport of energy are gravity (buoyancy) waves, which in many cases originate from the PBL precise measurements of precipitation under difficult meteorological conditions

  14. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.

    2017-12-01

    This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on daytime particulate nitrate concentrations is important but limited by an excess of ammonia in the region, which leads to only a small fraction of nitrate existing in the gas phase even during the warmer daytime. However, in the late afternoon, when diminishing solar heating leads to a rapid fall in the mixed boundary layer height (BLH), the impact of surface deposition is temporarily enhanced and can lead to a substantial decline in surface-level particulate nitrate concentrations; this enhanced deposition is quickly arrested by a decrease in surface temperature, which drops the gas-phase fraction to near zero. The overall importance of enhanced late-afternoon gas-phase loss to the multiday buildup of pollution events is limited by the very shallow nocturnal boundary layer. The case study here demonstrates that mixing down of NO3-(p) from the RL can contribute a majority of the surface-level NO3-(p) in the morning (here, ˜ 80 %), and a strong influence can persist into the afternoon even when photochemical production is maximum. The particular day-to-day contribution of aloft nocturnal NO3-(p) production to surface concentrations will depend on prevailing chemical and meteorological conditions. Although specific to the SJV, the observations and conceptual framework further developed here provide general insights into the evolution of pollution episodes in wintertime environments.

  15. Spatiotemporal Variability in Observations of Urban Mixed-Layer Heights from Surface-based Lidar Systems during DISCOVER-AQ 2011

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Banks, R. F.; Berkoff, T.; Welton, E. J.; Joseph, E.; Thompson, A. M.; Decola, P.; Hegarty, J. D.

    2015-12-01

    Accurate characterization of the planetary boundary layer height is crucial for numerical weather prediction, estimating pollution emissions and modeling air quality. More so, given the increasing trend in global urban populations, there is a growing need to improve our understanding of the urban boundary layer structure and development. The Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality (DISCOVER-AQ) 2011 field campaign, which took place in the Baltimore-Washington DC region, offered a unique opportunity to study boundary layer processes in an urban area using a geographically dense collection of surface-based lidar systems (see figure). Lidars use aerosols as tracers for atmospheric boundary layer dynamics with high vertical and temporal resolutions. In this study, we use data from two permanent Micropulse Lidar Network (MPLNET) sites and five field deployed Micropulse lidar (MPL) systems in order to observe spatiotemporal variations in the daytime mixed layer height. We present and compare lidar-derived retrievals of the mixed layer height using two different methods. The first method uses the wavelet covariance transform and a "fuzzy logic" attribution scheme in order to determine the mixed layer height. The second method uses an objective approach utilizing a time-adaptive extended Kalman filter. Independent measurements of the boundary layer height are obtained using profiles from ozonesonde launches at the Beltsville and Edgewood sites for comparison with lidar observations.

  16. Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.

    PubMed

    Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu

    2016-02-01

    Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there.

  17. Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017

    NASA Astrophysics Data System (ADS)

    Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui

    2018-03-01

    A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced the stability of the near-surface atmosphere, causing the air pollutants to accumulate at low levels and exacerbating the air pollution problem. Finally, a persistent stagnant weather system with a weak geopotential height field of 1000 hPa and warm air advection at 850 hPa was the main feature of atmospheric circulation associated with the heavy pollution.

  18. Southeast Pacific atmospheric composition and variability sampled along 20˚S during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, G.; Kleinman, L.; Coe, H.

    2011-01-10

    The VAMOS Ocean-Climate-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in representing the region. This study synthesises selected aircraft, ship and surface site observations from VOCALS-REx to statistically summarise and characterise the atmospheric composition and variability of the Marine Boundary Layer (MBL) and Free Troposphere (FT) along the 20{sup o} S parallel between 70{sup o} W and 85{sup o} W. Significant zonal gradients inmore » mean MBL sub-micron aerosol particle size and composition, carbon monoxide, ozone and sulphur dioxide were seen over the campaign, with a generally more variable and polluted coastal environment and a less variable, more pristine remote maritime regime. Gradients are observed to be associated with strong gradients in cloud droplet number. The FT is often more polluted in terms of trace gases than the MBL in the mean; however increased variability in the FT composition suggests an episodic nature to elevated concentrations. This is consistent with a complex vertical interleaving of airmasses with diverse sources and hence pollutant concentrations as seen by generalised back trajectory analysis, which suggests contributions from both local and long-range sources. Furthermore, back trajectory analysis demonstrates that the observed zonal gradients both in the boundary layer and the free troposphere are characteristic of marked changes in airmass history with distance offshore - coastal boundary layer airmasses having been in recent contact with the local land surface and remote maritime airmasses having resided over ocean for in excess of ten days. Boundary layer composition to the east of 75{sup o} W was observed to be dominated by coastal emissions from sources to the west of the Andes, with evidence for diurnal pumping of the Andean boundary layer above the height of the marine capping inversion. The climatology presented here aims to provide a valuable dataset to inform model simulation and future process studies, particularly in the context of aerosol-cloud interaction and further evaluation of dynamical processes in the SEP region for conditions analogous to those during VOCALS-REx.« less

  19. High Resolution Simulations of Pollution Vertical Stratification over Santiago and its Transport to the Chilean Andes

    NASA Astrophysics Data System (ADS)

    Orfanoz-Cheuquelaf, A. P.; Gallardo, L.; Huneeus, N.; Lambert, F.

    2015-12-01

    Santiago, Chile (33.5 S, 70.5 W, 500 m.a.s.l., population 7 millions) is a large city situated in a basin surrounded by the Andes in the East and smaller mountain ranges to the North, West, and South. It is plagued by abnormally high pollution levels for its size due to climatological and topological features. To date, it is unclear how far the urban pollution plume reaches up the mountain. Here we explore the region's complex atmospheric circulation and particularly the transport of black carbon (BC) using a state of the art numerical model (WRF-Chem, Weather Research and Forecasting model).Observations indicate the presence of multiple layers within the boundary layer, as well as the occurrence of uncoupled layers above the boundary layer. Here we explore mechanisms within our simulation that may explain these features. Our results suggest that they may correspond to residual layers that are produced by recirculation along mountain slopes due to the complex terrain around the city.In late August 2013, a short multi-platform measuring campaign (DIVERSOL) took place in the Santiago basin, providing the first vertical profiles of BC, accompanied by meteorological soundings. We analyze the dispersion of a quasi-passive tracer (carbon monoxide) of black carbon in our simulation to improve our understanding of the governing mixing and transport processes. We also perform sensitivity studies with respect to vertical resolution and turbulence schemes, contrasting our results against DIVERSOL data. Our simulations suggest that pollutants emitted in Santiago could reach the high regions of Andes mountains during the afternoon circulation, thus affecting local glaciers. With an entire year of simulation we find that the stratification of pollutants within the basin displays a seasonal signal, as well as a capacity to reach the Chilean Andes and affect the Andean cryosphere.

  20. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.

  1. Combining active and passive remote sensing from research aircraft with atmospheric models to evaluate NOx emission fluxes and O3 formation in the Los Angeles Megacity

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Oetjen, Hilke; Senff, Christoph; Alvarez, Raul, II; Hardesty, Michael; Langford, Andrew; Kim, Si-Wan; Trainer, Michael; Volkamer, Rainer

    2013-04-01

    Ozone (O3) and nitrogen dioxide (NO2) are two important components of air pollution. We have measured vertical column amounts of NO2, and vertical profiles of O3 and wind speed by means of measurements of solar stray light by CU Airborne MAX-DOAS, and active remote sensing using the NOAA TOPAZ lidar, and the University of Leeds Doppler lidar aboard the NOAA Twin Otter research aircraft. A total of 52 flights (up to 4 hours each) were carried out between May 19 and July 19 2010 during the CalNex and CARES field campaigns. These flights cover most of California. The boundary layer height was measured by TOPAZ lidar, and trace gas concentrations of NO2 and O3 were integrated over boundary layer height. These column integrated quantities are then combined with direct wind speed measurements to quantify directly the pollutant flux across the boundary, as defined by the flight track. By tracking the pollution fluxes during transects that are flown upwind and in various distances downwind of a NOx emission source, the NOx emission rate, and the ozone formation rate are quantified. These pollutant fluxes are calculated here for the first time exclusively based on measurements (i.e., without need to infer wind speed from a model). These fluxes provide constraints to quantify localized NOx emissions, and are being compared with WRF-Chem model simulations.

  2. Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou.

    PubMed

    Su, Wenjing; Liu, Cheng; Hu, Qihou; Fan, Guangqiang; Xie, Zhouqing; Huang, Xin; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Ji, Xiangguang; Liu, Haoran; Wang, Zhuang; Liu, Jianguo

    2017-12-12

    Recently, atmospheric ozone pollution has demonstrated an aggravating tendency in China. To date, most research about atmospheric ozone has been confined near the surface, and an understanding of the vertical ozone structure is limited. During the 2016 G20 conference, strict emission control measures were implemented in Hangzhou, a megacity in the Yangtze River Delta, and its surrounding regions. Here, we monitored the vertical profiles of ozone concentration and aerosol extinction coefficients in the lower troposphere using an ozone lidar, in addition to the vertical column densities (VCDs) of ozone and its precursors in the troposphere through satellite-based remote sensing. The ozone concentrations reached a peak near the top of the boundary layer. During the control period, the aerosol extinction coefficients in the lower lidar layer decreased significantly; however, the ozone concentration fluctuated frequently with two pollution episodes and one clean episode. The sensitivity of ozone production was mostly within VOC-limited or transition regimes, but entered a NOx-limited regime due to a substantial decline of NOx during the clean episode. Temporary measures took no immediate effect on ozone pollution in the boundary layer; instead, meteorological conditions like air mass sources and solar radiation intensities dominated the variations in the ozone concentration.

  3. Transport and outflow to the North Atlantic in the lower marine troposphere during ICARTT 2004

    NASA Astrophysics Data System (ADS)

    Davis, S. R.; Talbot, R.; Mao, H.

    2012-01-01

    An analysis of pollution plumes emitted from sources in the Northeastern US was based on observations from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 field campaign. Particular attention was given to the relation of these plumes to coastal transport patterns in lower tropospheric layers throughout the Gulf of Maine (GOM) and their contribution to large-scale pollution outflow from the North American continent. Using measurements obtained during a series of flights of the NOAA WP-3D and the NASA DC-8, a unique quasi-lagrangian case study was conducted for a freshly emitted plume emanating from the New York City source region in late July 2004. The initial development of this plume stemmed from the accumulation of boundary layer pollutants within a coastal residual layer where weak synoptic forcing triggered its advection by mean southwesterly flow. As the plume tracked into the GOM, analysis showed that the plume layer vertical structure evolved into an internal boundary layer form, with signatures of steep vertical gradients in temperature, moisture and wind speed often resulting in periodic turbulence. This structure remained well-defined during the plume study, allowing for the detachment of the plume layer from the surface and thus minimal deposition and plume-sea surface exchange. In contrast, lateral mixing with other low-level plumes was significant during its transit and facilitated in part by persistent shear driven turbulence which further contributed to the high spatial variability in trace gas mixing ratios. The impact of the plume inland was assessed using observations from the AIRMAP air quality network. This impact was noticeably detected as a contribution to poor surface ozone conditions and significant elevations of other major pollutants to levels equaling the highest observed that summer. Further contributions to larger-scale outflow across the North Atlantic was also observed and analyzed.

  4. Diffusion from a line source

    NASA Technical Reports Server (NTRS)

    Burns, R. E.

    1973-01-01

    The problem with predicting pollutant diffusion from a line source of arbitrary geometry is treated. The concentration at the line source may be arbitrarily varied with time. Special attention is given to the meteorological inputs which act as boundary conditions for the problem, and a mixing layer of arbitrary depth is assumed. Numerical application of the derived theory indicates the combinations of meteorological parameters that may be expected to result in high pollution concentrations.

  5. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    NASA Astrophysics Data System (ADS)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  6. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    NASA Astrophysics Data System (ADS)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  7. JPRS Report, Science & Technology: Europe.

    DTIC Science & Technology

    1992-11-10

    Electrochromic, photochromic, and thermochromic layers , which provide targeted control over the degree of transparency; the latter includes the...22 Research Into Reducing Eastern German Air Pollution Advances [Bonn BMFT JOURNAL, No 4, Aug 92] 22 German Institute: Solar Hydrogen Will Reduce...the aerodynam- icists will have to rely on the trick of boundary layer control at the rudder unit in order to achieve the longest possible laminar

  8. Identification of atmospheric boundary layer thickness using doppler radar datas and WRF - ARW model in Merauke

    NASA Astrophysics Data System (ADS)

    Putri, R. J. A.; Setyawan, T.

    2017-01-01

    In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)

  9. Vertical structure of foggy haze over the Beijing-Tianjin-Hebei area in January 2013

    NASA Astrophysics Data System (ADS)

    Han, Feng; Xu, Jun; He, Youjiang; Dang, Hongyan; Yang, Xuezhen; Meng, Fan

    2016-08-01

    In January 2013, frequent episodes of intense air pollution occurred in the Beijing-Tianjin-Hebei area (BTH), China. Besides the occurrence of region-wide dry haze pollution, foggy haze conditions also developed across the region on numerous days, lasting into the afternoon. Synergistic analysis, using multisatellite datasets, air sounding and surface meteorological observations, indicated that there was a vertical overlap of fog and aerosol layers during the foggy haze episodes in the region. Fog appeared at a low level of the atmosphere. The altitude of the upper boundary of the fog differed across the region, but it was always below 1 km. The aerosol layer that closely contacted with the top of the underlying fog was rather dense, having a high concentration comparable to that during severe pollution on the ground. Above the dense aerosol layer, aerosol with a concentration equivalent to that of moderate pollution stretched up to an altitude of 2 km. Beyond that, a tenuous aerosol layer extended 5 km into the atmosphere. This overlapping of fog and haze layers frequently occurred across the region in January 2013. The occurrence of a foggy haze over BTH could worsen the regional air quality, and its appearance across this region would have notable effects on the radiation balance.

  10. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season, by converting incoming solar radiation to longwave radiation and sensible heat. This results in a faster rate of snow melt, warmer near-surface air temperatures, and a deeper boundary layer. Soot deposition lowers the albedo of the snow allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 1.5 degree C warming of 2-m air temperatures, 17 watts per meter square increase in surface sensible heat flux, and a 108 m increase in boundary layer depth during the melt period. The snow free-date also occurred 11 days earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, due to soot pollution, caused the snow-free date to occur five days earlier. The soot pollution caused a 0.5 degree C warming of 2-m air temperatures and a 2 watts per meter square increase in surface sensible heat flux. In addition, the boundary layer averaged 25 m deeper in the polluted snow simulation.

  11. Nighttime Chemistry in the Polluted Boundary Layer (Invited)

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Wong, K.; Tsai, C.; Pikelnaya, O.

    2009-12-01

    Chemistry in the urban nocturnal boundary layer (NBL) has received surprisingly little attention in the past. Surface observations often see low ozone and high NO levels, which lead to low nocturnal radical levels and consequently slow chemistry near the ground. Above the surface, however, ozone and radical levels, for example of NO3, are considerably higher, and more efficient chemical pathways for the removal of gaseous pollutants such as nitrogen oxides, ozone, and hydrocarbons, are active. The influence of nocturnal chemistry on aerosol composition is also largest aloft. These processes are poorly understood due to a lack of observations in the altitude range from 20 - 500m. The strong influence of vertical mixing and transport on the composition of the NBL poses an additional challenge, requiring the measurement of vertical concentration profiles and the use of chemical transport models for their interpretation. In addition, heterogeneous processes on the ground and on aerosol surfaces play an important role in the nocturnal atmosphere. In this presentation we will review our current understanding of nocturnal chemistry in the lowest 300m of the polluted atmosphere, with a focus on nitrogen compounds. A number of field experiments in recent years have given insight into the vertical distribution of some of the most important nocturnal trace gases in urban areas, such as ozone, NO2, NO3, N2O5, and HONO. In particular, two 6-week long experiments in Houston, TX, in 2006 and 2009, have shown the strong and persistent impact of vertical mixing on the distribution of all trace gases, as well as the chemistry in the lowest 300m of the atmosphere. These observations were accompanied by detailed meteorological observations and in-situ measurements of chemical species at 70m above the ground. The observations in Houston were interpreted with a 1D chemical transport model that allows quantification of chemistry and transport at night. Our results identify gaps in our understanding of the polluted nocturnal urban boundary layer will be discussed.

  12. Characterizing Urban Turbulence Under Haze Pollution: Insights into Temperature-Humidity Dissimilarity

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Sun, Yele; Miao, Shiguang

    2016-03-01

    We present a description of urban boundary-layer turbulence characteristics under conditions of severe haze pollution, an emerging issue of interest to air-pollution-relevant investigations. Comparative analysis between clean and hazy episodes reveals their remarkable difference in atmospheric stability. A stability signature is then identified in temperature-humidity de-correlation and dissimilarity. Such a signature is noteworthy, because the accuracy of a reliable parametrization of the heat-to-moisture transport efficiency is substantiated in unstable and stable conditions rather than in near-neutral conditions.

  13. THE 2006 CMAQ RELEASE AND PLANS FOR 2007

    EPA Science Inventory

    The 2006 release of the Community Multiscale Air Quality (CMAQ) model (Version 4.6) includes upgrades to several model components as well as new modules for gas-phase chemistry and boundary layer mixing. Capabilities for simulation of hazardous air pollutants have been expanded ...

  14. The vertical and horizontal chemical inhomogeneity over the planetary boundary layer of the Seoul Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Kim, S.; Guenther, A. B.; Seco, R.; Gu, D.; Jeong, D.; Sanchez, D.; Brune, W. H.; Blake, D. R.; Armin, W.; Ahn, J. Y.; Lee, Y.; Kim, D.; Shin, H.; Jung, J.; Kim, D. S.; Lee, M.; Lee, G.

    2017-12-01

    During the KORUS-AQ field campaign in 2016, various platforms were utilized to characterize emission, chemical transformation, and removal of trace gases and fine particles. One may consider that the Seoul Metropolitan Area, where was the main study area, is a relatively small metropolitan in physical size wise but it is an extremely dense metropolitan area with various anthropogenic and natural emission sources. Therefore, the comprehensive understanding of various emission sources and complicated photochemistry within the boundary layer of the megacity should be preceded to precisely evaluate the impacts of megacity to global air quality and climate. In this context, we will present a detailed analysis of trace gas distributions over the Seoul Metropolitan Area. The focus will be a dataset collected at the Taehwa Research Forest, a downwind forest for fresh and aged pollution plumes. The trace gas reactivity also known as OH reactivity will be presented by comparing with a city center research site-the Olympic Park supersite. The DC-8 aircraft dataset will be presented to examine the evolution of anthropogenic pollution and the amplification of photochemistry from biogenic volatile organic compound emissions. Eventually, we expect that the three dimensional analysis of the distributions of atmospheric reactivity will provide an important snapshot on a complex nature of trace gas distribution in the Megacity planetary boundary layer.

  15. Convective boundary layer heights over mountainous terrain - A review of concepts -

    NASA Astrophysics Data System (ADS)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  16. Modelling study of boundary-layer ozone over northern China - Part II: Responses to emission reductions during the Beijing Olympics

    NASA Astrophysics Data System (ADS)

    Tang, Guiqian; Zhu, Xiaowan; Xin, Jinyuan; Hu, Bo; Song, Tao; Sun, Yang; Wang, Lili; Wu, Fangkun; Sun, Jie; Cheng, Mengtian; Chao, Na; Li, Xin; Wang, Yuesi

    2017-09-01

    The implementation of emission reduction measures during the Olympics provided a valuable opportunity to study regional photochemical pollution over northern China. In this study, the fifth-generation Pennsylvania State University/National Centre for Atmospheric Research Mesoscale Model and Community Multiscale Air Quality model system was applied to conduct two sets of modelling analyses of the period from July 20 to September 20, 2008, to illustrate the influences of emission reduction measures on regional photochemical pollution over northern China during the Beijing Olympics. The results indicated that the implementation of emission control measures decreased the concentrations of ozone (O3) precursors, namely nitrogen oxide (NOx) and volatile organic compounds (VOCs), throughout the boundary layer. The concentrations of these compounds were reduced by 45% in the central urban area of Beijing at the ground level. Although the average O3 concentration in the central urban area increased by more than 8 ppbv, the total oxidant concentration decreased significantly by more than 5 ppbv. Greater O3 concentrations mainly occurred during periods with weak photochemical reactions. During periods of strong photochemical production, the O3 concentration decreased significantly due to a weakening vertical circulation between the lower and upper boundary layer. Consequently, the number of days when the O3 concentration exceeded 100 ppbv decreased by 25% in Beijing. The emission control measures altered the sensitivity of the regional O3 production. The coordinated control region of NOx and VOCs expanded, and the control region of VOCs decreased in size. The reduction of non-point-source emissions, such as fugitive VOCs and vehicles, was more useful for controlling regional photochemical pollution over northern China.

  17. Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.-C.; Law, K. S.; Daskalakis, N.; Ancellet, G.; Clerbaux, C.; Kim, S.-W.; Lund, M. T.; Myhre, G.; Olivié, D. J. L.; Safieddine, S.; Skeie, R. B.; Thomas, J. L.; Tsyro, S.; Bazureau, A.; Bellouin, N.; Hu, M.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Myriokefalitakis, S.; Quaas, J.; Rumbold, S. T.; Schulz, M.; Cherian, R.; Shimizu, A.; Wang, J.; Yoon, S.-C.; Zhu, T.

    2016-08-01

    The ability of seven state-of-the-art chemistry-aerosol models to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over eastern Asia in summer 2008, is evaluated. The study focuses on the performance of models used to assess impacts of pollutants on climate and air quality as part of the EU ECLIPSE project. Models, run using the same ECLIPSE emissions, are compared over different spatial scales to in situ surface, vertical profiles and satellite data. Several rather clear biases are found between model results and observations, including overestimation of ozone at rural locations downwind of the main emission regions in China, as well as downwind over the Pacific. Several models produce too much ozone over polluted regions, which is then transported downwind. Analysis points to different factors related to the ability of models to simulate VOC-limited regimes over polluted regions and NOx limited regimes downwind. This may also be linked to biases compared to satellite NO2, indicating overestimation of NO2 over and to the north of the northern China Plain emission region. On the other hand, model NO2 is too low to the south and west of this region and over South Korea/Japan. Overestimation of ozone is linked to systematic underestimation of CO particularly at rural sites and downwind of the main Chinese emission regions. This is likely to be due to enhanced destruction of CO by OH. Overestimation of Asian ozone and its transport downwind implies that radiative forcing from this source may be overestimated. Model-observation discrepancies over Beijing do not appear to be due to emission controls linked to the Olympic Games in summer 2008.With regard to aerosols, most models reproduce the satellite-derived AOD patterns over eastern China. Our study nevertheless reveals an overestimation of ECLIPSE model mean surface BC and sulphate aerosols in urban China in summer 2008. The effect of the short-term emission mitigation in Beijing is too weak to explain the differences between the models. Our results rather point to an overestimation of SO2 emissions, in particular, close to the surface in Chinese urban areas. However, we also identify a clear underestimation of aerosol concentrations over northern India, suggesting that the rapid recent growth of emissions in India, as well as their spatial extension, is underestimated in emission inventories. Model deficiencies in the representation of pollution accumulation due to the Indian monsoon may also be playing a role. Comparison with vertical aerosol lidar measurements highlights a general underestimation of scattering aerosols in the boundary layer associated with overestimation in the free troposphere pointing to modelled aerosol lifetimes that are too long. This is likely linked to too strong vertical transport and/or insufficient deposition efficiency during transport or export from the boundary layer, rather than chemical processing (in the case of sulphate aerosols). Underestimation of sulphate in the boundary layer implies potentially large errors in simulated aerosol-cloud interactions, via impacts on boundary-layer clouds.This evaluation has important implications for accurate assessment of air pollutants on regional air quality and global climate based on global model calculations. Ideally, models should be run at higher resolution over source regions to better simulate urban-rural pollutant gradients and/or chemical regimes, and also to better resolve pollutant processing and loss by wet deposition as well as vertical transport. Discrepancies in vertical distributions require further quantification and improvement since these are a key factor in the determination of radiative forcing from short-lived pollutants.

  18. Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quan, Jiannong; Liu, Yangang; Liu, Quan

    New particle formation (NPF) and subsequent growth are primary sources of atmospheric aerosol particles and cloud condensation nuclei. Previous studies have been conducted in relatively clean environments; investigation of NPF events over highly polluted megacities is still lacking. Here in this paper we show, based on a recent yearlong aircraft campaign conducted over Beijing, China, from April 2011 to June 2012, that NPF occurrence peaks in the lower free troposphere (LT), instead of planetary boundary layer (PBL), as most previous studies have found and that the distance of NPF peak to PBL top increases with increasing aerosol loading. Further analysismore » reveals that increased aerosols suppress NPF in PBL, but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate.« less

  19. Anthropogenic pollution elevates the peak height of new particle formation from planetary boundary layer to lower free troposphere

    DOE PAGES

    Quan, Jiannong; Liu, Yangang; Liu, Quan; ...

    2017-07-21

    New particle formation (NPF) and subsequent growth are primary sources of atmospheric aerosol particles and cloud condensation nuclei. Previous studies have been conducted in relatively clean environments; investigation of NPF events over highly polluted megacities is still lacking. Here in this paper we show, based on a recent yearlong aircraft campaign conducted over Beijing, China, from April 2011 to June 2012, that NPF occurrence peaks in the lower free troposphere (LT), instead of planetary boundary layer (PBL), as most previous studies have found and that the distance of NPF peak to PBL top increases with increasing aerosol loading. Further analysismore » reveals that increased aerosols suppress NPF in PBL, but enhance NPF in LT due to a complex chain of aerosol-radiation-photochemistry interactions that affect both NPF sources and sinks. These findings shed new light on our understanding of NPF occurrence, NPF vertical distribution, and thus their effects on atmospheric photochemistry, clouds, and climate.« less

  20. Numerical prediction of pollutant dispersion and transport in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zeoli, Stéphanie; Bricteux, Laurent; Mech. Eng. Dpt. Team

    2014-11-01

    The ability to accurately predict concentration levels of air pollutant released from point sources is required in order to determine their environmental impact. A wall modeled large-eddy simulation (WMLES) of the ABL is performed using the OpenFoam based solver SOWFA (Churchfield and Lee, NREL). It uses Boussinesq approximation for buoyancy effects and takes into account Coriolis forces. A synthetic eddy method is proposed to properly model turbulence inlet velocity boundary conditions. This method will be compared with the standard pressure gradient forcing. WMLES are usually performed using a standard Smagorinsky model or its dynamic version. It is proposed here to investigate a subgrid scale (SGS) model with a better spectral behavior. To this end, a regularized variational multiscale (RVMs) model (Jeanmart and Winckelmans, 2007) is implemented together with standard wall function in order to preserve the dynamics of the large scales within the Ekman layer. The influence of the improved SGS model on the wind simulation and scalar transport will be discussed based on turbulence diagnostics.

  1. Lidar observations revealing transport of O3 in the presence of a nocturnal low-level jet: Regional implications for ;next-day; pollution

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.; Rabenhorst, Scott D.; Dreessen, Joel; McGee, Thomas J.; Delgado, Ruben; Twigg, Laurence; Sumnicht, Grant

    2017-06-01

    Remotely sensed profiles of ozone (O3) and wind are presented continuously for the first time during a nocturnal low-level jet (NLLJ) event occurring after a severe O3 episode in the Baltimore-Washington D.C. (BW) urban corridor throughout 11-12 June 2015. High-resolution O3 lidar observations indicate a well-mixed and polluted daytime O3 reservoir, which decayed into a contaminated nocturnal residual layer (RL) with concentrations between 70 and 100 ppbv near 1 km above the surface. Observations indicate the onset of the NLLJ was responsible for transporting polluted O3 away from the region, while simultaneously affecting the height and location of the nocturnal residual layer. High-resolution modeling analyses and next-day (12 June) lidar, surface, and balloon-borne observations indicate the trajectory of the NLLJ and polluted residual layer corresponds with "next-day" high O3 at sites throughout the southern New England region (New York, Connecticut, Massachusetts). The novel O3 lidar observations are evidence of both nocturnal advection (via high NLLJ wind fields) and entrainment of the polluted residual layer in the presence of the "next-day" convectively growing boundary layer. In the greater context, the novel observational suite described in this work has shown that the chemical budget in areas downwind of major urban centers can be altered significantly overnight during transport events such as the NLLJ.

  2. An air pollution episode and its formation mechanism during the tropical cyclone Nuri's landfall in a coastal city of south China

    NASA Astrophysics Data System (ADS)

    Yang, John Xun; Lau, Alexis Kai Hon; Fung, Jimmy Chi Hung; Zhou, Wen; Wenig, Mark

    2012-07-01

    In this work we investigated an air pollution episode during the landfall process of a tropical cyclone (TC) in Hong Kong. TCs affect air condition and account for most air pollution episodes in summer of this region. In August 2008, TC Nuri made direct landfall in Hong Kong. Before its landfall, an air pollution episode occurred, where major pollutants like SO2 and PM10 increased eight and six times higher respectively. Rather than using single measurement method, we combined ground air sampling, lidar, sunphotometer and satellite lidar CALIPSO with focus on aerosol to study the episode mechanism, and some new phenomena were found. During the episode, it was found that heavy inland aerosol plumes existed in areas larger than urbanized regions and were elevated vertically and transported southward. During episode, planetary boundary layer (PBL) expansion and height increase were observed, which is different from previous reported PBL compression and height decrease. While vertical subsidence and horizontal stagnation and consequently local aerosol accumulation were attributed as the main episode cause in previous cases, our observation showed that transported aerosols dominated in this TC landfall event. This can be further confirmed by examining aerosol chemical composition, size distribution and single scattering albedo, where transported related species showed significantly change and local indicators remained relatively stable. Invigorated cloud droplets were found on the boundary layer top upon aerosol elevation. The results indicate that site difference and TC tracks should be considered for analyzing episode formation mechanism. They can cause difference in the strength of vertical subsidence and horizontal advection and affect pollution flow direction, which subsequently results in different pollution formation processes.

  3. Beach boundary layer: a framework for addressing recreational water quality impairment at enclosed beaches.

    PubMed

    Grant, Stanley B; Sanders, Brett F

    2010-12-01

    Nearshore waters in bays, harbors, and estuaries are frequently contaminated with human pathogens and fecal indicator bacteria. Tracking down and mitigating this contamination is complicated by the many point and nonpoint sources of fecal pollution that can degrade water quality along the shore. From a survey of the published literature, we propose a conceptual and mathematical framework, the "beach boundary layer model", for understanding and quantifying the relative impact of beach-side and bay-side sources of fecal pollution on nearshore water quality. In the model, bacterial concentration in ankle depth water C(ankle) [bacteria L(-3)] depends on the flux m'' [bacteria L(-2) T(-1)] of fecal bacteria from beach-side sources (bather shedding, bird and dog feces, tidal washing of sediments, decaying vegetation, runoff from small drains, and shallow groundwater discharge), a cross-shore mass transfer velocity k [L T(-1)] that accounts for the physics of nearshore transport and mixing, and a background concentration C(bay) [bacteria L(-3)] attributable to bay-side sources of pollution that impact water quality over large regions (sewage outfalls, creeks and rivers): C(ankle) = m''/k + C(bay). We demonstrate the utility of the model for identifying risk factors and pollution sources likely to impact shoreline water quality, and evaluate the model's underlying assumptions using computational fluid dynamic simulations of flow, turbulence, and mass transport in a trapezoidal channel.

  4. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    NASA Astrophysics Data System (ADS)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  5. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  6. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  7. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.

    PubMed

    Wilcox, Eric M; Thomas, Rick M; Praveen, Puppala S; Pistone, Kristina; Bender, Frida A-M; Ramanathan, Veerabhadran

    2016-10-18

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

  8. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer

    PubMed Central

    Wilcox, Eric M.; Thomas, Rick M.; Praveen, Puppala S.; Pistone, Kristina; Bender, Frida A.-M.; Ramanathan, Veerabhadran

    2016-01-01

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events. PMID:27702889

  9. In Situ Aerosol Size Distributions and Clear Column Radiative Closure During ACE-2

    NASA Technical Reports Server (NTRS)

    Collins, D. R.; Johnson, H. H.; Seinfeld, J. H.; Flagan, R. C.; Gasso, S.; Hegg, D. A.; Russell, P. B.; Schmid, B.; Livingston, J. M.; Oestroem, E.; hide

    2000-01-01

    As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol size distributions were measured on board the CIRPAS Pelican aircraft through the use of a DMA and two OPCS. During the campaign, the boundary layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on four missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol size distributions and those measured directly by an airborne 14-wavelength sunphotometer and three nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size distribution based calculations. Simultaneous comparison with such a wide range of directly measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly measured optical properties varied for different measurements and for different cases. Averaged over the four case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotomoter by 2.5% in the clean boundary later, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and nondusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the > 100 individual comparisons from which they were averaged, were within estimated uncertainties.

  10. Parameterization of gaseous constituencies concentration profiles in the planetary boundary layer as required in support of airborne and satellite borne sensors

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Condon, E.; Casas, J.

    1976-01-01

    The research to develop the capabilities for sensing air pollution constituencies using satellite or airborne remote sensors is reported. Sensor evaluation and calibration are analyzed including data reduction. The proposed follow-on research is presented.

