NASA Astrophysics Data System (ADS)
Nugroho, O. F.; Chandra, D. T.; Sanjaya, Y.; Pendidikan Indonesia, Universitas
2017-02-01
The purpose of this study was to improve students’ concept comprehension using concept map as a consolidation phase based STAD. This study was conducted by randomized control group pretest-posttest. Data was collected by using an instrument test to evaluate the effect of concept map as a consolidation phase based STAD on students’understanding about environmental pollution. Data was analyzed using normalized gain (n-gain) and independent t-test. The n-gain analysis shows the increased of students’s understanding about environmental pollution at experimental group arehigher than at the control group. The result of this study showed that students’ comprehension at the experimental class (0,53) higher compared to the control group (0,23). Whilst the t-test analysis shows that there is a significant effect of mapping concept as a consolidation phase based STAD towards students’ concept comprehension. It can be concluded that the implementation of mapping concept based STAD may improve the students’s understanding on science concept.
Hammond, Davyda; Conlon, Kathryn; Barzyk, Timothy; Chahine, Teresa; Zartarian, Valerie; Schultz, Brad
2011-03-01
Communities are concerned over pollution levels and seek methods to systematically identify and prioritize the environmental stressors in their communities. Geographic information system (GIS) maps of environmental information can be useful tools for communities in their assessment of environmental-pollution-related risks. Databases and mapping tools that supply community-level estimates of ambient concentrations of hazardous pollutants, risk, and potential health impacts can provide relevant information for communities to understand, identify, and prioritize potential exposures and risk from multiple sources. An assessment of existing databases and mapping tools was conducted as part of this study to explore the utility of publicly available databases, and three of these databases were selected for use in a community-level GIS mapping application. Queried data from the U.S. EPA's National-Scale Air Toxics Assessment, Air Quality System, and National Emissions Inventory were mapped at the appropriate spatial and temporal resolutions for identifying risks of exposure to air pollutants in two communities. The maps combine monitored and model-simulated pollutant and health risk estimates, along with local survey results, to assist communities with the identification of potential exposure sources and pollution hot spots. Findings from this case study analysis will provide information to advance the development of new tools to assist communities with environmental risk assessments and hazard prioritization. © 2010 Society for Risk Analysis.
Genomic Organization Under Different Environmental Conditions: Hoplosternum Littorale as a Model
Schneider, Carlos Henrique; Feldberg, Eliana; Baccaro, Fabricio Beggiato; Carvalho, Natália Dayane Moura; Gross, Maria Claudia
2016-01-01
Abstract The Amazon has abundant rivers, streams, and floodplains in both polluted and nonpolluted environments, which show great adaptability. Thus, the goal of this study was to map repetitive DNA sequences in both mitotic chromosomes and erythrocyte micronuclei of tamoatás from polluted and nonpolluted environments and to assess the possible genotoxic effects of these environments. Individuals were collected in Manaus, Amazonas (AM), and submitted to classical and molecular cytogenetic techniques, as well as to a blood micronucleus test. Diploid number equal to 60 chromosomes are present in all individuals, with 18S ribosomal DNA sites present in one chromosome pair and no interstitial telomeric sites on chromosomes. The micronucleus test showed no significant differences in pairwise comparisons between environments or collection sites, but the Rex3 retroelement was dispersed on the chromosomes of individuals from unpolluted environments and compartmentalized in individuals from polluted environments. Divergent numbers of 5S rDNA sites are present in individuals from unpolluted and polluted environments. The mapping of repetitive sequences revealed that micronuclei have different compositions both intra- and interindividually that suggests different regions are lost in the formation of micronuclei, and no single fragile region undergoes breaks, although repetitive DNA elements are involved in this process. PMID:26981695
NASA Astrophysics Data System (ADS)
Odwuor, A.; Kolandaivelu, K. P.; Colley, B. E.; White, E. L.
2017-12-01
Texas (TX), U.S., is surrounded by areas prone to wildfire and agricultural burning (collectively referred to as biomass burning) and smoke plumes from these fires can be driven by meteorological conditions to travel across the state, depositing a variety of pollutants. These pollutants include aerosols, which exert several negative effects on the environment and human health and are especially harmful when deposited in highly-populated metropolitan areas. In El Paso, TX, elevated atmospheric concentrations of ozone and PM 2.5 occur when aerosol-carrying biomass burning smoke plumes reach the city. One such pollution episode was identified by El Paso UTEP (CAMS 12) ground monitor on July 16th, 2016. To identify the sources of this pollution episode, this study utilized NASA Earth Observations including Terra MODIS aerosol optical depth (AOD) and CALIPSO CALIOP calibrated and geo-located vertical profiles of aerosols and clouds to perform 3-D spatial temporal plume tracking. Thermal anomaly maps from Suomi NPP VIIRS were also used in conjunction with NOAA Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model trajectories. Results from these analyses indicated several potential source wildfires that could have contributed to the elevated pollutant concentration levels, of which the School and Black Range Complex Fires in the Gila Wilderness of New Mexico, U.S. and agricultural biomass burning in Guaymas, Mexico were identified as the main contributors. 3-D aerosol transport maps produced using Terra MODIS AOD data for the exceedance date and CALIPSO CALIOP vertical profiles for a date leading up to the exceedance further validated this result. The results of this study can be replicated for other dates in other locations where similar elevated pollutant concentration levels are observed via ground monitors. This analysis, which combined in situ data, trajectory models and remote sensing data, proves itself a valuable tool for studying air pollution events caused by biomass burning.
Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics.
Kethireddy, Swatantra R; Tchounwou, Paul B; Ahmad, Hafiz A; Yerramilli, Anjaneyulu; Young, John H
2014-01-10
Tropospheric ozone (O3) pollution is a major problem worldwide, including in the United States of America (USA), particularly during the summer months. Ozone oxidative capacity and its impact on human health have attracted the attention of the scientific community. In the USA, sparse spatial observations for O3 may not provide a reliable source of data over a geo-environmental region. Geostatistical Analyst in ArcGIS has the capability to interpolate values in unmonitored geo-spaces of interest. In this study of eastern Texas O3 pollution, hourly episodes for spring and summer 2012 were selectively identified. To visualize the O3 distribution, geostatistical techniques were employed in ArcMap. Using ordinary Kriging, geostatistical layers of O3 for all the studied hours were predicted and mapped at a spatial resolution of 1 kilometer. A decent level of prediction accuracy was achieved and was confirmed from cross-validation results. The mean prediction error was close to 0, the root mean-standardized-prediction error was close to 1, and the root mean square and average standard errors were small. O3 pollution map data can be further used in analysis and modeling studies. Kriging results and O3 decadal trends indicate that the populace in Houston-Sugar Land-Baytown, Dallas-Fort Worth-Arlington, Beaumont-Port Arthur, San Antonio, and Longview are repeatedly exposed to high levels of O3-related pollution, and are prone to the corresponding respiratory and cardiovascular health effects. Optimization of the monitoring network proves to be an added advantage for the accurate prediction of exposure levels.
NASA Astrophysics Data System (ADS)
O'Keeffe, Brendon Andrew; Johnson, Michael
2017-01-01
Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.
NASA Astrophysics Data System (ADS)
Pahlavani, Parham; Sheikhian, Hossein; Bigdeli, Behnaz
2017-10-01
Air pollution assessment is an imperative part of megacities planning and control. Hence, a new comprehensive approach for air pollution monitoring and assessment was introduced in this research. It comprises of three main sections: optimizing the existing air pollutant monitoring network, locating new stations to complete the coverage of the existing network, and finally, generating an air pollution map. In the first section, Shannon information index was used to find less informative stations to be candidate for removal. Then, a methodology was proposed to determine the areas which are not sufficiently covered by the current network. These areas are candidates for establishing new monitoring stations. The current air pollution monitoring network of Tehran was used as a case study, where the air pollution issue has been worsened due to the huge population, considerable commuters' absorption and topographic barriers. In this regard, O3, NO, NO2, NOx, CO, PM10, and PM2.5 were considered as the main pollutants of Tehran. Optimization step concluded that all the 16 active monitoring stations should be preserved. Analysis showed that about 35% of the Tehran's area is not properly covered by monitoring stations and about 30% of the area needs additional stations. The winter period in Tehran always faces the most severe air pollution in the year. Hence, to produce the air pollution map of Tehran, three-month of winter measurements of the mentioned pollutants, repeated for five years in the same period, were selected and extended to the entire area using the kriging method. Experts specified the contribution of each pollutant in overall air pollution. Experts' rankings aggregated by a fuzzy-overlay process. Resulted maps characterized the study area with crucial air pollution situation. According to the maps, more than 45% of the city area faced high pollution in the study period, while only less than 10% of the area showed low pollution. This situation confirms the need for effective plans to mitigate the severity of the problem. In addition, an effort made to investigate the rationality of the acquired air pollution map respect to the urban, cultural, and environmental characteristics of Tehran, which also confirmed the results.
Groundwater vulnerability to pollution mapping of Ranchi district using GIS
NASA Astrophysics Data System (ADS)
Krishna, R.; Iqbal, J.; Gorai, A. K.; Pathak, G.; Tuluri, F.; Tchounwou, P. B.
2015-12-01
Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D), net recharge ( R), aquifer media ( A), soil media ( S), topography or slope ( T), impact of vadose zone ( I) and hydraulic Conductivity( C)] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.
Groundwater vulnerability to pollution mapping of Ranchi district using GIS.
Krishna, R; Iqbal, J; Gorai, A K; Pathak, G; Tuluri, F; Tchounwou, P B
2015-12-01
Groundwater pollution due to anthropogenic activities is one of the major environmental problems in urban and industrial areas. The present study demonstrates the integrated approach with GIS and DRASTIC model to derive a groundwater vulnerability to pollution map. The model considers the seven hydrogeological factors [Depth to water table ( D ), net recharge ( R ), aquifer media ( A ), soil media ( S ), topography or slope ( T ), impact of vadose zone ( I ) and hydraulic Conductivity( C )] for generating the groundwater vulnerability to pollution map. The model was applied for assessing the groundwater vulnerability to pollution in Ranchi district, Jharkhand, India. The model was validated by comparing the model output (vulnerability indices) with the observed nitrate concentrations in groundwater in the study area. The reason behind the selection of nitrate is that the major sources of nitrate in groundwater are anthropogenic in nature. Groundwater samples were collected from 30 wells/tube wells distributed in the study area. The samples were analyzed in the laboratory for measuring the nitrate concentrations in groundwater. A sensitivity analysis of the integrated model was performed to evaluate the influence of single parameters on groundwater vulnerability index. New weights were computed for each input parameters to understand the influence of individual hydrogeological factors in vulnerability indices in the study area. Aquifer vulnerability maps generated in this study can be used for environmental planning and groundwater management.
Remote sensing of air pollution over large European cities by lidar
NASA Astrophysics Data System (ADS)
Koelsch, Hans J.; Kolenda, Juergen; Rairoux, Patrick; Stein, Bernhard; Weidauer, Dirk; Wolf, Jean-Pierre; Woeste, Ludger H.; Fritzsche, Klaus
1993-09-01
Progresses in remote sensing of the atmosphere using the Udar (Light detection and ranging) technique closely follows progresses in Laser technology. We developed a mobile DIAL (differential absorption Lidar) system, based on high repetition rate Excimerpumped dye lasers, for performing 2D and 3D-mappings of concentration of NO, N02, S02, and 03. The high sensitivity of the system has been used for numerous environmental studies and measurement campaigns, providing for the first time a direct correlation between emission and immission. Attractive results have been obtained under urban conditions, because of the presence of strong concentration gradients, and fast fluctuations due to traffic. A comparative study between Lyon, Stuttgart, Geneva and Berlin will be presented. In particular, the Berlin-campaign demonstrates the possibility of detecting unknown emitters and monitoring exportation-importation processes of atmospheric pollution. A new stationary DIAL system has been recently constructed and implemented on the top of a building in the center of the city Leipzig. It will routinely perform concentration mappings of nitrogen oxides, sulfur dioxide and ozone, giving access to long term evolution of pollution distributions.
In the current study, three Google Street View cars were equipped with the Aclima Environmental Intelligence ™ Platform. The air pollutants of interest, including O3, NO, NO2, CO2, black carbon, and particle number in several size ranges, were measured using a suite of fast...
NASA Astrophysics Data System (ADS)
Hošek, Michal; Matys Grygar, Tomáš; Popelka, Jan; Kiss, Timea; Elznicová, Jitka; Faměra, Martin
2017-04-01
In the recent years researchers have enjoyed noticeable improvements of portable analytical and geophysical methods, which allow studying floodplain architecture and deciphering pollutant distribution more easily than ever before. Our area of interest was floodplain of the Ploučnice River, particularly a pollution hotspot in Boreček, severely impacted by U mining between the 1970s and late 1980s, in particular a "radioactive flood" in 1981. In the area, we used hand drill coring and in situ (field) analysis of so acquired sediments by handheld X-ray fluorescence spectrometer (XRF), which gave us information about depth profiles of pollutants (Ba, U, Zn) and the Al/Si and Zr/Rb ratios, i.e., proxies for sediment lithology. We found that spatial distribution of pollutants (control by depth and position in the floodplain) is apparently complex and discontinuous. In some places, contamination is buried by a couple decimetres of less polluted sediments, while in other places the peak pollution is near surface, apparently without a straightforward connection with the surface topography and the distance to the river channel. We thus examined the floodplain architecture, the internal structure of the floodplain using two geophysical methods. First of them, dipole electromagnetic profiling (DEMP, also denoted EMP, MP, or Slingram) quickly acquires average electric resistivity in top strata in selected areas, which was actually top 3 m with our particular instrument. Second, electric resistivity tomography (ERT) produces much more detailed information on resistivity with depth resolution of ca 0.5 m to the depth of ca 5 m in selected lines. ERT thus allows identifying boundaries of electric resistivity domains (sediment bodies) and DEMP their spatial distribution. Based on the obtained data, we divided the floodplain to five segments with specific topography, pollution characteristics, and electric resistivity. We suppose that those segments are lithogenetic floodplain units. Those findings must, however, be checked by sediment examination and analysis in selected points. We processed the crucial characteristics obtained by geochemical mapping, namely depth of maximum pollution, amount of contamination, and lithology (Al/Si and Zr/Rb ratios), using geostatistics. Moreover, some parts of floodplain were dated by optically stimulated luminescence (OSL) which revealed, that recycling of top decimetres of floodplain fine fill (silts) in Boreček site has proceeded relatively recently (in decades and centuries) as compared to deeper lying coarser (sandy) strata (millennia). The results of geochemical mapping show complexity of pollution hotspots and need of their integrated interpretation. Key words: Dipole electromagneting profilling, electric resistivity tomography, floodplain contamination, geochemical mapping
US EPA Nonattainment Areas and Designations-Annual PM2.5 (1997 NAAQS)
This web service contains the following layers: PM2.5 Annual 1997 NAAQS State Level and PM2.5 Annual 1997 NAAQS National . It also contains the following tables: maps99.FRED_MAP_VIEWER.%fred_area_map_data and maps99.FRED_MAP_VIEWER.%fred_area_map_view. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997PM25Annual/MapServer) and viewing the layer description.These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there
Deusser, Rebecca E.; Schwab, William C.; Denny, Jane F.
2002-01-01
Researchers of the sea-floor mapping facility at the U.S. Geological Survey (USGS) Woods Hole Field Center in Woods Hole, Mass., use state-of-the-art technology to produce accurate geologic maps of the sea floor. In addition to basic bathymetry and morphology, sea-floor maps may contain information about the distribution of sand resources, patterns of coastal erosion, pathways of pollutant transport, and geologic controls on marine biological habitats. The maps may also show areas of human impacts, such as disturbance by bottom fishing and pollution caused by offshore waste disposal. The maps provide a framework for scientific research and provide critical information to decisionmakers who oversee resources in the coastal ocean.
Spatial variation of urban soil geochemistry in a roadside sports ground in Galway, Ireland.
Dao, Ligang; Morrison, Liam; Zhang, Chaosheng
2010-02-01
Characterization of spatial variation of urban soil geochemistry especially heavy metal pollution is essential for a better understanding of pollution sources and potential risks. A total of 294 surface soil samples were collected from a roadside sports ground in Galway, Ireland, and were analysed by ICP-OES for 23 chemical elements (Al, Ca, Ce, Co, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, P, Pb, S, Sc, Sr, Th, Ti, V, Y and Zn). Strong variations in soil geochemistry were observed and most elements, with the exception of Cu, Pb, P, S and Zn, showed multi-modal features, indicating the existence of mixed populations which proved difficult to separate. To evaluate the pollution level of the study area, the pollution index (PI) values were calculated based on a comparison with the Dutch target and intervention values. None of the concentrations of metal pollutants exceeded their intervention values, indicating the absence of serious contaminated soil, and the ratios to target values were therefore employed to produce the hazard maps. The spatial distribution and hazard maps for Cu, Pb and Zn indicated relatively high levels of pollution along the southern roadside extending almost 30m into the sports ground, revealing the strong influence of pollution from local traffic. However, heavy metal pollution was alleviated along the eastern roadside of the study area by the presence of a belt of shrubs. Therefore, in order to prevent further contamination from traffic emissions, the planting of hedging or erection of low walls should be considered as shields against traffic pollution for roadside parks. The results in this study are useful for management practices in sports and parks in urban areas. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Petalas, Christos; Tsihrintzis, Vassilios A.; Pisinaras, Vassilios
2006-03-01
The assessment of groundwater vulnerability to pollution aims at highlighting areas at a high risk of being polluted. This study presents a methodology, to estimate the risk of an aquifer to be polluted from concentrated and/or dispersed sources, which applies an overlay and index method involving several parameters. The parameters are categorized into three factor groups: factor group 1 includes parameters relevant to the internal aquifer system’s properties, thus determining the intrinsic aquifer vulnerability to pollution; factor group 2 comprises parameters relevant to the external stresses to the system, such as human activities and rainfall effects; factor group 3 incorporates specific geological settings, such as the presence of geothermal fields or salt intrusion zones, into the computation process. Geographical information systems have been used for data acquisition and processing, coupled with a multicriteria evaluation technique enhanced with fuzzy factor standardization. Moreover, besides assigning weights to factors, a second set of weights, i.e., order weights, has been applied to factors on a pixel by pixel basis, thus allowing control of the level of risk in the vulnerability determination and the enhancement of local site characteristics. Individual analysis of each factor group resulted in three intermediate groundwater vulnerability to pollution maps, which were combined in order to produce the final composite groundwater vulnerability map for the study area. The method has been applied in the region of Eastern Macedonia and Thrace (Northern Greece), an area of approximately 14,000 km2. The methodology has been tested and calibrated against the measured nitrate concentration in wells, in the northwest part of the study area, providing results related to the aggregation and weighting procedure.
NASA Astrophysics Data System (ADS)
Cao, L.; Appel, E.; Roesler, W.; Ojha, G.
2013-12-01
From numerous published results, the link between magnetic concentration and heavy metal (HM) concentrations is well established. However, bivariate correlation analysis does not imply causality, and if there are extreme values, which often appear in magnetic data, they can lead to seemingly excellent correlation. It seems clear that site selection for chemical sampling based on magnetic pre-screening can deliver a superior result for outlining HM pollution, but this conclusion has only been drawn from qualitative evaluation so far. In this study, we use map similarity comparison techniques to demonstrate the usefulness of a combined magnetic-chemical approach quantitatively. We chose available data around the 'Schwarze Pumpe', a large coal burning power plant complex located in eastern Germany. The site of 'Schwarze Pumpe' is suitable for a demonstration study as soil in its surrounding is heavy fly-ash polluted, the magnetic natural background is very low, and magnetic investigations can be done in undisturbed forest soil. Magnetic susceptibility (MS) of top soil was measured by a Bartington MS2D surface sensor at 180 locations and by a SM400 downhole device in ~0.5m deep vertical sections at 90 locations. Cores from the 90 downhole sites were also studied for HM analysis. From these results 85 sites could be used to determine a spatial distribution map of HM contents reflecting the 'True' situation of pollution. Different sets comprising 30 sites were chosen by arbitrarily selection from the above 85 sample sites (we refer to four such maps here: S1-4). Additionally, we determined a 'Targeted' map from 30 sites selected on the basis of the pre-screening MS results. The map comparison process is as follows: (1) categorization of all absolute values into five classes by the Natural Breaks classification method; (2) use Delaunay triangulation for connecting the sample locations in the x-y plane; (3) determination of a distribution map of triangular planes with classified values as the Z coordinate; (4) calculation of normal vectors for each individual triangular plane; (5)transformation to the TINs into raster data assigning the same normal vectors to all grid-points which are inside the same TIN; (6) calculation of the root-mean-square of angles between normal vectors of two maps at the same grid points. Additionally, we applied the kappa statistics method to assess map similarities, and moreover developed a Fuzzy set approach. Combining both methods using indices of Khisto, Klocation, Kappa, Kfuzzy obtains a broad comparison system, which allows determining the degree of similarity and also the spatial distribution of similarity between two maps. The results indicate that the similarity between the 'Targeted' and 'True' distribution map is higher than that between 'S1-4' and the 'True' map. It manifests that magnetic pre-screening can provide a reliable basis for targeted selection of chemical sampling sites demonstrating the superior efficiency of a combined magnetic-chemical site assessment in comparison to a traditional chemical-only approach.
Dmuchowski, W; Bytnerowicz, A
1995-01-01
Maps of the distribution of environmental pollution by sulfur (S), zinc (Zn), cadmium (Cd), lead (Pb), copper (Cu), and arsenic (As) for the territory of Poland and the Warsaw (Warszawa) district were developed on the basis of chemical analysis of Scots pine (Pinus sylvestris L.) needles collected from randomly selected sampling points during 1983-1985. The maps show deposition zones for the studied elements and can help in identification of sources and directions of air pollution dispersion. This study indicated that vegetation in Poland is greatly endangered by sulfur dioxide (SO(2)) and other sulfurous air pollutants, whereas Zn, Cd, Pb, and As do not pose an immediate threat to vegetation in most of the country's territory. However, in the urban-industrial agglomeration of Katowice-Cracow, very high pollution with Z, Cd, Pb and As could limit growth and development of some sensitive plant species. Higher than normal levels of As in some areas of Poland (Upper Silesia, Glogow-Lubin Copper Region, and areas close to the Russian border near Braniewo) might affect the health of humans and animals. Results of this study indicated that Poland's environment was not contaminated with Cu.
NASA Technical Reports Server (NTRS)
Kindle, E. C.; Bandy, A.; Copeland, G.; Blais, R.; Levy, G.; Sonenshine, D.; Adams, D.; Maier, G.
1975-01-01
Data tables and maps are presented which include background information and experimental data on the Craney Island oil refinery installation experiment. The experiment was to investigate air pollution effects.
Health and cost impact of air pollution from biomass burning over the United States
NASA Astrophysics Data System (ADS)
Eslami, E.; Sadeghi, B.; Choi, Y.
2017-12-01
Effective assessment of health and cost effects of air pollution associated with wildfire events is critical for supporting sustainable management and policy analysis to reduce environmental damages. Since biomass burning events result in higher ozone, PM2.5, and NOx concentration values in urban regions due to long-range transport, preliminary results indicated that wildfire events cause a considerable increase in incident estimates and costs. This study aims to evaluate the health and cost impact of biomass burning events over the continental United States using combined air quality and health impact modeling. To meet this goal, a comprehensive air quality modeling scenarios containing biomass burning emissions were conducted using the Community Multiscale Air Quality (CMAQ) modeling system from 2011 to 2014 with a spatial resolution of 12 km. The modeling period includes fire seasons between April and October over the course of four years. By using modeled pollutants concentrations, the USEPA's GIS-based computer program Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) provides an inclusive figure of health and cost impact caused by changing gaseous and particulate air pollution due to fire events. The basis of BenMAP-CE is the use of a damage-function approach to estimate the health impact of an applied change in air quality by comparing a biomass burning scenario (the one that includes wildfire events) with a baseline scenario (without biomass emissions). This approach considers several factors containing population, exposure to the pollutants, adverse health effects of a particular pollutant, and economic costs. Hence, this study made it capable of showing how biomass burning across U.S. influences people's health in different months, seasons, and regions. Besides, the cost impact of the wildfire events during study periods has also been estimated at both national and regional levels. The results of this study demonstrate the BenMAP-CE can be successfully utilized as a proper tool to obtain health and cost impact of biomass burning events.
Marine oil spill risk mapping for accidental pollution and its application in a coastal city.
Lan, Dongdong; Liang, Bin; Bao, Chenguang; Ma, Minghui; Xu, Yan; Yu, Chunyan
2015-07-15
Accidental marine oil spill pollution can result in severe environmental, ecological, economic and other consequences. This paper discussed the model of Marine Oil Spill Risk Mapping (MOSRM), which was constructed as follows: (1) proposing a marine oil spill risk system based on the typical marine oil spill pollution accidents and prevailing risk theories; (2) identifying suitable indexes that are supported by quantitative sub-indexes; (3) constructing the risk measuring models according to the actual interactions between the factors in the risk system; and (4) assessing marine oil spill risk on coastal city scale with GIS to map the overall risk. The case study of accidental marine oil spill pollution in the coastal area of Dalian, China was used to demonstrate the effectiveness of the model. The coastal areas of Dalian were divided into three zones with risk degrees of high, medium, and low. And detailed countermeasures were proposed for specific risk zones. Copyright © 2015 Elsevier Ltd. All rights reserved.
Space time modelling of air quality for environmental-risk maps: A case study in South Portugal
NASA Astrophysics Data System (ADS)
Soares, Amilcar; Pereira, Maria J.
2007-10-01
Since the 1960s, there has been a strong industrial development in the Sines area, on the southern Atlantic coast of Portugal, including the construction of an important industrial harbour and of, mainly, petrochemical and energy-related industries. These industries are, nowadays, responsible for substantial emissions of SO2, NOx, particles, VOCs and part of the ozone polluting the atmosphere. The major industries are spatially concentrated in a restricted area, very close to populated areas and natural resources such as those protected by the European Natura 2000 network. Air quality parameters are measured at the emissions' sources and at a few monitoring stations. Although air quality parameters are measured on an hourly basis, the lack of representativeness in space of these non-homogeneous phenomena makes even their representativeness in time questionable. Hence, in this study, the regional spatial dispersion of contaminants is also evaluated, using diffusive-sampler (Radiello Passive Sampler) campaigns during given periods. Diffusive samplers cover the entire space extensively, but just for a limited period of time. In the first step of this study, a space-time model of pollutants was built, based on a stochastic simulation-direct sequential simulation-with local spatial trend. The spatial dispersion of the contaminants for a given period of time-corresponding to the exposure time of the diffusive samplers-was computed by ordinary kriging. Direct sequential simulation was applied to produce equiprobable spatial maps for each day of that period, using the kriged map as a spatial trend and the daily measurements of pollutants from the monitoring stations as hard data. In the second step, the following environmental risk and costs maps were computed from the set of simulated realizations of pollutants: (i) maps of the contribution of each emission to the pollutant concentration at any spatial location; (ii) costs of badly located monitoring stations.
Peri-Urbanism in Globalizing India: A Study of Pollution, Health and Community Awareness
Waldman, Linda; Bisht, Ramila; Saharia, Rajashree; Kapoor, Abhinav; Rizvi, Bushra; Hamid, Yasir; Arora, Meghana; Chopra, Ima; Priya, Ritu; Marshall, Fiona
2017-01-01
This paper examines the intersection between environmental pollution and people’s acknowledgements of, and responses to, health issues in Karhera, a former agricultural village situated between the rapidly expanding cities of New Delhi (India’s capital) and Ghaziabad (an industrial district in Uttar Pradesh). A relational place-based view is integrated with an interpretive approach, highlighting the significance of place, people’s emic experiences, and the creation of meaning through social interactions. Research included surveying 1788 households, in-depth interviews, participatory mapping exercises, and a review of media articles on environment, pollution, and health. Karhera experiences both domestic pollution, through the use of domestic waste water, or gandapani, for vegetable irrigation, and industrial pollution through factories’ emissions into both the air and water. The paper shows that there is no uniform articulation of any environment/health threats associated with gandapani. Some people take preventative actions to avoid exposure while others do not acknowledge health implications. By contrast, industrial pollution is widely noted and frequently commented upon, but little collective action addresses this. The paper explores how the characteristics of Karhera, its heterogeneous population, diverse forms of environmental pollution, and broader governance processes, limit the potential for citizen action against pollution. PMID:28867770
Mobile Instruments Measure Atmospheric Pollutants
NASA Technical Reports Server (NTRS)
2009-01-01
As a part of NASA's active research of the Earth s atmosphere, which has included missions such as the Atmospheric Laboratory of Applications and Science (ATLAS, launched in 1992) and the Total Ozone Mapping Spectrometer (TOMS, launched on the Earth Probe satellite in 1996), the Agency also performs ground-based air pollution research. The ability to measure trace amounts of airborne pollutants precisely and quickly is important for determining natural patterns and human effects on global warming and air pollution, but until recent advances in field-grade spectroscopic instrumentation, this rapid, accurate data collection was limited and extremely difficult. In order to understand causes of climate change and airborne pollution, NASA has supported the development of compact, low power, rapid response instruments operating in the mid-infrared "molecular fingerprint" portion of the electromagnetic spectrum. These instruments, which measure atmospheric trace gases and airborne particles, can be deployed in mobile laboratories - customized ground vehicles, typically - to map distributions of pollutants in real time. The instruments must be rugged enough to operate rapidly and accurately, despite frequent jostling that can misalign, damage, or disconnect sensitive components. By measuring quickly while moving through an environment, a mobile laboratory can correlate data and geographic points, revealing patterns in the environment s pollutants. Rapid pollutant measurements also enable direct determination of pollutant sources and sinks (mechanisms that remove greenhouse gases and pollutants), providing information critical to understanding and managing atmospheric greenhouse gas and air pollutant concentrations.
TOMS Tropical Tropospheric Ozone Data Sets at the University of Maryland Website
NASA Technical Reports Server (NTRS)
Kochhar, A. K.; Thompson, A. M.; Hudson, R. D.; Frolov, A. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)
2001-01-01
Since 1997, shortly after the launch of the Earth-Probe TOMS (Total Ozone Mapping Spectrometer) satellite instrument, we have been processing data in near-real time to post maps of tropical tropospheric ozone at a website: metosrv2.umd.edu/-tropo. Daily, 3-day and 9-day averages of tropical tropospheric ozone column depth (TTO) are viewable from 10N to 10S. Data can be downloaded (running 9-day means) from 20N-30S. Pollution events are trackable along with dynamically-induced variations in tropospheric ozone column. TOMS smoke aerosol (toms.gsfc.nasa.gov) can be used to interpret biomass burning ozone, as for example, during the extreme ozone and smoke pollution period during the ENSO-related fires of August November 1997. During that time plumes of ozone and smoke were frequently decoupled and ozone from Indonesian fires and from Africa merged in one large feature by late October 1997. In addition to the Earth-Probe TOMS record, data as half-month averages and as daily 9-day means from the Nimbus 7 TOMS instrument are at the metosrv2.umd.edu/-tropo website. A guide to the website and examples of ozone time-series and maps will be shown.
National Enforcement Initiative: Keeping Industrial Pollutants Out of the Nation’s Waters
This page describes EPA's enforcement activities on water pollution from raw sewage and contaminated stormwater. This is one of EPA's National Enforcement Initiatives. Both enforcement cases, and a map of enforcement actions are provided.
The U.S. Environmental Protection Agency¿s Office of Research and Development have mapped and interpreted landscape-scale (i.e., broad scale) ecological metrics among watersheds in the upper White River watershed, producing the first geospatial models of water quality vulnerabili...
Dibben, Chris; Clemens, Tom
2015-07-01
A relationship between ambient air pollution and adverse birth outcomes has been found in a large number of studies that have mainly used a nearest monitor methodology. Recent research has suggested that the effect size may have been underestimated in these studies. This paper examines associations between birth outcomes and ambient levels of residential and workplace sulphur dioxide, particulates and Nitrogen Dioxide estimated using an alternative method - pollution climate mapping. Risk of low birthweight and mean birthweight (for n=21,843 term births) and risk of preterm birth (for n=23,086 births) were modelled against small area annual mean ambient air pollution concentrations at work and residence location adjusting for potential confounding factors for singleton live births (1994-2008) across Scotland. Odds ratios of low birthweight of 1.02 (95% CI, 1.01-1.03) and 1.07 (95% CI, 1.01-1.12) with concentration increases of 1 µg/m(3) for NO2 and PM10 respectively. Raised but insignificant risks of very preterm birth were found with PM10 (relative risk ratio=1.08; 95% CI, 1.00 to 1.17 per 1 µg/m(3)) and NO2 (relative risk ratio=1.01; 95% CI, 1.00 to 1.03 per 1 µg/m(3)). An inverse association between mean birthweight and mean annual NO2(-1.24 g; 95% CI, -2.02 to -0.46 per 1 µg/m(3)) and PM10 (-5.67 g; 95% CI, -9.47 to -1.87 per 1 µg/m(3)). SO2 showed no significant associations. This study highlights the association between air pollution exposure and reduced newborn size at birth. Together with other recent work it also suggests that exposure estimation based on the nearest monitor method may have led to an under-estimation of the effect size of pollutants on birth outcomes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
InMAP: a new model for air pollution interventions
NASA Astrophysics Data System (ADS)
Tessum, C. W.; Hill, J. D.; Marshall, J. D.
2015-10-01
Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3) concentrations. The InMAP model source code and input data are freely available online.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2016-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. A recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found that clusters of O3 mixing ratio profiles are an excellent way to capture O3variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g., convection, subsidence, cloud cover, and transported pollution. Here the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA) with4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3 3 SOM (nine clusters). Ateach site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies.For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 1316 of profiles, mostly in winter and spring.Large midtropospheric deviations from monthly means (6 ppbv, +710 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 3639 of profiles). These two clusters contain distinctly polluted(summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics.
Stauffer, Ryan M.; Thompson, Anne M.; Young, George S.
2018-01-01
Sonde-based climatologies of tropospheric ozone (O3) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O3 mixing ratio profiles are an excellent way to capture O3 variability and link meteorological influences to O3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O3. Cluster means are compared to monthly O3 climatologies. For all four sites, near-tropopause O3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O3 mixing ratio in three clusters that contain 13 – 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (−6 ppbv, +7 – 10 ppbv O3 at 6 km) are found in two of the most populated clusters (combined 36 – 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O3 averages are often poor representations of U.S. O3 profile statistics. PMID:29619288
Stauffer, Ryan M; Thompson, Anne M; Young, George S
2016-02-16
Sonde-based climatologies of tropospheric ozone (O 3 ) are vital for developing satellite retrieval algorithms and evaluating chemical transport model output. Typical O 3 climatologies average measurements by latitude or region, and season. Recent analysis using self-organizing maps (SOM) to cluster ozonesondes from two tropical sites found clusters of O 3 mixing ratio profiles are an excellent way to capture O 3 variability and link meteorological influences to O 3 profiles. Clusters correspond to distinct meteorological conditions, e.g. convection, subsidence, cloud cover, and transported pollution. Here, the SOM technique is extended to four long-term U.S. sites (Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA) with 4530 total profiles. Sensitivity tests on k-means algorithm and SOM justify use of 3×3 SOM (nine clusters). At each site, SOM clusters together O 3 profiles with similar tropopause height, 500 hPa height/temperature, and amount of tropospheric and total column O 3 . Cluster means are compared to monthly O 3 climatologies. For all four sites, near-tropopause O 3 is double (over +100 parts per billion by volume; ppbv) the monthly climatological O 3 mixing ratio in three clusters that contain 13 - 16% of profiles, mostly in winter and spring. Large mid-tropospheric deviations from monthly means (-6 ppbv, +7 - 10 ppbv O 3 at 6 km) are found in two of the most populated clusters (combined 36 - 39% of profiles). These two clusters contain distinctly polluted (summer) and clean O 3 (fall-winter, high tropopause) profiles, respectively. As for tropical profiles previously analyzed with SOM, O 3 averages are often poor representations of U.S. O 3 profile statistics.
Satellite skill in detecting extreme episodes in near-surface air quality
NASA Astrophysics Data System (ADS)
Ruiz, D. J.; Prather, M. J.
2017-12-01
Ozone (O3) contributes to ambient air pollution, adversely affecting public health, agriculture, and ecosystems. Reliable, long-term, densely distributed surface networks are required to establish the scale, intensity and repeatability of major pollution events (designated here in a climatological sense as air quality extremes, AQX as defined in Schnell's work). Regrettably, such networks are only available for North America (NA) and Europe (EU), which does not include many populated regions where the deaths associated with air pollution exposure are alarmingly high. Directly measuring surface pollutants from space without lidar is extremely difficult. Mapping of daily pollution events requires cross-track nadir scanners and these have limited sensitivity to surface O3 levels. This work examines several years of coincident surface and OMI satellite measurements over NA-EU, in combination with a chemistry-transport model (CTM) hindcast of that period to understand how the large-scale AQX episodes may extend into the free troposphere and thus be more amenable to satellite mapping. We show how extreme NA-EU episodes are measured from OMI and then look for such patterns over other polluted regions of the globe. We gather individual high-quality O3 surface site measurements from these other regions, to check on our satellite detection. Our approach with global satellite detection would avoid issues associated with regional variations in seasonality, chemical regime, data product biases; and it does not require defining a separate absolute threshold for each data product (surface site and satellite). This also enables coherent linking of the extreme events into large-scale pollution episodes whose magnitude evolves over 100's of km for several days. Tools used here include the UC Irvine CTM, which shows that much of the O3 surface variability is lost at heights above 2 km, but AQX local events are readily seen in a 0-3 km column average. The OMI data are taken from X. Liu's dataset using an improved algorithm for detection of tropospheric O3. Surface site observations outside NA and EU are taken from research stations where possible.
Kourgialas, Nektarios N; Karatzas, George P; Koubouris, Georgios C
2017-03-15
Fertilizers have undoubtedly contributed to the significant increase in yields worldwide and therefore to the considerable improvement of quality of life of man and animals. Today, attention is focussed on the risks imposed by agricultural fertilizers. These effects include the dissolution and transport of excess quantities of fertilizer major- and trace-elements to the groundwater that deteriorate the quality of drinking and irrigation water. In this study, a map for the Fertilizer Water Pollution Index (FWPI) was generated for assessing the impact of agricultural fertilizers on drinking and irrigation water quality. The proposed methodology was applied to one of the most intensively cultivated with tree crops area in Crete (Greece) where potential pollutant loads are derived exclusively from agricultural activities and groundwater is the main water source. In this region of 215 km 2 , groundwater sampling data from 235 wells were collected over a 15-year time period and analyzed for the presence of anionic (ΝΟ -3 , PO -3 4 ) and cationic (K +1 , Fe +2 , Mn +2 , Zn +2 , Cu +2 , B +3 ) fertilizer trace elements. These chemicals are the components of the primary fertilizers used in local tree crop production. Eight factors/maps were considered in order to estimate the spatial distribution of groundwater contamination for each fertilizer element. The eight factors combined were used to generate the Fertilizer Water Pollution Index (FWPI) map indicating the areas with drinking/irrigation water pollution due to the high groundwater contamination caused by excessive fertilizer use. Moreover, by taking into consideration the groundwater flow direction and seepage velocity, the pathway through which groundwater supply become polluted can be predicted. The groundwater quality results show that a small part of the study area, about 8 km 2 (3.72%), is polluted or moderately polluted by the excessive use of fertilizers. Considering that in this area drinking water sources (wells) are located, this study highlights an analytic method for delineation wellhead protection zones. All these approaches were incorporated in a useful GIS decision support system that aids decision makers in the difficult task of protection groundwater resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
The U.S. EPA's Office of Research and Development, and U.S. EPA Region 7 have collaborated to map and interpret landscape-scale (i.e. broad-scale) ecological metrics among watershed of the Upper White River, and have produced the first geospatial models of water quality vulnerabi...
The U.S. Environmental Protection Agency is interested in leaf area index as it pertains to biogenic emissions, atmospheric pollutant deposition, ecological indicators, vegetation phenology, and land cover mapping.
Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.
Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu
2016-09-01
Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.
Rashidi, Maasoumeh; Ramesht, Mohammad Hossein; Zohary, Moein; Poursafa, Parinaz; Kelishadi, Roya; Rashidi, Zeinab; Rouzbahani, Reza
2013-12-01
National Institute of Environmental Health Sciences (NIEHS) scientists shows that long-term exposure to air pollutants increases the risk of respiratory diseases such as allergies, asthma, chronic obstructive pulmonary disease, and lung cancer. Children and the elderly are particularly vulnerable to the health effects of ozone, fine particles, and other airborne toxicants. Air pollution factors are considered as one of the underlying causes of respiratory diseases. This study aimed to determine the association of respiratory diseases documented in medical records and air pollution (Map distribution) of accumulation in Isfahan province, Iran. By plotting the prevalence and spatial distribution maps, important differences from different points can be observed. The geographic information system (GIS), pollutant standards index (PSI) measurements, and remote Sensing (RS) technology were used after entering data in the mapping information table; spatial distribution was mapped and distribution of Geographical Epidemiology of Respiratory Diseases in Isfahan province (Iran) was determined in this case study from 2005 to 2009. Space with tracing the distribution of respiratory diseases was scattered based on the distribution of air pollution in the points is an important part of this type of diseases in Isfahan province where air pollution was more abundant. The findings of this study emphasis on the importance of preventing the exposure to air pollution, and to control air pollution product industries, to improve work environmental health, and to increase the health professionals and public knowledge in this regard.
Rashidi, Maasoumeh; Ramesht, Mohammad Hossein; Zohary, Moein; Poursafa, Parinaz; Kelishadi, Roya; Rashidi, Zeinab; Rouzbahani, Reza
2013-01-01
Background: National Institute of Environmental Health Sciences (NIEHS) scientists shows that long-term exposure to air pollutants increases the risk of respiratory diseases such as allergies, asthma, chronic obstructive pulmonary disease, and lung cancer. Children and the elderly are particularly vulnerable to the health effects of ozone, fine particles, and other airborne toxicants. Air pollution factors are considered as one of the underlying causes of respiratory diseases. This study aimed to determine the association of respiratory diseases documented in medical records and air pollution (Map distribution) of accumulation in Isfahan province, Iran. By plotting the prevalence and spatial distribution maps, important differences from different points can be observed. Materials and Methods: The geographic information system (GIS), pollutant standards index (PSI) measurements, and remote Sensing (RS) technology were used after entering data in the mapping information table; spatial distribution was mapped and distribution of Geographical Epidemiology of Respiratory Diseases in Isfahan province (Iran) was determined in this case study from 2005 to 2009. Results: Space with tracing the distribution of respiratory diseases was scattered based on the distribution of air pollution in the points is an important part of this type of diseases in Isfahan province where air pollution was more abundant. Conclusion: The findings of this study emphasis on the importance of preventing the exposure to air pollution, and to control air pollution product industries, to improve work environmental health, and to increase the health professionals and public knowledge in this regard. PMID:24523799
NASA Technical Reports Server (NTRS)
1994-01-01
STS-59's MAPS (Measurement of Air Pollution from Satellites) experiment is sending real-time data that provides the most comprehensive view of carbon monoxide concentrations on Earth ever recorded. This computer image shows a summary of 'quick look' data obtained by the MAPS instrument during its first days of operations as part of the Space Shuttle Endeavour's SRL-1 payload.
EPA’s National Emission Inventory has been incorporated into the Emission Database for Global Atmospheric Research-Hemispheric Transport of Air Pollutants (EDGAR-HTAP) version 2. This work involves the creation of a detailed mapping of EPA Source Classification Codes (SCC) to the...
EnviroAtlas - Austin, TX - BenMAP Results by Block Group
This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 750 block groups in Austin, Texas. The US EPA's Environmental Benefits Mapping and Analysis Program (BenMAP) was used to estimate the incidence of adverse health effects (i.e., mortality and morbidity) and associated monetary value that result from changes in pollution concentrations for Travis and Williamson Counties, TX. Incidence and value estimates for the block groups are calculated using i-Tree models (www.itreetools.org), local weather data, pollution data, and U.S. Census derived population data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Zhang, Y J; Zhou, D H; Bai, Z P; Xue, F X
2018-02-10
Objective: To quantitatively analyze the current status and development trends regarding the land use regression (LUR) models on ambient air pollution studies. Methods: Relevant literature from the PubMed database before June 30, 2017 was analyzed, using the Bibliographic Items Co-occurrence Matrix Builder (BICOMB 2.0). Keywords co-occurrence networks, cluster mapping and timeline mapping were generated, using the CiteSpace 5.1.R5 software. Relevant literature identified in three Chinese databases was also reviewed. Results: Four hundred sixty four relevant papers were retrieved from the PubMed database. The number of papers published showed an annual increase, in line with the growing trend of the index. Most papers were published in the journal of Environmental Health Perspectives . Results from the Co-word cluster analysis identified five clusters: cluster#0 consisted of birth cohort studies related to the health effects of prenatal exposure to air pollution; cluster#1 referred to land use regression modeling and exposure assessment; cluster#2 was related to the epidemiology on traffic exposure; cluster#3 dealt with the exposure to ultrafine particles and related health effects; cluster#4 described the exposure to black carbon and related health effects. Data from Timeline mapping indicated that cluster#0 and#1 were the main research areas while cluster#3 and#4 were the up-coming hot areas of research. Ninety four relevant papers were retrieved from the Chinese databases with most of them related to studies on modeling. Conclusion: In order to better assess the health-related risks of ambient air pollution, and to best inform preventative public health intervention policies, application of LUR models to environmental epidemiology studies in China should be encouraged.
NASA Astrophysics Data System (ADS)
Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei
2017-04-01
High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.
Assessment of Near-Source Air Pollution at a Fine Spatial ...
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle – an all-electric vehicle measuring real-time concentrations of particulate and gaseous pollutants – was used to map air pollution levels near the Port of Charleston in South Carolina. High-resolution monitoring was performed along driving routes near several port terminals and rail yard facilities, recording geospatial coordinates and concentrations of pollutants including black carbon, size-resolved particle count ranging from ultrafine to coarse (6 nm to 20 um), carbon monoxide, carbon dioxide, and nitrogen dioxide. Additionally, a portable meteorological station was used to characterize local conditions. The primary objective of this work is to characterize the impact of port facilities on local scale air quality. It is found that elevated concentration measurements of Black Carbon and PM correlate to periods of increased port activity and a significant elevation in concentration is observed downwind of ports. However, limitations in study design prevent a more complete analysis of the port effect. As such, we discuss the ways in which this study is limited and how future work could be improved. Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollut
Noise pollution mapping approach and accuracy on landscape scales.
Iglesias Merchan, Carlos; Diaz-Balteiro, Luis
2013-04-01
Noise mapping allows the characterization of environmental variables, such as noise pollution or soundscape, depending on the task. Strategic noise mapping (as per Directive 2002/49/EC, 2002) is a tool intended for the assessment of noise pollution at the European level every five years. These maps are based on common methods and procedures intended for human exposure assessment in the European Union that could be also be adapted for assessing environmental noise pollution in natural parks. However, given the size of such areas, there could be an alternative approach to soundscape characterization rather than using human noise exposure procedures. It is possible to optimize the size of the mapping grid used for such work by taking into account the attributes of the area to be studied and the desired outcome. This would then optimize the mapping time and the cost. This type of optimization is important in noise assessment as well as in the study of other environmental variables. This study compares 15 models, using different grid sizes, to assess the accuracy of the noise mapping of the road traffic noise at a landscape scale, with respect to noise and landscape indicators. In a study area located in the Manzanares High River Basin Regional Park in Spain, different accuracy levels (Kappa index values from 0.725 to 0.987) were obtained depending on the terrain and noise source properties. The time taken for the calculations and the noise mapping accuracy results reveal the potential for setting the map resolution in line with decision-makers' criteria and budget considerations. Copyright © 2013 Elsevier B.V. All rights reserved.
Pandey, Mayank; Pandey, Ashutosh Kumar; Mishra, Ashutosh; Tripathi, B D
2015-09-01
Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64-3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cerovski-Darriau, C.; Stock, J. D.; Winans, W. R.
2016-12-01
Episodic storm runoff in West Maui (Hawai'i) brings plumes of terrestrially-sourced fine sediment to the nearshore ocean environment, degrading coral reef ecosystems. The sediment pollution sources were largely unknown, though suspected to be due to modern human disturbance of the landscape, and initially assumed to be from visibly obvious exposed soil on agricultural fields and unimproved roads. To determine the sediment sources and estimate a sediment budget for the West Maui watersheds, we mapped the geomorphic processes in the field and from DEMs and orthoimagery, monitored erosion rates in the field, and modeled the sediment flux using the mapped processes and corresponding rates. We found the primary source of fine sands, silts and clays to be previously unidentified fill terraces along the stream bed. These terraces, formed during legacy agricultural activity, are the banks along 40-70% of the streams where the channels intersect human-modified landscapes. Monitoring over the last year shows that a few storms erode the fill terraces 10-20 mm annually, contributing up to 100s of tonnes of sediment per catchment. Compared to the average long-term, geologic erosion rate of 0.03 mm/yr, these fill terraces alone increase the suspended sediment flux to the coral reefs by 50-90%. Stakeholders can use our resulting geomorphic process map and sediment budget to inform the location and type of mitigation effort needed to limit terrestrial sediment pollution. We compare our mapping, monitoring, and modeling (M3) approach to NOAA's OpenNSPECT model. OpenNSPECT uses empirical hydrologic and soil erosion models paired with land cover data to compare the spatially distributed sediment yield from different land-use scenarios. We determine the relative effectiveness of calculating a baseline watershed sediment yield from each approach, and the utility of calibrating OpenNSEPCT with M3 results to better forecast future sediment yields from land-use or climate change scenarios.
Groundwater pollution risk assessment. Application to different carbonate aquifers in south Spain
NASA Astrophysics Data System (ADS)
Jimenez Madrid, A.; Martinez Navarrete, C.; Carrasco Cantos, F.
2009-04-01
Water protection has been considered one of the most important environmental goals in the European politics since the 2000/60/CE Water Framework Directive came into force in 2000, and more specifically in 2006 with the 2006/118/CE Directive on groundwater protection. As one of the necessary requirements to tackle groundwater protection, a pollution risk assessment has been made through the analysis of both the existing hazard human activities map and the intrinsic aquifer vulnerability map, by applying the methodologies proposed by COST Action 620 in an experimental study site in south Spain containing different carbonated aquifers, which supply 8 towns ranging from 2000 to 2500 inhabitants. In order to generate both maps it was necessary to make a field inventory over a 1:10000 topographic base map, followed by Geographic Information System (GIS) processing. The outcome maps show a clear spatial distribution of both pollution risk and intrinsic vulnerability of the carbonated aquifers studied. As a final result, a map of the intensity of groundwater pollution risk is presented, representing and important base for the development of a proper methodology for the protection of groundwater resources for human consumption protection. Keywords. Hazard, Vulnerability, Risk, SIG, Protection
NASA Astrophysics Data System (ADS)
Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.
2013-12-01
Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values, satellite-derived leaf area index and landscape cover. Ion exchange resin throughfall collectors and atmospheric simulation models have provided complementary data critical to better understanding of ecosystem responses to Nr in western North America. Such deposition data and maps have been used to set N deposition critical loads (CL) and to map areas of exceedance for a variety of ecosystem and biological effects. Empirical CL and exceedance areas have been established for many Western ecosystems including forest, desert, shrub, grassland, subalpine and aquatic habitats, thus providing an important management tool for protection of key ecosystems and the services they provide. An important finding is that biodiversity and community responses of sensitive elements of several Western aquatic and terrestrial ecosystems respond to relatively low levels of atmospheric N deposition (e.g., 3-6 kg N/ha/yr).
The U.S. Environmental Protection Agency's Office of Research and Development have mapped and interpreted landscape-scale (i.e., broad scale) ecological metrics among watersheds in the upper White River watershed, producing the first geospatial models of water quality vulnerabili...
Structural equation modeling of the inflammatory response to traffic air pollution
Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.
2015-01-01
Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970
Combining Geostatistics with Moran’s I Analysis for Mapping Soil Heavy Metals in Beijing, China
Huo, Xiao-Ni; Li, Hong; Sun, Dan-Feng; Zhou, Lian-Di; Li, Bao-Guo
2012-01-01
Production of high quality interpolation maps of heavy metals is important for risk assessment of environmental pollution. In this paper, the spatial correlation characteristics information obtained from Moran’s I analysis was used to supplement the traditional geostatistics. According to Moran’s I analysis, four characteristics distances were obtained and used as the active lag distance to calculate the semivariance. Validation of the optimality of semivariance demonstrated that using the two distances where the Moran’s I and the standardized Moran’s I, Z(I) reached a maximum as the active lag distance can improve the fitting accuracy of semivariance. Then, spatial interpolation was produced based on the two distances and their nested model. The comparative analysis of estimation accuracy and the measured and predicted pollution status showed that the method combining geostatistics with Moran’s I analysis was better than traditional geostatistics. Thus, Moran’s I analysis is a useful complement for geostatistics to improve the spatial interpolation accuracy of heavy metals. PMID:22690179
NASA Astrophysics Data System (ADS)
Elias, Dimitriou; Angeliki, Mentzafou; Vasiliki, Markogianni; Maria, Tzortziou; Christina, Zeri
2014-06-01
Managing water resources, in terms of both quality and quantity, in transboundary rivers is a difficult and challenging task that requires efficient cross-border cooperation and transparency. Groundwater pollution risk assessment and mapping techniques over the full catchment area are important tools that could be used as part of these water resource management efforts, to estimate pollution pressures and optimize land planning processes. The Evros river catchment is the second largest river in Eastern Europe and sustains a population of 3.6 million people in three different countries (Bulgaria, Turkey and Greece). This study provides detailed information on the main pollution sources and pressures in the Evros catchment and, for the first time, applies, assesses and evaluates a groundwater pollution risk mapping technique using satellite observations (Landsat NDVI) and an extensive dataset of field measurements covering different seasons and multiple years. We found that approximately 40 % of the Greek part of the Evros catchment is characterized as of high and very high pollution risk, while 14 % of the study area is classified as of moderate risk. Both the modeled and measured water quality status of the river showed large spatiotemporal variations consistent with the strong anthropogenic pressures in this system, especially on the northern and central segments of the catchment. The pollutants identified illustrate inputs of agrochemicals and urban wastes in the river. High correlation coefficients ( R between 0.79 and 0.85) were found between estimated pollution risks and measured concentrations of those chemical parameters that are mainly attributed to anthropogenic activities rather than in situ biogeochemical processes. The pollution risk method described here could be used elsewhere as a decision support tool for mitigating the impact of hazardous human activities and improving management of groundwater resources.
García-Sánchez, Mercedes; Košnář, Zdeněk; Mercl, Filip; Aranda, Elisabet; Tlustoš, Pavel
2018-01-01
Biological treatments are considered an environmentally option to clean-up polluted soil with polycyclic aromatic hydrocarbons (PAHs). A pot experiment was conducted to comparatively evaluate four different strategies, including natural attenuation (NA), mycoaugmentation (M) by using Crucibulum leave, phytoremediation (P) using maize plants, and microbial-assisted phytoremediation (MAP) for the bioremediation of an aged PAH-polluted soil at 180 days. The P treatment had higher affinity degrading 2-3 and 4 ring compounds than NA and M treatments, respectively. However, M and P treatments were more efficient in regards to naphthalene, indeno[l,2,3-c,d]pyrene and benzo[g,h,i]perylene degradation respect to NA. However, 4, 5-6 rings undergo a strong decline during the microbe-assisted phytoremediation, being the treatment which determined the highest rates of PAHs degradation. Sixteen PAH compounds, except fluorene and dibenzo[a,h]anthracene, were found in maize roots, whereas the naphthalene, phenanthrene, anthracene, fluoranthene, and pyrene were accumulated in the shoots, in both P and MAP treatments. However, higher PAH content in maize biomass was achieved during the MAP treatment respect to P treatment. The bioconversion and translocation factors were less than 1, indicating that phystabilization/phytodegradation processes occurred rather than phytoextraction. The microbial biomass, activity and ergosterol content were significantly boosted in the MAP treatment respect to the other treatments at 180 days. Ours results demonstrated that maize-C. laeve association was the most profitable technique for the treatment of an aged PAH-polluted soil when compared to other bioremediation approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia
2018-05-01
The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.
Visualization and Analysis of Light Pollution: a Case Study in Hong Kong
NASA Astrophysics Data System (ADS)
Wu, B.; Wong, H.
2012-07-01
The effects of light pollution problems in metropolitan areas are investigated in this study. Areas of Hong Kong are used as the source of three typical study cases. One case represents the regional scale, a second represents the district scale, and a third represents the street scale. Two light pollution parameters, Night Sky Brightness (NSB) and Street Light Level (SLL), are the focus of the analyses. Light pollution visualization approaches in relation to the different scales include various light pollution maps. They provide straightforward presentations of the light pollution situations in the study areas. The relationship between light pollution and several social-economic factors such as land use, household income, and types of outdoor lighting in the scale areas given, are examined. Results show that: (1) Land use may be one factor affecting light pollution in the regional scale; (2) A relatively strong correlation exists between light pollution and household income in the district scale; (3) The heaviest light pollution in the street scale is created by spotlights and also the different types of lighting from shops. The impact of the latter is in relation to the shop profile and size.
Remote sensing of air pollution over large European cities by lidar
NASA Astrophysics Data System (ADS)
Koelsch, Hans J.; Kolenda, Juergen; Rairoux, Patrick; Stein, Bernhard; Weidauer, Dirk; Wolf, Jean-Pierre; Woeste, Ludger H.; Fritzsche, Klaus
1992-12-01
Progresses in remote sensing of the atmosphere using the light detection and ranging (lidar) technique closely follows progresses in laser technology. We developed a mobile differential absorption lidar (DIAL) system, based on high repetition rate excimer-pumped dye lasers, for performing 2-D and 3-D mappings of concentration of NO, NO2, SO2, and O3. The high sensitivity of the system has been used for numerous environmental studies and measurement campaigns, providing for the first time a direct correlation between emission and immission. Attractive results have been obtained under urban conditions, because of the presence of strong concentration gradients, and fast fluctuations due to traffic. A comparative study between Lyon, France; Stuttgart, Germany; Geneva, Switzerland; and Berlin, Germany; is presented. In particular, the Berlin campaign demonstrates the possibility of detecting unknown emitters and monitoring exportation-importation processes of atmospheric pollution. A new stationary DIAL system has recently been constructed and implemented on the top of a building in the center of the city of Leipzig, Germany. It will routinely perform concentration mappings of nitrogen oxides, sulfur dioxide, and ozone, giving access to long term evolution of pollution distributions.
Air pollutant mapping with a mobile laboratory during the BEE-TEX field study
NASA Astrophysics Data System (ADS)
Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Floerchinger, C. R.; Knighton, W. B.; Kolb, C. E., Jr.
2016-12-01
The region surrounding the Houston ship channel (Texas, USA) is home to a high density of petrochemical facilities, many of which emit air toxics of concern to human health. Several residential neighborhoods also abut these industrial areas. The Aerodyne Mobile Laboratory was deployed to the Houston ship channel and surrounding areas during the Benzene and Other Toxics Exposure (BEE-TEX) field study in February of 2015. We evaluate atmospheric concentrations of volatile organic hydrocarbons and other hazardous air pollutants, including benzene, 1,3-butadiene, toluene, xylenes and ethylbenzenes, styrene and nitrogen dioxide. Measurements are focused in the Manchester neighborhood, bordered by industry on the north, a rail yard on the south and a highway on the west. Two other neighborhoods are sampled to a lesser degree: Harrisburg and Galena Park. The most likely measured concentration of 1,3-butadiene in the Manchester neighborhood (0.17 ppb) exceeds the Environmental Protection Agency's E-5 lifetime cancer risk level of 0.14 ppb. In all three neighborhoods, the measured benzene concentration falls below or within the E-5 lifetime cancer risk levels of 0.4-1.4 ppb for benzene. Pollution maps as a function of wind direction show the impact of nearby sources.
Mapping air quality zones for coastal urban centers.
Freeman, Brian; Gharabaghi, Bahram; Thé, Jesse; Munshed, Mohammad; Faisal, Shah; Abdullah, Meshal; Al Aseed, Athari
2017-05-01
This study presents a new method that incorporates modern air dispersion models allowing local terrain and land-sea breeze effects to be considered along with political and natural boundaries for more accurate mapping of air quality zones (AQZs) for coastal urban centers. This method uses local coastal wind patterns and key urban air pollution sources in each zone to more accurately calculate air pollutant concentration statistics. The new approach distributes virtual air pollution sources within each small grid cell of an area of interest and analyzes a puff dispersion model for a full year's worth of 1-hr prognostic weather data. The difference of wind patterns in coastal and inland areas creates significantly different skewness (S) and kurtosis (K) statistics for the annually averaged pollutant concentrations at ground level receptor points for each grid cell. Plotting the S-K data highlights grouping of sources predominantly impacted by coastal winds versus inland winds. The application of the new method is demonstrated through a case study for the nation of Kuwait by developing new AQZs to support local air management programs. The zone boundaries established by the S-K method were validated by comparing MM5 and WRF prognostic meteorological weather data used in the air dispersion modeling, a support vector machine classifier was trained to compare results with the graphical classification method, and final zones were compared with data collected from Earth observation satellites to confirm locations of high-exposure-risk areas. The resulting AQZs are more accurate and support efficient management strategies for air quality compliance targets effected by local coastal microclimates. A novel method to determine air quality zones in coastal urban areas is introduced using skewness (S) and kurtosis (K) statistics calculated from grid concentrations results of air dispersion models. The method identifies land-sea breeze effects that can be used to manage local air quality in areas of similar microclimates.
A Review of Air Pollutant Damage to Materials
Report prepared as U.S. contribution to Panel 3 of NATO Committee on Challenges of Modern Society Pilot Study on Air Pollution Control Strategies and Impact Modeling. Panel 3 focuses on air pollutant impact and will publish 4 reports on air pollutants effects; this is the first i...
NASA Astrophysics Data System (ADS)
Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Kuenen, J. J. P.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.; Li, M.
2015-10-01
The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories - including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries - was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.
Integrated Assessment of Health-related Economic Impacts of U.S. Air Pollution Policy
NASA Astrophysics Data System (ADS)
Saari, R. K.; Rausch, S.; Selin, N. E.
