Science.gov

Sample records for poly allylamine synthesized

  1. Poly(styrenesulfonate)/poly(allylamine) multilayers: a route to favor endothelial cell growth on expanded poly(tetrafluoroethylene) vascular grafts.

    PubMed

    Moby, Vanessa; Boura, Cédric; Kerdjoudj, Halima; Voegel, Jean-Claude; Marchal, Luc; Dumas, Dominique; Schaaf, Pierre; Stoltz, Jean-François; Menu, Patrick

    2007-07-01

    Small-diameter synthetic vascular grafts of expanded poly(tetrafluoroethylene) (ePTFE) polymer concern one of the most common alternatives for the replacement of diseased vessels. However, high failure rates arise especially due to the lack of endothelial cells (ECs). EC seeding was developed to build a monolayer on the luminal surface. Because ECs show little or no adhesion on synthetic prostheses, it is necessary to promote their retention. On ePTFE surfaces we successfully deposited polyelectrolyte multilayer films (PMFs) consisting of poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) to obtain PEI-(PSS-PAH)3 films. EC adhesion and spreading on modified ePTFE were assessed by scanning electron and confocal microscopies. Cell viability was evaluated by Alamar Blue assay. After 7 days of culture, the ePTFE modified with PMF exhibited improvements of EC viability as compared to that of the controls (nonmodified ePTFE) or even ePTFE coated by a PAH monolayer (p < 0.05). Moreover, the spreading of ECs was largely enhanced compared to that of the same controls, resulting in a healthy confluent cell monolayer formation. Positive staining for the von Willebrand factor confirmed the EC phenotype. Promoting EC attachment and function on ePTFE modified with PMFs could become in the future a promising treatment for synthetic small-diameter vascular grafts.

  2. Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.

    PubMed

    Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan

    2017-02-24

    This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC<373mmol/L) to closer, extended and flexible grafting states with less coupling points at higher coupling densities (IC>373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths.

  3. Self-assembly of lacunary Dawson type polyoxometalates and poly(allylamine hydrochloride) multilayer films: photoluminescent and electrochemical behavior

    NASA Astrophysics Data System (ADS)

    Jiang, Min; Wang, Enbo; Wang, Xiuli; Wu, Aiguo; Kang, Zhenhui; Lian, Suoyuan; Xu, Lin; Li, Zhuang

    2005-03-01

    Ultrathin multilayer films containing a lacunary Dawson type polyoxometalate (POM) cluster K 17[Ln(P 2Mo 17O 61) 2] (LnPMo, Ln = Eu, Tb) and poly(allylamine hydrochloride) have been prepared by electrostatic layer-by-layer self-assembly (ELSA) method. The multilayer films have been characterized by UV-vis absorption spectroscopy, ellipsometry and atomic force microscopy (AFM). The photoluminescent behavior of films at room temperature was investigated to show the Ln 3+ characteristic emission pattern. The occurrence of photoluminescent activity confirms the potential applications in creating luminescent materials. Additionally, the electrochemical behavior of multilayer films was studied and the growth of multilayer films can be observed.

  4. Fabrication and photoelectric response of poly(allylamine hydrochloride)/PM thin films by layer-by-layer deposition technique.

    PubMed

    Chu, Jinfang; Li, Xingchang; Zhang, Jianping; Tang, Ji'an

    2003-05-23

    Thin films of poly(allylamine hydrochloride) (PAH) and bacteriorhodopsin (bR) embedded in purple membrane (PM) have been prepared by layer-by-layer (LBL) self-assembly technique. The results obtained by UV-Vis spectroscopy and atomic force microscopy (AFM) analysis showed that the biological activity of bR was preserved and PM fragments could be well oriented onto the ITO substrate. A photo-electrochemical cell with the structure of ITO/(PAH/PM)(n)/electrolyte (0.5M KCl)/Pt was fabricated and studied. The photocurrent peaks of (PAH/PM)(6) corresponding to light-on and light-off were about 200 and 100 nA/cm(2), respectively, with the former enhanced 30% higher than that of the reference films made of (PDAC/PM)(6).

  5. Enhanced accumulation and visible light-assisted degradation of azo dyes in poly(allylamine hydrochloride)-modified mesoporous silica spheres

    SciTech Connect

    Tao Xia Liu Bing; Hou Qian; Xu Hui; Chen Jianfeng

    2009-02-04

    A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstrated that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater.

  6. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  7. Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions.