  11. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION. (R829797)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  13. Utilization of satellite observation of ozone and aerosols in providing initial and boundary condition for regional air quality studies

    NASA Astrophysics Data System (ADS)

    Pour-Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yun-Hee; Newchurch, Mike; McNider, Richard T.; Liu, Xiong; Byun, Daewon W.; Cameron, Robert

    2011-09-01

    To demonstrate the efficacy of satellite observations in the realization of the background and transboundary transport of pollution in regional air quality modeling practices, satellite observations of ozone and aerosol optical depth were incorporated in the EPA Models-3 Community Multiscale Air Quality (CMAQ) model (http://www.cmascenter.org). Observations from Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite and AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra (EOS AM) and Aqua (EOS PM) satellites were used to specify initial and lateral boundary conditions (IC/BC) for a simulation that spanned over August 2006. The tools and techniques using the satellite data were tested in the context of current regulatory air quality modeling practices. Daily satellite observations were remapped onto the modeling domain and used as IC/BC for daily segments of a month-long simulation and the results were evaluated against surface and ozonesonde observations. Compared to the standard application of CMAQ, OMI O3 profiles significantly improved model performance in the free troposphere and MODIS aerosol products substantially improved PM2.5 predictions in the boundary layer. The utilization of satellite data for BC helped in the realization of transboundary transport of pollution and was able to explain the recirculation of pollution from Northeast Corridor to the southeastern region. Ozone in the mid- to upper-troposphere was largely dominated by transport and thus benefited most from satellite provided BC. The ozone within the boundary layer was mostly affected by fast production/loss mechanisms that are impacted by surface emissions, chemistry and removal processes and was not impacted as much. A case study for August 18-22 demonstrated that model errors in the placement of a stationary front were the main reason for errors in PM2.5 predictions as the front acted as a boundary between high and low PM2.5 concentrations.

  14. Dome effect of black carbon and its key influencing factors: a one-dimensional modelling study

    NASA Astrophysics Data System (ADS)

    Wang, Zilin; Huang, Xin; Ding, Aijun

    2018-02-01

    Black carbon (BC) has been identified to play a critical role in aerosol-planetary boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been referred to as the dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, as well as the underlying land surface, have not been quantitatively explored yet. Here, based on available in situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC dome effect and surface haze pollution. Furthermore, we discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on the PBL is very sensitive to the altitude of aerosol layer. The upper-level BC, especially that near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulent mixing. The dome effect of BC tends to be significantly intensified as BC mixed with scattering aerosols during winter haze events, resulting in a decrease in PBL height by more than 15 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such an effect to air quality in countryside. This study indicates that China's regional air pollution would greatly benefit from BC emission reductions, especially those from elevated sources from chimneys and also domestic combustion in rural areas, through weakening the aerosol-boundary layer interactions that are triggered by BC.

  15. Boundary layer pollution profiles from a rural site in South Korea

    NASA Astrophysics Data System (ADS)

    Sullivan, John; McGee, Thomas; Thompson, Anne; Twigg, Laurence; Sumnicht, Grant; Stauffer, Ryan

    2018-04-01

    During the NASA 2016 KORUS-AQ campaign, the ground based NASA GSFC ozone lidar and balloon borne instrumentation were deployed to the remote Taehwa Forest site (37.3 N, 127.3 E, 151 m AGL) to characterize the transport of pollution downwind of the Seoul metropolitan region. On most days from 02 May to 10 June 2016, continuous hours of lidar profiles of ozone were measured. Select days are shown to represent key ozone events that occurred at the rural site.

  16. Shift in Mass Transfer of Wastewater Contaminants from Microplastics in the Presence of Dissolved Substances.

    PubMed

    Seidensticker, Sven; Zarfl, Christiane; Cirpka, Olaf A; Fellenberg, Greta; Grathwohl, Peter

    2017-11-07

    In aqueous environments, hydrophobic organic contaminants are often associated with particles. Besides natural particles, microplastics have raised public concern. The release of pollutants from such particles depends on mass transfer, either in an aqueous boundary layer or by intraparticle diffusion. Which of these mechanisms controls the mass-transfer kinetics depends on partition coefficients, particle size, boundary conditions, and time. We have developed a semianalytical model accounting for both processes and performed batch experiments on the desorption kinetics of typical wastewater pollutants (phenanthrene, tonalide, and benzophenone) at different dissolved-organic-matter concentrations, which change the overall partitioning between microplastics and water. Initially, mass transfer is externally dominated, while finally, intraparticle diffusion controls release kinetics. Under boundary conditions typical for batch experiments (finite bath), desorption accelerates with increasing partition coefficients for intraparticle diffusion, while it becomes independent of partition coefficients if film diffusion prevails. On the contrary, under field conditions (infinite bath), the pollutant release controlled by intraparticle diffusion is not affected by partitioning of the compound while external mass transfer slows down with increasing sorption. Our results clearly demonstrate that sorption/desorption time scales observed in batch experiments may not be transferred to field conditions without an appropriate model accounting for both the mass-transfer mechanisms and the specific boundary conditions at hand.

  17. Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing

    NASA Astrophysics Data System (ADS)

    Liao, Zhiheng; Sun, Jiaren; Yao, Jialin; Liu, Li; Li, Haowen; Liu, Jian; Xie, Jielan; Wu, Dui; Fan, Shaojia

    2018-05-01

    Self-organizing maps (SOMs; a feature-extracting technique based on an unsupervised machine learning algorithm) are used to classify atmospheric boundary layer (ABL) meteorology over Beijing through detecting topological relationships among the 5-year (2013-2017) radiosonde-based virtual potential temperature profiles. The classified ABL types are then examined in relation to near-surface pollutant concentrations to understand the modulation effects of the changing ABL meteorology on Beijing's air quality. Nine ABL types (i.e., SOM nodes) are obtained through the SOM classification technique, and each is characterized by distinct dynamic and thermodynamic conditions. In general, the self-organized ABL types are able to distinguish between high and low loadings of near-surface pollutants. The average concentrations of PM2.5, NO2 and CO dramatically increased from the near neutral (i.e., Node 1) to strong stable conditions (i.e., Node 9) during all seasons except for summer. Since extremely strong stability can isolate the near-surface observations from the influence of elevated SO2 pollution layers, the highest average SO2 concentrations are typically observed in Node 3 (a layer with strong stability in the upper ABL) rather than Node 9. In contrast, near-surface O3 shows an opposite dependence on atmospheric stability, with the lowest average concentration in Node 9. Analysis of three typical pollution months (i.e., January 2013, December 2015 and December 2016) suggests that the ABL types are the primary drivers of day-to-day variations in Beijing's air quality. Assuming a fixed relationship between ABL type and PM2.5 loading for different years, the relative (absolute) contributions of the ABL anomaly to elevated PM2.5 levels are estimated to be 58.3 % (44.4 µg m-3) in January 2013, 46.4 % (22.2 µg m-3) in December 2015 and 73.3 % (34.6 µg m-3) in December 2016.

  18. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    NASA Astrophysics Data System (ADS)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  19. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    NASA Astrophysics Data System (ADS)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  20. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - Implications for Cyclone induced lift and TIL physical-chemical processes

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich

    2013-04-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.

  1. Mesoscale circulation systems and ozone concentrations during ESCOMPTE: a case study from IOP 2b

    NASA Astrophysics Data System (ADS)

    Kalthoff, N.; Kottmeier, C.; Thürauf, J.; Corsmeier, U.; Saїd, F.; Fréjafon, E.; Perros, P. E.

    2005-03-01

    The main objective of 'Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions' (ESCOMPTE) is to generate a relevant data set for testing and evaluating mesoscale chemistry-transport models (CTMs). During ESCOMPTE, measurements have been performed at numerous surface stations, by radars and lidars, and several aircraft in the planetary boundary layer. The data from these different sources have been merged to obtain a consistent description of the spatial distribution of wind, temperature, humidity, and ozone for the photosmog episode on June 25, 2001 (IOP 2b). On this day, moderate synoptic winds favour the evolution of different mesoscale circulation systems. During daytime, the sea breeze penetrates towards the north in the Rhône valley. As the winds above the sea breeze layer come from the east, polluted air from the metropolitan area of Marseille leads to an increase of ozone at elevated layers above the convective boundary layer (CBL). At the mountainous station of Luberon about 55 km north of Marseille around noon, when the CBL top surpasses the height of the mountain summit, polluted air with ozone concentrations of about 120 ppbv arrived from southerly directions, thus indicating the passage of the city plume of Marseille. At Cadarache and Vinon in the Durance valley, about 60 km inland, the ozone maximum at the surface and at flight level 920 m MSL appears between 14 and 15 UTC. At this time, southwesterly valley winds prevail in the valley, while southerly winds occur above. This finding highlights the height-dependent advection of ozone due to interacting mesoscale circulation systems. These dynamical processes need to be represented adequately in CTMs to deliver a realistic description of the ozone concentration fields.

  2. Role of the boundary layer dynamics effects on an extreme air pollution event in Paris

    NASA Astrophysics Data System (ADS)

    Dupont, J.-C.; Haeffelin, M.; Badosa, J.; Elias, T.; Favez, O.; Petit, J. E.; Meleux, F.; Sciare, J.; Crenn, V.; Bonne, J. L.

    2016-09-01

    The physical and chemical aerosol properties are explored here based on ground-based observations in the Paris region to better understand the role of clouds, radiative fluxes and dynamics on aerosol loading during a heavy regional air pollution that occurred in March 2014 over North-Western Europe. This event is primarily characterized by a fine particle mass (PM2.5) increase from 10 to more than 120 μg m-3 and a simultaneous decrease of the horizontal visibility from 40 to 1 km, mainly due to significant formation of ammonium nitrate particles. The aerosol optical depth (AOD) at 550 nm increased steadily from about 0.06 on March 6 to more than 0.9 five days later. The scattering of the solar radiation by polluted particles induced, at the peak of the heavy pollution event, an instantaneous shortwave flux decrease of about 300 W m-2 for direct irradiance and an increase of about 150 W m-2 for diffuse irradiance (only scattering). The mean surface aerosol effect efficiency (effect per unit optical depth) is of about -80 W m-2 with a mean aerosol direct radiative effect of -23 W m-2. The dynamical and radiative processes that can be responsible for the diurnal cycle of PM2.5 in terms of amplitude and timing are investigated. A comparative analysis is performed for 4 consecutive days (between March 11 and 14), showing that the PM2.5 diurnal cycle can be modulated in time and amplitude by local processes such as the boundary layer depth development (ranging from 100 m to 1350 m), surface relative humidity (100%-35%), thermal structure (10 °C-16 °C for day/night amplitude), dynamics (wind speed ranging from 4 m s-1 to 1.5 m s-1) and turbulence (turbulent kinetic energy reaching 2 m2 s-2) near the surface and wind shear along the vertical. Finally, modeled and measured surface PM2.5 loadings are also compared here, notably illustrating the need of accurate boundary layer depth data for efficient air quality forecasts.

  3. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.

  4. The effect of local circulations on the variation of atmospheric pollutants in the northwestern Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pay-Liam Lin; Hsin-Chih Lai

    1996-12-31

    A field experiment was held in the northwestern Taiwan as a part of a long-term research program for studying Taiwan`s local circulation. The program has been named as Taiwan Regional-circulation Experiment (TREX). The particular goal of this research is to investigate characteristics of boundary layer and local Circulation and their impact on the distribution and Variation of pollutants in the northwestern Taiwan during Mei-Yu season. It has been known for quite sometime that land-sea breeze is very pronounced under hot and humid conditions. Extensive network includes 11 pilot ballon stations, 3 acoustic sounding sites, and 14 surface stations in aboutmore » 20 km by 20 km area centered at National Central University, Chung-Li. In addition, there are ground temperature measurements at 3 sites, Integrated Sounding System (ISS) at NCU, air plane observation, tracer experiment with 10 collecting stations, 3 background upper-air sounding stations, 2 towers etc. NOAA and GMS satellite data, sea surface temperature radar, and precipitation data are collected. The local circulations such as land/sea breezes and mountain/valley winds, induced by thermal and topographical effects often play an important role in transporting, redistributing and transforming atmospheric pollutants. This study documents the effects of the development of local circulations and the accompanying evolution of boundary layer on the distribution and the variation of the atmospheric pollutants in the north western Taiwan during Mei-Yu season.« less

  5. The study of aerosol and ozone measurements in lower boundary layer with UAV helicopter platform

    NASA Astrophysics Data System (ADS)

    Lin, Po-hsiung; Chen, Wen-nai

    2013-04-01

    This study describes the aerosol and ozone measurement in the lower atmospheric boundary layer of highly polluted region at Kao-hsiung, Taiwan with a small unmanned aerial vehicle (UAV) helicopter platform. This UAV helicopter, modified from Gaui-X7 electronic-power model helicopter with autopilot AHRS (Altitude-Head-Reference System) kit, has fast climb speed up to 700 m height and keeps stable status for atmospheric measurements in five-minute fly leg. Several quick-replaced battery packages are ready on ground for field intensive observation. The payload rack under this UAV helicopter carries a micro-Aethalometer (black carbon concentration), ozone meter, temperature-humidity sensor, barometer and a time-lapse digital camera. The field measurement site closes to Linyuan Petrochemical Industrial Park, where is one of the heavy polluted regions in Taiwan. Balloon-borne Vaisala RS-92 radiosonde and CL31 Lidar Ceilometer are used to provide the background of the atmosphere at the same time. More data analysis measured by UAV helicopter and its potential application will be discussed.

  6. A case study of atmospheric boundary layer features during winter over a tropical inland station — Kharagpur (22.32°N, 87.32°E)

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Kunhikrishnan, P. K.; Aloysius, Marina; Mohan, M.

    2009-08-01

    The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient ( V C), a factor determining the air pollution potential over a region, is also discussed in detail.

  7. Radon-222 as a test of convective transport in a general circulation model

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Prather, Michael J.

    1990-01-01

    A three-dimensional tracer model based on the Goddard Institude of Space Studies GCM is used to simulate the distribution of Rn-222 over North America to test the ability of the model to describe the transport of pollutants in the boundary layer and the exchange of mass between the boundary layer and the free troposphere. The model results are compared with surface observations from five sites in the U.S., showing that Rn-222 concentrations are primarily regulated by dry convection. The simulations show satisfactory agreement with observations although the model underpredicts observations at night and the simulated Rn-222 concentrations over the northeastern U.S. are too high in the spring and too low in the fall.

  8. Airborne lidar observations of Saharan dust during FENNEC

    NASA Astrophysics Data System (ADS)

    Marenco, Franco; Garcia-Carreras, Luis; Rosenberg, Phil; McQuaid, Jim

    2013-04-01

    In June 2011 and June 2012, the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft took part in the Fennec campaign. The main purpose was to quantify and model boundary layer and aerosol processes over the Saharan "heat low" region, the greatest dust region during summer. Although the central Sahara is extremely remote, the meteorology of this region is vital in driving the West African monsoon, and the dry and dusty air layers are closely related to the formation of Atlantic tropical cyclones. In this presentation, we shall characterise these air layers using data collected with the on-board lidar together with dropsondes. The interpretation of lidar signals in this particular geometry represents a challenge (nadir observations of thick layers), but we shall show that a suitable data inversion framework is possible under certain assumptions. The quality of the lidar data will be assessed using in-situ data from the nephelometer and optical particle counters. Deep air layers containing dust have been observed up to altitude of 5-6 km above mean sea level. The analysis of temperature and dew point profiles are used to identify the boundary layer and residual layer tops, and in conjunction with lidar observations this serves to quantify the dust content of both layers. An aerosol-laden residual layer is usually found during the campaign at an altitude of 2-6 km in the morning hours, with little aerosol below. The aerosol in the boundary layer is seen to develop later when solar heating of the surface induces turbulence until in the late afternoon the top of the boundary layer reaches up to ~ 6 km. Clouds embedded in aerosol layers and aerosol-cloud interactions have also been revealed. Dust aerosol has been observed in most cases, but a thin polluted non-dusty layer has been observed during one flight.

  9. Transport of chemical tracers from the boundary layer to stratosphere associated with the dynamics of the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Pan, Laura L.; Honomichl, Shawn B.; Kinnison, Douglas E.; Abalos, Marta; Randel, William J.; Bergman, John W.; Bian, Jianchun

    2016-12-01

    Chemical transport associated with the dynamics of the Asian summer monsoon (ASM) system is investigated using model output from the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model run in specified dynamics mode. The 3-D day-to-day behavior of modeled carbon monoxide is analyzed together with dynamical fields and transport boundaries to identify preferred locations of uplifting from the boundary layer, the role of subseasonal-scale dynamics in the upper troposphere and lower stratosphere (UTLS), and the relationship of ASM transport and the stratospheric residual circulation. The model simulation of CO shows the intraseasonal east-west oscillation of the anticyclone may play an essential role in transporting convectively pumped boundary layer pollutants in the UTLS. A statistical analysis of 11 year CO also shows that the southern flank of the Tibetan plateau is a preferred location for boundary layer tracers to be lofted to the tropopause region. The vertical structure of a model tracer (E90) further shows that the rapid ASM vertical transport is only effective up to the tropopause level (around 400 K). The efficiency of continued vertical transport into the deep stratosphere is limited by the slow ascent associated with the zonal-mean residual circulation in the lower stratosphere during northern summer. Quasi-isentropic transport near the 400 K potential temperature level is likely the most effective process for ASM anticyclone air to enter the stratosphere.

  10. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less

  11. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; Ramanathan, Veerabhadran; Wilcox, Eric M.; Bender, Frida A.-M.

    2016-04-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV) and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m-2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol-LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. Potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol-humidity relationship.

  12. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    DOE PAGES

    Pistone, Kristina; Praveen, Puppala S.; Thomas, Rick M.; ...

    2016-04-27

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric vertical structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season.In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements were made of atmospheric precipitable water vapor (PWV)more » and the liquid water path (LWP) of trade cumulus clouds, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol from instrumentation at a ground observatory and on small unmanned aircraft. We present observations which indicate a positive correlation between aerosol and cloud LWP only when considering cases with low atmospheric water vapor (PWV < 40 kg m –2), a criterion which acts to filter the data to control for the natural meteorological variability in the region.We then use the aircraft and ground-based measurements to explore possible mechanisms behind this observed aerosol–LWP correlation. The increase in cloud liquid water is found to coincide with a lowering of the cloud base, which is itself attributable to increased boundary layer humidity in polluted conditions. High pollution is found to correlate with both higher temperatures and higher humidity measured throughout the boundary layer. A large-scale analysis, using satellite observations and meteorological reanalysis, corroborates these covariations: high-pollution cases are shown to originate as a highly polluted boundary layer air mass approaching the observatory from a northwesterly direction. The source air mass exhibits both higher temperatures and higher humidity in the polluted cases. While the warmer temperatures may be attributable to aerosol absorption of solar radiation over the subcontinent, the factors responsible for the coincident high humidity are less evident: the high-aerosol conditions are observed to disperse with air mass evolution, along with a weakening of the high-temperature anomaly, while the high-humidity condition is observed to strengthen in magnitude as the polluted air mass moves over the ocean toward the site of the CARDEX observations. In conclusion, potential causal mechanisms of the observed correlations, including meteorological or aerosol-induced factors, are explored, though future research will be needed for a more complete and quantitative understanding of the aerosol–humidity relationship.« less

  13. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances. More tests are needed of the consistency among different methods and of the effects of changing humidity on aerosol.

  14. On the impact of snow cover on daytime pollution dispersion

    NASA Astrophysics Data System (ADS)

    Segal, M.; Garratt, J. R.; Pielke, R. A.; Hildebrand, P.; Rogers, F. A.; Cramer, J.; Schanot, A.

    A preliminary evaluation of the impact of snow cover on daytime pollutant dispersion conditions is made by using conceptual, scaling, and observational analyses. For uniform snow cover and synoptically unperturbed sunny conditions, observations indicate a considerate suppression of the surface sensible heat flux, the turbulence, and the development of the daytime atmospheric boundary layer (ABL) when compared to snow-free conditions. However, under conditions of non-uniform snow cover, as in urban areas, or associated with vegetated areas or bare ground patches, a milder effect on pollutant dispersion conditions would be expected. Observed concentrations of atmospheric particles within the ABL, and surface pollutant concentrations in urban areas, reflect the impact of snow cover on the modification of ABL characteristics.

  15. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  16. Source tagging modeling study of regional contributions to acid rain in summer over Liaoning Province, Northeastern China.

    PubMed

    Gbaguidi, Alex E; Wang, Zifa; Wang, Wei; Yang, Ting; Chen, Huan-Sheng

    2018-04-01

    Strong acid rain was recently observed over Northeastern China, particularly in summer in Liaoning Province where alkaline dust largely neutralized acids in the past. This seems to be related to the regional transboundary pollution and poses new challenges in acid rain control scheme in China. In order to delve into the regional transport impact, and quantify its potential contributions to such an "eruption" of acid rain over Liaoning, this paper employs an online source tagging model in coupling with the Nested Air Quality Prediction Modeling System (NAQPMS). Validation of predictions shows the model capability in reproducing key meteorological and chemical features. Acid concentration over Liaoning is more pronounced in August (average of 0.087 mg/m 3 ) with strong pollutant import from regional sources against significant depletion of basic species. Seasonal mean contributions from regional sources are assessed at both lower and upper boundary layers to elucidate the main pathways of the impact of regional sources on acid concentration over Liaoning. At the upper layer (1.2 km), regional sources contribute to acid concentration over Liaoning by 67%, mainly from Shandong (16%), Hebei (13%), Tianjin (11%) and Korean Peninsula (9%). Identified main city-receptors in Liaoning are Dandong, Dalian, Chaohu, Yingkou, Liaoyang, Jinfu, Shengyang, Panjin, Tieling, Benxi, Anshan and Fushun. At lower layer (120 m) where Liaoning local contribution is dominant (58%), regional sources account for 39% in acid concentration. However, inter-municipal acid exchanges are prominent at this layer and many cities in Liaoning are revealed as important sources of local acid production. Seasonal acid contribution average within 1.2 km-120 m attains 55%, suggesting dominance of vertical pollutant transport from regional sources towards lower boundary layer in Liaoning. As direct environmental implication, this study provides policy makers with a perspective of regulating the regional transboundary environmental impact assessment in China with application to acid rain control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Venting of Heat and Carbon Dioxide from Urban Canyons at Night.

    NASA Astrophysics Data System (ADS)

    Salmond, J. A.; Oke, T. R.; Grimmond, C. S. B.; Roberts, S.; Offerle, B.

    2005-08-01

    Turbulent fluxes of carbon dioxide and sensible heat were observed in the surface layer of the weakly convective nocturnal boundary layer over the center of the city of Marseille, France, during the Expérience sur Sites pour Contraindre les Modèles de Pollution Atmosphérique et de Transport d'Emission (ESCOMPTE) field experiment in the summer of 2001. The data reveal intermittent events or bursts in the time series of carbon dioxide (CO2) concentration and air temperature that are superimposed upon the background values. These features relate to intermittent structures in the fluxes of CO2 and sensible heat. In Marseille, CO2 is primarily emitted into the atmosphere at street level from vehicle exhausts. In a similar way, nocturnal sensible heat fluxes are most likely to originate in the deep street canyons that are warmer than adjacent roof surfaces. Wavelet analysis is used to examine the hypothesis that CO2 concentrations can be used as a tracer to identify characteristics of the venting of pollutants and heat from street canyons into the above-roof nocturnal urban boundary layer. Wavelet analysis is shown to be effective in the identification and analysis of significant events and coherent structures within the turbulent time series. Late in the evening, there is a strong correlation between the burst structures observed in the air temperature and CO2 time series. Evidence suggests that the localized increases of temperature and CO2 observed above roof level in the urban boundary layer (UBL) are related to intermittent venting of sensible heat from the warmer urban canopy layer (UCL). However, later in the night, local advection of CO2 in the UBL, combined with reduced traffic emissions in the UCL, limit the value of CO2 as a tracer of convective plumes in the UBL.

  18. Desert Dust Layers Over Polluted Marine Boundary Layers: ACE-2 Measurements and ACE-Asia Plans

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Schmid, B.; Livingston, J. M.; Redemann, J.; Bergstrom, R. W.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Aerosols in ACE-Asia are expected to have some commonalties with those in ACE-2, along with important differences. Among the commonalities are occurrences of desert dust layers over polluted marine boundary layers. Differences include the nature of the dust (yellowish in the East Asia desert outflow, vs. reddish-brown in the Sahara Outflow measured in ACE-2) and the composition of boundary-layer aerosols (e.g., more absorbing, soot and organic aerosol in-the Asian plume, caused by coal and biomass burning, with limited controls). In this paper we present ACE-2 measurements and analyses as a guide to our plans for ACE-2 Asia. The measurements include: (1) Vertical profiles of aerosol optical depth and extinction (380-1558 nm), and of water vapor column and concentration, from the surface through the elevated desert dust, measured by the 14-channel Ames Airborne Tracking Sunphotometer (AATS-14); (2) Comparisons of airborne and shipborne sunphotometer optical depths to satellite-retrieved values, with and without desert dust; (3) Comparisons between airborne Sunphotometer optical depth and extinction spectra and those derived from coincident airborne in situ measurements of aerosol size distribution, scattering and absorption; (4) Comparisons between size distributions measured in situ and retrieved from sunphotometer optical depth spectra; (5) Comparisons between aerosol single scattering albedo values obtained by several techniques, using various combinations of measurements of backscatter, extinction, size distribution, scattering, absorption, and radiative flux. We show how analyses of these data can be used to address questions important to ACE-Asia, such as: (1) How do dust and other absorbing aerosols affect the accuracy of satellite optical depth retrievals? How important are asphericity effects? (2) How important are supermicron dust and seasalt aerosols to overall aerosol optical depth and radiative forcing? How well are these aerosols sampled by aircraft inlets and instruments? (3) How consistent are suborbital in situ and remote measurements of aerosols, among themselves and with satellite retrievals? What are the main reasons for observed inconsistencies?

  19. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of Mexico, with a special focus on the relationship among measured and modeled energy fluxes and other oceanographic and atmospheric conditions.

  20. Vertical Transport by Coastal Mesoscale Convective Systems

    NASA Astrophysics Data System (ADS)

    Lombardo, K.; Kading, T.

    2016-12-01

    This work is part of an ongoing investigation of coastal mesoscale convective systems (MCSs), including changes in vertical transport of boundary layer air by storms moving from inland to offshore. The density of a storm's cold pool versus that of the offshore marine atmospheric boundary layer (MABL), in part, determines the ability of the storm to successfully cross the coast, the mechanism driving storm propagation, and the ability of the storm to lift air from the boundary layer aloft. The ability of an MCS to overturn boundary layer air can be especially important over the eastern US seaboard, where warm season coastal MCSs are relatively common and where large coastal population centers generate concentrated regions of pollution. Recent work numerically simulating idealized MCSs in a coastal environment has provided some insight into the physical mechanisms governing MCS coastal crossing success and the impact on vertical transport of boundary layer air. Storms are simulated using a cloud resolving model initialized with atmospheric conditions representative of a Mid-Atlantic environment. Simulations are run in 2-D at 250 m horizontal resolution with a vertical resolution stretched from 100 m in the boundary layer to 250 m aloft. The left half of the 800 km domain is configured to represent land, while the right half is assigned as water. Sensitivity experiments are conducted to quantify the influence of varying MABL structure on MCS coastal crossing success and air transport, with MABL values representative of those observed over the western Mid-Atlantic during warm season. Preliminary results indicate that when the density of the cold pool is much greater than the MABL, the storm successfully crosses the coastline, with lifting of surface parcels, which ascend through the troposphere. When the density of the cold pool is similar to that of the MABL, parcels within the MABL remain at low levels, though parcels above the MABL ascend through the troposphere.

  1. Tropospheric ozone over the North Pacific from ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Chan, C. Y.; VöMel, H.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.; Chen, J.-P.; Kim, J. H.; Chan, L. Y.; Chang, H.-W.

    2004-08-01

    As part of the Transport and Chemical Evolution over the Pacific (TRACE-P) mission, ozonesondes were used to make ozone vertical profile measurements at nine locations in the North Pacific. At most of the sites there is a multiyear record of observations. From locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, Hawaii), and a site on the west coast of the United States (Trinidad Head, California) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. Ozone profiles over the North Pacific generally show a prominent spring maximum throughout the troposphere. This maximum is tied to the location of the jet stream and its influence on stratosphere-troposphere exchange and the increase in photochemical ozone production through the spring. Prominent layers of enhanced ozone in the middle and upper troposphere north of about 30°N seem to be more closely tied to stratospheric intrusions while biomass burning leads to layers of enhanced ozone in the lower and upper troposphere at Hong Kong (22°N) and Taipei (25°N). The lower free tropospheric layers at Hong Kong are associated with burning in SE Asia, but the upper layer may be associated with either equatorial Northern Hemisphere burning in Africa or SE Asian biomass burning. In the boundary layer at Taipei very high mixing ratios of ozone were observed that result from pollution transport from China in the spring and local urban pollution during the summer. At the ozonesonde site near Tokyo (Tsukuba, 36°N) very large enhancements of ozone are seen in the boundary layer in the summer that are characteristic of urban air pollution. At sites in the mid and eastern Pacific the signature of transport of polluted air from Asia is not readily identifiable from the ozonesonde profile. This is likely due to the more subtle signal and the fact that from the ozone profile and meteorological data by themselves it is difficult to identify such a signal. During the TRACE-P intensive campaign period (February-April 2001), tropospheric ozone amounts were generally typical of those seen in the long-term records of the stations with multiyear soundings. The exception was the upper troposphere over Hong Kong and Taipei where ozone amounts were lower in 2001.

  2. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was initialized and compared with meteorological and SF6 tracer measurements from the Basel UrBan Boundary Layer Experiment (BUBBLE). The proposed modification does not improve the model's agreement with concentration observations, even though the trapping time shows promising agreement with measurements. Additionally, the modification's influence is smaller than those of different turbulence profiles, zero-plane displacement height and Roughness Sublayer height.

  3. Pollutant Removal, Dispersion and Entrainment over Two-Dimensional Idealized Street Canyons: an LES Approach

    NASA Astrophysics Data System (ADS)

    Wong, C.; Liu, C.

    2010-12-01

    Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.

  4. Comment on "Simulation of Surface Ozone Pollution in the Central Gulf Coast Region Using WRF/Chem Model: Sensitivity to PBL and Land Surface Physics"

    EPA Science Inventory

    A recently published meteorology and air quality modeling study has several serious deficiencies deserving comment. The study uses the weather research and forecasting/chemistry (WRF/Chem) model to compare and evaluate boundary layer and land surface modeling options. The most se...

  5. Boundary Layer Model for Air Pollutant Concentrations Due to Highway Traffic

    ERIC Educational Resources Information Center

    Ragland, Kenneth W.; Peirce, J. Jeffrey

    1975-01-01

    A numerical solution of the three-dimensional steady-state diffusion equation for a finite width line source is presented. The wind speed and eddy diffusivity as a function of height above the roadway are obtained. Normalized ground level and elevated concentrations near a highway are obtained for winds perpendicular, parallel, and at 45 degrees.…

  6. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    EPA Science Inventory

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  7. Boundary layer structure and scavenging effect during a typical winter haze-fog episode in a core city of BTH region, China

    NASA Astrophysics Data System (ADS)

    Han, Suqin; Liu, Jingle; Hao, Tianyi; Zhang, Yufen; Li, Peiyan; Yang, Jianbo; Wang, Qinliang; Cai, Ziying; Yao, Qing; Zhang, Min; Wang, Xiujun

    2018-04-01

    The vertical distribution of PM2.5 and meteorological parameters from ground to upper levels were observed simultaneously using meteorological tower, tethered balloons and aerosol laser radar in Dec of 2016 in the urban area of Tianjin and its southern district, Jinghai. The influence of the vertical structure of boundary layer on a typical haze-fog episode was analyzed. There existed long distance transport of PM in the high layers before the haze formed in Tianjin and the downward airflows brought the PM from the high layer to the ground. In the early stages of this episode, periodic temperature inversions occurred, leading to conspicuous diurnal variations in the vertical profile of the PM2.5. In the middle and late stages of this episode, strong inversion and thick humidity layer were sustained below 400 m, and there were no big daily changes in the vertical profiles of the PM2.5. During the rapid formation period of the fog, the inversion layer was damaged and turbulence was strengthened. During the stationary phase of the fog process, wind and turbulence in the boundary layer became weak again. Rime was the main weather-related, wet cleaning mechanism that lowered pollutants concentration during this fog episode. High concentrations of water soluble ions in the rime samples and the concentrations of those ions in ambient PM2.5 appeared significant decrease during the rime period, which illustrated the scavenging effect of rime.

  8. Validation of the Martilli's Urban Boundary Layer Scheme with measurements from two mid-latitude European cities

    NASA Astrophysics Data System (ADS)

    Hamdi, R.; Schayes, G.

    2005-07-01

    The Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate the Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme is able to reproduce the generation of the Urban Heat Island (UHI) effect over urban area and represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of the Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  9. Validation of Martilli's urban boundary layer scheme with measurements from two mid-latitude European cities

    NASA Astrophysics Data System (ADS)

    Hamdi, R.; Schayes, G.

    2007-08-01

    Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.