2012-12-01
We examine the environmental impacts, health-related economic benefits, and distributional effects of new US regulations to reduce smog from power plants, namely: the Cross-State Air Pollution Rule. Using integrated assessment methods, linking atmospheric and economic models, we assess the magnitude of economy-wide effects and distributional consequences that are not captured by traditional regulatory impact assessment methods. We study the Cross-State Air Pollution Rule, a modified allowance trading scheme that caps emissions of nitrogen oxides and sulfur dioxide from power plants in the eastern United States and thus reduces ozone and particulate matter pollution. We use results from the regulatory regional air quality model, CAMx (the Comprehensive Air Quality Model with extensions), and epidemiologic studies in BenMAP (Environmental Benefits Mapping and Analysis Program), to quantify differences in morbidities and mortalities due to this policy. To assess the economy-wide and distributional consequences of these health impacts, we apply a recently developed economic and policy model, the US Regional Energy and Environmental Policy Model (USREP), a multi-region, multi-sector, multi-household, recursive dynamic computable general equilibrium economic model of the US that provides a detailed representation of the energy sector, and the ability to represent energy and environmental policies. We add to USREP a representation of air pollution impacts, including the estimation and valuation of health outcomes and their effects on health services, welfare, and factor markets. We find that the economic welfare benefits of the Rule are underestimated by traditional methods, which omit economy-wide impacts. We also quantify the distribution of benefits, which have varying effects across US regions, income groups, and pollutants, and we identify factors influencing this distribution, including the geographic variation of pollution and population as well as underlying economic conditions.
First-principles study of low Miller index Ni3S2 surfaces in hydrotreating conditions.
Aray, Yosslen; Vega, David; Rodriguez, Jesus; Vidal, Alba B; Grillo, Maria Elena; Coll, Santiago
2009-03-12
Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts. The calculated thermodynamic surface stabilities and the resulting equilibrium morphology model suggest that unsupported Ni3S2 nanoparticles mainly expose (111) and (111) type surface faces in HDS conditions. Analysis of the electrostatic potential mapped onto a selected electron density isocontour (0.001 au) on those expose surface reveals a poor potential reactivity toward electron-donating reagents (i.e., low Lewis acidity). Consequently, a very low attraction between coordinatively unsaturated active sites (Lewis sites) exposed at the catalytic particles and the S atoms coming from reagent polluting molecules does inactive these kinds of particles for HDS.
Porter, Kenneth D H; Reaney, Sim M; Quilliam, Richard S; Burgess, Chris; Oliver, David M
2017-12-31
Microbial pollution of surface waters in agricultural catchments can be a consequence of poor farm management practices, such as excessive stocking of livestock on vulnerable land or inappropriate handling of manures and slurries. Catchment interventions such as fencing of watercourses, streamside buffer strips and constructed wetlands have the potential to reduce faecal pollution of watercourses. However these interventions are expensive and occupy valuable productive land. There is, therefore, a requirement for tools to assist in the spatial targeting of such interventions to areas where they will have the biggest impact on water quality improvements whist occupying the minimal amount of productive land. SCIMAP is a risk-based model that has been developed for this purpose but with a focus on diffuse sediment and nutrient pollution. In this study we investigated the performance of SCIMAP in predicting microbial pollution of watercourses and assessed modelled outputs of E. coli, a common faecal indicator organism (FIO), against observed water quality information. SCIMAP was applied to two river catchments in the UK. SCIMAP uses land cover risk weightings, which are routed through the landscape based on hydrological connectivity to generate catchment scale maps of relative in-stream pollution risk. Assessment of the model's performance and derivation of optimum land cover risk weightings was achieved using a Monte-Carlo sampling approach. Performance of the SCIMAP framework for informing on FIO risk was variable with better performance in the Yealm catchment (r s =0.88; p<0.01) than the Wyre (r s =-0.36; p>0.05). Across both catchments much uncertainty was associated with the application of optimum risk weightings attributed to different land use classes. Overall, SCIMAP showed potential as a useful tool in the spatial targeting of FIO diffuse pollution management strategies; however, improvements are required to transition the existing SCIMAP framework to a robust FIO risk-mapping tool. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Busnardo, Enrico; Ravagnan, Riccardo; Castellarin, Nicola; Canella, Claudio; Gandolfo, Luca; Petrillo, Giovanni
2017-04-01
Public opinion consider landfills as a problematic waste disposal system. They are perceived as groundwater and air source of pollution, and unfortunately it is true. For this reason, Regional Environmental Agencies (ARPA) need data in order to figure out the potential pollution near landfills. Remotely Piloted Aircraft Systems (RPAS) with specific sensors, could be a better solution than traditional terrestrial sensors. They provide a better sampling at different altitudes. Therefore, a 3D diffusion gas model could be improved. This study case is about a solid urban waste landfill, located on the Venetian Po Plain in the south of the Veneto Region. The "electronic nose" on the RPAS, needs to be stand still at least 15 seconds while sampling. For this reason, in this study case a multicopter RPAS was used. The result was a 3D concentration map of pollutant gases. The map was related with meteorological data from a Regional meteorological station located near the landfill to identify the gas source. In the end, the study about the olfactory impact was made using the OdiGauss model, developed by the Agricultural and Environmental Sciences Department of Udine University. It was also compared with a simulation carried out with CALWin software.
Oil pollution signatures by remote sensing.
NASA Technical Reports Server (NTRS)
Catoe, C. E.; Mclean, J. T.
1972-01-01
Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.
In situ airborne measurements of aerosol optical properties during photochemical pollution events
NASA Astrophysics Data System (ADS)
Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.
2005-02-01
Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within the PBL. No significant variation of σs, σa, and ωo is observed in the upper layer (1-3 km), where the aerosol optical properties are considered to be well mixed.
NASA Astrophysics Data System (ADS)
Hernawati, Kuswari; Insani, Nur; Bambang S. H., M.; Nur Hadi, W.; Sahid
2017-08-01
This research aims to mapping the 33 (thirty-three) provinces in Indonesia, based on the data on air, water and soil pollution, as well as social demography and geography data, into a clustered model. The method used in this study was unsupervised method that combines the basic concept of Kohonen or Self-Organizing Feature Maps (SOFM). The method is done by providing the design parameters for the model based on data related directly/ indirectly to pollution, which are the demographic and social data, pollution levels of air, water and soil, as well as the geographical situation of each province. The parameters used consists of 19 features/characteristics, including the human development index, the number of vehicles, the availability of the plant's water absorption and flood prevention, as well as geographic and demographic situation. The data used were secondary data from the Central Statistics Agency (BPS), Indonesia. The data are mapped into SOFM from a high-dimensional vector space into two-dimensional vector space according to the closeness of location in term of Euclidean distance. The resulting outputs are represented in clustered grouping. Thirty-three provinces are grouped into five clusters, where each cluster has different features/characteristics and level of pollution. The result can used to help the efforts on prevention and resolution of pollution problems on each cluster in an effective and efficient way.
Mahmud, Mohd Hafiyyan; Lee, Khai Ern; Goh, Thian Lai
2017-10-01
The present paper aims to assess the phytoremediation performance based on pollution removal efficiency of the highly polluted region of Alur Ilmu urban river for its applicability of on-site treatment. Thirteen stations along Alur Ilmu were selected to produce thematic maps through spatial distribution analysis based on six water quality parameters of Malaysia's Water Quality Index (WQI) for dry and raining seasons. The maps generated were used to identify the highly polluted region for phytoremediation applicability assessment. Four free-floating plants were tested in treating water samples from the highly polluted region under three different conditions, namely controlled, aerated and normal treatments. The selected free-floating plants were water hyacinth (Eichhornia crassipes), water lettuce (Pistia stratiotes), rose water lettuce (Pistia sp.) and pennywort (Centella asiatica). The results showed that Alur Ilmu was more polluted during dry season compared to raining season based on the water quality analysis. During dry season, four parameters were marked as polluted along Alur Ilmu, namely dissolve oxygen (DO), 4.72 mg/L (class III); ammoniacal nitrogen (NH 3 -N), 0.85 mg/L (class IV); total suspended solid (TSS), 402 mg/L (class V) and biological oxygen demand (BOD), 3.89 mg/L (class III), whereas, two parameters were classed as polluted during raining season, namely total suspended solid (TSS), 571 mg/L (class V) and biological oxygen demand (BOD), 4.01 mg/L (class III). The thematic maps generated from spatial distribution analysis using Kriging gridding method showed that the highly polluted region was recorded at station AL 5. Hence, water samples were taken from this station for pollution removal analysis. All the free-floating plants were able to reduce TSS and COD in less than 14 days. However, water hyacinth showed the least detrimental effect from the phytoremediation process compared to other free-floating plants, thus made it a suitable free-floating plants to be used for on-site treatment.
Multi-perspective analysis and spatiotemporal mapping of air pollution monitoring data.
Kolovos, Alexander; Skupin, André; Jerrett, Michael; Christakos, George
2010-09-01
Space-time data analysis and assimilation techniques in atmospheric sciences typically consider input from monitoring measurements. The input is often processed in a manner that acknowledges characteristics of the measurements (e.g., underlying patterns, fluctuation features) under conditions of uncertainty; it also leads to the derivation of secondary information that serves study-oriented goals, and provides input to space-time prediction techniques. We present a novel approach that blends a rigorous space-time prediction model (Bayesian maximum entropy, BME) with a cognitively informed visualization of high-dimensional data (spatialization). The combined BME and spatialization approach (BME-S) is used to study monthly averaged NO2 and mean annual SO4 measurements in California over the 15-year period 1988-2002. Using the original scattered measurements of these two pollutants BME generates spatiotemporal predictions on a regular grid across the state. Subsequently, the prediction network undergoes the spatialization transformation into a lower-dimensional geometric representation, aimed at revealing patterns and relationships that exist within the input data. The proposed BME-S provides a powerful spatiotemporal framework to study a variety of air pollution data sources.
Urban air pollution in megacities of the world
NASA Astrophysics Data System (ADS)
Mage, David; Ozolins, Guntis; Peterson, Peter; Webster, Anthony; Orthofer, Rudi; Vandeweerd, Veerle; Gwynne, Michael
Urban air pollution is a major environmental problem in the developing countries of the world. WHO and UNEP created an air pollution monitoring network as part of the Global Environment Monitoring System. This network now covers over 50 cities in 35 developing and developed countries throughout the world. The analyses of the data reported by the network over the past 15-20 yr indicate that the lessons of the prior experiences in the developed countries (U.S.A., U.K.) have not been learned. A study of air pollution in 20 of the 24 megacities of the world (over 10 million people by year 2000) shows that ambient air pollution concentrations are at levels where serious health effects are reported. The expected rise of population in the next century, mainly in the developing countries with a lack of capital for air pollution control, means that there is a great potential that conditions will worsen in many more cities that will reach megacity status. This paper maps the potential for air pollution that cities will experience in the future unless control strategies are developed and implemented during the next several decades.
Localized Metal Solubilization in the Rhizosphere of Salix smithiana upon Sulfur Application
2015-01-01
A metal-accumulating willow was grown under greenhouse conditions on a Zn/Cd-polluted soil to investigate the effects of sulfur (S0) application on metal solubility and plant uptake. Soil porewater samples were analyzed 8 times during 61 days of growth, while DGT-measured metal flux and O2 were chemically mapped at selected times. Sulfur oxidation resulted in soil acidification and related mobilization of Mn, Zn, and Cd, more pronounced in the rooted compared to bulk soil. Chemical imaging revealed increased DGT-measured Zn and Cd flux at the root-soil interface. Our findings indicated sustained microbial S0 oxidation and associated metal mobilization close to root surfaces. The localized depletion of O2 along single roots upon S0 addition indicated the contribution of reductive Mn (oxy)hydoxide dissolution with Mn eventually becoming a terminal electron acceptor after depletion of O2 and NO3–. The S0 treatments increased the foliar metal concentrations (mg kg–1 dwt) up to 10-fold for Mn, (5810 ± 593), 3.3-fold for Zn (3850 ± 87.0), and 1.7-fold for Cd (36.9 ± 3.35), but had no significant influence on biomass production. Lower metal solubilization in the bulk soils should translate into reduced leaching, offering opportunities for using S0 as environmentally favorable amendment for phytoextraction of metal-polluted soils. PMID:25782052
NASA Astrophysics Data System (ADS)
Elznicova, Jitka; Sikora, Martin; Slaba, Eva; Popelka, Jan; Hosek, Michal; Matys Grygar, Tomas
2015-04-01
The Ploucnice River (the Czech Republic) was contaminated by uranium mining in the areas of Hamr na Jezere and Straz pod Ralskem mainly in 1971-1987. The pollutants are now deposited all over the floodplain of the river. In 2005 the aerial mapping of radioactive pollution in the floodplain of the Ploucnice River was performed at a height of 80 m above the ground in grid 250 x 250 m. That survey showed uneven, highly localised deposition of gamma-emitting nuclides along nearly the entire reach of the Ploucnice River. We studied several of those radioactivity hotspots 10-25 km downstream from the uranium mining area in aim to understand the reasons for that heterogeneity. The contamination of the floodplain was analysed mainly by two portable (handheld) instruments. The gamma-spectrometer DISA 400A was used for measuring the total surface gamma activity (main target nuclide was Ra-226). Very effective was also the use of portable X-ray fluorescence spectrometer (XRF) Olympus Innov-X (DELTA Premium), which provides fast analysis of more than 30 elements, such as pollutants (Ba, Ni, Pb, U and Zn) and grain-size sensitive lithogenic elements (Al, Si, Zr, Rb). Besides pollution mapping, XRF also allows for mapping sediment lithology using Al/Si or Rb/Zr element ratios (both proportional to the percentage of fine fraction). The field gamma spectrometry and XRF was performed with points 2-30 meters spaced, which revealed that hotspots according to low resolution (250 m) aerial mapping is composed of one or several strongly polluted areas with sizes up to several tens of metres. Similarly heterogeneous was also the distribution of sediment lithology in the floodplain. In some cases, micromorphology of the floodplain, formed mainly by the past meander abandonments and channel shifts was responsible for the heterogeneity of the pollution. To understand the floodplain development we used old maps and aerial photographs. The Czech Republic has an extensive archive of historical aerial photos from 1938 and then from 1953 to the present with 5 or 10 years intervals. The maximal contamination was found in places where there was a meander cuts shortly after a flood (>Q50) in1981. Additionally we used digital elevation model (DEM), created from a laser scanning (LIDAR) dataset DMR 5G obtained in 2010 with nominal altitudinal precision of 0.18 m in open terrain and 0.3 in forested terrain. Our study demonstrated that very detailed, high-resolution analysis of pollution distribution in the floodplain, achievable by portable analytical instruments and interpreted on the base of micro-geomorphology analysis, help to better understand the sedimentation patterns and sediment reworking in fluvial systems.
InMAP: A model for air pollution interventions
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...
2017-04-19
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less
InMAP: A model for air pollution interventions
Hill, Jason D.; Marshall, Julian D.
2017-01-01
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049
InMAP: A model for air pollution interventions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.
Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less
Lin, Xiaodan; Yu, Shen; Ma, Hwongwen
2018-01-01
Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.
Alternative Fuels Data Center: All-Electric Vehicles
. electricity production contributes to air pollution, the U.S. Environmental Protection Agency categorizes all Location Map a Route Laws & Incentives Search Federal State Key Legislation Data & Tools Widgets
Environmental study of ERTS-1 imagery: Lake Champlain and Vermont
NASA Technical Reports Server (NTRS)
Lind, A. O.; Henson, E. B.; Pelton, J. O.
1973-01-01
Environmental concerns of the State of Vermont currently being stressed include water quality in Lake Champlain and a state-wide land use and capability plan. Significant results obtained from ERTS-1 relate directly to the above concerns. Industrial water pollution and turbidity in Lake Champlain have been identified and mapped and the ERTS pollution data will be used in the developing court suit which Vermont has initiated against the polluters. ERTS imagery has also provided a foundation for updating and revising land use inventories. Major classes of land use have been identified and mapped, and substantial progress has been made toward the mapping of such land use divisions as crop and forest type, and wetlands.
GPS tracking for mapping seabird mortality induced by light pollution
Rodríguez, Airam; Rodríguez, Beneharo; Negro, Juan J.
2015-01-01
Light pollution and its consequences on ecosystems are increasing worldwide. Knowledge on the threshold levels of light pollution at which significant ecological impacts emerge and the size of dark refuges to maintain natural nocturnal processes is crucial to mitigate its negative consequences. Seabird fledglings are attracted by artificial lights when they leave their nest at night, causing high mortality. We used GPS data-loggers to track the flights of Cory’s shearwater Calonectris diomedea fledglings from nest-burrows to ground, and to evaluate the light pollution levels of overflown areas on Tenerife, Canary Islands, using nocturnal, high-resolution satellite imagery. Birds were grounded at locations closer than 16 km from colonies in their maiden flights, and 50% were rescued within a 3 km radius from the nest-site. Most birds left the nests in the first three hours after sunset. Rescue locations showed radiance values greater than colonies, and flight distance was positively related to light pollution levels. Breeding habitat alteration by light pollution was more severe for inland colonies. We provide scientific-based information to manage dark refuges facilitating that fledglings from inland colonies reach the sea successfully. We also offer methodological approaches useful for other critically threatened petrel species grounded by light pollution. PMID:26035530
Monitoring Metal Pollution Levels in Mine Wastes around a Coal Mine Site Using GIS
NASA Astrophysics Data System (ADS)
Sanliyuksel Yucel, D.; Yucel, M. A.; Ileri, B.
2017-11-01
In this case study, metal pollution levels in mine wastes at a coal mine site in Etili coal mine (Can coal basin, NW Turkey) are evaluated using geographical information system (GIS) tools. Etili coal mine was operated since the 1980s as an open pit. Acid mine drainage is the main environmental problem around the coal mine. The main environmental contamination source is mine wastes stored around the mine site. Mine wastes were dumped over an extensive area along the riverbeds, and are now abandoned. Mine waste samples were homogenously taken at 10 locations within the sampling area of 102.33 ha. The paste pH and electrical conductivity values of mine wastes ranged from 2.87 to 4.17 and 432 to 2430 μS/cm, respectively. Maximum Al, Fe, Mn, Pb, Zn and Ni concentrations of wastes were measured as 109300, 70600, 309.86, 115.2, 38 and 5.3 mg/kg, respectively. The Al, Fe and Pb concentrations of mine wastes are higher than world surface rock average values. The geochemical analysis results from the study area were presented in the form of maps. The GIS based environmental database will serve as a reference study for our future work.
MAP3S precipitation chemistry network. Third periodic summary report, July 1978-December 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The MAP3S Precipitation Chemistry Network consists of eight collection sites in the northeastern United States. Precipitation event samples are collected by cooperating site operators, using specially developed sampling equipment. In this, the third periodic summary report, are listed field and concentration data for the period July 1, 1978 to December 31, 1979. Over three years' samples have been collected at most of the sites, which went into operation between September 1976 and October 1978. Samples are chemically analyzed at a central laboratory for 13 pollutant species. Weekly samples in addition to event samples were collected over a 1 1/2 yearmore » period at three sites. Analysis of one year's results indicates that there is little difference between the concentrations collected by the two methods in terms of seasonal precipitation-weighted means for all species except dissolved SO/sub 2/. Event samples tend to average about 25% higher in SO/sub 2/ than weekly samples.« less
Effect of Spatial Locality Prefetching on Structural Locality
1991-12-01
Pollution module calculates the SLC and CAM cache pollution percentages. And finally, the Generate Reference Frequency List module produces the output...3.2.5 Generate Reference Frequency List 3.2.6 Each program module in the structure chart is mapped into an Ada package. By performing this encapsulation...call routine to generate reference -- frequency list -- end if -- end loop -- close input, output, and reference files end Cache Simulator Figure 3.5
Application of ERTS-1 imagery in the Vermont-New York dispute over pollution of Lake Champlain
NASA Technical Reports Server (NTRS)
Lind, A. O. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 imagery and a composite map derived from ERTS-1 imagery were presented as evidence in a U.S. Supreme Court case involving the pollution of an interstate water body (Lake Champlain). A pollution problem generated by a large paper mill forms the basis of the suit (Vermont vs. International Paper Co. and State of New York) and ERTS-1 imagery shows the effluent pattern on the lake surface as extending into Vermont during three different times.
NASA Astrophysics Data System (ADS)
Yaghi, Y.; Salim, H.
2017-09-01
Recently the topic of the quality of surface water (rivers - lakes) and the sea is an important topics at different levels. It is known that there are two major groups of pollutants: Point Source Pollution (PSP) and non-point Source pollution (NPSP). Historically most of the surface water pollution protection programs dealing with the first set of pollutants which comes from sewage pipes and factories drainage. With the growing need for current and future water security must stand on the current reality of the coastal rivers basin in terms of freshness and cleanliness and condition of water pollution. This research aims to assign the NPS pollutants that reach Al Abrash River and preparation of databases and producing of risk Pollution map for NPS pollutants in order to put the basin management plan to ensure the reduction of pollutants that reach the river. This research resulted of establishing of Databases of NPSP (Like pesticides and fertilizers) and producing of thematic maps for pollution severity and pollution risk based on the pollution models designed in GIS environment and utilizing from remote sensing data. Preliminary recommendations for managing these pollutants were put.
NASA Astrophysics Data System (ADS)
Edwards, David P.; Worden, Helen M.; Neil, Doreen; Francis, Gene; Valle, Tim; Arellano, Avelino F., Jr.
2018-02-01
The CHRONOS space mission concept provides time-resolved abundance for emissions and transport studies of the highly variable and highly uncertain air pollutants carbon monoxide and methane, with sub-hourly revisit rate at fine (˜ 4 km) horizontal spatial resolution across a North American domain. CHRONOS can provide complete synoptic air pollution maps (snapshots
) of the continental domain with less than 10 min of observations. This rapid mapping enables visualization of air pollution transport simultaneously across the entire continent and enables a sentinel-like capability for monitoring evolving, or unanticipated, air pollution sources in multiple locations at the same time with high temporal resolution. CHRONOS uses a compact imaging gas filter correlation radiometer for these observations, with heritage from more than 17 years of scientific data and algorithm advances by the science teams for the Measurements of Pollution in the Troposphere (MOPITT) instrument on NASA's Terra spacecraft in low Earth orbit. To achieve continental-scale sub-hourly sampling, the CHRONOS mission would be conducted from geostationary orbit, with the instrument hosted on a communications or meteorological platform. CHRONOS observations would contribute to an integrated observing system for atmospheric composition using surface, suborbital and satellite data with atmospheric chemistry models, as defined by the Committee on Earth Observing Satellites. Addressing the U.S. National Academy's 2007 decadal survey direction to characterize diurnal changes in tropospheric composition, CHRONOS observations would find direct societal applications for air quality management and forecasting to protect public health.
Methodological issues in studies of air pollution and reproductive health
In the past decade there have been an increasing number of scientific studies describing possible effects of air pollution on perinatal health. These papers have mostly focused on commonly monitored air pollutants, primarily ozone (O3), particulate matter (PM), sulfur dioxide (S...
Ko, Jung Aa; Furuta, Naoki; Lim, Heung Bin
2018-01-01
Quantitative elemental mapping of metallic pollutants in sweet basil was studied by laser ablation (LA)-ICP-MS. For this, the sweet basil was cultivated in Hoagland nutrient solution spiked with 100 and 1000 ng mL -1 of Cs for 10-60 days. Then, the Cs distribution in collected leaves was determined by LA-ICP-MS using lab-synthesized standard pellets based on NIST 1573a tomato leaves. For comparison, S, Ca, and K were also simultaneously determined in this measurement with a 13 C + signal from the leaves as an internal standard. The obtained calibration curves showed linear coefficient of determination (R 2 ) of 0.991 for K and 0.999 for Cs. The concentration of Cs measured in the basil leaves increased with growth period and pollutant concentration, and accumulation followed the order of leaf margin, petiole, midrib, and veins. Although no visible symptom was detected, significant suppression of the growth rate was observed due to the presence of high-concentration Cs. The experimental model demonstrated herein showed potential for studying the influence of radioactive pollutants on plants and other organisms in the food chain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skylab and ERTS-1 investigations of coastal land use and water properties. [Delaware Bay
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Bartlett, D.; Rogers, R.
1974-01-01
The author has identified the following significant results. ERTS-1 multispectral scanner and Skylab's S190A, S190B, and S192 data products were evaluated for their utility in studying current circulation, suspended sediment concentrations and pollution dispersal in Delaware Bay and in mapping coastal vegetation and land use. Imagery from the ERTS-1 MSS, S190A and S190B cameras shows considerable detail in water structure, circulation, suspended sediment distribution and within waste disposal plumes in shelf waters. These data products were also used in differentiating and mapping twelve coastal vegetation and land use classes. The spatial resolution of the S190A multispectral facility appears to be about 30 to 70 meters while that of the S190B earth terrain camera is about 10 to 30 meters. Such resolution, along with good cartographic quality, indicates a considerable potential for mapping coastal land use and monitoring water properties in estuaries and on the continental shelf. The ERTS-1 MSS has a resolution of about 70-100 meters. Moreover, its regular 18-day cycle permits observation of important changes, including the environmental impact of coastal zone development on coastal vegetation and ecology.
Carlsen, Hanne Krage; Zoëga, Helga; Valdimarsdóttir, Unnur; Gíslason, Thórarinn; Hrafnkelsson, Birgir
2012-02-01
Air pollutants in Iceland's capital area include hydrogen sulfide (H2S) emissions from geothermal power plants, particle pollution (PM10) and traffic-related pollutants. Respiratory health effects of exposure to PM and traffic pollutants are well documented, yet this is one of the first studies to investigate short-term health effects of ambient H2S exposure. The aim of this study was to investigate the associations between daily ambient levels of H2S, PM10, nitrogen dioxide (NO2) and ozone (O3), and the use of drugs for obstructive pulmonary diseases in adults in Iceland's capital area. The study period was 8 March 2006 to 31 December 2009. We used log-linear Poisson generalized additive regression models with cubic splines to estimate relative risks of individually dispensed drugs by air pollution levels. A three-day moving average of the exposure variables gave the best fit to the data. Final models included significant covariates adjusting for climate and influenza epidemics, as well as time-dependent variables. The three-day moving average of H2S and PM10 levels were positively associated with the number of individuals who were dispensed drugs at lag 3-5, corresponding to a 2.0% (95% confidence interval [CI] 0.4, 3.6) and 0.9% (95% CI 0.1, 1.8) per 10 μg/m3 pollutant concentration increase, respectively. Our findings indicated that intermittent increases in levels of particle matter from traffic and natural sources and ambient H2S levels were weakly associated with increased dispensing of drugs for obstructive pulmonary disease in Iceland's capital area. These weak associations could be confounded by unevaluated variables hence further studies are needed. Copyright © 2012 Elsevier Inc. All rights reserved.
Romanelli, A; Esquius, K S; Massone, H E; Escalante, A H
2013-08-01
The assessment of water vulnerability and pollution hazard traditionally places particular emphasis on the study on groundwaters more than on surface waters. Consequently, a GIS-based Lake Pollution Hazard Index (LPHI) was proposed for assessing and mapping the potential pollution hazard for shallow lakes due to the interaction between the Potential Pollutant Load and the Lake Vulnerability. It includes easily measurable and commonly used parameters: land cover, terrain slope and direction, and soil media. Three shallow lake ecosystems of the southeastern Pampa Plain (Argentina) were chosen to test the usefulness and applicability of this suggested index. Moreover, anthropogenic and natural medium influence on biophysical parameters in these three ecosystems was examined. The evaluation of the LPHI map shows for La Brava and Los Padres lakes the highest pollution hazard (≈30 % with high to very high category) while Nahuel Rucá Lake seems to be the less hazardous water body (just 9.33 % with high LPHI). The increase in LPHI value is attributed to a different loading of pollutants governed by land cover category and/or the exposure to high slopes and influence of slope direction. Dissolved oxygen and biochemical oxygen demand values indicate a moderately polluted and eutrophized condition of shallow lake waters, mainly related to moderate agricultural activities and/or cattle production. Obtained information by means of LPHI calculation result useful to perform a local diagnosis of the potential pollution hazard to a freshwater ecosystem in order to implement basic guidelines to improve lake sustainability.
Bertazzon, Stefania; Shahid, Rizwan
2017-07-25
An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children.
NASA Astrophysics Data System (ADS)
Vuilleumier, C.; Borghi, A.; Renard, P.; Ottowitz, D.; Schiller, A.; Supper, R.; Cornaton, F.
2013-05-01
The eastern coast of the Yucatan Peninsula, Mexico, contains one of the most developed karst systems in the world. This natural wonder is undergoing increasing pollution threat due to rapid economic development in the region of Tulum, together with a lack of wastewater treatment facilities. A preliminary numerical model has been developed to assess the vulnerability of the resource. Maps of explored caves have been completed using data from two airborne geophysical campaigns. These electromagnetic measurements allow for the mapping of unexplored karstic conduits. The completion of the network map is achieved through a stochastic pseudo-genetic karst simulator, previously developed but adapted as part of this study to account for the geophysical data. Together with the cave mapping by speleologists, the simulated networks are integrated into the finite-element flow-model mesh as pipe networks where turbulent flow is modeled. The calibration of the karstic network parameters (density, radius of the conduits) is conducted through a comparison with measured piezometric levels. Although the proposed model shows great uncertainty, it reproduces realistically the heterogeneous flow of the aquifer. Simulated velocities in conduits are greater than 1 cm s-1, suggesting that the reinjection of Tulum wastewater constitutes a pollution risk for the nearby ecosystems.
The role of forest in mitigating the impact of atmospheric dust pollution in a mixed landscape.
Santos, Artur; Pinho, Pedro; Munzi, Silvana; Botelho, Maria João; Palma-Oliveira, José Manuel; Branquinho, Cristina
2017-05-01
Atmospheric dust pollution, especially particulate matter below 2.5 μm, causes 3.3 million premature deaths per year worldwide. Although pollution sources are increasingly well known, the role of ecosystems in mitigating their impact is still poorly known. Our objective was to investigate the role of forests located in the surrounding of industrial and urban areas in reducing atmospheric dust pollution. This was tested using lichen transplants as biomonitors in a Mediterranean regional area with high levels of dry deposition. After a multivariate analysis, we have modeled the maximum pollution load expected for each site taking into consideration nearby pollutant sources. The difference between maximum expected pollution load and the observed values was explained by the deposition in nearby forests. Both the dust pollution and the ameliorating effect of forested areas were then mapped. The results showed that forest located nearby pollution sources plays an important role in reducing atmospheric dust pollution, highlighting their importance in the provision of the ecosystem service of air purification.
Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk
2018-01-15
Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land-cover map is more appropriate than the others. In conclusion, it is desirable to apply the integration method when generating the ISM with the highest accuracy. However, if time and cost are constrained, it would be effective to primarily use the land-cover map. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, P.
2016-12-01
Wildfires are commonplace in North America. Air pollution resulted from wildfires pose a significant risk for human health and crop damage. The pollutants alter the vertical distribution of many atmospheric constituents including O3 and many fine particulate (PM) species. Compared to anthropogenic emissions of air pollutants, emissions from wildfires are largely uncontrolled and unpredictable. Therefore, quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for atmospheric modeler and air quality forecasters. In this study, we investigated the modification and redistribution of atmospheric composition within the Conterminous U.S (CONUS) by wild fire plumes originated within and outside of the CONUS. We used the National Air Quality Forecasting Capability (NAQFC) to conduct the investigation. NAQFC uses dynamic lateral chemical boundary conditions derived from the National Weather Service experimental global aerosol tracer model accounting for intrusion of fire-associated aerosol species. Within CONUS, the NAQFC derives both gaseous and aerosol wildfire associated species from the National Environmental Satellite, Data, and Information Service (NESDIS) hazard mapping system (HMS) hot-spot detection, and US Forestry Service Blue-sky protocol for quantifying fire characteristics, and the US EPA Sparse Matrix Object Kernel Emission (SMOKE) calculation for plume rise. Attributions of both of these wildfire influences inherently reflect the aged plumes intruded into the CONUS through the model boundaries as well as the fresher emissions from sources within the CONUS. Both emission sources contribute significantly to the vertical structure modification of the atmosphere. We conducted case studies within the fire active seasons to demonstrate some possible impacts on the vertical structures of O3 and PM species by the wildfire activities.
Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling
NASA Astrophysics Data System (ADS)
Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.
2016-12-01
Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to Journal of Atmospheric Environment. (1-15) WHO. 2016: WHO Global Urban Ambient Air Pollution Database (update 2016). http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/
Making Air Pollution Visible: A Tool for Promoting Environmental Health Literacy.
Cleary, Ekaterina Galkina; Patton, Allison P; Wu, Hsin-Ching; Xie, Alan; Stubblefield, Joseph; Mass, William; Grinstein, Georges; Koch-Weser, Susan; Brugge, Doug; Wong, Carolyn
2017-04-12
Digital maps are instrumental in conveying information about environmental hazards geographically. For laypersons, computer-based maps can serve as tools to promote environmental health literacy about invisible traffic-related air pollution and ultrafine particles. Concentrations of these pollutants are higher near major roadways and increasingly linked to adverse health effects. Interactive computer maps provide visualizations that can allow users to build mental models of the spatial distribution of ultrafine particles in a community and learn about the risk of exposure in a geographic context. The objective of this work was to develop a new software tool appropriate for educating members of the Boston Chinatown community (Boston, MA, USA) about the nature and potential health risks of traffic-related air pollution. The tool, the Interactive Map of Chinatown Traffic Pollution ("Air Pollution Map" hereafter), is a prototype that can be adapted for the purpose of educating community members across a range of socioeconomic contexts. We built the educational visualization tool on the open source Weave software platform. We designed the tool as the centerpiece of a multimodal and intergenerational educational intervention about the health risk of traffic-related air pollution. We used a previously published fine resolution (20 m) hourly land-use regression model of ultrafine particles as the algorithm for predicting pollution levels and applied it to one neighborhood, Boston Chinatown. In designing the map, we consulted community experts to help customize the user interface to communication styles prevalent in the target community. The product is a map that displays ultrafine particulate concentrations averaged across census blocks using a color gradation from white to dark red. The interactive features allow users to explore and learn how changing meteorological conditions and traffic volume influence ultrafine particle concentrations. Users can also select from multiple map layers, such as a street map or satellite view. The map legends and labels are available in both Chinese and English, and are thus accessible to immigrants and residents with proficiency in either language. The map can be either Web or desktop based. The Air Pollution Map incorporates relevant language and landmarks to make complex scientific information about ultrafine particles accessible to members of the Boston Chinatown community. In future work, we will test the map in an educational intervention that features intergenerational colearning and the use of supplementary multimedia presentations. ©Ekaterina Galkina Cleary, Allison P Patton, Hsin-Ching Wu, Alan Xie, Joseph Stubblefield, William Mass, Georges Grinstein, Susan Koch-Weser, Doug Brugge, Carolyn Wong. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 12.04.2017.
Mapping the groundwater vulnerability for pollution at the pan African scale.
Ouedraogo, Issoufou; Defourny, Pierre; Vanclooster, Marnik
2016-02-15
We estimated vulnerability and pollution risk of groundwater at the pan-African scale. We therefore compiled the most recent continental scale information on soil, land use, geology, hydrogeology and climate in a Geographical Information System (GIS) at a resolution of 15 km × 15 km and at the scale of 1:60,000,000. The groundwater vulnerability map was constructed by means of the DRASTIC method. The map reveals that groundwater is highly vulnerable in Central and West Africa, where the watertable is very low. In addition, very low vulnerability is found in the large sedimentary basins of the African deserts where groundwater is situated in very deep aquifers. The groundwater pollution risk map is obtained by overlaying the DRASTIC vulnerability map with land use. The northern, central and western part of the African continent is dominated by high pollution risk classes and this is very strongly related to shallow groundwater systems and the development of agricultural activities. Subsequently, we performed a sensitivity analysis to evaluate the relative importance of each parameter on groundwater vulnerability and pollution risk. The sensitivity analysis indicated that the removal of the impact of vadose zone, the depth of the groundwater, the hydraulic conductivity and the net recharge causes a large variation in the mapped vulnerability and pollution risk. The mapping model was validated using nitrate concentration data of groundwater as a proxy of pollution risk. Pan-African concentration data were inferred from a meta-analysis of literature data. Results shows a good match between nitrate concentration and the groundwater pollution risk classes. The pan African assessment of groundwater vulnerability and pollution risk is expected to be of particular value for water policy and for designing groundwater resources management programs. We expect, however, that this assessment can be strongly improved when better pan African monitoring data related to groundwater pollution will be integrated in the assessment methodology. Copyright © 2015 Elsevier B.V. All rights reserved.
Busico, Gianluigi; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Voudouris, Konstantinos; Tedesco, Dario
2017-12-31
Groundwater vulnerability and risk assessment are worldwide tools in supporting groundwater protection and land planning. In this study, we used three of these different methodologies applied to the Campanian Plain located in southern Italy: SINTACS, AVI and LOS. However, their capability to describe the observed chemical pollution of the area has resulted quite poor. For such a reason, a modified SINTACS method has been then implemented in the area in order to get a more reliable view of groundwater vulnerability. NO 3 - and SO 4 2- from more than 400 monitoring wells were used for specific vulnerability assessment. Land use was chosen as key parameter to infer the risk of groundwater pollution in our area. The new methodology seems to show a higher correlation with observed NO 3 - concentrations and a more reliable identification of aquifer's pollution hot spots. The main sources of NO 3 - were found in sub-urban areas, where vulnerability and risk are higher than in other areas. Otherwise due to reducing conditions triggered by the presence of elevated sedimentary organic matter and peat, concentrations below agricultural areas were lower than in sub-urban areas. The SO 4 2- specific vulnerability map showed a positive correlation with observed concentrations, due to geogenic and anthropogenic SO 4 2- sources present in the area. The combination of both NO 3 - and SO 4 2- derived risk maps becomes essential to improve the conceptual model of aquifer pollution in this severely anthropized area. The application of this new and original approach shed light on the strengths and weaknesses of each of the described previous methods and clearly showed how anthropogenic activities have to be taken into account in the assessment process. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, D.A.; Pace, P.J.; Woods, J.A.
1997-06-01
One of Los Angeles County Department of Public Works` many responsibilities is to manage non-point pollution that enters the storm drain network within Los Angeles County. The management of this non-point source pollution is mandated by the NPDES guidelines under the Federal Clean Water Act. These guidelines require the County to monitor the drainage network and the storm water and urban runoff flowing through it. The County covers over 3,117 square miles, with the NPDES Permit covering over 3,100 square miles and over 2500 miles of storm drains. A proposed solution to monitor and manage this vast geographic area ismore » centered upon an Arc/Info GIS. Some of the many concerns which need to be addressed include the administration and evaluation of Best Management Practices (BMP`s), storm drain inspection for illegal connections and illicit discharges, and pollutant load assessment and modeling. The storm drain network and other coverages will be related to external data bases currently used for facility management and planning. This system would be used for query purposes to perform spatial modeling and {open_quotes}what if{close_quotes} scenarios needed to create maps and reports required by the permit and to evaluate various BMP implementation strategies.« less
[Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model].
Ai, Jian-chao; Wang, Ning; Yang, Jing
2014-09-01
The paper determines 16 kinds of metal elements' concentration in soil samples which collected in Jipigou goldmine upper the Songhua River. The UNMIX Model which was recommended by US EPA to get the source apportionment results was applied in this study, Cd, Hg, Pb and Ag concentration contour maps were generated by using Kriging interpolation method to verify the results. The main conclusions of this study are: (1)the concentrations of Cd, Hg, Pb and Ag exceeded Jilin Province soil background values and enriched obviously in soil samples; (2)using the UNMIX Model resolved four pollution sources: source 1 represents human activities of transportation, ore mining and garbage, and the source 1's contribution is 39. 1% ; Source 2 represents the contribution of the weathering of rocks and biological effects, and the source 2's contribution is 13. 87% ; Source 3 is a comprehensive source of soil parent material and chemical fertilizer, and the source 3's contribution is 23. 93% ; Source 4 represents iron ore mining and transportation sources, and the source 4's contribution is 22. 89%. (3)the UNMIX Model results are in accordance with the survey of local land-use types, human activities and Cd, Hg and Pb content distributions.
Ancellet, G; Ravetta, F
2003-02-01
Ozone vertical profiling with a lidar is well adapted to the spatial and temporal O3 variability analysis either in the free troposphere, when studying the respective impact of chemical production and dynamical processes, or in the planetary boundary layer (PBL) when characterizing the diurnal evolution of ozone plumes during pollution episodes. Comparisons with other measuring techniques (ozonesonde and aircraft in-situ measurements) demonstrate the lidar ability to characterize narrow layers (< 500 m) with a good accuracy (deltaO3 < 5-10 ppb). Application of airborne or ground-based operation of the CNRS airborne ozone lidar show its ability (i) to observe O3 layering above the PBL during two field experiments held to study air pollution in the Po Valley, Northern Italy, and the city of Marseille, Southern France, (ii) to improve airborne campaign planning (real time information on position of O3 layers) and analysis (three-dimensional perspective for layers detected by in-situ measurements) when chemical characterization of narrow O3 layers in the free troposphere is sought, (iii) to map O3 inhomogeneity down to an horizontal scale of 10-20 km within or above the polluted PBL by airborne measurements. For O3 pollution studies, understanding the origin and the life cycle of O3 layering is the first priority, and in this case the optimum use of the lidar remains the continuous operation of a ground-based instrument.
Bertazzon, Stefania; Shahid, Rizwan
2017-01-01
An exploratory spatial analysis investigates the location of schools in Calgary (Canada) in relation to air pollution and active transportation options. Air pollution exhibits marked spatial variation throughout the city, along with distinct spatial patterns in summer and winter; however, all school locations lie within low to moderate pollution levels. Conversely, the study shows that almost half of the schools lie in low walkability locations; likewise, transitability is low for 60% of schools, and only bikability is widespread, with 93% of schools in very bikable locations. School locations are subsequently categorized by pollution exposure and active transportation options. This analysis identifies and maps schools according to two levels of concern: schools in car-dependent locations and relatively high pollution; and schools in locations conducive of active transportation, yet exposed to relatively high pollution. The findings can be mapped and effectively communicated to the public, health practitioners, and school boards. The study contributes with an explicitly spatial approach to the intra-urban public health literature. Developed for a moderately polluted city, the methods can be extended to more severely polluted environments, to assist in developing spatial public health policies to improve respiratory outcomes, neurodevelopment, and metabolic and attention disorders in school-aged children. PMID:28757577
Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can Be inheritable.
Zhang, Weidong; Zhao, Yong; Zhang, Pengfei; Hao, Yanan; Yu, Shuai; Min, Lingjiang; Li, Lan; Ma, Dongxue; Chen, Liang; Yi, Bao; Tang, Xiangfang; Meng, Qingshi; Liu, Lei; Wang, Shukun; Shen, Wei; Zhang, Hongfu
2018-03-01
Numerous epidemiological studies suggest that air pollutants cause a decline in the quality of human spermatozoa and thus a reduction in fertility. However, the exact cause of infertility remains unknown. Air pollution gases, such as NH 3 and H 2 S are either free or bound to airborne particular materials (PM) and are abundant and reactive. The aim of this current investigation was to explore the impacts of NH 3 and/or H 2 S on male fertility and the underlying mechanisms. Male mouse exposed to H 2 S and/or NH 3 and after two generations were used to evaluate the impacts on fertility. The fertility, and spermatozoa quality parameters and proteins involved in spermatogenesis were investigated. Our current investigation demonstrates: i) H 2 S and/or NH 3 decrease male fertility by 20-30%, reduce the spermatozoa concentration about 20-40%, decrease 10-20%, increase around 30%; ii) the reduction in male fertility by H 2 S and/or NH 3 can be inheritable; iii) H 2 S and/or NH 3 can diminish male fertility through the disruption of spermatogenesis without affecting other body parameters such as body weight and organ index. One component of air pollutants, for example NH 3 , does not have a severe impact; however, two or more pollutants such as H 2 S and NH 3 combined can cause serious health problems, especially with regard to male fertility. We suggest that greater attention should be paid to these air pollutants to improve human health and fertility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jacquemin, Bénédicte; Lepeule, Johanna; Boudier, Anne; Arnould, Caroline; Benmerad, Meriem; Chappaz, Claire; Ferran, Joane; Kauffmann, Francine; Morelli, Xavier; Pin, Isabelle; Pison, Christophe; Rios, Isabelle; Temam, Sofia; Künzli, Nino; Slama, Rémy
2013-01-01
Background: Errors in address geocodes may affect estimates of the effects of air pollution on health. Objective: We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults. Methods: We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant’s address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects. Results: Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: –0.56, –6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: –0.14, –3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted –2.81 (95% CI: –0.26, –5.35) using NavTEQ, or 2.08 (95% CI –4.63, 0.47, p = 0.11) using Google Maps]. Conclusions: Our findings suggest that the choice of geocoding technique may influence estimated health effects when air pollution exposures are estimated using a fine-scale exposure model. Citation: Jacquemin B, Lepeule J, Boudier A, Arnould C, Benmerad M, Chappaz C, Ferran J, Kauffmann F, Morelli X, Pin I, Pison C, Rios I, Temam S, Künzli N, Slama R, Siroux V. 2013. Impact of geocoding methods on associations between long-term exposure to urban air pollution and lung function. Environ Health Perspect 121:1054–1060; http://dx.doi.org/10.1289/ehp.1206016 PMID:23823697
Swain, Ratnakar; Sahoo, Bhabagrahi
2017-05-01
For river water quality monitoring at 30m × 1-day spatio-temporal scales, a spatial and temporal adaptive reflectance fusion model (STARFM) is developed for estimating turbidity (T u ), total suspended solid (TSS), and six heavy metals (HV) of iron, zinc, copper, chromium, lead and cadmium, by blending the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat (L s ) spectral bands. A combination of regression analysis and genetic algorithm (GA) techniques are applied to develop spectral relationships between T u -L s , TSS-T u , and each HV-TSS. The STARFM algorithm and all the developed relationship models are evaluated satisfactorily by various performance evaluation measures to develop heavy metal pollution index-based vulnerability maps at 1-km resolution in the Brahmani River in eastern India. The Monte-Carlo simulation based analysis of the developed formulations reveals that the uncertainty in estimating Zn and Cd is the minimum (1.04%) and the maximum (5.05%), respectively. Hence, the remote sensing based approach developed herein can effectively be used in many world rivers for real-time monitoring of heavy metal pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea
2016-04-01
A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.
Buteau, Stephane; Hatzopoulou, Marianne; Crouse, Dan L; Smargiassi, Audrey; Burnett, Richard T; Logan, Travis; Cavellin, Laure Deville; Goldberg, Mark S
2017-07-01
In previous studies investigating the short-term health effects of ambient air pollution the exposure metric that is often used is the daily average across monitors, thus assuming that all individuals have the same daily exposure. Studies that incorporate space-time exposures of individuals are essential to further our understanding of the short-term health effects of ambient air pollution. As part of a longitudinal cohort study of the acute effects of air pollution that incorporated subject-specific information and medical histories of subjects throughout the follow-up, the purpose of this study was to develop and compare different prediction models using data from fixed-site monitors and other monitoring campaigns to estimate daily, spatially-resolved concentrations of ozone (O 3 ) and nitrogen dioxide (NO 2 ) of participants' residences in Montreal, 1991-2002. We used the following methods to predict spatially-resolved daily concentrations of O 3 and NO 2 for each geographic region in Montreal (defined by three-character postal code areas): (1) assigning concentrations from the nearest monitor; (2) spatial interpolation using inverse-distance weighting; (3) back-extrapolation from a land-use regression model from a dense monitoring survey, and; (4) a combination of a land-use and Bayesian maximum entropy model. We used a variety of indices of agreement to compare estimates of exposure assigned from the different methods, notably scatterplots of pairwise predictions, distribution of differences and computation of the absolute agreement intraclass correlation (ICC). For each pairwise prediction, we also produced maps of the ICCs by these regions indicating the spatial variability in the degree of agreement. We found some substantial differences in agreement across pairs of methods in daily mean predicted concentrations of O 3 and NO 2 . On a given day and postal code area the difference in the concentration assigned could be as high as 131ppb for O 3 and 108ppb for NO 2 . For both pollutants, better agreement was found between predictions from the nearest monitor and the inverse-distance weighting interpolation methods, with ICCs of 0.89 (95% confidence interval (CI): 0.89, 0.89) for O 3 and 0.81 (95%CI: 0.80, 0.81) for NO 2 , respectively. For this pair of methods the maximum difference on a given day and postal code area was 36ppb for O 3 and 74ppb for NO 2 . The back-extrapolation method showed a higher degree of disagreement with the nearest monitor approach, inverse-distance weighting interpolation, and the Bayesian maximum entropy model, which were strongly constrained by the sparse monitoring network. The maps showed that the patterns of agreement differed across the postal code areas and the variability depended on the pair of methods compared and the pollutants. For O 3 , but not NO 2 , postal areas showing greater disagreement were mostly located near the city centre and along highways, especially in maps involving the back-extrapolation method. In view of the substantial differences in daily concentrations of O 3 and NO 2 predicted by the different methods, we suggest that analyses of the health effects from air pollution should make use of multiple exposure assessment methods. Although we cannot make any recommendations as to which is the most valid method, models that make use of higher spatially resolved data, such as from dense exposure surveys or from high spatial resolution satellite data, likely provide the most valid estimates. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stauffer, R. M.; Thompson, A. M.; Young, G. S.; Oltmans, S. J.; Johnson, B.
2016-12-01
Ozone (O3) climatologies are typically created by averaging ozonesonde profiles on a monthly or seasonal basis, either for specific regions or zonally. We demonstrate the advantages of using a statistical clustering technique, self-organizing maps (SOM), over this simple averaging, through analysis of more than 4500 sonde profiles taken from the long-term US sites at Boulder, CO; Huntsville, AL; Trinidad Head, CA; and Wallops Island, VA. First, we apply SOM to O3 mixing ratios from surface to 12 km amsl. At all four sites, profiles in SOM clusters exhibit similar tropopause height, 500 hPa height and temperature, and total and tropospheric column O3. Second, when profiles from each SOM cluster are compared to monthly O3 means, near-tropopause O3 in three of the clusters is double (over +100 ppbv) the climatological O3 mixing ratio. The three clusters include 13-16% of all profiles, mostly from winter and spring. Large mid-tropospheric deviations from monthly means are found in two highly-populated clusters that represent either distinctly polluted (summer) or clean O3 (fall-winter, high tropopause) profiles. Thus, SOM indeed appear to represent US O3 profile statistics better than conventional climatologies. In the case of Trinidad Head, SOM clusters of O3 profile data from the lower troposphere (surface-6 km amsl) can discriminate background vs polluted O3 and the meteorology associated with each. Two of nine O3 clusters exhibit thin layers ( 100s of m thick) of high O3, typically between 1 and 4 km. Comparisons between clusters and downwind, high-altitude surface O3 measurements display a marked impact of the elevated tropospheric O3. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies at surface sites of +5 -10 ppbv compared to a climatology; the anomalies can last up to four days. We also explore applications of SOM to tropical ozonesonde profiles, where tropospheric O3 variability is generally smaller.
Rogalsky, Derek K.; Mendola, Pauline; Metts, Tricia A.
2014-01-01
Background: Exposure to household air pollution (HAP) from inefficient biomass and coal stoves kills nearly 4 million people every year worldwide. HAP is an environmental risk associated with poverty that affects an estimated 3 billion people mostly in low- and middle-income countries. Objectives: Our goal was to estimate the number of low-income Americans exposed to potentially health-damaging concentrations of HAP. Methods: We mapped county-level data for the percentage of households using wood, coal, and/or coke as their primary heating fuel along with percent of the population below the federal poverty level. Using U.S. Census data and the likelihood of fugitive emissions as reported in the literature, we estimated the number of low-income Americans potentially exposed to HAP. Results: Solid fuel is the primary heating source for > 2.5 million U.S. households, or 6.5 million people. The mapping exercise showed several rural areas, primarily in the northern and western regions, that have high levels of solid-fuel use and poverty. We then identified 117 counties with high co-incident poverty and solid-fuel use as high-priority counties for research into potential health risks from HAP. We estimate that between 500,000 and 600,000 low-income people in the United States are likely exposed to HAP from burning solid fuels within their homes. Conclusion: HAP occurs within the United States and should be further investigated for adverse health risks, especially among those living in areas with rural poverty. Citation: Rogalsky DK, Mendola P, Metts TA, Martin WJ II. 2014. Estimating the number of low-income Americans exposed to household air pollution from burning solid fuels. Environ Health Perspect 122:806–810; http://dx.doi.org/10.1289/ehp.1306709 PMID:24833615
Kaiser, Reinhard; Romieu, Isabelle; Medina, Sylvia; Schwartz, Joel; Krzyzanowski, Michal; Künzli, Nino
2004-01-01
Background The impact of outdoor air pollution on infant mortality has not been quantified. Methods Based on exposure-response functions from a U.S. cohort study, we assessed the attributable risk of postneonatal infant mortality in 23 U.S. metropolitan areas related to particulate matter <10 μm in diameter (PM10) as a surrogate of total air pollution. Results The estimated proportion of all cause mortality, sudden infant death syndrome (normal birth weight infants only) and respiratory disease mortality (normal birth weight) attributable to PM10 above a chosen reference value of 12.0 μg/m3 PM10 was 6% (95% confidence interval 3–11%), 16% (95% confidence interval 9–23%) and 24% (95% confidence interval 7–44%), respectively. The expected number of infant deaths per year in the selected areas was 106 (95% confidence interval 53–185), 79 (95% confidence interval 46–111) and 15 (95% confidence interval 5–27), respectively. Approximately 75% of cases were from areas where the current levels are at or below the new U.S. PM2.5 standard of 15 μg/m3 (equivalent to 25 μg/m3 PM10). In a country where infant mortality rates and air pollution levels are relatively low, ambient air pollution as measured by particulate matter contributes to a substantial fraction of infant death, especially for those due to sudden infant death syndrome and respiratory disease. Even if all counties would comply to the new PM2.5 standard, the majority of the estimated burden would remain. Conclusion Given the inherent limitations of risk assessments, further studies are needed to support and quantify the relationship between infant mortality and air pollution. PMID:15128459
Modelling of light pollution in suburban areas using remotely sensed imagery and GIS.
Chalkias, C; Petrakis, M; Psiloglou, B; Lianou, M
2006-04-01
This paper describes a methodology for modelling light pollution using geographical information systems (GIS) and remote sensing (RS) technology. The proposed approach attempts to address the issue of environmental assessment in sensitive suburban areas. The modern way of life in developing countries is conductive to environmental degradation in urban and suburban areas. One specific parameter for this degradation is light pollution due to intense artificial night lighting. This paper aims to assess this parameter for the Athens metropolitan area, using modern analytical and data capturing technologies. For this purpose, night-time satellite images and analogue maps have been used in order to create the spatial database of the GIS for the study area. Using GIS advanced analytical functionality, visibility analysis was implemented. The outputs for this analysis are a series of maps reflecting direct and indirect light pollution around the city of Athens. Direct light pollution corresponds to optical contact with artificial night light sources, while indirect light pollution corresponds to optical contact with the sky glow above the city. Additionally, the assessment of light pollution in different periods allows for dynamic evaluation of the phenomenon. The case study demonstrates high levels of light pollution in Athens suburban areas and its increase over the last decade.
Characterization of atmospheric trace gases and particulate matter in Hangzhou, China
NASA Astrophysics Data System (ADS)
Zhang, Gen; Xu, Honghui; Qi, Bing; Du, Rongguang; Gui, Ke; Wang, Hongli; Jiang, Wanting; Liang, Linlin; Xu, Wanyun
2018-02-01
The Yangtze River Delta (YRD) is one of the most densely populated regions in China with severe air quality issues that have not been fully understood. Thus, in this study, based on 1-year (2013) continuous measurement at a National Reference Climatological Station (NRCS, 30.22° N, 120.17° E; 41.7 m a.s.l.) in the center of Hangzhou in the YRD, we investigated the seasonal characteristics, interspecies relationships, and the local emissions and the regional potential source contributions of trace gases (including O3, NOx, NOy, SO2, and CO) and particulate matter (PM2.5 and PM10). Results revealed that severe two-tier air pollution (photochemical and haze pollution) occurred in this region, with frequent exceedances in O3 (38 days) and PM2.5 (62 days). O3 and PM2.5 both exhibited distinct seasonal variations with reversed patterns: O3 reaching a maximum in warm seasons (May and July) but PM2.5 reaching a maximum in cold seasons (November to January). The overall results from interspecies correlation indicated a strong local photochemistry favoring the O3 production under a volatile organic compound (VOC)-limited regime, whereas it moved towards an optimum O3 production zone during warm seasons, accompanied by the formation of secondary fine particulates under high O3. The emission maps of PM2.5, CO, NOx, and SO2 demonstrated that local emissions were significant for these species on a seasonal scale. The contributions from the regional transport among inland cities (Zhejiang, Jiangsu, Anhui, and Jiangxi Province) on a seasonal scale were further confirmed to be crucial to air pollution at the NRCS site by using backward trajectory simulations. Air masses transported from the offshore areas of the Yellow Sea, East Sea, and South Sea were also found to be highly relevant to the elevated O3 at the NRCS site through the analysis of potential source contribution function (PSCF). Case studies of photochemical pollution (O3) and haze (PM2.5) episodes both suggested the combined importance of local atmospheric photochemistry and synoptic conditions during the accumulation (related with anticyclones) and dilution process (related with cyclones). Apart from supplementing a general picture of the air pollution state in the city of Hangzhou in the YRD region, this study specifically elucidates the role of local emission and regional transport, and it interprets the physical and photochemical processes during haze and photochemical pollution episodes. Moreover, this work suggests that cross-regional control measures are crucial to improve air quality in the YRD region, and it further emphasizes the importance of local thermally induced circulation for air quality.
Research on a Sudden Explosion and its Environmental Impact
NASA Astrophysics Data System (ADS)
Ye, Maosheng; Ma, Hui; Ni, Qingwei
2017-12-01
A sudden blast was chosen as the studied topic. Also, one computer based virtual experimentation was used to estimate the dimensional impact of initial pollutant plume from blasts. Self-made method using Mathcad code was used to generate the output for the period of the first tenth of a second (1deci-second) to 1minute (60s) of the blast at the point source. It also depicted long-range air pollution travel within the first 1 to 10 minutes. In the case study, it assumed an average directional diffusivity of 1720 m2s-1 which is about 25 per cent of the average generated speed of common explosives. The newly developed model revealed a plume cloud impact of 6.8×107µgm-3 in the first 1millisecond (0.01s) which decayed suddenly to a value of 1.7×107µgm-3 in the first 1decisecond (0.1s). The impact concentration at the point source by the end of the first second (1.0s) was 3.2×105µgm-3 which implied a 99.5% sudden decay when compared to 0.01s concentration value at the emission point source. Computerized experiments observed that air pollutants release from explosives/blasts were dispersed into the atmosphere in the first few seconds by forceful injection instead of by gradual dispersion as is the case with normal air pollutants plume releases.
Assessment of near-source air pollution at a fine spatial scale ...
Mobile monitoring is an emerging strategy to characterize spatially and temporally variable air pollution in areas near sources. EPA’s Geospatial Monitoring of Air Pollution (GMAP) vehicle, an all-electric vehicle measuring real-time concentrations of particulate and gaseous pollutants, was utilized to map air pollution trends near the Port of Charleston in South Carolina. High-resolution monitoring was performed along driving routes near several port terminals and rail yard facilities, recording geospatial coordinates and measurements of pollutants including black carbon, size-resolved particle count ranging from ultrafine to coarse (6 nm to 20 µm), carbon monoxide, carbon dioxide, and nitrogen dioxide. Additionally, a portable meteorological station was used to characterize local meteorology. Port activity data was provided by the Port Authority of Charleston and includes counts of ships and trucks, and port service operations such as cranes and forklifts during the sampling time periods. Measurements are supplemented with modeling performed with AERMOD and RLINE in order to characterize the impact of the various terminals at the Port of Charleston on local air quality. Specifically, the data are used to determine the magnitude of the increase in local, near-port pollutant concentrations as well as the spatial extent to which concentration is elevated above background. These effects are studied in relation to a number of potentially significant factors such
SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization
Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah
2014-01-01
Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431
Pearce, John L; Waller, Lance A; Sarnat, Stefanie E; Chang, Howard H; Klein, Mitch; Mulholland, James A; Tolbert, Paige E
2016-08-01
Exposure metrics that identify spatial contrasts in multipollutant air quality are needed to better understand multipollutant geographies and health effects from air pollution. Our aim is to improve understanding of: (1) long-term spatial distributions of multiple pollutants; and (2) demographic characteristics of populations residing within areas of differing air quality. We obtained average concentrations for ten air pollutants (p=10) across a 12 km grid (n=253) covering Atlanta, Georgia for 2002-2008. We apply a self-organizing map (SOM) to our data to derive multipollutant patterns observed across our grid and classify locations under their most similar pattern (i.e, multipollutant spatial type (MST)). Finally, we geographically map classifications to delineate regions of similar multipollutant characteristics and characterize associated demographics. We found six MSTs well describe our data, with profiles highlighting a range of combinations, from locations experiencing generally clean air to locations experiencing conditions that were relatively dirty. Mapping MSTs highlighted that downtown areas were dominated by primary pollution and that suburban areas experienced relatively higher levels of secondary pollution. Demographics show the largest proportion of the overall population resided in downtown locations experiencing higher levels of primary pollution. Moreover, higher proportions of nonwhites and children in poverty reside in these areas when compared to suburban populations that resided in areas exhibiting relatively lower pollution. Our approach reveals the nature and spatial distribution of differential pollutant combinations across urban environments and provides helpful insights for identifying spatial exposure and demographic contrasts for future health studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mapping Exposure to Multi-Pollutants Using Environmental Biomonitors-A Multi-Exposure Index.