    PubMed

    Khan, Mansoor; Yilmaz, Erkan; Sevinc, Basak; Sahmetlioglu, Ertugrul; Shah, Jasmin; Jan, Muhammad Rasul; Soylak, Mustafa

    2016-01-01

    Magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) (MGO-DVB-VA) was synthesized and used for magnetic solid phase extraction of Pb(II), Cd(II), Cu(II), Ni(II) and Co(II) prior to their determination by flame atomic absorption spectroscopy. The adsorbent surface functional group was characterized by using FT-IR and Raman spectroscopy. XRD pattern was used to determine the layers of GO. Surface morphology and elemental composition of the adsorbent were evaluated by using SEM and EDX analysis. Various parameters, effecting adsorption efficiency like initial solution pH, adsorbent dose, type and volume of eluent, volume of sample and diverse ions effects were optimized. The preconcentration factor (PF) is 40 for all the metals and the limits of detection for Pb, Cd, Cu, Ni and Co are in the range of 0.37-2.39 µg L(-1) and relative standard deviation below 3.1%. The method was validated by using the method for certified reference materials (Tobacco Leaves (INCT-OBTL-5), Tomato Leaves (1573a), Certified Water (SPS-ww2) and Certified Water (TMDA 64-2)). The method was successfully applied for natural water and food samples.

  8. Photoinduced phenomena in layer-by-layer films of poly(allylamine hydrochloride) and Brilliant Yellow azodye.

    PubMed

    Zucolotto, Valtencir; Barbosa Neto, Newton M; Rodrigues, José J; Constantino, Carlos J L; Zílio, Sérgio C; Mendonça, Cléber R; Aroca, Ricardo F; Oliveira, Osvaldo N

    2004-09-01

    The nanoscale interactions between adjacent layers of layer-by-layer (LBL) films from poly(allylamine hydrochloride) (PAH) and azodye Brilliant Yellow (BY) have been investigated, with the films employed for optical storage and the formation of surface-relief gratings. Using Fourier transform infrared spectroscopy, we identified interactions involving SO3- groups from BY and NH+ groups from PAH. These electrostatic interactions were responsible for the slow kinetics of writing in the optical storage experiments, due to a tendency to hinder photoisomerization and the subsequent reorientation of the azochromophores. The photoinduced birefringence did not saturate after one hour of exposure to the writing laser, whereas in azopolymer films, saturation is normally reached within a few minutes. On the other hand, the presence of such interactions prevented thermal relaxation of the chromophores after the writing laser was switched off, leading to a very stable written pattern. Moreover, the nanoscale interactions promoted mass transport for photoinscription of surface-relief gratings on PAH/BY LBL films, with the azochromophores being able to drag the inert PAH chains when undergoing the trans-cis-trans photoisomerization cycles. A low level of chromophore degradation was involved in the SRG photoinscription, which was confirmed with micro-Raman and fluorescence spectroscopies.

  9. Characterization of charge properties of an ultrafiltration membrane modified by surface grafting of poly(allylamine) hydrochloride.

    PubMed

    Dejeu, J; Lakard, B; Fievet, P; Lakard, S

    2009-05-01

    A polyethersulfone ultrafiltration membrane was functionalized by a cationic polyelectrolyte, the poly(allylamine) hydrochloride (PAH). The influence of the time of adsorption of PAH on the membrane charge properties was studied. Several characterization techniques were used to investigate the membrane modification. Tangential and transmembrane streaming potential measurements were conducted to characterize the outer and inner surfaces of the membrane, respectively. Both techniques indicated that the surface modification of the membrane was efficient. The charge of the outer surface was reversed (from negative values for the unmodified membrane to positive values for the modified membrane) and the charge of the inner surface was neutralized after adsorption of the cationic polyelectrolyte onto the pore walls. The modification of both the outer surface of the membrane and the pore walls was also put in evidence with membrane potential measurements. It was found that the charge of the PAH-modified membrane is affected by the time of immersion in PAH solution. Experimental data seem to show a fast modification of the membrane for the first 15 min; nevertheless, the modification was more pronounced after 24 h of PAH adsorption. Diffusion experiments carried out with unmodified and modified membranes for four salts (KCl, NaCl, MgCl, and CaCl(2)) showed a decrease in the salt permeability after functionalization of the membrane. The permeability decrease was greater for 2:1 salts than for 1:1 salts. This decrease was explained by electrostatic interactions.

  10. Diffusion of polyphosphates into (poly(allylamine)-montmorillonite) multilayer films: flame retardant-intumescent films with improved oxygen barrier.

    PubMed

    Laachachi, Abdelghani; Ball, Vincent; Apaydin, Kadir; Toniazzo, Valérie; Ruch, David

    2011-11-15

    The present paper relies on the original idea to design multifunctional coatings, and in particular highly efficient intumescent flame retardant coatings, based on the diffusion of polyphosphates (PSPs) in exponentially growing "layer-by-layer" films made from montmorillonite (MMT) and poly(allylamine) (PAH). Here, we used polyphosphates as an acid source, polyallylamine as both a carbon source and a swelling agent, and finally clays to reinforce the intumescent char strength and also for their oxygen barrier property. The coatings made from the alternated deposition of n = 60 layer pairs of PAH and MMT reach a considerable thickness of ∼18 μm with well-defined ordering of the MMT in the direction parallel to the substrate. Structural, morphological, mechanical, gas barrier, and fire resistance properties of these films have been studied. Excellent oxygen barrier properties and extraordinary fire resistance properties are demonstrated based on the basis of a strong increase of the time to ignition and on a decrease of the heat release rate of polylactide substrates during mass loss calorimeter tests. This new and innovative intumescent flame retardant system based on (PAH-MMT)(n)-PSP coatings is a promising universal treatment for current polymeric materials.