  10. Estimation of stable boundary-layer height using variance processing of backscatter lidar data

    NASA Astrophysics Data System (ADS)

    Saeed, Umar; Rocadenbosch, Francesc

    2017-04-01

    Stable boundary layer (SBL) is one of the most complex and less understood topics in atmospheric science. The type and height of the SBL is an important parameter for several applications such as understanding the formation of haze fog, and accuracy of chemical and pollutant dispersion models, etc. [1]. This work addresses nocturnal Stable Boundary-Layer Height (SBLH) estimation by using variance processing and attenuated backscatter lidar measurements, its principles and limitations. It is shown that temporal and spatial variance profiles of the attenuated backscatter signal are related to the stratification of aerosols in the SBL. A minimum variance SBLH estimator using local minima in the variance profiles of backscatter lidar signals is introduced. The method is validated using data from HD(CP)2 Observational Prototype Experiment (HOPE) campaign at Jülich, Germany [2], under different atmospheric conditions. This work has received funding from the European Union Seventh Framework Programme, FP7 People, ITN Marie Curie Actions Programme (2012-2016) in the frame of ITaRS project (GA 289923), H2020 programme under ACTRIS-2 project (GA 654109), the Spanish Ministry of Economy and Competitiveness - European Regional Development Funds under TEC2015-63832-P project, and from the Generalitat de Catalunya (Grup de Recerca Consolidat) 2014-SGR-583. [1] R. B. Stull, An Introduction to Boundary Layer Meteorology, chapter 12, Stable Boundary Layer, pp. 499-543, Springer, Netherlands, 1988. [2] U. Löhnert, J. H. Schween, C. Acquistapace, K. Ebell, M. Maahn, M. Barrera-Verdejo, A. Hirsikko, B. Bohn, A. Knaps, E. O'Connor, C. Simmer, A. Wahner, and S. Crewell, "JOYCE: Jülich Observatory for Cloud Evolution," Bull. Amer. Meteor. Soc., vol. 96, no. 7, pp. 1157-1174, 2015.

  11. Evolution of aerosol vertical distribution during particulate pollution events in Shanghai

    NASA Astrophysics Data System (ADS)

    Zhang, Yunwei; Zhang, Qun; Leng, Chunpeng; Zhang, Deqin; Cheng, Tiantao; Tao, Jun; Zhang, Renjian; He, Qianshan

    2015-06-01

    A set of micro pulse lidar (MPL) systems operating at 532 nm was used for ground-based observation of aerosols in Shanghai in 2011. Three typical particulate pollution events (e.g., haze) were examined to determine the evolution of aerosol vertical distribution and the planetary boundary layer (PBL) during these pollution episodes. The aerosol vertical extinction coefficient (VEC) at any given measured altitude was prominently larger during haze periods than that before or after the associated event. Aerosols originating from various source regions exerted forcing to some extent on aerosol loading and vertical layering, leading to different aerosol vertical distribution structures. Aerosol VECs were always maximized near the surface owing to the potential influence of local pollutant emissions. Several peaks in aerosol VECs were found at altitudes above 1 km during the dust- and bioburning-influenced haze events. Aerosol VECs decreased with increasing altitude during the local-polluted haze event, with a single maximum in the surface atmosphere. PM2.5 increased slowly while PBL and visibility decreased gradually in the early stages of haze events; subsequently, PM2.5 accumulated and was exacerbated until serious pollution bursts occurred in the middle and later stages. The results reveal that aerosols from different sources impact aerosol vertical distributions in the atmosphere and that the relationship between PBL and pollutant loadings may play an important role in the formation of pollution.

  12. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    PubMed

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  13. Lusaka, Zambia during SAFARI-2000: A Collection Point for Ozone Pollution

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tal; Phahlane, N. Agnes; Coetzee, G. J. R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    In August and September, throughout south central Africa, seasonal clearing of dry vegetation and other fire-related activities lead to intense smoke haze and ozone formation. The first ozone soundings in the heart of the southern African burning region were taken at Lusaka, Zambia (155 deg S, 28 deg E) in early September 2000. Over 90 ppbv ozone was recorded at the surface (1.3 km elevation) and column tropospheric ozone was greater than 50 DU during a stagnant period. These values are much higher than concurrent measurements over Nairobi (1 deg S, 38 deg E) and Irene (25 deg S, 28 deg E, near Pretoria). The heaviest ozone pollution layer (800-500 hPa) over Lusaka is due to recirculated trans-boundary ozone. Starting out over Zambia, Angola, and Namibia, ozone heads east to the Indian Ocean, before turning back over Mozambique and Zimbabwe, heading toward Lusaka. Thus, Lusaka is a collection point for pollution, consistent with a picture of absolutely stable layers recirculating in a gyre over southern Africa.

  14. Spatial and seasonal variation of pollution sources in proximity of the Jaranman-Saryangdo area in Korea.

    PubMed

    Jung, Yeoun Joong; Park, Young Cheol; Lee, Ka Jeong; Kim, Min Seon; Go, Kyeong Ri; Park, Sang Gi; Kwon, Soon Jae; Yang, Ji Hye; Mok, Jong Soo

    2017-02-15

    We aimed to compare the spatial and seasonal distributions of fecal coliforms (FCs) and other physiochemical factors in the drainage basin of the Jaranman-Saryangdo area. Among the pollution sources, the mean daily loads and half-circle radii of FCs were the highest in June. However, the pollutants did not reach the boundary line of the designated area due to an existing buffer zone. The value of the FC geometric mean at station 1 was highest in August during periods of heavy rainfall; however, this value was lower than the regulation limit. The highest daily loads of chemical oxygen demand (COD) and chlorophyll-a (Chl-a) in seawater were in the surface layer in August; however, dissolved oxygen (DO) in the bottom water layer was at its lowest in August. This study demonstrated that season and rainfall have significant effects on the FC, COD, DO, and Chl-a concentrations in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Confronting unknown planetary boundary threats from chemical pollution.

    PubMed

    Persson, Linn M; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; MacLeod, Matthew; McLachlan, Michael S

    2013-11-19

    Rockström et al. proposed a set of planetary boundaries that delimitate a "safe operating space for humanity". One of the planetary boundaries is determined by "chemical pollution", however no clear definition was provided. Here, we propose that there is no single chemical pollution planetary boundary, but rather that many planetary boundary issues governed by chemical pollution exist. We identify three conditions that must be simultaneously met for chemical pollution to pose a planetary boundary threat. We then discuss approaches to identify chemicals that could fulfill those conditions, and outline a proactive hazard identification strategy that considers long-range transport and the reversibility of chemical pollution.

  16. Study on gas diffusion emitted from different height of point source.

    PubMed

    Yassin, Mohamed F

    2009-01-01

    The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.

  17. A wind tunnel study of gaseous tracer dispersion in the convective boundary layer capped by a temperature inversion

    NASA Astrophysics Data System (ADS)

    Fedorovich, E.; Thäter, J.

    Results are presented from wind tunnel simulations of gaseous pollutant dispersion in the atmospheric convective boundary layer (CBL) capped by a temperature inversion. The experiments were performed in the thermally stratified wind tunnel of the University of Karlsruhe, Germany. In the tunnel, the case of horizontally evolving, sheared CBL is reproduced. This distinguishes the employed experimental setup from the preceding laboratory and numerical CBL dispersion studies. The diffusive and mixing properties of turbulence in the studied CBL case have been found to be essentially dependent on the stage of the CBL evolution. Effects of the point source elevation on the horizontal variability of the concentration field, and on the ground level concentration as function of distance from the source have been investigated. The applicability of bottom-up/top-down diffusion concept in the simulated CBL case has been evaluated. The influence of surface wind shear and capping inversion strength on the pollutant dispersion and turbulent exchange across the CBL top has been demonstrated. The imposed positive shear across the inversion has been identified as inhibitor of the CBL growth. Comparisons of concentration patterns from the wind tunnel with water tank data are presented.

  18. The urban boundary-layer field campaign in marseille (ubl/clu-escompte): set-up and first results

    NASA Astrophysics Data System (ADS)

    Mestayer, P.G.; Durand, P.; Augustin, P.; Bastin, S.; Bonnefond, J.-M.; Benech, B.; Campistron, B.; Coppalle, A.; Delbarre, H.; Dousset, B.; Drobinski, P.; Druilhet, A.; Frejafon, E.; Grimmond, C.S.B.; Groleau, D.; Irvine, M.; Kergomard, C.; Kermadi, S.; Lagouarde, J.-P.; Lemonsu, A.; Lohou, F.; Long, N.; Masson, V.; Moppert, C.; Noilhan, J.; Offerle, B.; Oke, T.R.; Pigeon, G.; Puygrenier, V.; Roberts, S.; Rosant, J.-M.; Sanid, F.; Salmond, J.; Talbaut, M.; Voogt, J.

    The UBL/CLU (urban boundary layer/couche limite urbaine) observation and modelling campaign is a side-project of the regional photochemistry campaign ESCOMPTE. UBL/CLU focuses on the dynamics and thermodynamics of the urban boundary layer of Marseille, on the Mediterranean coast of France. The objective of UBL/CLU is to document the four-dimensional structure of the urban boundary layer and its relation to the heat and moisture exchanges between the urban canopy and the atmosphere during periods of low wind conditions, from June 4 to July 16, 2001. The project took advantage of the comprehensive observational set-up of the ESCOMPTE campaign over the Berre-Marseille area, especially the ground-based remote sensing, airborne measurements, and the intensive documentation of the regional meteorology. Additional instrumentation was installed as part of UBL/CLU. Analysis objectives focus on (i) validation of several energy balance computational schemes such as LUMPS, TEB and SM2-U, (ii) ground truth and urban canopy signatures suitable for the estimation of urban albedos and aerodynamic surface temperatures from satellite data, (iii) high resolution mapping of urban land cover, land-use and aerodynamic parameters used in UBL models, and (iv) testing the ability of high resolution atmospheric models to simulate the structure of the UBL during land and sea breezes, and the related transport and diffusion of pollutants over different districts of the city. This paper presents initial results from such analyses and details of the overall experimental set-up.

  19. Comparison between the atmospheric boundary layer in Paris and its rural suburbs during the ECLAP experiment

    NASA Astrophysics Data System (ADS)

    Dupont, E.; Menut, L.; Carissimo, B.; Pelon, J.; Flamant, P.

    The ECLAP experiment has been performed during the winter of 1995 in order to study the influence of the urban area of Paris on the vertical structure and diurnal evolution of the atmospheric boundary layer, in situations favourable to intense urban heat island and pollution increase. One urban site and one rural site have been instrumented with sodars, lidars and surface measurements. Additional radiosondes, 100 m masts and Eiffel Tower data were also collected. This paper gives a general overview of this experiment, and presents results of the analysis of four selected days, characterized by various wind directions and temperature inversion strengths. This analysis, which consists in a comparison between data obtained in the two sites, has been focused on three parameters of importance to the ABL dynamics: the standard deviation of vertical velocity, the surface sensible heat flux, and the boundary layer height. The vertical component of turbulence is shown to be enhanced by the urban area, the amplitude of this effect strongly depending on the meteorological situation. The sensible heat flux in Paris is generally found larger than in the rural suburbs. The most frequent differences range from 25-65 W m -2, corresponding to relative differences of 20-60%. The difference of unstable boundary layer height between both sites are most of the time less than 100 m. However, sodar and temperature data show that the urban influence is enhanced during night-time and transitions between stable and unstable regimes.

  20. In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed

    NASA Astrophysics Data System (ADS)

    McGillis, Wade

    2013-04-01

    and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.

  1. The relation between air pollution data and planetary boundary layer quantities in a complex coastal industrial site nearby populated areas.

    NASA Astrophysics Data System (ADS)

    Mammarella, M. C.; Grandoni, G.; Fernando, J.; Cacciani, M.; di Sabatino, S.; Favaron, M.; Fedele, P.

    2010-09-01

    The connection among boundary layer phenomena, atmospheric pollutant dynamics and human health is an established fact, taking many different forms depending on local characteristics, including slope and position of relief and/or coastline, surface roughness, emission patterns. The problem is especially interesting in complex and coastal terrain, where concurrence of slope and sea induced local circulation interact reciprocally, yielding a complex pattern whose interpretation may go beyond pure modeling, and devise specific measurements among which the planetary boundary layer (PBL) height. An occasion for studying this important theme has been offered by Regione Molise and Valle del Biferno Consortium (COSIB), for the specific case of the industrial complex of Valle del Biferno, 3 km inland of Termoli, in Central Italy, on the Adriatic coast. The local government, sensitive to air quality and public health in the industrial area, together with COSIB has co-financed a research project aimed at gaining knowledge about local meteorology, PBL phenomena and atmospheric pollutant dispersion in the area. Expected results include new air quality monitoring and control methodologies in Valle del Biferno for a sustainable development in an environmentally respectful manner, at a site already characterized by a high environmental and landscape value. The research project, developed by ENEA, has began in 2007 and will conclude in December 2010. Project activities involve research group from Europe, the United States of America, and the Russian Federation. Scientific and practical results will be published and presented in occasion of the final workshop to be held on project conclusion. The scientific interest of Valle del Biferno case stems from the specific local characteristics at site. Given the valley orientation respect to mean synoptic circulation, local effects as sea and slope breezes are dominant, and a complex wind regime develops affecting local transport and diffusion of pollutants emitted in the area of the industrial complex. All effects studied, although influenced by local conditions, characterize not only this industrial area but all areas located along the coastline. This location is highly frequent in Italy and the World, as most industrial complexes in the World occur at coastal sites, where access to harbors and transport networks are facilitated. The Valle del Biferno case may then yield important data to many industrial sites.

  2. Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollutants.

    PubMed

    Haapala, H; Goltsova, N; Lodenius, M

    2001-01-01

    The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.

  3. Western Pacific Tropospheric Ozone and Potential Vorticity: Implications for Asian Pollution

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Newell, Reginald E.; Davis, Douglas D.; Liu, Shaw C.

    1997-01-01

    Tropospheric ozone (03) cross sections measured with lidar from a DC-8 aircraft over the western Pacific correspond closely with potential vorticity (PV). Both are transported from the middle latitude stratosphere, although this is not the only source of 03, and both have sinks in the tropical boundary layer. 03 and PV are good indicators of photochemical and transport process interactions. In summer, some Asian pollution, raised by convection to the upper troposphere, passes southward into the tropics and to the Southern Hemisphere. In winter, subsidence keeps the pollution at low altitudes where it moves over the ocean towards the Inter-Tropical Convergence Zone (ITCZ), with photochemical destruction and secondary pollutant generation occurring en route. Convection raises this modified air to the upper troposphere, where some re may enter the stratosphere. Thus winter Asian pollution may at have a smaller direct influence on the global atmosphere than it would if injected at other longitudes and seasons.

  4. Modeling short-term concentration fluctuations of semi-volatile pollutants in the soil-plant-atmosphere system.

    PubMed

    Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2016-11-01

    Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Role of persistent low-level clouds in mitigating air quality impacts of wintertime cold pool conditions

    NASA Astrophysics Data System (ADS)

    VanReken, Timothy M.; Dhammapala, Ranil S.; Jobson, B. Thomas; Bottenus, Courtney L.; VanderSchelden, Graham S.; Kaspari, Susan D.; Gao, Zhongming; Zhu, Qiurui; Lamb, Brian K.; Liu, Heping; Johnston, Jeff

    2017-04-01

    The Yakima Air Wintertime Nitrate Study (YAWNS) was conducted in January 2013 to investigate the drivers of elevated levels of fine particulate matter (PM2.5) frequently present in the region during winter stagnation periods. An extended stagnation period occurred during the study. For the first four days of the event, skies were clear and the strong diel variation in air pollution patterns were consistent with the expected effects of strong low-level nighttime temperature inversions with moderate mixing during daylight hours. Later in the event a low-level cloud layer formed that persisted over the Yakima Valley for the next seven days while regional conditions remained stagnant. Coincident with the onset of cloud, the levels of all measured primary pollutants, including CO2, CO, NOx, particle number concentration, and black carbon, dropped dramatically and remained low with negligible diel variation for as long as the cloud layer was present. The observed patterns for these air pollutants are consistent with decreased stability and enhanced mixing associated with the cloud-topped boundary layer. Interestingly, levels of secondary pollutants, most notably particulate ammonium nitrate, did not exhibit the same decline. This difference may be due to shifts in the chemical production of secondary pollutants during cloudy conditions, or may merely reflect a further influence of mixing. The results imply that the best strategies for managing wintertime air quality during episodes of persistent cloud are likely different from those needed during clear-sky stagnation events.

  6. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    NASA Astrophysics Data System (ADS)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  7. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kozmar, Hrvoje

    2010-03-01

    Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.

  8. Direct Numerical Simulations of Concentration and Temperature Polarization in Direct Contact Membrane Distillation

    NASA Astrophysics Data System (ADS)

    Lou, Jincheng; Tilton, Nils

    2017-11-01

    Membrane distillation (MD) is a method of desalination with boundary layers that are challenging to simulate. MD is a thermal process in which warm feed and cool distilled water flow on opposite sides of a hydrophobic membrane. The temperature difference causes water to evaporate from the feed, travel through the membrane, and condense in the distillate. Two challenges to MD are temperature and concentration polarization. Temperature polarization represents a reduction in the transmembrane temperature difference due to heat transfer through the membrane. Concentration polarization describes the accumulation of solutes near the membrane. These phenomena reduce filtration and lead to membrane fouling. They are difficult to simulate due to the coupling between the velocity, temperature, and concentration fields on the membrane. Unsteady regimes are particularly challenging because noise at the outlets can pollute the near-membrane flow fields. We present the development of a finite-volume method for the simulation of fluid flow, heat, and mass transport in MD systems. Using the method, we perform a parametric study of the polarization boundary layers, and show that the concentration boundary layer shows self-similar behavior that satisfies power laws for the downstream growth. Funded by the U.S. Bureau of Reclamation.

  9. Turbulent transport and production/destruction of ozone in a boundary layer over complex terrain

    NASA Technical Reports Server (NTRS)

    Greenhut, Gary K.; Jochum, Anne M.; Neininger, Bruno

    1994-01-01

    The first Intensive Observation Period (IOP) of the Swiss air pollution experiment POLLUMET took place in 1990 in the Aare River Valley between Bern and Zurich. During the IOP, fast response measurements of meteorological variables and ozone concentration were made within the boundary layer aboard a motorglider. In addition, mean values of meteorological variables and the concentrations of ozone and other trace species were measured using other aircraft, pilot balloons, tethersondes, and ground stations. Turbulent flux profiles of latent and sensible heat and ozone are calculated from the fast response data. Terms in the ozone mean concentration budget (time rate of change of mean concentration, horizontal advection, and flux divergence) are calculated for stationary time periods both before and after the passage of a cold front. The source/sink term is calculated as a residual in the budget, and its sign and magnitude are related to the measured concentrations of reactive trace species within the boundary layer. Relationships between concentration ratios of trace species and ozone concentration are determined in order to understand the influence of complex terrain on the processes that produce and destroy ozone.

  10. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    NASA Technical Reports Server (NTRS)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  11. Lidar Observation of Aerosol and Temperature Stratification over Urban Area During the Formation of a Stable Atmospheric PBL

    NASA Technical Reports Server (NTRS)

    Kolev, I.; Parvanov, O.; Kaprielov, B.; Mitev, V.; Simeonov, V.; Grigorov, I.

    1992-01-01

    In recent years, the processes in the atmospheric planetary boundary layer (PBL) over urban areas were intensely investigated, due to ecological problems related to the air, soil, and water pollution. New pollution sources in new residential districts, when in contradiction to the microclimate and topography requirements of that region, create a number of considerable hazards and problems. The present study is a continuation of our preceding investigations and aims at revealing the aerosol structure and stratification during the transition after sunset as measured by two lidars. Such observation of the nocturnal, stable PBL formation over an urban area in Bulgaria has not been reported before. The lidars' high time and spatial resolutions allow the changes of the internal structure of the PBL's part located above the surface layer to be observed.

  12. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  13. Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements

    NASA Astrophysics Data System (ADS)

    Ho, Y. K.; Liu, C. H.

    2012-04-01

    Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.

  14. Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte

    NASA Astrophysics Data System (ADS)

    Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.

    The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.

  15. Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3

    NASA Astrophysics Data System (ADS)

    Chatfield, Robert B.; Delany, Anthony C.

    1990-10-01

    Biomass burning throughout the inhabited portions of the tropics generates precursors which lead to significant local atmospheric ozone pollution. Several simulations show how this smog could be only an easily observed, local manifestation of a much broader increase in tropospheric ozone. We illustrate basic processes with a one-dimensional time-dependent model that is closer to true meteorological motions than commonly used eddy diffusion models. Its application to a representative region of South America gives reasonable simulations of the local pollutants measured there. Three illustrative simulations indicate the importance of dilution, principally due to vertical transport, in increasing the efficiency of ozone production, possibly enough for high ozone to be apparent on a very large, intercontinental scale. In the first, cook-then-mix, simulation the nitrogen oxides and other burning-produced pollutants are confined to a persistently subsident fair weather boundary layer for several days, and the resultant ozone is found to have only a transient influence on the whole column of tropospheric ozone. In the second, mix-then-cook, simulation the effect of typical cumulonimbus convection, which vents an actively polluted boundary layer, is to make a persistent increase in the tropical ozone column. Such a broadly increased ozone column is observed over the the populated "continental" portion of the tropics. A third simulation averages all emission, transport, and deposition parameters, representing one column in a global tropospheric model that does not simulate individual weather events. This "oversmoothing" simulation produces 60% more ozone than observed or otherwise modeled. Qualitatively similar overprediction is suggested for all models which average significantly in time or space, as all need do. Clearly, simulating these O3 levels will depend sensitively on knowledge of the timing of emissions and transport.

  16. Spatial Investigation of Columnar AOD and Near-Surface PM2.5 Concentrations During the 2013 American and Yosemite Rim Fires

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.; Moosmuller, H.; Liming, A.; Echevarria, B.

    2014-12-01

    The study of aerosol pollution transport and optical properties in the western U.S. is a challenge due to the complex terrain, bright surfaces, presence of anthropogenic and biogenic emissions, secondary organic aerosol formation, and smoke from wild fires. In addition, the complex terrain influences transport phenomena by recirculating mountain air from California to Nevada, where air pollution from the Sierra Nevada Mountains (SNM) is mixed with urban air from the Central Valley in California. Previous studies in Reno hypothesize that elevated aerosol concentrations aloft, above the convective boundary layer height, make air quality monitoring in Reno challenging with MODIS products. Here, we analyze data from August 2013 as a case study for wildfire smoke plumes in California and Nevada. During this time period, northern California was impacted by large wild fires known as the American and Yosemite Rim fires. Thousands of acres burned, generating large quantities of aerosol pollutants that were transported downwind. The aim of the present work is to investigate the fire plume behavior and transport phenomena using ground level PM2.5 concentrations from routine monitoring networks and aerosol optical properties from AERONET, both at multiple locations in California and Nevada. In addition, the accuracy of MODIS (Collection 6) and VIIRS aerosol satellite products will be evaluated. The multispectral photoacoustic instruments and reciprocal nephelometers located in Reno support the estimation of approximated aerosol height. The objectives are to investigate the impact of the vertical distribution of PM concentrations on satellite aerosol optical depth (AOD) retrievals; assess the ability to estimate ground level PM2.5 mass concentrations for wildfire smoke plumes from satellite remote sensing; and investigate the influence of complex terrain on the transport of pollutants, convective boundary layer depth, and aerosol optical height.

  17. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  18. Analysis of the Momentum and Pollutant Transport at the Roof Level of 2D Idealized Street Canyons: a Large-Eddy Simulation Solution

    NASA Astrophysics Data System (ADS)

    Cheng, Wai Chi; Liu, Chun-Ho

    2010-05-01

    To investigate the detailed momentum and pollutant transports between urban street canyons and the shear layer, a large-eddy simulation (LES) model was developed to calculate the flow and pollutant dispersion in isothermal conditions. The computational domain consisted of three identical two-dimensional (2D) idealized street canyons of unity aspect ratio. The flow field was assumed to be periodic in the horizontal domain boundaries. The subgrid-scale (SGS) stress was calculated by solving the SGS turbulent kinetic energy (TKE) conservation. An area pollutant source with constant pollutant concentration was prescribed on the ground of all streets. Zero pollutant concentration and an open boundary were applied at the domain inflow and outflow, respectively. The quadrant and budget analyses were employed to examine the momentum and pollutant transports at the roof level of the street canyons. Quadrant analyses of the resolved-scale vertical fluxes of momentum and pollutant along the roof level were performed to compare the contributions of different events/scales to the transport processes. The roof of the street canyon is divided into five segments, namely leeward side, upwind shift, center core, downwind shift and windward side in the streamwise direction. Among the four quadrants considered, the sweeps/ejections, which correspond to the downward/upward motions, dominate the momentum/pollutant transfer. The inward/outward interactions play relatively minor roles. While studying the events in detail, the contribution from the sweeps is mainly large-scale fluctuation compared with that of ejections. Moreover, most of the momentum and pollutant transports take place on the windward side. The strong shear at the roof level initiates instability that in turn promotes the increasing turbulent transport from the leeward side to the windward side. At the same time, the roof-level fluctuations grow linearly in the streamwise direction leading to the vigorous turbulent transport and mixing near the windward facade. Budget analyses of the velocity variance, shear stress, pollutant concentration and pollutant flux were also performed. A sharp peak of TKE production is developed at the roof level. Owing to the strong gradient of streamwise velocity, the streamwise velocity fluctuation is promoted first. The TKE is then transferred from the streamwise to the spanwise and vertical velocity fluctuations via the pressure-rate-of-strain tensor. Analogous to the quadrant analyses, the TKE production grows from a sharp peak (~0.1h width, where h is the building height) on the leeward side to a broad one (~0.5h width) on the windward side. This pattern is partly attributed to the growth of the flow instability and the enhanced turbulent processes along the roof of the street canyon in the streamwise direction. The pollutant removal mechanism is clearly illustrated by the budget analysis of the pollutant concentration. The pollutant is carried by the primary recirculation from the ground level to the roof level of the street canyon. The vertical turbulent pollutant flux dominates the pollutant removal in the region right below the roof level (0.8h

  19. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    NASA Astrophysics Data System (ADS)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  20. Airborne Sunphotometer, Airborne in-situ, Space-borne, and Ground-Based Measurements of Troposoheric Aerosol in Ace-2

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Collins, D.; Gasso, S.; Ostrom, E.; Powell, D.; Welton, E.; Durkee, P.; Livingstron, J.; Russell, P.; Flagan, R.; hide

    2000-01-01

    We report on clear-sky column closure experiments performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present results obtained by combining airborne sunphotometer and in-situ aerosol measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidars A wide range of aerosol types was encountered throughout the ACE-2 area, including background Atlantic marine, European pollution-derived, and African mineral dust. During !he two days discussed here, vertical profiles flown in cloud free air masses revealed three distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. We found that the presence of the elevated dust layer removes the good agreement between satellite and sunphotometer AOD usually found in the absence of the dust layer. Using size-resolved composition information we have computed optical properties of the ambient aerosol from the in-situ measurements and subsequently compared those to the sunphotometer results. In the dust, the agreement in layer aerosol optical depth (380-1060 nm) is 3-8%. In the MBL there is tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at 525 nm), but these differences are within the combined error bars of the measurements and computations.

  1. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.

    2013-10-01

    The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.

  2. Intense atmospheric pollution modifies weather: a~case of mixed biomass burning with fossil fuel combustion pollution in the eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y. N.; Herrmann, E.; Zheng, L. F.; Nie, W.; Wei, X. L.; Kulmala, M.

    2013-06-01

    The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution - weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.

  3. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles.

    PubMed

    Knepp, Travis N; Szykman, James J; Long, Russell; Duvall, Rachelle M; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2017-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10-15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms.

  4. Laboratory simulations of the atmospheric mixed-layer in flow ...

    EPA Pesticide Factsheets

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundary layer can have a strong influence on the concentration of pollutants within this layer. Deflections of streamlines at the height of the interface are primarily a function of hill Froude number (Fr), the ratio of mixed-layer height (zi) to terrain height (h), and the crosswind dimension of the terrain. The magnitude of the deflections increases as Fr increases and zi / h decreases. For mixing-height streamlines that are initially below the terrain top, the response is linear with Fr; for those initially above the terrain feature the response to Fr is more complex. Once Fr exceeds about 2, the terrain related response of the mixed layer interface decreases somewhat with increasing Fr (toward more neutral flow). Deflections are also shown to increase as the crosswind dimensions of the terrain increases. Comparisons with numerical modeling, limited field data and other laboratory measurements reported in the literature are favorable. Additionally, visual observations of dye streamers suggests that the flow structure exhibited for our elevated inversions passing over three dimensional hills is similar to that reported in the literature for continuously stratified flow over two-dimensional h

  5. Interaction between aerosol and the planetary boundary layer depth at sites in the US and China

    NASA Astrophysics Data System (ADS)

    Sawyer, V. R.

    2015-12-01

    The depth of the planetary boundary layer (PBL) defines a changing volume into which pollutants from the surface can disperse, which affects weather, surface air quality and radiative forcing in the lower troposphere. Model simulations have also shown that aerosol within the PBL heats the layer at the expense of the surface, changing the stability profile and therefore also the development of the PBL itself: aerosol radiative forcing within the PBL suppresses surface convection and causes shallower PBLs. However, the effect has been difficult to detect in observations. The most intensive radiosonde measurements have a temporal resolution too coarse to detect the full diurnal variability of the PBL, but remote sensing such as lidar can fill in the gaps. Using a method that combines two common PBL detection algorithms (wavelet covariance and iterative curve-fitting) PBL depth retrievals from micropulse lidar (MPL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared to MPL-derived PBL depths from a multiyear lidar deployment at the Hefei Radiation Observatory (HeRO). With aerosol optical depth (AOD) measurements from both sites, it can be shown that a weak inverse relationship exists between AOD and daytime PBL depth. This relationship is stronger at the more polluted HeRO site than at SGP. Figure: Mean daily AOD vs. mean daily PBL depth, with the Nadaraya-Watson estimator overlaid on the kernel density estimate. Left, SGP; right, HeRO.

  6. Convective transport over the central United States and its role in regional CO and ozone budgets

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Pickering, Kenneth E.; Dickerson, Russell R.; Ellis, William G., Jr.; Jacob, Daniel J.; Scala, John R.; Tao, Wei-Kuo; Mcnamara, Donna P.; Simpson, Joanne

    1994-01-01

    We have constructed a regional budget for boundary layer carbon monoxide over the central United States (32.5 deg - 50 deg N, 90 deg - 105 deg W), emphasizing a detailed evaluation of deep convective vertical fluxes appropriate for the month of June. Deep convective venting of the boundary layer (upward) dominates other components of the CO budget, e.g., downward convective transport, loss of CO by oxidation, anthropogenic emissions, and CO produced from oxidation of methane, isoprene, and anthropogenic nonmethane hydrocarbons (NMHCs). Calculations of deep convective venting are based on the method pf Pickering et al.(1992a) which uses a satellite-derived deep convective cloud climatology along with transport statistics from convective cloud model simulations of observed prototype squall line events. This study uses analyses of convective episodes in 1985 and 1989 and CO measurements taken during several midwestern field campaigns. Deep convective venting of the boundary layer over this moderately polluted region provides a net (upward minus downward) flux of 18.1 x 10(exp 8) kg CO/month to the free troposphere during early summer. Shallow cumulus and synoptic-scale weather systems together make a comparable contribution (total net flux 16.2 x 10(exp 8) kg CO/month). Boundary layer venting of CO with other O3 precursors leads to efficient free troposheric O3 formation. We estimate that deep convective transport of CO and other precursors over the central United States in early summer leads to a gross production of 0.66 - 1.1 Gmol O3/d in good agreement with estimates of O3 production from boundary layer venting in a continental-scale model (Jacob et al., 1993a, b). On this respect the central U.S. region acts as s `chimney' for the country, and presumably this O3 contributes to high background levels of O3 in the eastern United States and O3 export to the North Atlantic.

  7. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  8. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  9. The effects of forest canopy shading and turbulence on boundary layer ozone.

    PubMed

    Makar, P A; Staebler, R M; Akingunola, A; Zhang, J; McLinden, C; Kharol, S K; Pabla, B; Cheung, P; Zheng, Q

    2017-05-18

    The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59-72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations.

  10. The effects of forest canopy shading and turbulence on boundary layer ozone

    PubMed Central

    Makar, P. A.; Staebler, R. M.; Akingunola, A.; Zhang, J.; McLinden, C.; Kharol, S. K.; Pabla, B.; Cheung, P.; Zheng, Q.

    2017-01-01

    The chemistry of the Earth's atmosphere close to the surface is known to be strongly influenced by vegetation. However, two critical aspects of the forest environment have been neglected in the description of the large-scale influence of forests on air pollution: the reduction of photolysis reaction rates and the modification of vertical transport due to the presence of foliage. Here we show that foliage shading and foliage-modified vertical diffusion have a profound influence on atmospheric chemistry, both at the Earth's surface and extending throughout the atmospheric boundary layer. The absence of these processes in three-dimensional models may account for 59–72% of the positive bias in North American surface ozone forecasts, and up to 97% of the bias in forested regions within the continent. These processes are shown to have similar or greater influence on surface ozone levels as climate change and current emissions policy scenario simulations. PMID:28516905

  11. Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    PubMed Central

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2012-01-01

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid–base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  12. Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.

    2010-04-01

    This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.

  13. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  14. Infrared detection of chlorinated hydrocarbons in water at ppb levels of concentrations.