Serrano, Helena C; Köbel, Melanie; Palma-Oliveira, José; Pinho, Pedro; Branquinho, Cristina
2017-01-01
Atmosphere is a major pathway for transport and deposition of pollutants in the environment. In industrial areas, organic compounds are released or formed as by-products, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F's). Inorganic chemical elements, including lead and arsenic, are also part of the pollutants mixture, and even in low concentrations may potentially be toxic and carcinogenic. However, assessing the spatial pattern of their deposition is difficult due to high spatial and temporal heterogeneity. Lichens have been used as biomonitors of atmospheric deposition, because these organisms encompass greater spatial detail than air monitoring stations and provide an integration of overall pollution. Based upon the ability of lichens to concentrate pollutants such as PCDD/F and chemical elements, the main objectives of this study were to develop a new semi-quantitative multi-pollutant toxicity exposure index (TEQ-like), derived from risk estimates, in an attempt to correlate several atmospheric pollutants to human exposure levels. The actual pollutant concentrations were measured in the environment, from biomonitors (organisms that integrate multi-pollutants), enabling interpolation and mapping of contaminant deposition within the region. Thus, the TEQ-like index provides a spatial representation not from absolute accumulation of the different pollutants, but from the accumulation weighted by their relative risk. The assessment of environmental human exposure to multi-pollutants through atmospheric deposition may be applied to industries to improve mitigation processes or to health stakeholders to target populations for a comprehensive risk assessment, epidemiological studies, and health recommendations.
Inland area contingency plan and maps for Pennsylvania (on CD-ROM). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less
Inland area contingency plan and maps for Virginia (on CD-ROM). Data file
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less
Assessment of different route choice on commuters' exposure to air pollution in Taipei, Taiwan.
Li, Hsien-Chih; Chiueh, Pei-Te; Liu, Shi-Ping; Huang, Yu-Yang
2017-01-01
The purposes of this study are to develop a healthy commute map indicating cleanest route in Taipei metropolitan area for any given journey and to evaluate the pollutant doses exposed in different commuting modes. In Taiwan, there are more than 13.6 million motorcycles and 7.7 million vehicles among the 23 million people. Exposure to traffic-related air pollutants can thus cause adverse health effects. Moreover, increasing the level of physical activity during commuting and longer distances will result in inhalation of more polluted air. In this study, we utilized air pollution monitoring data (CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ) from Taiwan EPA's air quality monitoring stations in Taipei metropolitan area to estimate each pollutant exposure while commuting by different modes (motorcycling, bicycling, and walking). Spatial interpolation methods such as inverse distance weighting (IDW) were used to estimate each pollutant's distribution in Taipei metropolitan area. Three routes were selected to represent the variety of different daily commuting pathways. The cleanest route choice was based upon Dijkstra's algorithm to find the lowest cumulative pollutant exposure. The IDW interpolated values of CO, SO 2 , NO 2 , PM 10 , and PM 2.5 ranged from 0.42-2.2 (ppm), 2.6-4.8 (ppb), 17.8-42.9 (ppb), 32.4-65.6 (μg/m 3 ), and 14.2-38.9 (μg/m 3 ), respectively. To compare with the IDW results, concentration of particulate matter (PM 10 , PM 2.5 , and PM 1 ) along the motorcycle route was measured in real time. In conclusion, the results showed that the shortest commuting route for motorcyclists resulted in a much higher cumulative dose (PM 2.5 3340.8 μg/m 3 ) than the cleanest route (PM 2.5 912.5 μg/m 3 ). The mobile personal monitoring indicated that the motorcyclists inhaled significant high pollutants during commuting as a result of high-concentration exposure and short-duration peaks. The study could effectively present less polluted commuting routes for citizen health benefits.
Wu, Shaowei; Ni, Yang; Li, Hongyu; Pan, Lu; Yang, Di; Baccarelli, Andrea A; Deng, Furong; Chen, Yahong; Shima, Masayuki; Guo, Xinbiao
2016-09-01
Few studies have investigated the short-term respiratory effects of ambient air pollution in chronic obstructive pulmonary disease (COPD) patients in the context of high pollution levels in Asian cities. A panel of 23 stable COPD patients was repeatedly measured for biomarkers of airway inflammation including exhaled nitric oxide (FeNO) and exhaled hydrogen sulfide (FeH2S) (215 measurements) and recorded for daily respiratory symptoms (794person-days) in two study periods in Beijing, China in January-September 2014. Daily ambient air pollution data were obtained from nearby central air-monitoring stations. Mixed-effects models were used to estimate the associations between exposures and health measurements with adjustment for potential confounders including temperature and relative humidity. Increasing levels of air pollutants were associated with significant increases in both FeNO and FeH2S. Interquartile range (IQR) increases in PM2.5 (76.5μg/m(3), 5-day), PM10 (75.0μg/m(3), 5-day) and SO2 (45.7μg/m(3), 6-day) were associated with maximum increases in FeNO of 13.6% (95% CI: 4.8%, 23.2%), 9.2% (95% CI: 2.1%, 16.8%) and 34.2% (95% CI: 17.3%, 53.4%), respectively; and the same IQR increases in PM2.5 (6-day), PM10 (6-day) and SO2 (7-day) were associated with maximum increases in FeH2S of 11.4% (95% CI: 4.6%, 18.6%), 7.8% (95% CI: 2.3%, 13.7%) and 18.1% (95% CI: 5.5%, 32.2%), respectively. Increasing levels of air pollutants were also associated with increased odds ratios of sore throat, cough, sputum, wheeze and dyspnea. FeH2S may serve as a novel biomarker to detect adverse respiratory effects of air pollution. Our results provide potential important public health implications that ambient air pollution may pose risk to respiratory health in the context of high pollution levels in densely-populated cities in the developing world. Copyright © 2016 Elsevier Ltd. All rights reserved.
Background Air pollution risk assessments often employ effect coefficients from epidemiologic studies to quantify the public health impact of changes in air quality. Partly due to data and methodological limitations, epidemiologic studies have traditionally characterized the heal...
Potential impact of climate change on air pollution-related human health effects.
Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G
2009-07-01
The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).
NASA Astrophysics Data System (ADS)
Pan, Yuxue; Li, Haitao
2016-04-01
The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618—1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.
Pan, Yuxue; Li, Haitao
2016-04-01
The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618-1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.
Carr, Ramona; Zhang, Chaosheng; Moles, Norman; Harder, Marie
2008-02-01
Heavy metals in urban soils continue to attract attention because of their potential long-term effects on human health. During a previous investigation of urban soils in Galway City, Ireland, a pollution hotspot of Pb, Cu, Zn and As was identified in the sports ground of South Park in the Claddagh. The sports ground was formerly a rubbish dumping site for both municipal and industrial wastes. In the present study, a portable X-ray fluorescence (PXRF) analyser was used to obtain rapid in-situ elemental analyses of the topsoil (depth: about 5-10 cm) at 200 locations on a 20 x 20-m grid in South Park. Extremely high values of the pollutants were found, with maximum values of Pb, Zn, Cu and As of 10,297, 24,716, 2224 and 744 mg/kg soil, respectively. High values occur particularly where the topsoil cover is thin, whereas lower values were found in areas where imported topsoil covers the polluted substrate. Geographic Information Systems (GIS) techniques were applied to the dataset to create elemental spatial distribution maps, three-dimensional images and interpretive hazard maps of the pollutants in the study area. Immediate action to remediate the contaminated topsoil is recommended to safeguard the health of children who play at the sports ground.
EnviroAtlas - Woodbine, IA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1 block group in Woodbine, Iowa. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Pittsburgh, PA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,089 block groups in Pittsburgh, Pennsylvania. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, OR - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1176 block groups in Portland, Oregon. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Fresno, CA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 405 block groups in Fresno, California. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - New Bedford, MA - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 128 block group in New Bedford, Massachusetts. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Tampa, FL - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,833 block groups in Tampa Bay, Florida. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Minneapolis/St. Paul, MN - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,772 block groups in Minneapolis/St. Paul, Minnesota. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Cleveland, OH - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,442 block groups in Cleveland, Ohio. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Milwaukee, WI - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 1,175 block groups in Milwaukee, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Portland, ME - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 146 block groups in Portland, Maine. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Memphis, TN - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 703 block groups in Memphis, Tennessee. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
EnviroAtlas - Green Bay, WI - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 155 block groups in Green Bay, Wisconsin. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).
EnviroAtlas - Austin, TX - Ecosystem Services by Block Group
This EnviroAtlas dataset presents environmental benefits of the urban forest in 750 block groups in Austin, Texas. Carbon attributes, temperature reduction, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
NASA Astrophysics Data System (ADS)
Zamani, Mehdi
2016-02-01
Molecular and electronic structures of nanotubular indium trioxide were studied using B3LYP and CAM-B3LYP density functional methods. Three nanotube models including nanotubes with closed ends (CENT), one opened end (OOENT) and two opened ends (TOENT) were considered. The highest occupied molecular orbital (HOMO) of CENT is distributed over the entire nanotube; while it is distributed on the end cap of OOENT. In both CENT and OOENT, the distribution of the lowest unoccupied molecular orbital (LUMO) is on the end caps. HOMO and LUMO of TOENT are distributed on the center of nanotube. The sensing activity of OOENT to environmental pollutants was evaluated regarding the interaction of nanotube with NH3, H2S, NO2 and CO molecules. Adsorptions over different positions of OOENT are exothermic and the NH3 adsorption is thermodynamically more favorable. The selectivity of OOENT toward gaseous pollutants is investigated as NH3 > H2S > CO > NO2. Interaction of NO2 and CO over the closed end (end cap) of nanotube is preferred; while adsorption of NH3 and H2S on the opened end is more favorable.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samuel J.; Johnson, Bryan J.
2016-01-01
Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.
NASA Technical Reports Server (NTRS)
Stauffer, Ryan M.; Thompson, Anne M.; Oltmans, Samual J.; Johnson, Bryan J.
2017-01-01
Much attention has been focused on the transport of ozone (O3) to the western U.S., particularly given the latest revision of the National Ambient Air Quality Standard to 70 parts per billion by volume (ppbv) of O3. This makes quantifying the contributions of stratosphere-to-troposphere exchange, local pollution, and pollution transport to this region essential. To evaluate free-tropospheric and surface O3 in the western U.S., we use self-organizing maps to cluster 18 years of ozonesonde profiles from Trinidad Head, CA. Three of nine O3 mixing ratio profile clusters exhibit thin laminae of high O3 above Trinidad Head. The high O3 layers are located between 1 and 6 km above mean sea level and reside above an inversion associated with a northern location of the Pacific subtropical high. Ancillary data (reanalyses, trajectories, and remotely sensed carbon monoxide) help identify the high O3 sources in one cluster, but distinguishing mixed influences on the elevated O3 in other clusters is difficult. Correlations between the elevated tropospheric O3 and surface O3 at high-altitude monitors at Lassen Volcanic and Yosemite National Parks, and Truckee, CA, are marked and long lasting. The temporal correlations likely result from a combination of transport of baseline O3 and covarying meteorological parameters. Days corresponding to the high O3 clusters exhibit hourly surface O3 anomalies of +5-10 ppbv compared to a climatology; the positive anomalies can last up to 3 days after the ozonesonde profile. The profile and surface O3 links demonstrate the importance of regular ozonesonde profiling at Trinidad Head.
The Effects of a Blizzard on Urban Air Pollution.
ERIC Educational Resources Information Center
da Silva, Armando; Bein, Frederick L.
1981-01-01
The chronology and effects of a 1978 blizzard on Indianapolis' air pollution levels (ozone, sulfur dioxide, carbon monoxide) are used as a case study for geography classes. Photographs, graphs, and maps are provided as examples of meteorological data collection and interpretation. (AM)
Diaz-de-Quijano, Maria; Joly, Daniel; Gilbert, Daniel; Toussaint, Marie-Laure; Franchi, Marielle; Fallot, Jean-Michel; Bernard, Nadine
2016-07-01
Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of water environment information management and water pollution accident response system
NASA Astrophysics Data System (ADS)
Zhang, J.; Ruan, H.
2009-12-01
In recent years, many water pollution accidents occurred with the rapid economical development. In this study, water environment information management and water pollution accident response system are developed based on geographic information system (GIS) techniques. The system integrated spatial database, attribute database, hydraulic model, and water quality model under a user-friendly interface in a GIS environment. System ran in both Client/Server (C/S) and Browser/Server (B/S) platform which focused on model and inquiry respectively. System provided spatial and attribute data inquiry, water quality evaluation, statics, water pollution accident response case management (opening reservoir etc) and 2D and 3D visualization function, and gave assistant information to make decision on water pollution accident response. Polluted plume in Huaihe River were selected to simulate the transport of pollutes.
The Role of Different Agricultural Plant Species in Air Pollution
NASA Astrophysics Data System (ADS)
Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.
2017-12-01
The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.
Rykhus, Russell P.; Lu, Zhong
2007-01-01
A multiple-database approach that combined remotely sensed data from Radarsat-1 and Landsat Thematic Mapper Plus (ETM+) imagery was used to map Hurricane Katrinainduced flooding and to identify offshore oil slicks. Maps depicting the areal extent of flooding, oil slicks, and floating debris provide vital information to emergency managers for directing floodrelief efforts and the clean-up of polluted waters.
Indoor air pollutants and health in the United Arab Emirates.
Yeatts, Karin B; El-Sadig, Mohamed; Leith, David; Kalsbeek, William; Al-Maskari, Fatma; Couper, David; Funk, William E; Zoubeidi, Taoufik; Chan, Ronna L; Trent, Chris B; Davidson, Christopher A; Boundy, Maryanne G; Kassab, Maamoon M; Hasan, Mohamed Y; Rusyn, Ivan; Gibson, Jacqueline MacDonald; Olshan, Andrew F
2012-05-01
Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi-air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development. To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE). We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews. Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89). This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects of indoor air pollutants.
Indoor Air Pollutants and Health in the United Arab Emirates
El-Sadig, Mohamed; Leith, David; Kalsbeek, William; Al-Maskari, Fatma; Couper, David; Funk, William E.; Zoubeidi, Taoufik; Chan, Ronna L.; Trent, Chris B.; Davidson, Christopher A.; Boundy, Maryanne G.; Kassab, Maamoon M.; Hasan, Mohamed Y.; Rusyn, Ivan; Gibson, Jacqueline MacDonald; Olshan, Andrew F.
2012-01-01
Background: Comprehensive global data on the health effects of indoor air pollutants are lacking. There are few large population-based multi–air pollutant health assessments. Further, little is known about indoor air health risks in the Middle East, especially in countries undergoing rapid economic development. Objectives: To provide multifactorial indoor air exposure and health data, we conducted a population-based study of indoor air pollution and health in the United Arab Emirates (UAE). Methods: We conducted a cross-sectional study in a population-based sample of 628 households in the UAE. Indoor air pollutants [sulfur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulfide (H2S), formaldehyde (HCHO), carbon monoxide (CO), and particulate matter] were measured using passive samplers over a 7-day period. Health information was collected from 1,590 household members via in-person interviews. Results: Participants in households with quantified SO2, NO2, and H2S (i.e., with measured concentrations above the limit of quantification) were twice as likely to report doctor-diagnosed asthma. Participants in homes with quantified SO2 were more likely to report wheezing symptoms {ever wheezing, prevalence odds ratio [POR] 1.79 [95% confidence interval (CI) 1.05, 3.05]; speech-limiting wheeze, POR 3.53 (95% CI: 1.06, 11.74)}. NO2 and H2S were similarly associated with wheezing symptoms. Quantified HCHO was associated with neurologic symptoms (difficulty concentrating POR 1.47; 95% CI: 1.02, 2.13). Burning incense daily was associated with increased headaches (POR 1.87; 95% CI: 1.09, 3.21), difficulty concentrating (POR 3.08; 95% CI: 1.70, 5.58), and forgetfulness (POR 2.68: 95% CI: 1.47, 4.89). Conclusions: This study provides new information regarding potential health risks from pollutants commonly found in indoor environments in the UAE and other countries. Multipollutant exposure and health assessments in cohort studies are needed to better characterize health effects of indoor air pollutants. PMID:22357138
Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L
2006-08-01
A risk map of the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain) was designed following a two-stage procedure. The first step was the creation of a ranking system (Hazard Index) for a number of different inorganic and organic pollutants: heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated aromatic hydrocarbons (PAHs) by applying self-organizing maps (SOM) to persistence, bioaccumulation and toxicity properties of the chemicals. PCBs seemed to be the most hazardous compounds, while the light PAHs showed the minimum values. Subsequently, an Integral Risk Index was developed taking into account the Hazard Index and the concentrations of all pollutants in soil samples collected in the assessed area of Tarragona. Finally, a risk map was elaborated by representing the spatial distribution of the Integral Risk Index with a geographic information system (GIS). The results of the present study seem to indicate that the development of an integral risk map might be useful to help in making-decision processes concerning environmental pollutants.
NASA Astrophysics Data System (ADS)
Pai, Henry; Villamizar, Sandra R.; Harmon, Thomas C.
2017-11-01
Delineating pollutant reactive transport pathways that connect local land use patterns to surface water is an important goal. This work illustrates high-resolution river mapping of salinity or specific conductance (SC) and nitrate (NO3-) as a potential part of achieving this goal. We observed longitudinal river SC and nitrate distributions using high-resolution synoptic in situ sensing along the lower Merced River (38 river km) in Central California (USA) from 2010 to 2012. We calibrated a distributed groundwater-surface water (GW-SW) discharge model for a conservative solute using 13 synoptic SC sampling events at flows ranging from 1.3 to 31.6 m3 s-1. Nitrogen loads ranged from 0.3 to 1.6 kg N d-1 and were greater following an extended high flow period during a wet winter. Applying the distributed GW-SW discharge estimates to a simplistic reactive nitrate transport model, the model reproduced observed river nitrate distribution well (RRMSE = 5-21%), with dimensionless watershed-averaged nitrate removal (kt) ranging from 0 to 0.43. Estimates were uncertain due to GW nitrate data variability, but the resulting range was consistent with prior removal estimates. At the segment scale, estimated GW-SW nitrate loading ranged from 0 to 17 g NO3- s-1 km-1. Local loading peaked near the middle of the study reach, a location that coincides with a shallow clay lens and with confined animal feed operations in close proximity to the river. Overall, the results demonstrate the potential for high-resolution synoptic monitoring to support GW-SW modeling efforts aimed at understanding and managing nonpoint source pollution.
Bai, Wenxia; Bai, Jian'an; Li, Yanhai; Tian, Delong; Shi, Ruihua
2017-04-08
Many autophagy-related genes, to our knowledge, have been identified as Crohn's disease (CD) polymorphic sites by genomic wide studies. As a novel member of the microtubule-associated protein 1 (MAP1) family, MAP1S is a microtubule-binding proteins involved in autophagy. However, its expression and potential functions in CD have not been understood. For the first time, we discovered the up-regulated MAP1S and autophagy level (indicated by LC3-Ⅱ/LC3-Ⅰ) in inflamed epithelium among CD patients. Similarly, in TNBS-induced murine colitis model, MAP1S expression was obviously increased. Meanwhile, we found the co-location of MAP1S and active-caspase 3 which acted as "apoptotic executor" which might indicate the basis of their co-efficient. At the cellular level, MAP1S silencing inhibited starvation-induced over-expression of active-caspase 3 partially via Wnt/β-catenin signaling activation in HCT-116 cells. Finally, we demonstrated that IWP-2, an inhibitor of the Wnt/β-catenin signaling, reversed the down-regulation of active-caspase 3 induced by MAP1S siRNA in HCT-116 cells. Taken together, our results suggested that MAP1S were up-regulated among CD patients and MAP1S-related autophagy inhibits apoptosis of intestinal epithelial cells (IECs) through Wnt/β-catenin signaling pathway which might play a vital role in the protection of intestinal mucosal barrier and inhibition the progression of CD. Copyright © 2017 Elsevier Inc. All rights reserved.
Traffic-Related Air Pollution and Parkinson’s Disease in Denmark: A Case–Control Study
Ritz, Beate; Lee, Pei-Chen; Hansen, Johnni; Lassen, Christina Funch; Ketzel, Matthias; Sørensen, Mette; Raaschou-Nielsen, Ole
2015-01-01
Background Very little is currently known about air pollutants’ adverse effects on neurodegenerative diseases even though recent studies have linked particulate exposures to brain pathologies associated with Parkinson’s and Alzheimer’s disease. Objective In the present study, we investigated long-term exposure to traffic-related air pollution and Parkinson’s disease. Methods In a case–control study of 1,696 Parkinson’s disease (PD) patients identified from Danish hospital registries and diagnosed 1996–2009 and 1,800 population controls matched by sex and year of birth, we assessed long-term traffic-related air pollutant exposures (represented by nitrogen dioxide; NO2) from a dispersion model, using residential addresses from 1971 to the date of diagnosis or first cardinal symptom for cases and the corresponding index date for their matched controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated with logistic regression, adjusting for matching factors and potential confounders. Results We found ambient air pollution from traffic sources to be associated with risk of PD, with a 9% higher risk (95% CI: 3, 16.0%) per interquartile range increase (2.97 μg/m3) in modeled NO2. For participants living for ≥ 20 years in the capital city, ORs were larger (OR = 1.21; 95% CI: 1.11, 1.31) than in provincial towns (OR = 1.10; 95% CI: 0.97, 1.26), whereas there was no association among rural residents. Conclusions Our findings raise concerns about potential effects of air pollution from traffic and other sources on the risk of PD, particularly in populations with high or increasing exposures. Citation Ritz B, Lee PC, Hansen J, Funch Lassen C, Ketzel M, Sørensen M, Raaschou-Nielsen O. 2016. Traffic-related air pollution and Parkinson’s disease in Denmark: a case–control study. Environ Health Perspect 124:351–356; http://dx.doi.org/10.1289/ehp.1409313 PMID:26151951
Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej
2016-07-01
The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.
Mapping the scientific research on non-point source pollution: a bibliometric analysis.
Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue
2017-02-01
A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.
2016-03-01
increase in certain circulating cytokines reflected tumors that progress. This study’s cytokine assay employed the MilliPlex map Human Cytokine...receptors were assayed using MILLIPLEX MAP Human Soluble Cytokine Receptor Panel (cat# HSCRMAG-32K) and included: sCD30, sgp130, sIL-1RI, sIL-1RII, sIL-2Rα...sIL-4R, sIL-6R, sRAGE, sTNFRI, sTNFRII, sVEGF-R1, sVEGF-R2, sVEGF-R3. Separately were run TGF β 1, TGF β 2, and TGF β 3 using the MILLIPLEX MAP
STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.
Gulliver, John; Briggs, David
2011-05-15
Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Selected basin characteristics and water-quality data of the Minnesota River basin
Winterstein, T.A.; Payne, G.A.; Miller, R.A.; Stark, J.R.
1993-01-01
Selected basin characteristics and water-quality dam for the Minnesota River Basin are presented in this report as 71 maps, 22 graphs, and 8 tables. The data were compiled as part of a four-year study to identify non-point sources of pollution and the effect of this pollution on water quality. The maps were prepared from geographic information system data bases. Federal, State, and local agencies, and colleges and universities collected and assembled these data as part of the Minnesota River Assessment Project.
NASA Astrophysics Data System (ADS)
Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun
2015-04-01
In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be reduced by 17.2% and 14.7%, respectively. The new standard could reduce nitrogen deposition pollution in China. By 2020, for S2, the area with a nitrogen deposition concentration >2.0 tons·km-2 and the total nitrogen deposition in China would be reduced by 28.6% and 16.8%, respectively. The new standards could reduce sulfur deposition pollution in China. By 2020, for S2, the area with a sulfur deposition >1.5 tons·km-2 and the total sulfur deposition in China would be reduced by 55.3% and 21.0%, respectively.
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Petzold, Andreas; Wendisch, Manfred; Bierwirth, Eike; Dinter, Tilman; Esselborn, Michael; Fiebig, Marcus; Heese, Birgit; Knippertz, Peter; Mueller, Detlef;
2008-01-01
Coincident observations made over the Moroccan desert during the Sahara mineral dust experiment (SAMUM) 2006 field campaign are used both to validate aerosol amount and type retrieved from multi-angle imaging spectroradiometer (MISR) observations, and to place the suborbital aerosol measurements into the satellite s larger regional context. On three moderately dusty days during which coincident observations were made, MISR mid-visible aerosol optical thickness (AOT) agrees with field measurements point-by-point to within 0.05 0.1. This is about as well as can be expected given spatial sampling differences; the space-based observations capture AOT trends and variability over an extended region. The field data also validate MISR s ability to distinguish and to map aerosol air masses, from the combination of retrieved constraints on particle size, shape and single-scattering albedo. For the three study days, the satellite observations (1) highlight regional gradients in the mix of dust and background spherical particles, (2) identify a dust plume most likely part of a density flow and (3) show an aerosol air mass containing a higher proportion of small, spherical particles than the surroundings, that appears to be aerosol pollution transported from several thousand kilometres away.
Tracing global supply chains to air pollution hotspots
NASA Astrophysics Data System (ADS)
Moran, Daniel; Kanemoto, Keiichiro
2016-09-01
While high-income countries have made significant strides since the 1970s in improving air quality, air pollution continues to rise in many developing countries and the world as a whole. A significant share of the pollution burden in developing countries can be attributed to production for export to consumers in high-income nations. However, it remains a challenge to quantify individual actors’ share of responsibility for pollution, and to involve parties other than primary emitters in cleanup efforts. Here we present a new spatially explicit modeling approach to link SO2, NO x , and PM10 severe emissions hotspots to final consumers via global supply chains. These maps show developed countries reducing their emissions domestically but driving new pollution hotspots in developing countries. This is also the first time a spatially explicit footprint inventory has been established. Linking consumers and supply chains to emissions hotspots creates opportunities for other parties to participate alongside primary emitters and local regulators in pollution abatement efforts.
Grabow, Maggie L; Spak, Scott N; Holloway, Tracey; Stone, Brian; Mednick, Adam C; Patz, Jonathan A
2012-01-01
Automobile exhaust contains precursors to ozone and fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), posing health risks. Dependency on car commuting also reduces physical fitness opportunities. In this study we sought to quantify benefits from reducing automobile usage for short urban and suburban trips. We simulated census-tract level changes in hourly pollutant concentrations from the elimination of automobile round trips ≤ 8 km in 11 metropolitan areas in the upper midwestern United States using the Community Multiscale Air Quality (CMAQ) model. Next, we estimated annual changes in health outcomes and monetary costs expected from pollution changes using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program (BenMAP). In addition, we used the World Health Organization Health Economic Assessment Tool (HEAT) to calculate benefits of increased physical activity if 50% of short trips were made by bicycle. We estimate that, by eliminating these short automobile trips, annual average urban PM2.5 would decline by 0.1 µg/m3 and that summer ozone (O3) would increase slightly in cities but decline regionally, resulting in net health benefits of $4.94 billion/year [95% confidence interval (CI): $0.2 billion, $13.5 billion), with 25% of PM2.5 and most O3 benefits to populations outside metropolitan areas. Across the study region of approximately 31.3 million people and 37,000 total square miles, mortality would decline by approximately 1,295 deaths/year (95% CI: 912, 1,636) because of improved air quality and increased exercise. Making 50% of short trips by bicycle would yield savings of approximately $3.8 billion/year from avoided mortality and reduced health care costs (95% CI: $2.7 billion, $5.0 billion]. We estimate that the combined benefits of improved air quality and physical fitness would exceed $8 billion/year. Our findings suggest that significant health and economic benefits are possible if bicycling replaces short car trips. Less dependence on automobiles in urban areas would also improve health in downwind rural settings.
Spak, Scott N.; Holloway, Tracey; Stone, Brian; Mednick, Adam C.; Patz, Jonathan A.
2011-01-01
Background: Automobile exhaust contains precursors to ozone and fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), posing health risks. Dependency on car commuting also reduces physical fitness opportunities. Objective: In this study we sought to quantify benefits from reducing automobile usage for short urban and suburban trips. Methods: We simulated census-tract level changes in hourly pollutant concentrations from the elimination of automobile round trips ≤ 8 km in 11 metropolitan areas in the upper midwestern United States using the Community Multiscale Air Quality (CMAQ) model. Next, we estimated annual changes in health outcomes and monetary costs expected from pollution changes using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program (BenMAP). In addition, we used the World Health Organization Health Economic Assessment Tool (HEAT) to calculate benefits of increased physical activity if 50% of short trips were made by bicycle. Results: We estimate that, by eliminating these short automobile trips, annual average urban PM2.5 would decline by 0.1 µg/m3 and that summer ozone (O3) would increase slightly in cities but decline regionally, resulting in net health bene-fits of $4.94 billion/year [95% confidence interval (CI): $0.2 billion, $13.5 billion), with 25% of PM2.5 and most O3 bene-fits to populations outside metropolitan areas. Across the study region of approximately 31.3 million people and 37,000 total square miles, mortality would decline by approximately 1,295 deaths/year (95% CI: 912, 1,636) because of improved air quality and increased exercise. Making 50% of short trips by bicycle would yield savings of approximately $3.8 billion/year from avoided mortality and reduced health care costs (95% CI: $2.7 billion, $5.0 billion]. We estimate that the combined benefits of improved air quality and physical fitness would exceed $8 billion/year. Conclusion: Our findings suggest that significant health and economic benefits are possible if bicycling replaces short car trips. Less dependence on automobiles in urban areas would also improve health in downwind rural settings. PMID:22049372
Model studies of laser absorption computed tomography for remote air pollution measurement
NASA Technical Reports Server (NTRS)
Wolfe, D. C., Jr.; Byer, R. L.
1982-01-01
Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.
NASA Astrophysics Data System (ADS)
Richter, C.; Taylor, D.; Schramm, W.; Day, L.; Vedrines, H.
2016-12-01
Magnetic properties (susceptibility and SIRM) of urban soils have been shown to be very effective tracers of anthropogenic pollution. They provide a highly sensitive and easily obtainable measurement of the compositional changes of the mineral and chemical composition in soils. The main objective of this study is to detect the presence of magnetic anthropogenic particles related to environmental pollution by measuring the magnetic signature of soil samples and relating it to heavy metal concentrations obtained by XRF analysis. For this large-scale study carried out over the past eight years, we sampled an area of 260 km2 in and around Baton Rouge, Louisiana, with a total of 257 sites, 5140 individual susceptibility measurements obtained with a hand-held field probe, and 514 discrete samples for laboratory analysis of SIRM, susceptibility, and XRF analysis. In this area rural, industrial, metropolitan, and suburban settings exist in close proximity and allow for the direct comparison of results without significant changes in pedological, climatic, or the bedrock, which influence the magnetic properties. Contour maps and histograms indicate a strong correlation between the magnetic susceptibility, SIRM, and the environmental setting, with the mode of the susceptibility shifting from 0.006x10-3 SI in rural areas to 0.273x10-3 SI in the industrialized parts of the city. The industrialized western area of Baton Rouge especially shows significantly enhanced magnetic properties. For selected sites we determined the concentrations of Mo, Zr, Sr, Ba, U, Rb, Th, Pb, Au, Se, As, Hg, Zn, W, Cu, Cr, Ni, Co, Fe, and Mn with an XRF scanner. A linear correlation between magnetic susceptibility and U, Ba, Cr, Pb, Th, and Zn is statistically significant and suggests that anthropogenic input of heavy metals has a significant influence on magnetic properties. Detailed rock magnetic, geochemical, and statistical analysis will be presented and used, together with soil maps and land-usage maps, to characterize the anthropogenic impact on soils and the shallow subsurface.
Improving estimates of air pollution exposure through ubiquitous sensing technologies
de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael
2013-01-01
Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743
Coastal resource and sensitivity mapping of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odin, L.M.
1997-08-01
This paper describes a project to establish a relationship between environmental sensitivity (primarily to oil pollution) and response planning and prevention priorities for Vietnamese coastal regions. An inventory of coastal environmental sensitivity and the creation of index mapping was performed. Satellite and geographical information system data were integrated and used for database creation. The database was used to create a coastal resource map, coastal sensitivity map, and a field inventory base map. The final coastal environment sensitivity classification showed that almost 40 percent of the 7448 km of mapped shoreline has a high to medium high sensitivity to oil pollution.
Tropical Tropospheric Ozone: A Multi-Satellite View From TOMS and Other Instruments
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.; Guo, Hua; Witte, Jacquelyn C.; Kucsera, Tom L.; Seybold, Matthew G.; Einaudi, Franco (Technical Monitor)
2000-01-01
New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument can resolve episodic pollution events in the tropics and interannual and seasonal variability. Modified-residual (MR) Nimbus 7 tropical tropospheric ozone (TTO), two maps/month (1979-1992, 1-deg latitude by 2-deg longitude) within the region in which total ozone displays a tropical wave-one pattern (maximum 20S to 20N), are available in digital form at http://metosrv2.umd.edu/tropo. Also available are preliminary 1996-1999 MR-TTO maps based on real-time Earth-Probe (EP)/TOMS observations. Examples of applications are given.
Chen, Bin; Song, Yimeng; Kwan, Mei-Po; Huang, Bo; Xu, Bing
2018-07-01
Air pollution, being especially severe in the fast-growing developing world, continues to post a threat to public health. Yet, few studies are capable of quantifying well how different groups of people in different places experience different levels of air pollution at the global scale. In this paper, we use worldwide Chinese as a lens to quantify the spatiotemporal variations and geographic differences in PM 2.5 exposures using unprecedented mobile phone big data and air pollution records. The results show that Chinese in South and East Asia suffer relatively serious PM 2.5 exposures, where the Chinese in China have the highest PM 2.5 exposures (52.8 μg/m 3 /year), which is fourfold higher than the exposures in the United States (10.7 μg/m 3 /year). Overall, the Chinese in Asian cities (35.5 μg/m 3 /year) experienced the most serious PM 2.5 exposures when compared with the Chinese in the cities of other continents. These results, partly presented as a spatiotemporally explicit map of PM 2.5 exposures for worldwide Chinese, help researchers and governments to consider how to address the effects of air pollution on public health with respect to different population groups and geographic locations. Copyright © 2018. Published by Elsevier Ltd.
Flood risk assessment of land pollution hotspots
NASA Astrophysics Data System (ADS)
Masi, Matteo; Arrighi, Chiara; Iannelli, Renato
2017-04-01
Among the risks caused by extreme events, the potential spread of pollutants stored in land hotspots due to floods is an aspect that has been rarely examined with a risk-based approach. In this contribution, an attempt to estimate pollution risks related to flood events of land pollution hotspots was carried out. Flood risk has been defined as the combination of river flood hazard, hotspots exposure and vulnerability to contamination of the area, i.e. the expected severity of the environmental impacts. The assessment was performed on a geographical basis, using geo-referenced open data, available from databases of land management institutions, authorities and agencies. The list of land pollution hotspots included landfills and other waste handling facilities (e.g., temporary storage, treatment and recycling sites), municipal wastewater treatment plants, liquid waste treatment facilities and contaminated sites. The assessment was carried out by combining geo-referenced data of pollution hotspots with flood hazard maps. We derived maps of land pollution risk based on geographical and geological properties and source characteristics available from environmental authorities. These included information about soil particle size, soil hydraulic conductivity, terrain slope, type of stored pollutants, the type of facility, capacity, size of the area, land use, etc. The analysis was carried out at catchment scale. The case study of the Arno river basin in Tuscany (central Italy) is presented.
Air Pollution Control Policies in China: A Retrospective and Prospects
Jin, Yana; Andersson, Henrik; Zhang, Shiqiu
2016-01-01
With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665
Modelling of Carbon Monoxide Air Pollution in Larg Cities by Evaluetion of Spectral LANDSAT8 Images
NASA Astrophysics Data System (ADS)
Hamzelo, M.; Gharagozlou, A.; Sadeghian, S.; Baikpour, S. H.; Rajabi, A.
2015-12-01
Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS ), spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.
Antropov, K M; Varaksin, A N
2013-01-01
This paper provides the description of Land Use Regression (LUR) modeling and the result of its application in the study of nitrogen dioxide air pollution in Ekaterinburg. The paper describes the difficulties of the modeling for air pollution caused by motor vehicles exhaust, and the ways to address these challenges. To create LUR model of the NO2 air pollution in Ekaterinburg, concentrations of NO2 were measured, data on factors affecting air pollution were collected, a statistical analysis of the data were held. A statistical model of NO2 air pollution (coefficient of determination R2 = 0.70) and a map of pollution were created.
Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant
NASA Technical Reports Server (NTRS)
Mitsev, TS.; Kolarov, G.
1992-01-01
Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.
NASA Astrophysics Data System (ADS)
Yuval; Bekhor, Shlomo; Broday, David M.
2013-11-01
Spatially detailed estimation of exposure to air pollutants in the urban environment is needed for many air pollution epidemiological studies. To benefit studies of acute effects of air pollution such exposure maps are required at high temporal resolution. This study introduces nonlinear optimisation framework that produces high resolution spatiotemporal exposure maps. An extensive traffic model output, serving as proxy for traffic emissions, is fitted via a nonlinear model embodying basic dispersion properties, to high temporal resolution routine observations of traffic-related air pollutant. An optimisation problem is formulated and solved at each time point to recover the unknown model parameters. These parameters are then used to produce a detailed concentration map of the pollutant for the whole area covered by the traffic model. Repeating the process for multiple time points results in the spatiotemporal concentration field. The exposure at any location and for any span of time can then be computed by temporal integration of the concentration time series at selected receptor locations for the durations of desired periods. The methodology is demonstrated for NO2 exposure using the output of a traffic model for the greater Tel Aviv area, Israel, and the half-hourly monitoring and meteorological data from the local air quality network. A leave-one-out cross-validation resulted in simulated half-hourly concentrations that are almost unbiased compared to the observations, with a mean error (ME) of 5.2 ppb, normalised mean error (NME) of 32%, 78% of the simulated values are within a factor of two (FAC2) of the observations, and the coefficient of determination (R2) is 0.6. The whole study period integrated exposure estimations are also unbiased compared with their corresponding observations, with ME of 2.5 ppb, NME of 18%, FAC2 of 100% and R2 that equals 0.62.
NASA Astrophysics Data System (ADS)
Alili, L.; Boukdir, A.; Maslouhi, M. R.; Ikhmerdi, H.
2018-05-01
The study area is located in the north of the province of Beni Mellal, it covers the Piedmont of the high Atlas between El Ksiba and Ouaoumana. It is characterized by a poorly developed hydrographic network and the presence of very important karstic forms. These forms condition the rapid infiltration to the karstic springs are the subject of this study. In this work we presented a method of mapping the vulnerability to pollution of Karstic springs located between El Ksiba and Ouaoumana. To do this, we have introduced a vulnerability index called F which takes into account four parameters (EPIK): Development of the Epikarst, importance of the protective cover, infiltration conditions and development of the Karst network. The overlay of the thematic maps of these parameters through a GIS software (ArcGIS) gave us a map of the vulnerability to contamination on the whole hydrogeological basin of the springs.
Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites
NASA Astrophysics Data System (ADS)
Appel, E.; Rösler, W.; Ojha, G.
2012-04-01
Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk
2007-02-01
Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Diseasemore » Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media monitoring, and/or personal exposure modeling. However, emerging research reveals that the greatest progress comes from integration among two or more of these efforts.« less
Litchfield, Ian J; Ayres, Jon G; Jaakkola, Jouni J K; Mohammed, Nuredin I
2018-04-12
Air pollution has been associated with increased mortality and morbidity in several studies with indications that its effect could be more severe in children. This study examined the relationship between short-term variations in criteria air pollutants and occurrence of sudden infant death syndrome (SIDS). We used a case-crossover study design which is widely applied in air pollution studies and particularly useful for estimating the risk of a rare acute outcome associated with short-term exposure. The study used data from the West Midlands region in the UK. We obtained daily time series data on SIDS mortality (ICD-9: 798.0 or ICD-10: R95) for the period 1996-2006 with a total of 211 SIDS events. Daily counts of SIDS events. For an IQR increase in previous day pollutant concentration, the percentage increases (95% CI) in SIDS were 16 (6 to 27) for PM 10 , 1 (-7 to 10) for SO 2 , 5 (-4 to 14) for CO, -17 (-27 to -6) for O 3 , 16 (2 to 31) for NO 2 and 2 (-3 to 8) for NO after controlling for average temperature and national holidays. PM 10 and NO 2 showed relatively consistent association which persisted across different lag structures and after adjusting for copollutants. The results indicated ambient air pollutants, particularly PM 10 and NO 2 , may show an association with increased SIDS mortality. Thus, future studies are recommended to understand possible mechanistic explanations on the role of air pollution on SIDS incidence and the ways in which we might reduce pollution exposure among infants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group
This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and runoff effects are calculated for each block group using i-Tree models (www.itreetools.org), local weather data, pollution data, EPA provided city boundary and land cover data, and U.S. Census derived block group boundary data. Temperature reduction values for Phoenix will be added when they become available. This dataset was produced by the US Forest Service to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong
2015-12-01
A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.
A multi-factor designation method for mapping particulate-pollution control zones in China.
Qin, Y; Xie, S D
2011-09-01
A multi-factor designation method for mapping particulate-pollution control zones was brought out through synthetically considering PM(10) pollution status, PM(10) anthropogenic emissions, fine particle pollution, long-range transport and economic situation. According to this method, China was divided into four different particulate-pollution control regions: PM Suspended Control Region, PM(10) Pollution Control Region, PM(2.5) Pollution Control Region and PM(10) and PM(2.5) Common Control Region, which accounted for 69.55%, 9.66%, 4.67% and 16.13% of China's territory, respectively. The PM(10) and PM(2.5) Common Control Region was mainly distributed in Bohai Region, Yangtze River Delta, Pearl River Delta, eastern of Sichuan province and Chongqing municipality, calling for immediate control of both PM(10) and PM(2.5). Cost-effective control effects can be achieved through concentrating efforts on PM(10) and PM(2.5) Common Control Region to address 60.32% of national PM(10) anthropogenic emissions. Air quality in districts belonging to PM(2.5) Pollution Control Region suggested that Chinese national ambient air quality standard for PM(10) was not strict enough. The result derived from application to China proved that this approach was feasible for mapping pollution control regions for a country with vast territory, complicated pollution characteristics and limited available monitoring data. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-01
EPA Region III has assembled on this CD a multitude of environmental data, in both visual and textual formats. While targeted for Facility Response Planning under the Oil Pollution Act of 1990, this information will prove helpful to anyone in the environmental arena. Specifically, the CD will aid contingency planning and emergency response personnel. Combining innovative GIS technology with EPA`s state-specific data allows you to display maps, find and identify map features, look at tabular information about map features, and print out maps. The CD was designed to be easy to use and incorporates example maps as well as helpmore » sections describing the use of the environmental data on the CD, and introduces you to the IACP Viewer and its capabilities. These help features will make it easy for you to conduct analysis, produce maps, and browse the IACP Plan. The IACP data are included in two formats: shapefiles, which can be viewed with the IACP Viewer or ESRI`s ArcView software (Version 2.1 or higher), and ARC/INFO export files, which can be imported into ARC/INFO or converted to other GIS data formats. Point Data Sources: Sensitive Areas, Surface Drinking Water Intakes, Groundwater Intakes, Groundwater Supply Facilities, NPL (National Priority List) Sites, FRP (Facility Response Plan) Facilities, NPDES (National Pollutant Discharge Elimination System) Facilities, Hospitals, RCRA (Resource Conservation and Recovery Act) Sites, TRI (Toxic Release Inventory) Sites, CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) Sites Line Data Sources: TIGER Roads, TIGER Railroads, TIGER Hydrography, Pipelines Polygon Data Sources: State Boundaries, County Boundaries, Watershed Boundaries (8-digit HUC), TIGER Hydrography, Public Lands, Populated Places, IACP Boundaries, Coast Guard Boundaries, Forest Types, US Congressional Districts, One-half Mile Buffer of Surface Drinking Water Intakes.« less
Minelli, Cosetta; Wei, Igor; Sagoo, Gurdeep; Jarvis, Debbie; Shaheen, Seif; Burney, Peter
2011-03-15
Susceptibility to the respiratory effects of air pollution varies between individuals. Although some evidence suggests higher susceptibility for subjects carrying variants of antioxidant genes, findings from gene-pollution interaction studies conflict in terms of the presence and direction of interactions. The authors conducted a systematic review on antioxidant gene-pollution interactions which included 15 studies, with 12 supporting the presence of interactions. For the glutathione S-transferase M1 gene (GSTM1) (n=10 studies), only 1 study found interaction with the null genotype alone, although 5 observed interactions when GSTM1 was evaluated jointly with other genes (mainly NAD(P)H dehydrogenase [quinone] 1 (NQO1)). All studies on the glutathione S-transferase P1 (GSTP1) Ile105Val polymorphism (n=11) provided some evidence of interaction, but findings conflicted in terms of risk allele. Results were negative for glutathione S-transferase T1 (GSTT1) (n=3) and positive for heme oxygenase 1 (HMOX-1) (n=2). Meta-analysis could not be performed because there were insufficient data available for any specific gene-pollutant-outcome combination. Overall the evidence supports the presence of gene-pollution interactions, although which pollutant interacts with which gene is unclear. However, issues regarding multiple testing, selective reporting, and publication bias raise the possibility of false-positive findings. Larger studies with greater accuracy of pollution assessment and improved quality of conduct and reporting are required. © The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved.
A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion
NASA Astrophysics Data System (ADS)
Park, S. J.; Kim, J.
2014-12-01
In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.
GLOBE at Night: Raising Public Awareness and Involvement through Citizen Science
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.; Sparks, R. T.
2010-12-01
With half of the world’s population now living in cities, many urban dwellers have never experienced the wonderment of pristinely dark skies and maybe never will. Light pollution is obscuring people’s long-standing natural heritage to view stars. The GLOBE at Night program (www.globeatnight.org) is an international citizen-science campaign to raise public awareness of the impact of light pollution by encouraging everyone everywhere to measure local levels of night sky brightness and contribute observations online to a world map. In the last 5 years, GLOBE at Night has been the most productive public light pollution monitoring campaign, collecting over 52,000 observations in a two-week period annually. This year, during the moonless two weeks in March, the campaign set a record high of over 17,800 measurements from people in 86 countries. Foundational resources are available to facilitate the public’s participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and “Dark Skies Rangers” activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how you can participate in a citizen-science star-hunt like GLOBE at Night. In addition, projects are being developed for what to do with the data once it is taken. The GLOBE at Night data from different years can be compared to look for trends over time or with population density maps. The data can also be used to search for dark sky oases or to monitor lighting ordinance compliance. Most recently the data has been compared with telemetry of the Lesser Long-Nose Bat near Tucson, Arizona to examine whether or not the bats are preferentially staying in darker areas. The presentation will highlight the education and outreach value of the program’s resources and outcomes in communicating awareness with the public and attracting young people to study science.
NASA Astrophysics Data System (ADS)
Lefèvre, Roger; Ionescu, Anda; Desplat, Julien; Kounkou-Arnaud, Raphaëlle; Perrussel, Olivier; Languille, Baptiste
2016-04-01
Quantitative impact of the recent abatement of air pollution on the weathering of stone and glass of the UNESCO List in Paris R.-A. Lefèvre1, A. Ionescu1, J. Desplat2, R. Kounkou-Arnaud2, O. Perrussel3, B. Languille4 At the beginning of the 21st century air pollution in Paris continued to considerably decrease. An evident visual consequence was the replacement of thick gypseous black crusts by thin grey coverings on the façades. A quantitative approach of this phenomenon was taken by measurement in the field, followed by calculation using Dose-Response Functions (DRF) and mapping the geographic distribution on a grid of 100m x100m of: 1) The total surface of façades of buildings and monuments in the part of Paris inscribed on the UNESCO List between the Ile Saint-Louis and the Concorde Square; 2) The surface of limestone and window glass present on each façade; 3) The distribution of SO2, NO2 and PM10 concentration every year from 1997 to 2014; 4) The response of materials to climatic and pollution doses; 5) The effective damage to limestone and window glass. Results of measurements in the field: 1) The 772 buildings and monuments inventoried have 20 674 m in length and 414 811 m2 in façade surface: they are representative of the centre of Paris; 2) Limestone occupies 348 268 m2 and window glass 207 394 m2; 3) The mean annual concentration in SO2 dropped from 20 to less than 3 μg m-3; NO2 from 60 to 40 μg m-3 and PM10 from 30 to 20 μg m-3. Results by application of DRF: 4) Limestone recession was divided by 5 in 18 years, from 10 to 2 μm y-1, but with only a spatial variation of 2%; 5) Limestone reflectance increased from 70.5 to 72.5 %; 6) The annual mass of deposited and neo-formed particles on window glass decreased from 100 to 20 μg cm-2; 7) The annual haze of window glass decreased from 8 to 3.5%. Effective damage to stone and glass: 8) The mean annual mass of limestone eroded on the façades decreased according to time but with an irregular geographic distribution from 348 to 22 kg by cell of the map; 9) The mean annual mass of particles deposited or neo-formed on window glass decreased according to time but with an irregular geographic distribution from 4.7 to 0.1 kg by cell of the map. Conclusion. The abatement of air pollution observed in Paris at the beginning of the 21st century had a direct consequence on the weathering of stone and glass. It is quantitatively highlighted in this study.
Mapping Air Quality Index of Carbon Monoxide (CO) in Medan City
NASA Astrophysics Data System (ADS)
Suryati, I.; Khair, H.
2017-03-01
This study aims to map and analyze air quality index of carbon monoxide (CO) in Medan City. This research used 12 (twelve) sampling points around in Medan with an hour duration each point. CO concentration was analyzed using the NDIR CO Analyzer sampling tool. The concentration CO was obtained between 1 ppm - 23 ppm, with an average concentration was 9.5 ppm. This condition is still below the national ambient air quality standard set by Government Regulation of Indonesian Republic Number 41-1999 amounted to 29 ppm. The result of CO concentration measurements was converted into air pollutant standard index, obtained the index value of 58 - 204. Surfer 10 was used to create map of air pollutant standard index for CO. The map illustrates very unhealthy area where located in the Medan Belawan district. The main factors affecting the concentration of CO are from transportation and meteorological factors.
Sites of ozone sensitivity in diverse maize inbred lines
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone (O3) is an air pollutant that costs ~$14-26 billion in global crop losses and is projected to worsen in the future. Potential sites of O3 sensitivity in maize were tested by growing 200 inbred lines, including the nested association mapping population founder lines, under ambient...
NASA Astrophysics Data System (ADS)
Delong, Michael D.; Brusven, Merlyn A.
1991-07-01
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.
NASA Astrophysics Data System (ADS)
Ngo, N. S.; Bao, X.; Zhong, N.
2014-12-01
China is the largest emitter of anthropogenic air pollution in the world and previous work has shown the environmental impacts of the long-range transport (LRT) of air pollution from China to the U.S. via chemical transport models, in situ observations, isentropic back trajectories, and to a lesser extent statistical models. However, these studies generally focus on a narrow time period due to data constraints. In this study, we build upon the literature using econometric techniques to isolate the impacts on U.S. air quality from the LRT of air pollution from China. We use a unique daily data set of China's air pollution index (API) and PM10 concentrations at the city level and merge these information with daily monitor data in California (CA) between 2000 and 2013. We first employ a distributed lag model to examine daily patterns, and then exploit a "natural experiment." In the latter methodology, since air pollution is rarely randomly assigned, we examine the impacts of specific events that affect air quality in China, but are plausibly uncorrelated to factors affecting air pollution in CA. For example, Chinese New Year (CNY) is a major week-long holiday and we show pollution levels in China decrease during this time period, likely from reductions in industrial production. CNY varies each calendar year since it is based off the lunar new year, so the timing of this pollution reduction could be considered "as good as random" or exogenous to factors affecting air quality in CA. Using a regression framework including weather, seasonal and geographic controls, we can potentially isolate the impact of the LRT of air pollution to CA. First, results from the distributed lag model suggest that in the Spring, when LRT peaks, a 1 μg/m3 increase in daily PM10 from China between 10 and 14 days ago is associated with an increase in today's PM2.5 in CA of 0.022 μg/m3 (mean daily PM2.5 in CA is 12 μg/m3). Second, we find that if CNY occurred 5 to 9 days ago, today's PM2.5 in CA decreases by 3 μg/m3. We also conduct other tests and sensitivity checks, like observing impacts from individual cities in China or other events, and using daily leads as a falsification test. Our results have important policy implications regarding the consequences of foreign pollution sources and suggest a causal relationship between pollution from China and air quality in CA.
Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing
2015-08-01
To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.
It has been reported that ambient ozone (O3), either alone or in concurrence with acid rain precursors, accounts for up to 90% of U.S. crop losses resulting from exposure to all major air pollutants. Crop damage due to O3 exposure is of particular concern as...
Laws, M. Barton; Yeh, Yating; Reisner, Ellin; Stone, Kevin; Wang, Tina; Brugge, Doug
2015-01-01
Objectives Studies in the U.S. have found that white men are less concerned about pollution than are women or people of other ethnicity. These studies have not assessed respondents’ proximity to localized sources of pollution. Our objective was to assess lay perceptions of risk from air pollution in an ethnically diverse sample in which proximity to a major perceptible source of pollution is known. Methods Cross sectional interview study of combined area probability and convenience sample of individuals 40 and older in the Boston area, selected according to proximity to high traffic controlled access highways. Results Of 697 respondents 46% were white, 37% Asian (mostly Chinese), 6.3% African-American, 6.3% Latino, and 7.6% other ethnicity. While white respondents, and particularly white men, were less concerned about air pollution than others, this effect disappeared when controlling for distance from the highway. White men were slightly less supportive than others of government policy to control pollution Conclusions The “white male” effect may in part be accounted for by the greater likelihood of minority respondents to live near perceptible localized sources of pollution. PMID:25822317
Communities are concerned over pollution levels and seek methods to systematically identify and prioritize the environmental stressors in their communities. Geographic information system (GIS) maps of environmental information can be useful tools for communities in their assessm...
NASA Astrophysics Data System (ADS)
Bahino, Julien; Yoboué, Véronique; Galy-Lacaux, Corinne; Adon, Marcellin; Akpo, Aristide; Keita, Sékou; Liousse, Cathy; Gardrat, Eric; Chiron, Christelle; Ossohou, Money; Gnamien, Sylvain; Djossou, Julien
2018-04-01
This work is part of the DACCIWA FP7 project (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) in the framework of the Work Package 2 Air Pollution and Health
. This study aims to characterize urban air pollution levels through the measurement of NO2, SO2, NH3, HNO3 and O3 in Abidjan, the economic capital of Côte d'Ivoire. Measurements of inorganic gaseous pollutants, i.e. NO2, SO2, NH3, HNO3 and O3 were performed in Abidjan during an intensive campaign within the dry season (15 December 2015 to 16 February 2016), using INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) passive samplers exposed in duplicate for 2-week periods. Twenty-one sites were selected in the district of Abidjan to be representative of various anthropogenic and natural sources of air pollution in the city. Results from this intensive campaign show that gas concentrations are strongly linked to surrounding pollution sources and show a high spatial variability. Also, NH3, NO2 and O3 gases were present at relatively higher concentrations at all the sites. NH3 average concentrations varied between 9.1 ± 1.7 ppb at a suburban site and 102.1 ± 9.1 ppb at a domestic fires site. NO2 mean concentration varied from 2.7 ± 0.1 ppb at a suburban site to 25.0 ± 1.7 ppb at an industrial site. Moreover, we measured the highest O3 concentration at the two coastal sites of Gonzagueville and Félix-Houphouët-Boigny International Airport located in the southeast of the city, with average concentrations of 19.1 ± 1.7 and 18.8 ± 3.0 ppb, respectively. The SO2 average concentration never exceeded 7.2 ± 1.2 ppb over all the sites, with 71.5 % of the sampling sites showing concentrations ranging between 0.4 and 1.9 ppb. The HNO3 average concentration ranged between 0.2 and 1.4 ppb. All these results were combined with meteorological parameters to provide the first mapping of gaseous pollutants on the scale of the district of Abidjan using geostatistical analysis (ArcGIS software). Spatial distribution results emphasize the importance of the domestic fires source and the significant impact of the traffic emissions on the scale of the city. In addition, in this work we propose a first overview of gaseous SO2 and NO2 concentrations on the scale of several African cities by comparing literature to our values. The daily SO2 standard of World Health Organization (WHO) is exceeded in most of the cities reported in the overview, with concentrations ranging from 0.2 to 3662 µg m-3. Annual NO2 concentrations ranged from 2 to 175 µg m-3, which are lower than the WHO threshold. As a conclusion, this study constitutes an original database to characterize urban air pollution and a first attempt towards presenting a spatial distribution of the pollution levels at the scale of the metropolis of Abidjan. This work should draw the attention of the African public authorities to the necessity of building an air quality monitoring network in order to (1) to define national standards and to better control the pollutants emissions and (2) to investigate the impact on the health of the growing population in developing African countries.
Song, Chen; Liu, Xiaoling; Song, Yonghui; Liu, Ruixia; Gao, Hongjie; Han, Lu; Peng, Jianfeng
2017-09-15
Elimination of black-stinking water contamination has been listed as an urgent task in the Water pollution prevention action plan promulgated by State Council of China. However, the key blackening and stinking pollutants and their sources are still unclear. In this study, water quality of a black-stinking urban river in Beijing, Dongsha River, was evaluated firstly; then the distribution of the blackening and stinking pollutants was investigated, and the key pollutants and their potential sources were identified; and finally, the health risk of those pollutants was assessed. The results showed that NH 3 N, total phosphorus, dissolved oxygen and chemical oxygen demand ranged from 1.3 to 5.3 mg/L, 0.7-3.0 mg/L, 1.0-3.2 mg/L and 29-104 mg/L, respectively. The value of TP-based trophic level index indicated that Dongsha River reached severe eutrophication level; the maximum value of chroma and odor level reached 32 and 4, respectively. The main dissolved organic compounds included aromatic protein II, soluble microbiological metabolites, fulvic acids and humic acids. The blackening pollutants Fe, Mn, Cu and S 2- were extensively detected, with significantly spatial differences along the river. Dimethyl sulfide, β-ionone, 2-methylisoborneol and geosmin were identified to be the stinking pollutants. Their concentrations covered wide ranges, and even the lowest concentration value was thousands of times higher than its olfactory threshold. Correlation analysis indicated that in the overlaying water S 2- was the key blackening pollutant, while β-ionone and geosmin were the key stinking pollutants. Principal components analysis combining with the site survey revealed their potential sources. S 2- was mainly associated with the decomposition of endogenous sulfur-containing organics; β-ionone might be generated by the endogenous β-carotene bio-conversion and the exogenous discharges, while geosmin might originate from the endogenous humus bio-conversion and anthropic wastes. Furthermore, multi-metals in the sediment posed health risks to children, while dimethyl sulfide had non-cancer health risk for adults and children. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mfumu Kihumba, Antoine; Vanclooster, Marnik; Ndembo Longo, Jean
2017-02-01
This study assessed the vulnerability of groundwater against pollution in the Kinshasa region, DR Congo, as a support of a groundwater protection program. The parametric vulnerability model (DRASTIC) was modified and calibrated to predict the intrinsic vulnerability as well as the groundwater pollution risk. The method uses groundwater body specific parameters for the calibration of the factor ratings and weightings of the original DRASTIC model. These groundwater specific parameters are inferred from the statistical relation between the original DRASTIC model and observed nitrate pollution for a specific period. In addition, site-specific land use parameters are integrated into the method. The method is fully embedded in a Geographic Information System (GIS). Following these modifications, the correlation coefficient between groundwater pollution risk and observed nitrate concentrations for the 2013-2014 survey improved from r = 0.42, for the original DRASTIC model, to r = 0.61 for the calibrated model. As a way to validate this pollution risk map, observed nitrate concentrations from another survey (2008) are compared to pollution risk indices showing a good degree of coincidence with r = 0.51. The study shows that a calibration of a vulnerability model is recommended when vulnerability maps are used for groundwater resource management and land use planning at the regional scale and that it is adapted to a specific area.
NASA Astrophysics Data System (ADS)
Thompson, A. M.; Stauffer, R. M.; Young, G. S.
2015-12-01
Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O3 is twice the mean O3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O3 averages can be a poor choice for a climatology.
Description of industrial pollution in Spain
García-Pérez, Javier; Boldo, Elena; Ramis, Rebeca; Pollán, Marina; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo
2007-01-01
Background Toxic substances released into the environment (to both air and water) by many types of industries might be related with the occurrence of some malignant tumours and other diseases. The publication of the EPER (European Pollutant Emission Register) Spanish data allows to investigate the presence of geographical mortality patterns related to industrial pollution. The aim of this paper is to describe industrial air and water pollution in Spain in 2001, broken down by activity group and specific pollutant, and to plot maps depicting emissions of carcinogenic substances. Methods All information on industrial pollution discharge in 2001 was drawn from EPER-Spain public records provided by the European Commission server. We described the distribution of the number of industries and amounts discharged for each pollutant, as well as emission by pollutant group and the industrial activities associated with each pollutant. Maps of Spain were drawn up, with UTM coordinates being used to plot pollutant foci, and circles with an area proportional to the emission to depict pollution emission values. Results The EPER-Spain contained information on 1,437 industrial installations. The industrial plants that discharge pollutant substances into air and water above the pollutant-specific EPER threshold were mainly situated in the Autonomous Regions of Aragon, Andalusia and Catalonia and in Catalonia, the Basque Country and Andalusia respectively. Pollution released in 2001 into air approached 158 million Mt. Emissions into water were over 8 million Mt. Conclusion A few single industrial plants are responsible for the highest percentage of emissions, thus rendering monitoring of their possible health impact on the surrounding population that much simpler. Among European countries Spain is the leading polluter in almost one third of all EPER-registered pollutant substances released into the air and ranks among the top three leading polluters in two-thirds of all such substances. Information obtained through publication of EPER data means that the possible consequences of reported pollutant foci on the health of neighbouring populations can now be studied. PMID:17376231
Ecogeochemical mapping of urban soils as a tool for indication of risk factors
NASA Astrophysics Data System (ADS)
Sahakyan, Lilit; Saghetalyan, Armen; Asmaryan, Shushanik
2010-05-01
Today, most global and local environmental issues are connected with the disturbance of natural equilibrium of chemical elements, which is manifested by two contrary but synchronous and interconnected geochemical processes: dispersion and concentration of chemical elements. The ecological consequence of those intensively running processes is pollution of environmental compartments. High intensity and multi-component character of pollution is common to urban ecosystems. In this respect emphasized should be mining centers representing biogeochemical provinces where the whole range of geochemical processes connected with socio-economic activities of the man reaches its maximum and high natural background of chemical elements is coupled with their man-made load. Ecogeochemical mapping of soils of mining regions and cities is one of major tools while assessing ecological state of the territory and indicating risk factors. When systemizing indices of geochemical pollution, the produced case specific maps coupled with ecogeochemical mapping techniques are territorial generalization of levels of pollution and levels of its danger. This allows indicating its spatial differentiation and finally ranging the city's territory by features of the defined level of ecological risk. Moreover, ecogeochemical mapping of soils allows indicating dominating pollutants, peculiarities of their distribution and major risk factors as well and thus revealing risk groups in the population. An alternative method of ecogeochemical mapping of urban soils which allows to notably reduce the process of pollution level assessment and identification of risk factor is that of remote sensing. Collation between spatially conjugated data of soil analyses and multi-zonal satellite images allows developing spectral characteristics (signatures) of pollution of the territory with heavy metals (HM) and development of appropriate assessment criteria which may be reflected as diverse case specific maps. This work considers the outcomes of application of ecogeochemical mapping of urban soils while revealing risk factors on a case of one of Armenia's mining centers - the city of Kajaran. It lies within the bounds of sulfide copper-molybdenum deposit, on which base a mining and dressing set of plants - a city-forming enterprise - operates. As established, the city's territory is polluted predominantly with major ore elements: Mo, Cu. At the same time locally indicated are anomalies of a series of elements found in the ore in insignificant concentrations: As, Hg, Cd. Proceeding from fact that soils are indicators of atmospheric pollution, investigated were HM contents in dust. As established, the dust of the quarry and tailing repositories contains high contents of Cu, Mo, Zn and also Hg, As, Cd. The assessment of farm crops cultivated on polluted soils indicated Mo, Cu, Pb, Ni, Cr, Zn, Hg excesses vs. MPC in potatoes, beans, beetroot and dill. Thus, the dust of the quarry and tailing repositories and farm crops has been defined as the major risk factors. Data on detailed above-surface investigations with clear spatial and temporal coordination were collated with multi-zonal satellite images (Landsat ETM +28m) of the territory. As a result spectral signatures have been obtained which allows differentiation of the territory by the value of summary pollution with HM.
Developing a Clinical Approach to Air Pollution and Cardiovascular Health.
Hadley, Michael B; Baumgartner, Jill; Vedanthan, Rajesh
2018-02-13
Nearly 3 billion people are exposed to household air pollution emitted from inefficient cooking and heating stoves, and almost the entire global population is exposed to detectable levels of outdoor air pollution from traffic, industry, and other sources. Over 3 million people die annually of ischemic heart disease or stroke attributed to air pollution, more than from traditional cardiac risk factors such as obesity, diabetes mellitus, or smoking. Clinicians have a role to play in reducing the burden of pollution-attributable cardiovascular disease. However, there currently exists no clear clinical approach to this problem. Here, we provide a blueprint for an evidence-based clinical approach to assessing and mitigating cardiovascular risk from exposure to air pollution. We begin with a discussion of the global burden of pollution-attributable cardiovascular disease, including a review of the mechanisms by which particulate matter air pollution leads to cardiovascular outcomes. Next, we offer a simple patient-screening tool using known risk factors for pollution exposure. We then discuss approaches to quantifying air pollution exposures and cardiovascular risk, including the development of risk maps for clinical catchment areas. We review a collection of interventions for household and outdoor air pollution, which clinicians can tailor to patients and populations at risk. Finally, we identify future research needed to quantify pollution exposures and validate clinical interventions. Overall, we demonstrate that clinicians can be empowered to mitigate the global burden of cardiovascular disease attributable to air pollution. © 2018 American Heart Association, Inc.
Onshore and offshore geologic map of the Coal Oil Point area, southern California
Dartnell, Pete; Conrad, James E.; Stanley, Richard G.; Guy R. Cochrane, Guy R.
2011-01-01
Geologic maps that span the shoreline and include both onshore and offshore areas are potentially valuable tools that can lead to a more in depth understanding of coastal environments. Such maps can contribute to the understanding of shoreline change, geologic hazards, both offshore and along-shore sediment and pollutant transport. They are also useful in assessing geologic and biologic resources. Several intermediate-scale (1:100,000) geologic maps that include both onshore and offshore areas (herein called onshore-offshore geologic maps) have been produced of areas along the California coast (see Saucedo and others, 2003; Kennedy and others, 2007; Kennedy and Tan, 2008), but few large-scale (1:24,000) maps have been produced that can address local coastal issues. A cooperative project between Federal and State agencies and universities has produced an onshore-offshore geologic map at 1:24,000 scale of the Coal Oil Point area and part of the Santa Barbara Channel, southern California (fig. 1). As part of the project, the U.S. Geological Survey (USGS) and the California Geological Survey (CGS) hosted a workshop (May 2nd and 3rd, 2007) for producers and users of coastal map products (see list of participants) to develop a consensus on the content and format of onshore-offshore geologic maps (and accompanying GIS files) so that they have relevance for coastal-zone management. The USGS and CGS are working to develop coastal maps that combine geospatial information from offshore and onshore and serve as an important tool for addressing a broad range of coastal-zone management issues. The workshop was divided into sessions for presentations and discussion of bathymetry and topography, geology, and habitat products and needs of end users. During the workshop, participants reviewed existing maps and discussed their merits and shortcomings. This report addresses a number of items discussed in the workshop and details the onshore and offshore geologic map of the Coal Oil Point area. Results from this report directly address issues raised in the California Ocean Protection Act (COPA) Five Year Strategic Plan. For example, one of the guiding principles of the COPA five-year strategic plan is to 'Recognize the interconnectedness of the land and the sea, supporting sustainable uses of the coast and ensuring the health of ecosystems.' Results from this USGS report directly connect the land and sea with the creation of both a seamless onshore and offshore digital terrain model (DTM) and geologic map. One of the priority goals (and objectives) of the COPA plan is to 'monitor and map the ocean environment to provide data about conditions and trends.' Maps within this report provide land and sea geologic information for mapping and monitoring nearshore sediment processes, pollution transport, and sea-level rise and fall.
Tuysuz, Burak; Mahmutoglu, Yigit
2017-01-01
Electromagnetic pollution caused by mobile communication devices, a new form of environmental pollution, has been one of the most concerning problems to date. Consequences of long-term exposure to the electromagnetic radiation caused by cell phone towers are still unknown and can potentially be a new health hazard. It is important to measure, analyze and map the electromagnetic radiation levels periodically because of the potential risks. The electromagnetic pollution maps can be used for the detection of diseases caused by the radiation. With the help of the radiation maps of different regions, comparative analysis can be provided and distribution of the diseases can be investigated. In this article, Global System for Mobile communication (GSM)-based electromagnetic pollution map of the Rize Providence, which has high cancer rates because of the Chernobyl nuclear explosion, is generated. First, locations of the GSM base stations are identified and according to the antenna types of the base stations, safety distances are determined. Subsequently, 155 measurements are taken during November 2014 from the nearest living quarters of the Rize city center in Turkey. The measurements are then assessed statistically. Thenceforth, for visual judgment of the determined statistics, collected measurements are presented on the map. It is observed that national limits are not exceeded, but it is also discovered that the safety distance is waived at some of the measurement points and above the average radiation levels are noted. Even if the national limits are not exceeded, the long-term effects of the exposition to the electromagnetic radiation can cause serious health problems.
Abandoned mine slags analysis by EPMA WDS X-ray mapping
NASA Astrophysics Data System (ADS)
Guimarães, F.; Rosado, L.; Morais, C.; Candeias, A. E.; Pinto, A. P.; Mirão, J.
2010-02-01
Mining activity on the Iberian Pyritic Belt (Portugal and Spain) started before Phoenician times, became particularly intense during the Roman occupation of the Iberian Peninsula (for gold), and after the industrial revolution (for gold, copper, zinc, lead and sulphur). The commonest ore of this region is a massive polymetalic sulphide accumulation, where pyrite (FeS2) is the main mineral, with variable concentrations of chalcopyrite (CuFeS2), sphalerite (ZnS), galena (PbS), arsenopyrite (FeAsS2), other sulphides and sulfosalts which include minor elements like Mn, Co, Ni, Se, Cd, Sb, Te, Hg and Bi. Some of the main and minor elements of these ores are hazardous and the drainage basins of pollutant source areas often induce health concerns in the resident population. Electron probe microanalysis study followed previous optical and XRD analysis of the slags. The study focused on the identification of phases how sulphide and metallic phases are distributed within the material and infer about leachable elements during weathering. Electron probe X-ray maps show evidences of different behaviour between the elements: Ca and Zn are completely leached; iron is retained in oxyhydroxides, lead and arsenic precipitate as sulphates. Electron probe microanalysis studies are essential to understand complex materials as earth materials. Nevertheless, care is required to a correct interpretation of data and most quantitative compositional data are not trustworthy.
Lidar mapping of atmospheric atomic mercury in the Wanshan area, China.
Lian, Ming; Shang, Lihai; Duan, Zheng; Li, Yiyun; Zhao, Guangyu; Zhu, Shiming; Qiu, Guangle; Meng, Bo; Sommar, Jonas; Feng, Xinbin; Svanberg, Sune
2018-05-08
A novel mobile laser radar system was used for mapping gaseous atomic mercury (Hg 0 ) atmospheric pollution in the Wanshan district, south of Tongren City, Guizhou Province, China. This area is heavily impacted by legacy mercury from now abandoned mining activities. Differential absorption lidar measurements were supplemented by localized point monitoring using a Lumex RA-915M Zeeman modulation mercury analyzer. Range-resolved concentration measurements in different directions were performed. Concentrations in the lower atmospheric layers often exceeded levels of 100 ng/m 3 for March conditions with temperature ranging from 5 °C to 20 °C. A flux measurement of Hg 0 over a vertical cross section of 0.12 km 2 resulted in about 29 g/h. Vertical lidar sounding at night revealed quickly falling Hg 0 concentrations with height. This is the first lidar mapping demonstration in a heavily mercury-polluted area in China, illustrating the lidar potential in complementing point monitors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël
2018-03-01
The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (P<0.01). During the first rainfall event, the longest and most intense rainfall pattern yielded the largest export of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.
Teaching Air Pollution in an Authentic Context
NASA Astrophysics Data System (ADS)
Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine
2017-04-01
This paper describes a teaching-learning sequence (TLS) about air pollution and the findings resulting from its implementation by pre-service elementary teachers (PET) currently undergraduate students of the Department of Primary Education in the National and Kapodistrian University of Athens, Greece. The TLS focused on the relation of air pollution with wind and topography in local conditions. An authentic context was provided to the students based on daily up-to-date meteorological data via the Internet in order to estimate air pollution. The results are encouraging given that PET can correlate wind and concentration of air pollutants through reading specialized angular diagrams and weather maps, can recognize the correlation of topography in the concentration of air pollutants, and can describe temperature inversion. However, the PET demonstrated clear difficulties in ability of orientation, in wind naming, and in interpretation of symbols on weather map. Finally, the implications on teaching air pollution are discussed.
Gonzales, Mildred C; Yu, Pojui; Shiao, S Pamela K
The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways. The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer. For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses. We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype. We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations.
Kim, Byunghyuk; Lee, Se-Eun; Song, Mi-Young; Choi, Jung-Hye; Ahn, Soon-Mo; Lee, Kun-Seop; Cho, Eungchun; Chon, Tae-Soo; Koh, Sung-Cheol
2008-02-01
This study was performed to gain an understanding of the structural and functional relationships between inter-taxa communities (macroinvertebrates as consumers, and microbes as decomposers or preys for the invertebrates) in a polluted stream using artificial neural networks techniques. Sediment samples, carrying microorganisms (eubacteria) and macroinvertebrates, were seasonally collected from similar habitats in streams with different levels of pollution. Microbial community taxa and densities were determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA sequence analysis techniques. The identity and density of macroinvertebrates were concurrently determined. In general, differences were observed on grouping by self-organizing map (SOM) in polluted, clean and recovering sites based on the microbial densities, while the community patterns were partly dependent on the sampling period. A Spearman rank order correlation analysis revealed correlations of several eubacterial species with those of macroinvertebrates: a negative correlation was observed between Acidovorax sp. (from polluted sites) and Gammaridae (mostly from the clean site), while Herbaspirillum sp. and Janthinobacterium sp. appeared to have positive correlations with some macroinvertebrate species. The population dynamics of the tolerant texa, Tubificidae and Chironomidae, appeared to be related with changes in the densities of Acidovorax sp. This study revealed community relationships between macroinvertebrates and microorganisms, reflecting the connectivity between the two communities via the food chain. A further physio-ecological and symbiological study on the invertebrate-microorganism relationships will be required to understand the degradation and utilization of detritus in aquatic ecosystems as well as to elucidate the roles of the inter-taxa in the recovery of polluted aquatic environments.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-03-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant (p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant (p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Astrophysics Data System (ADS)
Abdulkareem, Jabir Haruna; Sulaiman, Wan Nor Azmin; Pradhan, Biswajeet; Jamil, Nor Rohaizah
2018-05-01
The contribution of non-point source pollution (NPS) to the contamination of surface water is an issue of growing concern. Non-point source (NPS) pollutants are of various types and altered by several site-specific factors making them difficult to control due to complex uncertainties involve in their behavior. Kelantan River basin, Malaysia is a tropical catchment receiving heavy monsoon rainfall coupled with intense land use/land cover (LULC) changes making the area consistently flood prone thereby deteriorating the surface water quality in the area. This study was conducted to determine the spatio-temporal variation of NPS pollutant loads among different LULC changes and to establish a NPS pollutant loads relationships among LULC conditions and sub-basins in each catchment. Four pollutants parameters such as total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN) and ammonia nitrogen (AN) were chosen with their corresponding event mean concentration values (EMC). Soil map and LULC change maps corresponding to 1984, 2002 and 2013 were used for the calculation of runoff and NPS pollutant loads using numeric integration in a GIS environment. Analysis of Variance (ANOVA) was conducted for the comparison of NPS pollutant loads among the three LULC conditions used and the sub-basins in each catchment. The results showed that the spatio-temporal variation of pollutant loads in almost all the catchments increased with changes in LULC condition as one moves from 1984 to 2013, with 2013 LULC condition found as the dominant in almost all cases. NPS pollutant loads among different LULC changes also increased with changes in LULC condition from 1984 to 2013. While urbanization was found to be the dominant LULC change with the highest pollutant load in all the catchments. Results from ANOVA reveals that statistically most significant ( p < 0.05) pollutant loads were obtained from 2013 LULC conditions, while statistically least significant ( p < 0.05) pollutant loads were obtained under 1984 LULC condition. This reveals the clear effect of LULC changes on NPS pollution. The findings of this study may be useful to water resource planners in controlling water pollution for future planning.
NASA Technical Reports Server (NTRS)
Clegg, R. H.; Scherz, J. P.
1975-01-01
Successful aerial photography depends on aerial cameras providing acceptable photographs within cost restrictions of the job. For topographic mapping where ultimate accuracy is required only large format mapping cameras will suffice. For mapping environmental patterns of vegetation, soils, or water pollution, 9-inch cameras often exceed accuracy and cost requirements, and small formats may be better. In choosing the best camera for environmental mapping, relative capabilities and costs must be understood. This study compares resolution, photo interpretation potential, metric accuracy, and cost of 9-inch, 70mm, and 35mm cameras for obtaining simultaneous color and color infrared photography for environmental mapping purposes.
Khuzestani, Reza Bashiri; Schauer, James J; Shang, Jing; Cai, Tianqi; Fang, Dongqing; Wei, Yongjie; Zhang, Lulu; Zhang, Yuanxun
2018-05-01
The Ordos region in the southwestern part of Inner Mongolia experiences frequent PM concentrations in excess of the national PM 2.5 air quality standards. In order to determine the key sources of PM 2.5 contributing to these pollution episodes, the main sources of PM 2.5 OC during elevated PM episodes in the Inner Mongolia were analyzed and compared with non-polluted days. This will provide insight to the main sources of particulate matter pollution during the high-pollution episodes and the effective seasonal strategies to control sources of particulate matter during months and with the highest PM concentrations that need to be controlled. The PMF source contributions to OC demonstrated that the industrial/coal combustion (4762.77 ± 1061.54 versus 2726.49 ± 469.75 ng/m 3 ; p < 0.001) and mobile source factors (4651.14 ± 681.82 versus 2605.55 ± 276.50 ng/m 3 ; p value < 0.001) showed greater contributions to the elevated concentrations during the episode. The spatial analysis of secondary organic carbon (SOC) factors, regional biomass burning, and biogenic sources did not show significant difference in the pollution episodes and the non-polluted months. In addition, the bivariate polar plots and CWT maps of the industrial/coal combustion and mobile illustrated a regional long-range transport patterns from the external sources to the study area, however, adjacent areas were mostly controlling the contributions of these factors during the PM elevated episodes. The SOC sources, regional biomass burning, and biogenic sources illustrated a regional long-range transport with similar locations found during the elevated pollution episodes compared to the normal situations.
PM 0,5 and Health effects in an extreme pollution episode
NASA Astrophysics Data System (ADS)
Grigoropoulos, K. N.; Nastos, P. T.; Gialouris, A.; Zontanos, M.; Saratsiotis, D.; Mavroidakos, J.; Khan, U.; Tissera, W. A.
2009-04-01
The mega cities' pollution problem during the last two decades, occupied the whole European scientific community, Asia and the U.S.A. The atmosphere remains suffocating due to rapid industrial development and the ever increasing traffic. Registered health problems are numerous and dramatic in all ages groups, but particularly in infants, old people and patients suffering chronic diseases. After 1980 many governments applied restrictions to maintain a clearer atmosphere. Particulate matters are everywhere, they are inhaled, they enter the lungs, migrate through the blood stream and finally, they deposit in several organs which leads to severe consequences. Wind remains the only restraining factor of PM concentrations, but this is not the desired solution. The issue of atmospheric pollution and its influence on health are both the main aim of this study, which consists of monitoring and mapping PM 0.5 in six areas of Athens and examining the relation of the quantity inhaled by pedestrians and number of health incidents during an acute pollution episode in GAA in November 2008.In this empirical model, values of PM inhaled by humans at a height of two metres above ground are shown as number/ litre and μg/m3. In fact, a lot of patients appeared in the city's hospital emergency centres needing assistance. Most of them exhibit the PM symptomatology which includes: dyspnea, dry cough, lacrimation, headache, arrhythmias. This symptoms are firstly by K.N.Grigoropoulos et al. 2008 (Fresenious Environment Bulletin issue b September 2008.pp 1426-1431) Although this situation is already widely known to everyone, governments continue to ignore it systematically. The time is probably right for the European Community to apply restrictions on PM1.
Efficiency of producing anion and relative humidity of the indigenous woody plants in Jeju islands
NASA Astrophysics Data System (ADS)
Son, S.-G.; Kim, K.-J.; Kim, H.-J.; Kim, C.-M.; Byun, K.-O.
2009-04-01
This study is to evaluate the ability of interior plants to produce anion and relative humidity that can purify polluted indoor air. Four indigenous woody plants in Jeju islands such as Sarcandra glaber (Thunb.) Nakai, Illicium anisatum L, Cleyera japonica Thunb. and Ilex rotunda Thunb. were used. Sansevieria trifasciata cv. Laurentii was also used as a comparative plant. The amount of anion and increment of relative humidity produced by five species of indoor plants was assessed by anion measurement (ITC-201A)in a sealed acryl chamber (118Ã-118Ã-119.5cm). The highest amount of anion was 515 ea/cm3produced by I. rotunda. The amounts of anion were 293 ea/cm3, 273 ea/cm3, and 211 ea/cm3 in S. glaber, I. anisatum and C. japonica, respecively while it was 220 ea/cm3 in S. trifasciata. The increment of relative humidity was highest in I. anisatum as 27.4% while it was lowest in S. trifasciata as 14.0%. This result suggested that all four indigenous plants tested were more effective to purify the indoor polluted air than S. trifasciata. Key words: interior plant, S. glaber, I. anisatum, C. japonica, I. rotunda, indoor polluted air
Chen, Li; Shi, Mengshuang; Gao, Shuang; Li, Suhuan; Mao, Jian; Zhang, Hui; Sun, Yanling; Bai, Zhipeng; Wang, Zhongliang
2017-02-01
Along with the rapid socioeconomic development, air pollution in China has become a severe problem. One component of air pollution, in particular, PM 2.5 has aroused wide public concern because of its high concentration. In this study, data were collected from over 900 monitoring sites of the newly constructed PM 2.5 monitoring network in China. The interpolation methods were used to simulate the PM 2.5 exposure level of China especially in rural areas, thus reflecting the spatial variation of PM 2.5 pollution. We calculated the health benefit caused by PM 2.5 in China in 2014 based on Environmental Benefits Mapping and Analysis Program (BenMAP), assuming achievement of China National Ambient Air Quality Standard (No. GB3095-2012). By reducing the annual average concentration of PM 2.5 to the annual Grade II standard (35 μg/m 3 ), the avoided deaths for cardiovascular disease, respiratory disease and lung cancer could reach 89,000 (95% CI, 8000-170,000), 47,000 (95% CI, 3000-91,000) and 32,000 (95% CI, 6000-58,000) per year using long term health function, respectively. The attributable fractions of cardiovascular disease, respiratory disease and lung cancer to all cause were 42%, 22% and 15%, respectively. The total economic benefits for rolling back the concentration of PM 2.5 to the level of 35 μg/m 3 were estimated to be 260 (95%CI: (73, 440) billion RMB and 72 (95%CI: (45, 99) billion RMB using willingness to pay (WTP) and human capital (HC) methods, respectively, which account for 0.40% (95%CI: (0.11%, 0.69%) and 0.11% (95%CI: (0.07%, 0.15%) of the total annual Gross Domestic Product (GDP) of China in 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adams, Matthew D; Kanaroglou, Pavlos S
2016-03-01
Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved twenty percent of the data to validate the predictions. The models' performances were measured with a coefficient of determination at 0.78 and 0.34 for PM2.5 and NO2, respectively. We apply a relative importance measure to identify the importance of each variable in the neural network to partially overcome the black box issues of neural network models. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of wind on background particle concentrations at truck freight terminals.
Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J
2007-01-01
Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.
Computerized data reduction techniques for nadir viewing remote sensors
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Gormsen, Barbara B.
1985-01-01
Computer resources have been developed for the analysis and reduction of MAPS experimental data from the OSTA-1 payload. The MAPS Research Project is concerned with the measurement of the global distribution of mid-tropospheric carbon monoxide. The measurement technique for the MAPS instrument is based on non-dispersive gas filter radiometer operating in the nadir viewing mode. The MAPS experiment has two passive remote sensing instruments, the prototype instrument which is used to measure tropospheric air pollution from aircraft platforms and the third generation (OSTA) instrument which is used to measure carbon monoxide in the mid and upper troposphere from space platforms. Extensive effort was also expended in support of the MAPS/OSTA-3 shuttle flight. Specific capabilities and resources developed are discussed.
Dmuchowski, Wojciech; Gozdowski, Dariusz; Baczewska, Aneta Helena
2011-12-15
The purpose of this study was to assess the application of several bioindication methods for the monitoring of environmental pollution from Pb and Cd. The study area centered on the town of Olkusz, Poland, which is one of the oldest centers for the metallurgical industry in Europe. The assessment of environmental pollution due to metals was performed using four frequently used bioindication methods: moss-bag (Sphagnum fallax), determination of metal accumulation in Pleurozium schreberi, silver birch foliage, and Scots pine needles. The region of Olkusz, and especially the area surrounding the mining and metallurgical Bolesław complex, was extremely contaminated with Pb and Cd. The results of the investigations are presented as contamination deposition maps. Despite the application of various methods and the resulting diversity of the specific exposure periods for different biomonitors, the spatial distribution of contamination shown on the maps was similar, as confirmed by the statistical analysis of the results. Copyright © 2011 Elsevier B.V. All rights reserved.
Satellite Remote Sensing of Severe Haze Pollution over Eastern China on June, 2012
NASA Astrophysics Data System (ADS)
Christopher, S. A.; Feng, N.; Guo, Y.; Hong, S.
2012-12-01
Severe yellow haze hit a vast portion of Eastern China during the second week on June, 2012, as large area in Hubei, Henan, Hunan, Jiangsu, Anhui, Jiangxi, Shandong, Zhejiang provinces and Shanghai city were covered by lingering haze. This massive haze conditions caused considerable inconvenience to people's daily lives. Previous global air quality studies have also shown that Eastern China is one of regions with highest fine particulate matter (PM2.5) concentrations around the world. In this study, we estimate spatial and temporal variations of PM2.5 concentrations using satellite observations of this severe haze pollution on June, 2012. Satellite derived Aerosol Optical Thickness (AOT), sites measured hourly PM2.5 and meteorological fields from surface are statistically correlated based on a multiple regression model. We also explore the utility of higher spatial resolution aerosol retrieval from MODIS. Both satellite-derived and in-situ values have peak daily mean concentrations of approximately 400 μg m-3 on June 12th, 2012 in the City of Wuhan, which is nearly 10 times of the primary standard of PM2.5 concentration of China's "Ambient Air Quality Standards" (35 μg m-3). Cities in the Eastern China, e.g. Nanjing, Hangzhou and Nanchang, have also witnessed similar peak values, along with heavy smog during the same period. Satellite observations in this case study demonstrate that the transport of smoke plumes can be one of the main drivers of regional haze pollution over Eastern China. Comparing to the U.S., current limited ground-based stations is one of the biggest problem to develop the PM2.5 monitoring program over China. Our results may suggest the potential of combining satellite remote sensing with atmospheric model to map the PM2.5 spatial concentration over the nationwide level, which can further accelerate the construction of PM2.5 monitoring network over China.
[Study on the risk assessment method of regional groundwater pollution].
Yang, Yan; Yu, Yun-Jiang; Wang, Zong-Qing; Li, Ding-Long; Sun, Hong-Wei
2013-02-01
Based on the boundary elements of system risk assessment, the regional groundwater pollution risk assessment index system was preliminarily established, which included: regional groundwater specific vulnerability assessment, the regional pollution sources characteristics assessment and the health risk assessment of regional featured pollutants. The three sub-evaluation systems were coupled with the multi-index comprehensive method, the risk was characterized with the Spatial Analysis of ArcMap, and a new method to evaluate regional groundwater pollution risk that suitable for different parts of natural conditions, different types of pollution was established. Take Changzhou as an example, the risk of shallow groundwater pollution was studied with the new method, and found that the vulnerability index of groundwater in Changzhou is high and distributes unevenly; The distribution of pollution sources is concentrated and has a great impact on groundwater pollution risks; Influenced by the pollutants and pollution sources, the values of health risks are high in the urban area of Changzhou. The pollution risk of shallow groundwater is high and distributes unevenly, and distributes in the north of the line of Anjia-Xuejia-Zhenglu, the center of the city and the southeast, where the human activities are more intense and the pollution sources are intensive.
Risco, C; Rubí-Juárez, H; Rodrigo, S; López-Vizcaíno, R; Saez, C; Cañizares, P; Barrera-Díaz, C; Navarro, V; Rodrigo, M A
2016-07-15
This work reports the results of a study in which the remediation of soil that undergoes an accidental discharge of oxyfluorfen is carried out by using electrokinetic soil flushing (EKSF). Two different electrode configurations were tested, consisting of several electrodes surrounding an electrode of different polarity (so-called 1A6C, one anode surrounded by six cathodes, and 1C6A, one cathode surrounded by six cathodes). A pilot plant scale was used (with a soil volume of 175dm(3)) to perform the studies. During the tests, different parameters were measured daily (flowrates, pH, electrical conductivity and herbicide concentration in different sampling positions). Furthermore, at the end of the test, a complete post-mortem analysis was carried out to obtain a 3-D map of the pollution, pH and electrical conductivity in the soil. The results demonstrate that electrode arrangement is a key factor for effective pollutant removal. In fact, the 1A6C configuration improves the removal rate by 41.3% versus the 27.0% obtained by the 1C6A configuration after a period of 35days. Finally, a bench mark comparison of this study of soil remediation polluted with 2,4-D allows for significant conclusions about the scale-up and full-scale application of this technology. Copyright © 2016 Elsevier B.V. All rights reserved.
Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone
Carolyn Hunsaker; Andrzej Bytnerowicz; Jessica Auman; Ricardo Cisneros
2007-01-01
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and...
Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain
NASA Astrophysics Data System (ADS)
Cai, Xingyu; Zhou, Wujie; Cen, Gang; Qiu, Weiwei
2018-06-01
Recent studies have shown that a remarkable distinction exists between human binocular and monocular viewing behaviors. Compared with two-dimensional (2D) saliency detection models, stereoscopic three-dimensional (S3D) image saliency detection is a more challenging task. In this paper, we propose a saliency detection model for S3D images. The final saliency map of this model is constructed from the local quaternion Fourier transform (QFT) sparse feature and global QFT log-Gabor feature. More specifically, the local QFT feature measures the saliency map of an S3D image by analyzing the location of a similar patch. The similar patch is chosen using a sparse representation method. The global saliency map is generated by applying the wake edge-enhanced gradient QFT map through a band-pass filter. The results of experiments on two public datasets show that the proposed model outperforms existing computational saliency models for estimating S3D image saliency.
Finnbjornsdottir, Ragnhildur Gudrun; Oudin, Anna; Elvarsson, Bjarki Thor; Gislason, Thorarinn; Rafnsson, Vilhjalmur
2015-04-08
To study the association between daily mortality and short-term increases in air pollutants, both traffic-related and the geothermal source-specific hydrogen sulfide (H₂S). Population-based, time stratified case-crossover. A lag time to 4 days was considered. Seasonal, gender and age stratification were calculated. Also, the best-fit lag when introducing H₂S >7 µg/m(3) was selected by the Akaike Information Criterion (AIC). The population of the greater Reykjavik area (n=181,558) during 2003-2009. Cases were defined as individuals living in the Reykjavik capital area, 18 years or older (N=138,657), who died due to all natural causes (ICD-10 codes A00-R99) other than injury, poisoning and certain other consequences of external causes, or cardiovascular disease (ICD-10 codes I00-I99) during the study period. Percentage increases in risk of death (IR%) following an interquartile range increase in pollutants. The total number of deaths due to all natural causes was 7679 and due to cardiovascular diseases was 3033. The interquartile range increased concentrations of H₂S (2.6 µg/m(3)) were associated with daily all natural cause mortality in the Reykjavik capital area. The IR% was statistically significant during the summer season (lag 1: IR%=5.05, 95% CI 0.61 to 9.68; lag 2: IR%=5.09, 95% CI 0.44 to 9.97), among males (lag 0: IR%=2.26, 95% CI 0.23 to 4.44), and among the elderly (lag 0: IR%=1.94, 95% CI 0.12 to 1.04; lag 1: IR%=1.99, 95% CI 0.21 to 1.04), when adjusted for traffic-related pollutants and meteorological variables. The traffic-related pollutants were generally not associated with statistical significant IR%s. The results suggest that ambient H₂S air pollution may increase mortality in Reykjavik, Iceland. To the best of our knowledge, ambient H₂S exposure has not previously been associated with increased mortality in population-based studies and therefore the results should be interpreted with caution. Further studies are warranted to confirm or refute whether H₂S exposure induces premature deaths. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
ERIC Educational Resources Information Center
HAZWRAP, The Hazardous Waste Remedial Actions Program.
The educational objective of this exercise is for students to use a risk assessment tool to evaluate a hazardous release site and for students in grades 8-12 to increase their experience with geology, aquifers, soils, land use, pollution, data analysis, and map concepts. Students use background information on hazardous materials, the Environmental…
Winter Distribution of On-road NO2 Concentration in Hong Kong
NASA Astrophysics Data System (ADS)
Zhu, Y.; Chan, K. L.; Boll, J.; Schütt, A. M. N.; Lipkowitsch, I.; Wenig, M.
2017-12-01
In this study, we investigated the spatial distribution of on road NO2 concentration using Cavity-Enhanced Differential Optical Absorption Spectroscopy (DOAS). We performed two measurement campaigns in winter 2010 and 2017. Air pollution is a severe problem for many big cities, especially in Asia. Traffic emission is the primary source of urban pollutants. As Hong Kong is one of the most densely populated cities in the world, many inhabitants are exposed to accumulated pollutants in street canyons. Our mobile measurements were performed for a week in December, 2010 and March, 2017. Additionally, long term air pollution data measured by a long-path DOAS (LP-DOAS) and the Environment Protection Department (EPD) air quality monitoring network were used to investigate the long term trend and seasonal variations of atmospheric NO2 in Hong Kong.The experiment setup and preliminary results of mobile measurements are presented. The measurements were performed along a fixed route which covers most of the urban area. We assembled a NO2 concentration map 2 to 3 times per day in order to cover both morning and evening rush hours. In order to construct a consistent map, we use coinciding LP-DOAS NO2 data to correct for the diurnal cycle. Furthermore, the spatial and temporal distribution of NO2 changes with the day of the week. Traffic load is highly dependent on human activities which typically fall into a 7 days cycle. Therefore, we have analyzed the weekly pattern of on road NO2 distribution to see the differences between anthropogenic emissions during weekdays and weekend.
An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.
Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe
2015-12-15
Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Influence of Air Pollutant Emission Controls on the "Climate Penalty" in the United States
NASA Astrophysics Data System (ADS)
Feng, T.; Couzo, E. A.; Selin, N. E.; Garcia-Menendez, F.; Monier, E.
2016-12-01
Previous work has examined the so-called "climate penalty" (or benefit, where climate change leads to decreased pollutant concentrations) for the U.S. In particular, previous research has identified the role of changes in temperature, precipitation, relative humidity, and biogenic emissions, in altering concentrations of O3 and PM2.5, when emissions of air pollutant precursors are held constant. However, changes in emissions of those precursors can also affect the magnitude of climate penalty/benefit. The effect of changing air pollutant emissions on the climate penalty/benefit has not been systematically studied. Here, we estimate the U.S. climate penalty (for O3 and PM2.5) as a function of four different local (U.S.) non-GHG emissions scenarios using the GEOS-Chem chemical transport model coupled to the MIT Integrated Global System Model linked to the Community Atmosphere Model (IGSM-CAM). Our base case scenario includes global and regional emissions for 2006. We conduct three sensitivity scenarios that adjust U.S. air pollutant precursor (non-GHG) emissions by -50%, +50%, and +100%; global emissions are kept at 2006 levels. This allows us to quantify the avoided climate penalty achieved by non-GHG emissions reductions. To capture inter-annual meteorological variability, our climate penalty calculations use 20-year averages for the present (1991-2010) and future (2091-2110) climate under a no-policy scenario. Consistent with previous work, we find a "climate penalty" for O3 and PM2.5 in U.S. by 2100 across all four scenarios. We also find a climate-related decrease in the concentration of NOx and nitrate, and an increase in black carbon, organic carbon and sulfate. Changes in ammonium are spatially inhomogeneous, with an increase in eastern U.S. and a decrease in middle and western U.S. When air pollutant precursor emissions increase, we find that the O3 "climate penalty" is enhanced. However, the response of the PM2.5 "climate penalty" to changed emissions differs spatially among U.S. regions. It increases with U.S. non-GHG emissions in the East, but decreases with the emissions in the West. We use these results to draw conclusions about whether (and where) U.S. emissions controls could have an additional and previously unquantified benefit in reducing projected climate penalties.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)
2000-01-01
New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets ("paradoxes") in tropical tropospheric ozone and smoke aerosol in regions of greatest tropical biomass burning [Thompson et at., 1996;2000b]. (4) Trans-boundary pollution tracking. With an air parcel (trajectory) model, smoke aerosol and ozone and dust plumes can be tracked across oceans (e.g., Asia to North America; North America to Europe) and national boundaries, e.g. Indonesia to Singapore and Malaysia during the 1997 ENSO fires.
NASA Astrophysics Data System (ADS)
Liu, Yi; Zhang, Zhengxian
2018-02-01
With the continuous development of the economy of the Shandong Province watershed, a large number of pollutant emission, resulting in water quality of the basin has undergone significant changes. To study the Shandong Province watershed economic development and the relationship between the discharge of pollutants, in this paper, the relationship between economic growth and pollutant emissions in the Shandong Province watershed was established by Shandong Province watershed in 2002-2015 per capita GDP and wastewater, COD, ammonia nitrogen(AN) pollutant emissions. The data were analyzed by software such as SPSS, and the cubic equation model between various pollutants and economic indexes was fitted. To further make the relationship between pollutants and economic development map to study the conventional pollutant emissions and economic development trends. It is found that only the relationship between industrial wastewater discharge and per capita GDP is most coordinated, that is, industrial wastewater emissions with the continuous development of the basin economy, showing a tendency to rise first and then fall. Finally, ultimately based on the results of the study of the water environment and economic development proposals were proposed.
Environmental study of ERTS-1 imagery Lake Champlain Basin and Vermont
NASA Technical Reports Server (NTRS)
Lind, A. O. (Principal Investigator)
1972-01-01
The author has idenfified the following significant results. A first approximation land-type map using three categories of classification was generated for the Burlington area. The identification and mapping of a major turbidity front separating turbid waters of the southern arm of Lake Champlain from the clearer main water mass was reported on RBV 1 and 2 imagery and on subsequent MSS bands 4 and 5. Significant industrial pollution of Lake Champlain has degraded environmental quality in certain sections of the lake. Wetlands were detected and recognized using a combination of RBV bands 2 and 3. Using first-look RBV band 2 imagery, major ice marginal features were identified by using tonal patterns associated with vegetative cover. Major rivers were detected and recognized through the use of RBV band 3 imagery and MSS bands 6 and 7.
MTHFR Gene Polymorphism-Mutations and Air Pollution as Risk Factors for Breast Cancer
Gonzales, Mildred C.; Yu, Pojui; Shiao, S. Pamela K.
2017-01-01
Background The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways. Objectives The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer. Methods For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses. Results We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype. Discussion We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations. PMID:28114181
Symanski, Elaine; Tee Lewis, P Grace; Chen, Ting-Yu; Chan, Wenyaw; Lai, Dejian; Ma, Xiaomei
2016-06-14
Traffic exhaust, refineries and industrial facilities are major sources of air toxics identified by the U.S. Environmental Protection Agency (U.S. EPA) for their potential risk to human health. In utero and early life exposures to air toxics such as benzene and 1,3-butadiene, which are known leukemogens in adults, may play an etiologic role in childhood leukemia that comprises the majority of pediatric cancers. We conducted a population based case-control study to examine individual effects of benzene, 1,3-butadiene and polycyclic organic matter (POM) in ambient residential air on acute lymphocytic leukemia (ALL) diagnosed in children under age 5 years in Texas from 1995-2011. Texas Cancer Registry cases were linked to birth records and then were frequency matched by birth month and year to 10 population-based controls. Maternal and infant characteristics from birth certificates were abstracted to obtain information about potential confounders. Modelled estimates of benzene, 1,3-butadiene and POM exposures at the census tract level were assigned by linking geocoded maternal addresses from birth certificates to U.S. EPA National-Scale Air Toxics Assessment data for single and co-pollutant statistical analyses. Mixed-effects logistic regression models were applied to evaluate associations between air toxics and childhood leukemia. In adjusted single pollutant models, odds of childhood leukemia among mothers with the highest ambient air exposures compared to those in the lowest quartile were 1.11 (95 % CI: 0.94-1.32) for POM, 1.17 (95 % CI: 0.98-1.39) for benzene and 1.29 (95 % CI: 1.08-1.52) for 1,3-butadiene. In co-pollutant models, odds ratios for childhood leukemia remained elevated for 1,3-butadiene but were close to the null value for benzene and POM. We observed positive associations between 1,3-butadiene and childhood leukemia in single and co-pollutant models whereas effect estimates from single pollutant models were diminished for benzene and POM in co-pollutant models. Early life exposure to 1,3-butadiene rather than benzene or POM appears to increase early childhood risk of acute lymphocytic leukemia.
Maantay, Juliana
2002-01-01
Geographic Information Systems (GIS) have been used increasingly to map instances of environmental injustice, the disproportionate exposure of certain populations to environmental hazards. Some of the technical and analytic difficulties of mapping environmental injustice are outlined in this article, along with suggestions for using GIS to better assess and predict environmental health and equity. I examine 13 GIS-based environmental equity studies conducted within the past decade and use a study of noxious land use locations in the Bronx, New York, to illustrate and evaluate the differences in two common methods of determining exposure extent and the characteristics of proximate populations. Unresolved issues in mapping environmental equity and health include lack of comprehensive hazards databases; the inadequacy of current exposure indices; the need to develop realistic methodologies for determining the geographic extent of exposure and the characteristics of the affected populations; and the paucity and insufficiency of health assessment data. GIS have great potential to help us understand the spatial relationship between pollution and health. Refinements in exposure indices; the use of dispersion modeling and advanced proximity analysis; the application of neighborhood-scale analysis; and the consideration of other factors such as zoning and planning policies will enable more conclusive findings. The environmental equity studies reviewed in this article found a disproportionate environmental burden based on race and/or income. It is critical now to demonstrate correspondence between environmental burdens and adverse health impacts--to show the disproportionate effects of pollution rather than just the disproportionate distribution of pollution sources. PMID:11929725
NASA Astrophysics Data System (ADS)
Bove, M.; Grezzi, G.; Albanese, S.; de Vivo, B.; Lima, A.
2009-04-01
The Domizio-Flegreo Littoral and Agro Aversano area has been classified by the Italian Ministry of Environment (Italian Ministero dell'Ambiente e della Tutela del Territorio e del Mare) as a S.I.N. (Sito di Interesse Nazionale, L. 426/98 - Decreto 10 Gennaio 2000 - G.U. 29/5/01). In this category have been included all those contaminated lands that, both for their extension and their historical and present land use, are considered to be particularly harmful for human health. In Italy have been selected a total of 54 S.I.N.; among all of these, the Domizio-Flegreo Littoral and Agro Aversano S.I.N. is one of the widest (1564 Km2). The study area is located in north-western Campania region, from the Avella Mountain to the coastline, and from the Campi Flegrei area to the northern boundaries between Campania and Latium Regions. It includes a total of 77 towns from both Naples and Caserta provinces. The Domizio-Flegreo Littoral and Agro Aversano S.I.N. is characterized by a strongly urbanization in its internal portions, and by intensive agricultural activities in its northern and coastal portions. During past years this wide area has been the set of an unknown number of illegal activities controlled by the organized crime, including toxic waste disposal of unknown sources from different Regions of Italy, unauthorized building, intensive uncontrolled agricultural practices and so on. Part of these environmental crimes have been and are under investigations by Italian Authorities. For a geochemical characterization of this contaminated land, between May 2006 and January 2008, a total of 292 (179 in the Litorale Domizio-Flegreo and 113 in the Agro Aversano) top soils (5-15 cm depth) have been collected, with a sampling density of about 1 sample/5 Km2. The <100 mesh soil fraction has been analyzed with ICP-MS to determine the concentration of the 39 elements: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sn, Sr, Ta, Te Th, Ti, U, V, W and Zn. Chemical data have been organized in a unique database and univariate statistics (histograms, cumulative frequency curves and box-plots) have been performed to describe the distribution of elements all across the investigated area. Using Arc View GIS™ and a new Multifractal Inverse Distance Weighted (MIDW) (Cheng 1999 a; b) method available in the software GeoDAS™ (Cheng, 2003; Lima et al., 2003) interpolated maps have been obtained. The latter are overlaid by dots, showing the element concentration at each site with the radius of dots as a function of the element concentration classified by a cumulative frequency graph. In order to assess the toxic elements pollution levels and their distribution in the study area, a complete suite of 39 interpolated and dot maps, 39 background maps, 39 anomalies maps and 4 factor-scores maps have been compiled. The final goal is to produce a geochemical environmental atlas which will represent a sound basis for policy makers and legislators, who need to address the public concerns regarding the toxic element pollution threat to ecosystem and human health. Further studies in the S.I.N. area concern the determination of Pb isotope concentrations in soil profiles, water and most used pesticides. The preliminary results of the latter study are reported by Grezzi et al. (2009). References CHENG, Q. 1999a. Computer and Geoscience, 25 (10), 946-961. CHENG, Q. 1999b. J. Geoch. Expl., 65(3), 175-194. CHENG, Q. 2003. GeoData Analysis System (GeoDAS) for Mineral Exploration and Environmental Assessment, User's Guide (GeoDAS Phase III). York University, Toronto. GREZZI, G., AYUSO, R.A.,LIMA, A., ALBANESE, S. & DE VIVO, B., 2009. This volume. LIMA, A., DE VIVO, B., CICCHELLA, D., CORTINI, M. & ALBANESE, S. 2003. Applied Geochemistry, 18(12), 1853-1865.
Lokhande, Satish K; Jain, Mohindra C; Dhawale, Satyajeet A; Gautam, Rakesh; Bodhe, Ghanshyam L
2018-01-01
In open-cast mines, noise pollution has become a serious concern due to the extreme use of heavy earth moving machinery (HEMM). This study is focused to measure and assess the effects of the existing noise levels of major operational mines in the Keonjhar, Sundergadh, and Mayurbhanj districts of Odisha, India. The transportation noise levels were also considered in this study, which was predicted using the modified Federal Highway Administration (FHWA) model. It was observed that noise induced by HEMM such as rock breakers, jackhammers, dumpers, and excavators, blasting noise in the mining terrain, as well as associated transportation noise became a major source of annoyance to the habitants living in proximity to the mines. The noise produced by mechanized mining operations was observed between 74.3 and 115.2 dB(A), and its impact on residential areas was observed between 49.4 and 58.9 dB(A). In addition, the noise contour maps of sound level dispersion were demonstrated with the utilization of advanced noise prediction software tools for better understanding. Finally, the predicted values at residential zone and traffic noise are correlated with observed values, and the coefficient of determination, R 2 , was calculated to be 0.6891 and 0.5967, respectively.
Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California
NASA Astrophysics Data System (ADS)
Sowers, J. M.; Ticci, M. G.; Mulvey, P.
2014-12-01
Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore any area of interest. They can be easily customized, for example, adding placemarks or notes. Enrichment information can be added, using clickable icons, without cluttering the map. Best, the maps are fun to use. Digital interactive maps will be another effective tool for enhancing public understanding of urban creeks & watersheds.
Elemental atmospheric pollution assessment via moss-based measurements in Portland, Oregon
Demetrios Gatziolis; Sarah Jovan; Geoffrey Donovan; Michael Amacher; Vicente Monleon
2016-01-01
Mosses accumulate pollutants from the atmosphere and can serve as an inexpensive screening tool for mapping air quality and guiding the placement of monitoring instruments. We measured 22 elements using 346 moss samples collected across Portland, Oregon, in December 2013. Our objectives were to develop citywide maps showing concentrations of each element in moss and...
Möbius, Petra; Hölzer, Martin; Felder, Marius; Nordsiek, Gabriele; Groth, Marco; Köhler, Heike; Reichwald, Kathrin; Platzer, Matthias; Marz, Manja
2015-01-01
Mycobacterium avium (M. a.) subsp. paratuberculosis (MAP)—the etiologic agent of Johne’s disease—affects cattle, sheep, and other ruminants worldwide. To decipher phenotypic differences among sheep and cattle strains (belonging to MAP-S [Type-I/III], respectively, MAP-C [Type-II]), comparative genome analysis needs data from diverse isolates originating from different geographic regions of the world. This study presents the so far best assembled genome of a MAP-S-strain: Sheep isolate JIII-386 from Germany. One newly sequenced cattle isolate (JII-1961, Germany), four published MAP strains of MAP-C and MAP-S from the United States and Australia, and M. a. subsp. hominissuis (MAH) strain 104 were used for assembly improvement and comparisons. All genomes were annotated by BacProt and results compared with NCBI (National Center for Biotechnology Information) annotation. Corresponding protein-coding sequences (CDSs) were detected, but also CDSs that were exclusively determined by either NCBI or BacProt. A new Shine–Dalgarno sequence motif (5′-AGCTGG-3′) was extracted. Novel CDSs including PE-PGRS family protein genes and about 80 noncoding RNAs exhibiting high sequence conservation are presented. Previously found genetic differences between MAP-types are partially revised. Four of ten assumed MAP-S-specific large sequence polymorphism regions (LSPSs) are still present in MAP-C strains; new LSPSs were identified. Independently of the regional origin of the strains, the number of individual CDSs and single nucleotide variants confirms the strong similarity of MAP-C strains and shows higher diversity among MAP-S strains. This study gives ambiguous results regarding the hypothesis that MAP-S is the evolutionary intermediate between MAH and MAP-C, but it clearly shows a higher similarity of MAP to MAH than to Mycobacterium intracellulare. PMID:26384038
Çolakkadıoğlu, Deniz; Yücel, Muzaffer; Kahveci, Barış; Aydınol, Özüm
2018-03-09
The aims of this study are to identify via harnessing noise mapping the effects of noise pollution at Çukurova University campus on the academic setting and to reveal the obtained change values in noise pollution on the campus during the period 2010-2017. In line with these aims, the first step has been to map the highway-induced environmental noise on Çukurova University campus during daytime (07:00-19:00) and evening (19:00-23:00) hours by employing SoundPLAN 7.3 software. Traffic-induced noise distribution maps for years 2010 and 2017 on the campus were analyzed by threshold values stipulated by the Regulation on Environmental Noise Assessment and Management that is compliance with the European Union Directive on Environmental Noise (2002/49/EC) and after the conducted analyses, traffic-induced environmental noise measured on Çukurova University campus since the past to that date was identified in terms of spatial change. The Regulation defines threshold values, namely, (1) 65 dB(A) for daytime from 07:01 to 19:00, (2) 60 dB(A) for evening-from 19:01 to 23:00, (3) 55 dB(A) for night time-from 23:01 to 07:00. It was then identified in the research area that faculty buildings of Science and Letters, Engineering, Architecture, Faculty of Economics and Administrative Sciences, Dentistry, Faculty of Law, and Communication devoid of any vegetation space to set a barrier between emission-source highway and front walls of buildings facing the roadside were the structures most severely exposed to the noise. In the research area, the comparison of year 2017 noise distribution with respect to year 2010 manifested that the regions exposed to noise value 35 dB(A) and below, 35-45 dB(A), and 45-55 dB(A) levels decreased while a proportional increase was detected in regions exposed to 60 dB(A) noise value that is close to the legal threshold value and noise level above 65 dB(A).
Longitudinal Effects of Air Pollution on Exhaled Nitric Oxide: The Children’s Health Study
Berhane, Kiros; Zhang, Yue; Salam, Muhammad T.; Eckel, Sandrah P.; Linn, William S.; Rappaport, Edward B.; Bastain, Theresa M; Lurmann, Fred; Gilliland, Frank D.
2015-01-01
OBJECTIVES To assess the effects of long-term variations in ambient air pollutants on longitudinal changes in exhaled nitric oxide (FeNO), a potentially useful biomarker of eosinophilic airway inflammation, based on data from the southern California Children’s Health Study. METHODS Based on a cohort of 1,211 schoolchildren from 8 Southern California communities with FeNO measurements in 2006/07 and 2007/08, regression models adjusted for short-term effects of air pollution were fitted to assess the association between changes in annual long-term exposures and changes in FeNO. RESULTS Increases in annual average concentrations of 24-hr average NO2 and PM2.5 (scaled to the interquartile range (IQR) of 1.8 ppb and 2.4 μg/m3, respectively) were associated with a 2.29 ppb (CI=[0.36,4.21]; p =0.02) and a 4.94 ppb (CI=[1.44,8.47]; p = 0.005) increase in FeNO, respectively, after adjustments for short term effects of the respective pollutants. In contrast, changes in annual averages of PM10 and O3 were not significantly associated with changes in FeNO. These findings did not differ significantly by asthma status. CONCLUSIONS Changes in annual average exposure to current levels of ambient air pollutants are significantly associated with changes in FeNO levels in children, independent of short-term exposures and asthma status. Use of this biomarker in population-based epidemiologic research has great potential for assessing the impact of changing real world mixtures of ambient air pollutants on children’s respiratory health. PMID:24696513
Montilla, Luis Miguel; Ramos, Ruth; García, Elia; Cróquer, Aldo
2016-05-03
Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.
Lupo, Philip J; Symanski, Elaine
2009-11-01
Often, in studies evaluating the health effects of hazardous air pollutants (HAPs), researchers rely on ambient air levels to estimate exposure. Two potential data sources are modeled estimates from the U.S. Environmental Protection Agency (EPA) Assessment System for Population Exposure Nationwide (ASPEN) and ambient air pollutant measurements from monitoring networks. The goal was to conduct comparisons of modeled and monitored estimates of HAP levels in the state of Texas using traditional approaches and a previously unexploited method, concordance correlation analysis, to better inform decisions regarding agreement. Census tract-level ASPEN estimates and monitoring data for all HAPs throughout Texas, available from the EPA Air Quality System, were obtained for 1990, 1996, and 1999. Monitoring sites were mapped to census tracts using U.S. Census data. Exclusions were applied to restrict the monitored data to measurements collected using a common sampling strategy with minimal missing values over time. Comparisons were made for 28 HAPs in 38 census tracts located primarily in urban areas throughout Texas. For each pollutant and by year of assessment, modeled and monitored air pollutant annual levels were compared using standard methods (i.e., ratios of model-to-monitor annual levels). Concordance correlation analysis was also used, which assesses linearity and agreement while providing a formal method of statistical inference. Forty-eight percent of the median model-to-monitor values fell between 0.5 and 2, whereas only 17% of concordance correlation coefficients were significant and greater than 0.5. On the basis of concordance correlation analysis, the findings indicate there is poorer agreement when compared with the previously applied ad hoc methods to assess comparability between modeled and monitored levels of ambient HAPs.
Koehler, Birgit; Barsotti, Francesco; Minella, Marco; Landelius, Tomas; Minero, Claudio; Tranvik, Lars J; Vione, Davide
2018-02-01
Lake water constituents, such as chromophoric dissolved organic matter (CDOM) and nitrate, absorb sunlight which induces an array of photochemical reactions. Although these reactions are a substantial driver of pollutant degradation in lakes they are insufficiently understood, in particular on large scales. Here, we provide for the first time comprehensive photochemical maps covering a large geographic region. Using photochemical kinetics modeling for 1048 lakes across Sweden we simulated the steady-state concentrations of four photoreactive transient species, which are continuously produced and consumed in sunlit lake waters. We then simulated the transient-induced photochemical transformation of organic pollutants, to gain insight into the relevance of the different photoreaction pathways. We found that boreal lakes were often unfavorable environments for photoreactions mediated by hydroxyl radicals (OH) and carbonate radical anions (CO 3 - ), while photoreactions mediated by CDOM triplet states ( 3 CDOM*) and, to a lesser extent, singlet oxygen ( 1 O 2 ) were the most prevalent. These conditions promote the photodegradation of phenols, which are used as plastic, medical drug and herbicide precursors. When CDOM concentrations increase, as is currently commonly the case in boreal areas such as Sweden, 3 CDOM* will also increase, promoting its importance in photochemical pathways even more. Copyright © 2017 Elsevier Ltd. All rights reserved.
A study of the usefulness of Skylab EREP data for earth resources studies in Australia
NASA Technical Reports Server (NTRS)
Lambert, B. P.; Benson, M. L.; Borough, C. J.; Myers, B. J.; Maffi, C. E.; Simpson, C. J.; Perry, W. J.; Burns, K. L.; Shepherd, J.; Beattie, R. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In subhumid, vegetated areas, S190B photography: (1) has a potentially operational role in detecting lineaments in 1:100,000 scale geological mapping and in major civil engineering surveys; (2) is of limited value for regional lithological mapping at 1:500,000 scale; and (3) provided much useful synoptic information and some detailed information of direct value to the mapping of nonmineral natural resources such as vegetation, land soil, and water. In arid, well exposed areas, S190B photography could be used: (1) with a limited amount of field traverses, to produce reliable 1:500,000 scale geological maps of sedimentary sequences; (2) to update superficial geology on 1:250,000 scale maps; and (3) together with the necessary field studies, to prepare landform, soil, and vegetation maps at 1:1,000,000 scale. Skylab photography was found to be more useful than LANDSAT images for small scale mapping of geology and land types, and for the revision of topographic maps at 1:100,000 scale, because of superior spatial resolution and stereoscopic coverage.
Air quality assessment in Southern Kuwait using diffusive passive samplers.
Ramadan, A A
2010-01-01
Measurements of fortnightly average concentrations of NO, NO2, SO2, H2S, NH3, and volatile organic compounds (VOCs) (aromatics=benzene, toluene, o-xylene, m+p-xylene, ethyl benzene; non-aromatics=nonane and octane) were carried out in the period from 26/10/05 to 24/11/05 at 20 points in the southern part of Kuwait as part of a baseline environmental impact assessment study requested by Kuwait National Petroleum Company. Two waves of triplicate diffusive passive samplers were used. A high volume air sampler was used to measure PM10 too. During the sampling period, the wind was observed to be mainly from the west and northwest with an average of 4.28 m/s. The consistency of the results allowed the production of spatial distribution maps of the pollutants measured and consequently the comparison between levels of air pollution at different locations. A comparison between the measured concentrations and the applicable air quality standards promulgated by Kuwait Environment Public Authority (KEPA) showed that those compounds had low concentrations compared to both industrial and residential KEPA standards. For other compounds which are not covered by KEPA standards, the results were compared with relevant limits of US Environment Protect Agency (USEPA) and US Department of Labor, Occupational Safety and Health Administration. The comparison showed that the measured compounds had low concentrations compared to the existing standards and, accordingly, no violation of air quality standards is reported.
Nitrate transboundary heavy pollution over East Asia in winter
NASA Astrophysics Data System (ADS)
Itahashi, Syuichi; Uno, Itsushi; Osada, Kazuo; Kamiguchi, Yusuke; Yamamoto, Shigekazu; Tamura, Kei; Wang, Zhe; Kurosaki, Yasunori; Kanaya, Yugo
2017-03-01
High PM2. 5 concentrations of around 100 µg m-3 were observed twice during an intensive observation campaign in January 2015 at Fukuoka (33.52° N, 130.47° E) in western Japan. These events were analyzed comprehensively with a regional chemical transport model and synergetic ground-based observations with state-of-the-art measurement systems, which can capture the behavior of secondary inorganic aerosols (SO42-, NO3-, and NH4+). The first episode of high PM2. 5 concentration was dominated by NO3- (type N) and the second episode by SO42- (type S). The concentration of NH4+ (the counterion for SO42- and NO3-) was high for both types. A sensitivity simulation in the chemical transport model showed that the dominant contribution was from transboundary air pollution for both types. To investigate the differences between these types further, the chemical transport model results were examined, and a backward trajectory analysis was used to provide additional information. During both types of episodes, high concentrations of NO3- were found above China, and an air mass that originated from northeast China reached Fukuoka. The travel time from the coastline of China to Fukuoka differed between types: it was 18 h for type N and 24 h for type S. The conversion ratio of SO2 to SO42- (Fs) was less than 0.1 for type N, but reached 0.3 for type S as the air mass approached Fukuoka. The higher Fs for type S was related to the higher relative humidity and the concentration of HO2, which produces H2O2, the most effective oxidant for the aqueous-phase production of SO42-. Analyzing the gas ratio as an indicator of the sensitivity of NO3- to changes in SO42- and NH4+ showed that the air mass over China was NH3-rich for type N, but almost NH3-neutral for type S. Thus, although the high concentration of NO3- above China gradually decreased during transport from China to Fukuoka, higher NO3- concentrations were maintained during transport owing to the lower SO42- for type N. In contrast, for type S, the production of SO42- led to the decomposition of NH4NO3, and more SO42- was transported. Notably, the type N transport pattern was limited to western Japan, especially the island of Kyushu. Transboundary air pollution dominated by SO42- (type S) has been recognized as a major pattern of pollution over East Asia. However, our study confirms the importance of transboundary air pollution dominated by NO3-, which will help refine our understanding of transboundary heavy PM2. 5 pollution in winter over East Asia.
Rückerl, Regina; Phipps, Richard P; Schneider, Alexandra; Frampton, Mark; Cyrys, Josef; Oberdörster, Günther; Wichmann, H Erich; Peters, Annette
2007-01-01
Background Epidemiological studies on health effects of air pollution have consistently shown adverse cardiovascular effects. Toxicological studies have provided evidence for thrombogenic effects of particles. A prospective panel study in a susceptible population was conducted in Erfurt, Germany, to study the effects of daily changes in ambient particles on various blood cells and soluble CD40ligand (sCD40L, also known as CD154), a marker for platelet activation that can cause increased coagulation and inflammation. Blood cells and plasma sCD40L levels were repeatedly measured in 57 male patients with coronary heart disease (CHD) during winter 2000/2001. Fixed effects linear regression models were applied, adjusting for trend, weekday and meteorological parameters. Hourly data on ultrafine particles (UFP, number concentration of particles from 0.01 to 0.1 μm), mass concentration of particles less than 10 and 2.5 μm in diameter (PM10, PM2.5), accumulation mode particle counts (AP, 0.1–1.0 μm), elemental and organic carbon, gaseous pollutants and meteorological data were collected at central monitoring sites. Results An immediate increase in plasma sCD40L was found in association with UFP and AP (% change from geometric mean: 7.1; CI: [0.1, 14.5] and 6.9; CI: [0.5, 13.8], respectively). Platelet counts decreased in association with UFP showing an immediate, a three days delayed (lag 3) and a 5-day average response (% change from the mean: -1.8; CI: [-3.4,-0.2]; -2.4; CI: [-4.5,-0.3] and -2.2; CI: [-4.0,-0.3] respectively). Conclusion The increased plasma sCD40L levels support the hypothesis that higher levels of ambient air pollution lead to an inflammatory response in patients with CHD thus providing a possible explanation for the observed association between air pollution and cardiovascular morbidity and mortality in susceptible parts of the population. PMID:17241467
Regional pollution potential in the northwestern United States.
Sue A. Ferguson; Miriam L. Rorig
2003-01-01
The potential for air pollution from industrial sources to reach wilderness areas throughout the Northwestern United States is approximated from monthly mean emissions, along with wind speeds and directions. A simple index is derived to estimate downwind concentration. Maps of pollution potential were generated for each pollution component (particulates, sulfur oxides...
An Integrated 3S and Historical Materials Analysis of the Keriya Paleoriver, NW China
NASA Astrophysics Data System (ADS)
Luo, Lei; Wang, Xinyuan; Cai, Heng
2014-03-01
Combining analysis of 3S (RS, GIS and GPS) and historical materials (historical records, ancient map and academic and literary writings) allows mapping of the Keriya Paleoriver of Southern Xinjiang, NW China. Keriya Paleoriver, one of the ancient Four Green Corridors which passes through the Taklimakan Desert from south to north in the Tarim Basin, recorded changes of the climate-environment in the ancient Silk Road of the region. According to the archaeological data, historical materials and paleoclimates information, its eco-environment and climate have had great changes since the 1.09Ma B.P., especially during the last 2,000 years, which has led to many famous ancient cities to be abandoned and the route of the ancient Silk Road to be moved southward. Using RS (optical and radar imagery), GIS (mapping and spatial analysis) and GPS (study area investigation), we mapped a major paleodrainage system of Keriya River, which have linked the Kunlun Mountains to the Tienshan Mountains through the Taklimakan Desert, possibly as far back as the early Pleistocene. This study illustrates the capability of the 3S and historical materials, in mapping the Keriya Paleoriver drainage networks and archaeological study on the ancient Silk Road.