    PubMed

    Roy, Gilles; Mielczarski, Jerzy A

    2002-04-01

    Infrared sensor, based on attenuated total reflection phenomenon, for the detection of chlorinated hydrocarbons (CHCs) represents a big advantage compared to chromatographic and mass spectroscopic techniques since it is a one step detector. Pre-concentration and separation take place in the polymer film with simultaneous identification of pollutants by the infrared beam. The analysis is rapid, sample does not require any initial preparation, and can be easily performed in the field. The main default of the latest version of the sensor was a low sensibility (above 1 ppm) compared to the threshold levels of the contaminants. In the present work, it is documented that the response dynamics of the optical sensor and its sensitivity depend strongly on the diffusion of pollutants through a boundary layer formed between polymer film and the monitored solution and in the polymer film. The reduction of thickness of the boundary layer through a controlled high flow rate, and the optimization of thickness (volume) of polymer films result in a tremendous improvement of the response dynamics. It is demonstrated that the sensor can detect simultaneously six CHCs: monochlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, chloroform, trichloroethylene, and perchloroethylene in their mixture with a sensitivity as low as a few ppb. This level of detection opens up numerous applications for the optical sensor.

  15. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    PubMed

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    NASA Astrophysics Data System (ADS)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  17. East China plains: a "basin" of ozone pollution.

    PubMed

    Zhao, Chun; Wang, Yuhang; Zeng, Tao

    2009-03-15

    Economic growth and associated pollution emissions in China are concentrated over three connected plains to the east In this work, we analyze an episode of highly elevated ozone over East China on June 9-14, 2004, using a 3-D chemical transport model. During this episode, the East China plains were under a high-pressure system, which suppressed the ventilation of pollutants from the boundary layer. Simulated ozone concentrations over a major fraction of East China reached high levels, all the way down to the Pearl River Delta region in the southern border. The convergence of pollutant emissions and population over the vast stretch of the geographically flat plains of East China makes the region susceptible to high-ozone exposure. During this episode, the high-03 region extended over an area >1 million km2, which hosts a population of >800 million people. Model results indicate that controlling anthropogenic NOx emissions effectively reduces the area with high-ozone exposure.

  18. Lidar observation of marine mixed layer

    NASA Technical Reports Server (NTRS)

    Yamagishi, Susumu; Yamanouchi, Hiroshi; Tsuchiya, Masayuki

    1992-01-01

    Marine mixed layer is known to play an important role in the transportation of pollution exiting ship funnels. The application of a diffusion model is critically dependent upon a reliable estimate of a lid. However, the processes that form lids are not well understood, though considerable progress toward marine boundary layer has been achieved. This report describes observations of the marine mixed layer from the course Ise-wan to Nii-jima with the intention of gaining a better understanding of their structure by a shipboard lidar. These observations were made in the summer of 1991. One interesting feature of the observations was that the multiple layers of aerosols, which is rarely numerically modeled, was encountered. No attempt is yet made to present a systematic analysis of all the data collected. Instead we focus on observations that seem to be directly relevant to the structure of the mixed layer.

  19. Ozone and Water Vapor Measurements by Raman Lidar in the Planetary Boundary Layer: Error Sources and Field Measurements

    NASA Technical Reports Server (NTRS)

    Lazzarotto, Benoit; Frioud, Max; Larcheveque, Gilles; Mitev, Valentin; Quaglia, Philippe; Simeonov, Valentin; Thompson, Anne; VandenBergh, Hubert; Calpini, Bertrand; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Why do we need time series of ozone and water vapor profiles at low altitude? The degradation of air quality is a very serious environmental problem that affects urban and industrial areas worldwide. Air pollution injures human health and ecosystems, diminishes crop yield, and spoils patrimony and materials. The phenomena involved in air pollution are very complex. Once emitted into the atmosphere, (primary) pollutants are transported, dispersed, transformed by gas/solid phase change and chemical reaction, and finally removed by dry and wet deposition. Most challenging is the fact that the health and environmental impacts of secondary pollutants (formed in the atmosphere) are frequently more severe than those of their precursors (primary pollutants). This is the case of ozone and other photochemical pollutants, such as peroxyacetil nitrate (PAN) and secondary particles, produced in the atmosphere by the photo-oxidation volatile organic compounds (VOC) catalyzed by nitrogen oxides (NO(sub x)). Photochemical air pollution is a complex science because of the non-linearity of its response to changes in primary emission.

  20. Planetary boundary layer height retrieval at UMBC in the frame of NOAA/ARL campaign

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Delgado, R.; Compton, J.; Hoff, R.

    2011-11-01

    The determination of the depth of daytime and nighttime Planetary Boundary Layer Height (PBLH) must be known very accurately to relate boundary layer concentrations of gases or particles to upstream fluxes. Moreover, the air quality forecasts rely upon semi-empirical parameterizations within numerical models for the description of dispersion, formation and fate of pollutants influenced by the spatial and temporal distribution of emissions in cities, topography, and weather. The particulate matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is the standard used to evaluate air quality. Remote sensing of atmospheric aerosols in the lower troposphere that affect air quality is done at the University of Maryland, Baltimore County (UMBC) by the Atmospheric Lidar Group, that supported the joint NOAA/ARL and NCEP ad hoc field study. These campaigns launched radiosondes from Howard University (HU) (26.6km south of UMBC) and RFK Stadium (29.15 km south of UMBC) during September 14-22, 2009 to develop a database to investigate the evolution and spatial variability of the PBLH. In this paper, we examined the potential for continual observation of PBLH by performing a statistical comparison of the spatial and temporal resolution of PBLH from lidars, wind profiler, and radiosonde measurements

  1. Aerosol properties computed from aircraft-based observations during the ACE- Asia campaign. 2; A case study of lidar ratio closure and aerosol radiative effects

    NASA Technical Reports Server (NTRS)

    Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.

    2005-01-01

    For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface, while it is of importance for estimating vertical profiles of radiative forcing and heating rates.

  2. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the intensity of stratification is controlled by the gravitational acceleration. The urban characteristic is modeled by periodic boundary conditions at the domain inlet-outlet and spanwise extent, so as to simulate the infinitely long and wide urban area. Pollutant dispersion is modeled by scalar transport with the pollutant area source on the ground of the first street canyon and by open boundary condition at the domain outlet. The numerical models are solved with incremental time steps until it reaches the pseudo steady-state. Afterwards, a set of data is collected for each model such that the temporal averages of mean and fluctuating field variables do not vary significantly if more time steps are included. It is found that the ventilation performance is improved and the plume dispersion in shear layer is enhanced when the stratification is more unstable. The mean flows, turbulent transports of pollutant and momentum, pollutant concentration fields in different unstable stratifications will be discussed with profile and contour plots. The ventilation performance of a street canyon evaluated by air exchange rate (ACH) and pollutant exchange rate (PCH) at roof level and the plume dispersion characterized by the mean plume height and dispersion coefficient in shear layer will also be discussed.

  3. The IMADA-AVER Boundary Layer Experiment in the Mexico City Area.

    NASA Astrophysics Data System (ADS)

    Doran, J. C.; Bian, X.; de Wekker, S. F. J.; Edgerton, S.; Fast, J. D.; Hubbe, J. M.; Shaw, W. J.; Whiteman, C. D.; Abbott, S.; King, C.; Leach, J.; Mulhearn, M.; Russell, C.; Templeman, B.; Wolfe, D.; Archuleta, J.; Elliott, S.; Fernandez, A.; Langley, D.; Lee, J. T.; Porch, W.; Tellier, L.; Chow, J.; Watson, J. G.; Coulter, R. L.; Martin, T. J.; Shannon, J. D.; White, R.; Martinez, D.; Martinez, J. L.; Mora, V.; Sosa, G.; Mercado, G.; Pena, J. L.; Salas, R.; Petty, R.

    1998-11-01

    A boundary layer field experiment in the Mexico City basin during the period 24 February-22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500-3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixed-layer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the transport and diffusion of air pollutants show less day-to-day regularity than had been anticipated on the basis of Mexico City's tropical location, high altitude and strong insolation, and topographical setting.

  4. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  5. Effect of CeO2 on TiC Morphology in Ni-Based Composite Coating

    NASA Astrophysics Data System (ADS)

    Cai, Yangchuan; Luo, Zhen; Chen, Yao

    2018-03-01

    The TiC/Ni composite coating with different content of CeO2 was fabricated on the Cr12MoV steel by laser cladding. The microstructure of cladding layers with the different content of CeO2 from the bottom to the surface is columnar crystal, cellular crystal, and equiaxed crystal. When the content of CeO2 is 0 %, the cladding layer has a coarse and nonuniform microstructure and TiC particles gathering in the cladding layer, and then the wear resistance was reduced. Appropriate rare-earth elements refined and homogenised the microstructure and enhanced the content of carbides, precipitated TiC particles and original TiC particles were spheroidised and refined, the wear resistance of the cladding layer was improved significantly. Excessive rare-earth elements polluted the grain boundaries and made the excessive burning loss of TiC particles that reduced the wear resistance of the cladding layer.

  6. Characteristics of the turbulence in the stable boundary layer over complex terrain of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Liang, J.; Zhang, L.; Yuan, G.

    2017-12-01

    Accurate determination of surface turbulent fluxes in a stable boundary layer is of great practical importance in weather prediction and climate simulations, as well as applications related to air pollution. To gain an insight into the characteristics of turbulence in a stable boundary layer over the complex terrain of the Loess Plateau, we analyzed the data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). We proposed a method to identify and efficiently isolate nonstationary motions from turbulence series, and examined the characteristics of nonstationary motions (nonstationary motions refer to gusty events on a greater scale than local shear-generated turbulence). The occurrence frequency of nonstationary motions was found to depend on the mean flow, being more frequent in weak wind conditions and vanishing when the wind speed, U, was greater than 3.0 m s-1. When U exceeded the threshold value of 1.0 m s-1 for the gradient Richardson number Ri ≤ 0.3 and 1.5 m s-1 for Ri > 0.3, local shear-generated turbulence depended systematically on U with an average rate of 0.05 U. However, for the weak wind condition, neither the mean wind speed nor the stability was an important factor for local turbulence. Under the weak wind stable condition, affected by topography-induced nonstationary motions, the local turbulence was anisotropic with a strong horizontal fluctuation and a weak vertical fluctuation, resulting in weakened heat mixing in the vertical direction and stronger un-closure of energy. These findings accessed the validity of similarity theory in the stable boundary layer over complex terrain, and revealed one reason for the stronger un-closure of energy in the night.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott

    A necessary prerequisite of cloud formation, aerosol particles represent one of the largest uncertainties in computer simulations of climate change1,2, in part because of a poor understanding of processes under natural conditions3,4. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions5-7. Cloud condensation nuclei (CCN) in clean Amazonia are mostly produced by the growth of smaller particles in the boundary layer8-10, whereas these smaller particles themselves 31 appear to be produced elsewhere5,11. Key questions are in what part of the atmosphere they might 32 be produced andmore » what could be the transport processes that deliver them to the boundary layer, where they grow into CCN. Here, using recent aircraft measurements above central Amazonia, we show high concentrations of small particles in the lower free troposphere. The particle size spectrum shifts towards larger sizes with decreasing altitude, implying particle growth as air descends from the free troposphere towards Earth's surface. Complementary measurements at ground sites show that free tropospheric air having high concentrations of small particles (diameters of less than 50 nm) is transported into the boundary layer during precipitation events, both by strong convective downdrafts and by weaker downward motions in the trailing stratiform region. This vertical transport helps maintain the population of small particles and ultimately CCN in the boundary layer, thereby playing an important role in controlling the climate state under natural conditions. In contrast, this mechanism becomes masked under polluted conditions, which sometimes prevail at times in Amazonia as well as over other tropical continental regions5,12.« less

  8. Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Klein, Petra M.; Hu, Xiao-Ming; Shapiro, Alan; Xue, Ming

    2016-03-01

    In the Southern Great Plains, nocturnal low-level jets (LLJs) develop frequently after sunset and play an important role in the transport and dispersion of moisture and atmospheric pollutants. However, our knowledge regarding the LLJ evolution and its feedback on the structure of the nocturnal boundary layer (NBL) is still limited. In the present study, NBL characteristics and their interdependencies with LLJ evolution are investigated using datasets collected across the Oklahoma City metropolitan area during the Joint Urban field experiment in July 2003 and from three-dimensional simulations with the Weather Research and Forecasting (WRF) model. The strength of the LLJs and turbulent mixing in the NBL both increase with the geostrophic forcing. During nights with the strongest LLJs, turbulent mixing persisted after sunset in the NBL and a strong surface temperature inversion did not develop. However, the strongest increase in LLJ speed relative to the mixed-layer wind speed in the daytime convective boundary layer (CBL) occurred when the geostrophic forcing was relatively weak and thermally-induced turbulence in the CBL was strong. Under these conditions, turbulent mixing at night was typically much weaker and a strong surface-based inversion developed. Sensitivity tests with the WRF model confirm that weakening of turbulent mixing during the decay of the CBL in the early evening transition is critical for LLJ formation. The cessation of thermally-induced CBL turbulence during the early evening transition triggers an inertial oscillation, which contributes to the LLJ formation.

  9. Constant volume balloons measurements in the urban Marseille and Fos-Berre industrial ozone plumes during ESCOMPTE experiment

    NASA Astrophysics Data System (ADS)

    Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre

    ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.

  10. Measurements and Modeling of Turbulent Fluxes during Persistent Cold Air Pool Events in Salt Lake Valley, Utah

    NASA Astrophysics Data System (ADS)

    Ivey, C. E.; Sun, X.; Holmes, H.

    2017-12-01

    Land surface processes are important in meteorology and climate research since they control the partitioning of surface energy and water exchange at the earth's surface. The surface layer is coupled to the planetary boundary layer (PBL) by surface fluxes, which serve as sinks or sources of energy, moisture, momentum, and atmospheric pollutants. Quantifying the surface heat and momentum fluxes at the land-atmosphere interface, especially for different surface land cover types, is important because they can further influence the atmospheric dynamics, vertical mixing, and transport processes that impact local, regional, and global climate. A cold air pool (CAP) forms when a topographic depression (i.e., valley) fills with cold air, where the air in the stagnant layer is colder than the air aloft. Insufficient surface heating, which is not able to sufficiently erode the temperature inversion that forms during the nighttime stable boundary layer, can lead to the formation of persistent CAPs during wintertime. These persistent CAPs can last for days, or even weeks, and are associated with increased air pollution concentrations. Thus, realistic simulations of the land-atmosphere exchange are meaningful to achieve improved predictions of the accumulation, transport, and dispersion of air pollution concentrations. The focus of this presentation is on observations and modeling results using turbulence data collected in Salt Lake Valley, Utah during the 2010-2011 wintertime Persistent Cold Air Pool Study (PCAPS). Turbulent fluxes and the surface energy balance over seven land use types are quantified. The urban site has an energy balance ratio (EBR) larger than one (1.276). Negative Bowen ratio (-0.070) is found at the cropland site. In addition to turbulence observations, half-hourly WRF simulated net radiation, latent heat, sensible heat, ground heat fluxes during one persistent CAP event are evaluated using the PCAPS observations. The results show that sensible and latent heat fluxes during the CAP event are overestimated. The sensitivity of WRF results to large-scale forcing datasets, PBL schemes and land surface models (LSMs) are also investigated. The optimal WRF configuration for simulating surface turbulent fluxes and atmospheric mixing during CAP events is determined.

  11. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space Station. 13. Space lidar II: Using coherent Doppler lidar to estimate river discharge. 14. Poster session: Lidar technology, optics for lidar. Laser for lidar. Middle atmosphere observations. Tropospheric observations (aerosols, clouds). Boundary layer, urban pollution. Differential absorption lidar. Doppler lidar. and Space lidar.

  12. Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics

    NASA Astrophysics Data System (ADS)

    Witte, J. C.; Schoeberl, M. R.; Douglass, A. R.; Gleason, J. F.; Krotkov, N. A.; Gille, J. C.; Pickering, K. E.; Livesey, N.

    2009-09-01

    For the August-September 2008 Olympic and the Paralympic Games held in Beijing, China, strict controls on pollutant emissions and motor vehicle traffic were imposed on Beijing and neighboring provinces to the South to improve the air quality in and around the city. Satellite measurements over Beijing between July and September showed 43% reductions of tropospheric column nitrogen dioxide, compared to the past three years. When neighboring provinces to the south are included in our analyses, satellite measurements show boundary layer sulfur dioxide reductions of 13% and carbon monoxide reductions of 12% at 700 hPa. Thus, based on satellites observations alone, noticeable reductions in these pollutant tracers were measured during both games.

  13. Mixing-height measurement by lidar, particle counter, and rawinsonde in the Williamette Valley, Oregon

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Melfi, S. H.; Olsson, L. E.; Tuft, W. L.; Elliott, W. P.; Egami, R.

    1972-01-01

    The feasibility of using laser radar (lidar) to measure the spatial distribution of aerosols and water vapor in the earth's mixing or boundary layer is shown. From these data the important parameter of actual mixing height was determined, that is, the maximum height to which particulate pollutants actually mix. Data are shown for simultaneous lidar, rawinsonde, and aircraft-mounted condensation nuclei counter and temperature measurements. The synoptic meteorology is also presented. The Williamette Valley, Oregon, was chosen for the measurements because of its unique combination of meteorology, terrain, and pollutant source, along with an ongoing Oregon State University study of the natural ventilation of this valley.

  14. Estimations of pollution emissions by the Moscow megapolis basing on in-situ measurements and optical remote sensing

    NASA Astrophysics Data System (ADS)

    Elansky, N.; Postylyakov, O.; Verevkin, Y.; Volobuev, L.; Ponomarev, N.

    2017-11-01

    By the present a large amount of data has been accumulated on direct measurements of the pollution and thermodynamic state of the atmosphere in the Moscow region, which was obtained at stations of Roshydromet, Mosecomonitoring, A.M.Obukhov Institute of Atmospheric Physics (OIAP), M.V. Lomonosov Moscow State University, NPO Typhoon, what allows estimating pollution emissions based on measurements and correcting existing emission inventories, which are evaluated mainly on indirect data connected with population density, fuel consumption, etc. Within the framework of the project, the whole volume of data on the concentration of ground contaminants CO, NOx, SO2, CH4, obtained at regularly operated Moscow Ecological Monitoring stations and at OIAP stations from 2005 to 2014, was systematized. Observation data on pollution concentrations are supplemented by measurements of their integral content in the atmospheric boundary layer, obtained by differential spectroscopy methods (MAX DOAS, ZDOAS) at stationary stations and by passing Moscow with DOAS-equipped car. The paper present preliminary estimates of pollution emissions in the Moscow region, obtained on the basis of the collected array of experimental data. The estimations of pollutant emissions from Moscow were obtained experimentally in a few ways: (1) on the basis of network observations of surface concentrations, (2) on the basis of measurements in the atmospheric layer 0-348 m at Ostankino TV tower, (3) on the basis of the integral pollutant (NO2) content in ABL obtained by DOAS technique from stationary stations, and (4) using a car with DOAS equipment traveling over the closed route around Moscow (for NO2). All experimental approaches yielded close values of pollution emissions for Moscow. Trends in emissions of CO, NOx, and CH4 are negative, and the trend of SO2 emission is positive from 2005 to 2014.

  15. Remote sensing applications for diagnostics of the radioactive pollution of the ground surface and in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey; Ouzounov, Dimitar; Boyarchuk, Kirill; Laverov, Nikolay

    2013-04-01

    Radioactive pollution due to its air ionization activity can drastically change the atmospheric boundary layer conductivity (what was experimentally proved during period of nuclear tests in atmosphere) and through the global electric circuit produce anomalous variations in atmosphere. As additional effect the ions created due to air ionization serve as centers of water vapor condensation and nucleation of aerosol-size particles. This process is accompanied by latent heat release. Both anomalies (ionospheric and thermal) can be controlled by remote sensing technique both from satellites (IR sensors and ionospheric probes) and from ground (GPS receivers, ground based ionosondes, VLF propagation sounding, ground measurements of the air temperature and humidity). We monitored the majority of transient events (Three-Mile Island and Chernobyl nuclear power plant emergencies) and stationary sources such as Gabon natural nuclear reactor, sites of underground nuclear tests, etc. and were able to detect thermal anomalies and for majority of cases - the ionospheric anomalies as well. Immediately after the March 11, 2011 earthquake and tsunami in Japan we started to continuously survey the long-wavelength energy flux (10-13 microns) measurable at top of the atmosphere from POES/NOAA/AVHRR polar orbit satellites. Our preliminary results show the presence of hot spots on the top of the atmosphere over the Fukushima Daiichi Nuclear Power Plant (FDNPP) and due to their persistence over the same region they are most likely not of meteorological origin. On March 14 and 21 we detected a significant increase in radiation at the top of the atmosphere which also coincides with a reported radioactivity gas leaks from the FDNPP. After March 21 the intensity of energy flux in atmosphere started to decline, which has been confirmed by ground radiometer network. We were able to detect with ground based ionosonde the ionospheric anomaly associated with the largest radioactive release on March 21.We are presenting new theoretical estimates and results of experimental measurements showing that the heat flux released during ionization of the atmospheric boundary layer under significant radioactive pollution is sufficient for recording anomalous heat fluxes using the means of remote sounding (infrared radiometers) installed on satellites, and ionospheric anomalies are generated due to changes of the boundary layer conductivity.

  16. Characteristics of Aerosol Transport from Asia to the West Coast of North America

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Bahreini, R.; Middlebrook, A. M.; Atlas, E. L.; Blake, D. R.; Brioude, J.; Cooper, O. R.; de Gouw, J. A.; Holloway, J. S.; Lack, D. A.; Langridge, J. M.; Meinardi, S.; Nowak, J. B.; Peischl, J.; Perring, A.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Trainer, M.; Trytko, J.; Warneke, C.

    2010-12-01

    During the CalNex field program of May and June 2010, the NOAA WP-3D aircraft observed several layers of enhanced trace gas mixing ratios and aerosol concentrations at altitudes ranging from 1 to 4 km over southern and central California. The submicron aerosol composition within these layers was dominated by partially neutralized sulfate, while nitrate, organic matter and black carbon were only minor constituents. The particle layers were associated with trace gases, such as benzene and sulfur dioxide, consistent with anthropogenic fossil fuel emissions, and were not associated with enhancements of the biomass burning tracer acetonitrile. The particle size distribution was dominated by a single accumulation mode that is characteristic of a well aged aerosol. Transport modeling indicates an Asian source for these layers of pollution. Dew point temperatures within the layers were less than -15 degrees Celsius, indicating desiccation by precipitation during transport. Taken together, these observations are consistent with those from earlier studies in which was diagnosed the removal of primary and organic particles by precipitation scavenging during uplift from the polluted Asian boundary layer into the free troposphere. Oxidation of residual sulfur dioxide that remained following transport through the cloud system may have resulted in the observed sulfate-rich aerosol. The repeated observation of such layers suggests that wet scavenging frequently modifies the chemical and optical characteristics of aerosols emitted in urban regions in Asia and transported in the free troposphere across the Pacific.

  17. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Solanki, Raman; Ojha, Narendra; Janssen, Ruud H. H.; Pozzer, Andrea; Dhaka, Surendra K.

    2016-08-01

    We investigate the time evolution of the Local Boundary Layer (LBL) for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l.) in the central Himalayan region, using a radar wind profiler (RWP) during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX). We restrict our analysis to clear-sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S / N) profile was found to be inadequate in the characterization of mixed layer (ML) top at this site. Therefore, we implemented a criterion of S / N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00-10:00 UTC) observed boundary layer height ranges from 440 ± 197 m in November (late autumn) to 766 ± 317 m above ground level (a.g.l.) in March (early spring). The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s-1) lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF) model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5), as well as the mean diurnal variations (within 1σ variability). The mean biases in the daytime average LBL height vary from -7 % (January) to +30 % (February) between model and observations, except during March (+76 %). Sensitivity simulations using a mixed layer model (MXL/MESSy) indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer over this complex terrain in the Himalayas, and highlights the need for year-long simultaneous measurements of boundary layer dynamics and air quality to better understand the role of lower tropospheric dynamics in pollution transport.

  18. Mixing Heights and Three-Dimensional Ozone Structure Observed by Airborne Lidar During the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Senff, C. J.; Alvarez, R. J.; Banta, R. M.; Sandberg, S. P.; Weickmann, A. M.; Darby, L. S.

    2007-12-01

    A new all solid state ozone lidar was deployed on a NOAA Twin Otter to study boundary layer ozone and aerosol, mostly around Houston, during the 2006 Texas Air Quality Study. The new instrument transmits high pulse-rate, low pulse-energy light at 3 wavelengths in the ultraviolet to obtain ozone profiles with 500 m horizontal resolution and 90 m vertical resolution. During the Texas field study, 20 research flights resulted in nearly 70 hours of ozone measurements during the period from August 1 to September 15. Science objectives included characterization of background ozone levels over rural areas near Houston and Dallas and variability and structure of the boundary layer over different surface types, including urban, wooded, and agricultural land surface areas as well as over Galveston Bay and the Gulf of Mexico. A histogram of all boundary layer ozone concentration measurements showed a bimodal distribution with modes at 45 ppb and 70 ppb. The lower mode correlated with southerly flow, when relatively clean air was transported onshore into the Houston area. Segmenting the observations during southerly flow by region, including the Gulf of Mexico, land within about 55 km from the coast, and further inland indicated that background levels increased by about 10 ppb as air was transported onshore. During the latter part of the experiment, as more pollution was imported into the Houston region, background levels rose to nearly 80 ppb in regions N of Houston. Two flights aimed at observing import of ozone into Texas from the east showed that ozone concentrations increased and boundary layer depths deepened upwind of Houston between September 4 and September 8. Background levels rose by more than 10 ppb over this period. In addition to ozone measurements, we also estimated boundary layer height based on maximum gradient in observed backscatter. The technique worked well when the layer topped by the strongest gradient extends down to the surface. Investigation of the correlation between ozone levels and mixing layer heights both within and external to the Houston urban plume showed a variety of relationships, depending on, e.g., wind direction and occurrence of a bay/gulf breeze. On a day-to-day basis, higher ozone levels were weakly correlated with deeper mixing levels - this was likely due to advection of the urban heat island downwind with the high-ozone urban plume.

  19. Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.

  20. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  1. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles

    PubMed Central

    Knepp, Travis N.; Szykman, James J.; Long, Russell; Duvall, Rachelle M.; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2018-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10–15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms. PMID:29682087

  2. Changing Conditions in the Arctic: An Analysis of 45 years of Tropospheric Ozone Measurements at Barrow Observatory

    NASA Astrophysics Data System (ADS)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Jefferson, A.; Emmons, L. K.; Oltmans, S. J.

    2017-12-01

    In order to understand the impact of climate on local bio-systems, understanding the changes to the atmospheric composition and processes in the Arctic boundary layer and free troposphere is imperative. In the Arctic, many conditions influence tropospheric ozone variability such as: seasonal halogen caused depletion events, long range transport of pollutants from mid-northern latitudes, compounds released from wildfires, and different meteorological conditions. The Barrow station in Utqiagvik, Alaska has collected continuous measurements of ground-level ozone since 1973. This unique long-term time series allows for analysis of the influence of a rapidly changing climate on ozone conditions in this region. Specifically, this study analyzes the frequency of enhanced ozone episodes over time and provides in depth analysis of periods of positive deviations from the expected conditions. To discern the contribution of different pollutant sources to observed ozone variability, co-located measurements of aerosols, carbon monoxide, and meteorological conditions are used. In addition, the NCAR Mozart-4/MOPITT Chemical Forecast model and NOAA Hysplit back-trajectory analysis provide information on transport patterns to the Arctic and confirmation of the emission sources that influenced the observed conditions. These anthropogenic influences on ozone variability in and below the boundary layer are essential for developing an understanding of the interaction of climate change and the bio-systems in the Arctic.

  3. Atmospheric mercury species measurements across the Western Mediterranean region: Behaviour and variability during a 2015 research cruise campaign

    NASA Astrophysics Data System (ADS)

    Castagna, Jessica; Bencardino, Mariantonia; D'Amore, Francesco; Esposito, Giulio; Pirrone, Nicola; Sprovieri, Francesca

    2018-01-01

    In the framework of the ongoing MEDOCEANOR measurements program, an oceanographic cruise campaign was carried out during summer 2015 in the Western sector of Mediterranean Sea basin, on-board the research vessel ;Minerva Uno; of the Italian National Research Council (CNR). The overall goal was to investigate the dynamic patterns of mercury in the Marine Boundary Layer (MBL) and the main factors affecting mercury behaviour at both coastal and offshore locations. The mean concentrations of the recorded Hg species were 1.6 ± 0.5 ngm-3 , 11.8 ± 15.0 pgm-3 , and 2.4 ± 1.1 pgm-3 , respectively for GEM, GOM, and PBM. Moreover, during the measurement period typical fair-weather conditions of the Mediterranean summer were encountered with high levels of solar radiation and temperature that favoured photochemical reactions. Atmospheric pollutants such as ozone, sulphur oxides and nitrogen oxides and other meteorological parameters were in addition recorded and jointly discussed with selected mercury events in terms of their spatio-temporal variations. Changes in air pollutant concentrations were also argued in the light of their likely influencing sources, among which, anthropogenic activities, such as the mercury cell chlor-alkali complex in Tuscany, Italy, and natural influence, like volcanic ashes, detected around the Aeolian area and the in-situ production of reactive gaseous mercury within the Marine Boundary Layer.

  4. Wintertime Boundary Layer Structure in the Grand Canyon.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  5. Observed correlations between aerosol and cloud properties in an Indian Ocean trade cumulus regime

    NASA Astrophysics Data System (ADS)

    Pistone, K.; Praveen, P. S.; Thomas, R. M.; Ramanathan, V.; Wilcox, E.; Bender, F. A.-M.

    2015-10-01

    There are many contributing factors which determine the micro- and macrophysical properties of clouds, including atmospheric structure, dominant meteorological conditions, and aerosol concentration, all of which may be coupled to one another. In the quest to determine aerosol effects on clouds, these potential relationships must be understood, as changes in atmospheric conditions due to aerosol may change the expected magnitude of indirect effects by altering cloud properties in unexpected ways. Here we describe several observed correlations between aerosol conditions and cloud and atmospheric properties in the Indian Ocean winter monsoon season. In the CARDEX (Cloud, Aerosol, Radiative forcing, Dynamics EXperiment) field campaign conducted in February and March 2012 in the northern Indian Ocean, continuous measurements of atmospheric precipitable water vapor and the liquid water path (LWP) of trade cumulus clouds were made, concurrent with measurements of water vapor flux, cloud and aerosol vertical profiles, meteorological data, and surface and total-column aerosol. Here we present evidence of a positive correlation between aerosol and cloud LWP which becomes clear after the data are filtered to control for the natural meteorological variability in the region. We then use the aircraft and ground observatory measurements to explore the mechanisms behind the observed aerosol-LWP correlation. We determine that increased boundary-layer humidity lowering the cloud base is responsible for the observed increase in cloud liquid water. Large-scale analysis indicates that high pollution cases originate with a highly-polluted boundary layer air mass approaching the observatory from a northwesterly direction. This polluted mass exhibits higher temperatures and humidity than the clean case, the former of which may be attributable to heating due to aerosol absorption of solar radiation over the subcontinent. While high temperature conditions dispersed along with the high-aerosol anomaly, the high humidity condition was observed to instead develop along with the polluted air mass. We then explore potential causal mechanisms of the observed correlations, though future research will be needed to more fully describe the aerosol-humidity relationship.

  6. Strategic guidelines for street canyon geometry to achieve sustainable street air quality

    NASA Astrophysics Data System (ADS)

    Chan, Andy T.; So, Ellen S. P.; Samad, Subash C.

    This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes "isolated roughness flow", "skimming flow" and "wake interference flow" (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height ( h2/ h1), canyon height to width ratio ( h/ w) and canyon length to height ratio ( l/ h). A field-size canyon has been analyzed through numerical simulations using the standard k- ɛ turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.

  7. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events.

    PubMed

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.

  8. Typical tropospheric aerosol backscatter profiles for Southern Ireland: The Cork Raman lidar

    NASA Astrophysics Data System (ADS)

    McAuliffe, Michael A. P.; Ruth, Albert A.

    2013-02-01

    A Raman lidar instrument (UCLID) was established at the University College Cork as part of the European lidar network EARLINET. Raman backscatter coefficients, extinction coefficients and lidar ratios were measured within the period 28/08/2010 and 24/04/2011. Typical atmospheric scenarios over Southern Ireland in terms of the aerosol load in the planetary boundary layer are outlined. The lidar ratios found are typical for marine atmospheric condition (lidar ratio ca. 20-25 sr). The height of the planetary boundary layer is below 1000 m and therefore low in comparison to heights found at other lidar sites in Europe. On the 21st of April a large aerosol load was detected, which was assigned to a Saharan dust event based on HYSPLIT trajectories and DREAM forecasts along with the lidar ratio (70 sr) for the period concerned. The dust was found at two heights, pure dust at 2.5 km and dust mixing with pollution from 0.7 to 1.8 km with a lidar ratio of 40-50 sr.

  9. Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: role of photochemical and meteorological processes.