Kaliakatsou, Evridiki; Bell, J Nigel B; Thirtle, Colin; Rose, Daniel; Power, Sally A
2010-05-01
Numerous experiments have demonstrated reductions in the yields of cereal crops due to tropospheric O(3), with losses of up to 25%. However, the only British econometric study on O(3) impacts on winter wheat yields, found that a 10% increase in AOT40 would decrease yields by only 0.23%. An attempt is made here to reconcile these observations by developing AOT40 maps for Great Britain and matching levels with a large number of standardised trial plot wheat yields from many sites over a 13-year period. Panel estimates (repeated measures on the same plots with time) show a 0.54% decrease in yields and it is hypothesised that plant breeders may have inadvertently selected for O(3) tolerance in wheat. Some support for this is provided by fumigations of cultivars of differing introduction dates. A case is made for the use of econometric as well as experimental studies in prediction of air pollution induced crop loss. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farndon, P.A.; Hardy, C.; Kilpatrick, M.W.
1994-09-15
Four disease genes (NBCCS, ESS1, XPAC, FACC) map to 9q22.3-q31. A fine map of this region was produced by linkage and haplotype analysis using 12 DNA markers. The gene for nevoid basal cell carcinoma syndrome (NBCCS, Gorlin) has an important role in congenital malformations and carcinogenesis. Phase-known recombinants in a study of 133 meioses place NBCCS between (D9S12/D9S151) and D9S176. Haplotype analysis in a two-generation family suggests that NBCCS lies in a smaller interval of 2.6 cM centromeric to D9S287. These flanking markers will be useful clinically for gene tracking. Recombinants also map FACC (Fanconi anemia, group C) to themore » same region, between (D9S12/D9S151) and D9S287. The recombination rate between (D9S12/D9S151) and D9S53 in males is 8.3% and 13.2% in females, giving a sex-specific male:female ratio of 1:1.6 and a sex-averaged map distance of 10.4 cM. No double recombinants were detected, in agreement with the apparently complete level of interference predicted from the male chiasmata map. 19 refs., 2 figs., 1 tab.« less
Vehicle emission trends and spatial distribution in Shandong province, China, from 2000 to 2014
NASA Astrophysics Data System (ADS)
Sun, Shida; Jiang, Wei; Gao, Weidong
2016-12-01
Vehicle emissions have become a major source of air pollution in Shandong province, which has experienced a sharp growth of vehicle numbers in recent years and now has the largest vehicle population in China. This paper combines the COPERT IV model with the vehicle age distribution to estimate the temporal trends and map the spatial distributions of vehicle emissions in Shandong province during the period ranging from 2000 to 2014. Both conventional air pollutants and greenhouse gases are included. In addition, a high-resolution vehicle emission inventory at the prefecture level is developed and mapped on a 0.05° × 0.05° grid based on road information. Our results show that the emissions of all of the conventional air pollutants have decreased to various extents over the recent past, but greenhouse gas emissions have continued to increase due to the lack of effective control strategies. The total emissions of CO, NMVOC, NOX, PM10, CO2, CH4 and N2O from the Shandong vehicle fleet changed from 1734.5 Gg, 277.9 Gg, 177.0 Gg, 12.4 Gg, 19239.7 Gg, 11.3 Gg and 0.6 Gg, respectively, in 2000 to 1723.3 Gg, 234.2 Gg, 513.8 Gg, 29.5 Gg, 138,419.5 Gg, 15.3 Gg and 3.9 Gg, respectively, in 2014. Vehicle emissions were mainly concentrated in cities and became more dispersed in Shandong province between 2000 and 2014.
MAX-DOAS measurements of African continental pollution outflow over the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Behrens, Lisa K.; Hilboll, Andreas; Peters, Enno; Richter, Andreas; Alvarado, Leonardo; Wittrock, Folkard; Burrows, John P.; Vrekoussis, Mihalis
2017-04-01
Enhanced levels of atmospheric key pollutants can regularly be identified over the Atlantic Ocean in global trace gas maps retrieved from satellite measurements. The aim of the DFG project COPMAR (Continental outflow of pollutants towards the marine troposphere) was to validate these enhanced values using ship-based measurements and to identify the spatial gradients of the pollutants NO2, CHOCHO, and HCHO over the Atlantic Ocean. Therefore, a multi-axis differential optical absorption spectrometer (MAX-DOAS) was installed on board the research vessel Maria S. Merian for the cruise MSM58/2. This cruise was conducted in October 2016 and went from Ponta Delgada (Azores) to Cape Town (South Africa), crossing between Cape Verde and the African continent. The instrument was continuously scanning the horizon looking towards the African continent, and the ship sailed at nearly constant speed during the whole cruise. In this study, we present the results from the MAX-DOAS measurements for the three species. We discuss the influence of different fit settings and a-priori assumptions on the results and present the observed spatial gradients along the cruise track. Finally, we compare our results with satellite measurements by the GOME-2 and OMI instruments and discuss possible sources of the discrepancies.
NASA Astrophysics Data System (ADS)
Peng, Wen-Chao; Wang, Xi; Li, Xiao-Yan
2014-06-01
The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water.The photo-degradation of organic pollutants using solar light is an attractive chemical process for water pollution control. In this study, we synthesized a new composite material consisting of silver phosphate (Ag3PO4) sub-microcrystals grown on a layered molybdenum disulfide (MoS2) and graphene (GR) hybrid as a high-performance photocatalyst for the degradation of toxic organic pollutants. This composite photocatalyst was prepared via a simple two-step hydrothermal process that used sodium molybdate, thiourea and graphene oxide as precursors for the MoS2/GR hybrid and silver nitrate for the Ag3PO4 sub-microcrystals. The composite Ag3PO4-0.02(MoS2/0.005GR) was found to be the most effective catalyst for the photo-decomposition of 2,4-dichlorophenol under simulated solar light and visible light (λ >= 420 nm). The photocatalyst was also highly active for the degradation of nitrophenol and chlorophenol. The ultra photocatalytic activity of the novel catalyst arose from the synergetic effects of MoS2 and GR as cocatalysts in the composite. MoS2/GR nanosheets served as electron collectors for the interfacial electron transfer from Ag3PO4 to electron acceptors in the aqueous solution and thus enhanced the separation of the photo-generated electron-hole pairs and made the holes more available for organic oxidation. In addition, the presence of MoS2 and GR provided more active adsorption sites and allowed for the activation of dissolved O2 for organic degradation in water. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01654h
Ambient Ozone Exposure in Czech Forests: A GIS-Based Approach to Spatial Distribution Assessment
Hůnová, I.; Horálek, J.; Schreiberová, M.; Zapletal, M.
2012-01-01
Ambient ozone (O3) is an important phytotoxic pollutant, and detailed knowledge of its spatial distribution is becoming increasingly important. The aim of the paper is to compare different spatial interpolation techniques and to recommend the best approach for producing a reliable map for O3 with respect to its phytotoxic potential. For evaluation we used real-time ambient O3 concentrations measured by UV absorbance from 24 Czech rural sites in the 2007 and 2008 vegetation seasons. We considered eleven approaches for spatial interpolation used for the development of maps for mean vegetation season O3 concentrations and the AOT40F exposure index for forests. The uncertainty of maps was assessed by cross-validation analysis. The root mean square error (RMSE) of the map was used as a criterion. Our results indicate that the optimal interpolation approach is linear regression of O3 data and altitude with subsequent interpolation of its residuals by ordinary kriging. The relative uncertainty of the map of O3 mean for the vegetation season is less than 10%, using the optimal method as for both explored years, and this is a very acceptable value. In the case of AOT40F, however, the relative uncertainty of the map is notably worse, reaching nearly 20% in both examined years. PMID:22566757
Study of electromagnetic radiation pollution in Jalandhar city, India
NASA Astrophysics Data System (ADS)
Basandrai, D.; Dhami, A. K.; Bedi, R. K.; Khan, S. A.
2017-07-01
Environment pollution from electromagnetic radiations emitted from cell phone towers is a new kind of health hazard, which has increase the public concern regarding the health implications of electromagnetic radiations on humans and animals. Long term consequences of these radiations are still unknown. So it become important to measure and maps the electromagnetic radiation level to analyze potential risk. The present study has been taken to estimate the RF pollution by measuring radiation power densities level near school, hospitals and old age home of Jalandhar City, India. The radiation exposure was measured using a handheld portable electrosmog meter. Results were compared with the safety guidelines issued by ICNIRP (International commission on non ionizing radiation protection) and Bio-initiative report, 2012. It has been found that the radiation exposure level in terms of power densities and corresponding specific absorption rate (SAR) are much below than ICNIRP guidelines for all schools, hospitals and old age home. But in the case of 3 schools, the results are quite alarming where the power density and SAR was found to be 79.6% and 4%, respectively higher in comparisons with safe biological limit.
Summary of space imagery studies in Utah and Nevada. [using LANDSAT 1, EREP, and Skylab imagery
NASA Technical Reports Server (NTRS)
Jensen, M. L.; Laylander, P.
1975-01-01
LANDSAT-1, Skylab, and RB-57 imagery acquired within days of each other of the San Rafael swell enabled geological mapping of individual formations of the southern portion of this broad anticlinal feature in eastern Utah. Mapping at a scale of 1/250,000 on an enhanced and enlarged S-190B image resulted in a geological map showing correlative mappable features that are indicated on the geological map of Utah at the same scale. An enhanced enlargement of an S-190B color image at a scale of 1/19,200 of the Bingham Porphyry Copper deposit allowed comparison of a geological map of the area with the space imagery map as fair for the intrusion boundaries and total lack of quality for mapping the sediments. Hydrothermal alteration is only slightly evident on space imagery at Bingham but in the Tintic mining district and the volcanic piles of the Keg and Thomas ranges, Utah, hydrothermal alteration is readily mapped on color enlargements of S-190B (SL-3, T3-3N Tr-2). A mercury soil-gas analyzer was developed for locating hidden mineralized zones which were suggested from space imagery.
Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis
NASA Astrophysics Data System (ADS)
Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.
2014-12-01
The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control strategies based on region-wide exposure metrics is compared with strategies that focus on improving air quality at specific receptors.
Health benefit modelling and optimization of vehicular pollution control strategies
NASA Astrophysics Data System (ADS)
Sonawane, Nayan V.; Patil, Rashmi S.; Sethi, Virendra
2012-12-01
This study asserts that the evaluation of pollution reduction strategies should be approached on the basis of health benefits. The framework presented could be used for decision making on the basis of cost effectiveness when the strategies are applied concurrently. Several vehicular pollution control strategies have been proposed in literature for effective management of urban air pollution. The effectiveness of these strategies has been mostly studied as a one at a time approach on the basis of change in pollution concentration. The adequacy and practicality of such an approach is studied in the present work. Also, the assessment of respective benefits of these strategies has been carried out when they are implemented simultaneously. An integrated model has been developed which can be used as a tool for optimal prioritization of various pollution management strategies. The model estimates health benefits associated with specific control strategies. ISC-AERMOD View has been used to provide the cause-effect relation between control options and change in ambient air quality. BenMAP, developed by U.S. EPA, has been applied for estimation of health and economic benefits associated with various management strategies. Valuation of health benefits has been done for impact indicators of premature mortality, hospital admissions and respiratory syndrome. An optimization model has been developed to maximize overall social benefits with determination of optimized percentage implementations for multiple strategies. The model has been applied for sub-urban region of Mumbai city for vehicular sector. Several control scenarios have been considered like revised emission standards, electric, CNG, LPG and hybrid vehicles. Reduction in concentration and resultant health benefits for the pollutants CO, NOx and particulate matter are estimated for different control scenarios. Finally, an optimization model has been applied to determine optimized percentage implementation of specific control strategies with maximization of social benefits, when these strategies are applied simultaneously.
Vinikoor-Imler, Lisa C; Davis, J Allen; Meyer, Robert E; Luben, Thomas J
2013-10-01
Few studies have examined the potential relationship between air pollution and birth defects. The objective of this study was to investigate whether maternal exposure to particulate matter (PM2.5 ) and ozone (O3 ) during pregnancy is associated with birth defects among women living throughout North Carolina. Information on maternal and infant characteristics was obtained from North Carolina birth certificates and health service data (2003-2005) and linked with information on birth defects from the North Carolina Birth Defects Monitoring Program. The 24-hr PM2.5 and O3 concentrations were estimated using a hierarchical Bayesian model of air pollution generated by combining modeled air pollution predictions from the U.S. Environmental Protection Agency's Community Multi-Scale Air Quality model with air monitor data from the Environmental Protection Agency's Air Quality System. Maternal residence was geocoded and assigned pollutant concentrations averaged over weeks 3 to 8 of gestation. Binomial regression was performed and adjusted for potential confounders. No association was observed between either PM2.5 or O3 concentrations and most birth defects. Positive effect estimates were observed between air pollution and microtia/anotia and lower limb deficiency defects, but the 95% confidence intervals were wide and included the null. Overall, this study suggested a possible relationship between air pollution concentration during early pregnancy and certain birth defects (e.g., microtia/anotia, lower limb deficiency defects), although this study did not have the power to detect such an association. The risk for most birth defects does not appear to be affected by ambient air pollution. Copyright © 2013 Wiley Periodicals, Inc.
US EPA Nonattainment Areas and Designations-PM10 (1987 NAAQS)
This web service contains the following layer: PM10 Nonattainment Areas (1987 NAAQS). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1987PM10/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The metho
US EPA Nonattainment Areas and Designations-Lead (2008 NAAQS)
This web service contains the following layers: Lead NAA 2008 NAAQS and Lead NAA Centroids 2008 NAAQS. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2008Lead/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure l
US EPA Nonattainment Areas and Designations-8 Hour Ozone (2008 NAAQS)
This web service contains the following layers: Ozone 2008 NAAQS NAA State Level and Ozone 2008 NAAQS NAA National Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2008Ozone8hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-
US EPA Nonattainment Areas and Designations-8 Hour Ozone (1997 NAAQS)
This web service contains the following layers: Ozone 1997 NAAQS NAA State Level and Ozone 1997 NAAQS NAA National Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA1997Ozone8hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short
Neighborhood walkability and particulate air pollution in a nationwide cohort of women.
James, Peter; Hart, Jaime E; Laden, Francine
2015-10-01
Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Using data from the Nurses' Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) µg/m(3) higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary from region to region that allow for walkable neighborhoods with low levels of air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.
Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women
James, Peter; Hart, Jaime E.; Laden, Francine
2015-01-01
Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775
Andrzej Bytnerowicz; Mark Fenn; Steven McNulty; Fengming Yuan; Afshin Pourmokhtarian; Charles Driscoll; Tom Meixner
2013-01-01
A review of the current status of air pollution and climate change (CC) in the United States from a perspective of their impacts on forest ecosystems is provided. Ambient ozone (O3) and nitrogen (N) deposition have important and widespread ecological impacts in U.S. forests. Effects of sulphurous (S) air pollutants and other trace pollutants have...
Best Practices for Gauging Evidence of Causality in Air Pollution Epidemiology.
Dominici, Francesca; Zigler, Corwin
2017-12-15
The contentious political climate surrounding air pollution regulations has brought some researchers and policy-makers to argue that evidence of causality is necessary before implementing more stringent regulations. Recently, investigators in an increasing number of air pollution studies have purported to have used "causal analysis," generating the impression that studies not explicitly labeled as such are merely "associational" and therefore less rigorous. Using 3 prominent air pollution studies as examples, we review good practices for how to critically evaluate the extent to which an air pollution study provides evidence of causality. We argue that evidence of causality should be gauged by a critical evaluation of design decisions such as 1) what actions or exposure levels are being compared, 2) whether an adequate comparison group was constructed, and 3) how closely these design decisions approximate an idealized randomized study. We argue that air pollution studies that are more scientifically rigorous in terms of the decisions made to approximate a randomized experiment are more likely to provide evidence of causality and should be prioritized among the body of evidence for regulatory review accordingly. Our considerations, although presented in the context of air pollution epidemiology, can be broadly applied to other fields of epidemiology. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stock, Jonathan D.; Cochran, Susan A.; Field, Michael E.; Jacobi, James D.; Tribble, Gordon
2011-01-01
Coral reef ecosystems are threatened by unprecedented watershed changes in the United States and worldwide. These ecosystems sustain fishing and tourism industries essential to the economic survival of many communities. Sediment, nutrients, and pollutants from watersheds are increasingly transported to coastal waters, where these contaminants damage corals. Although pollution from watersheds is one of many factors threatening coral survival, it is one that local people can have a profound influence on. U.S. Geological Survey scientists are using mapping, monitoring, and computer modeling to better forecast the effects of watershed changes on reef health. Working with communities in Hawai‘i and on other U.S. islands in the Pacific, they are helping to provide the science needed to make informed decisions on watershed and coral reef management.
GIS model for identifying urban areas vulnerable to noise pollution: case study
NASA Astrophysics Data System (ADS)
Bilaşco, Ştefan; Govor, Corina; Roşca, Sanda; Vescan, Iuliu; Filip, Sorin; Fodorean, Ioan
2017-04-01
The unprecedented expansion of the national car ownership over the last few years has been determined by economic growth and the need for the population and economic agents to reduce travel time in progressively expanding large urban centres. This has led to an increase in the level of road noise and a stronger impact on the quality of the environment. Noise pollution generated by means of transport represents one of the most important types of pollution with negative effects on a population's health in large urban areas. As a consequence, tolerable limits of sound intensity for the comfort of inhabitants have been determined worldwide and the generation of sound maps has been made compulsory in order to identify the vulnerable zones and to make recommendations how to decrease the negative impact on humans. In this context, the present study aims at presenting a GIS spatial analysis model-based methodology for identifying and mapping zones vulnerable to noise pollution. The developed GIS model is based on the analysis of all the components influencing sound propagation, represented as vector databases (points of sound intensity measurements, buildings, lands use, transport infrastructure), raster databases (DEM), and numerical databases (wind direction and speed, sound intensity). Secondly, the hourly changes (for representative hours) were analysed to identify the hotspots characterised by major traffic flows specific to rush hours. The validated results of the model are represented by GIS databases and useful maps for the local public administration to use as a source of information and in the process of making decisions.
Samecka-Cymerman, A; Stankiewicz, A; Kolon, K; Kempers, A J
2009-07-01
Concentrations of the elements Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn were measured in the leaves and bark of Robinia pseudoacacia and the soil in which it grew, in the town of Oleśnica (SW Poland) and at a control site. We selected this town because emission from motor vehicles is practically the only source of air pollution, and it seemed interesting to evaluate its influence on soil and plants. The self-organizing feature map (SOFM) yielded distinct groups of soils and R. pseudoacacia leaves and bark, depending on traffic intensity. Only the map classifying bark samples identified an additional group of highly polluted sites along the main highway from Wrocław to Warszawa. The bark of R. pseudoacacia seems to be a better bioindicator of long-term cumulative traffic pollution in the investigated area, while leaves are good indicators of short-term seasonal accumulation trends.
The utilization of mind map painting on 3D shapes with curved faces
NASA Astrophysics Data System (ADS)
Nur Sholikhah, Ayuk; Usodo, Budi; Pramudya, Ikrar
2017-12-01
This paper aims to study on the use of mind map painting media on material with 3D shapes with curved faces and its effect on student’s interest. Observation and literature studies were applied as the research method with the sake design of utilization of mind map painting. The result of this research is the design of mind map painting media can improve students' ability to solve problems, improve the ability to think, and maximize brain power. In relation, mind map painting in learning activities is considered to improve student interest.
Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring
NASA Astrophysics Data System (ADS)
Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.
2017-12-01
While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.
Xiao, Qingyang; Liu, Yang; Mulholland, James A; Russell, Armistead G; Darrow, Lyndsey A; Tolbert, Paige E; Strickland, Matthew J
2016-11-25
Estimating the health effects of ambient air pollutant mixtures is necessary to understand the risk of real-life air pollution exposures. Pediatric Emergency Department (ED) visit records for asthma or wheeze (n = 148,256), bronchitis (n = 84,597), pneumonia (n = 90,063), otitis media (n = 422,268) and upper respiratory tract infection (URI) (n = 744,942) were obtained from Georgia hospitals during 2002-2008. Spatially-contiguous daily concentrations of 11 ambient air pollutants were estimated from CMAQ model simulations that were fused with ground-based measurements. Using a case-crossover study design, odds ratios for 3-day moving average air pollutant concentrations were estimated using conditional logistic regression, matching on ZIP code, day-of-week, month, and year. In multipollutant models, the association of highest magnitude observed for the asthma/wheeze outcome was with "oxidant gases" (O 3 , NO 2 , and SO 2 ); the joint effect estimate for an IQR increase of this mixture was OR: 1.068 (95% CI: 1.040, 1.097). The group of "secondary pollutants" (O 3 and the PM 2.5 components SO 4 2- , NO 3- , and NH 4+ ) was strongly associated with bronchitis (OR: 1.090, 95% CI: 1.050, 1.132), pneumonia (OR: 1.085, 95% CI: 1.047, 1.125), and otitis media (OR: 1.059, 95% CI: 1.042, 1.077). ED visits for URI were strongly associated with "oxidant gases," "secondary pollutants," and the "criteria pollutants" (O 3 , NO 2 , CO, SO 2 , and PM 2.5 ). Short-term exposures to air pollution mixtures were associated with ED visits for several different pediatric respiratory diseases.
Pérez, Laura; Sunyer, Jordi; Künzli, Nino
2009-01-01
To estimate the health and economic benefits that would result from two scenarios of improved air quality in 57 municipalities of the metropolitan area of Barcelona. We used attributable fractions and life tables to quantify the benefits for selected health outcomes, based on published concentration-response functions and economic unit values. The mean weighted concentration of PM(10) for the study population was estimated through concentration surface maps developed by the local government. The annual mean health benefits of reducing the mean PM(10) exposure estimated for the population in the study area (50microg/m(3)) to the annual mean value recommended by the World Health Organization (20microg/m(3)) were estimated to be 3,500 fewer deaths (representing an average increase in life expectancy of 14 months), 1,800 fewer hospitalizations for cardio-respiratory diseases, 5,100 fewer cases of chronic bronchitis among adults, 31,100 fewer cases of acute bronchitis among children, and 54,000 fewer asthma attacks among children and adults. The mean total monetary benefits were estimated to be 6,400 million euros per year. Reducing PM(10) to comply with the current European Union regulatory annual mean level (40microg/m(3)) would yield approximately one third of these benefits. This study shows that reducing air pollution in the metropolitan area of Barcelona would result in substantial health and economic benefits. The benefits are probably underestimated due to the assumptions made in this study. Assessment of the health impact of local air pollution is a useful tool in public health.
Surface modification of a granite building stone in central Rio de Janeiro.
Baptista-Neto, José A; Smith, Bernard J; McAllister, John J; Silva, Maria Augusta M; Castanheira, Fabio S
2006-06-01
In order to evaluate environmental controls on the soiling formation and decay of building stones a set of mapping and physical and chemical analyses were carried out on granite from a historical church in the polluted centre of Rio de Janeiro. These techniques highlight the increasing of threatening damage on generally perceived as a durable building material, caused by granular disaggregation and contour scaling in areas close to ground level. Mapping also indicated the formation of black crusts over entire building façades, concentrated on areas sheltered from rain-wash. Analyses demonstrated the influence of marine aerosols, rock and mortar composition and mostly of the atmospheric pollutants on the decay and soiling of the granite. Much of the decay is associated specifically with the presence of halite (NaCl) and gypsum ((CaS04)2H2O). The fact that black, gypsum crusts are able to develop over entire façades in a humid subtropical environment is testimony to the high levels of local pollution, especially particulate deposition. Reduced rainwash, in sheltered micro-environments of narrow, canyon-like streets, overcomes the gypsum tendency to be washed away from buildings façades. These observations further highlight that decay processes are primarily controlled by microclimatic conditions.
Cirone, K.; Huberman, Y.; Morsella, C.; Méndez, L.; Jorge, M.; Paolicchi, F.
2013-01-01
The purpose of this study was to determine the viability of Mycobacterium avium subsp. paratuberculosis (MAP), Escherichia coli (E. coli), and Salmonella Enteritidis (S. Enteritidis) during preparation and refrigerated storage of yogurt. Three yogurts were prepared using pasteurized commercial milk. Each yogurt was artificially contaminated with (1) MAP, (2) E. coli + S. Enteritidis, and (3) MAP + E. coli + S. Enteritidis. Samples were taken during and after the fermentation process until day 20 after inoculation. MAP was not detected during their preparation and short-term storage but was recuperated after starting at 180 min after inoculation storage. Live bacterial counts of E. coli, and S. Enteritidis increased during the first 24 hours, followed by a slight decrease towards the end of the study. In this study it was shown how MAP, E. coli, and S. Enteritidis resisted the acidic conditions generated during the preparation of yogurt and low storage temperatures. This work contributes to current knowledge regarding survival of MAP, E. coli, and S. Enteritidis during preparation and refrigerated storage of yogurt and emphasizes the need to improve hygiene measures to ensure the absence of these pathogenic microorganisms in dairy products. PMID:24455399
2013-01-01
Background Ambient air pollution has been associated with increased cardiovascular morbidity and mortality. In Reykjavik, Iceland, air pollutant concentrations exceed official health limits several times every year. The aim was to study the association of concentrations of NO2, O3, PM10, and H2S in the Reykjavik capital area with the dispensing of anti-angina pectoris medication, glyceryl trinitrate to the inhabitants. Methods Data on daily dispensing of glyceryl trinitrate, were retrieved from the Icelandic Medicines Registry. Data on hourly concentrations of NO2, O3, PM10, and H2S were obtained from the Environment Agency of Iceland. A case-crossover design was used, based on the dispensing of glyceryl trinitrate to 5,246 individuals (≥18 years) between 2005 and 2009. Results For every 10 μg/m3 increase of NO2 and O3 3-day mean concentrations, the odds ratio (OR) for daily dispensing of glyceryl trinitrates was 1.136 (95% confidence intervals (CI) 1.069-1.207) and 1.094 (95% CI 1.029-1.163) at lag 0, and OR was 1.096 (95% CI 1.029-1.168) and 1.094 (95% CI 1.028-1.166) at lag 1, respectively. Conclusions These findings suggest that NO2 and O3 ambient air concentrations may adversely affect cardiovascular health, as measured by the dispensing of glyceryl trinitrates for angina pectoris. Further, the findings suggest that data on the dispensing of medication may be a valuable health indicator when studying the effect of air pollution on cardiovascular morbidity. PMID:23631813
NASA Technical Reports Server (NTRS)
Casas, J. C.; Koziana, J. V.; Saylor, M. S.; Kindle, E. C.
1982-01-01
Problems associated with the development of the measurement of air pollution from satellites (MAPS) experiment program are addressed. The primary thrust of this research was the utilization of the MAPS experiment data in three application areas: low altitude aircraft flights (one to six km); mid altitude aircraft flights (eight to 12 km); and orbiting space platforms. Extensive research work in four major areas of data management was the framework for implementation of the MAPS experiment technique. These areas are: (1) data acquisition; (2) data processing, analysis and interpretation algorithms; (3) data display techniques; and (4) information production.
Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment
Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan
2015-01-01
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19–271 μg kg-1, 0.36–3.01 μg l-1, 19–66 μg kg-1 and 8–29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment. PMID:26176607
Influence of a Municipal Waste Landfill on the Spatial Distribution of Mercury in the Environment.
Gworek, Barbara; Dmuchowski, Wojciech; Gozdowski, Dariusz; Koda, Eugeniusz; Osiecka, Renata; Borzyszkowski, Jan
2015-01-01
The study investigations were focused on assessing the influence of a 35-year-old municipal waste landfill on environmental mercury pollution. The total Hg content was determined in the soil profile, groundwater, and the plants (Solidago virgaurea and Poaceae sp.) in the landfill area. Environmental pollution near the landfill was relatively low. The topsoil layer, groundwater and the leaves of Solidago virgaurea and Poaceae sp. contained 19-271 μg kg-1, 0.36-3.01 μg l-1, 19-66 μg kg-1 and 8-29 μg kg-1 of Hg, respectively. The total Hg content in the soil decreased with the depth. The results are presented as pollution maps of the landfill area based on the total Hg content in the soil, groundwater and plants. Statistical analysis revealed the lack of correlation between the total Hg content in the soil and plants, but a relationship between the total concentration of Hg in groundwater and soil was shown. The landfill is not a direct source of pollution in the area. The type of land morphology did not influence the pollution level. Construction of bentonite cut-off wall bypassing MSW landfill reduces the risk of mercury release into ground-water environment.
Moranda, Arianna
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities. PMID:29270328
Paladino, Ombretta; Moranda, Arianna; Seyedsalehi, Mahdi
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.
Song, Yang; Wan, Xiaoming; Bai, Shuoxin; Guo, Dong; Ren, Ci; Zeng, Yu; Li, Yirui; Li, Xuewen
2017-01-01
Background The elevation and dissipation of pollutants after the ignition of fireworks in different functional areas of a valley city were investigated. Methods The Air Quality Index (AQI) as well as inter-day and intra-day concentrations of various air pollutants (PM10, PM2.5, SO2, NO2, CO, O3) were measured during two episodes that took place during Chinese New Year festivities. Results For the special terrain of Jinan, the mean concentrations of pollutants increased sharply within 2–4 h of the firework displays, and concentrations were 4–6 times higher than the usual levels. It took 2–3 d for the pollutants to dissipate to background levels. Compared to Preliminary Eve (more fireworks are ignited on New Year’s Eve, but the amounts of other human activities are also lesser), the primary pollutants PM2.5, PM10, and CO reached higher concentrations on New Year’s Eve, and the highest concentrations of these pollutants were detected in living quarters. All areas suffered from serious pollution problems on New Year’s Eve (rural = urban for PM10, but rural > urban for PM2.5). However, SO2 and NO2 levels were 20%–60% lower in living quarters and industrial areas compared to the levels in these same areas on Preliminary Eve. In contrast to the other pollutants, O3 concentrations fell instead of rising with the firework displays. Conclusion Interactions between firework displays and other human activities caused different change trends of pollutants. PM2.5 and PM10 were the main pollutants, and the rural living quarter had some of the highest pollution levels. PMID:28045925
Carbon monoxide measurements in the troposphere
NASA Technical Reports Server (NTRS)
Reichle, H. G., Jr.; Beck, S. M.; Haynes, R. E.; Hesketh, W. D.; Holland, J. A.; Hypes, W. D.; Orr, H. D., III; Sherrill, R. T.; Wallio, H. A.; Casas, J. C.
1982-01-01
Approximately 35 hours of radiometric measurements were obtained of the CO mixing ratio in the middle troposphere, upper troposphere, and lower stratosphere, by means of the Measurement of Air Pollution from Satellites (MAPS) experiment carried in the OSTA-1 payload of the second Space Shuttle flight. In view of gas filter radiometer data in the 4.67-micron band, gathered over the 38 N-38 S latitude region during both daytime and nighttime, the performance of MAPS was excellent. Significant gradients have been found in the middle tropospheric CO mixing ratio with both latitude and longitude over the North Atlantic, the Mediterranean Sea, and the Middle East.
Mölter, Anna; Lindley, Sarah
2015-10-15
This study developed a walking network for the Greater Manchester area (UK). The walking network allows routes to be calculated either based on the shortest duration or based on the lowest cumulative nitrogen dioxide (NO2) or particulate matter (PM10) exposure. The aim of this study was to analyse the costs and benefits of faster routes versus lower pollution exposure for walking routes to primary schools. Random samples of primary schools and residential addresses were used to generate 100,000 hypothetical school routes. For 60% (59,992) and 40% (40,460) an alternative low NO2 and PM10 route was found, respectively. The median change in travel time (NO2: 4.5s, PM10: 0.5s) and average route exposure (NO2: -0.40 μg/m(3), PM10: -0.03 μg/m(3)) was small. However, quantile regression analysis indicated that for 50% of routes a 1% increase in travel time was associated with a 1.5% decrease in NO2 and PM10 exposure. The results of this study suggest that the relative decrease in pollution exposure on low pollution routes tends to be greater than the relative increase in route length. This supports the idea that a route planning tool identifying less polluted routes to primary schools could help deliver potential health benefits for children. Copyright © 2015 Elsevier B.V. All rights reserved.
A multisensor system for airborne surveillance of oil pollution
NASA Technical Reports Server (NTRS)
Edgerton, A. T.; Ketchal, R.; Catoe, C.
1973-01-01
The U.S. Coast Guard is developing a prototype airborne oil surveillance system for use in its Marine Environmental Protection Program. The prototype system utilizes an X-band side-looking radar, a 37-GHz imaging microwave radiometer, a multichannel line scanner, and a multispectral low light level system. The system is geared to detecting and mapping oil spills and potential pollution violators anywhere within a 25 nmi range of the aircraft flight track under all but extreme weather conditions. The system provides for false target discrimination and maximum identification of spilled materials. The system also provides an automated detection alarm, as well as a color display to achieve maximum coupling between the sensor data and the equipment operator.
Zhao, Lei; Liang, Heng-Rui; Chen, Feng-Ying; Chen, Zi; Guan, Wei-Jie; Li, Jian-Hua
2017-01-01
Air pollutant levels in many Chinese cities remained significantly higher than the upper limits stated in World Health Organization guidelines. In light of limited evidence in China, we conducted a meta-analysis summarizing the association between acute exposure of air pollution and cardiovascular mortality. We searched PubMed, and CNKI databases etc. for literature published in English or Chinese up to January 2017. Outcomes were pooled and compared using random-effects model. Excess risks (ERs) per 10 μg/m3 increase in PM2.5, PM10, NO2, SO2 and O3 were evaluated. Subgroup analysis was conducted according to lag patterns (lags 0, 1, 2, 0–1, 0–2 days), gender (male vs. female), temperature (cool vs. warm) and age (< 65 vs. ≥ 65). Study bias was detected using Begg’s and Egger’s test. Of 299 articles identified, 30 met inclusion criteria. Each 10 μg/m3 increase in the concentration was associated with a higher incidence of cardiovascular mortality for PM2.5 (0.68%, 95% CI: 0.39–0.97%), PM10 (0.39%, 95% CI: 0.26–0.53%), NO2 (1.12%, 95% CI: 0.76–1.48%), SO2 (0.75%, 95% CI: 0.42–1.09%), and O3 (0.62%, 95% CI: 0.33–0.92%), respectively. Air pollution conferred greater adverse impacts on cardiovascular mortality for longer duration of exposures. Strongest associations were seen for lag 0–1 day of exposure among all pollutants. Female, lower temperature, and age > 65 years were associated with greater risks of cardiovascular mortality for all pollutants. Higher concentrations of air pollutants correlated with a greater short-term increase in cardiovascular mortality. Further high-quality studies in China are urgently warranted to determine the susceptible population, which would offer reference for policy-making to minimize adverse health effects. PMID:29029525
Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution
Geoffrey H. Donovan; Sarah E. Jovan; Demetrios Gatziolis; Igor Burstyn; Yvonne L. Michael; Michael C. Amacher; Vicente J. Monleon
2016-01-01
Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting....
Zhang, Yixiang; Liang, Xinqiang; Wang, Zhibo; Xu, Lixian
2015-01-01
High content of organic matter in the downstream of watersheds underscored the severity of non-point source (NPS) pollution. The major objectives of this study were to characterize and quantify dissolved organic matter (DOM) in watersheds affected by NPS pollution, and to apply self-organizing map (SOM) and parallel factor analysis (PARAFAC) to assess fluorescence properties as proxy indicators for NPS pollution and labor-intensive routine water quality indicators. Water from upstreams and downstreams was sampled to measure dissolved organic carbon (DOC) concentrations and excitation-emission matrix (EEM). Five fluorescence components were modeled with PARAFAC. The regression analysis between PARAFAC intensities (Fmax) and raw EEM measurements indicated that several raw fluorescence measurements at target excitation-emission wavelength region could provide similar DOM information to massive EEM measurements combined with PARAFAC. Regression analysis between DOC concentration and raw EEM measurements suggested that some regions in raw EEM could be used as surrogates for labor-intensive routine indicators. SOM can be used to visualize the occurrence of pollution. Relationship between DOC concentration and PARAFAC components analyzed with SOM suggested that PARAFAC component 2 might be the major part of bulk DOC and could be recognized as a proxy indicator to predict the DOC concentration. PMID:26526140
Atmospheric deposition maps for the Rocky Mountains
Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.
2003-01-01
Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.
Ma, Yukun; McGree, James; Liu, An; Deilami, Kaveh; Egodawatta, Prasanna; Goonetilleke, Ashantha
2017-10-01
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants present in urban stormwater. Consequently, urban stormwater reuse is constrained due to the human health risk posed by these pollutants. This study developed a scientifically robust approach to assess the risk to human health posed by HMs and PAHs in urban stormwater in order to enhance its reuse. Accordingly, an innovative methodology was created consisting of four stages: quantification of traffic and land use parameters; estimation of pollutant concentrations for model development; risk assessment, and risk map presentation. This methodology will contribute to catchment scale assessment of the risk associated with urban stormwater and for risk mitigation. The risk map developed provides a simple and efficient approach to identify the critical areas within a large catchment. The study also found that heavy molecular weight PAHs (PAHs with 5-6 benzene rings) in urban stormwater pose higher risk to human health compared to light molecular PAHs (PAHs with 2-4 benzene rings). These outcomes will facilitate the development of practical approaches for applying appropriate mitigation measures for the safe management of urban stormwater pollution and for the identification of enhanced reuse opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.
Remote Sensing of Water Pollution
NASA Technical Reports Server (NTRS)
White, P. G.
1971-01-01
Remote sensing, as a tool to aid in the control of water pollution, offers a means of making rapid, economical surveys of areas that are relatively inaccessible on the ground. At the same time, it offers the only practical means of mapping pollution patterns that cover large areas. Detection of oil slicks, thermal pollution, sewage, and algae are discussed.
Staley, C.; Sadowsky, M. J.; Gyawali, P.; Sidhu, J. P. S.; Palmer, A.; Beale, D. J.; Toze, S.
2015-01-01
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. PMID:26231650
Mathilda Chiu, Yueh-Hsiu; Coull, Brent A.; Sternthal, Michelle J.; Kloog, Itai; Schwartz, Joel; Cohen, Sheldon; Wright, Rosalind J.
2013-01-01
Background: Prenatal exposures to stress and physical toxins influence children’s respiratory health, albeit few studies consider these factors together. Objectives: To concurrently examine effects of prenatal community-level psychosocial (exposure to community violence, ECV) and physical (air pollution) stressors on repeated wheeze in 708 urban children followed to age 2 years. Methods: Multi-item ECV reported by mothers in pregnancy was summarized into a continuous score using Rasch modeling. Prenatal black carbon (BC) exposure was estimated using land-use regression (LUR) modeling; particulate matter (PM2.5) was estimated using LUR incorporating satellite data. Mothers reported child’s wheeze every 3 months. Effects of ECV and air pollutants on repeated wheeze (≥2 episodes) were examined using logistic regression. Interactions between ECV and pollutants were examined. Results: Mothers were primarily Black (29%) and Hispanic (55%) with lower education (62% with ≤12 years); 87 children (12%) wheezed repeatedly. In models examining concurrent exposures, ECV [OR=1.95 (95% CI: 1.13-3.36), highest vs. lowest tertile] and BC [OR=1.84 (95% CI: 1.08-3.12), ≥median vs.
The water footprint of humanity
NASA Astrophysics Data System (ADS)
Mekonnen, M. M.; Hoekstra, A. Y.
2011-12-01
This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution level. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (grey WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agricultural and industrial commodities. The global WF in the period 1996-2005 was 9087 Gm3/yr (74% green, 11% blue, 15% grey). Agricultural production contributes 92%. About one fifth of the global WF relates to production for export. The total volume of international virtual water flows related to trade in agricultural and industrial products was 2320 Gm3/yr (68% green, 13% blue, 19% grey). The WF of the global average consumer was 1385 m3/yr. The average consumer in the US has a WF of 2842 m3/yr, while the average citizens in China and India have WFs of 1071 m3/yr and 1089 m3/yr, respectively. Consumption of cereal products gives the largest contribution to the WF of the average consumer (27%), followed by meat (22%) and milk products (7%). The volume and pattern of consumption and the WF per ton of product of the products consumed are the main factors determining the WF of a consumer. The study illustrates the global dimension of water consumption and pollution by showing that several countries heavily rely on foreign water resources and that many countries have significant impacts on water consumption and pollution elsewhere.
Influence of Betaxolol on the Methamphetamine Dependence in Mice.
Kim, Byoung-Jo; Park, Jong-Il; Eun, Hun-Jeong; Yang, Jong-Chul
2016-05-01
The noradrenaline system is involved in the reward effects of various kinds of abused drugs. Betaxolol (BTX) is a highly selective β1-antagonist. In the present study, we evaluated the effect of BTX on methamphetamine (MAP)-induced conditioned place preference (CPP) and hyperactivity in mice. The mice (n=72) were treated with MAP or saline every other day for a total of 6 days (from day 3 to day 8; 3-times MAP and 3-times saline). Each mouse was given saline (1 mL/kg) or MAP (1 mg/kg, s.c.) or BTX (5 mg/kg, i.p.) or MAP with BTX (5 mg/kg, i.p.) 30 min prior to the administration of MAP (1 mg/kg, s.c.) every other day and paired with for 1 h (three-drug and three-saline sessions). We then compared the CPP score between the two groups. After the extinction of CPP, the mice were given BTX (5 mg/kg, i.p.) or saline (1 mL/kg) 24 h prior to a priming injection of MAP, and were then immediately tested to see whether the place preference was reinstated. The repeated administration of BTX 30 min prior to the exposure to MAP significantly reduced the development of MAP-induced CPP. When BTX was administered 24 h prior to the CPP-testing session on day 9, it also significantly attenuated the CPP, but did not result in any change of locomotor activity. In the drug-priming reinstatement study, the extinguished CPP was reinstated by a MAP (0.125 mg/kg, s.c.) injection and this was significantly attenuated by BTX. These findings suggest that BTX has a therapeutic and preventive effect on the development, expression, and drug-priming reinstatement of MAP-induced CPP.
Hu, Zhiyong; Liebens, Johan; Rao, K Ranga
2008-01-01
Background Relatively few studies have examined the association between air pollution and stroke mortality. Inconsistent and inclusive results from existing studies on air pollution and stroke justify the need to continue to investigate the linkage between stroke and air pollution. No studies have been done to investigate the association between stroke and greenness. The objective of this study was to examine if there is association of stroke with air pollution, income and greenness in northwest Florida. Results Our study used an ecological geographical approach and dasymetric mapping technique. We adopted a Bayesian hierarchical model with a convolution prior considering five census tract specific covariates. A 95% credible set which defines an interval having a 0.95 posterior probability of containing the parameter for each covariate was calculated from Markov Chain Monte Carlo simulations. The 95% credible sets are (-0.286, -0.097) for household income, (0.034, 0.144) for traffic air pollution effect, (0.419, 1.495) for emission density of monitored point source polluters, (0.413, 1.522) for simple point density of point source polluters without emission data, and (-0.289,-0.031) for greenness. Household income and greenness show negative effects (the posterior densities primarily cover negative values). Air pollution covariates have positive effects (the 95% credible sets cover positive values). Conclusion High risk of stroke mortality was found in areas with low income level, high air pollution level, and low level of exposure to green space. PMID:18452609
Observing Tropospheric Ozone From Space
NASA Technical Reports Server (NTRS)
Fishman, Jack
2000-01-01
The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry
Pannullo, Francesca; Lee, Duncan; Neal, Lucy; Dalvi, Mohit; Agnew, Paul; O'Connor, Fiona M; Mukhopadhyay, Sabyasachi; Sahu, Sujit; Sarran, Christophe
2017-03-27
Estimating the long-term health impact of air pollution in a spatio-temporal ecological study requires representative concentrations of air pollutants to be constructed for each geographical unit and time period. Averaging concentrations in space and time is commonly carried out, but little is known about how robust the estimated health effects are to different aggregation functions. A second under researched question is what impact air pollution is likely to have in the future. We conducted a study for England between 2007 and 2011, investigating the relationship between respiratory hospital admissions and different pollutants: nitrogen dioxide (NO 2 ); ozone (O 3 ); particulate matter, the latter including particles with an aerodynamic diameter less than 2.5 micrometers (PM 2.5 ), and less than 10 micrometers (PM 10 ); and sulphur dioxide (SO 2 ). Bayesian Poisson regression models accounting for localised spatio-temporal autocorrelation were used to estimate the relative risks (RRs) of pollution on disease risk, and for each pollutant four representative concentrations were constructed using combinations of spatial and temporal averages and maximums. The estimated RRs were then used to make projections of the numbers of likely respiratory hospital admissions in the 2050s attributable to air pollution, based on emission projections from a number of Representative Concentration Pathways (RCP). NO 2 exhibited the largest association with respiratory hospital admissions out of the pollutants considered, with estimated increased risks of between 0.9 and 1.6% for a one standard deviation increase in concentrations. In the future the projected numbers of respiratory hospital admissions attributable to NO 2 in the 2050s are lower than present day rates under 3 Representative Concentration Pathways (RCPs): 2.6, 6.0, and 8.5, which is due to projected reductions in future NO 2 emissions and concentrations. NO 2 concentrations exhibit consistent substantial present-day health effects regardless of how a representative concentration is constructed in space and time. Thus as concentrations are predicted to remain above limits set by European Union Legislation until the 2030s in parts of urban England, it will remain a substantial health risk for some time.
Making US Soil Taxonomy more scientifically applicable to environmental and food security issues.
NASA Astrophysics Data System (ADS)
Monger, Curtis; Lindbo, David L.; Wysocki, Doug; Schoeneberger, Phil; Libohova, Zamir
2017-04-01
US Department of Agriculture began mapping soils in the 1890s on a county-by-county basis until most of the conterminous United States was mapped by the late 1930s. This first-generation mapping was followed by a second-generation that re-mapped the US beginning in the 1940s. Soil classification during these periods evolved into the current system of Soil Taxonomy which is based on (1) soil features as natural phenomena and on (2) soil properties important for agriculture and other land uses. While this system has enabled communication among soil surveyors, the scientific applicability of Soil Taxonomy to address environmental and food security issues has been under-utilized. In particular, little effort has been exerted to understand how soil taxa interact and function together as larger units—as soil systems. Thus, much soil-geomorphic understanding that could be applied to process-based modeling remains unexploited. The challenge for soil taxonomists in the United States and elsewhere is to expand their expertise and work with modelers to explore how soil taxa are linked to each other, how they influence water, nutrient, and pollutant flow through the landscape, how they interact with ecology, and how they change with human land use.
High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data.
Apte, Joshua S; Messier, Kyle P; Gani, Shahzad; Brauer, Michael; Kirchstetter, Thomas W; Lunden, Melissa M; Marshall, Julian D; Portier, Christopher J; Vermeulen, Roel C H; Hamburg, Steven P
2017-06-20
Air pollution affects billions of people worldwide, yet ambient pollution measurements are limited for much of the world. Urban air pollution concentrations vary sharply over short distances (≪1 km) owing to unevenly distributed emission sources, dilution, and physicochemical transformations. Accordingly, even where present, conventional fixed-site pollution monitoring methods lack the spatial resolution needed to characterize heterogeneous human exposures and localized pollution hotspots. Here, we demonstrate a measurement approach to reveal urban air pollution patterns at 4-5 orders of magnitude greater spatial precision than possible with current central-site ambient monitoring. We equipped Google Street View vehicles with a fast-response pollution measurement platform and repeatedly sampled every street in a 30-km 2 area of Oakland, CA, developing the largest urban air quality data set of its type. Resulting maps of annual daytime NO, NO 2 , and black carbon at 30 m-scale reveal stable, persistent pollution patterns with surprisingly sharp small-scale variability attributable to local sources, up to 5-8× within individual city blocks. Since local variation in air quality profoundly impacts public health and environmental equity, our results have important implications for how air pollution is measured and managed. If validated elsewhere, this readily scalable measurement approach could address major air quality data gaps worldwide.
Using self-organizing maps to develop ambient air quality classifications: a time series example
2014-01-01
Background Development of exposure metrics that capture features of the multipollutant environment are needed to investigate health effects of pollutant mixtures. This is a complex problem that requires development of new methodologies. Objective Present a self-organizing map (SOM) framework for creating ambient air quality classifications that group days with similar multipollutant profiles. Methods Eight years of day-level data from Atlanta, GA, for ten ambient air pollutants collected at a central monitor location were classified using SOM into a set of day types based on their day-level multipollutant profiles. We present strategies for using SOM to develop a multipollutant metric of air quality and compare results with more traditional techniques. Results Our analysis found that 16 types of days reasonably describe the day-level multipollutant combinations that appear most frequently in our data. Multipollutant day types ranged from conditions when all pollutants measured low to days exhibiting relatively high concentrations for either primary or secondary pollutants or both. The temporal nature of class assignments indicated substantial heterogeneity in day type frequency distributions (~1%-14%), relatively short-term durations (<2 day persistence), and long-term and seasonal trends. Meteorological summaries revealed strong day type weather dependencies and pollutant concentration summaries provided interesting scenarios for further investigation. Comparison with traditional methods found SOM produced similar classifications with added insight regarding between-class relationships. Conclusion We find SOM to be an attractive framework for developing ambient air quality classification because the approach eases interpretation of results by allowing users to visualize classifications on an organized map. The presented approach provides an appealing tool for developing multipollutant metrics of air quality that can be used to support multipollutant health studies. PMID:24990361
Estimating the Health and Economic Impacts of Changes in Local Air Quality
Carvour, Martha L.; Hughes, Amy E.; Fann, Neal
2018-01-01
Objectives. To demonstrate the benefits-mapping software Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE), which integrates local air quality data with previously published concentration–response and health–economic valuation functions to estimate the health effects of changes in air pollution levels and their economic consequences. Methods. We illustrate a local health impact assessment of ozone changes in the 10-county nonattainment area of the Dallas–Fort Worth region of Texas, estimating the short-term effects on mortality predicted by 2 scenarios for 3 years (2008, 2011, and 2013): an incremental rollback of the daily 8-hour maximum ozone levels of all area monitors by 10 parts per billion and a rollback-to-a-standard ambient level of 65 parts per billion at only monitors above that level. Results. Estimates of preventable premature deaths attributable to ozone air pollution obtained by the incremental rollback method varied little by year, whereas those obtained by the rollback-to-a-standard method varied by year and were sensitive to the choice of ordinality and the use of preloaded or imported data. Conclusions. BenMAP-CE allows local and regional public health analysts to generate timely, evidence-based estimates of the health impacts and economic consequences of potential policy options in their communities. PMID:29698094
Particulate matter concentration mapping from MODIS satellite data: a Vietnamese case study
NASA Astrophysics Data System (ADS)
Nguyen, Thanh T. N.; Bui, Hung Q.; Pham, Ha V.; Luu, Hung V.; Man, Chuc D.; Pham, Hai N.; Le, Ha T.; Nguyen, Thuy T.
2015-09-01
Particulate Matter (PM) pollution is one of the most important air quality concerns in Vietnam. In this study, we integrate ground-based measurements, meteorological and satellite data to map temporal PM concentrations at a 10 × 10 km grid for the entire of Vietnam. We specifically used MODIS Aqua and Terra data and developed statistically-significant regression models to map and extend the ground-based PM concentrations. We validated our models over diverse geographic provinces i.e., North East, Red River Delta, North Central Coast and South Central Coast in Vietnam. Validation suggested good results for satellite-derived PM2.5 data compared to ground-based PM2.5 (n = 285, r2 = 0.411, RMSE = 20.299 μg m-3 and RE = 39.789%). Further, validation of satellite-derived PM2.5 on two independent datasets for North East and South Central Coast suggested similar results (n = 40, r2 = 0.455, RMSE = 21.512 μg m-3, RE = 45.236% and n = 45, r2 = 0.444, RMSE = 8.551 μg m-3, RE = 46.446% respectively). Also, our satellite-derived PM2.5 maps were able to replicate seasonal and spatial trends of ground-based measurements in four different regions. Our results highlight the potential use of MODIS datasets for PM estimation at a regional scale in Vietnam. However, model limitation in capturing maximal or minimal PM2.5 peaks needs further investigations on ground data, atmospheric conditions and physical aspects.
Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David; Elvira, Susana; Estébanez, Belén; Fusaro, Lina; Gerosa, Giacomo; Izquieta-Rojano, Sheila; Lo Cascio, Mauro; Marzuoli, Riccardo; Matos, Paula; Mereu, Simone; Merino, José; Morillas, Lourdes; Nunes, Alice; Paoletti, Elena; Paoli, Luca; Pinho, Pedro; Rogers, Isabel B; Santos, Arthur; Sicard, Pierre; Stevens, Carly J; Theobald, Mark R
2017-08-01
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Groundwaters of Florence (Italy): Trace element distribution and vulnerability of the aquifers
NASA Astrophysics Data System (ADS)
Bencini, A.; Ercolanelli, R.; Sbaragli, A.; Verrucchi, C.
1993-11-01
Geochemical and hydrogeological research has been carried out on 109 wells in the alluvial plain of Florence, in order to evaluate conductivity and main chemistry of ground waters, the pattern of some possible pollutant chemical species (Fe, Mn, Cr, Cu, Pb, Zn, NO2, NO3), and the vulnerability of the aquifers. The plain is made up of Plio-Quaternary alluvial and lacustrine sediments for a maximum thickness of 600 m. Silts and clays, sometimes with lenses of sandy gravels, are dominant, while considerable deposits of sands, pebbles, and gravels occur along the course of the Arno river and its tributary streams, and represent the most important aquifer of the plain. The groundwaters analyzed belong to this aquifer or to the smaller ones, hosted in the gravel lenses. Most waters show conductivity values around 1000 1200 μS, and almost all of them have an alkaline-earth-bicarbonate chemical character; these features are consistent with the mainly calcareous lithology of the aquifers. In the western areas a higher salt content of the groundwaters is evident, probably related to the presence of industrial activities which use water desalinators. Heavy metal and NO2, NO3 analyses point out that no important pollution phenomena affect the groundwaters; all the mean values of the chemical considered species are below the maximum admissible concentration (MAC) fixed by the European Community for drinkable waters. Nevertheless, some anomalies of NO2, NO3, Fe, Mn, and Zn are present in the plain. Apart from Mn, which seems to be released by certain calcareous gravels, the other anomalies have a local influence, since they disappear even in the nearest wells. The most plausible causes can be recognized in losses of the sewage system (NO2=3 4 mg/t); use of nitrate compounds in agriculture (NO3=60 70 mg/l); oxidation of well pipes (Fe ≈ 20 mg/l; Zn ≈ 6 mg/l). As regards Cr, Cu, and Pb, all the observations are below the MAC; therefore, the median values of < 3, 3.9, and 1.1 μg/l, respectively, could be considered reference concentrations for groundwaters circulating in calcareous lithotypes, under undisturbed natural conditions. Finally, a map of vulnerability related to the most superficial and important aquifer has been elaborated on the basis of thickness and permeability of the covers. The map shows that the areas near the Arno river are highly vulnerable, for the minimum thickness (or lacking) of sediments covering the aquifer. On the other hand, in the case of pollution, several factors not considered in the map could significantly increase the self-purification capacity of the aquifer, such as the dilution of groundwaters caused by the feeding of the rivers, the bacteria oxidation of nitrogenous species, and the sorption capacity of clay minerals and organic matter with respect to trace metals.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.
Water quality and small-scale land use mapping in the South-Chinese megacity Guangzhou
NASA Astrophysics Data System (ADS)
Strohschoen, R.; Azzam, R.; Baier, K.
2011-12-01
Since China adopted its "open-door" policy in 1978/ 79, the Pearl River Delta became one of the most rapid and dynamic urbanizing areas in East Asia due to migration, industrialization and globalization processes. The study area Guangzhou grew from a small town to a megacity with some 15 million inhabitants within less than 30 years. The rapid population growth and the urban and industrial expansion led to a remarkably increasing demand for freshwater, a high water consume and a rising sewage production. While economy and house constructions developed very fast, the expansion of water infrastructures could not keep pace with the urban growth. The consequences arising out of these situations are a serious deterioration of the surface and groundwater resources but also a degradation of living conditions and a threat to human health, particularly of the urban poor. In contrast to other studies that often consider the surface water quality outside Guangzhou, our focus was put on the urban Pearl River and its tributaries as well as urban groundwater and tap water. The study was conducted to spatially investigate the present status of the water quality in view of the concurrent formal and informal anthropogenic influences. Additional land use mapping was undertaken to analyze the interrelations between different land use types and water quality and to determine local pollution hotspots which should be taken into particular consideration of future city planning. Supplementing interviews were hold to find out usage patterns of groundwater and strategies to cope with both insufficient tap water quality and water infrastructures. A total of 74 surface water samples and 16 groundwater samples of privately and publicly accessible wells were taken at the beginning of the rainy season in May 2010. Those samples were partly compared to measurements carried out from 2007-2009, where adequate. Further, 15 tap water samples were taken in 2007/ 08 to draw conclusions about possible health risks. The physicochemical parameters (pH, electrical conductivity [μS/ cm], oxygen content [mg/ L], oxygen saturation [%] and redox potential [mV]) were measured in situ or in a 'mobile laboratory'. Chemical mapping which allowed us to evaluate the distribution and concentration of the parameters coliform bacteria, NO3-, NH4+, Cd, Cr, Cu, Pb and Zn was also conducted. The latter were analyzed subject to the standard examination methods stated by the Ministry of Environmental Protection of the People's Republic of China and the U.S. EPA (e.g. ICP-MS). Despite comprehensive improvements in the range of wastewater disposal in recent years, the chemical analysis showed that pollution loads from (informal) housing areas are still very high (especially relating to coliforms). Other main sources of water pollution result from agricultural runoff and animal husbandry. The concentrations of heavy metals by contrast were low which could result from the strengthening of industrial discharge regulations. Based on our findings, qualitative scenarios will be drafted with regard to the interactions of land use, urban expansion and water quality showing vulnerable areas. The findings could be seen as a contribution for an effective and sustainable protection of Guangzhou's land and water resources.
NASA Astrophysics Data System (ADS)
Banerjee, Polash; Ghose, Mrinal Kanti; Pradhan, Ratika
2018-05-01
Spatial analysis of water quality impact assessment of highway projects in mountainous areas remains largely unexplored. A methodology is presented here for Spatial Water Quality Impact Assessment (SWQIA) due to highway-broadening-induced vehicular traffic change in the East district of Sikkim. Pollution load of the highway runoff was estimated using an Average Annual Daily Traffic-Based Empirical model in combination with mass balance model to predict pollution in the rivers within the study area. Spatial interpolation and overlay analysis were used for impact mapping. Analytic Hierarchy Process-Based Water Quality Status Index was used to prepare a composite impact map. Model validation criteria, cross-validation criteria, and spatial explicit sensitivity analysis show that the SWQIA model is robust. The study shows that vehicular traffic is a significant contributor to water pollution in the study area. The model is catering specifically to impact analysis of the concerned project. It can be an aid for decision support system for the project stakeholders. The applicability of SWQIA model needs to be explored and validated in the context of a larger set of water quality parameters and project scenarios at a greater spatial scale.
U.S. Geological Survey programs in Florida, 1999
,
1999-01-01
The safety, health, and economic well-being of Florida?s citizens are important to the U.S. Geological Survey (USGS), which is involved in water-related, geologic, biological, land use, and mapping issues in many parts of the State. The USGS office in Tallahassee acts as the liaison for all studies conducted by USGS scientists in Florida. Water resources activities are conducted not only from the office in Tallahassee, but also from offices in Miami, Tampa, and Altamonte Springs (Orlando). Scientists in these offices investigate surface water, ground water and water quality in Florida, working in cooperation with other Federal, State and local agencies and organizations. The USGS Center for Coastal Geology and Regional Marine Studies was established in St. Petersburg in 1988, in cooperation with the University of South Florida. The Center conducts a wide variety of research on mineral resources and on coastal and regional marine problems, including coastal erosion, climate change, wetlands deterioration, and coastal pollution. A USGS mapping office is located in St. Petersburg. Also, the Earth Science Information Center (ESIC) in Tallahassee provides USGS information to customers and directs inquiries to the appropriate USGS office or State agency on earth science topics, particularly those related to cartography, geography, aerial photography, and digital data. Biologists at the USGS Florida Caribbean Science Center, located in Gainesville, conduct biological and ecosystem studies in Florida, Puerto Rico, and the Virgin Islands.
Wiegner, T N; Edens, C J; Abaya, L M; Carlson, K M; Lyon-Colbert, A; Molloy, S L
2017-01-30
Spatial and temporal patterns of coastal microbial pollution are not well documented. Our study examined these patterns through measurements of fecal indicator bacteria (FIB), nutrients, and physiochemical parameters in Hilo Bay, Hawai'i, during high and low river flow. >40% of samples tested positive for the human-associated Bacteroides marker, with highest percentages near rivers. Other FIB were also higher near rivers, but only Clostridium perfringens concentrations were related to discharge. During storms, FIB concentrations were three times to an order of magnitude higher, and increased with decreasing salinity and water temperature, and increasing turbidity. These relationships and high spatial resolution data for these parameters were used to create Enterococcus spp. and C. perfringens maps that predicted exceedances with 64% and 95% accuracy, respectively. Mapping microbial pollution patterns and predicting exceedances is a valuable tool that can improve water quality monitoring and aid in visualizing FIB hotspots for management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benefits Mapping and Analysis Program (BenMAP)
This area summarizes the key features of the BenMAP-CE program and links to pages that provide more details regarding the program, the basic principles of air pollution benefits analysis and a link to download the software.
Lokhande, Satish K.; Jain, Mohindra C.; Dhawale, Satyajeet A.; Gautam, Rakesh; Bodhe, Ghanshyam L.