    PubMed

    Zhang, Hualong; Xu, Xiaobin; Lin, Weili; Wang, Ying

    2014-01-01

    Previous measurements of peroxyacetyl nitrate (PAN) in Asian megacities were scarce and mainly conducted for relative short periods in summer. Here, we present and analyze the measurements of PAN, O3, NO(x), etc., made at an urban site (CMA) in Beijing from 25 January to 22 March 2010. The hourly concentration of PAN averaged 0.70 x 10(-9) mol/mol (0.23 x 10(-9) -3.51 x 10(-9) mol/mol) and was well correlated with that of NO2 but not O3, indicating that the variations of the winter concentrations of PAN and 03 in urban Beijing are decoupled with each other. Wind conditions and transport of air masses exert very significant impacts on O3, PAN, and other species. Air masses arriving at the site originated either from the boundary layer over the highly polluted N-S-W sector or from the free troposphere over the W-N sector. The descending free-tropospheric air was rich in O3, with an average PAN/O3 ratio smaller than 0.031, while the boundary layer air over the polluted sector contained higher levels of PAN and primary pollutants, with an average PAN/O3 ratio of 0.11. These facts related with transport conditions can well explain the observed PAN-O3 decoupling. Photochemical production is important to PAN in the winter over Beijing. The concentration of the peroxyacetyl (PA) radical was estimated to be in the range of 0.0014 x 10(-12) -0.0042 x 10(-12) mol/mol. The contributions of the formation reaction and thermal decomposition to PAN's variation were calculated and found to be significant even in the colder period in air over Beijing, with the production exceeding the decomposition.

  10. Pollutant Dispersion in Boundary Layers Exposed to Rural-to-Urban Transitions: Varying the Spanwise Length Scale of the Roughness

    NASA Astrophysics Data System (ADS)

    Tomas, J. M.; Eisma, H. E.; Pourquie, M. J. B. M.; Elsinga, G. E.; Jonker, H. J. J.; Westerweel, J.

    2017-05-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic particle image velocimetry and laser-induced fluorescence, have been used to investigate pollutant dispersion mechanisms in regions where the surface changes from rural to urban roughness. The urban roughness was characterized by an array of rectangular obstacles in an in-line arrangement. The streamwise length scale of the roughness was kept constant, while the spanwise length scale was varied by varying the obstacle aspect ratio l / h between 1 and 8, where l is the spanwise dimension of the obstacles and h is the height of the obstacles. Additionally, the case of two-dimensional roughness (riblets) was considered in LES. A smooth-wall turbulent boundary layer of depth 10 h was used as the approaching flow, and a line source of passive tracer was placed 2 h upstream of the urban canopy. The experimental and numerical results show good agreement, while minor discrepancies are readily explained. It is found that for l/h=2 the drag induced by the urban canopy is largest of all considered cases, and is caused by a large-scale secondary flow. In addition, due to the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identified that is responsible for street-canyon ventilation for the sixth street and onwards. Moreover, it is shown that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the canopy, while the streamwise length scale does not show a similar trend.

  11. Comparison of Aerosol Single Scattering Albedos Derived By Diverse Techniques in Two North Atlantic Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Redemann, J.; Schmid, B.; Bergstrom, R. W.; Livingston, J. M.; McIntosh, D. M.; Hartley, S.; Hobbs, P. V.; Quinn, P. K.; Carrico, C. M.; hide

    2000-01-01

    Aerosol single scattering albedo w (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, TARFOX and ACE-2, determined aerosol w by a variety of techniques. The techniques included fitting of calculated to measured fluxes; retrievals of w from skylight radiances; best fits of complex refractive index to profiles of backscatter, extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for w at midvisible wavelengths, with 0.85 less than wmidvis less than 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of w could usually be approximated by lognormals in wmax-w, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of wmidvis of 0.90+/-0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and possible artifacts (e.g., unknown gas absorption). The other techniques gave larger values for wmidvis for the polluted boundary layer, with a typical result of wmidvis = 0.95+/-0.04, Current uncertainties in vv are large in terms of climate effects. More tests are needed of the consistency among different methods and of humidification effects on w.

  12. Modeling Regional Pollution Episodes With The Ctm Mocage.

    NASA Astrophysics Data System (ADS)

    Dufour, A.; Brocheton, F.; Amodei, M.; Peuch, V.-H.

    Several regional ozone pollution episodes have been studied in the context of two recent extensive field campaigns in France: ESQUIF, in the Paris region and ES- COMPTE, in the vicinity of Marseilles. MOCAGE is an off-line multi-scale Chem- istry and Transport Model (CTM), driven by the operational numerical weather pre- diction models of Météo-France, ARPEGE and ALADIN. It covers from the global to the regional scale, by means of up to four levels of nested domains, and extends up to the middle stratosphere; thus, there is no need for external boundary conditions, neither on the horizontal or on the vertical. These original features allows to cover with MOCAGE a wide range of scientific applications, from routine air-pollution fore- casts to long-term simulations related to climate issues. The present study focuses on the simulation of regional-scale photo-oxidant episodes and on the impact on larger scales of the transport of ozone, of precursors and of reservoir species. The first ex- ample concerns a polluted episode of the ESQUIF campaign (IOP6). In addition to ground measurements, 8 flights have documented the situation, showing a diversity of chemical regimes. This variability is quite satisfactorily reproduced by the model. A special attention was also paid to vertical and horizontal exchanges, particularly to interactions between the boundary layer and the free troposphere. An interesting case of an ill-represented residual nocturnal plume in the simulation of ESQUIF IOP5 will be presented: during this IOP, the vertical structure of the lower troposphere was well characterized by four flights. Free troposphere concentrations of ozone appear to be well reproduced by the model, except for the intensity and vertical extent of a residual plume, which are overestimated. For the day after, in addition to a direct impact on surface concentrations, the simulated development of the boundary layer is found to be too slow ; both errors contribute to an overestimation of surface ozone for this case. This advocates for additional work on this key subject. Lastly, the impact of our multi- scale approach will be tested against the first available ESCOMPTE data. Preliminary results concerning the pre-campain flights and the ground-based measurements during IOP2a and IOP2b will be presented.

  13. Exploring the relationship between meteorology and surface PM2.5 in Northern India

    NASA Astrophysics Data System (ADS)

    Schnell, J.; Naik, V.; Horowitz, L. W.; Paulot, F.; Ginoux, P. A.

    2017-12-01

    Northern India is one of the most polluted and densely populated regions in world. Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region's pollution regime. We evaluate a developmental version of the new-generation NOAA GFDL Atmospheric Model, version 4 (AM4) in its ability to simulate observed wintertime PM2.5 and its relationship to meteorology over the Northern India (23°N-31°N, 68°E-90°E). We perform two simulations of the GFDL-AM4 nudged to observed meteorology for the period (1980-2016) with two emission inventories developed for CMIP5 and CMIP6 and compare results with observations from India's Central Pollution Control Board (CPCB) for the period 1 October 2015 - 31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions has substantially reduced the low model bias in the region. The AM4, albeit biased low, generally simulates the magnitude and daily variability in observed total PM2.5. Ammonium nitrate and ammonium sulfate are the primary components of PM2.5 in the model, and although not directly observed, correlations of total observed PM2.5 and meteorology with the modeled individual PM2.5 components suggest the same for the observations. The model correctly reproduces the shape and magnitude of the seasonal cycle of PM2.5; but for the diurnal cycle, it misses the early evening rise and secondary maximum found in the observations. Observed PM2.5 abundances within the densely populated Indo-Gangetic Plain are by far the highest and are closely related to boundary layer meteorology, specifically relative humidity, wind speed, boundary layer height, and inversion strength. The GFDL-AM4 reproduces the observed pollution gradient over Northern India as well as the strength of the meteorology-PM2.5 relationship in most locations.

  14. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on comparing two gaseous dry deposition models to determine the fluxes of gaseous elemental mercury and reactive gaseous mercury using the measured concentrations and calculated deposition velocities for each species. Results indicate a large dependence on coupled physical, chemical and biological interactions for atmospheric processes, signifying the need for interdisciplinary collaboration.

  15. CALIOP near-real-time backscatter products compared to EARLINET data

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.

    2015-03-01

    The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar (Light Detection and Ranging) with Orthogonal Polarization (CALIOP) products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). Over a period of three years, lidar data from 48 CALIOP overpasses with ground tracks within a 100 km distance from an operating EARLINET station were deemed suitable for analysis and they included a valid aerosol classification type (e.g. dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning). For the complete dataset comprising both PBL and FT data, the correlation coefficient was 0.86, and when separated into separate layers, the PBL and FT correlation coefficients were 0.6 and 0.85 respectively. The presence of FT layers with high attenuated backscatter led to poor agreement in PBL backscatter profiles between the CALIOP and EARLINET measurements and prompted a further analysis filtering out such cases. However, the correlation coefficient value for the complete dataset decreased marginally from 0.86 to 0.84 while the PBL coefficient increased from 0.6 up to 0.65 and the FT coefficient also decreased from 0.85 to 0.79. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and ground-based lidar data ranged from 0.37 for polluted continental aerosol in the planetary boundary layer (PBL) to 0.57 for dust in the free troposphere (FT). The results suggest different levels of agreement based on the location of the dominant aerosol layer and the aerosol type.

  16. Factoring stream turbulence into global assessments of nitrogen pollution.

    PubMed

    Grant, Stanley B; Azizian, Morvarid; Cook, Perran; Boano, Fulvio; Rippy, Megan A

    2018-03-16

    The discharge of excess nitrogen to streams and rivers poses an existential threat to both humans and ecosystems. A seminal study of headwater streams across the United States concluded that in-stream removal of nitrate is controlled primarily by stream chemistry and biology. Reanalysis of these data reveals that stream turbulence (in particular, turbulent mass transfer across the concentration boundary layer) imposes a previously unrecognized upper limit on the rate at which nitrate is removed from streams. The upper limit closely approximates measured nitrate removal rates in streams with low concentrations of this pollutant, a discovery that should inform stream restoration designs and efforts to assess the effects of nitrogen pollution on receiving water quality and the global nitrogen cycle. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Ozone in Lombardy: Years 1998-1999

    NASA Astrophysics Data System (ADS)

    Sesana, L.; Begnini, S.; Toscani, D.; Facchini, U.; Balasso, A.; Borelli, P.

    2003-11-01

    Photochemical pollutants, especially ozone, have reached very high levels in Lombardy in recent years, with peaks of up to 150 ppb in late spring and summer. Lombardy, lying on the Po Plain, supports a large number of cities and industries and these, along with heavy traffic, produce copious amounts of primary pollutants such as nitrogen oxides and numerous volatile organic compounds. Furthermore, the peculiar orography of this region fosters the stagnation of air masses on a basin-scale and the presence of diurnal breezes towards northern areas, along with the evolution of the Mixing Layer, spread the polluted air masses over a large territory. Numerous stations in Lombardy give the concentrations of ozone and of nitrogen oxides. In this paper, ozone measurements carried out at the plain area around Milan and at pre-alpine sites in the spring and summer 1998 and 1999 will be shown and discussed, focusing on the months of May and July. The study of temporal and spatial behaviour of ozone goes hand in hand with the analysis of the Boundary Layer's evolution. A number of radon stations were operating in Milan and in other sites in Lombardy. Measurements of atmospheric concentrations of radon yield an index of atmospheric stability, of the formation of thermal inversion, of convective turbulence, and of the movement of air masses, and hence they are very relevant to the understanding of the conditions of atmospheric pollutants.

  18. The effect of wind mixing on the vertical distribution of buoyant plastic debris

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Proskurowski, G.; Morét-Ferguson, S.; Meyer, D. W.; Law, K. L.

    2012-04-01

    Micro-plastic marine debris is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant. The fate and transport of plastic marine debris is governed by poorly understood geophysical processes, such as ocean mixing within the surface boundary layer. Based on profile observations and a one-dimensional column model, we demonstrate that plastic debris is vertically distributed within the upper water column due to wind-driven mixing. These results suggest that total oceanic plastics concentrations are significantly underestimated by traditional surface measurements, requiring a reinterpretation of existing plastic marine debris data sets. A geophysical approach must be taken in order to properly quantify and manage this form of marine pollution.

  19. In Memoriam - Marvin L. Wesely.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, J. S.; Environmental Research

    2003-06-01

    Marvin L. Wesely, senior meteorologist at Argonne National Laboratory, died January 20, 2003, from a rare form of heart cancer. He was an internationally know and highly respected leader in the scientific measurement and modeling of atmospheric boundary layer turbulence and dry deposition of air pollutants. His fundamental contributions in the development of methodologies for fomulating dry deposition processes are used in atmospheric and biospheric models applied on all scales, worldwide. His extensive research aimed at finding solutions to such environmental problems as air pollution and global warming resulted in more than 150 published articles. Dr. Wesley was also anmore » editor for the Journal of Applied Meteorology and chief scientist of the atmospheric chemistry program in Washington, DC.« less

  20. Aerosol effects on the UV irradiance in Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Cordero, R. R.; Seckmeyer, G.; Damiani, A.; Jorquera, J.; Carrasco, J.; Muñoz, R.; Da Silva, L.; Labbe, F.; Laroze, D.

    2014-11-01

    Santiago de Chile (33°27‧ S-70°41‧ W) is a mid-latitude city of 6 million inhabitants with a complicated surrounding topography. Aerosol extinction in Santiago is determined by the semi-arid local climate, the urban pollution, a regional subsidence thermal inversion layer, and the boundary-layer wind airflow. In this paper we report on spectral measurements of the surface irradiance (at 290-600 nm wavelength range) carried out during 2013 in the heart of the city by using a double monochromator-based spectroradiometer system. These measurements were used to assess the effect of local aerosols, paying particular attention to the ultraviolet (UV) range. We found that the aerosol optical depth (AOD) exhibited variations likely related to changes in the subsidence thermal inversion and in the boundary-layer winds. Although the AOD at 350 nm typically ranged from 0.2 to 0.3, peak values of about 0.7 were measured. The AOD diminished with the wavelength and typically ranged from 0.1 to 0.2 at 550 nm. Our AOD data were found to be consistent with measurements of the particulate matter (PM) mass concentration.

  1. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  2. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also comparedmore » to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.« less

  3. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    PubMed Central

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034

  4. A Coupled Model of Langmuir Circulations and Ramp-like Structures in the Upper Ocean Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.; Lukas, R.; Donelan, M. A.; Terray, E. A.

    2016-12-01

    Surface-wave breaking is a powerful mechanism producing significant energy flux to small scale turbulence. Most of the turbulent energy produced by breaking waves dissipates within one significant wave height, while the turbulent diffusion layer extends to approximately ten significant wave heights. Notably, the near-surface shear may practically vanish within the wave-stirred layer due to small-scale turbulent mixing. The surface ocean temperature-salinity structure, circulation, and mass exchanges (including greenhouse gases and pollutants) substantially depend on turbulent mixing and non-local transport in the near-surface layer of the ocean. Spatially coherent organized motions have been recognized as an important part of non-local transport. Langmuir circulation (LC) and ramp-like structures are believed to vertically transfer an appreciable portion of the momentum, heat, gases, pollutants (e.g., oil), and other substances in the upper layer of the ocean. Free surface significantly complicates the analysis of turbulent exchanges at the air-sea interface and the coherent structures are not yet completely understood. In particular, there is growing observational evidence that in the case of developing seas when the wind direction may not coincide with the direction of the energy containing waves, the Langmuir lines are oriented in the wind rather than the wave direction. In addition, the vortex force due to Stokes drift in traditional models is altered in the breaking-wave-stirred layer. Another complication is that the ramp-like structures in the upper ocean turbulent boundary layer have axes perpendicular to the axes of LC. The ramp-like structures are not considered in the traditional model. We have developed a new model, which treats the LC and ramp-like structures in the near-surface layer of the ocean as a coupled system. Using computational fluid dynamics tools (LES), we have been able to reproduce both LC and ramp-like structures coexisting in space though intermittent in time. In the model, helicity isosurfaces appear to be tilted and, in general, coordinated with the tilted velocity isosurfaces produced by ramp-like structures. This is an indication of coupling between the LC and ramp-like structures. Remarkably, the new model is able to explain observations of LC under developing seas.

  5. The Relationship Between Turbulence and Air Quality in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Caputi, D.; Faloona, I. C.; Trousdell, J.; Conley, S. A.

    2017-12-01

    The San Joaquin valley is known for excessive air pollution, owing to local production combined with flow patterns that channel in air from the bay area, with surrounding mountains trapping the air inside. Understanding the role of boundary layer in the context of these dynamics is a particular challenge that will aid in effective air quality attainment planning. During the summers of 2015 and 2016, a Mooney aircraft operated by Scientific Aviation Inc. collected 170 hours of airborne data between Fresno and Bakersfield, CA. Combining this data with WRF forecast output, it is possible to use a simple budget technique to estimate the kinematic surface heat fluxes and thus the convective velocity scale. The 1 Hz wind measurements on the aircraft are provided by a newly developed low-cost system that utilizes the placement of dual GPS antennae on fixed positions of the airframe. Power spectra from the data indicates that the inertial subrange of turbulence is detectable from wavelengths of 150-500 m. Using Kolmogorov scaling laws, it is possible to estimate that about 20% of the total variance is not being captured by the system (at spatial scales under 150 m). Similarity relationships can then be employed to estimate the convective velocity scale as a function of sampling length, which levels off at about 22 km to a value within 5% of the estimate obtained by the budgeting method. A larger goal of this work is to connect these turbulence parameters with observations of air quality, noting that a major finding of the field campaign is that the entrainment between the polluted boundary layer and cleaner free troposphere plays a significant role in the local daytime pollutant concentration. Nighttime dynamics are being explored as well. Using a combination of 915 MHz sounder data from Visalia, ground ozone monitors, and flight data, a relationship can be seen between the nocturnal low level jet speed and ozone concentrations the following day. This suggests a significant role of sheer-induced mixing in the overall pollutant budget equation. Further work will explore the relationship of measured horizontal wind variability at night and the observed low level jet speed to determine if turbulent mixing to the surface can increase depletion of the residual layer ozone.

  6. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  7. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing

    NASA Astrophysics Data System (ADS)

    Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang

    2018-01-01

    Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable inversion layer was formed by the persistent warm and humid southwestern airflow, while the low-level inversion layer was initially produced by the surface long-wave radiation cooling in the nighttime and maintained by the reduction of surface solar radiation in the daytime. The obvious descending process of the upper-level inversion layer induced by the radiation process could be responsible for the enhancement of the low-level inversion layer and the lowering PBL height, as well as high aerosol loading for these polluted events. The reduction of surface solar radiation in the daytime could be around 35 % for the haze event and 94 % for the fog-haze mixed event. Therefore, the formation and subsequent descending processes of the upper-level inversion layer should be an important factor in maintaining and strengthening the long-lasting severe polluted events, which has not been revealed in previous publications. The interactions and feedbacks between PM2.5 concentration and PBL height linked by radiation process caused a more significant and long-lasting deterioration of air quality and visibility in fog-haze mixed events. The interactions and feedbacks of all processes were particularly strong when the PM2.5 mass concentration was larger than 150-200 µg m-3.

  8. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  9. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  10. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    NASA Technical Reports Server (NTRS)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  11. The Estimate of Atmospheric Boundary Layer Height Above a Coniferous Forest During BEARPEX 2007 and 2009

    NASA Astrophysics Data System (ADS)

    Choi, W.; McKay, M.; Weber, R.; Goldstein, A. H.; Baker, B. M.; Faloona, I. C.

    2009-12-01

    The atmospheric boundary layer (ABL) height (zi) is an extremely important parameter for interpreting field observations of reactive trace gases and understanding air quality at the local or regional scale. Despite its importance, zi is often crudely estimated for atmospheric chemistry or air pollution studies due to limited resources and the difficulty of measuring its altitude. In this study, zi over complex terrain (a coniferous forest in the California Sierra Nevada) is estimated based on the power spectra and the integral length scale of horizontal winds obtained from a three-axis sonic anemometer during the BEARPEX (Biosphere Effects on Aerosol and Photochemistry Experiment) 2007 and 2009. Estimated zi shows very good agreement with observations which were obtained from the balloon tether sonde (2007) and radio sonde (2009) measurements under unstable conditions (z/L<0). The behavior of zi under stable conditions (z/L>0), including the evolution and breakdown of the nocturnal boundary layer over the forest is also presented. Finally, significant directional wind shear was consistently observed during 2009 with winds backing from the prevailing surface west-southwesterlies (anabatic cross-valley circulation) to consistent southerlies just above the ABL. We show that this is the result of a thermal wind driven by the potential temperature gradient aligned upslope. The resultant wind flow pattern can modify the conventional model of transport along the Sacramento urban plume and has implications for California central valley basin flushing characteristics.

  12. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  13. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  14. Meteorological Modeling of Wintertime Cold Air Pool Stagnation Episodes in the Uintah and Salt Lake Basins

    NASA Astrophysics Data System (ADS)

    Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.

    2014-12-01

    High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.

  15. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2012-09-01

    Major population centers (MPCs) or mega-cities represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build up and pollution export, either vertically into the upper troposphere or horizontally, but remaining in the lower atmosphere. The insoluble gas phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass and thus the lower is the relative local pollution build up. We further use aerosol deposition fields to estimate regions with high deposition, that is more than 1% or more than 5% of the corresponding tracer emission deposited in this region. In doing so, we find that the high deposition areas are larger for larger aerosols, and these differ less between the MPCs than for smaller aerosols due to faster deposition. Furthermore, cities in regions with high precipitation rates or unfavorable geographic location, e.g. in a basin, suffer most of this high deposition. Most of the high deposition occurs over land, although about 50% of the MPCs are located along coastlines. By folding the aerosol deposition fields with geographical distributions of cropland, pasture, and forest, the impact on different land ecosystems is assessed. In general, forest are exhibited most to deposition from MPCs while pasture land is least affected. Moreover, the impact on humans, measured with a threshold exceedance of pollutant surface mixing ratios, is more dependent on population densities than on the size of the area holding a certain mixing ratio.

  16. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2013-04-01

    Major population centers (MPCs), or megacities, represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality, they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas-phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build-up and pollution export, either vertically into the upper troposphere or horizontally in the lower troposphere. The insoluble gas-phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is, the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas-phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build-up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing, as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass, and thus the lower is the relative local pollution build-up. We further use aerosol deposition fields to estimate regions with high deposition, that is more than 1% or more than 5% of the corresponding tracer emission deposited in this region. In doing so, we find that the high deposition areas are larger for aerosols with diameters of 10.0 μm, and these differ less between the MPCs than for aerosols with diameters smaller than 2.5 μm due to faster deposition. Furthermore, cities in regions with high precipitation rates or unfavorable geographic locations, e.g., in a basin, suffer most of this high deposition. Most of the high deposition occurs over land, although about 50% of the MPCs are located along coastlines. By folding the aerosol deposition fields with geographical distributions of cropland, pasture, and forest, the impact on different land ecosystems is assessed. In general, forest is exposed most to deposition from MPCs while pastureland is least affected. Moreover, the impact on humans, measured with a threshold exceedance of pollutant surface mixing ratios, is more dependent on population densities than on the size of the area with a certain mixing ratio.

  17. Satellite Observations of Declining Aerosol Burden in The Twenty-First Century in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Feng, N.; Tosca, M.; Kalashnikova, O. V.; Campbell, J. R.; Garay, M. J.; Seidel, F. C.

    2017-12-01

    The Southeast US (SEUS) has long been recognized as a region where the climatic effect of atmospheric aerosols can cool the Earth and have thus reduced the effect of greenhouse warming. However, previous studies have assessed that abundant carbonaceous aerosols over SEUS from a combination of anthropogenic and natural sources are systematically underestimated by most atmospheric models, especially during summer when the average carbon concentration in SEUS is the highest in the country. In this study, we utilize an ensemble of surface (AERONET) and satellite (MISR, CALIPSO) observations over the SEUS from 2001 to 2015 to better understand the spatially and vertically-resolved decadal trend of SEUS aerosol burden. Results from CALIOP show significant aerosol loading extending from the surface to 5km year-round. Additionally, these data show aerosol extinction coefficients as large as 0.01 km-1 extending well above 8km during the summertime. CALIOP measurements corroborate seasonal observations from MISR and indicate that much of the aerosol burden in the SEUS is comprised of smoke, polluted continental and polluted dust species. Using boundary layer heights from the ERA Interim dataset, CALIOP data show that while summertime aerosol burden above the boundary layer (elevated) is equal to about half of the AOD in the surface layer (0.17 vs. 0.08), during wintertime, the vast majority of aerosols are below the boundary layer (0.12 vs. 0.03). Despite strong seasonality in overall aerosol burden, decadal trends in AOD did not exhibit similarly large seasonal differences; data show AOD decreasing between 2001 and 2015 during both summer and winter and in both the MISR and CALIOP datasets. Between 2001 and 2015, the average summertime aerosol optical depth (AOD) from MISR fell from 0.23 to 0.15, and the trend was -0.05 decade-1 (23% decade-1). The fit was statistically significant, with an r2=0.53. Measurement campaigns such as SEAC4RC will be extensively leveraged, which can be utilized to validate aerosol type retrieved from satellite observations. This work is expected to improve our understanding of the seasonality and inter-annual variability of SEUS aerosols and justify the existence and species of increased aerosol production aloft over the region.

  18. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  19. Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia

    NASA Astrophysics Data System (ADS)

    Millet, Dylan B.; Goldstein, Allen H.; Holzinger, Rupert; Williams, Brent J.; Allan, James D.; Jimenez, José L.; Worsnop, Douglas R.; Roberts, James M.; White, Allen B.; Hudman, Rynda C.; Bertschi, Isaac T.; Stohl, Andreas

    2006-12-01

    We present a factor analysis-based method for differentiating air masses on the basis of source influence and apply the method to a broad suite of trace gas and aerosol measurements collected at Chebogue Point, Nova Scotia, during the summer of 2004 to characterize the chemical composition of atmospheric outflow from eastern North America. CO, ozone, and aerosol mass were elevated by 30%, 56%, and more than 300% at Chebogue Point during U.S. outflow periods. Organic aerosol mass was highest during U.S. pollution events, but made up the largest fraction (70%) of the total aerosol during periods of primary and especially secondary biogenic influence, indicating the importance of both anthropogenic and biogenic organic aerosol. Anthropogenic and oxygenated volatile organic compounds account for the bulk of the gas-phase organic carbon under most conditions; however, biogenic compounds are important in terms of chemical reactivity. Biogenic emissions thus have a significant impact on the chemistry of air masses downwind of the polluted northeastern United States. Using output from a global 3-D model of atmospheric composition (GEOS-Chem), we estimate that CO directly emitted from U.S. pollution sources makes up 28% of the total CO observed at Chebogue Point during U.S. outflow events and 19% at other times, although more work is needed to improve U.S. emission estimates for CO and other pollutants. We conclude that the effects of North American pollution on the chemistry of the western North Atlantic boundary layer are pervasive and not restricted to particular events.

  20. Applied environmental fluid mechanics: what's the weather in your backyard?

    NASA Astrophysics Data System (ADS)

    Chow, F. K.

    2011-12-01

    The microclimates of the San Francisco Bay Area can lead to 30-40F differences in temperature from the coast to just 30 miles inland. The reasons for this include local topography which affects development of the atmospheric boundary layer. A Bay Area resident's experience of fog, air pollution, and weather events therefore differs greatly depending on exactly where they live. Such local weather phenomena provide a natural topic for introduction to boundary layer processes and are the basis of a new course developed at the University of California, Berkeley. This course complements the PI's research focus on numerical methods applied to atmospheric boundary layer flow over complex terrain. This new outreach and research-based course was created to teach students about the boundary layer and teach them how to use a community weather prediction model, WRF, to simulate conditions in the local area, while at the same time being actively involved in public outreach. The course was offered in the Civil and Environmental Engineering department with the collaboration and support of the Lawrence Hall of Science, Berkeley's public science museum. The students chose topics such as air quality, wind energy, climate change, and plume dispersion, all applied to the local San Francisco Bay Area. The students conducted independent research on their team projects, involving literature reviews, numerical model setup, and analysis of model results through comparison with field observations. The outreach component of the course included website design and culminated in demonstrations at the Lawrence Hall of Science. The seven student teams presented hands-on demos to 300-400 visitors, mostly kids 4-9 years old and their parents. Involving students directly in outreach efforts is hoped to encourage continued integration of research and education in their own careers. Early exposure to numerical modeling also improves student technical skills for future career experiences . Given positive feedback from students, the course will now be offered regularly as a senior design class which will also fulfill engineering graduation requirements.

  1. A framework for delineating the regional boundaries of PM2.5 pollution: A case study of China.

    PubMed

    Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng

    2018-04-01

    Fine particulate matter (PM 2.5 ) pollution has been a major issue in many countries. Considerable studies have demonstrated that PM 2.5 pollution is a regional issue, but little research has been done to investigate the regional extent of PM 2.5 pollution or to define areas in which PM 2.5 pollutants interact. To allow for a better understanding of the regional nature and spatial patterns of PM 2.5 pollution, This study proposes a novel framework for delineating regional boundaries of PM 2.5 pollution. The framework consists of four steps, including cross-correlation analysis, time-series clustering, generation of Voronoi polygons, and polygon smoothing using polynomial approximation with exponential kernel method. Using the framework, the regional PM 2.5 boundaries for China are produced and the boundaries define areas where the monthly PM 2.5 time series of any two cities show, on average, more than 50% similarity with each other. These areas demonstrate straightforwardly that PM 2.5 pollution is not limited to a single city or a single province. We also found that the PM 2.5 areas in China tend to be larger in cold months, but more fragmented in warm months, suggesting that, in cold months, the interactions between PM 2.5 concentrations in adjacent cities are stronger than in warmer months. The proposed framework provides a tool to delineate PM 2.5 boundaries and identify areas where PM 2.5 pollutants interact. It can help define air pollution management zones and assess impacts related to PM 2.5 pollution. It can also be used in analyses of other air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Retrieving Smoke Aerosol Height from DSCOVR/EPIC

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wang, J.; Wang, Y.

    2017-12-01

    Unlike industrial pollutant particles that are often confined within the planetary boundary layer, smoke from forest and agriculture fires can inject massive carbonaceous aerosols into the upper troposphere due to the intense pyro-convection. Sensitivity of weather and climate to absorbing carbonaceous aerosols is regulated by the altitude of those aerosol layers. However, aerosol height information remains limited from passive satellite sensors. Here we present an algorithm to estimate smoke aerosol height from radiances in the oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) from the Deep Space Climate Observatory (DSCOVR). With a suit of case studies and validation efforts, we demonstrate that smoke aerosol height can be well retrieved over both ocean and land surfaces multiple times daily.

  3. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  4. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  5. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  6. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  7. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie; McGregor, Glenn

    2009-01-01

    We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.

  8. Vertical Profiling of Air Pollution at RAPCD

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; Fuller, Kirk A.; Bowdle, David A.; Johnson, Steven; Knupp, Kevin; Gillani, Noor; Biazar, Arastoo; Mcnider, Richard T.; Burris, John

    2004-01-01

    The interaction between local and regional pollution levels occurs at the interface of the Planetary Boundary Layer and the Free Troposphere. Measuring the vertical distribution of ozone, aerosols, and winds with high temporal and vertical resolution is essential to diagnose the nature of this interchange and ultimately for accurately forecasting ozone and aerosol pollution levels. The Regional Atmospheric Profiling Center for Discovery, RAPCD, was built and instrumented to address this critical issue. The ozone W DIAL lidar, Nd:YAG aerosol lidar, and 2.1 micron Doppler wind lidar, along with balloon- borne ECC ozonesondes form the core of the W C D instrumentation for addressing this problem. Instrumentation in the associated Mobile Integrated Profiling (MIPS) laboratory includes 91 5Mhz profiler, sodar, and ceilometer. The collocated Applied particle Optics and Radiometry (ApOR) laboratory hosts an FTIR along with MOUDI and optical particle counters. With MODELS-3 analysis by colleagues in the National Space Science and Technology Center on the UAH campus and the co- located National Weather Service Forecasting Office in Huntsville, AL we are developing a unique facility for advancing the state of the science of pollution forecasting.

  9. A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Öström, Elisabeth; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Johnson, Doug W.; Taylor, Jonathan P.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; O'Dowd, Colin D.; Smith, Michael H.; Durkee, Philip A.; Nielsen, Kurt; Hudson, James G.; Pockalny, Robert A.; de Bock, Lieve; van Grieken, René E.; Gasparovic, Richard F.; Brooks, Ian

    2000-08-01

    The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03-0.3-m radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.

  10. Measurements and Modeling of The Air Pollution and The Meteorology On A Complex Topography Region: Case Study Grenoble 1998/1999

    NASA Astrophysics Data System (ADS)

    Couach, O.; Balin, I.; Jimenez, R.; Quaglia, P.; Kirchner, F.; Ristori, P.; Simeonov, V.; Clappier, A.; van den Bergh, H.; Calpini, B.

    In order to understand, to predict and to elaborate solutions concerning the photo- chemical and meteorological processes, which occur often in the summer time over the Grenoble city and its three surroundings valleys, both modeling and measurement approaches were considered. Two intensive air pollution and meteorological measure- ments campaigns were performed in 1998 and 1999. Ozone (O3) and other pollutants (NOx, CH2O, SO2, etc) as well as wind, temperature, solar radiation and relative hu- midity were intensively measured at surface level combined with 3D measurements range by using: an instrumented aircraft (Metair), two ozone lidars (e.g. EPFL ozone dial lidar) and wind profilers (e.g.Degreane). This poster will focus on the main results of these measurements like the 3D ozone distribution, the mixing height/planetary boundary layer evolution, the meteorological behavior, and the other pollutants evalu- ation. The paper also highlights the use of these measurements as a necessary database for comparison and checking (validation) of the model performances and thus to allow modeling solutions in predicting the air pollution events and thus permitting to build the right abatement strategies.

  11. The magnitude of the snow-sourced reactive nitrogen flux to the boundary layer in the Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Zatko, Maria; Erbland, Joseph; Savarino, Joel; Geng, Lei; Easley, Lauren; Schauer, Andrew; Bates, Timothy; Quinn, Patricia K.; Light, Bonnie; Morison, David; Osthoff, Hans D.; Lyman, Seth; Neff, William; Yuan, Bin; Alexander, Becky

    2016-11-01

    Reactive nitrogen (Nr = NO, NO2, HONO) and volatile organic carbon emissions from oil and gas extraction activities play a major role in wintertime ground-level ozone exceedance events of up to 140 ppb in the Uintah Basin in eastern Utah. Such events occur only when the ground is snow covered, due to the impacts of snow on the stability and depth of the boundary layer and ultraviolet actinic flux at the surface. Recycling of reactive nitrogen from the photolysis of snow nitrate has been observed in polar and mid-latitude snow, but snow-sourced reactive nitrogen fluxes in mid-latitude regions have not yet been quantified in the field. Here we present vertical profiles of snow nitrate concentration and nitrogen isotopes (δ15N) collected during the Uintah Basin Winter Ozone Study 2014 (UBWOS 2014), along with observations of insoluble light-absorbing impurities, radiation equivalent mean ice grain radii, and snow density that determine snow optical properties. We use the snow optical properties and nitrate concentrations to calculate ultraviolet actinic flux in snow and the production of Nr from the photolysis of snow nitrate. The observed δ15N(NO3-) is used to constrain modeled fractional loss of snow nitrate in a snow chemistry column model, and thus the source of Nr to the overlying boundary layer. Snow-surface δ15N(NO3-) measurements range from -5 to 10 ‰ and suggest that the local nitrate burden in the Uintah Basin is dominated by primary emissions from anthropogenic sources, except during fresh snowfall events, where remote NOx sources from beyond the basin are dominant. Modeled daily averaged snow-sourced Nr fluxes range from 5.6 to 71 × 107 molec cm-2 s-1 over the course of the field campaign, with a maximum noontime value of 3.1 × 109 molec cm-2 s-1. The top-down emission estimate of primary, anthropogenic NOx in Uintah and Duchesne counties is at least 300 times higher than the estimated snow NOx emissions presented in this study. Our results suggest that snow-sourced reactive nitrogen fluxes are minor contributors to the Nr boundary layer budget in the highly polluted Uintah Basin boundary layer during winter 2014.

  12. Observations and simulations of microplastic marine debris in the ocean surface boundary layer

    NASA Astrophysics Data System (ADS)

    Kukulka, T.; Brunner, K.; Proskurowski, G. K.; Lavender Law, K. L.

    2016-02-01

    Motivated by observations of buoyant microplastic marine debris (MPMD) in the ocean surface boundary layer (OSBL), this study applies a large eddy simulation model and a parametric one-dimensional column model to examine vertical distributions of MPMD. MPMD is widely distributed in vast regions of the subtropical gyres and has emerged as a major open ocean pollutant whose distribution is subject to upper ocean turbulence. The models capture wind-driven turbulence, Langmuir turbulence (LT), and enhanced turbulent kinetic energy input due to breaking waves (BW). Model results are only consistent with MPMD observations if LT effects are included. Neither BW nor shear-driven turbulence is capable of deeply submerging MPMD, suggesting that the observed vertical MPMD distributions are a characteristic signature of wave-driven LT. Thus, this study demonstrates that LT substantially increases turbulent transport in the OSBL, resulting in deep submergence of buoyant tracers. The parametric model is applied to eleven years of observations in the North Atlantic and North Pacific subtropical gyres to show that surface measurements substantially underestimate MPMD concentrations by a factor of three to thirteen.

  13. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Quan; Jia, Xingcan; Quan, Jiannong

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less

  14. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds.more » Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.« less

  15. Urban boundary-layer height determination from lidar measurements over the paris area.

    PubMed

    Menut, L; Flamant, C; Pelon, J; Flamant, P H

    1999-02-20

    The Paris area is strongly urbanized and is exposed to atmospheric pollution events. To understand the chemical and physical processes that are taking place in this area it is necessary to describe correctly the atmospheric boundary-layer (ABL) dynamics and the ABL height evolution. During the winter of 1994-1995, within the framework of the Etude de la Couche Limite Atmosphérique en Agglomération Parisienne (ECLAP) experiment, the vertical structure of the ABL over Paris and its immediate suburbs was extensively documented by means of lidar measurements. We present methods suited for precise determination of the ABL structure's temporal evolution in a dynamic environment as complex as the Paris area. The purpose is to identify a method that can be used on a large set of lidar data. We compare commonly used methods that permit ABL height retrievals from backscatter lidar signals under different meteorological conditions. Incorrect tracking of the ABL depth's diurnal cycle caused by limitations in the methods is analyzed. The study uses four days of the ECLAP experiment characterized by different meteorological and synoptic conditions.

  16. New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events

    DOE PAGES

    Liu, Quan; Jia, Xingcan; Quan, Jiannong; ...

    2018-04-17

    Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less

  17. Atmospheric pollution over the eastern Mediterranean during summer - a review

    NASA Astrophysics Data System (ADS)

    Dayan, Uri; Ricaud, Philippe; Zbinden, Régina; Dulac, François

    2017-11-01

    The eastern Mediterranean (EM) is one of the regions in the world where elevated concentrations of primary and secondary gaseous air pollutants have been reported frequently, mainly in summer. This review discusses published studies of the atmospheric dispersion and transport conditions characterizing this region during the summer, followed by a description of some essential studies dealing with the corresponding concentrations of air pollutants such as ozone, carbon monoxide, total reactive nitrogen, methane, and sulfate aerosols observed there. The interlaced relationship between the downward motion of the subsiding air aloft induced by global circulation systems affecting the EM and the depth of the Persian Trough, a low-pressure trough that extends from the Asian monsoon at the surface controlling the spatiotemporal distribution of the mixed boundary layer during summer, is discussed. The strength of the wind flow within the mixed layer and its depth affect much the amount of pollutants transported and determine the potential of the atmosphere to disperse contaminants off their origins in the EM. The reduced mixed layer and the accompanying weak westerlies, characterizing the summer in this region, led to reduced ventilation rates, preventing an effective dilution of the contaminants. Several studies pointing at specific local (e.g., ventilation rates) and regional peculiarities (long-range transport) enhancing the build-up of air pollutant concentrations are presented. Tropospheric ozone (O3) concentrations observed in the summer over the EM are among the highest over the Northern Hemisphere. The three essential processes controlling its formation (i.e., long-range transport of polluted air masses, dynamic subsidence at mid-tropospheric levels, and stratosphere-to-troposphere exchange) are reviewed. Airborne campaigns and satellite-borne initiatives have indicated that the concentration values of reactive nitrogen identified as precursors in the formation of O3 over the EM were found to be 2 to 10 times higher than in the hemispheric background troposphere. Several factors favor sulfate particulate abundance over the EM. Models, aircraft measurements, and satellite-derived data have clearly shown that sulfate has a maximum during spring and summer over the EM. The carbon monoxide (CO) seasonal cycle, as obtained from global background monitoring sites in the EM, is mostly controlled by the tropospheric concentration of the hydroxyl radical (OH) and therefore demonstrates high concentrations over winter months and the lowest concentrations during summer when photochemistry is active. Modeling studies have shown that the diurnal variations in CO concentration during the summer result from long-range CO transport from European anthropogenic sources, contributing 60 to 80 % of the boundary-layer CO over the EM. The values retrieved from satellite data enable us to derive the spatial distribution of methane (CH4), identifying August as the month with the highest levels over the EM. The outcomes of a recent extensive examination of the distribution of methane over the tropospheric Mediterranean Basin, as part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) program, using model simulations and satellite measurements, are coherent with other previous studies. Moreover, this methane study provides some insight into the role of the Asian monsoon anticyclone in controlling the variability of CH4 pollutant within mid-to-upper tropospheric levels above the EM in summer.

  18. An experimental study of the atmospheric boundary layer modified by a change in surface roughness and surface temperature

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Derrington, D. B., Jr.

    1977-01-01

    Turbulent flow, resembling an on-shore flow from the ocean crossing the beach at an oblique angle, is investigated. Measurements of this flow have been taken at high sample rates and include measurements at various heights, high enough to describe the portion of the mean wind and temperature profiles and fluxes that are of interest for the solution of practical engineering problems. These problems could include air pollution (fumigation and plume trapping), operation of low flying aircraft, crop-spraying and crop-dusting operations.

  19. Enhancement of free tropospheric ozone production by deep convection

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Simpson, Joanne

    1994-01-01

    It is found from model simulations of trace gas and meteorological data from aircraft campaigns that deep convection may enhance the potential for photochemical ozone production in the middle and upper troposphere by up to a factor of 60. Examination of half a dozen individual convective episodes show that the degree of enhancement is highly variable. Factors affecting enhancement include boundary layer NO(x) mixing ratios, differences in the strength and structure of convective cells, as well as variation in the amount of background pollution already in the free troposphere.

  20. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  1. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  2. Use of geoelectrical methods in groundwater pollution surveys in a coastal environment

    NASA Astrophysics Data System (ADS)

    Frohlich, Reinhard K.; Urish, Daniel W.; Fuller, James; O'Reilly, Mary

    1994-08-01

    The pollution of coastal aquifers by old landfills can contaminate valuable and scarce water resources in the freshwater lens utilized seasonably by overcrowded communities. The pollutants will ultimately flow into the sea where they may also cause a coastal water pollution problem. We have detected pollution in the freshwater lens from a sanitary landfill near Provincetown, Cape Cod, using the geoelectrical resistivity method. This survey included Schlumberger geoelectrical depth soundings and a horizontal geoelectrical profile using the Wenner configuration. The geoelectrical survey was conducted at a site along Highway 6 where it passes the coastal town of Provincetown and a sanitary landfill that has been in operation since 1954. The depth soundings suggest the characteristic decrease in resistivity vs. depth from the high resistivity of the unsaturated zone to the low resistivity of the saltwater saturated zone. The freshwater lens is clearly identified by the change in slope of the steeply dipping curve of resistivity versus electrode spacing. Interpretations made using a multilayer program, GEOMATE, resulted in layer resistivities between 460 and 95 ohm·m for the freshwater lens. A comparison with well water resistivities suggests that a layer resistivity of 230 ohm·m or lower is indicative of pollution in the freshwater lens. The results of the geoelectrical depth soundings were confirmed in the Wenner horizontal profile. Both measurements suggest that the pollutants do not spread evenly as one would expect for a homogeneous and isotropic medium. Instead, a preferred channel for the flow of the pollutants is observed along a path from the landfill toward the shoreline. The depth to the saltwater/freshwater interface or, more specifically, to the low resistivity-high resistivity interface appears to be shallow where the freshwater lens is polluted. This was confirmed by pore water well samples that were highly mineralized. The equilibrium postulated by the Ghyben-Herzberg relation appears to be disturbed in the area of aquifer pollution. This rise in the conductivity boundary is caused by the highly mineralized bottom of the contaminant plume that submerges into the saltwater saturated zone. In the area of high freshwater pollution the groundwater can be subdivided into three layers that show a decrease in resistivity with depth. The formation factor, F, defined as the ratio of bulk aquifer resistivity to pore water resistivity, shows unusually high values between 10 and 12. These high values are unexpected for an unconsolidated sand. Pollution residues are suspected to clog the pores and thus to increase the resistivity. It is possible that iron-oxidizing bacteria and the precipitation of dissolved iron or organic pollutants are the cause of the high values of F. If proven correct, these interesting possibilities could lead to future new applications of the geoelectrical resistivity method in contaminant hydroloy.

  3. Use of geoelectrical methods in groundwater pollution surveys in a coastal environment

    USGS Publications Warehouse

    Frohlich, R.K.; Urish, D.W.; Fuller, J.; O'Reilly, M.

    1994-01-01

    The pollution of coastal aquifers by old landfills can contaminate valuable and scarce water resources in the freshwater lens utilized seasonably by overcrowded communities. The pollutants will ultimately flow into the sea where they may also cause a coastal water pollution problem. We have detected pollution in the freshwater lens from a sanitary landfill near Provincetown, Cape Cod, using the geoelectrical resistivity method. This survey included Schlumberger geoelectrical depth soundings and a horizontal geoelectrical profile using the Wenner configuration. The geoelectrical survey was conducted at a site along Highway 6 where it passes the coastal town of Provincetown and a sanitary landfill that has been in operation since 1954. The depth soundings suggest the characteristic decrease in resistivity vs. depth from the high resistivity of the unsaturated zone to the low resistivity of the saltwater saturated zone. The freshwater lens is clearly identified by the change in slope of the steeply dipping curve of resistivity versus electrode spacing. Interpretations made using a multilayer program, Geomate, resulted in layer resistivities between 460 and 95 ohm?m for the freshwater lens. A comparison with well water resistivities suggests that a layer resistivity of 230 ohm?m or lower is indicative of pollution in the freshwater lens. The results of the geoelectrical depth soundings were confirmed in the Wenner horizontal profile. Both measurements suggest that the pollutants do not spread evenly as one would expect for a homogeneous and isotropic medium. Instead, a preferred channel for the flow of the pollutants is observed along a path from the landfill toward the shoreline. The depth to the saltwater/freshwater interface or, more specifically, to the low resistivity-high resistivity interface appears to be shallow where the freshwater lens is polluted. This was confirmed by pore water well samples that were highly mineralized. The equilibrium postulated by the Ghyben-Herzberg relation appears to be disturbed in the area of aquifer pollution. This rise in the conductivity boundary is caused by the highly mineralized bottom of the contaminant plume that submerges into the saltwater saturated zone. In the area of high freshwater pollution the groundwater can be subdivided into three layers that show a decrease in resistivity with depth. The formation factor, F, defined as the ratio of bulk aquifer resistivity to pore water resistivity, shows unusually high values between 10 and 12. These high values are unexpected for an unconsolidated sand. Pollution residues are suspected to clog the pores and thus to increase the resistivity. It is possible that iron-oxidizing bacteria and the precipitation of dissolved iron or organic pollutants are the cause of the high values of F. If proven correct, these interesting possibilities could lead to future new applications of the geoelectrical resistivity method in contaminant hydroloy.

  4. AEROCAN, the Canadian sub-network of AERONET: Aerosol monitoring and air quality applications

    NASA Astrophysics Data System (ADS)

    Sioris, Christopher E.; Abboud, Ihab; Fioletov, Vitali E.; McLinden, Chris A.

    2017-10-01

    Previous studies have demonstrated the utility of AERONET (Aerosol Robotic Network) aerosol optical depth (AOD) data for monitoring the spatial variability of particulate matter (PM) in relatively polluted regions of the globe. AEROCAN, a Canadian sub-network of AERONET, was established 20 years ago and currently consists of twenty sites across the country. In this study, we examine whether the AEROCAN sunphotometer data provide evidence of anthropogenic contributions to ambient particulate matter concentrations in relatively clean Canadian locations. The similar weekly cycle of AOD and PM2.5 over Toronto provides insight into the impact of local pollution on observed AODs. High temporal correlations (up to r = 0.78) between daily mean AOD (or its fine-mode component) and PM2.5 are found at southern Ontario AEROCAN sites during May-August, implying that the variability in the aerosol load resides primarily in the boundary layer and that sunphotometers capture day-to-day PM2.5 variations at moderately polluted sites. The sensitivity of AEROCAN AOD data to anthropogenic surface-level aerosol enhancements is demonstrated using boundary-layer wind information for sites near sources of aerosol or its precursors. An advantage of AEROCAN relative to the Canadian in-situ National Air Pollution Surveillance (NAPS) network is the ability to detect free tropospheric aerosol enhancements, which can be large in the case of lofted forest fire smoke or desert dust. These aerosol plumes eventually descend to the surface, sometimes in populated areas, exacerbating air quality. In cases of large AOD (≥0.4), AEROCAN data are also useful in characterizing the aerosol type. The AEROCAN network includes three sites in the high Arctic, a region not sampled by the NAPS PM2.5 monitoring network. These polar sites show the importance of long-range transport and meteorology in the Arctic haze phenomenon. Also, AEROCAN sunphotometers are, by design and due to regular maintenance, the most valuable monitors available for long term aerosol trends. Using a variety of data analysis techniques and timescales, the usefulness of this ground-based remote-sensing sub-network for providing information relevant to air quality is demonstrated.

  5. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  6. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  7. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  8. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  9. Analysis of urban boundary layer flow and turbulence parameters on the basis of an experimental campaign in Turin city

    NASA Astrophysics Data System (ADS)

    Trini Castelli, S.; Falabino, S.; Mortarini, L.; Ferrero, E.; Richiardone, R.; Anfossi, D.

    2010-09-01

    The flow and turbulence structure of the atmospheric boundary layer above urban areas is significantly perturbed by the density and distribution of buildings and other obstacles, by the thermal effect of the so-called ‘urban heat island' and by the possible presence of topographical inhomogeneities. A thorough investigation of the characteristics of the flow and turbulence in urban canopy was pursued both with an experimental approach, carrying out an intensive observational field campaign and analysing the observed data, and evaluating the boundary layer and turbulence parameterisations, which are used in the numerical meteorological and air pollution models. The experimental activity was carried out along a continuous 15-months observational period at four measurement sites, located in the city of Turin. Here we analyse the data gathered at a 25 m mast, displaced at one of the measuring stations and equipped with sonic anemometers at 5 m, 9 m, 25 m height. Close to the mast, a station measuring solar radiation, humidity and temperature at ground level was also active. Since Turin is characterised both by a complex urban fabric and by a very frequent low wind regime, the dataset allows also investigating and estimating the boundary layer parameters in the peculiar conditions of low wind speed. With regard to the dataset, a stationary test singled out that each anemometer recorded about 25-30% of stationary data, but only the 9% of data were simultaneously stationary at the three anemometers. Concerning the stability for the whole dataset, a neutral stratification developed in only the 3% of the cases, while the percentages raise to the 47% and 50% respectively for the stable and the unstable cases. In some cases different stability conditions occurred at different levels, this peculiarity was investigated. At the three levels the distributions of the observed horizontal turbulent velocity fluctuations do not present remarkable differences, whereas the vertical component assumes rather different values. Considering the whole observed data set, low wind speeds, here defined as speed values less than 1.5 m/s, occurred in more than 90% of the cases. A comprehensive analysis of the observed wind velocity and turbulent velocity fluctuations, of the calculated stability parameters, surface layer parameters and boundary layer height is illustrated and discussed. A comparison of the measured wind standard deviation profiles as a function of stability with the values predicted by literature parameterisations for flat undisturbed terrain is also presented.

  10. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  11. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  12. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  13. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  14. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  15. Control of Pollutants in the Trans-Boundary Area of Taihu Basin, Yangtze Delta.

    PubMed

    Wang, Xiao; Katopodes, Nikolaos; Shen, Chunqi; Wang, Hua; Pang, Yong; Zhou, Qi

    2016-12-17

    This work focuses on pollution control in the trans-boundary area of Taihu Basin. Considering the unique characteristics of the river network in the study area, a new methodology of pollution control is proposed aiming at improving the water quality in the trans-boundary area and reducing conflicts between up and downstream regions. Based on monitoring data and statistical analysis, important trans-boundary cross sections identified by the regional government were selected as important areas for consideration in developing management objectives; using a 1-D mathematicmodel and an effective weight evaluation model, the trans-boundary effective control scope (TECS) of the study area was identified as the scope for pollutant control; the acceptable pollution load was then estimated using an established model targeting bi-directional flow. The results suggest that the water environmental capacity for chemical oxygen demand (COD), in order to guarantee reaching the target water quality standard in the TECS, is 160,806 t/year, and amounts to 16,098 t/year, 3493 t/year, and 39,768 t/year for ammonia nitrogen, total nitrogen, and total phosphorus, respectively. Our study method and results have been incorporated into the local government management project, and have been proven to be useful in designing a pollution control strategy and management policy.

  16. Control of Pollutants in the Trans-Boundary Area of Taihu Basin, Yangtze Delta

    PubMed Central

    Wang, Xiao; Katopodes, Nikolaos; Shen, Chunqi; Wang, Hua; Pang, Yong; Zhou, Qi

    2016-01-01

    This work focuses on pollution control in the trans-boundary area of Taihu Basin. Considering the unique characteristics of the river network in the study area, a new methodology of pollution control is proposed aiming at improving the water quality in the trans-boundary area and reducing conflicts between up and downstream regions. Based on monitoring data and statistical analysis, important trans-boundary cross sections identified by the regional government were selected as important areas for consideration in developing management objectives; using a 1-D mathematicmodel and an effective weight evaluation model, the trans-boundary effective control scope (TECS) of the study area was identified as the scope for pollutant control; the acceptable pollution load was then estimated using an established model targeting bi-directional flow. The results suggest that the water environmental capacity for chemical oxygen demand (COD), in order to guarantee reaching the target water quality standard in the TECS, is 160,806 t/year, and amounts to 16,098 t/year, 3493 t/year, and 39,768 t/year for ammonia nitrogen, total nitrogen, and total phosphorus, respectively. Our study method and results have been incorporated into the local government management project, and have been proven to be useful in designing a pollution control strategy and management policy. PMID:27999331

  17. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  18. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  19. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    PubMed

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  20. Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques In Two North Atlantic Experiments

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Redemann, J.; Schmid, B.; Bergstrom, R. W.; Livingston, J. M.; McIntosh, D. M.; Ramirez, S. A.; Hartley, S.; Hobbs, P. V.; Quinn, P. K.

    2002-01-01

    Aerosol single scattering albedo omega (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical depths from satellite radiances. Recently, two experiments in the North Atlantic region, the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2), determined aerosol omega by a variety of techniques. The techniques included fitting of calculated to measured radiative fluxes; retrievals of omega from skylight radiances; best fits of complex refractive index to profiles of backscatter extinction, and size distribution; and in situ measurements of scattering and absorption at the surface and aloft. Both TARFOX and ACE-2 found a fairly wide range of values for omega at midvisable wavelengths approx. 550 nm, with omega(sub midvis) greater than or equal to 0.85 and less than or equal to 0.99 for the marine aerosol impacted by continental pollution. Frequency distributions of omega could usually be approximated by lognormals in omega(sub max) - omega, with some occurrence of bimodality, suggesting the influence of different aerosol sources or processing. In both TARFOX and ACE-2, closure tests between measured and calculated radiative fluxes yielded best-fit values of omega(sub midvis) 0.90 +/- 0.04 for the polluted boundary layer. Although these results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., thermal offsets, unknown gas absorption) The other techniques gave larger values for omega(sub midvis) for the polluted boundary layer, with a typical result of omega(sub midvis) = 0.95 +/- 0.04. Current uncertainties in omega are large in terms of climate effects More tests are needed of the consistency among different methods and of humidification effects on omega.

  1. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    PubMed

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.

  2. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  3. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  4. Entrainment of stratospheric air and Asian pollution by the convective boundary layer in the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Alvarez, R. J.; Brioude, J.; Fine, R.; Gustin, M. S.; Lin, M. Y.; Marchbanks, R. D.; Pierce, R. B.; Sandberg, S. P.; Senff, C. J.; Weickmann, A. M.; Williams, E. J.

    2017-01-01

    A series of deep stratospheric intrusions in late May 2013 increased the daily maximum 8 h surface ozone (O3) concentrations to more than 70 parts per billion by volume (ppbv) at rural and urban surface monitors in California and Nevada. This influx of ozone-rich lower stratospheric air and entrained Asian pollution persisted for more than 5 days and contributed to exceedances of the 2008 8 h national ambient air quality standard of 75 ppbv on 21 and 25 May in Clark County, NV. Exceedances would also have occurred on 22 and 23 May had the new standard of 70 ppbv been in effect. In this paper, we examine this episode using lidar measurements from a high-elevation site on Angel Peak, NV, and surface measurements from NOAA, the Clark County, Nevada Department of Air Quality, the Environmental Protection Agency Air Quality System, and the Nevada Rural Ozone Initiative. These measurements, together with analyses from the National Centers for Environmental Prediction/North American Regional Reanalysis; NOAA Geophysical Fluid Dynamics Laboratory AM3 model; NOAA National Environmental Satellite, Data, and Information Service Real-time Air Quality Modeling System; and FLEXPART models, show that the exceedances followed entrainment of 20 to 40 ppbv of lower stratospheric ozone mingled with another 0 to 10 ppbv of ozone transported from Asia by the unusually deep convective boundary layers above the Mojave desert. Our analysis suggests that this vigorous mixing can affect both high and low elevations and help explain the springtime ozone maximum in the southwestern U.S.

  5. Integrated Modelling in CRUCIAL Science Education

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and discussed.

  6. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  7. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  8. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  9. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  10. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  11. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  12. Enhancement in secondary particulate matter production due to mountain trapping

    NASA Astrophysics Data System (ADS)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be originated from the PRD and transported back resulting in significant increase of secondary PM concentration, and provides new insight into PM production and transport mechanism in the PRD.

  13. Dry deposition profile of small particles within a model spruce canopy.

    PubMed

    Ould-Dada, Zitouni

    2002-03-08

    Data on dry deposition of 0.82 microm MMAD uranium particles to a small scale, 'model' Norway spruce (Picea abies) canopy have been determined by means of wind tunnel experiments. These are presented for both the total canopy and for five horizontal layers within the canopy. The results show a complex pattern of deposition within the canopy. The highest deposition velocity Vg (0.19 cm s(-1)) was recorded for the topmost layer within the canopy (i.e. the layer in direct contact with the boundary layer) whereas the lowest Vg (0.02 cm s(-1)) occurred at the soil surface. Vertical penetration of depositing aerosol through the canopy was influenced by variations in biomass, wind velocity and turbulence within the canopy. A total canopy Vg of 0.5 cm s(-1) was obtained and this is in line with field measurements of Vg reported in literature for both anthropogenic and radionuclide aerosols of similar size ranges. Extrapolation of wind tunnel data to 'real' forest canopies is discussed. The information presented here is of importance in predicting the likely contribution of dry deposition of aerosols to pollutant inputs to forest ecosystems, particularly in the context of radioactive aerosol releases from nuclear installations. The application of the present data may also be appropriate for other pollutant aerosols such as SO4, NO3 and NH4, which are characterised by particle sizes in the range used in this study.

  14. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  15. Water and chemical input via hydrometeors in central European mountains with Szrenica as an example

    NASA Astrophysics Data System (ADS)

    Błaś, M.; Sobik, M.; Polkowska, Ż.; Cichała-Kamrowska, K.

    2010-07-01

    Atmospheric pollutants are transferred to the ground by the contribution of various types of hydrometeors. These are atmospheric precipitation and non-precipitation components belonging to the atmospheric deposits (dew and hoarfrost as well as rime and liquid fog). Due to the different techniques concerning sampling and measurements, comparative analyses between them are often neglected. Hence, the main goal is to compare chemistry of different types of hydrometeors and their role in both: water balance and pollutants deposition. Precipitation, dew, hoarfrost, liquid fog and rime samples were collected daily all through the 2009 year at the Szrenica Mt. [1330 m a.s.l.]. It is situated in the western part of the main ridge of the Karkonosze Mts. which falls steeply northward on the Polish side and forms a distinct slope about 1000 m high. During typical westerly wind conditions the Karkonosze Mts. are exposed to highly polluted air from heavy industry densely situated at the distance of tens to hundreds kilometers on the windward side of the mountains. Precipitation is the main source of water flux at the Szrenica Mt. reaching 1430 mm annually, with the highest molar concentrations of ammonia, nitrates and sulphates (33%, 21% and 14% respectively). However the average TIC (Total Inorganic Ionic Content) of precipitation (273 µMoles•l-1) was the lowest when compared with other non-precipitation hydrometeors, discussed below. This results from relatively clean air in middle and/or upper parts of troposphere where atmospheric processes responsible for precipitation formation take place. This is in contrast with much more polluted atmospheric boundary layer being continuously polluted by various emission sources. Fog deposit tends to be the second important component of water flux at the Szrenica Mt., which forms even 50% of water delivered by atmospheric precipitation. Cloud water concentration of dissolved pollutants expressed by TIC was 3 times higher than in case of precipitation (880 µMoles•l 1), with nitrates, ammonia and sulphates as major ions (27%, 26% and 11% respectively). It is due to the more polluted nature of the boundary layer than the free atmosphere, as well as fog water originating in low-level air. That is also the reason why chemical composition of low-level clouds forms an appriopriate indicator of the local and regional scale anthropogenic pollution and for larger scale comparisons of chemical components in cloudy environments. Summarizing, direct pollutant deposition via cloud droplets to vegetation is larger than via precipitation because of much higher pollutant concentration of the former. Dew and hoarfrost provide water quantities much lower to fog or rain, but is a modest supplementary source of water (approximately 0,8% when compare with precipitation). They appear especially during the anticyclonic type of weather with no wind and clear night skies, rare at summit position. TIC for dew and hoarfrost samples was a bit higher in comparison with precipitation (346 µMoles•l-1), but chemical composition quite different to others hydrometeors (chloride - 20%, sodium - 19% and calcium - 18%). It might be explained by air subsidence from the upper part of atmosphere, typical for the mountain summits in anticyclonic type of weather. Stable thermal stratification limits vertical air pollutant transport, especially of anthropogenic origin, and the thickness of the atmospheric mixing layer is visibly lessened. Hence, maritime aerosol is much more important in such circumstances. Both climate and landscape in Poland are similar to major part of central and western Europe so you can expect that relationship between different components of water flux and pollutant deposition observed at the Mt. Szrenica are applicable also to other European countries where similar natural conditions are found.

  16. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  17. Design, testing and demonstration of a small unmanned aircraft system (sUAS) and payload for measuring wind speed and particulate matter in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Riddell, Kevin Donald Alexander

    The atmospheric boundary layer (ABL) is the layer of air directly influenced by the Earth's surface and is the layer of the atmosphere most important to humans as this is the air we live in. Methods for measuring the properties of the ABL include three general approaches: satellite based, ground based and airborne. A major research challenge is that many contemporary methods provide a restricted spatial resolution or coverage of variations of ABL properties such as how wind speed varies across a landscape with complex topography. To enhance our capacity to measure the properties of the ABL, this thesis presents a new technique that involves a small unmanned aircraft system (sUAS) equipped with a customized payload for measuring wind speed and particulate matter. The research presented herein outlines two key phases in establishing the proof of concept of the payload and its integration on the sUAS: (1) design and testing and (2) field demonstration. The first project focuses on measuring wind speed, which has been measured with fixed wing sUASs in previous research. but not with a helicopter sUAS. The second project focuses on the measurement of particulate matter, which is a major air pollutant typically measured with ground-based sensors. Results from both proof of concept projects suggest that ABL research could benefit from the proposed techniques. .

  18. MAX-DOAS measurements of tropospheric vertical profiles of aerosols, NO2, SO2 and HCHO in the suburban area of Xintai city, China: comparisons with aircraft and ground-based measurements, and investigation of transport

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Dörner, Steffen; Wagner, Thomas; Wang, Yuying; He, Hao; Ren, Xinrong; Li, Zhanqing; Li, Donghui; Xu, Hua; Li, Zhengqiang; Xu, Jiwei; Liu, Dong; Wang, Zhenzhu; De Smedt, Isabelle; Theys, Nicolas

    2017-04-01

    Xingtai is one of the most polluted cities in China and is located on the western edge of the large industrial zone of the North China plain. The Taihang Mountains in the west of Xingtai block transport of polluted air mass towards western China and cause accumulation of pollutants along the mountains. Severely polluted air harms health of about seven million inhabitants in Xingtai. Air pollution also affects condensation nuclei for the formation of convective clouds, and thus potentially initiates heavy rainfall. In order to study the interaction of pollutants and clouds, the Atmosphere-Aerosol-Boundary Layer-Cloud (A2BC) Interaction Joint Experiment was held around Xingtai in the period from May to June 2016. Various instruments measuring gaseous pollutants, aerosols, clouds, precipitation, and radiance are operated at a monitoring station (37.18° N, 114.36° E) in the suburban area of Xintai city and aboard two aircrafts which fly up and down in spirals between 0.2 km and 4 km over the station. We operated a Multi Axis (MAX-) Differential Optical Absorption Spectroscopy (DOAS) instrument at the station in order to derive tropospheric vertical profiles of aerosols, NO2, SO2 and HCHO during daytime with a time resolution of about 10 minutes. We apply our profile inversion algorithm PriAM based on the optimal estimation theory to retrieve trace gas and aerosol profiles. The results are compared with other ground-based and aircraft measurements. In general reasonable consistency was found, but the comparison also revealed a considerable smoothing effect of the MAX-DOAS retrievals. The MAX-DOAS results are applied to characterize the vertical profiles and the diurnal cycles of the trace gas and aerosol pollutants. Lifted layers of pollutants, especially aerosols and SO2, were frequently observed during the campaign indicating frequent transport events of pollutants over the station. Rapid cleaning events of pollutants were also observed. We further investigate the effect of transport and the distribution of emission sources (e.g. the wind dependence of pollutants) using MAX-DOAS results in combination with satellite observations, and the HYSPLIT trajectory model.

  19. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  20. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  1. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  2. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  3. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  4. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  5. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  6. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  7. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  8. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  9. Revised estimates for continuous shoreline fumigation: a PDF approach.