2018-01-01
Introduction: In open-cast mines, noise pollution has become a serious concern due to the extreme use of heavy earth moving machinery (HEMM). Materials and Methods: This study is focused to measure and assess the effects of the existing noise levels of major operational mines in the Keonjhar, Sundergadh, and Mayurbhanj districts of Odisha, India. The transportation noise levels were also considered in this study, which was predicted using the modified Federal Highway Administration (FHWA) model. Result and Discussion: It was observed that noise induced by HEMM such as rock breakers, jackhammers, dumpers, and excavators, blasting noise in the mining terrain, as well as associated transportation noise became a major source of annoyance to the habitants living in proximity to the mines. The noise produced by mechanized mining operations was observed between 74.3 and 115.2 dB(A), and its impact on residential areas was observed between 49.4 and 58.9 dB(A). In addition, the noise contour maps of sound level dispersion were demonstrated with the utilization of advanced noise prediction software tools for better understanding. Conclusion: Finally, the predicted values at residential zone and traffic noise are correlated with observed values, and the coefficient of determination, R2, was calculated to be 0.6891 and 0.5967, respectively. PMID:29676297
NASA Technical Reports Server (NTRS)
Castruccio, P.; Fowler, T.; Loats, H., Jr.
1979-01-01
Report presents data derived from satellite images predicting pollution loads after rainfall. It explains method for converting Landsat images of Eastern United States into cover maps for Baltimore/five county region.
Ambient air pollution and autism in Los Angeles county, California.
Becerra, Tracy Ann; Wilhelm, Michelle; Olsen, Jørn; Cockburn, Myles; Ritz, Beate
2013-03-01
The prevalence of autistic disorder (AD), a serious developmental condition, has risen dramatically over the past two decades, but high-quality population-based research addressing etiology is limited. We studied the influence of exposures to traffic-related air pollution during pregnancy on the development of autism using data from air monitoring stations and a land use regression (LUR) model to estimate exposures. Children of mothers who gave birth in Los Angeles, California, who were diagnosed with a primary AD diagnosis at 3-5 years of age during 1998-2009 were identified through the California Department of Developmental Services and linked to 1995-2006 California birth certificates. For 7,603 children with autism and 10 controls per case matched by sex, birth year, and minimum gestational age, birth addresses were mapped and linked to the nearest air monitoring station and a LUR model. We used conditional logistic regression, adjusting for maternal and perinatal characteristics including indicators of SES. Per interquartile range (IQR) increase, we estimated a 12-15% relative increase in odds of autism for ozone [odds ratio (OR) = 1.12, 95% CI: 1.06, 1.19; per 11.54-ppb increase] and particulate matter ≤ 2.5 µm (OR = 1.15; 95% CI: 1.06, 1.24; per 4.68-μg/m3 increase) when mutually adjusting for both pollutants. Furthermore, we estimated 3-9% relative increases in odds per IQR increase for LUR-based nitric oxide and nitrogen dioxide exposure estimates. LUR-based associations were strongest for children of mothers with less than a high school education. Measured and estimated exposures from ambient pollutant monitors and LUR model suggest associations between autism and prenatal air pollution exposure, mostly related to traffic sources.
2012-09-01
2.3.4 operating system on a Samsung Galaxy S II. All four types of digital mapping capabilities were integrated with this software. The display size...Leader’s course 0 Senior Leader’s course 0 Ranger 12 Combat Life Saver 0 Master Gunner 5 Other: armorer, landscaping 9. Using the scale below
US EPA Nonattainment Areas and Designations-SO2 (2010 NAAQS)
This web service contains the following layer: SO2 2010 NAAQS State Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2010SO21hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The methods and a
US EPA Nonattainment Areas and Designations-24 Hour PM2.5 (2006 NAAQS)
This web service contains the following layers: PM2.5 24hr 2006 NAAQS State Level and PM2.5 24hr 2006 NAAQS National. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2006PM2524hour/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-ter
US EPA Nonattainment Areas and Designations-Annual PM2.5 (2012 NAAQS)
This web service contains the following layer: PM2.5 Annual 2012 NAAQS State Level. Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NAA2012PM25Annual/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each criteria pollutant, there are specific procedures used for measuring ambient concentrations and for calculating long-term (quarterly or annual) and/or short-term (24-hour) exposure levels. The me
ERIC Educational Resources Information Center
Morrison, James W., Ed.; Hall, James A., Ed.
This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…
Deaths and Medical Visits Attributable to Environmental Pollution in the United Arab Emirates
MacDonald Gibson, Jacqueline; Thomsen, Jens; Launay, Frederic; Harder, Elizabeth; DeFelice, Nicholas
2013-01-01
Background This study estimates the potential health gains achievable in the United Arab Emirates (UAE) with improved controls on environmental pollution. The UAE is an emerging economy in which population health risks have shifted rapidly from infectious diseases to chronic conditions observed in developed nations. The UAE government commissioned this work as part of an environmental health strategic planning project intended to address this shift in the nature of the country’s disease burden. Methods and Findings We assessed the burden of disease attributable to six environmental exposure routes outdoor air, indoor air, drinking water, coastal water, occupational environments, and climate change. For every exposure route, we integrated UAE environmental monitoring and public health data in a spatially resolved Monte Carlo simulation model to estimate the annual disease burden attributable to selected pollutants. The assessment included the entire UAE population (4.5 million for the year of analysis). The study found that outdoor air pollution was the leading contributor to mortality, with 651 attributable deaths (95% confidence interval [CI] 143–1,440), or 7.3% of all deaths. Indoor air pollution and occupational exposures were the second and third leading contributors to mortality, with 153 (95% CI 85–216) and 46 attributable deaths (95% CI 26–72), respectively. The leading contributor to health-care facility visits was drinking water pollution, to which 46,600 (95% CI 15,300–61,400) health-care facility visits were attributed (about 15% of the visits for all the diseases considered in this study). Major study limitations included (1) a lack of information needed to translate health-care facility visits to quality-adjusted-life-year estimates and (2) insufficient spatial coverage of environmental data. Conclusions Based on international comparisons, the UAE’s environmental disease burden is low for all factors except outdoor air pollution. From a public health perspective, reducing pollutant emissions to outdoor air should be a high priority for the UAE’s environmental agencies. PMID:23469200
Chien, Ting-Ying; Ting, Hsien-Wei; Chan, Chien-Lung; Yang, Nan-Ping; Pan, Ren-Hao; Lai, K Robert; Hung, Su-In
2017-12-10
Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that the occurrence of sICH is related to air pollution. This study used big data analysis to explore the impact of air pollution on the risk of sICH in patients of differing age and geographic location. 39,053 cases were included in this study; 14,041 in the Taipei region (Taipei City and New Taipei City), 5537 in Taoyuan City, 7654 in Taichung City, 4739 in Tainan City, and 7082 in Kaohsiung City. The results of correlation analysis indicated that there were two pollutants groups, the CO and NO₂ group and the PM 2.5 and PM 10 group. Furthermore, variations in the correlations of sICH with air pollutants were identified in different age groups. The co-factors of the influence of air pollutants in the different age groups were explored using regression analysis. This study integrated Taiwan National Health Insurance data and air pollution data to explore the risk factors of sICH using big data analytics. We found that PM 2.5 and PM 10 are very important risk factors for sICH, and age is an important modulating factor that allows air pollutants to influence the incidence of sICH.
Chien, Ting-Ying; Ting, Hsien-Wei; Chan, Chien-Lung; Lai, K. Robert; Hung, Su-In
2017-01-01
Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that the occurrence of sICH is related to air pollution. This study used big data analysis to explore the impact of air pollution on the risk of sICH in patients of differing age and geographic location. 39,053 cases were included in this study; 14,041 in the Taipei region (Taipei City and New Taipei City), 5537 in Taoyuan City, 7654 in Taichung City, 4739 in Tainan City, and 7082 in Kaohsiung City. The results of correlation analysis indicated that there were two pollutants groups, the CO and NO2 group and the PM2.5 and PM10 group. Furthermore, variations in the correlations of sICH with air pollutants were identified in different age groups. The co-factors of the influence of air pollutants in the different age groups were explored using regression analysis. This study integrated Taiwan National Health Insurance data and air pollution data to explore the risk factors of sICH using big data analytics. We found that PM2.5 and PM10 are very important risk factors for sICH, and age is an important modulating factor that allows air pollutants to influence the incidence of sICH. PMID:29232865
Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L; Künzli, Nino; Probst-Hensch, Nicole
2015-01-01
The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO₂, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m(-3) increase in NO₂ exposure was associated with lower levels of FEV₁ (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 μg·m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV₁ (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. Copyright ©ERS 2015.
Spranger, T; Hettelingh, J-P; Slootweg, J; Posch, M
2008-08-01
Long-range transboundary air pollution has caused severe environmental effects in Europe. European air pollution abatement policy, in the framework of the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP Convention) and the European Union Clean Air for Europe (CAFE) programme, has used critical loads and their exceedances by atmospheric deposition to design emission abatement targets and strategies. The LRTAP Convention International Cooperative Programme on Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends (ICP M&M) generates European critical loads datasets to enable this work. Developing dynamic nitrogen flux models and using them for a prognosis and assessment of nitrogen effects remains a challenge. Further research is needed on links between nitrogen deposition effects, climate change, and biodiversity.
Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring
NASA Astrophysics Data System (ADS)
Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.
2017-12-01
Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying appropriate calibration techniques, the potentially noisy or biased responses of individual sensors can be mapped to pollutant concentration values which are comparable to those of reference instruments.
Air Pollution Study in the Republic of Moldova Using Moss Biomonitoring Technique.
Zinicovscaia, Inga; Hramco, Constantin; Duliu, Octavian G; Vergel, Konstantin; Culicov, Otilia A; Frontasyeva, Marina V; Duca, Gheorghe
2017-02-01
Moss biomonitoring using the species Hypnum cupressiforme (Hedw.) and Pleurocarpous sp was applied to study air pollution in the Republic of Moldova. A total of 41 elements (Na, Mg, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Zr, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb, Hf, Ta, W, Pb, Th, and U) were determined by instrumental epithermal neutron activation analysis and atomic absorption spectrometry. Principal component analysis was used to identify and characterize different pollution sources. Geographical distribution maps were prepared to point out the regions most affected by air pollution and relate this to potential sources of contamination. Median values of the elements studied were compared with data from the European moss biomonitoring program. The cities of Chisinau and Balti were determined to experience particular environmental stress.
NASA Astrophysics Data System (ADS)
Liu, Luyao; Feng, Minquan
2018-03-01
[Objective] This study quantitatively evaluated risk probabilities of sudden water pollution accidents under the influence of risk sources, thus providing an important guarantee for risk source identification during water diversion from the Hanjiang River to the Weihe River. [Methods] The research used Bayesian networks to represent the correlation between accidental risk sources. It also adopted the sequential Monte Carlo algorithm to combine water quality simulation with state simulation of risk sources, thereby determining standard-exceeding probabilities of sudden water pollution accidents. [Results] When the upstream inflow was 138.15 m3/s and the average accident duration was 48 h, the probabilities were 0.0416 and 0.0056 separately. When the upstream inflow was 55.29 m3/s and the average accident duration was 48 h, the probabilities were 0.0225 and 0.0028 separately. [Conclusions] The research conducted a risk assessment on sudden water pollution accidents, thereby providing an important guarantee for the smooth implementation, operation, and water quality of the Hanjiang-to-Weihe River Diversion Project.
The water footprint of humanity.
Hoekstra, Arjen Y; Mekonnen, Mesfin M
2012-02-28
This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (gray WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agricultural and industrial commodities. The global annual average WF in the period 1996-2005 was 9,087 Gm(3)/y (74% green, 11% blue, 15% gray). Agricultural production contributes 92%. About one-fifth of the global WF relates to production for export. The total volume of international virtual water flows related to trade in agricultural and industrial products was 2,320 Gm(3)/y (68% green, 13% blue, 19% gray). The WF of the global average consumer was 1,385 m(3)/y. The average consumer in the United States has a WF of 2,842 m(3)/y, whereas the average citizens in China and India have WFs of 1,071 and 1,089 m(3)/y, respectively. Consumption of cereal products gives the largest contribution to the WF of the average consumer (27%), followed by meat (22%) and milk products (7%). The volume and pattern of consumption and the WF per ton of product of the products consumed are the main factors determining the WF of a consumer. The study illustrates the global dimension of water consumption and pollution by showing that several countries heavily rely on foreign water resources and that many countries have significant impacts on water consumption and pollution elsewhere.
Yoda, Yoshiko; Takagi, Hiroshi; Wakamatsu, Junko; Ito, Takeshi; Nakatsubo, Ryouhei; Horie, Yosuke; Hiraki, Takatoshi; Shima, Masayuki
2017-04-04
Many epidemiological studies on the health effects of air pollutants have been carried out in regions with major sources such as factories and automobiles. However, the health effects of air pollutants in regions without major sources remain unclear. This study investigated the acute effects of ambient air pollution on pulmonary function among healthy students in an isolated island without major artificial sources of air pollutants. A panel study was conducted of 43 healthy subjects who attended a school in an isolated island in the Seto Inland Sea, Japan. We measured the forced expiratory volume in 1 s (FEV 1 ) and peak expiratory flow (PEF) every morning for about 1 month in May 2014. Ambient concentrations of particulate matter ≤ 2.5 μm in diameter (PM 2.5 ), particulate matter between 2.5 and 10 μm in diameter (PM 10-2.5 ), black carbon (BC), ozone (O 3 ), and nitrogen dioxide (NO 2 ) were measured. The associations between the concentrations of air pollutants and pulmonary function were analyzed using mixed-effects models. A decrease in FEV 1 was significantly associated with BC concentrations (-27.28 mL [95%confidence interval (CI):-54.10,-0.46] for an interquartile range (IQR) increase of 0.23 μg/m 3 ). The decrease in PEF was significantly associated with indoor O 3 concentrations (-8.03 L/min [95% CI:-13.02,-3.03] for an IQR increase of 11 ppb). Among subjects with a history of allergy, an increase in PM 2.5 concentrations was significantly associated with low FEV 1 . In subjects with a history of asthma, an inverse association between the indoor O 3 concentration and pulmonary function was observed. Our results demonstrate that increases in BC and O 3 concentrations have acute effects on the pulmonary function among students in an isolated island without major artificial sources of air pollutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br
A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition ofmore » traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenmakers, E.F.P.M.; Kools, P.F.J.; Mols, R.
1994-03-15
The authors report here the physical mapping of recurrent chromosome 12q13-q15 breakpoints in cell lines derived from primary myxoid liposarcoma, lipoma, uterine leiomyoma, and pleomorphic adenoma of the salivary glands. In fluorescence in situ hybridization (FISH) experiments, they first mapped the position of the chromosome 12 translocation breakpoint in uterine leiomyoma cell line LM-30.1/SV40 relative to loci COL2A1, D12S4, D12S17, D12S6, D12S19, D12S8, and D12S7. It mapped between linkage probes CRI-C86 (D12S19) and p7G11 (D12S8). They then isolated YAC clones using CRI-C86- and p7G11-derived sequence-tagged sites, constructed corresponding YAC contigs of 310 and 800 kb, respectively, and a mixture ofmore » them was used to routinely study the various tumor cell lines by FISH analysis. The chromosome 12 breakpoints of all tumor cell lines tested mapped between cosmids LLNL12NCO1-98C10 and LLNL12NCO1-113D12. None of the breakpoints appeared to map within any of the isolated YAC clones. Furthermore, FISH analysis using cosmid LLNL12-NCO1-144G3, which maps at the CHOP locus, revealed that the chromosome 12 breakpoints in all cell lines of the three benign solid tumors that were tested were located distal to the chromosome 12 translocation breakpoint with the CHOP gene in myxoid liposarcoma cells with t(12;16). In conclusion, the studies seem to indicate that the chromosome 12 breakpoints of myxoid liposarcoma, lipoma, uterine leiomyoma, and pleomorphic adenoma of the salivary glands are all clustered within the 7-cM interval between D12S19 and D12S8, with those of the benign solid tumors distal to CHOP. Finally, the MYF5 gene mapped telomeric to LLNL12NCO1-113D12, and the MIP gene mapped centromeric to the chromosome 12 translocation breakpoint in myxoid liposarcoma cells. 56 refs., 5 figs., 3 tabs.« less
Spatiotemporal Characterization of Ambient PM2.5 Concentrations in Shandong Province (China).
Yang, Yong; Christakos, George
2015-11-17
China experiences severe particulate matter (PM) pollution problems closely linked to its rapid economic growth. Advancing the understanding and characterization of spatiotemporal air pollution distribution is an area where improved quantitative methods are of great benefit to risk assessment and environmental policy. This work uses the Bayesian maximum entropy (BME) method to assess the space-time variability of PM2.5 concentrations and predict their distribution in the Shandong province, China. Daily PM2.5 concentrations obtained at air quality monitoring sites during 2014 were used. On the basis of the space-time PM2.5 distributions generated by BME, we performed three kinds of querying analysis to reveal the main distribution features. The results showed that the entire region of interest is seriously polluted (BME maps identified heavy pollution clusters during 2014). Quantitative characterization of pollution severity included both pollution level and duration. The number of days during which regional PM2.5 exceeded 75, 115, 150, and 250 μg m(-3) varied: 43-253, 13-128, 4-66, and 0-15 days, respectively. The PM2.5 pattern exhibited an increasing trend from east to west, with the western part of Shandong being a heavily polluted area (PM2.5 exceeded 150 μg m(-3) during long time periods). Pollution was much more serious during winter than during other seasons. Site indicators of PM2.5 pollution intensity and space-time variation were used to assess regional uncertainties and risks with their interpretation depending on the pollutant threshold. The observed PM2.5 concentrations exceeding a specified threshold increased almost linearly with increasing threshold value, whereas the relative probability of excess pollution decreased sharply with increasing threshold.
Assessing groundwater quality for irrigation using indicator kriging method
NASA Astrophysics Data System (ADS)
Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini
2016-11-01
One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.
Environmental Pollution: Noise Pollution - Sonic Boom
1977-06-01
UNCLASSIFIED AD-A041 400 DDC/BIB-77/06 ENVIRONMENTAL POLLUTION NOISE POLLUTION SONIC BOOM A DDC BIBLIOGRAPHY DDC-TAS Cameron Station Alexandria, Va...rn7Sttio 658S-A041 400 4 TITLE xand r.VuhtlVlia) 2 TA i b- 1iblog ra ph y ENVIRONMENTAL POLLUTION : --. Apr-l IM59-Jul, 7NOISE POLLUTION -SONIC BOOM. 1,976...BIBLIOGRAPHY SEARCH CONTROL NO. /2OM09 AD- 769 970 20/1 1/3 DEFENSE UOCUMENTATION CENTER ALEXANDRIA VA ENVIRONMENTAL POLLUTION : NOISE POLLUTION
NASA Astrophysics Data System (ADS)
Zhang, Weihong.; Zhao, Yongsheng; Hong, Mei; Guo, Xiaodong
2009-04-01
Groundwater pollution usually is complex and concealed, remediation of which is difficult, high cost, time-consuming, and ineffective. An early warning system for groundwater pollution is needed that detects groundwater quality problems and gets the information necessary to make sound decisions before massive groundwater quality degradation occurs. Groundwater pollution early warning were performed by considering comprehensively the current groundwater quality, groundwater quality varying trend and groundwater pollution risk . The map of the basic quality of the groundwater was obtained by fuzzy comprehensive evaluation or BP neural network evaluation. Based on multi-annual groundwater monitoring datasets, Water quality state in sometime of the future was forecasted using time-sequenced analyzing methods. Water quality varying trend was analyzed by Spearman's rank correlative coefficient.The relative risk map of groundwater pollution was estimated through a procedure that identifies, cell by cell,the values of three factors, that is inherent vulnerability, load risk of pollution source and contamination hazard. DRASTIC method was used to assess inherent vulnerability of aquifer. Load risk of pollution source was analyzed based on the potential of contamination and pollution degree. Assessment index of load risk of pollution source which involves the variety of pollution source, quantity of contaminants, releasing potential of pollutants, and distance were determined. The load risks of all sources considered by GIS overlay technology. Early warning model of groundwater pollution combined with ComGIS technology organically, the regional groundwater pollution early-warning information system was developed, and applied it into Qiqiha'er groundwater early warning. It can be used to evaluate current water quality, to forecast water quality changing trend, and to analyze space-time influencing range of groundwater quality by natural process and human activities. Keywords: groundwater pollution, early warning, aquifer vulnerability, pollution load, pollution risk, ComGIS
Resonant inelastic soft x-ray scattering of CdS: a two-dimensional electronic structure map approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinhardt, L.; Fuchs, O.; Fleszar, A.
2008-09-24
Resonant inelastic x-ray scattering (RIXS) with soft x-rays is uniquely suited to study the elec-tronic structure of a variety of materials, but is currently limited by low (fluorescence yield) count rates. This limitation is overcome with a new high-transmission spectrometer that allows to measure soft x-ray RIXS"maps." The S L2,3 RIXS map of CdS is discussed and compared with density functional calculations. The map allows the extraction of decay channel-specific"absorp-tion spectra," giving detailed insight into the wave functions of occupied and unoccupied elec-tronic states.
Rahmati, Omid; Melesse, Assefa M
2016-10-15
Effective management and sustainable development of groundwater resources of arid and semi-arid environments require monitoring of groundwater quality and quantity. The aim of this paper is to develop a reasonable methodological framework for producing the suitability map for drinking water through the geographic information system, remote sensing and field surveys of the Andimeshk-Dezful, Khozestan province, Iran as a semi-arid region. This study investigated the delineation of groundwater potential zone based on Dempster-Shafer (DS) theory of evidence and evaluate its applicability for groundwater potentiality mapping. The study also analyzed the spatial distribution of groundwater nitrate concentration; and produced the suitability map for drinking water. The study has been carried out with the following steps: i) creation of maps of groundwater conditioning factors; ii) assessment of groundwater occurrence characteristics; iii) creation of groundwater potentiality map (GPM) and model validation; iv) collection and chemical analysis of water samples; v) assessment of groundwater nitrate pollution; and vi) creation of groundwater potentiality and quality map. The performance of the DS was also evaluated using the receiver operating characteristic (ROC) curve method and pumping test data to ensure its generalization ability, which eventually, the GPM showed 87.76% accuracy. The detailed analysis of groundwater potentiality and quality revealed that the 'non acceptable' areas covers an area of about 1479km(2) (60%). The study will provide significant information for groundwater management and exploitation in areas where groundwater is a major source of water and its exploration is critical to support drinking water need. Copyright © 2016 Elsevier B.V. All rights reserved.
Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo
2010-01-01
Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.; Colella, W. G.; Golden, D. M.
2004-12-01
The purpose of this study was to examine the potential effects on U.S. air pollution and regional climate of switching the current U.S. fleet of onroad motor vehicles to hydrogen fuel-cell vehicles, where hydrogen was produced by (1) steam-reforming of methane, (2) wind energy, or (3) coal gasification. An additional scenario in which the U.S. fleet was switched to gasoline-electric hybrid vehicles was also examined. The model used was GATOR-GCMOM, a global-through-urban-scale nested and parallelized gas, aerosol, transport, radiation, general-circulation, mesoscale, and ocean model. U.S. emission data for the baseline case were obtained from the U.S. National Emission Inventory, which considers 370,000 stack and fugitive sources, 250,000 area sources, and 1700 categories of onroad and nonroad vehicular sources (including motorcycles, passenger vehicles, trucks, recreational vehicles, construction vehicles, farm vehicles, industrial vehicles, etc.). Emission inventories for each of the three hydrogen scenarios were prepared following a process chain analysis that accounted for energy inputs and pollution outputs during all stages of hydrogen and fossil-fuel production, distribution, storage, and end-use. Emitted pollutants accounted for included CO, CO2, H2, H2O, CH4, speciated ROGs, NOx, NH3, SOx, and speciated particulate matter. Results from the first scenario suggest that switching vehicles in the U.S. to hydrogen produced by steam-reforming of methane may reduce emission of NOx, reactive hydrocarbons, CO, CO2, BC, NO3-, and NH4+, but increase CH4, H2, and SO2 (slightly).The switch may also decrease O3 over most of the U.S. but short-term near-surfaces increases may occur over low-vegetated cities (e.g., in Los Angeles and along the Boston-Washington corridor) due to loss of NOx that otherwise titrates O3. The switch is also estimated to decrease PAN, HCHO, and several other pollutants formed in the atmosphere. Isoprene may increase since fewer oxidants (OH, O3) will be available to destroy it. Results for the scenarios involving hydrogen from wind and coal gasification, and from the hybrid scenario will also be discussed, as will regional climate effects (including effects of H2O). Findings to date suggest that, even under a worst-case scenario of 10% hydrogen leakage, the conversion of the current fleet to hydrogen-fuel cell vehicles, where hydrogen is generated by steam-reforming of methane, may result in a measurable improvement in U.S. air quality.
Vohra, M S; Selimuzzaman, S M; Al-Suwaiyan, M S
2010-05-01
The main objective of the present study was to investigate the efficiency of titanium dioxide (TiO2) assisted photocatalytic degradation (PCD) process for the removal of ammonium-ammonia (NH4(+)-NH3) from the aqueous phase and in the presence of co-pollutants thiosulfate (S2O3(2-)) and p-cresol (C6H4CH3OH) under varying mixed conditions. For the NH4(+)-NH3 only PCD experiments, results showed higher NH4 -NH3 removal at pH 12 compared to pH 7 and 10. For the binary NH4(+)-NH3/S2O3(2-) studies the respective results indicated a significant lowering in NH4(+)-NH3 PCD in the presence of S2O32- at pH 7/12 whereas at pH 10 a marked increase in NH4(+)-NH3 removal transpired. A similar trend was noted for the p-cresol/NH4(+)-NH3 binary system. Comparing findings from the binary (NH4(+)-NH3/S2O3(2-) and p-cresol/NH4(+)-NH3) and tertiary (NH4(+)-NH3/S2O3(2-)/p-cresol) systems, at pH 10, showed fastest NH4(+)-NH3 removal transpiring for the tertiary system as compared to the binary systems, whereas both the binary systems indicated comparable NH4(+)-NH3 removal trends. The respective details have been discussed.
Classification criteria and probability risk maps: limitations and perspectives.
Saisana, Michaela; Dubois, Gregoire; Chaloulakou, Archontoula; Spyrellis, Nikolas
2004-03-01
Delineation of polluted zones with respect to regulatory standards, accounting at the same time for the uncertainty of the estimated concentrations, relies on classification criteria that can lead to significantly different pollution risk maps, which, in turn, can depend on the regulatory standard itself. This paper reviews four popular classification criteria related to the violation of a probability threshold or a physical threshold, using annual (1996-2000) nitrogen dioxide concentrations from 40 air monitoring stations in Milan. The relative advantages and practical limitations of each criterion are discussed, and it is shown that some of the criteria are more appropriate for the problem at hand and that the choice of the criterion can be supported by the statistical distribution of the data and/or the regulatory standard. Finally, the polluted area is estimated over the different years and concentration thresholds using the appropriate risk maps as an additional source of uncertainty.
Convective Lofting Links Indian Ocean Air Pollution to Paradoxical South Atlantic Ozone Maxima
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Guan, Hong; Thompson, Anne M.; Witte, Jacquelyn C.
2003-01-01
We describe a broad resolution of the "Atlantic Paradox" concerning the seasonal and geographic distribution of tropical tropospheric ozone. We describe periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO)O3 maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.- March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 30 or 60 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.
Pan, Luqing; Zhang, Mengyu; Jin, Qian; Ji, Rongwang
2017-11-15
A multi-biomarker approach was conducted in the scallop Chlamys farreri from three sites, denoted here as S1, S2, and S3, in Qingdao coastal areas of China in March, June, September and December 2014 to assess pollution from polycyclic aromatic hydrocarbons (PAHs) and to select appropriate biomarkers. A suite of biological responses of the gills and digestive glands of the scallops was assayed, including: (i) phase I detoxification enzymes of 7-ethoxyresorufin-O-deethylase (EROD), epoxide hydrolase (EH), and dihydrodiol dehydrogenase (DD) and phase II detoxification enzymes of glutathione-S-transferase (GST) and sulfotransferase (SULT); (ii) antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx); (iii) oxidative damage parameters: lipid peroxidation (LPO) expressed by malondialdehyde (MDA) contents, protein carbonylation (PC) and DNA damage (F value); and (iv) the metabolism-related genes of EH, DD, GST, SULT and SOD. Simultaneously, the concentrations of total PAHs along with 16 types of PAHs previously identified by the US Environmental Protection Agency (USEPA) and environmental parameters, including temperature and salinity together with pH, were measured. Using Principle Component Analysis (PCA), it was revealed that S2 was the most PAH-contaminated site, while S1 was identified as the least PAH-polluted site, which was consistent with the results utilizing the Biomarker Response Index (BRI); in other words, the biological health status of S2 was worse than S1 and S3. Moreover, the most suitable biomarkers to assess PAH pollution in Qingdao coastal areas proved to be DD mRNA expression and the F value in both the gills and digestive glands for the total PAHs, DD activity and PC contents or PC and MDA contents in the gills or digestive glands for 5 + 6 rings PAHs and DD mRNA expression in both the gills and digestive glands for 2 + 3 rings and 4 rings PAHs. Moreover, this study highlighted the possible use of the scallop Chlamys farreri for studying contamination due to PAHs and provided valuable information on environmental assessment.
GPS tracking for mapping seabird mortality induced by light pollution.
Rodríguez, Airam; Rodríguez, Beneharo; Negro, Juan J
2015-06-02
Light pollution and its consequences on ecosystems are increasing worldwide. Knowledge on the threshold levels of light pollution at which significant ecological impacts emerge and the size of dark refuges to maintain natural nocturnal processes is crucial to mitigate its negative consequences. Seabird fledglings are attracted by artificial lights when they leave their nest at night, causing high mortality. We used GPS data-loggers to track the flights of Cory's shearwater Calonectris diomedea fledglings from nest-burrows to ground, and to evaluate the light pollution levels of overflown areas on Tenerife, Canary Islands, using nocturnal, high-resolution satellite imagery. Birds were grounded at locations closer than 16 km from colonies in their maiden flights, and 50% were rescued within a 3 km radius from the nest-site. Most birds left the nests in the first three hours after sunset. Rescue locations showed radiance values greater than colonies, and flight distance was positively related to light pollution levels. Breeding habitat alteration by light pollution was more severe for inland colonies. We provide scientific-based information to manage dark refuges facilitating that fledglings from inland colonies reach the sea successfully. We also offer methodological approaches useful for other critically threatened petrel species grounded by light pollution.
The modifying effect of the building envelope on population exposure to PM2.5 from outdoor sources.
Taylor, J; Shrubsole, C; Davies, M; Biddulph, P; Das, P; Hamilton, I; Vardoulakis, S; Mavrogianni, A; Jones, B; Oikonomou, E
2014-12-01
A number of studies have estimated population exposure to PM2.5 by examining modeled or measured outdoor PM2.5 levels. However, few have taken into account the mediating effects of building characteristics on the ingress of PM2.5 from outdoor sources and its impact on population exposure in the indoor domestic environment. This study describes how building simulation can be used to determine the indoor concentration of outdoor-sourced pollution for different housing typologies and how the results can be mapped using building stock models and Geographical Information Systems software to demonstrate the modifying effect of dwellings on occupant exposure to PM2.5 across London. Building archetypes broadly representative of those in the Greater London Authority were simulated for pollution infiltration using EnergyPlus. In addition, the influence of occupant behavior on indoor levels of PM2.5 from outdoor sources was examined using a temperature-dependent window-opening scenario. Results demonstrate a range of I/O ratios of PM2.5 , with detached and semi-detached dwellings most vulnerable to high levels of infiltration. When the results are mapped, central London shows lower I/O ratios of PM2.5 compared with outer London, an apparent inversion of exposure most likely caused by the prevalence of flats rather than detached or semi-detached properties. Population exposure to air pollution is typically evaluated using the outdoor concentration of pollutants and does not account for the fact that people in London spend over 80% of their time indoors. In this article, building simulation is used to model the infiltration of outdoor PM2.5 into the domestic indoor environment for dwellings in a London building stock model, and the results mapped. The results show the variation in relative vulnerability of dwellings to pollution infiltration, as well as an estimated absolute indoor concentration across the Greater London Authority (GLA) scaled by local outdoor levels. The practical application of this work is a better understanding of the modifying effect of the building geometry and envelope design on pollution exposure, and how the London building stock may alter exposure. The results will be used to inform population exposure to PM2.5 in future environmental epidemiological studies. © 2014 The Authors. Indoor Air Published by John Wiley & Sons Ltd.
Assessment for water quality by artificial neural network in Daya Bay, South China Sea.
Wu, Mei-Lin; Wang, You-Shao; Gu, Ji-Dong
2015-10-01
In this study, artificial neural network such as a self-organizing map (SOM) was used to assess for the effects caused by climate change and human activities on the water quality in Daya Bay, South China Sea. SOM has identified the anthropogenic effects and seasonal characters of water quality. SOM grouped the four seasons as four groups (winter, spring, summer and autumn). The Southeast Asian monsoons, northeasterly from October to the next April and southwesterly from May to September have also an important influence on the water quality in Daya Bay. Spatial pattern is mainly related to anthropogenic activities and hydrodynamics conditions. In spatial characteristics, the water quality in Daya Bay was divided into two groups by chemometrics. The monitoring stations (S3, S8, S10 and S11) were in these area (Dapeng Ao, Aotou Harbor) and northeast parts of Daya Bay, which are areas of human activity. The thermal pollution has been observed near water body in Daya Bay Nuclear Power Plant (S5). The rest of the monitoring sites were in the south, central and eastern parts of Daya Bay, which are areas that experience water exchanges from South China Sea. The results of this study may provide information on the spatial and temporal patterns in Daya Bay. Further research will be carry out more research concerning functional changes in the bay ecology with respect to changes in climatic factor, human activities and bay morphology in Daya Bay.
Harik, G; Alameddine, I; Maroun, R; Rachid, G; Bruschi, D; Astiaso Garcia, D; El-Fadel, M
2017-02-01
In this study, a multi-criteria index was developed to assess anthropogenic stressors along the Mediterranean coastline. The index aimed at geo-locating pollution hotspots for informed decision making related to coastal zone management. The index was integrated in a Geographical Information System based geodatabase implemented at several pilot areas along the Northern (Italy and France), Eastern (Lebanon), and Southern (Tunisia) Mediterranean coastlines. The generated stressor maps were coupled with a biodiversity richness index and an environmental sensitivity index to produce vulnerability maps that can form the basis for prioritizing management and mitigation interventions towards the identification of pollution hotspots and the promotion of sustainable coastal zone management. The results identified significant differences between the two assessment methods, which can bias prioritization in decision making and policy planning depending on stakeholders' interests. The discrepancies emphasize the need for transparency and understanding of the underlying foundations behind vulnerability indices and mapping development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jacquemin, Bénédicte; Lepeule, Johanna; Boudier, Anne; Arnould, Caroline; Benmerad, Meriem; Chappaz, Claire; Ferran, Joane; Kauffmann, Francine; Morelli, Xavier; Pin, Isabelle; Pison, Christophe; Rios, Isabelle; Temam, Sofia; Künzli, Nino; Slama, Rémy; Siroux, Valérie
2013-09-01
Errors in address geocodes may affect estimates of the effects of air pollution on health. We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults. We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant's address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects. Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: -0.56, -6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: -0.14, -3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted -2.81 (95% CI: -0.26, -5.35) using NavTEQ, or 2.08 (95% CI -4.63, 0.47, p = 0.11) using Google Maps]. Our findings suggest that the choice of geocoding technique may influence estimated health effects when air pollution exposures are estimated using a fine-scale exposure model.
NASA Astrophysics Data System (ADS)
Lee, Seungmin; Ho, Chang-Hoi; Lee, Yun Gon; Choi, Hyoung-Jin; Song, Chang-Keun
2013-10-01
This study examines the extraordinarily long-lasting episode of high concentrations of particulate matter with diameter <10 μm (PM10) in Seoul, Korea over the period October 16-20, 2008. The concentration of PM10 increased up to 197.2 μg m-3 and continually stayed above the daily environmental control standard value (100 μg m-3) for the period. Satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed pronounced transport of aerosols from China to the Korean peninsula prior to the high-PM10 episode. The updraft of air pollutants from the source region in China, transport by westerlies, and subsequent descent to Seoul metropolitan regions are examined in the context of horizontal and vertical airflows. The connection between PM10 concentration over the Chinese source region and the Seoul target area is verified by wind back trajectory analysis. The meteorological conditions favorable for maintenance of the high PM10 levels are investigated through the analysis of weather maps and low-level stability. In this high-PM10 episode, the stagnant high-pressure system over Korea may play a decisive role in the descent and accumulation of air pollutants. The influence of transboundary air pollutants from China on the air quality in Korea and relevant meteorological environment found in the present study will provide a theoretical underpinning to potential cooperation between East Asian countries in monitoring and controlling atmospheric conditions.
Multi-model assessment of health impacts of air pollution in Europe and the U.S.
NASA Astrophysics Data System (ADS)
Im, Ulas; Brandt, Jørgen; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Andersen, Mikael S.; Solazzo, Efisio; Hogrefe, Christian; Galmarini, Stefano
2017-04-01
According to the World Health Organization (WHO), air pollution is now the world's largest single environmental health risk. Assessments of health impacts and the associated external costs related to air pollution are estimated based on observed and/or modelled air pollutant levels. Chemistry and transport models (CTMs) are useful tools to calculate the concentrations of health-related pollutants taking into account the non-linearities in the chemistry and the complex interactions between meteorology and chemistry. However, the CTMs include different chemical and aerosol schemes that introduce differences in the representation of the processes. Likewise, will differences in the emissions and boundary conditions used in the models add to the overall uncertainties. These uncertainties are introduced also into the health impact estimates using output from the CTMs. Multi-model (MM) ensembles can be useful to minimize these uncertainties introduced by the individual CTMs. In the present study, the simulated surface concentrations of health related air pollutants for the year 2010 from fifteen modelling groups participating in the AQMEII exercise, serve as input to the Economic Valuation of Air Pollution model (EVA), in order to calculate the impacts of these pollutants on human health and the associated external costs in Europe and U.S. In addition, the impacts of a 20% global emission reduction scenario on the human health and associated costs have been calculated. Preliminary results show that in Europe and U.S., the MM mean number of premature deaths due to air pollution is calculated to be 400 000 and 160 000, respectively. Estimated health impacts among different models can vary up to a factor of 3 and 1.2 in Europe and U.S., respectively. PM is calculated to be the major pollutant affecting the health impacts and the differences in models regarding the treatment of aerosol composition, physics and dynamics is a key factor. The total MM mean costs due to health impacts of air pollution are estimated to be 400 and 170 billion € in Europe and U.S., respectively. Finally, the scenario with a 20% reduction in global anthropogenic emissions leads to a decrease of 18% of all health outcomes.
Exposure to Intermittent Air Pollution and Changes in Semen Quality:
Evidence for an Association and Implications for Reproductive Risk Assessment.
S. D. Perreault1, S.G. Selevan2, J. Rubes3, D. Zudova3, and D.P. Evenson4
1US EPA, ORD/NHEERL, Research Triangle Pa...
Prado, R B; Novo, E M L M
2015-05-01
In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Sorek Hamer, Meytar; Esswein, Robert F.
2017-01-01
The Western US and many regions globally present daunting difficulties in understanding and mapping PM2.5 episodes. We evaluate extensions of a method independent of source-description and transport/transformation. These regions suffer frequent few-day episodes due to shallow mixing; low satellite AOT and bright surfaces complicate the description. Nevertheless, we expect residual errors in our maps of less than 8 ug/m^3 in episodes reaching 60-100 ug/m^3; maps which detail pollution from Interstate 5. Our current success is due to use of physically meaningful functions of MODIS-MAIAC-derived AOD, afternoon mixed-layer height, and relative humidity for a basin in which the latter are correlated. A mixed-effects model then describes a daily AOT-to-PM2.5 relationship. (Note: in other published mixed-effects models, AOT contributes minimally. We seek to extend on these to develop useful estimation methods for similar situations. We evaluate existing but more spotty information on size distribution (AERONET, MISR, MAIA, CALIPSO, other remote sensing). We also describe the usefulness of an equivalent mixing depth for water vapor vs meteorological boundary layer height. Each has virtues and limitations. Finally, we begin to evaluate methods for removing the complications due to detached but polluted layers (which don't mix to the surface) using geographical, meteorological, and remotely sensed data.
NASA Technical Reports Server (NTRS)
Kindle, E. C.; Bandy, E. C.; Copeland, G.; Blais, R.; Levy, G.; Sonenshine, D.
1975-01-01
Past research projects for the year 1974-1975 are listed along with future research programs in the area of air pollution control, remote sensor analysis of smoke plumes, the biosphere component, and field experiments. A detailed budget analysis is presented. Attachments are included on the following topics: mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques, and use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia.
NASA Astrophysics Data System (ADS)
Ghotbi, Saba; Sotoudeheian, Saeed; Arhami, Mohammad
2016-09-01
Satellite remote sensing products of AOD from MODIS along with appropriate meteorological parameters were used to develop statistical models and estimate ground-level PM10. Most of previous studies obtained meteorological data from synoptic weather stations, with rather sparse spatial distribution, and used it along with 10 km AOD product to develop statistical models, applicable for PM variations in regional scale (resolution of ≥10 km). In the current study, meteorological parameters were simulated with 3 km resolution using WRF model and used along with the rather new 3 km AOD product (launched in 2014). The resulting PM statistical models were assessed for a polluted and largely variable urban area, Tehran, Iran. Despite the critical particulate pollution problem, very few PM studies were conducted in this area. The issue of rather poor direct PM-AOD associations existed, due to different factors such as variations in particles optical properties, in addition to bright background issue for satellite data, as the studied area located in the semi-arid areas of Middle East. Statistical approach of linear mixed effect (LME) was used, and three types of statistical models including single variable LME model (using AOD as independent variable) and multiple variables LME model by using meteorological data from two sources, WRF model and synoptic stations, were examined. Meteorological simulations were performed using a multiscale approach and creating an appropriate physic for the studied region, and the results showed rather good agreements with recordings of the synoptic stations. The single variable LME model was able to explain about 61%-73% of daily PM10 variations, reflecting a rather acceptable performance. Statistical models performance improved through using multivariable LME and incorporating meteorological data as auxiliary variables, particularly by using fine resolution outputs from WRF (R2 = 0.73-0.81). In addition, rather fine resolution for PM estimates was mapped for the studied city, and resulting concentration maps were consistent with PM recordings at the existing stations.
Matthiessen, Clara; Lucht, Sarah; Hennig, Frauke; Ohlwein, Simone; Jakobs, Hermann; Jöckel, Karl-Heinz; Moebus, Susanne; Hoffmann, Barbara
2018-04-10
Recently, epidemiological studies have found a link between air pollution (AP) and individual components of the metabolic syndrome (MetS), a condition predisposing to cardiometabolic diseases. However, very few studies have explored a possible association between air pollution and MetS. We analyzed the effects of long-term exposure to airborne particulate matter and NO 2 on prevalence and incidence of MetS. We used data of the population-based prospective Heinz Nixdorf Recall study (baseline 2000-2003) to investigate the association(s) between AP exposure and MetS prevalence at baseline (n = 4457) and MetS incidence at first follow-up visit (n = 3074; average follow-up: 5.1 years). Mean annual exposure to size-fractioned particulate matter (PM 10 , PM 2.5 , PM coarse , and PM 2.5 abs) and nitrogen dioxide (NO 2 ) was assessed using a land use regression model. MetS was defined as central obesity plus two out of four additional risk factors (i.e., elevated triglycerides, reduced high-density lipoprotein cholesterol, elevated blood pressure or elevated plasma glucose). We estimated odds ratios (ORs) of MetS prevalence and incidence per interquartile range (IQR) of exposure, adjusting for demographic and lifestyle variables. We observed a MetS prevalence of 20.7% (n = 922) and an incidence of 9.7% (n = 299). NO 2 was positively associated with MetS prevalence, with an OR increase per IQR of 1.12 (95%-CI 1.02-1.24, IQR = 6.1 μg/m 3 ). PM 10 and PM 2.5 were both borderline positively associated with MetS incidence, with ORs of 1.14 (95%-CI 0.99-1.32, IQR = 2.1 μg/m 3 ) and 1.19 (95%-CI 0.98-1.44, IQR = 1.5 μg/m 3 ) per IQR, respectively. In summary, we found a weak positive association between air pollution and MetS. The strongest and most consistent effects were observed between NO 2 and prevalent MetS. Copyright © 2018. Published by Elsevier Ltd.
US EPA Nonattainment Areas and Designations
This web service contains the following state level layers:Ozone 8-hr (1997 standard), Ozone 8-hr (2008 standard), Lead (2008 standard), SO2 1-hr (2010 standard), PM2.5 24hr (2006 standard), PM2.5 Annual (1997 standard), PM2.5 Annual (2012 standard), and PM10 (1987 standard). Full FGDC metadata records for each layer may be found by clicking the layer name at the web service endpoint (https://gispub.epa.gov/arcgis/rest/services/OAR_OAQPS/NonattainmentAreas/MapServer) and viewing the layer description. These layers identify areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants and have been designated nonattainment?? areas (NAA). The data are updated weekly from an OAQPS internal database. However, that does not necessarily mean the data have changed. The EPA Office of Air Quality Planning and Standards (OAQPS) has set National Ambient Air Quality Standards for six principal pollutants, which are called criteria pollutants. Under provisions of the Clean Air Act, which is intended to improve the quality of the air we breathe, EPA is required to set National Ambient Air Quality Standards for six common air pollutants. These commonly found air pollutants (also known as criteria pollutants) are found all over the United States. They are particle pollution (often referred to as particulate matter), ground-level ozone, carbon monoxide, sulfur oxides, nitrogen oxides, and lead. For each
Marinoni, A; Cristofanelli, P; Laj, P; Duchi, R; Putero, D; Calzolari, F; Landi, T C; Vuillermoz, E; Maione, M; Bonasoni, P
2013-08-01
To study the influence of polluted air-mass transport carrying ozone (O3) and black carbon (BC) in the high Himalayas, since March 2006 the Nepal Climate Observatory at Pyramid (NCO-P) GAW-WMO global station (Nepal, 5079 m a.s.l.) is operative. During the first 5-year measurements, the O3 and BC concentrations have shown a mean value of 48 +/- 12 ppb (+/- standard deviation) and 208 +/- 374 ng/m3, respectively. Both O3 and BC showed well defined seasonal cycles with maxima during pre-monsoon (O3: 61.3 +/- 7.7 ppbV; BC: 444 +/- 433 ng/m3) and minima during the summer monsoon (O3: 40.1 +/- 12.4 ppbV; BC: 64 +/- 101 ng/m3). The analysis of the days characterised by the presence of a significant BC increase with respect to the typical seasonal cycle identified 156 days affected by "acute" pollution events, corresponding to 9.1% of the entire data-set. Such events mostly occur in the pre-monsoon period, when the O3 diurnal variability is strongly related to the transport of polluted air-mass rich on BC. On average, these "acute" pollution events were characterised by dramatic increases of BC (352%) and O3 (29%) levels compared with the remaining days.
Orga, Ferran; Alías, Francesc; Alsina-Pagès, Rosa Ma
2017-12-23
Noise pollution is a critical factor affecting public health, the relationship between road traffic noise (RTN) and several diseases in urban areas being especially disturbing. The Environmental Noise Directive 2002/49/EC and the CNOSSOS-EU framework are the main instruments of the European Union to identify and combat noise pollution, requiring Member States to compose and publish noise maps and noise management action plans every five years. Nowadays, the noise maps are starting to be tailored by means of Wireless Acoustic Sensor Networks (WASN). In order to exclusively monitor the impact of RTN on the well-being of citizens through WASN-based approaches, those noise sources unrelated to RTN denoted as Anomalous Noise Events (ANEs) should be removed from the noise map generation. This paper introduces an analysis methodology considering both Signal-to-Noise Ratio (SNR) and duration of ANEs to evaluate their impact on the A-weighted equivalent RTN level calculation for different integration times. The experiments conducted on 9 h of real-life data from the WASN-based DYNAMAP project show that both individual high-impact events and aggregated medium-impact events bias significantly the equivalent noise levels of the RTN map, making any derived study about public health impact inaccurate.
2017-01-01
Noise pollution is a critical factor affecting public health, the relationship between road traffic noise (RTN) and several diseases in urban areas being especially disturbing. The Environmental Noise Directive 2002/49/EC and the CNOSSOS-EU framework are the main instruments of the European Union to identify and combat noise pollution, requiring Member States to compose and publish noise maps and noise management action plans every five years. Nowadays, the noise maps are starting to be tailored by means of Wireless Acoustic Sensor Networks (WASN). In order to exclusively monitor the impact of RTN on the well-being of citizens through WASN-based approaches, those noise sources unrelated to RTN denoted as Anomalous Noise Events (ANEs) should be removed from the noise map generation. This paper introduces an analysis methodology considering both Signal-to-Noise Ratio (SNR) and duration of ANEs to evaluate their impact on the A-weighted equivalent RTN level calculation for different integration times. The experiments conducted on 9 h of real-life data from the WASN-based DYNAMAP project show that both individual high-impact events and aggregated medium-impact events bias significantly the equivalent noise levels of the RTN map, making any derived study about public health impact inaccurate. PMID:29295492
Spatial traffic noise pollution assessment - A case study.
Monazzam, Mohammad Reza; Karimi, Elham; Abbaspour, Majid; Nassiri, Parvin; Taghavi, Lobat
2015-01-01
Spatial assessment of traffic noise pollution intensity will provide urban planners with approximate estimation of citizens exposure to impermissible sound levels. They could identify critical noise pollution areas wherein noise barriers should be embedded. The present study aims at using the Geographic Information System (GIS) to assess spatial changes in traffic noise pollution in Tehran, the capital of Iran, and the largest city in the Middle East. For this purpose, while measuring equivalent sound levels at different time periods of a day and different days of a week in District 14 of Tehran, wherein there are highways and busy streets, the geographic coordination of the measurement points was recorded at the stations. The obtained results indicated that the equivalent sound level did not show a statistically significant difference between weekdays, and morning, afternoon and evening hours as well as time intervals of 10 min, 15 min and 30 min. Then, 91 stations were selected in the target area and equivalent sound level was measured for each station on 3 occasions of the morning (7:00-9:00 a.m.), afternoon (12.00-3:00 p.m.) and evening (5:00-8:00 p.m.) on Saturdays to Wednesdays. As the results suggest, the maximum equivalent sound level (Leq) was reported from Basij Highway, which is a very important connecting thoroughfare in the district, and was equal to 84.2 dB(A), while the minimum equivalent sound level (Leq), measured in the Fajr Hospital, was equal to 59.9 dB(A). The average equivalent sound level was higher than the national standard limit at all stations. The use of sound walls in Highways Basij and Mahallati as well as widening the Streets 17th Shahrivar, Pirouzi and Khavaran, benchmarked on a map, were recommended as the most effective mitigation measures. Additionally, the research findings confirm the outstanding applicability of the Geographic Information System in handling noise pollution data towards depicting noise pollution intensity caused by traffic. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Air pollution and gene-specific methylation in the Normative Aging Study
Bind, Marie-Abele; Lepeule, Johanna; Zanobetti, Antonella; Gasparrini, Antonio; Baccarelli, Andrea A; Coull, Brent A; Tarantini, Letizia; Vokonas, Pantel S; Koutrakis, Petros; Schwartz, Joel
2014-01-01
The mechanisms by which air pollution has multiple systemic effects in humans are not fully elucidated, but appear to include inflammation and thrombosis. This study examines whether concentrations of ozone and components of fine particle mass are associated with changes in methylation on tissue factor (F3), interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-2), and intercellular adhesion molecule 1 (ICAM-1). We investigated associations between air pollution exposure and gene-specific methylation in 777 elderly men participating in the Normative Aging Study (1999–2009). We repeatedly measured methylation at multiple CpG sites within each gene’s promoter region and calculated the mean of the position-specific measurements. We examined intermediate-term associations between primary and secondary air pollutants and mean methylation and methylation at each position with distributed-lag models. Increase in air pollutants concentrations was significantly associated with F3, ICAM-1, and TLR-2 hypomethylation, and IFN-γ and IL-6 hypermethylation. An interquartile range increase in black carbon concentration averaged over the four weeks prior to assessment was associated with a 12% reduction in F3 methylation (95% CI: -17% to -6%). For some genes, the change in methylation was observed only at specific locations within the promoter region. DNA methylation may reflect biological impact of air pollution. We found some significant mediated effects of black carbon on fibrinogen through a decrease in F3 methylation, and of sulfate and ozone on ICAM-1 protein through a decrease in ICAM-1 methylation. PMID:24385016
Monitoring of pyrocatechol indoor air pollution
NASA Astrophysics Data System (ADS)
Eškinja, I.; Grabarić, Z.; Grabarić, B. S.
Spectrophotometric and electrochemical methods for monitoring of pyrocatechol (PC) indoor air pollution have been investigated. Spectrophotometric determination was performed using Fe(III) and iodine methods. The adherence to Beer's law was found in the concentration range between 0 and 12 μg ml - for iodine method at pH = 5.7 measuring absorbance at 725 nm, and in the range 0-30 μg ml - for Fe(III) method at pH = 9.5 measuring absorbance at 510 nm. The former method showed greater sensitivity than the latter one. Differential pulse voltammetry (DPV) and chronoamperometric (CA) detection in flow injection analysis (FIA) using carbon paste electrode in phosphate buffer solution of pH = 6.5 was also used for pyrocatechol determination. The electrochemical methods allowed pyrocatechol quantitation in submicromolar concentration level with an overall reproducibility of ± 1%. The efficiency of pyrocatechol sampling collection was investigated at two temperatures (27 and 40°C) in water, 0.1 M NaOH and 0.1 M HCl solutions. Solution of 0.1 M HCl gave the best collection efficiency (95.5-98.5%). A chamber testing simulating the indoor pollution has been performed. In order to check the reliability of the proposed methods for monitoring of the indoor pyrocatechol pollution, the air in working premises with pyrocatechol released from meteorological charts during mapping and paper drying was analyzed using proposed methods. The concentration of pyrocatechol in the air during mapping was found to be 1.8 mg m -3 which is below the hygienic standard of permissible exposure of 20 mg m -3 (≈ 5 ppm). The release of pyrocatechol from the paper impregnated with pyrocatechol standing at room temperature during one year was also measured. The proposed methods can be used for indoor pyrocatechol pollution monitoring in working premises of photographic, rubber, oil and dye industries, fur and furniture dyeing and cosmetic or pharmaceutical premises where pyrocatechol and related compounds are in use.
Tropical Tropospheric Ozone: New Insights from Remote Sensing and Field Studies
NASA Technical Reports Server (NTRS)
Thompson, Anne
1999-01-01
This talk will summarize our recent research in tropical tropospheric ozone studies in the field and from space. New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument will be highlighted (Hudson and Thompson, 1998; Thompson and Hudson, 1999). These are suitable for studying processes like ozone pollution resulting from biomass fires, seasonal and interannual variations and trends. Archived maps of tropospheric ozone over the tropics, from the Nimbus 7 observing period (1979-1992) are available in digital form at our website. Real-time processing of TOMS data has produced images of tropical tropospheric ozone (TTO) since early 1997, using Earth-Probe TOMS; these maps are also available on the homepage.
Short-Term Exposure to Air Pollution and Lung Function in the Framingham Heart Study
Ljungman, Petter L.; Wilker, Elissa H.; Gold, Diane R.; Schwartz, Joel D.; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.
2013-01-01
Rationale: Short-term exposure to ambient air pollution has been associated with lower lung function. Few studies have examined whether these associations are detectable at relatively low levels of pollution within current U.S. Environmental Protection Agency (EPA) standards. Objectives: To examine exposure to ambient air pollutants within EPA standards and lung function in a large cohort study. Methods: We included 3,262 participants of the Framingham Offspring and Third Generation cohorts living within 40 km of the Harvard Supersite monitor in Boston, Massachusetts (5,358 examinations, 1995–2011) who were not current smokers, with previous-day pollutant levels in compliance with EPA standards. We compared lung function (FEV1 and FVC) after previous-day exposure to particulate matter less than 2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in the “moderate” range of the EPA Air Quality Index to exposure in the “good” range. We also examined linear relationships between moving averages of pollutant concentrations 1, 2, 3, 5, and 7 days before spirometry and lung function. Measurements and Main Results: Exposure to pollutant concentrations in the “moderate” range of the EPA Air Quality Index was associated with a 20.1-ml lower FEV1 for PM2.5 (95% confidence interval [CI], −33.4, −6.9), a 30.6-ml lower FEV1 for NO2 (95% CI, −60.9, −0.2), and a 55.7-ml lower FEV1 for O3 (95% CI, −100.7, −10.8) compared with the “good” range. The 1- and 2-day moving averages of PM2.5, NO2, and O3 before testing were negatively associated with FEV1 and FVC. Conclusions: Short-term exposure to PM2.5, NO2, and O3 within current EPA standards was associated with lower lung function in this cohort of adults. PMID:24200465
Dynamics of PM2.5 and its Chemical Components During 2015 Spring Festival Period in Beijing, China
NASA Astrophysics Data System (ADS)
Zhang, Y.; Wei, J.; Tang, A.; Zheng, A.; Liu, X.
2016-12-01
Air pollution especially PM2.5 (particles with aerodynamic diameter smaller than 2.5 µm) pollution is a serious problem in Beijing, a megacity in China. In order to quantify the status of PM2.5 pollution as affected by holiday pollution events, we collected and analyzed in urban Beijing during the 2015 Spring Festival period (from February 9th to March 6th 2015). We divided the Spring Festival period into three types of pollution days: normal, haze and fireworks days. The air quality in fireworks and haze days were both substantially worse than that in normal days. The average mass concentration of PM2.5 in fireworks days was 248.9 μg m-3, which was followed by haze days (199.9 μg m-3), and normal days (90.8 μg m-3). Secondary inorganic ions (SO42-, NO3- and NH4+) were enriched in haze days, while the ions of PM2.5 in fireworks days showed high Cl- and K+, but low NO3- and NH4+. Ratios of NO3- /SO42-, SO42-/K+ and Cl- /K+ effective distinguish the characteristics of PM2.5 between fireworks events and haze days. Ion balance calculations indicate that the acidity of PM2.5 from fireworks days was higher than those from haze and normal days. Al, Ca, Fe, and S were the dominant elements in normal days. The concentrations of As, Ba, Cd, Cr, Cu, Pb, S, Se and Zn in haze days were 2.1-10.4 times higher than that in normal days. But fireworks days caused increases in the concentrations of typical fireworks elements Al, Mg, S, Ba, Cu, Pb, Sr, and Zn. It is obvious that the levels of these pollution elements during fireworks days were 1.6-18.6 times higher than that in haze days. A method using EF has been found that fireworks elements (EF>10 in fireworks days, significantly higher than haze days) were made up of Ba, Cr, Cu, Mg, Pb, S, Si, Zn, and common anthropogenic pollution elements (EF>10 in all three sections), such as As, Cd, Cu, Pb, S, Sb, Zn, which would be mainly originated from anthropogenic sources. Therefore reducing anthropogenic reactive N and other pollutants emissions is crucial to tackle PM2.5 pollution in Beijing during traditional festival period.
NASA Astrophysics Data System (ADS)
Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Cheng, Xi
2014-11-01
The middle route of the South-to-North Water Transfer Project (MRP) will divert water to Beijing Tuancheng Lake from Taocha in the Danjiangkou reservoir located in the Hubei province of China. The MRP is composed of a long canal and complex hydraulic structures and will transfer water in open channel areas to provide drinking water for Beijing, Shijiazhuang and other cities under extremely strict water quality requirements. A large number of vehicular accidents, occurred on the many highway bridges across the main canal would cause significant water pollution in the main canal. To ensure that water quality is maintained during the diversion process, the effects of pollutants on water quality due to sudden pollution accidents were simulated and analyzed in this paper. The MIKE11 HD module was used to calculate the hydraulic characteristics of the 42-km Xishi-to-Beijuma River channel of the MRP. Six types of hydraulic structures, including inverted siphons, gates, highway bridges, culverts and tunnels, were included in this model. Based on the hydrodynamic model, the MIKE11 AD module, which is one-dimensional advection dispersion model, was built for TP, NH3-N, CODMn and F. The validated results showed that the computed values agreed well with the measured values. In accordance with transportation data across the Dianbei Highway Bridge, the effects of traffic accidents on the bridge on water quality were analyzed. Based on simulated scenarios with three discharge rates (ranged from 12 m3/s to 17 m3/s, 40 m3/s, and 60 m3/s) and three pollution loading concentration levels (5 t, 10 t and 20 t) when trucks spill their contents (i.e., phosphate fertilizer, cyanide, oil and chromium solution) into the channel, emergency measures were proposed. Reasonable solutions to ensure the water quality with regard to the various types of pollutants were proposed, including treating polluted water, maintaining materials, and personnel reserves.
Large-scale monitoring of air pollution in remote and ecologically important areas
Andrzej Bytnerowicz; Witold Fraczek
2013-01-01
New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...
Geochemical baseline distribution of harmful elements in the surface soils of Campania region.
NASA Astrophysics Data System (ADS)
Albanese, Stefano; Lima, Annamaria; Qu, Chengkai; Cicchella, Domenico; Buccianti, Antonella; De Vivo, Benedetto
2015-04-01
Environmental geochemical mapping has assumed an increasing relevance and the separation of values to discriminate between anthropogenic pollution and natural (geogenic) sources has become crucial to address environmental problems affecting the quality of life of human beings. In the last decade, a number of geochemical prospecting projects, mostly focused on surface soils (topsoils), were carried out at different scales (from regional to local) across the whole Campania region (Italy) to characterize the distribution of both harmful elements and persistent organic pollutants (POP) in the environment and to generating a valuable database to serve as reference in developing geomedical studies. During the 2014, a database reporting the distribution of 53 chemical elements in 3536 topsoil samples, collected across the whole region, was completed. The geochemical data, after necessary quality controls, were georeferenced and processed in a geochemistry dedicated GIS software named GEODAS. For each considered element a complete set of maps was generated to depict both the discrete and the spatially continuous (interpolated) distribution of elemental concentrations across the region. The interpolated maps were generated using the Multifractal Inverse Distance eighted (MIDW) algorithm. Subsequently, the S-A method, also implemented in GEODAS, was applied to MIDW maps to eliminate spatially limited anomalies from the original grid and to generate the distribution patterns of geochemical baselines for each element. For a selected group of elements geochemical data were also treated by means of a Compositional Data Analysis (CoDA) aiming at investigating the regionalised structure of the data by considering the joint behaviour of several elements constituting for each sample its whole composition. A regional environmental risk assessment was run on the basis of the regional distribution of heavy metals in soil, land use types and population. The risk assessment produced a ranking of priorities and located areas of regional territory where human health risk is more relevant and follow-up activities are required.