    PubMed

    Nazir, Muddassir; Khan, Faisal I; Husain, Tahir

    2005-02-14

    A probability density function (PDF) fumigation model is presented here to study the dispersion of air pollutants emitted from a tall stack on the shoreline. This work considers dispersion of the pollutants in the stable layer and within the thermal internal boundary layer (TIBL) proceeds independently. The growth of TIBL is considered parabolic with distance inland. Turbulence is taken as homogeneous and stationary. Dispersion of particles (contaminant) in lateral and vertical directions is assumed independent of each other. This assumption allows us to consider the position of particles in both directions as independent random variables. The lateral dispersion distribution within the TIBL is considered as Gaussian and independent of height. A skewed bi-Gaussian vertical velocity PDF is used to account for the physics of dispersion due to different characteristics of updrafts and downdrafts within the TIBL. We have used Weil (J.C. Weil, A diagnosis of the asymmetry in top-down and bottom-up diffusion using a Lagrangian stochastic model, J. Atmos. Sci., 47 (1990) 501-515) solutions to find out the parameters of this PDF. Incorporating finite Lagrangian integral time scale for the vertical velocity component, it is observed that it reduces the vertical dispersion in the beginning and moves the point of maximum concentration further downwind. Due to little dispersion in the beginning, there is more plume to be dispersed causing higher concentrations at large distances. The model has considered Weil and Brower's (J.C. Weil, P.R. Brower, Estimating convective boundary layer parameters for diffusion applications, Maryland Power Plant Siting Program Rep. PPSP-MP-48, Department of Natural Resources, Annapolis, MD, 1985, 37 pp.) convective limit to analyze dispersion characteristics within TIBL. The revised model discussed here is evaluated with the data available from the Nanticoke field experiment on fumigation conducted in summer of 1978 in Ontario, Canada. The results of revised model are in good agreement with the observed data.

  10. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  11. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  12. Hot Air Balloon Experiments to Measure the Break-up of the Nocturnal Drainage Flow in Complex Terrain.

    NASA Astrophysics Data System (ADS)

    Berman, N. S.; Fernando, H. J. S.; Colomer, J.; Levy, M.; Zieren, L.

    1997-11-01

    In order to extend our understanding of the thermally driven atmospheric winds and their influence on pollutant transport, a hot air balloon experiment was conducted over a four day period in June, 1997 near Nogales, Arizona. The focus was on the early morning break-up of the stable down-slope and down-valley flow and the establishment of a convective boundary layer near the surface in the absence of synoptic winds. Temperature, elevation, position and particulate matter concentration were measured aloft and temperature gradient and wind velocity were measured at ground level. The wind velocity within the stable layer was generally less than 1.5 m/s. Just above the stable layer (about 300 meters above the valley) the wind shifted leading to an erosion of the stable layer from above. Surface heating after sunrise created a convective layer which rose from the ground until the stable layer was destroyed. Examples of temperature fluctuation measurements at various elevations during the establishment of the convective flow will be presented. Implications of results for turbulence parameterizations needed for numerical models of wind fields in complex terrain will be discussed.

  13. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected by CALIPSO. Here we present new results for a full year study using the new Version 3 CALIPSO data and most recent GEOS-5 model results.

  14. Phenomenology of summer ozone episodes over the Madrid Metropolitan Area, central Spain

    NASA Astrophysics Data System (ADS)

    Querol, Xavier; Alastuey, Andrés; Gangoiti, Gotzon; Perez, Noemí; Lee, Hong K.; Eun, Heeram R.; Park, Yonghee; Mantilla, Enrique; Escudero, Miguel; Titos, Gloria; Alonso, Lucio; Temime-Roussel, Brice; Marchand, Nicolas; Moreta, Juan R.; Arantxa Revuelta, M.; Salvador, Pedro; Artíñano, Begoña; García dos Santos, Saúl; Anguas, Mónica; Notario, Alberto; Saiz-Lopez, Alfonso; Harrison, Roy M.; Millán, Millán; Ahn, Kang-Ho

    2018-05-01

    Various studies have reported that the photochemical nucleation of new ultrafine particles (UFPs) in urban environments within high insolation regions occurs simultaneously with high ground ozone (O3) levels. In this work, we evaluate the atmospheric dynamics leading to summer O3 episodes in the Madrid air basin (central Iberia) by means of measuring a 3-D distribution of concentrations for both pollutants. To this end, we obtained vertical profiles (up to 1200 m above ground level) using tethered balloons and miniaturised instrumentation at a suburban site located to the SW of the Madrid Metropolitan Area (MMA), the Majadahonda site (MJDH), in July 2016. Simultaneously, measurements of an extensive number of air quality and meteorological parameters were carried out at three supersites across the MMA. Furthermore, data from O3 soundings and daily radio soundings were also used to interpret atmospheric dynamics.The results demonstrate the concatenation of venting and accumulation episodes, with relative lows (venting) and peaks (accumulation) in O3 surface levels. Regardless of the episode type, the fumigation of high-altitude O3 (arising from a variety of origins) contributes the major proportion of surface O3 concentrations. Accumulation episodes are characterised by a relatively thinner planetary boundary layer (< 1500 m at midday, lower in altitude than the orographic features), light synoptic winds, and the development of mountain breezes along the slopes of the Guadarrama Mountain Range (located W and NW of the MMA, with a maximum elevation of > 2400 m a.s.l.). This orographic-meteorological setting causes the vertical recirculation of air masses and enrichment of O3 in the lower tropospheric layers. When the highly polluted urban plume from Madrid is affected by these dynamics, the highest Ox (O3+ NO2) concentrations are recorded in the MMA.Vertical O3 profiles during venting episodes, with strong synoptic winds and a deepening of the planetary boundary layer reaching > 2000 m a.s.l., were characterised by an upward gradient in O3 levels, whereas a reverse situation with O3 concentration maxima at lower levels was found during the accumulation episodes due to local and/or regional production. The two contributions to O3 surface levels (fumigation from high-altitude strata, a high O3 background, and/or regional production) require very different approaches for policy actions. In contrast to O3 vertical top-down transfer, UFPs are formed in the planetary boundary layer (PBL) and are transferred upwards progressively with the increase in PBL growth.

  15. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  16. Observations of Radiation Divergence and Stability Driven Slope Flows during the Field Experiment KASCADE

    NASA Astrophysics Data System (ADS)

    Duine, Gert-Jan; Durand, Pierre; Hedde, Thierry; Roubin, Pierre; Augustin, Patrick; Fourmentin, Marc; Lohou, Fabienne; Lothon, Marie

    2014-05-01

    This work is in the frame of the PhD-thesis entitled "Dispersion of pollutants in stable boundary layer conditions in the middle valley of the Durance", financed by the Commissariat à l'Energie Atomique (CEA) and jointly supervised by CEA and Laboratoire d'Aérologie (LA), Toulouse. It takes place in a wider context of R & D work performed at CEA to characterize the site specific atmospheric conditions, with a view to improve the knowledge of the impact of the potential release of pollutants. During the winter of 2013 the intensive field measurement campaign KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) has been carried out at Cadarache, a research centre of CEA, located in South-Eastern France. The stability of the lower atmospheric boundary layer caused by radiative cooling at night, combined with the local orography, strongly affects the conditions for the dispersion of potential pollutants. Understanding the complex patterns of drainage flow and cold pool build up in the smaller valleys confluent to the Durance river is thus a major issue for refining the models used to assess the sanitary and environmental impact of Cadarache. Stability is easily formed in the region and in combination with the orographic complexity, there is a need to study the Stable Boundary Layer (SBL), which potentially can have a large impact on the dispersion of gaseous emissions released by the various facilities of Cadarache. KASCADE was designed to characterize the local SBL in order to feed future planned numerical simulations with WRF and impact studies involving numerical models coping with dispersion. With a focus on night time, a combination of continuous observations (SODAR and a flux-measurement tower of 30 meter [M30]) and 23 Intensive Observational Periods (IOPs) (Tethered Balloon [TB] profiling and radio-soundings) allows to study the relevant phenomena for SBL-formation. M30 was equipped with sonic anemometers at 3 levels for turbulence measurements and net radiometers at 2 levels to capture radiation divergence. TB-profiles up to 300 m allow to describe the SBL-formation and local wind patterns. In addition to the IOPs, year-round SODAR measurements are available to catch the influence of the Durance valley on wind patterns. During the desired conditions (clear sky and calm wind), the set-up of the experiment has proven successful in observing the main drivers for SBL-formation and its effects on local orography. Minimal longwave heating (cooling) values of -1 to -1.5 K h¬-1 are measured regularly and resulting slope flows are observed. The presentation focusses on the comparison of several contrasting nights.

  17. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  18. Adaptive hierarchical grid model of water-borne pollutant dispersion

    NASA Astrophysics Data System (ADS)

    Borthwick, A. G. L.; Marchant, R. D.; Copeland, G. J. M.

    Water pollution by industrial and agricultural waste is an increasingly major public health issue. It is therefore important for water engineers and managers to be able to predict accurately the local behaviour of water-borne pollutants. This paper describes the novel and efficient coupling of dynamically adaptive hierarchical grids with standard solvers of the advection-diffusion equation. Adaptive quadtree grids are able to focus on regions of interest such as pollutant fronts, while retaining economy in the total number of grid elements through selective grid refinement. Advection is treated using Lagrangian particle tracking. Diffusion is solved separately using two grid-based methods; one is by explicit finite differences, the other a diffusion-velocity approach. Results are given in two dimensions for pure diffusion of an initially Gaussian plume, advection-diffusion of the Gaussian plume in the rotating flow field of a forced vortex, and the transport of species in a rectangular channel with side wall boundary layers. Close agreement is achieved with analytical solutions of the advection-diffusion equation and simulations from a Lagrangian random walk model. An application to Sepetiba Bay, Brazil is included to demonstrate the method with complex flows and topography.

  19. Observational Analyses of Dramatic Developments of A Severe Air Pollution Event in the Beijing Area

    NASA Astrophysics Data System (ADS)

    Sun, J.; Li, J.; Zhou, M.; Cheng, Z.; Li, Q.; Cao, X.; Zhang, J.

    2017-12-01

    A rapid development of a severe air pollution event at the end of November, 2015 was investigated with in situ and remote sensing observations. The analyses indicate that the high PM2.5 air was transported over the urban area by the southwesterly flow above 500 m under the nighttime stable condition with its high concentration centered southeast of Beijing. As the daytime convective turbulent mixing developed over the Beijing urban area in the morning and it transported the upper polluted air downward, leading to the dramatic increase of the PM2.5 concentration in the urban area. Meanwhile, the convective turbulent mixing transported the highly polluted air upward upstream of Beijing, resulting in the horizontal transport of high PM2.5 air into Beijing especially in the afternoon when the stable boundary layer started to develop near the surface. As a result of both turbulent mixing and advection processes with possible aerosol growth from secondary aerosol formation under the low wind and high humidity condition, the PM2.5 concentration reached over 700 µg m-3 at Beijing by the end of the day.

  20. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  1. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  2. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  3. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  4. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  5. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  6. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  7. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  8. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  9. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  10. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  11. Aerosol-cloud feedbacks in a turbulent environment: Laboratory measurements representative of conditions in boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Cantrell, W. H.; Chandrakar, K. K.; Karki, S.; Kinney, G.; Shaw, R.

    2017-12-01

    Many of the climate impacts of boundary layer clouds are modulated by aerosol particles. As two examples, their interactions with incoming solar and upwelling terrestrial radiation and their propensity for precipitation are both governed by the population of aerosol particles upon which the cloud droplets formed. In turn, clouds are the primary removal mechanism for aerosol particles smaller than a few micrometers and larger than a few nanometers. Aspects of these interconnected phenomena are known in exquisite detail (e.g. Köhler theory), but other parts have not been as amenable to study in the laboratory (e.g. scavenging of aerosol particles by cloud droplets). As a complicating factor, boundary layer clouds are ubiquitously turbulent, which introduces fluctuations in the water vapor concentration and temperature, which govern the saturation ratio which mediates aerosol-cloud interactions. We have performed laboratory measurements of aerosol-cloud coupling and feedbacks, using Michigan Tech's Pi Chamber (Chang et al., 2016). In conditions representative of boundary layer clouds, our data suggest that the lifetime of most interstitial particles in the accumulation mode is governed by cloud activation - particles are removed from the Pi Chamber when they activate and settle out of the chamber as cloud droplets. As cloud droplets are removed, these interstitial particles activate until the initially polluted cloud cleans itself and all particulates are removed from the chamber. At that point, the cloud collapses. Our data also indicate that smaller particles, Dp < ˜ 20 nm are not activated, but are instead removed through diffusion, enhanced by the fact that droplets are moving relative to the suspended aerosol. I will discuss results from both warm (i.e. liquid water only) and mixed phase clouds, showing that cloud and aerosol properties are coupled through fluctuations in the supersaturation, and that threshold behaviors can be defined through the use of the Dämkohler number, the ratio of the characteristic turbulence timescale to the cloud's microphysical response time. Chang, K., et al., 2016. A laboratory facility to study gas-aerosol-cloud interactions in a turbulent environment: The Π Chamber. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-15-00203.1

  12. Testing Extensions of Our Quantitative Daily of San Joaquin Wintertime Aerosols Using MAIAC and Meteorology Without Transport/Transformation Assumptions

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Sorek Hamer, Meytar; Esswein, Robert F.

    2017-01-01

    The Western US and many regions globally present daunting difficulties in understanding and mapping PM2.5 episodes. We evaluate extensions of a method independent of source-description and transport/transformation. These regions suffer frequent few-day episodes due to shallow mixing; low satellite AOT and bright surfaces complicate the description. Nevertheless, we expect residual errors in our maps of less than 8 ug/m^3 in episodes reaching 60-100 ug/m^3; maps which detail pollution from Interstate 5. Our current success is due to use of physically meaningful functions of MODIS-MAIAC-derived AOD, afternoon mixed-layer height, and relative humidity for a basin in which the latter are correlated. A mixed-effects model then describes a daily AOT-to-PM2.5 relationship. (Note: in other published mixed-effects models, AOT contributes minimally. We seek to extend on these to develop useful estimation methods for similar situations. We evaluate existing but more spotty information on size distribution (AERONET, MISR, MAIA, CALIPSO, other remote sensing). We also describe the usefulness of an equivalent mixing depth for water vapor vs meteorological boundary layer height. Each has virtues and limitations. Finally, we begin to evaluate methods for removing the complications due to detached but polluted layers (which don't mix to the surface) using geographical, meteorological, and remotely sensed data.

  13. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  14. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  15. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  16. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  17. Study of Water Pollution Early Warning Framework Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.

    2016-06-01

    In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  18. Free tropospheric ozone production following entrainment of urban plumes into deep convection

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Scala, John R.; Tao, Wei-Kuo; Dickerson, Russell R.; Simpson, Joanne

    1992-01-01

    It is shown that rapid vertical transport of air from urban plumes through deep convective clouds can cause substantial enhancement of the rate of O3 production in the free troposphere. Simulation of convective redistribution and subsequent photochemistry of an urban plume from Oklahoma City during the 1985 PRESTORM campaign shows enhancement of O3 production in the free tropospheric cloud outflow layer by a factor of almost 4. In contrast, simulation of convective transport of an urban plume from Manaus, Brazil, into a prestine free troposphere during GTE/ABLE 2B (1987), followed by a photochemical simulation, showed enhancement of O3 production by a factor of 35. The reasons for the different enhancements are (1) intensity of cloud vertical motion; (2) initial boundary layer O3 precursor concentrations; and (3) initial amount of background free tropospheric NO(x). Convective transport of ozone precursors to the middle and upper troposphere allows the resulting O3 to spread over large geographic regions, rather than being confined to the lower troposphere where loss processes are much more rapid. Conversely, as air with lower NO descends and replaces more polluted air, there is greater O3 production efficiency per molecule of NO in the boundary layer following convective transport. As a result, over 30 percent more ozone could be produced in the entire tropospheric column in the first 24 hours following convective transport of urban plumes.

  19. Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments.

    PubMed

    Yang, Handong; Battarbee, Richard W; Turner, Simon D; Rose, Neil L; Derwent, Richard G; Wu, Guangjian; Yang, Ruiqiang

    2010-04-15

    The Tibetan Plateau is described as the "Roof of the World" averaging over 4000 m above sea level; it is remote, isolated, and presumed to be a pristine region. In order to study the history of atmospheric mercury (Hg) pollution and its spatial variation across the Plateau, lakes were chosen from three areas forming a north to south transect. Sediment cores were taken from three sites in each area and dated using the radionuclides 210Pb and 137Cs. Analysis of the cores yielded the first comprehensive Hg reconstructions for the Plateau, showing clear Hg pollution at all sites. The first indication of Hg pollution is much earlier than the onset of the industrial revolution in Europe, but the most significant pollution increase is from the 1970s, followed by a further marked increase from the 1990s. The mean post-2000 atmospheric pollution Hg accumulation rates for the sampling sites were estimated at between 5.1 and 7.9 microg m(-2) yr(-1). The increase in Hg pollution over the last few decades is synchronous with the recent economic development in Asia (especially China and India), and pollution Hg levels continue to increase. Furthermore, contemporary sediment Hg accumulation rate data are in broad agreement with Hg deposition values derived from global models that attribute pollution to sources mainly within southeast Asia. As most of the sites are exceptionally remote and situated above the atmospheric boundary layer, these results underline the need to understand the local Hg cycle in both regional and global context.

  20. Tropospheric OH and HO2 radicals: field measurements and model comparisons.

    PubMed

    Stone, Daniel; Whalley, Lisa K; Heard, Dwayne E

    2012-10-07

    The hydroxyl radical, OH, initiates the removal of the majority of trace gases in the atmosphere, and together with the closely coupled species, the hydroperoxy radical, HO(2), is intimately involved in the oxidation chemistry of the atmosphere. This critical review discusses field measurements of local concentrations of OH and HO(2) radicals in the troposphere, and in particular the comparisons that have been made with numerical model calculations containing a detailed chemical mechanism. The level of agreement between field measurements of OH and HO(2) concentrations and model calculations for a given location provides an indication of the degree of understanding of the underlying oxidation chemistry. We review the measurement-model comparisons for a range of different environments sampled from the ground and from aircraft, including the marine boundary layer, continental low-NO(x) regions influenced by biogenic emissions, the polluted urban boundary layer, and polar regions. Although good agreement is found for some environments, there are significant discrepancies which remain unexplained, a notable example being unpolluted, forested regions. OH and HO(2) radicals are difficult species to measure in the troposphere, and we also review changes in detection methodology, quality assurance procedures such as instrument intercomparisons, and potential interferences.

  1. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  2. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  3. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  4. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  5. The impact of winter heating on air pollution in China.

    PubMed

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004-2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating.

  6. Up in the Air: Methane and Ozone over California

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.

    2014-01-01

    The Alpha Jet Atmospheric eXperiment (AJAX) at NASA Ames Research Center measures in-situ carbon dioxide, methane, and ozone concentrations in the Earth's atmosphere several times each month. The AJAX team studies local photochemical smog production, provides data for long-term studies of trans-Pacific transport of pollution, and supports the observation of greenhouse gases from satellites. The aircraft is stationed at Moffett Field and is outfitted with scientific instruments to measure trace gas concentrations and 3-D wind speeds. Vertical profiles from near the surface up to approximately 27,000 ft are routinely collected over locations such as: Merced, Edwards Air Force Base, Railroad Valley, NV, and over the Pacific Ocean. In addition, boundary layer measurements scout for surface sources such as fires, oil gas infrastructure, livestock, and urban pollution. This talk will focus on recent observations over dairy operations, fossil fuel infrastructure, and wildfires.

  7. The Impact of Winter Heating on Air Pollution in China

    PubMed Central

    Xiao, Qingyang; Ma, Zongwei; Li, Shenshen; Liu, Yang

    2015-01-01

    Fossil-fuel combustion related winter heating has become a major air quality and public health concern in northern China recently. We analyzed the impact of winter heating on aerosol loadings over China using the MODIS-Aqua Collection 6 aerosol product from 2004–2012. Absolute humidity (AH) and planetary boundary layer height (PBL) -adjusted aerosol optical depth (AOD*) was constructed to reflect ground-level PM2.5 concentrations. GIS analysis, standard statistical tests, and statistical modeling indicate that winter heating is an important factor causing increased PM2.5 levels in more than three-quarters of central and eastern China. The heating season AOD* was more than five times higher as the non-heating season AOD*, and the increase in AOD* in the heating areas was greater than in the non-heating areas. Finally, central heating tend to contribute less to air pollution relative to other means of household heating. PMID:25629878

  8. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  9. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, R; Kanter, H J; Sladkovic, R

    The study of the balance of the tropospheric ozone as a function of atmospheric pollutants and tropospheric transport has been started. Continuous recordings are available of ozone concentration at three levels (3000 m, 1800 m, and 700 m a.s.l.) and of the concentration of the cosmogenic radionuclides /sup 7/Be, /sup 32/P, /sup 33/P, and the CO/sub 2/-concentration. Ozone concentrations >70 ppB have been observed after stratospheric intrusions as well as in consequence of photochemical reactions in the boundary layer. An observation sequence, covering now a period of 20 months, is presented of the stratospheric aerosol layer by means of lidarmore » monitoring. Possible errors in the measuring technique are discussed. A filter photospectrometer for the measurement of the atmospheric total ozone is described, its suitability is checked by a direct intercomparison with a Dobson spectrometer.« less

  11. CALIOP near-real-time backscatter products compared to EARLINET data

    NASA Astrophysics Data System (ADS)

    Grigas, T.; Hervo, M.; Gimmestad, G.; Forrister, H.; Schneider, P.; Preißler, J.; Tarrason, L.; O'Dowd, C.

    2015-11-01

    The expedited near-real-time Level 1.5 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) version 3 products were evaluated against data from the ground-based European Aerosol Research Lidar Network (EARLINET). The statistical framework and results of the three-year evaluation of 48 CALIOP overpasses with ground tracks within a 100 km distance from operating EARLINET stations are presented and include analysis for the following CALIOP classifications of aerosol type: dust, polluted dust, clean marine, clean continental, polluted continental, mixed and/or smoke/biomass burning. For the complete data set comprising both the planetary boundary layer (PBL) and the free troposphere (FT) data, the correlation coefficient (R) was 0.86. When the analysis was conducted separately for the PBL and FT, the correlation coefficients were R = 0.6 and R = 0.85, respectively. From analysis of selected specific cases, it was initially thought that the presence of FT layers, with high attenuated backscatter, led to poor agreement of the PBL backscatter profiles between the CALIOP and EARLINET and prompted a further analysis to filter out such cases; however, removal of these layers did not improve the agreement as R reduced marginally from R = 0.86 to R = 0.84 for the combined PBL and FT analysis, increased marginally from R = 0.6 up to R = 0.65 for the PBL on its own, and decreased marginally from R = 0.85 to R = 0.79 for the FT analysis on its own. This suggests considerable variability, across the data set, in the spatial distribution of the aerosol over spatial scales of 100 km or less around some EARLINET stations rather than influence from elevated FT layers. For specific aerosol types, the correlation coefficient between CALIOP backscatter profiles and the EARLINET data ranged from R = 0.37 for polluted continental aerosol in the PBL to R = 0.57 for dust in the FT.

  12. Large eddy simulations and reduced models of the Unsteady Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Momen, M.; Bou-Zeid, E.

    2013-12-01

    Most studies of the dynamics of Atmospheric Boundary Layers (ABLs) have focused on steady geostrophic conditions, such as the classic Ekman boundary layer problem. However, real-world ABLs are driven by a time-dependent geostrophic forcing that changes at sub-diurnal scales. Hence, to advance our understanding of the dynamics of atmospheric flows, and to improve their modeling, the unsteady cases have to be analyzed and understood. This is particularly relevant to new applications related to wind energy (e.g. short-term forecast of wind power changes) and pollutant dispersion (forecasting of rapid changes in wind velocity and direction after an accidental spill), as well as to classic weather prediction and hydrometeorological applications. The present study aims to investigate the ABL behavior under variable forcing and to derive a simple model to predict the ABL response under these forcing fluctuations. Simplifications of the governing Navier-Stokes equations, with the Coriolis force, are tested using LES and then applied to derive a physical model of the unsteady ABL. LES is then exploited again to validate the analogy and the output of the simpler model. Results from the analytical model, as well as LES outputs, open the way for inertial oscillations to play an important role in the dynamics. Several simulations with different variable forcing patterns are then conducted to investigate some of the characteristics of the unsteady ABL such as resonant frequency, ABL response time, equilibrium states, etc. The variability of wind velocity profiles and hodographs, turbulent kinetic energy, and vertical profiles of the total stress and potential temperature are also examined. Wind Hodograph of the Unsteady ABL at Different Heights - This figure shows fluctuations in the mean u and v components of the velocity as time passes due to variable geostrophic forcing

  13. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  14. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  15. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  16. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  17. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  18. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  19. Urban and Rural Ozone Collect over Lusaka (Zambia, 15.5 S, 28 E) during SAFARI-2000 (September 2000)

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tai; Phalane, N. Agnes; Coetzee, Gert J. R.

    2002-01-01

    In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.

  20. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  1. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  2. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  3. Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Pathak, S.; Bhadra, B. K.; Sharma, J. R.

    2012-07-01

    The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized software. Establishment of other boundary conditions was based on well data. Calibration and validation of was done using ground water modelling software. Change detection analysis indicated areas of impact on land use/ cover particularly, agriculture activity. Normalised difference vegetation index found to have negative correlation with pollution level. Population dynamics have been studied and it is found to be poorly correlated with land degradation. Water levels do not show significant variations in past twenty years baring normal seasonal fluctuation. Chemical analysis of ground water samples studies in time series. The water quality studied through various parameters shows concentration in mid-reach of the Bandi river. Analysis of litholog data shows three unconfined aquifers. Pump test and resistivity survey was carried out for initial aquifer properties in local water levels. Modelling contaminant migration helped in prediction of the extent of the adversity. Surface flow is checked allowing more water but it is proving to be accumulation point in absence of good rainfall & flow in the river. Hotspots of dumping /active contamination were identified with certain remediation efforts and supply of solid waste to cement industry in addition to bio-filter for heavy metals.

  4. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  5. Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF-Chem CO tracer model

    NASA Astrophysics Data System (ADS)

    Saide, Pablo E.; Carmichael, Gregory R.; Spak, Scott N.; Gallardo, Laura; Osses, Axel E.; Mena-Carrasco, Marcelo A.; Pagowski, Mariusz

    2011-05-01

    This study presents a system to predict high pollution events that develop in connection with enhanced subsidence due to coastal lows, particularly in winter over Santiago de Chile. An accurate forecast of these episodes is of interest since the local government is entitled by law to take actions in advance to prevent public exposure to PM10 concentrations in excess of 150 μg m -3 (24 h running averages). The forecasting system is based on accurately simulating carbon monoxide (CO) as a PM10/PM2.5 surrogate, since during episodes and within the city there is a high correlation (over 0.95) among these pollutants. Thus, by accurately forecasting CO, which behaves closely to a tracer on this scale, a PM estimate can be made without involving aerosol-chemistry modeling. Nevertheless, the very stable nocturnal conditions over steep topography associated with maxima in concentrations are hard to represent in models. Here we propose a forecast system based on the WRF-Chem model with optimum settings, determined through extensive testing, that best describe both meteorological and air quality available measurements. Some of the important configurations choices involve the boundary layer (PBL) scheme, model grid resolution (both vertical and horizontal), meteorological initial and boundary conditions and spatial and temporal distribution of the emissions. A forecast for the 2008 winter is performed showing that this forecasting system is able to perform similarly to the authority decision for PM10 and better than persistence when forecasting PM10 and PM2.5 high pollution episodes. Problems regarding false alarm predictions could be related to different uncertainties in the model such as day to day emission variability, inability of the model to completely resolve the complex topography and inaccuracy in meteorological initial and boundary conditions. Finally, according to our simulations, emissions from previous days dominate episode concentrations, which highlights the need for 48 h forecasts that can be achieved by the system presented here. This is in fact the largest advantage of the proposed system.

  6. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  7. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  8. Exploring the planetary boundary for chemical pollution.

    PubMed

    Diamond, Miriam L; de Wit, Cynthia A; Molander, Sverker; Scheringer, Martin; Backhaus, Thomas; Lohmann, Rainer; Arvidsson, Rickard; Bergman, Åke; Hauschild, Michael; Holoubek, Ivan; Persson, Linn; Suzuki, Noriyuki; Vighi, Marco; Zetzsch, Cornelius

    2015-05-01

    Rockström et al. (2009a, 2009b) have warned that humanity must reduce anthropogenic impacts defined by nine planetary boundaries if "unacceptable global change" is to be avoided. Chemical pollution was identified as one of those boundaries for which continued impacts could erode the resilience of ecosystems and humanity. The central concept of the planetary boundary (or boundaries) for chemical pollution (PBCP or PBCPs) is that the Earth has a finite assimilative capacity for chemical pollution, which includes persistent, as well as readily degradable chemicals released at local to regional scales, which in aggregate threaten ecosystem and human viability. The PBCP allows humanity to explicitly address the increasingly global aspects of chemical pollution throughout a chemical's life cycle and the need for a global response of internationally coordinated control measures. We submit that sufficient evidence shows stresses on ecosystem and human health at local to global scales, suggesting that conditions are transgressing the safe operating space delimited by a PBCP. As such, current local to global pollution control measures are insufficient. However, while the PBCP is an important conceptual step forward, at this point single or multiple PBCPs are challenging to operationalize due to the extremely large number of commercial chemicals or mixtures of chemicals that cause myriad adverse effects to innumerable species and ecosystems, and the complex linkages between emissions, environmental concentrations, exposures and adverse effects. As well, the normative nature of a PBCP presents challenges of negotiating pollution limits amongst societal groups with differing viewpoints. Thus, a combination of approaches is recommended as follows: develop indicators of chemical pollution, for both control and response variables, that will aid in quantifying a PBCP(s) and gauging progress towards reducing chemical pollution; develop new technologies and technical and social approaches to mitigate global chemical pollution that emphasize a preventative approach; coordinate pollution control and sustainability efforts; and facilitate implementation of multiple (and potentially decentralized) control efforts involving scientists, civil society, government, non-governmental organizations and international bodies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  10. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  11. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  12. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  13. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  14. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  15. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  16. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  17. Clear-Sky Closure Studies of Lower Tropospheric Aerosol and Water Vapor During ACE-2 Using Airborne Sunphotometer, Airborne In-Situ, Space-Borne, and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Livingston, John M.; Russell, Philip B.; Durkee, Philip A.; Jonsson, Haflidi H.; Collins, Donald R.; Flagan, Richard C.; Seinfeld, John H.; Gasso, Santiago; Hegg, Dean A.; hide

    2000-01-01

    We report on clear-sky column closure experiments (CLEARCOLUMN) performed in the Canary Islands during the second Aerosol Characterization Experiment (ACE-2) in June/July 1997. We present CLEARCOLUMN results obtained by combining airborne sunphotometer and in-situ (optical particle counter, nephelometer, and absorption photometer) measurements taken aboard the Pelican aircraft, space-borne NOAA/AVHRR data and ground-based lidar and sunphotometer measurements. During both days discussed here, vertical profiles flown in cloud-free air masses revealed 3 distinctly different layers: a marine boundary layer (MBL) with varying pollution levels, an elevated dust layer, and a very clean layer between the MBL and the dust layer. A key result of this study is the achievement of closure between extinction or layer aerosol optical depth (AOD) computed from continuous in-situ aerosol size-distributions and composition and those measured with the airborne sunphotometer. In the dust, the agreement in layer AOD (lambda = 380-1060 nm) is 3-8%. In the MBL there is a tendency for the in-situ results to be slightly lower than the sunphotometer measurements (10-17% at lambda = 525 nm), but these differences are within the combined error bars of the measurements and computations.

  18. An Overview of Measurement Comparisons from the INTEX-B/MILAGRO Airborne Field Campaign

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; Chen, Gao; Crawford, James H.; Flocke, Frank M.; Brown, Clyde C.

    2011-01-01

    As part of the NASA's INTEX-B mission, the NASA DC-8 and NSF C-130 conducted three wing-tip to wing-tip comparison flights. The intercomparison flights sampled a variety of atmospheric conditions (polluted urban, non-polluted, marine boundary layer, clean and polluted free troposphere). These comparisons form a basis to establish data consistency, but also should also be viewed as a continuation of efforts aiming to better understand and reduce measurement differences as identified in earlier field intercomparison exercises. This paper provides a comprehensive overview of 140 intercomparisons of data collected as well as a record of the measurement consistency demonstrated during INTEX-B. It is the primary goal to provide necessary information for the future research to determine if the observations from different INTEX-B platforms/instrument are consistent within the PI reported uncertainties and used in integrated analysis. This paper may also contribute to the formulation strategy for future instrument developments. For interpretation and most effective use of these results, the reader is strongly urged to consult with the instrument principle investigator.

  19. Explaining the Accumulation of Intercontinental Biomass Burning Pollution: High Versus Low Processes, Africa Versus South America, Cooking Versus Mixing

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Podolske, James R. (Technical Monitor)

    1995-01-01

    The intercontinental buildup of tropospheric ozone, carbon monoxide, and other pollutants over the South Atlantic has been attributed to biomass burning over distant continents. We address several of the large questions regarding the nature and budget of this buildup have remained: What is the role of turning In South America or various portions of Africa in this accumulation? What are the relative roles of shallow and deep convection for emplacing various compounds in the free troposphere? Can we understand the ozone budget? We report the first simulations of a three-dimensional pollutant transport model, (GRACES) transport which is driven by fully reconstructed meteorology for the TRACE-A/SAFARI period of 1992. Greater detail is provided by a two-dimensional, detailed-chemistry model of more restricted regions of Africa. We find a predominant role for African emissions affecting the Atlantic during this period. Boundary-layer venting via PBL convection tends to build the observed carbon monoxide column over the ocean, while deep cumulonimbus processes tend to explain rather more of the ozone column.