Benmerad, Meriem; Slama, Rémy; Botturi, Karine; Claustre, Johanna; Roux, Antoine; Sage, Edouard; Reynaud-Gaubert, Martine; Gomez, Carine; Kessler, Romain; Brugière, Olivier; Mornex, Jean-François; Mussot, Sacha; Dahan, Marcel; Boussaud, Véronique; Danner-Boucher, Isabelle; Dromer, Claire; Knoop, Christiane; Auffray, Annick; Lepeule, Johanna; Malherbe, Laure; Meleux, Frederik; Nicod, Laurent; Magnan, Antoine; Pison, Christophe; Siroux, Valérie
2017-01-01
An irreversible loss in lung function limits the long-term success in lung transplantation. We evaluated the role of chronic exposure to ambient air pollution on lung function levels in lung transplant recipients (LTRs).The lung function of 520 LTRs from the Cohort in Lung Transplantation (COLT) study was measured every 6 months. The levels of air pollutants (nitrogen dioxide (NO 2 ), particulate matter with an aerodynamic cut-off diameter of x µm (PM x ) and ozone (O 3 )) at the patients' home address were averaged in the 12 months before each spirometry test. The effects of air pollutants on forced expiratory volume in 1 s (FEV 1 ) and forced vital capacity (FVC) in % predicted were estimated using mixed linear regressions. We assessed the effect modification of macrolide antibiotics in this relationship.Increased 12-month levels of pollutants were associated with lower levels of FVC % pred (-2.56%, 95% CI -3.86--1.25 for 5 µg·m -3 of PM 10 ; -0.75%, 95% CI -1.38--0.12 for 2 µg·m -3 of PM 2.5 and -2.58%, 95% CI -4.63--0.53 for 10 µg·m -3 of NO 2 ). In patients not taking macrolides, the deleterious association between PM and FVC tended to be stronger and PM 10 was associated with lower FEV 1 Our study suggests a deleterious effect of chronic exposure to air pollutants on lung function levels in LTRs, which might be modified with macrolides. Copyright ©ERS 2017.
1994-04-12
STS059-S-040 (12 April 1994) --- STS-59's MAPS (Measurement of Air Pollution from Satellites) experiment is sending real-time data that provides the most comprehensive view of carbon monoxide concentrations on Earth ever recorded. This computer image shows a summary of "quick look" data obtained by the MAPS instrument during its first days of operations as part of the Space Shuttle Endeavour's SRL-1 payload. This data will be processed using more sophisticated techniques following the flight. The color red indicates areas with the highest levels of carbon monoxide. These Northern Hemisphere springtime carbon monoxide values are generally significantly higher than the values found in the Southern Hemisphere. This is in direct contrast to the data obtained by the MAPS experiment during November 1981 and October 1984, i.e. during Northern Hemisphere fall. The astronauts aboard Endeavour have seen fires in most of the areas showing higher carbon monoxide values (China, Eastern Australia, and equatorial Africa). The relationship between the observed fires and the higher carbon monoxide values will be investigated following SRL-1 by combining the MAPS data with meteorological data, surface imagery, and Space Shuttle hand-held photographs. By the end of SRL-1, MAPS will have acquired data over most of the globe between 57 degrees north and 57 degrees south latitudes. The entire data set will be carefully analyzed using sophisticated post-flight data processing techniques. The data will then be applied in a variety of scientific studies concerning chemistry and transport processes in the atmosphere. The MAPS experiment measures the carbon monoxide in the lower atmosphere. This gas is produced both as a result of natural processes and as a result of human activities. The primary human resources of carbon monoxide are automobiles and industry and the burning of plant materials. The primary natural source is the interaction of sunlight with naturally occurring ozone and water vapor. The strength of all of these sources changes seasonally.
Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole
2015-01-01
The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994
Chern-Simons theory and S-duality
NASA Astrophysics Data System (ADS)
Dimofte, Tudor; Gukov, Sergei
2013-05-01
We study S-dualities in analytically continued SL(2) Chern-Simons theory on a 3-manifold M. By realizing Chern-Simons theory via a compactification of a 6d five-brane theory on M, various objects and symmetries in Chern-Simons theory become related to objects and operations in dual 2d, 3d, and 4d theories. For example, the space of flat SL(2 , {C} ) connections on M is identified with the space of supersymmetric vacua in a dual 3d gauge theory. The hidden symmetry [InlineMediaObject not available: see fulltext.] of SL(2) Chern-Simons theory can be identified as the S-duality transformation of {N}=4 super-Yang-Mills theory (obtained by compactifying the five-brane theory on a torus); whereas the mapping class group action in Chern-Simons theory on a three-manifold M with boundary C is realized as S-duality in 4d {N}=2 super-Yang-Mills theory associated with the Riemann surface C. We illustrate these symmetries by considering simple examples of 3-manifolds that include knot complements and punctured torus bundles, on the one hand, and mapping cylinders associated with mapping class group transformations, on the other. A generalization of mapping class group actions further allows us to study the transformations between several distinguished coordinate systems on the phase space of Chern-Simons theory, the SL(2) Hitchin moduli space.
NASA Astrophysics Data System (ADS)
Wagner, Roland Josef; Schmedemann, Nico; Stephan, Katrin; Werner, Stephanie; Ivanov, Boris A.; Roatsch, Thomas; Jaumann, Ralf; Palumbo, Pasquale
2017-10-01
Crater size distributions are a valuable tool in planetary stratigraphy to derive the sequence of geologic events. In this study, we extend our previous work [1] in Ganymede’s sub-jovian hemisphere to the anti-jovian hemisphere. For geologic mapping, the map by [2] is used as a reference. Our study provides groundwork for the upcoming imaging by the JANUS camera aboard ESA’s JUICE mission [3]. Voyager-2 images are reprocessed using a map scale of 700 m/pxl achieved for parts of the anti-jovian hemisphere. To obtain relative ages from crater frequencies, we apply an updated crater scaling law for cratering into icy targets in order to derive a crater production function for Ganymede [1]. Also, we adopt the Poisson timing analysis method discussed and implemented recently [4] to obtain relative (and absolute model) ages. Results are compared to those from the sub-jovian hemisphere [1] as well as to support and/or refine the global stratigraphic system by [2]. Further emphasis is placed on local target areas in the anti-jovian hemisphere imaged by Galileo SSI at regional map scales of 100 to 300 m/pxl in order to study local geologic effects and processes. These areas incorporate (1) dark and (2) light tectonized materials, and (3) impact crater materials including an area with numerous secondaries from ray crater Osiris. References: [1] Wagner R. et al. (2014), DPS meeting #46, abstract 418.09. [2] Collins G. et al. (2013), U.S.G.S. Sci. Inv. Map 3237. [3] Della Corte V. et al. (2014), Proc. SPIE 9143, doi:10.1117/12.2056353. [4] Michael G. et al. (2016), Icarus 277, 279-285.
The impact of air pollution on premature mortality in Europe and the United States (U.S.) for the year 2010 is modelled by a multi-model ensemble of regional models in the framework of the AQMEII3 project. The gridded surface concentrations of O3, CO, SO2 and PM2.5 from each mode...
Myers, Jeffrey D.
2012-01-01
Maps are often used to convey information generated by models, for example, modeled cancer risk from air pollution. The concrete nature of images, such as maps, may convey more certainty than warranted for modeled information. Three map features were selected to communicate the uncertainty of modeled cancer risk: (a) map contours appeared in or out of focus, (b) one or three colors were used, and (c) a verbal-relative or numeric risk expression was used in the legend. Study aims were to assess how these features influenced risk beliefs and the ambiguity of risk beliefs at four assigned map locations that varied by risk level. We applied an integrated conceptual framework to conduct this full factorial experiment with 32 maps that varied by the three dichotomous features and four risk levels; 826 university students participated. Data was analyzed using structural equation modeling. Unfocused contours and the verbal-relative risk expression generated more ambiguity than their counterparts. Focused contours generated stronger risk beliefs for higher risk levels and weaker beliefs for lower risk levels. Number of colors had minimal influence. The magnitude of risk level, conveyed using incrementally darker shading, had a substantial dose-response influence on the strength of risk beliefs. Personal characteristics of prior beliefs and numeracy also had substantial influences. Bottom-up and top-down information processing suggest why iconic visual features of incremental shading and contour focus had the strongest visual influences on risk beliefs and ambiguity. Variations in contour focus and risk expression show promise for fostering appropriate levels of ambiguity. PMID:22985196
How BenMAP-CE Estimates the Health and Economic Effects of Air Pollution
The BenMAP-CE tool estimates the number and economic value of health impacts resulting from changes in air quality - specifically, ground-level ozone and fine particles. Learn what data BenMAP-CE uses and how the estimates are calculated.
Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan
2018-01-01
Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution. PMID:29642623
Hu, Bifeng; Zhao, Ruiying; Chen, Songchao; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou
2018-04-10
Assessing heavy metal pollution and delineating pollution are the bases for evaluating pollution and determining a cost-effective remediation plan. Most existing studies are based on the spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow integrated pollution index (NIPI) were calculated for every surface sample (0-20 cm) to assess the degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the study area. Based on IK, the spatial probability of composite heavy metal pollution was computed. The probability of composite contamination in the central core urban area was highest. A probability of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty showed the proportion of false negative error areas was 6.34%, while the proportion of false positive error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we developed is a valuable tool for delineating heavy metal pollution.
A Modified Hopfield Neural Network Algorithm (MHNNA) Using ALOS Image for Water Quality Mapping
Kzar, Ahmed Asal; Mat Jafri, Mohd Zubir; Mutter, Kussay N.; Syahreza, Saumi
2015-01-01
Decreasing water pollution is a big problem in coastal waters. Coastal health of ecosystems can be affected by high concentrations of suspended sediment. In this work, a Modified Hopfield Neural Network Algorithm (MHNNA) was used with remote sensing imagery to classify the total suspended solids (TSS) concentrations in the waters of coastal Langkawi Island, Malaysia. The adopted remote sensing image is the Advanced Land Observation Satellite (ALOS) image acquired on 18 January 2010. Our modification allows the Hopfield neural network to convert and classify color satellite images. The samples were collected from the study area simultaneously with the acquiring of satellite imagery. The sample locations were determined using a handheld global positioning system (GPS). The TSS concentration measurements were conducted in a lab and used for validation (real data), classification, and accuracy assessments. Mapping was achieved by using the MHNNA to classify the concentrations according to their reflectance values in band 1, band 2, and band 3. The TSS map was color-coded for visual interpretation. The efficiency of the proposed algorithm was investigated by dividing the validation data into two groups. The first group was used as source samples for supervisor classification via the MHNNA. The second group was used to test the MHNNA efficiency. After mapping, the locations of the second group in the produced classes were detected. Next, the correlation coefficient (R) and root mean square error (RMSE) were calculated between the two groups, according to their corresponding locations in the classes. The MHNNA exhibited a higher R (0.977) and lower RMSE (2.887). In addition, we test the MHNNA with noise, where it proves its accuracy with noisy images over a range of noise levels. All results have been compared with a minimum distance classifier (Min-Dis). Therefore, TSS mapping of polluted water in the coastal Langkawi Island, Malaysia can be performed using the adopted MHNNA with remote sensing techniques (as based on ALOS images). PMID:26729148
Air born soil pollution assessment and mitigation in the south of ukraine
NASA Astrophysics Data System (ADS)
Titarenko, Olga; Kharytonov, Mykola; Moschner, Christin; Khlopova, Valentina M.
2016-04-01
Atmospheric emissions made by mining and metallurgy industry account for 54 % of total air pollutions of the Dnipropetrovsk Region. As it has been shown previously, the range of pollutants depends on the number and types of the industrial enterprises located within the each urban area. In Dnipropetrovsk and surrounding cities the dominant emissions come from the waste of metallurgical and chemical industries, which is heavily developed in this area. The multipollution exposure assessment was made for the several cities in Dnipropetrovsk industrial region in the south of Ukraine. In this connection the monitoring of atmospheric air pollution in the environment of the Dnepropetrovsk megalopolis area was carried out in several industrial cities: Dnipropetrovsk, Dneprodzerzhynsk, Kryvyy Ryg and Pavlograd with use of the network of stationary monitoring stations at the Dnepropetrovsk Regional Center of Hydrometeorology. The initial evaluation of technogenic atmospheric pollution with toxic substances was performed with due to the limit values of so-called maximum permissible concentrations (MPC) for harmful emissions in the atmosphere as set out in the Ukrainian Air Quality Standards. The main sources of air pollution in industrial cities are stationary. Meantime increasing road transport is a growing source of pollution. The maximum excess of MPC content of NO2 in the atmosphere of the cities has reached twice. Over the last 5 years in the atmosphere of industrial cities in the region there was an increased level of nitrogen dioxide (excess of MPC in 1, 5-2, 5 times). Number of inorganic aerosols (nitrogen dioxide, sulfur dioxide and other) has an effect of summation. In the presence of diffuse sources are superimposed individual emissions and formed the total torch actually located over the whole of the industrial agglomeration. Spatial structure of such a torch is very complicated, instant concentrations of impurities at various points in the city are substantially different. Summary torch formed over each industrial city from the merger of numerous enterprises emissions, under the influence of wind can spread in the long distances.The main sources of soil pollution in Pavlograd city and suburban territories are mine tailings, heat supply companies, operating in Western Donbass coal, other industrial enterprises and transport. The coal and mine rocks contain significant amounts of heavy metals and rare earth elements, lead, zinc, vanadium, manganese, cobalt, chromium, germanium, cerium and others. Settling on the earth's surface, they form insoluble compounds and accumulate in the upper parts of the soil cover. The detection of acid rain impact for the vast number of analyzed soil samples (95 %) were weakly acidic pH (6.3 - 6.8). As a result of consistent mapping of pollution in the city of Pavlograd six heavy metals was obtained corresponding GIS map. Follow to the analysis of the GIS map, it becomes possible to select multiple halos increased density of total soil contamination with heavy metals. The total pollution index of multipollution level of soil contamination was calculated for generalization of the obtained results. For most of the analyzed samples, according to the above gradation, the environmental situation of the contamination of soils by heavy metals is changed from "moderately threatening" to "threatening". The conception of step by step integrated approach using phytostabilization and phytoremediation measures has been completed. Some rocks as sorbents for detoxification of contaminated soils with heavy metals were studied. The coefficients of heavy metals accumulation for some crops were established in model experiments.
Carlos-Wallace, Frolayne M.; Zhang, Luoping; Smith, Martyn T.; Rader, Gabriella; Steinmaus, Craig
2016-01-01
Benzene is an established cause of adult leukemia, but whether it is associated with childhood leukemia remains unclear. We conducted a meta-analysis in which we reviewed the epidemiologic literature on this topic and explored causal inference, bias, and heterogeneity. The exposure metrics that we evaluated included occupational and household use of benzenes and solvents, traffic density, and traffic-related air pollution. For studies of occupational and household product exposure published from 1987 to 2014, the summary relative risk for childhood leukemia was 1.96 (95% confidence interval (CI): 1.53, 2.52; n = 20). In these studies, the summary relative risk was higher for acute myeloid leukemia (summary relative risk (sRR) = 2.34, 95% CI: 1.72, 3.18; n = 6) than for acute lymphoblastic leukemia (sRR = 1.57; 95% CI: 1.21, 2.05; n = 14). The summary relative risk was higher for maternal versus paternal exposure, in studies that assessed benzene versus all solvents, and in studies of gestational exposure. In studies of traffic density or traffic-related air pollution published from 1999 to 2014, the summary relative risk was 1.48 (95% CI: 1.10, 1.99; n = 12); it was higher for acute myeloid leukemia (sRR = 2.07; 95% CI: 1.34, 3.20) than for acute lymphoblastic leukemia (sRR = 1.49; 95% CI: 1.07, 2.08) and in studies that involved detailed models of traffic pollution (sRR = 1.70; 95% CI: 1.16, 2.49). Overall, we identified evidence of associations between childhood leukemia and several different potential metrics of benzene exposure. PMID:26589707
Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A.; Thurston, George
2015-01-01
The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each µg/m3 increase in PM2.5 (both P<0.0001). PM2.5 and NO2 were associated with −3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial investigations. PMID:23340702
This map service displays all air-related layers used in the USEPA Community/Tribal-Focused Exposure and Risk Screening Tool (C/T-FERST) mapping application (https://www.epa.gov/c-ferst). The following data sources (and layers) are contained in this service:USEPA's 2005 National-Scale Air Toxic Assessment (NATA) data. Data are shown at the census tract level (2000 census tract boundaries, US Census Bureau) for Cumulative Cancer and Non-Cancer risks (Neurological and Respiratory) from 139 air toxics. In addition, individual pollutant estimates of Ambient Concentration, Exposure Concentration, Cancer, and Non-Cancer risks (Neurological and Respiratory) are provided for: Acetaldehyde, Acrolein, Arsenic, Benzene, 1,3-Butadiene, Chromium, Diesel PM, Formaldehyde, Lead, Naphthalene, and Polycyclic Aromatic Hydrocarbon (PAH). The original Access tables were downloaded from USEPA's Office of Air and Radiation (OAR) https://www.epa.gov/national-air-toxics-assessment/2005-national-air-toxics-assessment. The data classification (defined interval) for this map service was developed for USEPA's Office of Research and Development's (ORD) Community-Focused Exposure and Risk Screening Tool (C-FERST) per guidance provided by OAR.The 2005 NATA provides information on 177 of the 187 Clean Air Act air toxics (https://www.epa.gov/sites/production/files/2015-10/documents/2005-nata-pollutants.pdf) plus diesel particulate matter (diesel PM was assessed for non-cancer only). For addit
AIRS Map of Carbon Monoxide Draped on Globe: Time Series from 8/1/2005 to 9/30/2005
NASA Technical Reports Server (NTRS)
2007-01-01
[figure removed for brevity, see original site] Click on the image for movie of AIRS Map of Carbon Monoxide Draped on Globe Forest fires and agricultural burning create large amounts of carbon monoxide. AIRS provides daily global maps of carbon monoxide from space, allowing scientists to follow the global transport of this gas day-to-day. In this image sequence, carbon monoxide pollution from agricultural burning blooms repeatedly over the Amazonian basin. The gas is then transported across the Atlantic Ocean. Carbon monoxide pollution from fires in sub-Saharan Africa is also apparent. The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.Pollutant fates in fluvial systems: on need of individual approach to each case study
NASA Astrophysics Data System (ADS)
Matys Grygar, Tomas; Elznicova, Jitka; Novakova, Tereza
2015-04-01
To outline the pollutant fates in fluvial systems it is necessary to combine two main kinds of knowledge: sedimentation and erosion patterns of each individual river with spatio-temporal resolution higher than in most fluvial geomorphology/sedimentology studies and timing and way how the pollutants have entered the fluvial system. Most of these aspects are commonly neglected in environmental geochemistry, a domain to which pollution studies apparently belong. In fact, only when these two main components are established (at least in a qualitative manner), we can start reading (interpretation) of the fluvial sedimentary archives, e.g., decipher the way how the primary pollution signal has been distorted during passing through the fluvial system. We conducted empirical studies on Czech rivers impacted by pollution (by risk elements). We learnt how individual (site-specific) are the main processes responsible for the primary pollution input, spread through each fluvial system and inevitable secondary pollution ("lagged pollution improvement signal"). We will discuss main features of the story on pollutant fates in three different fluvial systems, which have not been impacted by "hard" river engineering and still undergo natural fluvial processes: 1. the Ohre (the Eger) impacted by production of Hg and its compounds, historical mining of Pb and more recent U ore processing, 2. the Ploucnice impacted by U mining, and 3. the Litavka, impacted by Pb-Zn(-Sb) mining and smelting. The Ohre is specific by most pollution having been temporarily deposited in an active channel, only minor reworking of older fluvial deposits diluting pollution during downstream transport, and pollution archives existing practically only in the form of lateral accretion deposits. The deposits of archive value are rare and can be revealed by detailed study of historical maps and well-planned field analysis, best using portable analytical instruments (XRF). The Ploucnice is specific by only transient deposition in a channel belt and subsequent secondary pollution via physical mobilisation, most pollution storing in the floodplain in a surprisingly heterogeneous manner - in hotspots with a size comparable to fragments of abandoned channels (from a few to few tens of metres). The hotspots are hence best revealed by well-designed field analysis using portable instruments (gamma spectrometry or XRF). The Litavka is specific because most pollution is in its floodplain in the form of anthropogenic alluvium, a very thick vertical accretion body of "artificial" material added to the river system in the amount exceeding its normal transport capacity. That situation favours secondary pollution by chemical mobilisation of pollutants under low river discharges revealed by geochemical analysis. Our case studies show that simple "rules" such as continuous decay of pollutant concentrations downstream from the pollution source, existence of a continuous blanket of polluted overbank fines in floodplain, simple change of the pollution extent with growing distance from the river channel and as a consequence of extreme floods, or simple recipes such as low-density sampling to trace point pollution sources are too simplistic to be applicable in real polluted fluvial systems. Each river system represents a nearly unique combination of individual geomorphic processes, and each pollution has been specific by the mode how it entered the fluvial system. We will not offer "magic tools" in our contribution. In literature we can find all pieces we need for the jigsaw puzzle - pollutants fates in fluvial systems. The question is why so rarely researchers put them together. We would like to encourage them to do so.
Atmospheric Science Data Center
2014-07-03
... from Satellites (MAPS) data were collected during Space Shuttle flights in 1981, 1984 and 1994. The main pollutant measured was carbon ... Carbon Monoxide Relevant Documents: NASA Facts Correlative Data - CDIAC - Spring & Fall 1994 - Field ...
High-resolution airborne imaging DOAS measurements of NO2 above Bucharest during AROMAT
NASA Astrophysics Data System (ADS)
Meier, Andreas Carlos; Schönhardt, Anja; Bösch, Tim; Richter, Andreas; Seyler, André; Ruhtz, Thomas; Constantin, Daniel-Eduard; Shaiganfar, Reza; Wagner, Thomas; Merlaud, Alexis; Van Roozendael, Michel; Belegante, Livio; Nicolae, Doina; Georgescu, Lucian; Burrows, John Philip
2017-05-01
In this study we report on airborne imaging DOAS measurements of NO2 from two flights performed in Bucharest during the AROMAT campaign (Airborne ROmanian Measurements of Aerosols and Trace gases) in September 2014. These measurements were performed with the Airborne imaging Differential Optical Absorption Spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) and provide nearly gapless maps of column densities of NO2 below the aircraft with a high spatial resolution of better than 100 m. The air mass factors, which are needed to convert the measured differential slant column densities (dSCDs) to vertical column densities (VCDs), have a strong dependence on the surface reflectance, which has to be accounted for in the retrieval. This is especially important for measurements above urban areas, where the surface properties vary strongly. As the instrument is not radiometrically calibrated, we have developed a method to derive the surface reflectance from intensities measured by AirMAP. This method is based on radiative transfer calculation with SCIATRAN and a reference area for which the surface reflectance is known. While surface properties are clearly apparent in the NO2 dSCD results, this effect is successfully corrected for in the VCD results. Furthermore, we investigate the influence of aerosols on the retrieval for a variety of aerosol profiles that were measured in the context of the AROMAT campaigns. The results of two research flights are presented, which reveal distinct horizontal distribution patterns and strong spatial gradients of NO2 across the city. Pollution levels range from background values in the outskirts located upwind of the city to about 4 × 1016 molec cm-2 in the polluted city center. Validation against two co-located mobile car-DOAS measurements yields good agreement between the datasets, with correlation coefficients of R = 0.94 and R = 0.85, respectively. Estimations on the NOx emission rate of Bucharest for the two flights yield emission rates of 15.1 ± 9.4 and 13.6 ± 8.4 mol s-1, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xinyi; Gao, Yang; Fu, Joshua S.
On February 29th 2012, China published its new National Ambient Air Quality Standard (CH-NAAQS) aiming at revising the standards and measurements for both gaseous pollutants including ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), and also particle pollutants including PM10 and PM2.5. In order to understand the air pollution status regarding this new standard, the integrated MM5/CMAQ modeling system was applied over Yangtze River Delta (YRD) within this study to examine the criteria gaseous pollutants listed in the new CH-NAAQS. Sensitivity simulations were also conducted to assess the responses of gaseous pollutants under 8 different sector-dependent emission reduction scenariosmore » in order to evaluate the potential control strategies. 2006 was selected as the simulation year in order to review the air quality condition at the beginning of China’s 11th Five-Year-Plan (FYP, from 2006 to 2010), and also compared with air quality status in 2010 as the end of 11th FYP to probe into the effectiveness of the national emission control efforts. Base case simulation showed distinct seasonal variation for gaseous pollutants: SO2, and NO2 were found to have higher surface concentrations in winter while O3 was found to have higher concentrations in spring and summer than other seasons. According to the analyses focused on 3 megacities within YRD, Shanghai, Nanjing, and Hangzhou, we found different air quality conditions among the cities: NO2 was the primary pollutant that having the largest number of days exceeding the CH-NAAQS daily standard (80 μg/m3) in Shanghai (59 days) and Nanjing (27 days); SO2 was the primary pollutant with maximum number of days exceeding daily air quality standard (150 μg/m3) in Hangzhou (28 days), while O3 exceeding the daily maximum 8-hour standard (160 μg/m3) for relatively fewer days in all the three cities (9 days in Shanghai, 14 days in Nanjing, and 11 days in Hangzhou). Simulation results from predefined potential applicable emission control scenarios suggested significant air quality improvements from emission reduction: 90% of SO2 emission removed from power plant in YRD would be able to reduce more than 85% of SO2 pollution, 85% NOx emission reduction from power plant would reduce more than 60% of NO2 pollution, in terms of reducing the number of days exceeding daily air quality standard. NOx emission reduction from transportation and industry were also found to effectively reduce NO2 pollution but less efficient than emission control from power plants. We also found that multi-pollutants emission control including both NOx and VOC would be a better strategy than independent NOx control over YRD which is China’s 12th Five-Year-Plan (from 2011 to 2015), because O3 pollution would be increased as a side effect of NOx control and counteract NO2 pollution reduction benefit.« less
Discoveries about Tropospheric Ozone Pollution from Satellite and Soundings
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2004-01-01
We have been producing near-red time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. Maps for 1996-2000 for the operational Earth-Probe instrument are at:
NASA Astrophysics Data System (ADS)
Sánchez de Miguel, A.; Zamorano, J.; Pila-Díez, B.; Rubio, J.; Ruiz, R.; Rodríguez-Herranz, I.; González-Pérez, A.
2011-11-01
The most recent data on electricity consumption for public lighting inSpain is presented and compared with light pollution measurements asderived from night satellite imagery. NOAA-MSP images (low-resolution)and higher resolution images obtained with conventional DSLR cameras on board the International Space Station (ISS) have been used.We show that the data can be related to night sky brightness maps with a study conducted within the Comunidad Autónoma de Madrid. Weintend to extend our work to the rest of Spain through tight collaborationwith amateur astronomers.
Ahmed, W; Staley, C; Sadowsky, M J; Gyawali, P; Sidhu, J P S; Palmer, A; Beale, D J; Toze, S
2015-10-01
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
A wide field-of-view imaging DOAS instrument for continuous trace gas mapping from aircraft
NASA Astrophysics Data System (ADS)
Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.
2014-04-01
For the purpose of trace gas measurements and pollution mapping, the Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed, characterised and successfully operated from aircraft. From the observations with the AirMAP instrument nitrogen dioxide (NO2) columns were retrieved. A major benefit of the pushbroom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a frame-transfer detector. With a wide-angle entrance objective, a broad field-of-view across track of around 48° is achieved, leading to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m. From a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 single fibres, the number of viewing directions is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Exploitation of all the viewing directions yields observations at 30 m spatial resolution, making the instrument a suitable tool for mapping trace gas point sources and small scale variability. For accurate spatial mapping the position and aircraft attitude are taken into account using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken. In June 2011, AirMAP has been operated on the AWI Polar-5 aircraft in the framework of the AIRMETH2011 campaign. During a flight above a medium sized coal-fired power plant in North-West Germany, AirMAP clearly detects the emission plume downwind from the exhaust stack, with NO2 vertical columns around 2 × 1016 molecules cm-2 in the plume center. The emission estimates are consistent with reports in the pollutant transfer register. Strong spatial gradients and variability in NO2 amounts across and along flight direction are observed, and small-scale enhancements of NO2 above a motorway are detected. The present study reports on the experimental setup and characteristics of AirMAP, and the first measurements at high spatial resolution and wide spatial coverage are presented which meet the requirements for NO2 mapping to observe and account for the intrinsic variability of tropospheric NO2.
NASA Astrophysics Data System (ADS)
Das, Tushar Kanti; Ganguly, Sayan; Bhawal, Poushali; Remanan, Sanjay; Mondal, Subhadip; Das, N. C.
2018-02-01
Naturally occurring ceramic tubular clay, Halloysite nanotubes (HNTs), having a significant amount of surface hydroxyls has been coated by self-polymerized dopamine in this work. The polydopamine-coated HNTs acts as a self-reducing agent for Ag+ ion to Ag0 in nanometer abundance. Herein, nano size Ag0 deposited on solid support catalyst has been used to mitigate water pollution within 10 min. To establish the versatility of the catalyst, nitroaryl (4-nitrophenol) and synthetic dye (methylene blue) have been chosen as model pollutant. The degradation/reduction of the aforementioned pollutants was confirmed after taking UV-visible spectra of the respective compounds. All the study can make sure that the catalyst is green and the rate constant value for catalytic reduction of 4-nitrophenol and methylene blue was calculated to be 4.45 × 10-3 and 1.13 × 10-3 s-1, respectively, which is found to be more efficient in comparison to other nanostructure and commercial Pt/C nanocatalyst (1.00 × 10-3 s-1).
NASA Astrophysics Data System (ADS)
Stanier, C. O.; Dong, C.; Janechek, N. J.; Bryngelson, N.; Schultz, P.; Heimbinder, M.
2017-12-01
As part of the CLE4R air quality education project, the University of Iowa has been working with AirBeam low-cost consumer-grade fine particulate matter (PM2.5) sensors in educational and outreach settings, both in K-12 environments and in informal settings such as science days and technology fairs. Users are attracted to the AirBeam device, in part, because of the easy creation of crowd-sourced maps of air pollution. With over 1000 AirBeam devices in use, extensive measurements are now available at aircasting.org. The AirBeam sensor is a portable, low-cost sensor which measures light scattering due to aerosols as a single bin converting the detected signal to a particle count and uses a calibration fit to estimate particle mass. The AirBeam is able to detect particle sizes of 0.5 - 2.5 µm, concentrations up to 400 µg m-3, and with a time resolution of 1 s. A corresponding Android device is used to visualize, record, and upload measured data to a community website (aircasting.org) that maps the spatial and temporal resolved data. The non-profit vendor's website constructs crowdsourced maps of air quality, environmental, and meteorological variables. As of April 1st, 2017, through the CLE4R project, 109 people had used the AirBeam sensors for educational purposes, for a total of 271 person hours. In the poster, we will explain the outreach that was done, and share best practices for education and outreach using consumer-grade PM sensors. Strengths and needed improvements to the technology for these outreach, education, and classroom uses will also be detailed. Sources of particles that can be artificially generated for educational use, including authentic smoke, spray smoke, and various dust sources will be enumerated. For use in K-12 classrooms, requirements for robust startup, operation, and ease-of-use are high. Mapping of concentrations is a desirable attribute but adds additional sources of failure to the hardware-software system used for education/outreach.
Wu, Huiqing; Wu, Qingping; Wu, Guojie; Gu, Qihui; Wei, Linting
2016-01-01
The goal of this study was to identify Cd-resistant bacterial strains with endurance capacity and to evaluate their ability to remove cadmium ions from cadmium-polluted water. The Bacillus cereusS5 strain identified in this study had the closest genetic relationship with B. cereus sp. Cp1 and performed well in the removal of Cd2+ions from solution. The results showed that both the live and dead biomasses of the Cd2+-tolerant B. cereus S5 strain could absorb Cd2+ ions in solution but that the live biomass of the B. cereus S5 strain outperformed the dead biomass at lower Cd2+concentrations. An analysis of the cadmium tolerance genes of B. cereus S5 identified ATPase genes that were associated with cadmium tolerance and involved in the ATP pumping mechanism. The FTIR spectra revealed the presence of amino, carboxyl and hydroxyl groups on the pristine biomass and indicated that the cadmium ion removal ability was related to the structure of the strain. The maximum absorption capacity of the B. cereus S5 strain in viable spore biomass was 70.16 mg/g (dry weight) based on a pseudo-second-order kinetic model fit to the experimental data. The Langmuir and Langmuir-Freundlich isotherm adsorption models fit the cadmium ion adsorption data well, and the kinetic curves indicated that the adsorption rate was second-order. For Cd2+ concentrations (mg/L) of 1–109 mg/L, good removal efficiency (>80%) was achieved using approximately 3.48–10.3 g/L of active spore biomass of the B. cereus S5 strain. A cadmium-tolerant bacteria-activated carbon-immobilized column could be used for a longer duration and exhibited greater treatment efficacy than the control column in the treatment of cadmium-polluted water. In addition, a toxicity assessment using mice demonstrated that the biomass of the B. cereus S5 strain and its fermentation products were non-toxic. Thus, the isolated B. cereus S5 strain can be considered an alternative biological adsorbent for use in emergency responses to severe cadmium pollution and in the routine treatment of trace cadmium pollution. PMID:27077388
Quantitative evaluation of water quality in the coastal zone by remote sensing
NASA Technical Reports Server (NTRS)
James, W. P.
1971-01-01
Remote sensing as a tool in a waste management program is discussed. By monitoring both the pollution sources and the environmental quality, the interaction between the components of the exturaine system was observed. The need for in situ sampling is reduced with the development of improved calibrated, multichannel sensors. Remote sensing is used for: (1) pollution source determination, (2) mapping the influence zone of the waste source on water quality parameters, and (3) estimating the magnitude of the water quality parameters. Diffusion coefficients and circulation patterns can also be determined by remote sensing, along with subtle changes in vegetative patterns and density.
NEUROTOXICITY OF TRAFFIC-RELATED AIR POLLUTION
Costa, Lucio G.; Cole, Toby B.; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J.
2015-01-01
The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer’s disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300 μg/m3 for six hours) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. PMID:26610921
Stone, David; Jepson, Paul; Laskowski, Ryszard
2002-05-01
Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.; Hudson, Robert D.
2004-01-01
We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter. Three soundings with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. This analysis also indicates a mechanism for such extended transport. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions outside the late-winter period. Clearly brown-cloud aerosol affects tropospheric ozone, both limiting its chemical production and also potentially obscuring its detection by the TOMS instrument. Introductory statistical studies will be presented, evaluating the role of tropopause meteorology, aerosol, and other factors in the modifying the relationship between true tropospheric ozone measured by SHADOZ and the TTO product, with suggestions for extending the product.
The water footprint of humanity
Hoekstra, Arjen Y.; Mekonnen, Mesfin M.
2012-01-01
This study quantifies and maps the water footprint (WF) of humanity at a high spatial resolution. It reports on consumptive use of rainwater (green WF) and ground and surface water (blue WF) and volumes of water polluted (gray WF). Water footprints are estimated per nation from both a production and consumption perspective. International virtual water flows are estimated based on trade in agricultural and industrial commodities. The global annual average WF in the period 1996–2005 was 9,087 Gm3/y (74% green, 11% blue, 15% gray). Agricultural production contributes 92%. About one-fifth of the global WF relates to production for export. The total volume of international virtual water flows related to trade in agricultural and industrial products was 2,320 Gm3/y (68% green, 13% blue, 19% gray). The WF of the global average consumer was 1,385 m3/y. The average consumer in the United States has a WF of 2,842 m3/y, whereas the average citizens in China and India have WFs of 1,071 and 1,089 m3/y, respectively. Consumption of cereal products gives the largest contribution to the WF of the average consumer (27%), followed by meat (22%) and milk products (7%). The volume and pattern of consumption and the WF per ton of product of the products consumed are the main factors determining the WF of a consumer. The study illustrates the global dimension of water consumption and pollution by showing that several countries heavily rely on foreign water resources and that many countries have significant impacts on water consumption and pollution elsewhere. PMID:22331890
Analysis of Sampling Methodologies for Noise Pollution Assessment and the Impact on the Population.
Rey Gozalo, Guillermo; Barrigón Morillas, Juan Miguel
2016-05-11
Today, noise pollution is an increasing environmental stressor. Noise maps are recognised as the main tool for assessing and managing environmental noise, but their accuracy largely depends on the sampling method used. The sampling methods most commonly used by different researchers (grid, legislative road types and categorisation methods) were analysed and compared using the city of Talca (Chile) as a test case. The results show that the stratification of sound values in road categories has a significantly lower prediction error and a higher capacity for discrimination and prediction than in the legislative road types used by the Ministry of Transport and Telecommunications in Chile. Also, the use of one or another method implies significant differences in the assessment of population exposure to noise pollution. Thus, the selection of a suitable method for performing noise maps through measurements is essential to achieve an accurate assessment of the impact of noise pollution on the population.
Magnetic surveys for locating abandoned wells
,
1995-01-01
Abandoned and unrecorded wells may act as conduits for the contamination of groundwater supplies by oil field brines and other pollutants. The casings of abandoned wells eventually develop leaks, which, if not properly plugged, can allow pollutants to reach freshwater aquifers that supply drinking water. Sources of pollutants include brine ponds, landfill sites, agricultural activities, industrial activities, illegal disposal sites, or accidental spills. The problem is particularly acute in regions where there are old petroleum fields or where water wells have been extensively used for agricultural irrigation. Even urban areas can contain wells that were abandoned and concealed during development. Carefully designed ground magnetic or aeromagnetic surveys can be used to locate abandoned wells by mapping the magnetic disturbances or "anomalies" produced by their steel well casings. The U.S. Geological Survey (USGS) can, at the request of other Federal, State, or local agencies, conduct, process, and interpret such surveys, or it can aid in the design and monitoring of contracts for such surveys.
Air Quality Criteria for Ozone and Related Photochemical ...
In February 2006, EPA released the final document, Air Quality Criteria for Ozone and Other Photochemical Oxidants. Tropospheric or surface-level ozone (O3) is one of six major air pollutants regulated by National Ambient Air Quality Standards (NAAQS) under the U.S. Clean Air Act. As mandated by the Clean Air Act, the U.S. Environmental Protection Agency (EPA) must periodically review the scientific bases (or criteria) for the various NAAQS by assessing newly available scientific information on a given criteria air pollutant. This document, Air Quality Criteria for Ozone and Other Photochemical Oxidants, is an updated revision of the 1996 Ozone Air Quality Criteria Document (O3 AQCD) that provided scientific bases for the current O3 NAAQS set in 1997. The Clean Air Act mandates periodic review of the National Ambient Air Quality Standards (NAAQS) for six common air pollutants, also referred to as criteria pollutants, including ozone.
Performance comparison of LUR and OK in PM2.5 concentration mapping: a multidimensional perspective
Zou, Bin; Luo, Yanqing; Wan, Neng; Zheng, Zhong; Sternberg, Troy; Liao, Yilan
2015-01-01
Methods of Land Use Regression (LUR) modeling and Ordinary Kriging (OK) interpolation have been widely used to offset the shortcomings of PM2.5 data observed at sparse monitoring sites. However, traditional point-based performance evaluation strategy for these methods remains stagnant, which could cause unreasonable mapping results. To address this challenge, this study employs ‘information entropy’, an area-based statistic, along with traditional point-based statistics (e.g. error rate, RMSE) to evaluate the performance of LUR model and OK interpolation in mapping PM2.5 concentrations in Houston from a multidimensional perspective. The point-based validation reveals significant differences between LUR and OK at different test sites despite the similar end-result accuracy (e.g. error rate 6.13% vs. 7.01%). Meanwhile, the area-based validation demonstrates that the PM2.5 concentrations simulated by the LUR model exhibits more detailed variations than those interpolated by the OK method (i.e. information entropy, 7.79 vs. 3.63). Results suggest that LUR modeling could better refine the spatial distribution scenario of PM2.5 concentrations compared to OK interpolation. The significance of this study primarily lies in promoting the integration of point- and area-based statistics for model performance evaluation in air pollution mapping. PMID:25731103
NASA Astrophysics Data System (ADS)
Liu, Nan; Cao, Ce; Sun, Zhongyu; Lin, Zhifang; Deng, Rufang
2016-11-01
Industrial pollutants induce the production of toxic reactive oxygen species (ROS) such as O2.-, H2O2, and ·OH in plants, but they have not been well quantified or localized in tissues and cells. This study evaluated the pollutant- (HSO3-, NH4NO3, Al3+, Zn2+, and Fe2+) induced toxic effects of ROS on the aerial roots of Chinese banyan (Ficus microcarpa). Root cell viability was greatly reduced by treatment with 20 mM NaHSO3, 20 mM NH4NO3, 0.2 mM AlCl3, 0.2 mM ZnSO4, or 0.2 mM FeSO4. Biochemical assay and histochemical localization showed that O2.- accumulated in roots in response to pollutants, except that the staining of O2.- under NaHSO3 treatment was not detective. Cytochemical localization further indicated that the generated O2.- was present mainly in the root cortex, and pith cells, especially in NH4NO3- and FeSO4-treated roots. The pollutants also caused greatly accumulated H2O2 and ·OH in aerial roots, which finally resulted in lipid peroxidation as indicated by increased malondialdehyde contents. We conclude that the F. microcarpa aerial roots are sensitive to pollutant-induced ROS and that the histochemical localization of O2.- via nitrotetrazolium blue chloride staining is not effective for detecting the effects of HSO3- treatment because of the treatment’s bleaching effect.
NASA Astrophysics Data System (ADS)
Coppola, A.; Comegna, V.; de Simone, L.
2009-04-01
Non-point source (NPS) pollution in the vadose zone is a global environmental problem. The knowledge and information required to address the problem of NPS pollutants in the vadose zone cross several technological and sub disciplinary lines: spatial statistics, geographic information systems (GIS), hydrology, soil science, and remote sensing. The main issues encountered by NPS groundwater vulnerability assessment, as discussed by Stewart [2001], are the large spatial scales, the complex processes that govern fluid flow and solute transport in the unsaturated zone, the absence of unsaturated zone measurements of diffuse pesticide concentrations in 3-D regional-scale space as these are difficult, time consuming, and prohibitively costly, and the computational effort required for solving the nonlinear equations for physically-based modeling of regional scale, heterogeneous applications. As an alternative solution, here is presented an approach that is based on coupling of transfer function and GIS modeling that: a) is capable of solute concentration estimation at a depth of interest within a known error confidence class; b) uses available soil survey, climatic, and irrigation information, and requires minimal computational cost for application; c) can dynamically support decision making through thematic mapping and 3D scenarios This result was pursued through 1) the design and building of a spatial database containing environmental and physical information regarding the study area, 2) the development of the transfer function procedure for layered soils, 3) the final representation of results through digital mapping and 3D visualization. One side GIS modeled environmental data in order to characterize, at regional scale, soil profile texture and depth, land use, climatic data, water table depth, potential evapotranspiration; on the other side such information was implemented in the up-scaling procedure of the Jury's TFM resulting in a set of texture based travel time probability density functions for layered soils each describing a characteristic leaching behavior for soil profiles with similar hydraulic properties. Such behavior, in terms of solute travel time to water table, was then imported back into GIS and finally estimation groundwater vulnerability for each soil unit was represented into a map as well as visualized in 3D.
Puig, Roger; Soler, Albert; Widory, David; Mas-Pla, Josep; Domènech, Cristina; Otero, Neus
2017-02-15
Nitrate pollution is a widespread issue affecting global water resources with significant economic and health effects. Knowledge of both the corresponding pollution sources and of processes naturally attenuating them is thus of crucial importance in assessing water management policies and the impact of anthropogenic activities. In this study, an approach combining hydrodynamic, hydrochemical and multi-isotope systematics (8 isotopes) is used to characterize the sources of nitrate pollution and potential natural attenuation processes in a polluted basin of NE Spain. δ 2 H and δ 18 O isotopes were used to further characterize the sources of recharge of the aquifers. Results show that NO 3 - is not homogeneously distributed and presents a large range of concentrations, from no NO 3 - to up to 480mgL -1 . δ 15 N and δ 18 O of dissolved NO 3 - identified manure as the main source of nitrate, although sewage and mineral fertilizers can also be isotopically detected using boron isotopes (δ 11 B) and δ 34 S and δ 18 O of dissolved sulphate, respectively. The multi-isotope approach proved that natural denitrification is occurring, especially in near-river environments or in areas hydrologically related to fault zones. δ 34 S and δ 18 O indicated that denitrification is not driven by pyrite oxidation but rather by the oxidation of organic matter. This could not be confirmed by the study of δ 13 C HCO3 that was buffered by the entanglement of other processes and sources. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background Several studies have been conducted on the possible health effects for people living close to incinerators and well-conducted reviews are available. Nevertheless, several uncertainties limit the overall interpretation of the findings. We evaluated the health effects of emissions from two incinerators in a pilot cohort study. Methods The study area was defined as the 3.5 km radius around two incinerators located near Forlì (Italy). People who were residents in 1/1/1990, or subsequently became residents up to 31/12/2003, were enrolled in a longitudinal study (31,347 individuals). All the addresses were geocoded. Follow-up continued until 31/12/2003 by linking the mortality register, cancer registry and hospital admissions databases. Atmospheric Dispersion Model System (ADMS) software was used for exposure assessment; modelled concentration maps of heavy metals (annual average) were considered the indicators of exposure to atmospheric pollution from the incinerators, while concentration maps of nitrogen dioxide (NO2) were considered for exposure to other pollution sources. Age and area-based socioeconomic status adjusted rate ratios and 95% Confidence Intervals were estimated with Poisson regression, using the lowest exposure category to heavy metals as reference. Results The mortality and morbidity experience of the whole cohort did not differ from the regional population. In the internal analysis, no association between pollution exposure from the incinerators and all-cause and cause-specific mortality outcomes was observed in men, with the exception of colon cancer. Exposure to the incinerators was associated with cancer mortality among women, in particular for all cancer sites (RR for the highest exposure level = 1.47, 95% CI: 1.09, 1.99), stomach, colon, liver and breast cancer. No clear trend was detected for cancer incidence. No association was found for hospitalizations related to major diseases. NO2 levels, as a proxy from other pollution sources (traffic in particular), did not exert an important confounding role. Conclusions No increased risk of mortality and morbidity was found in the entire area. The internal analysis of the cohort based on dispersion modeling found excesses of mortality for some cancer types in the highest exposure categories, especially in women. The interpretation of the findings is limited given the pilot nature of the study. PMID:21435200
Chica-Olmo, Mario; Luque-Espinar, Juan Antonio; Rodriguez-Galiano, Victor; Pardo-Igúzquiza, Eulogio; Chica-Rivas, Lucía
2014-02-01
Groundwater nitrate pollution associated with agricultural activity is an important environmental problem in the management of this natural resource, as acknowledged by the European Water Framework Directive. Therefore, specific measures aimed to control the risk of water pollution by nitrates must be implemented to minimise its impact on the environment and potential risk to human health. The spatial probability distribution of nitrate contents exceeding a threshold or limit value, established within the quality standard, will be helpful to managers and decision-makers. A methodology based on non-parametric and non-linear methods of Indicator Kriging was used in the elaboration of a nitrate pollution categorical map for the aquifer of Vega de Granada (SE Spain). The map has been obtained from the local estimation of the probability that a nitrate content in an unsampled location belongs to one of the three categories established by the European Water Framework Directive: CL. 1 good quality [Min - 37.5 ppm], CL. 2 intermediate quality [37.5-50 ppm] and CL. 3 poor quality [50 ppm - Max]. The obtained results show that the areas exceeding nitrate concentrations of 50 ppm, poor quality waters, occupy more than 50% of the aquifer area. A great proportion of the area's municipalities are located in these poor quality water areas. The intermediate quality and good quality areas correspond to 21% and 28%, respectively, but with the highest population density. These results are coherent with the experimental data, which show an average nitrate concentration value of 72 ppm, significantly higher than the quality standard limit of 50 ppm. Consequently, the results suggest the importance of planning actions in order to control and monitor aquifer nitrate pollution. © 2013.
Using an epiphytic moss to identify previously unknown sources of atmospheric cadmium pollution.
Donovan, Geoffrey H; Jovan, Sarah E; Gatziolis, Demetrios; Burstyn, Igor; Michael, Yvonne L; Amacher, Michael C; Monleon, Vicente J
2016-07-15
Urban networks of air-quality monitors are often too widely spaced to identify sources of air pollutants, especially if they do not disperse far from emission sources. The objectives of this study were to test the use of moss bio-indicators to develop a fine-scale map of atmospherically-derived cadmium and to identify the sources of cadmium in a complex urban setting. We collected 346 samples of the moss Orthotrichum lyellii from deciduous trees in December, 2013 using a modified randomized grid-based sampling strategy across Portland, Oregon. We estimated a spatial linear model of moss cadmium levels and predicted cadmium on a 50m grid across the city. Cadmium levels in moss were positively correlated with proximity to two stained-glass manufacturers, proximity to the Oregon-Washington border, and percent industrial land in a 500m buffer, and negatively correlated with percent residential land in a 500m buffer. The maps showed very high concentrations of cadmium around the two stained-glass manufacturers, neither of which were known to environmental regulators as cadmium emitters. In addition, in response to our findings, the Oregon Department of Environmental Quality placed an instrumental monitor 120m from the larger stained-glass manufacturer in October, 2015. The monthly average atmospheric cadmium concentration was 29.4ng/m(3), which is 49 times higher than Oregon's benchmark of 0.6ng/m(3), and high enough to pose a health risk from even short-term exposure. Both stained-glass manufacturers voluntarily stopped using cadmium after the monitoring results were made public, and the monthly average cadmium levels precipitously dropped to 1.1ng/m(3) for stained-glass manufacturer #1 and 0.67ng/m(3) for stained-glass manufacturer #2. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Liang, T.
1973-01-01
Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.
Biosynthesis of gold nanoparticles by Aspergillum sp. WL-Au for degradation of aromatic pollutants
NASA Astrophysics Data System (ADS)
Qu, Yuanyuan; Pei, Xiaofang; Shen, Wenli; Zhang, Xuwang; Wang, Jingwei; Zhang, Zhaojing; Li, Shuzhen; You, Shengnan; Ma, Fang; Zhou, Jiti
2017-04-01
A simple method for synthesis of gold nanoparticles (AuNPs) using Aspergillum sp. WL-Au was presented in this study. According to UV-vis spectra and transmission electron microscopy images, the shape and size of AuNPs were affected by different parameters, including buffer solution, pH, biomass and HAuCl4 concentrations. Phosphate sodium buffer was more suitable for extracellular synthesis of AuNPs, and the optimal conditions for AuNPs synthesis were pH 7.0, biomass 100 mg/mL and HAuCl4 3 mM, leading to the production of spherical and pseudo-spherical nanoparticles. The biosynthesized AuNPs possessed excellent catalytic activities for the reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitroaniline and m-nitroaniline in the presence of NaBH4, and the catalytic rate constants were calculated to be 6.3×10-3 s-1, 5.5×10-3 s-1, 10.6×10-3 s-1, 8.4×10-3 s-1 and 13.8×10-3 s-1, respectively. The AuNPs were also able to catalyze the decolorization of various azo dyes (e.g. Cationic Red X-GRL, Acid Orange II and Acid scarlet GR) using NaBH4 as the reductant, and the decolorization rates reached 91.0-96.4% within 7 min. The present study should provide a potential candidate for green synthesis of AuNPs, which could serve as efficient catalysts for aromatic pollutants degradation.
Chesapeake Bay Low Freshwater Inflow Study. Phase II. MAP FOLIO. Biota Assessment.
1982-05-01
conditions. These were: 1) Base Average -- average freshwater inflow conditions. by increased water consumption projected for the year 2020. 3) Base Drought...RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS. 1963- A TAI m - ii J May 1982 Chesapeake Bay Low Freshwater Inflow Study Phase II Biota Assessment Map...A PERIOD ZOVERED change was found to CIESAPEAKE BAY LOW FRESHWATER INFLOW STUDY FINAL BIOTA ASSESSMENT PHASE II: FINAL REPORT MAP FOLIO s PERFORMING
10-Year Study Links Faster Progression of Atherosclerosis to Air Pollution
The Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air) was the first U.S. research study to measure directly how long-term exposure to air pollution contributes to the development of heart disease.
Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima
NASA Technical Reports Server (NTRS)
Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.
2005-01-01
We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.
40 CFR Table 10 to Part 455 - List of Appropriate Pollution Control Technologies
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollution Control Technologies 1 PAI name 2 PAI code 3 Shaughnessy code 4 Structural group 5 Treatment... 42002 EDB Activated Carbon. Vancide TH 004 82901 s-Triazine Activated Carbon. 1,3-Dichloropropene 005... Activated Carbon. Dichlorvos 012 84001 Phosphate Hydrolysis. Landrin-2 013 Carbamate Activated Carbon. 2,3,6...
40 CFR Table 10 to Part 455 - List of Appropriate Pollution Control Technologies
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollution Control Technologies 1 PAI name 2 PAI code 3 Shaughnessy code 4 Structural group 5 Treatment... 42002 EDB Activated Carbon. Vancide TH 004 82901 s-Triazine Activated Carbon. 1,3-Dichloropropene 005... Activated Carbon. Dichlorvos 012 84001 Phosphate Hydrolysis. Landrin-2 013 Carbamate Activated Carbon. 2,3,6...
40 CFR Table 10 to Part 455 - List of Appropriate Pollution Control Technologies
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollution Control Technologies 1 PAI name 2 PAI code 3 Shaughnessy code 4 Structural group 5 Treatment... 42002 EDB Activated Carbon. Vancide TH 004 82901 s-Triazine Activated Carbon. 1,3-Dichloropropene 005... Activated Carbon. Dichlorvos 012 84001 Phosphate Hydrolysis. Landrin-2 013 Carbamate Activated Carbon. 2,3,6...
Pollution Abatement Management System--Concept Definition.
1978-05-01
and (3) identify priority ranking of environmental pollution problems within the Department of the Army. This report formalizes the overall concept development of PAMS and the system’s developmental strategy.
NASA Astrophysics Data System (ADS)
Yuval; Rimon, Y.; Graber, E. R.; Furman, A.
2013-07-01
A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanization often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data between points is thus an important tool for supplementing measured data. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range (up to a few orders of magnitude) of values in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. Local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. That inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the Coastal aquifer along the Israeli shoreline.
Yuval, Yuval; Rimon, Yaara; Graber, Ellen R; Furman, Alex
2014-08-01
A large fraction of the fresh water available for human use is stored in groundwater aquifers. Since human activities such as mining, agriculture, industry and urbanisation often result in incursion of various pollutants to groundwater, routine monitoring of water quality is an indispensable component of judicious aquifer management. Unfortunately, groundwater pollution monitoring is expensive and usually cannot cover an aquifer with the spatial resolution necessary for making adequate management decisions. Interpolation of monitoring data is thus an important tool for supplementing monitoring observations. However, interpolating routine groundwater pollution data poses a special problem due to the nature of the observations. The data from a producing aquifer usually includes many zero pollution concentration values from the clean parts of the aquifer but may span a wide range of values (up to a few orders of magnitude) in the polluted areas. This manuscript presents a methodology that can cope with such datasets and use them to produce maps that present the pollution plumes but also delineates the clean areas that are fit for production. A method for assessing the quality of mapping in a way which is suitable to the data's dynamic range of values is also presented. A local variant of inverse distance weighting is employed to interpolate the data. Inclusion zones around the interpolation points ensure that only relevant observations contribute to each interpolated concentration. Using inclusion zones improves the accuracy of the mapping but results in interpolation grid points which are not assigned a value. The inherent trade-off between the interpolation accuracy and coverage is demonstrated using both circular and elliptical inclusion zones. A leave-one-out cross testing is used to assess and compare the performance of the interpolations. The methodology is demonstrated using groundwater pollution monitoring data from the coastal aquifer along the Israeli shoreline. The implications for aquifer management are discussed.
Air Sensor Kit Performance Testing and Pollutant Mapping Supports Community Air Monitoring Project
EPA is collaborating on a research project with the South Coast Air Quality Management District in Diamond Bar, Calif. to gain an enhanced understanding of fine particulate matter (PM2.5) and ozone concentrations across the study area.
Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René
2012-03-01
Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.
Kashyap, Rachit; Verma, K S; Uniyal, Sanjay Kr; Bhardwaj, S K
2018-02-12
The study focused on analyzing concentrations of metal(loid)s, their geospatial distribution in groundwater around an industrial hub of northern India. Human health risk posed due to the intake of contaminated groundwater was also evaluated. For this, 240 samples were assayed using inductively coupled plasma emission spectrophotometer. For risk assessment, the methodology proposed by US Environmental Protection Agency was adopted. Geometric mean of Al, As, Mo, Cd, Co, Cr, Fe, Mn, Ni, Pb, Se, and Zn was 193.13, 27.35, 4.22, 2.85, 92.81, 14.97, 271.78, 25.76, 54.75, 19.50, 16.94, and 1830.27 μg/l, respectively. Levels of Al (84%), As (63%), Ni (63%), Pb (49%), and Se (41%) exceeded the Bureau of Indian Standards (BIS). Principal component analysis is accounted for ~ 88% of the total variance and reflected pollution loads of Al, As, Mo, Cr, Fe, Se, and Pb in the groundwater. Based on it, four sources of metal(loid)s, namely geogenic (34.55%), mixed (industrial and agricultural, 26.76%), waste dumping (15.31%), and industrial (11.25%) were identified. Semi-variogram mapping model demonstrated significant geospatial variations of the metal(loid)s. Hazard index (HI) suggested potential non-carcinogenic risks to the inhabitants due to As, Al, Ni, Se, and Pb, which were the largest contributors. Based on maximum concentrations of metal(loid)s, HI for child and adult was above unity. Arsenic was identified as the most hazardous pollutant that may have chronic carcinogenic health implications. At western side of study area, carcinogenic health risks exceeded critical threshold of 1 × 10 -4 , indicating that As posed health risks to residents by intake of groundwater.
Association between long-term exposure to ambient air pollution and diabetes mortality in the US.
Lim, Chris C; Hayes, Richard B; Ahn, Jiyoung; Shao, Yongzhao; Silverman, Debra T; Jones, Rena R; Garcia, Cynthia; Thurston, George D
2018-05-17
Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM 2.5 , NO 2 , and O 3 . Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. Diabetes mortality was significantly associated with increasing levels of both PM 2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m 3 ) and NO 2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. We found that long-term exposure to PM 2.5 and NO 2 , but not O 3 , is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Lu; Lang, Yichao; Christakos, George
2018-01-01
With rapid economic development, industrialization and urbanization, the ambient air PM2.5 has become a major pollutant linked to respiratory, heart and lung diseases. In China, PM2.5 pollution constitutes an extreme environmental and social problem of widespread public concern. In this work we estimate ground-level PM2.5 from satellite-derived aerosol optical depth (AOD), topography data, meteorological data, and pollutant emission using an integrative technique. In particular, Geographically Weighted Regression (GWR) analysis was combined with Bayesian Maximum Entropy (BME) theory to assess the spatiotemporal characteristics of PM2.5 exposure in a large region of China and generate informative PM2.5 space-time predictions (estimates). It was found that, due to its integrative character, the combined BME-GWR method offers certain improvements in the space-time prediction of PM2.5 concentrations over China compared to previous techniques. The combined BME-GWR technique generated realistic maps of space-time PM2.5 distribution, and its performance was superior to that of seven previous studies of satellite-derived PM2.5 concentrations in China in terms of prediction accuracy. The purely spatial GWR model can only be used at a fixed time, whereas the integrative BME-GWR approach accounts for cross space-time dependencies and can predict PM2.5 concentrations in the composite space-time domain. The 10-fold results of BME-GWR modeling (R2 = 0.883, RMSE = 11.39 μg /m3) demonstrated a high level of space-time PM2.5 prediction (estimation) accuracy over China, revealing a definite trend of severe PM2.5 levels from the northern coast toward inland China (Nov 2015-Feb 2016). Future work should focus on the addition of higher resolution AOD data, developing better satellite-based prediction models, and related air pollutants for space-time PM2.5 prediction purposes.
Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.
Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo
2007-03-21
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.
Satellite-aided evaluation of population exposure to air pollution
Todd, William J.; George, Anthony J.; Bryant, Nevin A.
1979-01-01
The Clean Air Act Amendments of 1977 set schedules for states to implement regional, spatial assessments of air quality impacts. Accordingly, the U.S. Environmental Protection Agency recently published guidelines for quantifying population exposure to adverse air quality impact by using air quality and population data by census tracts. Our research complements the EPA guidelines in that it demonstrates the ability to determine population exposure to air pollution through computer processing that utilizes Landsat satellite-derived land use information. Three variables-a 1985 estimate of total suspended particulates for 2-km2 grid cells, Landsat-derived residential land cover data for 0.45-ha cells, and population totals for census tracts-were spatially registered and cross-tabulated to produce tabular and map products illustrating relative air quality exposure for residential population by 2-km2 cells. It would cost $20,000 to replicate our analysis for an area similar in size to the 4000-km2 Portland area. Once completed, the spatially fine, computer-compatible air quality and population data are amenable to the timely and efficient generation of population-at-risk tabular and map information on a continuous or periodic basis.
Quasi-Experimental Approaches to Evaluating the Impact of Air Pollution on Children’s Health
Heep, Samantha; Neidell, Matthew
2016-01-01
Many studies have shown a correlation between air pollution and poor children’s health. This paper focuses on recent studies that employ quasi-experimental designs in an effort to minimize the effect of confounding factors. These studies are complementary to studies using other designs and confirm that reducing air pollution reduces infant mortality, low birth weight, prematurity, congenital anomalies, asthma hospitalizations, and school absences. These results suggest that lowering the thresholds for acceptable air pollution levels may be prudent, as research has consistently found that some pollutants have negative impacts even at levels below current regulatory thresholds. Policy makers should also consider providing more information to pregnant women and families about when and where the risk of pollution exposure is highest so that they can employ avoidance behavior. PMID:22147868
NASA Astrophysics Data System (ADS)
Cusworth, D.; Mickley, L. J.; Payer Sulprizio, M.; Marlier, M. E.; DeFries, R. S.; Liu, T.; Guttikunda, S. K.