  20. Impact of building configuration on air quality in street canyon

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Huang, Zhen; Wang, Jia-song

    The objective of this study is to provide a simulation of emissions from vehicle exhausts in a street canyon within an urban environment. Standard, RNG and Chen-Kim k- ɛ turbulence models are compared with the wind tunnel measured data for optimization of turbulence model. In the first approach, the investigation is made into the effect of the different roof shapes and ambient building structures. The results indicate that the in-canyon vortex dynamics (e.g. vortex orientation) and the characteristics of pollutant dispersion are dependent on the roof shapes and ambient building structures strongly. A second set of calculations for a three-dimensional simulation of the street canyon setup was performed to investigate the influence of building geometry on pollutant dispersion. The validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (Studie on different roof geometries in a simplified urban environment, 1995). The studies give evidence that roof shapes, the ambient building configurations and building geometries are important factors determining the flow patterns and pollutant dispersion in street canyon.

  1. Analysis of Strong Wintertime Ozone Events in an Area of Extensive Oil and Gas Extraction

    NASA Astrophysics Data System (ADS)

    Rappenglück, Bernhard; Ackermann, Luis; Alvarez, Sergio; Golovko, Julia; Buhr, Martin; Field, Robert; Soltis, Jeff; Montague, Derek C.; Hauze, Bill; Scott, Adamson; Risch, Dan; Wilkerson, George; Bush, David; Stoeckenius, Till; Keslar, Cara

    2015-04-01

    During recent years, elevated ozone (O3) values have been observed repeatedly in the Upper Green River Basin (UGRB), Wyoming during wintertime. This paper presents an analysis of high ozone days in late winter 2011 (1-hour average up to 166 ppbv). Intensive Observational Periods (IOPs) were performed which included comprehensive surface and boundary layer measurements. Low windspeeds in combination with low mixing layer heights (~50 m agl) are essential for accumulation of pollutants. Air masses contain substantial amounts of reactive nitrogen (NOx) and non-methane hydrocarbons (NMHC) emitted from fossil fuel exploration activities in the Pinedale Anticline. On IOP days in the morning hours reactive nitrogen (up to 69%), then aromatics and alkanes (each ~10-15%; mostly ethane and propane) are major contributors to the hydroxyl (OH) reactivity. This time frame largely coincides with lowest NMHC/NOx ratios (~50), reflecting a relatively low NMHC mixture, and a change from a NOx-limited regime towards a NMHC limited regime. OH production on IOP days is mainly due to nitrous acid (HONO). On a 24-hr basis and as determined for a measurement height of 1.80 m above the surface HONO photolysis on IOP days can contribute ~83% to OH production on average, followed by alkene ozonolysis (~9%). Photolysis by ozone and HCHO photolysis contributes about 4% each to hydroxyl formation. High HONO levels (maximum hourly median on IOP days: 1,096 pptv) are favored by a combination of shallow boundary layer conditions and enhanced photolysis rates due to the high albedo of the snow surface. HONO is most likely formed through (i) abundant nitric acid (HNO3) produced in atmospheric oxidation of NOx, deposited onto the snow surface and undergoing photo-enhanced heterogeneous conversion to HONO and (ii) combustion related emission of HONO. HONO production is confined to the lowermost 10 m of the boundary layer. HONO, serves as the most important precursor for OH, strongly enhanced due to the high albedo of the snow cover.

  2. Numerical investigation of an internal layer in turbulent flow over a curved hill

    NASA Technical Reports Server (NTRS)

    Kim, S-W.

    1989-01-01

    The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.

  3. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  4. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  5. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    PubMed

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  6. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  7. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  8. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  9. Polluting and healing among the Northern Yaka of Zaire.

    PubMed

    Devisch, R

    1985-01-01

    The Northern Yaka of Zaire construct a meaningful world by reference to the human body. They understand the socio-cultural domain in terms of bodily exchanges such as ingestion and excretion, sexual processes or listening and speech. They perceive their bodies simultaneously as bounded entities and as meeting points between inner and outer, self and other, and so on. Pollution occurs in the ominous transition, or the closure of corporeal and/or socio-cultural boundaries. Healing rituals aim to integrate bodily and socio-cultural domains and to mediate boundaries and boundary-transition. Part 1 of this paper transforms Mary Douglas' social perspective into a subject-centred view of the symbolic dimensions of sexuality, of pollution, and of the main forms of healing among the Northern Yaka. Here 'pollution' (mbeembi) has to do with an ominous disturbance of the cultural body schema and of domestic boundaries. Part 2 focuses on the ideological relationship between gender, the 'transgression of sexual rights' (yidyaata), and reproduction.

  10. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  11. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  12. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  13. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  14. Inventory of File gfs.t06z.smartguam24.tm00.grib2

    Science.gov Websites

    boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst

  15. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  16. On optical imaging through aircraft turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Sutton, G. W.

    1980-01-01

    Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.

  17. Application of the E - Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Duynkerke, P. G.

    1988-03-01

    In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.

  18. a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu

    A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.

  19. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  20. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  1. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.

  2. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  3. Boundary-Layer Characteristics Over a Coastal Megacity

    NASA Astrophysics Data System (ADS)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  4. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  5. Internal and external 2-d boundary layer flows

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  6. Evaluation of multi-model aerosol distributions over East Asia using in-situ and satellite observations during summer 2008

    NASA Astrophysics Data System (ADS)

    Quennehen, B.; Raut, J.; Law, K.; Ancellet, G.; Bazureau, A.; Thomas, J.; Daskalakis, N.; Kim, S.; Zhu, T.

    2013-12-01

    As part of the EU ECLIPSE (Evaluating the CLimate and air quality ImPacts of Short-livEd pollutants) project, which aims to quantify the climate impact of short lived climate forcers (SLCFs), including aerosols, black carbon and ozone, the WRF-Chem regional and six global (ECHAM6, EMEP, HadGEM, OsloCTM, NORESM, TM4) models are evaluated using observations in East-Asia. Simulations are compared at horizontal and vertical scales to satellite observations, as well as data from field campaigns which took place in summer 2008, and from long-term measurement stations. Models were run with the same emissions, namely, the ECLIPSE anthropogenic (based on the GAINS model), GFED 3.1 fire and RCP 6.0 ship and aircraft emissions for 2008. The initial and boundary conditions for the WRF-Chem regional model were specified from the TM4 global chemical transport model. Firstly, this study evaluates the ability of the models to simulate aerosol physical, optical and chemical properties at a large scale, both horizontally and vertically, using monthly mean satellite observations such as CALIPSO, MODIS and IASI. Secondly, model daily and hourly results are evaluated at more regional/local scales using ground-based data and measurements from summer 2008 intensive campaigns, including aircraft data (CAPMEX and CAREBEIJING). In this study, we assess aerosol total concentrations and size distributions simulated by the model. The radiative impact of anthropogenic aerosol layers has already been investigated but less is known about the influence of vertical layering in the atmosphere. Pollution layers have different radiative impacts whether they are below or above clouds and in that sense, a better understanding of their spatial and vertical extent is critical. Information about pollution layers and cloud optical properties and locations over East-Asia are determined using observations from IASI for trace gases and CALIPSO for aerosols. The radiative impact of the aerosol layers is simulated and compared to the observations. The impact of differences in the evaluated parameters on the radiative calculations will be estimated.

  7. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  8. Characterising the effect of a variety of surface roughness on boundary layer wind and dynamics within the scanning Doppler lidar network in Finland

    NASA Astrophysics Data System (ADS)

    Hirsikko, Anne; O'Connor, Ewan J.; Wood, Curtis R.; Vakkari, Ville

    2013-04-01

    Aerosol particle and trace gas atmospheric content is controlled by natural and anthropological emissions. However, further dispersion in the atmosphere is driven by wind and dynamic mixing. Atmospheric surface and boundary layer dynamics have direct and indirect effects on weather, air quality and processes affecting climate (e.g. gas exchange between ecosystem and atmosphere). In addition to the amount of solar energy and prevailing meteorological condition, the surface topography has a strong influence on the close to surface wind field and turbulence, particularly in urban areas (e.g. Barlow and Coceal, 2009). In order to characterise the effect of forest, urban and coastal surfaces on boundary layer wind and mixing, we have utilised the Finnish Doppler lidar network (Hirsikko et al., 2013). The network consists of five 1.5 μm Doppler lidars (HALO Photonics, Pearson et al., 2009), of which four are capable of full hemispheric scanning and are located at Helsinki (60.12°N, 25.58°E, 45 m asl.), Utö island (59.47°N, 21.23°E, 8 m asl.), SMEAR II at Hyytiälä (61.50°N, 24.17°E, 181 m asl.) and Kuopio (62.44°N, 27.32°E, 190 m asl.). The fifth lidar at Sodankylä (67.37°N, 26.63°E, 171 m asl.) is a new model designed for the Arctic environment with no external moving parts, but still retains limited scan capability. Investigation of boundary layer wind and mixing condition can now be extended beyond vertical profiles of horizontal wind, and dissipation rate of turbulent kinetic energy (O'Connor et al., 2010) throughout the boundary layer. We have applied custom designed scanning routines for 3D-observation of the wind fields and simultaneous aerosol particle distribution continuously for over one year at Helsinki and Utö, and began similar scanning routines at Kuopio and Hyytiälä in spring 2013. In this long term project, our aims are to 1) characterise the effect of the land-sea interface and the urban environment on the wind and its turbulent nature near the surface (< 200 m above the ground) observed at our four measurement sites, 2) characterise aerosol particle spatial and temporal distribution, and 3) deploy obtained results in air quality monitoring purpose and weather models. Here, we focus on wind field characterisation. The effect of sea, land and certain buildings were clear and evident in our wind data. The results compare favourably with in-situ point observations available indicating the applicability of the 3D-measurement routines and subsequent data analysis. Acknowledgements This research was supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant 262254, and by the Maj and Tor Nessling foundation (Dispersion of air pollution in the boundary layer - new approach with scanning Doppler lidars). References Barlow J. and Coceal, O.: A review of urban roughness sublayer turbulence, Met Office Tech. Rep., Exeter, p. 68, 2009. Hirsikko, A., et al.: Observing aerosol particles, clouds and boundary layer wind: a new remote sensing network in Finland, in preparation for Atmos. Meas. Tech., 2013. O'Connor, E.J., Illingworth, A.J., Brooks, I.M., Westbrook, C.D., Hogan, R.J., Davies, F. and Brooks, B.J.: A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements, J. Atmos. Ocean. Technol., 27, 1652-1664, 2010. Pearson, G., Davies, F., and Collier, C.: An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer, J. Atmos. Ocean. Tech., 26, 240-250, 2009.

  9. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  10. Study of the Effect of Free-Stream Turbulence upon Disturbances in the Pre-Transitional Laminar Boundary Layer. Part I. Laminar Boundary Layer Distortion by Surface Roughness; Effect upon Stability. Part II.

    DTIC Science & Technology

    1982-04-01

    Boundary Layer Near a Plate." NACA Rept. 562, 1936. 5) A. A. Hall and G. S. Hislop , "Experiments on the Transition of the Laminar Boundary Layer on a...Cylinder." Proc. 5th Inter. Congr. Appl. Math, 1938. 7) G. S. Hislop , "The Transition of a Laminar Boundary Layer in a Wind Tunnel." Ph.D. Thesis...Small Vertical Cylinder Attached to a Flat Plate", h Fa- Elul"s, Vol. 23, Part 1, pp. 221-223, Jan. 1980 . 9. A. Von Doenhoff and E. A. Horton, "A Low

  11. Electron distributions in the plasma sheet boundary layer - Time-of-flight effects

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.; Bame, S. J.

    1990-01-01

    The electron edge of the plasma sheet boundary layer lies lobeward of the ion edge. Measurements obtained near the electron edge of the boundary layer reveal low-speed cutoffs for earthward and tailward-flowing electrons. These cutoffs progress to lower speeds with deeper penetration into the boundary layer, and are consistently lower for the earthward-directed electrons than for the tailward-direction electrons. The cutoffs and their variation with distance from the edge of the boundary layer can be consistently interpreted in terms of a time-of-flight effect on recently reconnected magnetic field lines. The observed cutoff speeds are used to estimate the downtail location of the reconnection site.

  12. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  13. A review of quasi-coherent structures in a numerically simulated turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.; Kline, S. J.; Spalart, P. R.

    1989-01-01

    Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.

  14. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  15. Distribution and variability of total mercury in snow cover-a case study from a semi-urban site in Poznań, Poland.

    PubMed

    Siudek, Patrycja

    2016-12-01

    In the present paper, the inter-seasonal Hg variability in snow cover was examined based on multivariate statistical analysis of chemical and meteorological data. Samples of freshly fallen snow cover were collected at the semi-urban site in Poznań (central Poland), during 3-month field measurements in winter 2013. It was showed that concentrations of atmospherically deposited Hg were highly variable in snow cover, from 0.43 to 12.5 ng L -1 , with a mean value of 4.62 ng L -1 . The highest Hg concentration in snow cover coincided with local intensification of fossil fuel burning, indicating large contribution from various anthropogenic sources such as commercial and domestic heating, power generation plants, and traffic-related pollution. Moreover, the variability of Hg in collected snow samples was associated with long-range transport of pollutants, nocturnal inversion layer, low boundary layer height, and relatively low air temperature. For three snow episodes, Hg concentration in snow cover was attributed to southerly advection, suggesting significant contribution from the highly polluted region of Poland (Upper Silesia) and major European industrial hotspots. However, the peak Hg concentration was measured in samples collected during predominant N to NE advection of polluted air masses and after a relatively longer period without precipitation. Such significant contribution to the higher Hg accumulation in snow cover was associated with intensive emission from anthropogenic sources (coal combustion) and atmospheric conditions in this area. These results suggest that further measurements are needed to determine how the Hg transformation paths in snow cover change in response to longer/shorter duration of snow cover occurrence and to determine the interactions between mercury and absorbing carbonaceous aerosols in the light of climate change.

  16. Sublayer of Prandtl Boundary Layers

    NASA Astrophysics Data System (ADS)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  17. Methods and results of boundary layer measurements on a glider

    NASA Technical Reports Server (NTRS)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  18. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  19. Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.

    2017-01-01

    Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.

  20. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  1. Algal layer ratios as indicators of air pollutant effects in Permelia sulcata

    USGS Publications Warehouse

    Bennett, J.P.

    2002-01-01

    Parmelia sulcata Taylor is generally believed to be fairly pollution tolerant, and consequently it is sometimes collected in urban and/or polluted localities. The condition of these specimens, however, is not always luxuriant and healthy. This study tested the hypothesis that total thallus and algal layer thickness, and the algal layer ratio would be thinner in polluted areas, thus allowing these characters to be used a indicators of air pollutant effects. Herbarium specimens were studied from 16 different localities varying in pollution level. The thallus and algal layers and ratio were not affected by year or locality of sampling, but decreased 11, 31 and 21% respectively between low and high pollution level localities. These results agreed with earlier studies using other species, but further work is needed to clarify the effects of geography and substrate on these phenomena.

  2. Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers

    NASA Astrophysics Data System (ADS)

    Jennissen, Herbert P.

    2005-10-01

    Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.

  3. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    NASA Astrophysics Data System (ADS)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  4. Structure of the low-latitude boundary layer. [in magnetopause

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.

  5. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  6. 75 FR 55277 - Outer Continental Shelf Air Regulations; Consistency Update for California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... control air pollution from OCS sources located within 25 miles of States' seaward boundaries that are the... located within 25 miles of States' seaward boundaries must be updated periodically to remain consistent... FR 67845), EPA proposed to incorporate various South Coast AQMD air pollution control requirements...

  7. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    PubMed

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  8. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  9. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  10. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  11. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  12. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  13. Inventory of File nam.t00z.smartpr00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  14. Inventory of File nam.t00z.smartak00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  15. Inventory of File nam.t00z.smarthi00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  16. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  17. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  18. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  19. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  20. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  1. Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S; Diehl, Z W

    1952-01-01

    Report gives an account of an investigation conducted to determine the feasibility of artificially thickening a turbulent boundary layer on a flat plate. A description is given of several methods used to thicken artificially the boundary layer. It is shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layer, which is free from any distortions introduced by the thickening process, and, as such, is a suitable medium for fundamental research.

  2. Measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  3. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  4. A portable lidar using a diode-pumped YAG laser

    NASA Technical Reports Server (NTRS)

    Takeuchi, N.; Okumura, H.; Sugita, T.; Matsumoto, H.; Yamaguchi, S.

    1992-01-01

    A Mie lidar system is technically established and is used for monitoring air pollution, stratospheric and boundary layer aerosol distribution, plume dispersion, visibility, and the study of atmospheric structure and cloud physics. However, a lidar system is not widely used because of its cumbersome handling and unwieldy portability. Although the author developed a laser diode lidar system based on RM-CW technique, it has a limit of measurement distance. Here we report the development of an all solid Mie lidar system using a diode-pumped Nd:YAG laser and a Si-APD detector. This was constructed as a prototype of a handy lidar system.

  5. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, S.

    2017-12-01

    Based on detailed data from Chengdu Plain (CP) from 6 January to 16 January 2015 , two typical haze episodes were analyzed to clarify the haze formation mechanism in winter. Weather conditions, chemical compositions, secondary pollutant transformation, optical properties of aerosols, the potential source contribution function (PSCF) and source apportionment were studied. The planetary boundary layer (PBL) height decreased distinctly during the haze episodes and restrained air pollutant vertical dispersion. As the haze worsened, the value of PBL × PM2.5 increased notably. The [NO3-]/[SO42-] ratio was 0.61, 0.76 and 0.88 during a non-haze period, episode 1 and episode 2, respectively, indicating that the mobile source of the air pollution is increasingly predominant in Chengdu. Water vapor also played a vital role in the formation of haze by accelerating the chemical transformation of secondary pollutants, leading to the hygroscopic growth of aerosols. The PSCF and backward trajectories of the air masses indicated that the pollution mainly came from the south. The secondary inorganic aerosols, vehicle emissions, coal combustion, biomass burning, industry, and dust contributed 34.1%, 24.1%, 12.7%, 12.3%, 7.6%, and 7.2% to PM2.5 masses in episode 1 and 28.9%, 23.1%, 9.4%, 9.5%, 20.3% and 7.5% in episode 2.

  6. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China.

    PubMed

    Li, Lulu; Tan, Qinwen; Zhang, Yuanhang; Feng, Miao; Qu, Yu; An, Junling; Liu, Xingang

    2017-11-01

    Based on detailed data from Chengdu Plain (CP) from 6 January to 16 January, two typical haze episodes were analyzed to clarify the haze formation mechanism in winter. Weather conditions, chemical compositions, secondary pollutant transformation, optical properties of aerosols, the potential source contribution function (PSCF) and source apportionment were studied. The planetary boundary layer (PBL) height decreased distinctly during the haze episodes and restrained air pollutant vertical dispersion. As the haze worsened, the value of PBL × PM 2.5 increased notably. The [NO 3 - ]/[SO 4 2- ] ratio was 0.61, 0.76 and 0.88 during a non-haze period, episode 1 and episode 2, respectively, indicating that the mobile source of the air pollution is increasingly predominant in Chengdu. Water vapor also played a vital role in the formation of haze by accelerating the chemical transformation of secondary pollutants, leading to the hygroscopic growth of aerosols. The PSCF and backward trajectories of the air masses indicated that the pollution mainly came from the south. The secondary inorganic aerosols, vehicle emissions, coal combustion, biomass burning, industry, and dust contributed 34.1%, 24.1%, 12.7%, 12.3%, 7.6%, and 7.2% to PM 2.5 masses in episode 1 and 28.9%, 23.1%, 9.4%, 9.5%, 20.3% and 7.5% in episode 2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The gains in life expectancy by ambient PM2.5 pollution reductions in localities in Nigeria.

    PubMed

    Etchie, Tunde O; Etchie, Ayotunde T; Adewuyi, Gregory O; Pillarisetti, Ajay; Sivanesan, Saravanadevi; Krishnamurthi, Kannan; Arora, Narendra K

    2018-05-01

    Global burden of disease estimates reveal that people in Nigeria are living shorter lifespan than the regional or global average life expectancy. Ambient air pollution is a top risk factor responsible for the reduced longevity. But, the magnitude of the loss or the gains in longevity accruing from the pollution reductions, which are capable of driving mitigation interventions in Nigeria, remain unknown. Thus, we estimate the loss, and the gains in longevity resulting from ambient PM 2.5 pollution reductions at the local sub-national level using life table approach. Surface average PM 2.5 concentration datasets covering Nigeria with spatial resolution of ∼1 km were obtained from the global gridded concentration fields, and combined with ∼1 km gridded population of the world (GPWv4), and global administrative unit layers (GAUL) for territorial boundaries classification. We estimate the loss or gains in longevity using population-weighted average pollution level and baseline mortality data for cardiopulmonary disease and lung cancer in adults ≥25 years and for respiratory infection in children under 5. As at 2015, there are six "highly polluted", thirty "polluted" and one "moderately polluted" States in Nigeria. People residing in these States lose ∼3.8-4.0, 3.0-3.6 and 2.7 years of life expectancy, respectively, due to the pollution exposure. But, assuming interventions achieve global air quality guideline of 10 μg/m 3 , longevity would increase by 2.6-2.9, 1.9-2.5 and 1.6 years for people in the State-categories, respectively. The longevity gains are indeed high, but to achieve them, mitigation interventions should target emission sources having the highest population exposures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Re-Innovating Recycling for Turbulent Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Joseph; Blanquart, Guillaume

    2017-11-01

    Historically, turbulent boundary layers along a flat plate have been expensive to simulate numerically, in part due to the difficulty of initializing the inflow with ``realistic'' turbulence, but also due to boundary layer growth. The former has been resolved in several ways, primarily dedicating a region of at least 10 boundary layer thicknesses in width to rescale and recycle flow or by extending the region far enough downstream to allow a laminar flow to develop into turbulence. Both of these methods are relatively costly. We propose a new method to remove the need for an inflow region, thus reducing computational costs significantly. Leveraging the scale similarity of the mean flow profiles, we introduce a coordinate transformation so that the boundary layer problem can be solved as a parallel flow problem with additional source terms. The solutions in the new coordinate system are statistically homogeneous in the downstream direction and so the problem can be solved with periodic boundary conditions. The present study shows the stability of this method, its implementation and its validation for a few laminar and turbulent boundary layer cases.

  9. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  10. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    NASA Astrophysics Data System (ADS)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  11. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  12. Bristled shark skin: a microgeometry for boundary layer control?

    PubMed

    Lang, A W; Motta, P; Hidalgo, P; Westcott, M

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  13. Experimental study of the separating confluent boundary-layer. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Whipkey, R. R.; Jones, G. S.; Lilley, D. E.

    1983-01-01

    An experimental low speed study of the separating confluent boundary layer on a NASA GAW-1 high lift airfoil is described. The airfoil was tested in a variety of high lift configurations comprised of leading edge slat and trailing edge flap combinations. The primary test instrumentation was a two dimensional laser velocimeter (LV) system operating in a backscatter mode. Surface pressures and corresponding LV derived boundary layer profiles are given in terms of velocity components, turbulence intensities and Reynolds shear stresses as characterizing confluent boundary layer behavior up to and beyond stall. LV derived profiles and associated boundary layer parameters and those obtained from more conventional instrumentation such as pitot static transverse, Preston tube measurements and hot-wire surveys are compared.

  14. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  15. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  16. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  17. A perspective on coherent structures and conceptual models for turbulent boundary layer physics

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1990-01-01

    Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.

  18. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  19. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  20. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  1. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  2. Dynamic behavior of an unsteady trubulent boundary layer

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.

    1981-01-01

    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.

  3. Enhancements to the caliop aerosol subtyping and lidar ratio selection algorithms for level II version 4

    NASA Astrophysics Data System (ADS)

    Omar, A.; Tackett, J.; Kim, M.-H.; Vaughan, M.; Kar, J.; Trepte, C.; Winker, D.

    2018-04-01

    Several enhancements have been implemented for the version 4 aerosol subtyping and lidar ratio selection algorithms of Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP). Version 4 eliminates the confusion between smoke and clean marine aerosols seen in version 3 by modifications to the elevated layer flag definitions used to identify smoke aerosols over the ocean. To differentiate between mixtures of dust and smoke, and dust and marine aerosols, a new aerosol type will be added in the version 4 data products. In the marine boundary layer, moderately depolarizing aerosols are no longer modeled as mixtures of dust and smoke (polluted dust) but rather as mixtures of dust and seasalt (dusty marine). Some lidar ratios have been updated in the version 4 algorithms. In particular, the dust lidar ratios have been adjusted to reflect the latest measurements and model studies.

  4. Modeling Green Infrastructure Land Use Changes on Future Air Quality—Case Study in Kansas City

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Bash, J. O.; Roselle, S. J.; Gilliland, A. B.; Shatas, A.; DeYoung, R.; Piziali, J.

    2016-12-01

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). We found that the average 2-meter temperatures (T2) during summer (June, July and August) are projected to slightly decrease over the downtown of KC and slightly increase over the newly developed regions surrounding the urban core. The planetary boundary layer (PBL) height changes are consistent with the T2 changes: the PBL height is somewhat lowered over the downtown and raised over the newly developed areas. We also saw relatively small decreases in O3 in the downtown area for the mean of all hours as well as for the maximum 8 hour average (MDA8), corresponding with the changes in T2 and PBL height. However, we also found relatively small PM2.5 concentration increases over KC, especially over the downtown areas, with the largest contribution from components of organic carbon, elementary carbon, non-anion dust, and unspeciated PM. More diagnostic analysis is needed to further investigate how these land use changes affect different processes (such as the dry deposition).

  5. Characteristics of absorbing aerosols during winter foggy period over the National Capital Region of Delhi: Impact of planetary boundary layer dynamics and solar radiation flux

    NASA Astrophysics Data System (ADS)

    Tyagi, S.; Tiwari, S.; Mishra, A.; Singh, S.; Hopke, Philip K.; Singh, Surender; Attri, S. D.

    2017-05-01

    Severe air pollution in the northern India coupled with the formation of secondary pollutants results in severe fog conditions during the winter. Black carbon (BC) and particulate matter (PM2.5) play a vital role within the planetary boundary layer (PBL) to degrade atmospheric visibility. These species were continuously monitored during the winter of 2014 in the National Capital Region (NCR) of Delhi. The average BC concentration was 8.0 ± 3.1 μg/m3 with the January mean (11.1 ± 5.4 μg/m3) approximately two times higher than February (5.9 ± 2.1 μg/m3). The average PM2.5 concentration was 137 ± 67 μg/m3 with monthly area-average maximum and minima in December and February, respectively. Higher concentrations of BC at 10:00 local standard time LST (8.5 μg/m3) and 22:00 LST (9.7 μg/m3) were consistently observed and assigned to morning and evening rush-hour traffic across Delhi. Daily average solar fluxes, varied between 17.9 and 220.7 W/m2 and had a negative correlation (r = - 0.5) with BC during fog episodes. Ventilation coefficient (VC) reduced from 'no fog' to fog phase over Palam Airport (PLM) (0.49) times and Hindon Airport (HND) (0.28) times and from fog to prolonged fog (> 14 h) phase over PLM (0.35) times and HND (0.41) times, respectively, indicating high pollution over the NCR of Delhi. Ground measurements showed that daily mean aerosol optical depth at 500 nm (AOD500) varied between 0.32 and 1.18 with mean AOD500 nm being highest during the prolonged fog (> 14 h) episodes (0.98 ± 0.08) consistent with variations in PM2.5 and BC. Angstrom exponent (α) and Angstrom turbidity coefficient (β) were found to be > 1 and 0.2, respectively, during fog showing the dominance of fine mode particles in the atmosphere.

  6. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  7. Three-dimensional modeling of air flow and pollutant dispersion in an urban street canyon with thermal effects.

    PubMed

    Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing

    2005-08-01

    Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.

  8. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  9. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  10. New Insights on "Next Day" Ozone Increases in the Northeastern U.S. using Continuous Vertical Profiles of Ozone

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.

    2016-12-01

    A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.

  11. Numerical analysis of diffusion around a suspended expressway by a multi-scale CFD model

    NASA Astrophysics Data System (ADS)

    kondo, Hiroaki; Asahi, Kazutake; Tomizuka, Takayuki; Suzuki, Motoo

    The diffusion of NO x around Ikegami-Shinmachi crossroads, which are among the most polluted roadside areas in Japan, was analyzed with a CFD model. This is a suspended four-lane express road with a six-lane ground-level road under the expressway and another four-lane ground-level road intersecting the two roads. Three types of boundary conditions for the CFD model were tested. In the first case, the boundary conditions were given with the results from the mesoscale meteorological model; in other words, the model was multi-scale. In the second case, the boundary conditions were given with the local one-point observation. In the third case, the conditions for the wind were given with the observation, and those for the turbulence were given with the mesoscale numerical model. All of the calculations indicated high concentrations in the morning and low ones in the afternoon, but they did not indicate high concentrations in the evening. The reasons for such time variations of NO x concentrations were investigated from the viewpoints of the wind direction, velocity, and boundary layer height. The results suggested that the extremely high concentration was generated by local sources and advection from the large source area of Tokyo. On the whole, the calculation with the boundary condition with the mesoscale model appears to be better than the other calculations.

  12. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  13. The Interactions of a Flame and Its Self-Induced Boundary Layer

    NASA Technical Reports Server (NTRS)

    Ott, James D.; Oran, Elaine S.; Anderson, John D.

    1999-01-01

    The interaction of a laminar flame with its self-generated boundary layer in a rectangular channel was numerically simulated using the two-dimensional, reacting, Navier-Stokes equations. A two species chemistry model was implemented which simulates the stoichiometric reaction of acetylene and air. Calculations were performed to investigate the effects of altering the boundary condition of the wall temperature, the Lewis number, the dynamic viscosity, and the ignition method. The purpose of this study was to examine the fundamental physics of the formation of the boundary layer and the interaction of the flame as it propagates into the boundary layer that its own motion has created.

  14. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  15. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    NASA Astrophysics Data System (ADS)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  16. An experimental investigation of the effect of boundary layer refraction on the noise from a high-speed propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Burns, R. J.; Leciejewski, D. J.

    1984-01-01

    Models of supersonic propellers were previously tested for acoustics in the Lewis 8- by 6-Foot Wind Tunnel using pressure transducers mounted in the tunnel ceiling. The boundary layer on the tunnel ceiling is believed to refract some of the propeller noise away from the measurement transducers. Measurements were made on a plate installed in the wind tunnel which had a thinner boundary layer than the ceiling boundary layer. The plate was installed in two locations for comparison with tunnel ceiling noise data and with fuselage data taken on the NASA Dryden Jetstar airplane. Analysis of the data indicates that the refraction increases with: increasing boundary layer thickness; increasing free stream Mach number; increasing frequency; and decreasing sound radiation angle (toward the inlet axis). At aft radiation angles greater than about 100 deg there was little or no refraction. Comparisons with the airplane data indicated that not only is the boundary layer thickness important but also the shape of the velocity profile. Comparisons with an existing two-dimensional theory, using an idealized shear layer to approximate the boundary layer, showed that the theory and data had the same trends. Analysis of the data taken in the tunnel at two different distances from the propeller indicates a decay with distance in the wind tunnel at high Mach numbers but the decay at low Mach numbers is not as clear.

  17. F-16XL ship #1 wing close-up showing boundary layer detection Preston tubes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This photo shows the boundary layer Preston tubes mounted on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  18. On the Existence of the Logarithmic Surface Layer in the Inner Core of Hurricanes

    DTIC Science & Technology

    2012-01-01

    characteristics of eyewall boundary layer of Hurricane Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang, JA, Montgomery MT. 2012 Observational...the inner core of hurricanes Roger K. Smitha ∗and Michael T. Montgomeryb a Meteorological Institute, University of Munich, Munich, Germany b Dept. of...logarithmic surface layer”, or log layer, in the boundary layer of the rapidly-rotating core of a hurricane . One such study argues that boundary-layer

  19. The boundary layer as a means of controlling the flow of liquids and gases

    NASA Technical Reports Server (NTRS)

    Schrenk, Oskar

    1930-01-01

    According to one of the main propositions of the boundary layer theory the scarcely noticeable boundary layer may, under certain conditions, have a decisive influence on the form of the external flow by causing it to separate from the wing surface. These phenomena are known to be caused by a kind of stagnation of the boundary layer at the point of separation. The present report deals with similar phenomena. It is important to note that usually the cause (external interference) directly affects only the layer close to the wall, while its indirect effect extends to a large portion of the external flow.

  20. Application of a transonic similarity rule to correct the effects of sidewall boundary layers in two-dimensional transonic wind tunnels. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Sewall, W. G.

    1982-01-01

    A transonic similarity rule which accounts for the effects of attached sidewall boundary layers is presented and evaluated by comparison with the characteristics of airfoils tested in a two dimensional transonic tunnel with different sidewall boundary layer thicknesses. The rule appears valid provided the sidewall boundary layer both remains attached in the vicinity of the model and occupies a small enough fraction of the tunnel width to preserve sufficient two dimensionality in the tunnel.

Top