2017-12-01
In recent decades, farmers in northwest India have switched to mechanized combine harvesting to boost efficiency. This harvesting technique leaves abundant crop residue on the fields, which farmers burn to ready their fields for subsequent planting. A key question is to what extent the intense smoke emitted by these fires contributes to the already severe pollution in Delhi and across the heavily populated Indus-Ganges Plain, downwind of the fires. Using a combination of observed and modeled variables, including surface measurements of PM2.5, we quantify the magnitude of the influence of agricultural fire emissions on surface air pollution in Delhi. We first derive the signal of regional PM2.5 enhancements from the Delhi network of surface air monitors during each winter burning season (Oct. 17 - Nov. 30) for 2012-2016. We next use the Stochastic Time-Inverted Lagrangian Transport model (STILT) to generate particle back-trajectories from Delhi, which allows us to map the sensitivity of Delhi pollution to agricultural fires in each grid cell upwind. By combining these sensitivity maps with emissions from a suite of fire inventories, we can reproduce 15-36% of the weekly variability in observed PM2.5. Our method attributes 7-84% of maximum observed PM2.5 enhancement in Delhi to fires upwind, depending on the year and emission inventory. The large range of these attribution estimates points to the uncertainties in fire emission parameterizations, especially in regions where thick smoke may mask the hotspots of fire radiative power. Although our model can generally reproduce the largest PM2.5 enhancements in Delhi air quality for 1-3 consecutive days each fire season, it fails to capture many smaller daily enhancements, which we attribute to the challenge of detecting small fires in the satellite retrieval. By quantifying the magnitude of the influence of agricultural fire emissions on Delhi air pollution, our work helps clarify the pollution exposure and potential health risk of this harvesting practice.
Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo
2011-01-01
In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030
NASA Astrophysics Data System (ADS)
Yang, Y. R.; Liu, X. G.; Qu, Y.; An, J. L.; Jiang, R.; Zhang, Y. H.; Sun, Y. L.; Wu, Z. J.; Zhang, F.; Xu, W. Q.; Ma, Q. X.
2015-07-01
Four extreme haze episodes occurred in October 2014 in the North China Plain (NCP). To clarify the formation mechanism of hazes in autumn, strengthened observations were conducted in Beijing from 5 October to 2 November. The meteorological parameters, satellite data, chemical compositions and optical properties of aerosols were obtained. The hazes originated from the NCP, developing in the southwest and northeast directions, with the highest concentration of PM2.5 of 469 μg m-3 in Beijing. The NCP was dominated by a weak high pressure system during the haze episode, which resulted in low surface wind speed and relatively stagnant weather. Moreover, the wind slowed down around Beijing city. The secondary aerosols NO3- was always higher than that of SO42-, which indicated the motor vehicles played a more important part in the hazes in October 2014, even though the oxidation rate from SO2 to SO42- was faster than that of NOx to NO3-. Sudden increases of the concentrations of organic matter, Cl- and BC (black carbon) before each haze episode implied that regional transport of pollutants by biomass burning was important for haze formation during autumn. A satellite map of fire points and the backward trajectories of the air masses also indicated this pollution source. The distinct decrease in the PBL (planetary boundary layer) height during four haze episodes restrained the vertical dispersion of the air pollutants. Water vapor also played a vital role in the formation of hazes by accelerating the chemical transformation of secondary pollutants, leading to hygroscopic growth of aerosols and altering the thermal balance of the atmosphere.
NASA Astrophysics Data System (ADS)
Yang, Y. R.; Liu, X. G.; Qu, Y.; An, J. L.; Jiang, R.; Zhang, Y. H.; Sun, Y. L.; Wu, Z. J.; Zhang, F.; Xu, W. Q.; Ma, X. Q.
2015-04-01
Four extreme haze episodes occurred in October 2014 in the North China Plain (NCP). To clarify the formation mechanism of hazes in the autumn, strengthened observations were conducted in Beijing from 5 October to 2 November. The meteorological parameters, satellite data, chemical compositions and optical properties of aerosols were obtained. The hazes originated from NCP, developing in the southwest and northeast directions, with the highest concentration of PM2.5 of 469 μg m-3 in Beijing. NCP was dominated by a weak high pressure system during the haze episode, which resulted in low surface wind speed and relatively stagnant weather. Moreover, the wind slowed down around Beijing city. The secondary aerosols NO3- was always higher than that of SO42-, which indicated the motor vehicles played a more important part in the hazes in October 2014, even though the oxidation rate from SO2 to SO42- was faster than that of NOx to NO3-. Sudden increases of the concentrations of organic matter, Cl- and BC (Black carbon) before each haze episode implied that regional transport of pollutants by biomass burning was important for haze formation during the autumn. A satellite map of fire points and the backward trajectories of the air masses also indicated this pollution source. The distinct decrease in the PBL (planetary boundary layer) height during four haze episodes restrained the vertical dispersion of the air pollutants. Water vapor also played a vital role in the formation of hazes by accelerating the chemical transformation of secondary pollutants, leading to hygroscopic growth of aerosols and altering the thermal balance of the atmosphere.
Park, Hyun-Eui; Shin, Min-Kyoung; Park, Hong-Tae; Jung, Myunghwan; Cho, Yong Il; Yoo, Han Sang
2016-06-01
This study was conducted to analyze the gene expression of prognostic potential biomarker candidates using the whole blood of cattle naturally infected with ITALIC! Mycobacterium aviumsubsp. ITALIC! paratuberculosis(MAP). We conducted real-time PCR to evaluate 23 potential biomarker candidates. Experimental animals were divided into four groups based on fecal MAP PCR and serum ELISA. Seven ( ITALIC! KLRB1, ITALIC! HGF, ITALIC! MPO, ITALIC! LTF, ITALIC! SERPINE1, ITALIC! S100A8and ITALIC! S100A9) genes were up-regulated in fecal MAP-positive cattle and three ( ITALIC! KLRB1, ITALIC! MPOand ITALIC! S100A9) were up-regulated in MAP-seropositive cattle relative to uninfected cattle. In subclinically infected animals, 17 genes ( ITALIC! TFRC, ITALIC! S100A8, ITALIC! S100A9, ITALIC! MPO, ITALIC! GBP6, ITALIC! LTF, ITALIC! KLRB1, ITALIC! SERPINE1, ITALIC! PIGR, ITALIC! IL-10, ITALIC! CXCR3, ITALIC! CD14, ITALIC! MMP9, ITALIC! ELANE, ITALIC! CHI3L1, ITALIC! HPand ITALIC! HGF) were up-regulated compared with the control group. Moreover, six genes ( ITALIC! CXCR3, ITALIC! HP, ITALIC! HGF, ITALIC! LTF, ITALIC! TFRCand ITALIC! GBP6) showed significant differences between experimental groups. Taken together, our data suggest that six genes ( ITALIC! LTF, ITALIC! HGF, ITALIC! HP, ITALIC! CXCR3, ITALIC! GBP6and ITALIC! TFRC) played essential roles in the immune response to MAP during the subclinical stage and therefore might be useful as prognostic biomarkers. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Oliver, David M; Bartie, Phil J; Louise Heathwaite, A; Reaney, Sim M; Parnell, Jared A Q; Quilliam, Richard S
2018-03-01
Effective management of diffuse microbial water pollution from agriculture requires a fundamental understanding of how spatial patterns of microbial pollutants, e.g. E. coli, vary over time at the landscape scale. The aim of this study was to apply the Visualising Pathogen &Environmental Risk (ViPER) model, developed to predict E. coli burden on agricultural land, in a spatially distributed manner to two contrasting catchments in order to map and understand changes in E. coli burden contributed to land from grazing livestock. The model was applied to the River Ayr and Lunan Water catchments, with significant correlations observed between area of improved grassland and the maximum total E. coli per 1km 2 grid cell (Ayr: r=0.57; p<0.001, Lunan: r=0.32; p<0.001). There was a significant difference in the predicted maximum E. coli burden between seasons in both catchments, with summer and autumn predicted to accrue higher E. coli contributions relative to spring and winter (P<0.001), driven largely by livestock presence. The ViPER model thus describes, at the landscape scale, spatial nuances in the vulnerability of E. coli loading to land as driven by stocking density and livestock grazing regimes. Resulting risk maps therefore provide the underpinning evidence to inform spatially-targeted decision-making with respect to managing sources of E. coli in agricultural environments. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Chen, Ho-Wen; Tsai, Ching-Tsan; She, Chin-Wen; Lin, Yo-Chen; Chiang, Chow-Feng
2010-11-01
Air pollution data around a monitored site are normally difficult to analyze due to highly inter-related meteorological and topographical factors on top of many complicated atmospheric chemical interactions occurred in local and regional wind fields. The challenge prompts this study to develop a comprehensive data-mining algorithm of cluster analysis followed by meteorological and interspecies correlations to mitigate the inherent data complexity and dissimilarity. This study investigated the background features of acidic and basic air pollutants around a high-tech industrial park in Taiwan. Monthly samplings were taken at 10 sites around the park in a year. The temporal distribution plots show a baseline with two characteristic groups of high and low peaks. Hierarchical cluster analysis confirms that high peaks were primarily associated with low speed south wind in summer for all the chemical species, except for F(-), Cl(-), NH(3) and HF. Crosschecking with the topographical map identifies several major external sources in south and southwest. Further meteorological correlation suggests that HCl is highly positively associated with humidity, while Cl(-) is highly negatively associated with temperature, both for most stations. Interestingly, HNO(3) is highly negatively associated with wind speed for most stations and the hotspot was found in summer and around the foothill of Da-Tu Mountain in the northwest, a stagnant pocket on the study site. However, F(-) is highly positively associated with wind speed at downwind stations to the prevailing north wind in winter, indicating an internal source from the north. The presence of NH(4)(+) stimulates the formation of NO(3)(-), SO(4)(-2) (R=0.7), and HNO(3), H(2)SO(4), NH(3) (R=0.3-0.4). As H(2)SO(4) could be elevated to a level as high as 40% of the regulated standard, species interactions may be a dominate mechanism responsible for the substantial increase in summer from external sources. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Thomson, F. J.; Porcello, L. J.; Sattinger, I. J.; Malila, W. A.; Wezernak, C. T.; Horvath, R.; Vincent, R. K. (Principal Investigator); Bryan, M. L.
1972-01-01
There are no author-identified significant results in this report. Remotely sensed multispectral scanner and return beam vidicon imagery from ERTS-1 is being used for: (1) water depth measurements in the Virgin Islands and Upper Lake Michigan areas; (2) mapping of the Yellowstone National Park; (3) assessment of atmospheric effects in Colorado; (4) lake ice surveillance in Canada and Great Lakes areas; (5) recreational land use in Southeast Michigan; (6) International Field Year on the Great Lakes investigations of Lake Ontario; (7) image enhancement of multispectral scanner data using existing techniques; (8) water quality monitoring of the New York Bight, Tampa Bay, Lake Michigan, Santa Barbara Channel, and Lake Erie; (9) oil pollution detection in the Chesapeake Bay, Gulf of Mexico southwest of New Orleans, and Santa Barbara Channel; and (10) mapping iron compounds in the Wind River Mountains.
McTee, Michael R; Mummey, Daniel L; Ramsey, Philip W; Hinman, Nancy W
2016-01-01
Lead pollution at shooting ranges overshadows the potential for contamination issues from trap and skeet targets. We studied the environmental influence of targets sold as biodegradable by determining the components of the targets and sampling soils at a former sporting clay range. Targets comprised approximately 53% CaCO3, 41% S(0), and 6% modifiers, and on a molar basis, there was 2.3 times more S(0) than CaCO3. We observed a positive correlation between target cover and SO4(2-) (ρ=0.82, P<0.001), which indicated the oxidation of S(0) to H2SO4. Sulfate was negatively correlated with pH (ρ=-0.93, P<0.001) because insufficient CaCO3 existed in the targets to neutralize all the acid produced from S(0) oxidation. Plant cover decreased with decreasing soil pH (ρ=0.62, P=0.006). For sites that had pH values below 3, 24tons of lime per 1000tons of soil would be required to raise soil pH to 6.5. Lime-facilitated pH increases would be transitory because S(0) would continue to oxidize to H2SO4 until the S(0) is depleted. This study demonstrates that biodegradable trap and skeet targets can acidify soil, which has implications for increasing the mobility of Pb from shotgun pellets. Copyright © 2015 Elsevier B.V. All rights reserved.
Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study
Chan, Stephanie H.; Van Hee, Victor C.; Bergen, Silas; Szpiro, Adam A.; DeRoo, Lisa A.; London, Stephanie J.; Marshall, Julian D.; Sandler, Dale P.
2015-01-01
Background Exposure to air pollution has been consistently associated with cardiovascular morbidity and mortality, but mechanisms remain uncertain. Associations with blood pressure (BP) may help to explain the cardiovascular effects of air pollution. Objective We examined the cross-sectional relationship between long-term (annual average) residential air pollution exposure and BP in the National Institute of Environmental Health Sciences’ Sister Study, a large U.S. cohort study investigating risk factors for breast cancer and other outcomes. Methods This analysis included 43,629 women 35–76 years of age, enrolled 2003–2009, who had a sister with breast cancer. Geographic information systems contributed to satellite-based nitrogen dioxide (NO2) and fine particulate matter (≤ 2.5 μm; PM2.5) predictions at participant residences at study entry. Generalized additive models were used to examine the relationship between pollutants and measured BP at study entry, adjusting for cardiovascular disease risk factors and including thin plate splines for potential spatial confounding. Results A 10-μg/m3 increase in PM2.5 was associated with 1.4-mmHg higher systolic BP (95% CI: 0.6, 2.3; p < 0.001), 1.0-mmHg higher pulse pressure (95% CI: 0.4, 1.7; p = 0.001), 0.8-mmHg higher mean arterial pressure (95% CI: 0.2, 1.4; p = 0.01), and no significant association with diastolic BP. A 10-ppb increase in NO2 was associated with a 0.4-mmHg (95% CI: 0.2, 0.6; p < 0.001) higher pulse pressure. Conclusions Long-term PM2.5 and NO2 exposures were associated with higher blood pressure. On a population scale, such air pollution–related increases in blood pressure could, in part, account for the increases in cardiovascular disease morbidity and mortality seen in prior studies. Citation Chan SH, Van Hee VC, Bergen S, Szpiro AA, DeRoo LA, London SJ, Marshall JD, Kaufman JD, Sandler DP. 2015. Long-term air pollution exposure and blood pressure in the Sister Study. Environ Health Perspect 123:951–958; http://dx.doi.org/10.1289/ehp.1408125 PMID:25748169
McDonald, Robert I.; Weber, Katherine F.; Padowski, Julie; Boucher, Tim; Shemie, Daniel
2016-01-01
Urban water systems are impacted by land use within their source watersheds, as it affects raw water quality and thus the costs of water treatment. However, global estimates of the effect of land cover change on urban water-treatment costs have been hampered by a lack of global information on urban source watersheds. Here, we use a unique map of the urban source watersheds for 309 large cities (population > 750,000), combined with long-term data on anthropogenic land-use change in their source watersheds and data on water-treatment costs. We show that anthropogenic activity is highly correlated with sediment and nutrient pollution levels, which is in turn highly correlated with treatment costs. Over our study period (1900–2005), median population density has increased by a factor of 5.4 in urban source watersheds, whereas ranching and cropland use have increased by a factor of 3.4 and 2.0, respectively. Nearly all (90%) of urban source watersheds have had some level of watershed degradation, with the average pollutant yield of urban source watersheds increasing by 40% for sediment, 47% for phosphorus, and 119% for nitrogen. We estimate the degradation of watersheds over our study period has impacted treatment costs for 29% of cities globally, with operation and maintenance costs for impacted cities increasing on average by 53 ± 5% and replacement capital costs increasing by 44 ± 14%. We discuss why this widespread degradation might be occurring, and strategies cities have used to slow natural land cover loss. PMID:27457941
GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa
Yang, X.; Jin, W.
2010-01-01
Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.
Understanding and improving global crop response to ozone pollution
USDA-ARS?s Scientific Manuscript database
Concentrations of ground-level ozone ([O3]) over much of the Earth’s land surface have more than doubled since pre-industrial times. The air pollutant is highly variable over time and space, which makes it difficult to assess the average agronomic and economic impacts of the pollutant as well as to ...
40 CFR 35.501 - Environmental programs covered by the subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Pollution prevention grants for Tribes (section 6605). (7) Safe Drinking Water Act. (i) Public water system... Program Act of 1992, 42 U.S.C. 4368b. (3) Clean Air Act. Air pollution control (section 105). (4) Clean Water Act. (i) Water pollution control (section 106 and 518). (ii) Water quality cooperative agreements...
Geographical Information Systems (GIS) Mapping of Environmental Samples across College Campuses
ERIC Educational Resources Information Center
Purvis-Roberts, Kathleen L.; Moeur, Harriet P.; Zanella, Andrew
2007-01-01
In this laboratory experiment, students take environmental samples at various locations around the college campuses, take geospatial coordinates with a global position systems (GPS) unit, and map their results on a geo-referenced campus map with geographical information systems (GIS) software. Nitrogen dioxide air pollution sampling is used as an…
Application of Hymap image in the environmental survey in Shenzhen, China
NASA Astrophysics Data System (ADS)
Pan, Wei; Yang, Xiaomao; Chen, Xuejiao; Feng, Ping
2017-10-01
Hyperspectral HyMap image with synchronous in-situ spectral data were used to survey the environmental condition in Shenzhen of South China. HyMap image was measured with 3.5m spatial resolution and 15nm spectral resolution from 0.44μm-2.5μm and corrected with Modtran5 model and synchronous solar illuminance and atmospheric visibility to the ground. The spectra of rocks, soils, water and vegetation were obtained by ASD spectrometer in reflectance. Both the fresh granite and eroded sandy soil was found with absorption at 2200nm+/-in-situ spectra, but the weathered granite and sandy soil have another absorption at 880nm 940 nm. Polluted water with high ammonia nitrogen and phosphorous and BOD5 get the strongest reflectance at 550 570nm, while polluted water of high CODcr and heavy metal ions content get the peak reflectance at 450 490nm. The in-situ spectra was resampled in wavelength range and spectral resolution to that of Hymap sensor for image classification with SAM algorithm, the unpaved granite among cement the paved mine pits , the newly excavated land surface and the eroded soil was mapped out with the accuracy over 95%. We also discriminate the artificial forest from the natural with the spectral endmember extracted from the image.
Whitworth, Kristina W.; Symanski, Elaine; Coker, Ann L.
2008-01-01
Background Cancer is the second leading cause of death among U.S. children with few known risk factors. There is increasing interest in the role of air pollutants, including benzene and 1,3-butadiene, in the etiology of childhood cancers. Objective Our goal was to assess whether census tracts with the highest benzene or 1,3-butadiene ambient air levels have increased childhood lymphohematopoietic cancer incidence. Methods Our ecologic analysis included 977 cases of childhood lymphohematopoietic cancer diagnosed from 1995–2004. We obtained the U.S. Environmental Protection Agency’s 1999 modeled estimates of benzene and 1,3-butadiene for 886 census tracts surrounding Houston, Texas. We ran Poisson regression models by pollutant to explore the associations between pollutant levels and census-tract cancer rates. We adjusted models for age, sex, race/ethnicity, and community-level socioeconomic status (cSES). Results Census tracts with the highest benzene levels had elevated rates of all leukemia [rate ratio (RR) = 1.37; 95% confidence interval (CI), 1.05, 1.78]. This association was higher for acute myeloid leukemia (AML) (RR = 2.02; 95% CI, 1.03–3.96) than for acute lymphocytic leukemia (ALL) (RR = 1.24; 95% CI, 0.92–1.66). Among census tracts with the highest 1,3-butadiene levels, we observed RRs of 1.40 (95% CI, 1.07–1.81), 1.68 (95% CI, 0.84–3.35), and 1.32 (95% CI, 0.98–1.77) for all leukemia, AML, and ALL, respectively. We detected no associations between benzene or 1,3-butadiene levels and lymphoma incidence. Results that examined joint exposure to benzene and 1,3-butadiene were similar to those that examined each pollutant separately. Conclusions Our ecologic analysis suggests an association between childhood leukemia and hazardous air pollution; further research using more sophisticated methodology is warranted. PMID:19057714
Multispectral Photography: the obscure becomes the obvious
ERIC Educational Resources Information Center
Polgrean, John
1974-01-01
Commonly used in map making, real estate zoning, and highway route location, aerial photography planes equipped with multispectral cameras may, among many environmental applications, now be used to locate mineral deposits, define marshland boundaries, study water pollution, and detect diseases in crops and forests. (KM)
Peri-Urbanism in Globalizing India: A Study of Pollution, Health and Community Awareness.
Waldman, Linda; Bisht, Ramila; Saharia, Rajashree; Kapoor, Abhinav; Rizvi, Bushra; Hamid, Yasir; Arora, Meghana; Chopra, Ima; Sawansi, Kumud T; Priya, Ritu; Marshall, Fiona
2017-08-30
This paper examines the intersection between environmental pollution and people's acknowledgements of, and responses to, health issues in Karhera, a former agricultural village situated between the rapidly expanding cities of New Delhi (India's capital) and Ghaziabad (an industrial district in Uttar Pradesh). A relational place-based view is integrated with an interpretive approach, highlighting the significance of place, people's emic experiences, and the creation of meaning through social interactions. Research included surveying 1788 households, in-depth interviews, participatory mapping exercises, and a review of media articles on environment, pollution, and health. Karhera experiences both domestic pollution, through the use of domestic waste water, or gandapani , for vegetable irrigation, and industrial pollution through factories' emissions into both the air and water. The paper shows that there is no uniform articulation of any environment/health threats associated with gandapani . Some people take preventative actions to avoid exposure while others do not acknowledge health implications. By contrast, industrial pollution is widely noted and frequently commented upon, but little collective action addresses this. The paper explores how the characteristics of Karhera, its heterogeneous population, diverse forms of environmental pollution, and broader governance processes, limit the potential for citizen action against pollution.
Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun
2015-01-01
The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587
Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun
2015-12-17
The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of "loading capacity" (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.
Dong, Guang-Hui; Zhang, Pengfei; Sun, Baijun; Zhang, Liwen; Chen, Xi; Ma, Nannan; Yu, Fei; Guo, Huimin; Huang, Hui; Lee, Yungling Leo; Tang, Naijun; Chen, Jie
2012-01-01
In China, both the levels and patterns of outdoor air pollution have altered dramatically with the rapid economic development and urbanization over the past two decades. However, few studies have investigated the association of outdoor air pollution with respiratory mortality, especially in the high pollution range. We conducted a retrospective cohort study of 9,941 residents aged ≥35 years old in Shenyang, China, to examine the association between outdoor air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10)), sulfur dioxide (SO(2)) and nitrogen dioxide (NO(2))] and mortality using 12 years of data. We applied extended Cox proportional hazards modeling with time-dependent covariates to respiratory mortality. Analyses were also stratified by age, sex, educational level, smoking status, personal income, occupational exposure and body mass index (BMI) to examine the association of air pollution with mortality. We found significant associations between PM(10) and NO(2) levels and respiratory disease mortality. Our analysis found a relative risk of 1.67 [95% confidence interval (CI) 1.60-1.74] and 2.97 (95% CI 2.69-3.27) for respiratory mortality per 10 µg/m(3) increase in PM(10) and NO(2), respectively. The effects of air pollution were more apparent in women than in men. Age, sex, educational level, smoking status, personal income, occupational exposure, BMI and exercise frequency influenced the relationship between outdoor PM(10) and NO(2) and mortality. For SO(2), only smoking, little regular exercise and BMI above 18.5 influenced the relationship with mortality. These data contribute to the scientific literature on the long-term effects of air pollution for the high-exposure settings typical in developing countries. Copyright © 2011 S. Karger AG, Basel.
LAN MAP: An Innovative Airborne Light at Night Mapping Project
NASA Astrophysics Data System (ADS)
Craine, Eric R.; Craine, B. L.; Craine, E. M.; Craine, P. R.
2013-01-01
Widespread installation of inefficient and misdirected artificial light at night (LAN) has led to increasing concerns about light pollution and its impact, not only on astronomical facilities but larger communities as well. Light pollution impacts scientific research, environmental ecosystems, human health, and quality of life. In recent years, the public policy response to light pollution has included formulation of government codes to regulate lighting design and installation. Various environmental groups now include light pollution among their rallying themes to protest both specific and general developments. The latter efforts are often conducted in the absence of any quantitative data and are frequently charged by emotion rather than reason. To bring some scientific objectivity, and quantitative data, to these discussions, we have developed a suite of tools for simultaneous photometric measurements and temporal monitoring of both local communities and the sky overhead. We have also developed novel protocols for the use of these tools, including a triad of airborne, ground mobile, and ground static photometric surveys. We present a summary of these tools and protocols, with special emphasis on the airborne systems, and discuss baseline and follow-up measurements of LAN environments in the vicinity of numerous observatories in Arizona, the home of the initial LAN MAP surveys.
NASA Astrophysics Data System (ADS)
Shakak, N. B. I.
2018-04-01
Geographical information system (GIS) and remote sensing technique is a tool which is used for acquiring data from space, storing, analyzing and displaying spatial data, also can use for investigating source of environmental pollution which is affect health. Sudan landsat mosaic image which acquired in 2013 was used in this study to develop land use and land cover maps for tow selected study area, Khartoum urban area, and Bara locality in North kordofan state western Sudan. The main objective to assess the source of Nitrate pollution in shallow aquifer. ERDAS software was used to create land cover-land use maps for the study areas. For Khartoum town we used land sat mosaic image which acquire in 2013, and used supervised classification which more closely controlled than unsupervised. In this process, we select pixel that represent patterns you recognized or can identify with help from knowledge of the data, the classes desired, and the algorithm to be used is required. In this paper we integrated the (GIS&RS), and stable isotopes methods for fingerprinting Nitrate sources in shallow boreholes. The global positioning system (GPS), used in the field to identify the shallow boreholes location in a three dimensional coordinate (Latitude, longitude, and altitude), Water samples were collected from 19 shallow boreholes in the study areas according to the standard sampling method send to laboratory to measure stable nitrogen (δ15Nnitrate), and Nitrate-oxygen (δ18Onitrate) isotopes. Analysis were conducted by using isotope ratio mass spectrometry (IRMS). We can conclude that, special distribution and integration of GIs & RS help to identify the source of nitrate pollution.
POLLUTANTS IN THE HOME ENVIRONMENT: A BRIEF HISTORY AND OVERVIEW
The major portion of our exposure to environmental pollutants occurs within the home. Although various studies dating back as far back as the mid-1960s suggested this, it was not fully appreciated until the late 1980s or early 1990s. Many studies have assessed indoor-outdoor ...
Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.
Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Šajn, Robert; Ostrovnaya, Tatyana M
2015-10-01
Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.
Effects Of Light Pollution On The Movements Of Leptonycteris Curasoae Yerbabuenae In The Tucson Area
NASA Astrophysics Data System (ADS)
Barringer, Daniel; Walker, C.
2011-01-01
We used data from the GLOBE at Night project and telemetry tracking data of lesser long-nosed bats obtained by the Arizona Game and Fish Department to study the effects of light pollution on the flight paths of the bats between their day roosts and night foraging areas around the city of Tucson, AZ. With the visual limiting magnitude data from GLOBE at Night, we ran a compositional analysis with respect to the bats’ flight paths to determine whether the bats were selecting for or against flight through regions of particular night sky brightness levels. We found that the bats selected for the regions in which the limiting sky magnitudes fell between the ranges of 2.8-3.0 to 3.6-3.8 and 4.4-4.6 to 5.0-5.2, suggesting that the lesser long-nosed bat can tolerate a fair degree of urbanization. We also compared this result to contour maps created with digital Sky Quality Meter data. In this presentation, we present the results from our compositional analysis with respect to the habits of the lesser long-nosed bat. For more information, please visit www.globeatnight.org.
Elumalai, Vetrimurugan; Brindha, K; Sithole, Bongani; Lakshmanan, Elango
2017-04-01
Mapping groundwater contaminants and identifying the sources are the initial steps in pollution control and mitigation. Due to the availability of different mapping methods and the large number of emerging pollutants, these methods need to be used together in decision making. The present study aims to map the contaminated areas in Richards Bay, South Africa and compare the results of ordinary kriging (OK) and inverse distance weighted (IDW) interpolation techniques. Statistical methods were also used for identifying contamination sources. Na-Cl groundwater type was dominant followed by Ca-Mg-Cl. Data analysis indicate that silicate weathering, ion exchange and fresh water-seawater mixing are the major geochemical processes controlling the presence of major ions in groundwater. Factor analysis also helped to confirm the results. Overlay analysis by OK and IDW gave different results. Areas where groundwater was unsuitable as a drinking source were 419 and 116 km 2 for OK and IDW, respectively. Such diverse results make decision making difficult, if only one method was to be used. Three highly contaminated zones within the study area were more accurately identified by OK. If large areas are identified as being contaminated such as by IDW in this study, the mitigation measures will be expensive. If these areas were underestimated, then even though management measures are taken, it will not be effective for a longer time. Use of multiple techniques like this study will help to avoid taking harsh decisions. Overall, the groundwater quality in this area was poor, and it is essential to identify alternate drinking water source or treat the groundwater before ingestion.
Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis.
Sesé, Lucile; Nunes, Hilario; Cottin, Vincent; Sanyal, Shreosi; Didier, Morgane; Carton, Zohra; Israel-Biet, Dominique; Crestani, Bruno; Cadranel, Jacques; Wallaert, Benoit; Tazi, Abdellatif; Maître, Bernard; Prévot, Grégoire; Marchand-Adam, Sylvain; Guillot-Dudoret, Stéphanie; Nardi, Annelyse; Dury, Sandra; Giraud, Violaine; Gondouin, Anne; Juvin, Karine; Borie, Raphael; Wislez, Marie; Valeyre, Dominique; Annesi-Maesano, Isabella
2018-02-01
Idiopathic pulmonary fibrosis (IPF) has an unpredictable course corresponding to various profiles: stability, physiological disease progression and rapid decline. A minority of patients experience acute exacerbations (AEs). A recent study suggested that ozone and nitrogen dioxide might contribute to the occurrence of AE. We hypothesised that outdoor air pollution might influence the natural history of IPF. Patients were selected from the French cohort COhorte FIbrose (COFI), a national multicentre longitudinal prospective cohort of IPF (n=192). Air pollutant levels were assigned to each patient from the air quality monitoring station closest to the patient's geocoded residence. Cox proportional hazards model was used to evaluate the impact of air pollution on AE, disease progression and death. Onset of AEs was significantly associated with an increased mean level of ozone in the six preceding weeks, with an HR of 1.47 (95% CI 1.13 to 1.92) per 10 µg/m 3 (p=0.005). Cumulative levels of exposure to particulate matter PM 10 and PM 2.5 were above WHO recommendations in 34% and 100% of patients, respectively. Mortality was significantly associated with increased levels of exposure to PM 10 (HR=2.01, 95% CI 1.07 to 3.77) per 10 µg/m 3 (p=0.03), and PM 2.5 (HR=7.93, 95% CI 2.93 to 21.33) per 10 µg/m 3 (p<0.001). This study suggests that air pollution has a negative impact on IPF outcomes, corroborating the role of ozone on AEs and establishing, for the first time, the potential role of long-term exposure to PM 10 and PM 2.5 on overall mortality. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany
Breitner, Susanne; Stölzel, Matthias; Cyrys, Josef; Pitz, Mike; Wölke, Gabriele; Kreyling, Wolfgang; Küchenhoff, Helmut; Heinrich, Joachim; Wichmann, H.-Erich; Peters, Annette
2009-01-01
Background Numerous studies have shown associations between ambient air pollution and daily mortality. Objectives Our goal was to investigate the association of ambient air pollution and daily mortality in Erfurt, Germany, over a 10.5-year period after the German unification, when air quality improved. Methods We obtained daily mortality counts and data on mass concentrations of particulate matter (PM) < 10 μm in aerodynamic diameter (PM10), gaseous pollutants, and meteorology in Erfurt between October 1991 and March 2002. We obtained ultrafine particle number concentrations (UFP) and mass concentrations of PM < 2.5 μm in aerodynamic diameter (PM2.5) from September 1995 to March 2002. We analyzed the data using semiparametric Poisson regression models adjusting for trend, seasonality, influenza epidemics, day of the week, and meteorology. We evaluated cumulative associations between air pollution and mortality using polynomial distributed lag (PDL) models and multiday moving averages of air pollutants. We evaluated changes in the associations over time in time-varying coefficient models. Results Air pollution concentrations decreased over the study period. Cumulative exposure to UFP was associated with increased mortality. An interquartile range (IQR) increase in the 15-day cumulative mean UFP of 7,649 cm−3 was associated with a relative risk (RR) of 1.060 [95% confidence interval (CI), 1.008–1.114] for PDL models and an RR/IQR of 1.055 (95% CI, 1.011–1.101) for moving averages. RRs decreased from the mid-1990s to the late 1990s. Conclusion Results indicate an elevated mortality risk from short-term exposure to UFP. They further suggest that RRs for short-term associations of air pollution decreased as pollution control measures were implemented in Eastern Germany. PMID:19337521
Gorai, Amit Kr.; Tchounwou, Paul B.; Tuluri, Francis
2016-01-01
Air pollution has been an on-going research focus due to its detrimental impact on human health. However, its specific effects on asthma prevalence in different age groups, genders and races are not well understood. Thus, the present study was designed to examine the association between selected air pollutants and asthma prevalence in different population groups during 2010 in the eastern part of Texas, USA.The pollutants considered were particulate matter (PM2.5 with an aerodynamic diameter less than 2.5 micrometers) and surface ozone. The population groups were categorized based on age, gender, and race. County-wise asthma hospital discharge data for different age, gender, and racial groups were obtained from Texas Asthma Control Program, Office of Surveillance, Evaluation and Research, Texas Department of State Health Services. The annual means of the air pollutants were obtained from the United States Environmental Protection Agency (U.S. EPA)’s air quality system data mart program. Pearson correlation analyzes were conducted to examine the relationship between the annual mean concentrations of pollutants and asthma discharge rates (ADR) for different age groups, genders, and races. The results reveal that there is no significant association or relationship between ADR and exposure of air pollutants (PM2.5, and O3). The study results showed a positive correlation between PM2.5 and ADR and a negative correlation between ADR and ozone in most of the cases. These correlations were not statistically significant, and can be better explained by considering the local weather conditions. The research findings facilitate identification of hotspots for controlling the most affected populations from further environmental exposure to air pollution, and for preventing or reducing the health impacts. PMID:27043587
Emission Standards, Public Transit, and Infant Health.
Ngo, Nicole S
Transit buses are an integral part of urban life. They reduce externalities generated from private vehicles and increase geographic mobility. However, unlike most private vehicles in the United States, they use diesel fuel and emit higher amounts of toxic pollutants. The U.S. Environmental Protection Agency set emission standards for transit buses starting in 1988 that have been continually updated, but their public health and economic impacts are unclear due to scarce emissions data. I construct a novel panel dataset for the New York City (NYC) Transit bus fleet between 1990 and 2009 and examine the impact of bus pollution on infant health by using bus vintage as a proxy for emissions. I exploit the variation in vintage as older buses are retired and replaced with newer, lower-emitting buses forced to adhere to stricter emission standards. I then assign maternal exposure to bus vintage at the census block level. Findings suggest that maternal exposure to the oldest, unregulated buses is associated with modest reductions in birth weight and gestational age relative to newer buses that abide by emissions policies. I then conduct a back-of-the-envelope cost-benefit calculation and find net economic benefits of $53.3 million resulting from improved emission standards for the 2009 birth cohort in NYC. Since the treatment in this study clearly maps to federal emissions policies, these results are the first to provide credible evidence that transit bus emission standards had a positive effect on infant health.
Pollution prevention and the use of low-VOC/HAP coatings at wood furniture manufacturing facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, A.M.; Spaight, J.L.; Jones, J.W.
1999-10-01
Midwest Research Institute, under a cooperative agreement with the Air Pollution Prevention and Control Division of the US Environmental Protection Agency`s (EPA`s) National Risk Management Research Laboratory, is conducting a study to identify wood furniture and cabinet manufacturing facilities that have converted to low-volatile organic compound/hazardous air pollutant (VOC/HAP) coatings and to develop case studies for those facilities. This paper discusses the progress of the project and pollution prevention options at wood furniture manufacturing facilities and the regulatory requirements (e.g., the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Wood Furniture Manufacturing Operations) that these facilities face.
Winds of change: reducing transboundary air pollutants.
Reuther, C G
2000-04-01
Sulfur dioxide, nitrogen oxides, volatile organic compounds, persistent organic pollutants, particulate matter, and heavy metals---air pollutants once thought to be problems that could be solved locally, where the effects occur---are all currently being discussed in international forums. A spate of meetings and agreements in recent months has shown many international governments to be more willing than ever to try to limit the amount of their air pollution that drifts into other countries. Prompting this policy shift are increasing emissions in some parts of the world, better monitoring, and an improved understanding of air pollution transport and the effects of air pollution. In most regions of the world, however, no international agreements on air pollution exist at all, while in others, many overlapping local, multilateral, and global agreements address the problem simultaneously. According to the World Health Organization, air pollution causes nearly 3 million deaths per year, and the U.S. Environmental Protection Agency estimates that ground-level ozone causes damage to U.S. crops totaling $1-2 billion each year.
Mendes, Maria Paula; Ribeiro, Luís
2010-02-01
The Water Framework Directive and its daughter directives recognize the urgent need to adopt specific measures against the contamination of water by individual pollutants or a group of pollutants that present a significant risk to the quality of water. Probability maps showing that the nitrate concentrations exceed a legal threshold value in any location of the aquifer are used to assess risk of groundwater quality degradation from intensive agricultural activity in aquifers. In this paper we use Disjunctive Kriging to map the probability that the Nitrates Directive limit (91/676/EEC) is exceeded for the Nitrate Vulnerable Zone of the River Tagus alluvium aquifer. The Tagus alluvial aquifer system belongs to one of the most productive hydrogeological unit of continental Portugal and it is used to irrigate crops. Several groundwater monitoring campaigns were carried out from 2004 to 2006 according to the summer crops cycle. The study reveals more areas on the west bank with higher probabilities of contamination by nitrates (nitrate concentration values above 50mg/L) than on the east bank. The analysis of synthetic temporal probability map shows the areas where there is an increase of nitrates concentration during the summers. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marín, Ana Isabel; Mudarra, Matías; Andreo, Bartolomé
2016-04-01
Delineation of protection zones for water supply and implementation of proper land-use practices in surrounding areas are crucial aspects for a sustainable use of valuable drinking water resources. This is even more important in karst aquifers, which are particularly sensitive to contamination, having a very low self-cleaning capacity due to their structure and hydrological behavior. Consequently, specific methodologies adapted to the particular characteristics of karst media are necessary. In this work, an approach for protection zoning of the pilot site of Auta karst spring (southern Spain) is proposed, based on the application of COP+K method for contamination vulnerability and validation of results by natural (organic) tracers of infiltration (NO3-, TOC, intrinsic fluorescence) and by a dye tracer test conducted on June, 2011 (injecting 500 mg uranine). The aquifer drained by Auta spring (8.5 km2) presents a complex geological structure, formed by Jurassic dolostones and limestones highly folded and fractured. Recharge takes place by the infiltration of rainfall through karst landforms and also by losses in an adjacent river when it flows over the carbonate outcrops (dye injection point). Drainage is mainly through several springs located at the southwest, including Auta spring and 5 overflow springs. The source vulnerability map obtained by applying COP+K method can be adopted as the baseline to delineate the protection zones, through the conversion from vulnerability classes to degrees of protection. Dye tracer test and natural tracers of infiltration corroborate that aquifer sectors influenced by the river can be extremely vulnerable to pollution, but also well-developed exokarst features. In fact, slight evidences of pollution have been detected during the study period, with relatively-high NO3- contents and high fluorescence linked to bacteriological activity in Auta spring water. The jointly use of natural and artificial tracers constitute a reliable and effective procedure for validating vulnerability mapping of karst systems and springs used for water supply. This procedure is meant to implement and to complement protection zone mapping, particularly in countries lacking guidelines for protecting the water resources of karst aquifers.
The role of micronutrients in the response to air pollutants ...
People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition, however limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination to produce more severe adverse health outcomes than any one factor alone. Deficiency in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body’s response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution. The purpose of the current paper is to (1) provide an understanding of the known nutrients of concern worldwide. Selected nutrients will be discussed in depth in the following sections based on information from the World Health Organization, World Food Programme data, and also demonstrate risk of
Reclamation of river dredged sediments polluted by PAHs by co-composting with green waste.
Mattei, P; Cincinelli, A; Martellini, T; Natalini, R; Pascale, E; Renella, G
2016-10-01
Polluted dredged sediments are classified as waste and cannot be re-used in civil and environmental engineering nor in agriculture, posing serious logistical, economic and environmental problems for their management. We tested co-composting of sediments (S) slightly polluted by PAHs with urban green waste (GW), as a sustainable technique to both degrade the organic pollutants and lend to sediments suitable properties to be reused as technosol. Four treatments were tested: sediments only (S), GW only (GW), 1:1 w:w S:GW (SGW1:1), and 3:1 w:w S:GW (SGW3:1) for a co-composting period of one year. The co-composting materials underwent to an initial short and moderate thermophilic phase. However, at the end of the co-composting process, SGW3:1 and SGW1:1 achieved suitable physical and chemical properties as plant substrate in terms of organic C, N and humic substances contents, electrical conductivity and bulk density. In the first six months of treatment, the PAHs concentration in SGW3:1 and SGW1:1 was reduced by 26% and 57%, respectively, reaching values below under 1mgg(-1), whereas such a reduction in S alone was observed only after nine months. We concluded that co-composting with green waste can be a suitable approach for reclamation of dredged sediments opening opportunities for their use as technosol or as plant growing substrate. Copyright © 2016 Elsevier B.V. All rights reserved.
[Surface water quality assessment in Miyun reservoir watershed, Beijing in the period 1980-2003].
Zhang, Wei-wei; Sun, Dan-feng; Li, Hong; Zhou, Lian-di
2010-07-01
Single factor water quality identification index was adopted to assess the surface water quality of Miyun reservoir watershed in Beijing using nearly 20 years monitoring data of 4 sites, also the surface water quality pollution sources were analyzed. The results indicated TP had the largest temporal variation at every monitoring site, coefficients of variation were 93.86%, 86.08%, 50.56% and 139.47%, respectively. The following element was Hg, the coefficients of its variation were 86.08%, 25.75%, 56.52% and 47.01%, respectively. While TN, permanganate index, BOD5, Pb and Cr were relatively stable with small coefficient of temporal variation. The permanganate index, BOD5, Pb and Cr did not exceed to the Chinese surface drinking water standard limit in the study period, while Hg had high pollution risk in several years, such as monitoring sites S1 and S3 in 1992, monitoring sites S4 in 1996. The major pollutants of Miyun reservoir watershed in Beijing were TN and TP, and TN had larger pollution risk compared with TP in most years. Comparing to that before the 1990s, the decade average fertilizer, pesticide and agricultural plastic mulch inputs after the 1990s had increased by 46%, 173% and 359%, respectively. The husbandry proportion in agriculture rose from 24.4% to 39.8%, and the average gross industrial production by 424%. The upstream of Miyun reservoir had larger pollution risk than its downstream. In addition, Chaohe watershed contributed more TN and TP to the reservoir than Baihe watershed.
Aita, Takuyo; Nishigaki, Koichi
2012-11-01
To visualize a bird's-eye view of an ensemble of mitochondrial genome sequences for various species, we recently developed a novel method of mapping a biological sequence ensemble into Three-Dimensional (3D) vector space. First, we represented a biological sequence of a species s by a word-composition vector x(s), where its length [absolute value]x(s)[absolute value] represents the sequence length, and its unit vector x(s)/[absolute value]x(s)[absolute value] represents the relative composition of the K-tuple words through the sequence and the size of the dimension, N=4(K), is the number of all possible words with the length of K. Second, we mapped the vector x(s) to the 3D position vector y(s), based on the two following simple principles: (1) [absolute value]y(s)[absolute value]=[absolute value]x(s)[absolute value] and (2) the angle between y(s) and y(t) maximally correlates with the angle between x(s) and x(t). The mitochondrial genome sequences for 311 species, including 177 Animalia, 85 Fungi and 49 Green plants, were mapped into 3D space by using K=7. The mapping was successful because the angles between vectors before and after the mapping highly correlated with each other (correlation coefficients were 0.92-0.97). Interestingly, the Animalia kingdom is distributed along a single arc belt (just like the Milky Way on a Celestial Globe), and the Fungi and Green plant kingdoms are distributed in a similar arc belt. These two arc belts intersect at their respective middle regions and form a cross structure just like a jet aircraft fuselage and its wings. This new mapping method will allow researchers to intuitively interpret the visual information presented in the maps in a highly effective manner. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong
2015-04-01
Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal pollution control and remediation, especially for agricultural soils in the PRD.
Briggs, D J; de Hoogh, C; Gulliver, J; Wills, J; Elliott, P; Kingham, S; Smallbone, K
2000-05-15
Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model--developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project--uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide high-resolution maps across a whole urban area without the need to interpolate between receptor points. It also offers substantially reduced costs and processing times compared to formal dispersion modelling. It is concluded that the model might thus be used as a means of mapping long-term air pollution concentrations either in support of local authority air-quality management strategies, or in epidemiological studies.
NASA Technical Reports Server (NTRS)
Bortner, M. H.; Dick, R.; Goldstein, H. W.; Grenda, R. N.; Levy, G. M.
1973-01-01
The breadboard model of the correlation interferometer for the Carbon Monoxide Pollution Experiment has been designed, fabricated, and tested. Laboratory, long-path, and atmospheric tests which were performed show the technique to be a feasible method for obtaining a global carbon monoxide map and a vertical carbon monoxide profile and similar information is readily obtainable for methane as well. In addition, the technique is readily applicable to other trace gases by minor instrumental changes. As shown by the results and the conclusions, it has been determined that CO and CH4 data can be obtained with an accuracy of 10% using this technique on the spectral region around 2.3 microns.
Monitoring Air Pollution from Satellites (MAPS). Volume 1: Technical report
NASA Technical Reports Server (NTRS)
1977-01-01
Performance tests on an electro-optical model of an infrared sensor for remote measurements of trace atmospheric gases are detailed; the instrument utilized a sample of the gas to be measured as spectral filter. Also reported is the development of radiometric calibration equipment that determines responses to simulated pollution effects. Results show excellent agreement with theoretical performance predictions with the exception of nonuniform radiance responses. Balance stability to an accuracy better than the rms noise level was demonstrated for the EOM in both the NH3 and CO modes for a period of two days under laboratory conditions. Flight test results show that the temperature range of the absorption cell is restricted to 255 K or higher.
Assessment of source-based nitrogen removal alternatives in leather tanning industry wastewater.
Zengin, G; Olmez, T; Doğruel, S; Kabdaşli, I; Tünay, O
2002-01-01
Nitrogen is an important parameter of leather tanning wastewaters. Magnesium ammonium phosphate (MAP) precipitation is a chemical treatment alternative for ammonia removal. In this study, a detailed source-based wastewater characterisation of a bovine leather tannery was made and nitrogen speciation as well as other basic pollutant parameter values was evaluated. This evaluation has led to definition of alternatives for source-based MAP treatment. MAP precipitation experiments conducted on these alternatives have yielded over 90% ammonia removal at pH 9.5 and using stoichiometric doses. Among the alternatives tested liming-deliming and bating-washing was found to be the most advantageous providing 71% ammonia removal.
Dai, Lijun; Wang, Lingqing; Li, Lianfang; Liang, Tao; Zhang, Yongyong; Ma, Chuanxin; Xing, Baoshan
2018-04-15
Heavy metals in lake sediment have become a great concern because their remobilization has frequently occurred under hydrodynamic disturbance in shallow lakes. In this study, heavy metals (Cr, Cu, Cd, Pb, and Zn) concentrations in the surface and core sediments of the largest freshwater lake in China, Poyang Lake, were investigated. Geostatistical prediction maps of heavy metals distribution in the surface sediment were completed as well as further data mining. Based on the prediction maps, the ranges of Cr, Cu, Cd, Pb, and Zn concentrations in the surface sediments of the entire lake were 96.2-175.2, 38.3-127.6, 0.2-2.3, 22.5-77.4, and 72.3-254.4mg/kg, respectively. A self-organizing map (SOM) was applied to find the inner element relation of heavy metals in the sediment cores. K-means clustering of the self-organizing map was also completed to define the Euclidian distance of heavy metals in the sediment cores. The geoaccumulation index (I geo ) for Poyang Lake indicated a varying degree of heavy metal contamination in the surface sediment, especially for Cu. The heavy metal contamination in the sediment profiles had similar pollution levels as those of surface sediment, except for Cd. Correlation matrix mapping and principal component analysis (PCA) were used to support the idea that Cr, Pb, and Zn may be mainly derived from both lithogenic and human activities, such as atmospheric and river inflow transportation, whereas Cu and Cd may be mainly contributed from anthropogenic sources, such as mining activities and fertilizer application. Copyright © 2017 Elsevier B.V. All rights reserved.
Murayama, Tomonori; Nakajima, Jun
2016-01-01
Anatomical segmentectomies play an important role in oncological lung resection, particularly for ground-glass types of primary lung cancers. This operation can also be applied to metastatic lung tumors deep in the lung. Virtual assisted lung mapping (VAL-MAP) is a novel technique that allows for bronchoscopic multi-spot dye markings to provide “geometric information” to the lung surface, using three-dimensional virtual images. In addition to wedge resections, VAL-MAP has been found to be useful in thoracoscopic segmentectomies, particularly complex segmentectomies, such as combined subsegmentectomies or extended segmentectomies. There are five steps in VAL-MAP-assisted segmentectomies: (I) “standing” stitches along the resection lines; (II) cleaning hilar anatomy; (III) confirming hilar anatomy; (IV) going 1 cm deeper; (V) step-by-step stapling technique. Depending on the anatomy, segmentectomies can be classified into linear (lingular, S6, S2), V- or U-shaped (right S1, left S3, S2b + S3a), and three dimensional (S7, S8, S9, S10) segmentectomies. Particularly three dimensional segmentectomies are challenging in the complexity of stapling techniques. This review focuses on how VAL-MAP can be utilized in segmentectomy, and how this technique can assist the stapling process in even the most challenging ones. PMID:28066675
Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob
2010-01-01
Background: People’s time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people’s time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. Methods: We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. Results: The battery life of our tested instruments ranged from <9 hours to 48 hours. The acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%–95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%–80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. Conclusions: All the tested GPS devices had limitations, but we identified several devices which showed promising performance for tracking subjects’ time location patterns in epidemiological studies. PMID:21151593
Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies.
Bowatte, Gayan; Lodge, Caroline J; Perret, Jennifer L; Matheson, Melanie C; Dharmage, Shyamali C
2016-11-01
The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function. Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.
NASA Technical Reports Server (NTRS)
2003-01-01
On June 26, NASA's Terra satellite acquired this image of the Aspen fire burning out of control north of Tucson, AZ. As of that date, the fire had consumed more than 27,000 acres and destroyed more than 300 homes, mostly in the resort community of Summerhaven, according to news reports. These data are being used by NASA's Wildfire Response Team and the US Forest Service to assess the intensity of the burn for future remediation efforts.This image was acquired on June 26, 2003 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on Terra. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.Dr. Anne Kahle at NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA, is the U.S. science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic decision-makers so as to better life here, while developing the technologies needed to explore the universe and search for life beyond our home planet.Size: 41.2 by 47.3 km (25.5 by 29.3 miles) Location: 32.4 degrees North latitude, 110.8 degrees West longitude Orientation: North at top Image Data: ASTER bands 1,2, and 3 Original Data Resolution: 15 meters (49.2 feet) Date Acquired: June 26, 2003NASA Astrophysics Data System (ADS)
Hu, Li-Wen; Qian, Zhengmin (Min); Bloom, Michael S.; Nelson, Erik J.; Liu, Echu; Han, Bin; Zhang, Nan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Chen, Wen; Komppula, Mika; Leskinen, Ari; Hirvonen, Maija-Riitta; Roponen, Marjut; Jalava, Pasi; Bai, Zhipeng; Dong, Guang-Hui
2018-05-01
This study sought to clarify the correlation of individual exposure measurements and PM2.5 measurements collected at regulatory monitoring sites in short-term panel study settings. To achieve this goal, 30 young, healthy adult participants were assigned to three groups with 4 samplers in each group to collect individual exposures during four weekends in March 2016. Participants also completed cardiopulmonary function tests during the same periods. For comparison, ambient air pollution data were obtained from the Air Pollution Surveillance Network in Guangzhou, China. The 8-h ambient pollutant averages and group sampler concentrations were used as separate indicators of air pollution exposure. Results showed that the 8-h mean concentration of personal PM2.5 exposure was 65.09 ± 22.18 μg/m3, which was 24.34 μg/m3 statistically higher than the ambient concentrations over the same period (p < 0.05). However, these concentrations were strongly correlated (Spearman's r = 0.937, p < 0.01). Separate mixed-effect models were fit for ambient and personal exposures to estimate their associations with cardiopulmonary outcomes. Higher PM2.5 and PM10 exposures were related to lower lung function of maximal mid-expiratory flow (MMEF). A 10 μg/m3 higher PM was associated with 0.11 L/S to 0.52 L/S lower MMEF. No effects on cardiovascular function were found. In conclusion, personal PM2.5 exposure might be higher than ambient concentrations. Young, healthy adults in urban areas may experience reduced lung function (lower MMEF), even after just 8 h of exposure to PM2.5 and PM10.
NASA Technical Reports Server (NTRS)
Coker, A. E.; Marshall, R.; Thomson, F.
1972-01-01
A study was made of the spatial registration of fluoride and phosphate pollution parameters in central Florida by utilizing remote sensing techniques. Multispectral remote sensing data were collected over the area and processed to produce multispectral recognition maps. These processed data were used to map land areas and waters containing concentrations of fluoride and phosphate. Maps showing distribution of affected and unaffected vegetation were produced. In addition, the multispectral data were processed by single band radiometric slicing to produce radiometric maps used to delineate areas of high ultraviolet radiance, which indicates high fluoride concentrations. The multispectral parameter maps and radiometric maps in combination showed distinctive patterns, which are correlated with areas known to be affected by fluoride and phosphate contamination. These remote sensing techniques have the potential for regional use to assess the environmental impact of fluoride and phosphate wastes in central Florida.
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Armenakis, C.
2014-11-01
This paper presents the ongoing development of a small unmanned aerial mapping system (sUAMS) that in the future will track its trajectory and perform 3D mapping in near-real time. As both mapping and tracking algorithms require powerful computational capabilities and large data storage facilities, we propose to use the RoboEarth Cloud Engine (RCE) to offload heavy computation and store data to secure computing environments in the cloud. While the RCE's capabilities have been demonstrated with terrestrial robots in indoor environments, this paper explores the feasibility of using the RCE in mapping and tracking applications in outdoor environments by small UAMS. The experiments presented in this work assess the data processing strategies and evaluate the attainable tracking and mapping accuracies using the data obtained by the sUAMS. Testing was performed with an Aeryon Scout quadcopter. It flew over York University, up to approximately 40 metres above the ground. The quadcopter was equipped with a single-frequency GPS receiver providing positioning to about 3 meter accuracies, an AHRS (Attitude and Heading Reference System) estimating the attitude to about 3 degrees, and an FPV (First Person Viewing) camera. Video images captured from the onboard camera were processed using VisualSFM and SURE, which are being reformed as an Application-as-a-Service via the RCE. The 3D virtual building model of York University was used as a known environment to georeference the point cloud generated from the sUAMS' sensor data. The estimated position and orientation parameters of the video camera show increases in accuracy when compared to the sUAMS' autopilot solution, derived from the onboard GPS and AHRS. The paper presents the proposed approach and the results, along with their accuracies.
Rene, Eldon R; Jin, Yaomin; Veiga, María C; Kennes, Christian
2009-11-01
Biological treatment systems have emerged as cost-effective and eco-friendly techniques for treating waste gases from process industries at moderately high gas flow rates and low pollutant concentrations. In this study, we have assessed the performance of a two-stage bioreactor, namely a biotrickling filter packed with pall rings (BTF, 1st stage) and a perlite + pall ring mixed biofilter (BF, 2nd stage) operated in series, for handling a complex mixture of hydrogen sulphide (H2S), methanol (CH3OH) and alpha-pinene (C10H16). It has been reported that the presence of H2S can reduce the biofiltration efficiency of volatile organic compounds (VOCs) when both are present in the gas mixture. Hydrogen sulphide and methanol were removed in the first stage BTF, previously inoculated with H2S-adapted populations and a culture containing Candida boidinii, an acid-tolerant yeast, whereas, in the second stage, alpha-pinene was removed predominantly by the fungus Ophiostoma stenoceras. Experiments were conducted in five different phases, corresponding to inlet loading rates varying between 2.1 and 93.5 g m(-3) h(-1) for H2S, 55.3 and 1260.2 g m(-3) h(-1) for methanol, and 2.8 and 161.1 g m(-3) h(-1) for alpha-pinene. Empty bed residence times were varied between 83.4 and 10 s in the first stage and 146.4 and 17.6 s in the second stage. The BTF, working at a pH as low as 2.7 as a result of H2S degradation, removed most of the H2S and methanol but only very little alpha-pinene. On the other hand, the BF, at a pH around 6.0, removed the rest of the H2S, the non-degraded methanol and most of the alpha-pinene vapours. Attempts were originally made to remove the three pollutants in a single acidophilic bioreactor, but the Ophiostoma strain was hardly active at pH <4. The maximum elimination capacities (ECs) reached by the two-stage bioreactor for individual pollutants were 894.4 g m(-3) h(-1) for methanol, 45.1 g m(-3) h(-1) for H2S and 138.1 g m(-3) h(-1) for alpha-pinene. The results from this study showed the potential effectiveness of a two-stage bioreactor for treating H2S together with two hydrophilic and hydrophobic VOCs that are typically emitted from wood industries.
NASA Astrophysics Data System (ADS)
Özel, Sevda; Yılmaz, Ali; Emin Candansayar, M.
2017-03-01
This study has been conducted in the irregular solid waste disposal area in the city of Sivas. The pollution spread formed by the leachates coming out of the disposal area has been examined with geophysical and geochemical works in this study. For this reason, the spread of the leachate pollution expanding in different geological units at both sides of a creek on the ground has been examined. For this purpose, the pollution spread has been examined with the methods of Direct Current Resistivity (DCR) and Electromagnetic Conductivity (EMC) and soil analyses. In the DCR method, 2D inversion of each sounding-profile datum measured alongside the lines parallel to each other and 3D inversion of the data measured in all the lines have been used in the interpretations. Apparent conductivity map has been attained from EMC measurements. The results of heavy metal analyses in the soil samples taken alongside the Haçin Creek have been assessed with the Spider diagram method. It has been determined that the flow of the leachate from geophysical models is in a SE direction and towards Kızılırmak and it continues vertically deeper than 4 m. In addition, it has been understood that the flow direction of the leachate is inspected by the geological structures. It has been understood from the geochemical results that the pollution in the soil stems from the leachate. In this way, it has been observed that the underground and surface water resources in the territory are under the threat of the pollution occurring due to the leachate.
G2S: a web-service for annotating genomic variants on 3D protein structures.
Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong
2018-06-01
Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that supports programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online.
Mimamata and Love Canal: A Pollution Tale of Two Cities.
ERIC Educational Resources Information Center
Williams, Mary Louise
1993-01-01
Presents a lesson plan about case studies of the environmental disasters of Minamata, Japan and Love Canal, New York. Compares how the legal cases were handled in two constitutional democracies. Provides six handouts that include maps, role descriptions for simulations, and student readings. (CFR)
Spyratos, Dionisios; Sioutas, Constantinos; Tsiotsios, Anastasios; Haidich, Anna-Bettina; Chloros, Diamantis; Triantafyllou, Georgios; Sichletidis, Lazaros
2015-01-01
The aim was to investigate respiratory symptoms, lung function and nasal airflow development among a cohort of children who were exposed to particulate air pollution. We used questionnaires, spirometry and rhinomanometry, while central-monitored PM10 concentrations were used for exposure assessment. We initially examined 1046 children (10-12 year old) in the heavily polluted town of Ptolemaida, Greece, and 379 children in the cleaner town of Grevena (control group). We re-evaluated 312 of the former and 119 of the latter after 19 years. PM10 concentrations were above permissible levels in Ptolemaida during all study period. At both visits, nasal flow was significantly lower in the study sample. At the follow-up visit, 34.3% had severe nasal obstruction (< 500 ml/s) and 38.5% reported chronic nasal symptoms. Spirometric parameters did not differ compared to the control group. Particulate air pollution had significant and negative effects on nasal but not on lung function development.
Critical loads and their exceedances at intensive forest monitoring sites in Europe.
Lorenz, Martin; Nagel, Hans-Dieter; Granke, Oliver; Kraft, Philipp
2008-10-01
Intensive forest monitoring by means of harmonised methods has been conducted in Europe for more than a decade. Risks of atmospheric nitrogen and sulphur deposition are assessed by means of calculations of critical loads and their exceedances. In the present study throughfall and bulk deposition of nitrate (N-NO(3)), ammonium (N-NH(4)) and sulphate (S-SO(4)) show marked spatial patterns and temporal trends. In the period of observation (1999-2004), sulphate deposition on intensive monitoring plots decreased by about one quarter. This is in line with the reduction of S deposition by 70% since 1981 in Europe as a result of successful air pollution control politics under the Convention on Long-range Transboundary Air Pollution (CLRTAP). However, sulphate and especially nitrate and ammonium deposition were found to still exceed critical loads at many forest sites, indicating a continued need for further implementation of air pollution abatement strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J.R.; O`Neill, D.C.; Barker, B.W.
1994-10-01
The research described in this report is directed toward the development of a workstation-based data management, analysis and visualization system which can be used to improve the Air Force`s capability to evaluate site specific environmental hazards. The initial prototype system described in this report is directed toward a specific application to the Massachusetts Military Reservation (formerly Otis Air Force Base) on Cape Cod, Massachusetts. This system integrates a comprehensive, on-line environmental database for the site together with a map-based graphical user interface which facilitates analyst access to the databases and analysis tools needed to characterize the subsurface geologic and hydrologicmore » environments at the site.« less
Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the lin...