  11. Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine.

    PubMed

    Mercante, Luiza A; Pavinatto, Adriana; Iwaki, Leonardo E O; Scagion, Vanessa P; Zucolotto, Valtencir; Oliveira, Osvaldo N; Mattoso, Luiz H C; Correa, Daniel S

    2015-03-04

    The use of nanomaterials as an electroactive medium has improved the performance of bio/chemical sensors, particularly when synergy is reached upon combining distinct materials. In this paper, we report on a novel architecture comprising electrospun polyamide 6/poly(allylamine hydrochloride) (PA6/PAH) nanofibers functionalized with multiwalled carbon nanotubes, used to detect the neurotransmitter dopamine (DA). Miscibility of PA6 and PAH was sufficient to form a single phase material, as indicated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), leading to nanofibers with no beads onto which the nanotubes could adsorb strongly. Differential pulse voltammetry was employed with indium tin oxide (ITO) electrodes coated with the functionalized nanofibers for the selective electrochemical detection of dopamine (DA), with no interference from uric acid (UA) and ascorbic acid (AA) that are normally present in biological fluids. The response was linear for a DA concentration range from 1 to 70 μmol L(-1), with detection limit of 0.15 μmol L(-1) (S/N = 3). The concepts behind the novel architecture to modify electrodes can be potentially harnessed in other electrochemical sensors and biosensors.

  12. Poly[allylamine hydrochloride] (RenaGel): a noncalcemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure.

    PubMed

    Chertow, G M; Burke, S K; Lazarus, J M; Stenzel, K H; Wombolt, D; Goldberg, D; Bonventre, J V; Slatopolsky, E

    1997-01-01

    Dietary phosphate restriction and the oral administration of calcium and aluminum salts have been the principal means of controlling hyperphosphatemia in individuals with end-stage renal disease over the past decade. Although relatively well-tolerated, a large fraction of patients treated with calcium develop hypercalcemia, particularly when administered concurrently with calcitriol, despite a lowering of the dialysate calcium concentration. We evaluated the efficacy of cross-linked poly[allylamine hydrochloride] (RenaGel; Geltex Pharmaceuticals, Waltham, MA), a nonabsorbable calcium- and aluminum-free phosphate binder, in a randomized, placebo-controlled, double-blind trial of 36 maintenance hemodialysis patients followed over an 8-week period. RenaGel was found to be as effective as calcium carbonate or acetate as a phosphate binder. The reduction in serum phosphorus was significantly greater after 2 weeks of treatment with RenaGel (6.6 +/- 2.1 mg/dL to 5.4 +/- 1.5 mg/dL) compared with placebo (7.0 +/- 2.1 mg/dL to 7.2 +/- 2.4 mg/dL; P = 0.037). There was no significant change in serum calcium concentration in either treatment group. The total serum cholesterol and low-density lipoprotein cholesterol fraction were significantly reduced in RenaGel-treated patients compared with placebo-treated patients (P = 0.013 and P = 0.003, respectively) without a concomitant reduction in high-density lipoprotein cholesterol (P = 0.93). There was no difference among recipients of RenaGel and placebo in terms of adverse events. RenaGel is a safe and effective alternative to oral calcium for the management of hyperphosphatemia in end-stage renal disease.

  13. Excitation energy transfer between molecular thin layers of poly(phenylene vinylene) and dye labeled poly(allylamine) in layer-by-layer self-assembled films

    NASA Astrophysics Data System (ADS)

    Richter, Bernd; Kirstein, Stefan

    1999-09-01

    Steady state Förster energy transfer is investigated in multilayer structures of self-assembled films prepared via the layer-by-layer deposition of oppositely charged polyelectrolytes. The samples consist of a single layer of the conjugated polymer poly(p- phenylene vinylene) (PPV) as a donor, several layers of poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) as a transparent spacer, and a single layer of dye labeled PAH as an acceptor. The dyes are rhodamine B and fluorescein, whereas the molar ratio with respect to the PAH monomers is less than 0.2% for both systems. The steady state fluorescence intensity of the PPV is measured for a series of samples with different spacer thicknesses. The spacer thicknesses are evaluated from x-ray reflectivity measurements. At large thickness of the spacer the donor intensity I versus distance d follows the 1/(1+(d0/d)4) law as theoretically predicted for the case of ideal two-dimensional layers. At short distances a different behavior is observed which is explained first, by the low lateral density of the acceptor molecules and second, by a distribution of the dyes normal to the layer plane. Good agreement between the experimental data and computer simulations is obtained under the assumption of a Gaussian distribution of both donor and acceptor molecules, in the direction normal to the film plane with a width of 25-30 Å. However, a mismatch is observed between the Förster radius derived from the spectroscopic properties and that obtained from the layer-to-layer energy transfer. This is discussed under the consideration of a nonperfect layer structure and the photophysics of the PPV.

  14. Non-covalent assembly of poly(allylamine hydrochloride)/triethylamine microcapsules with ionic strength-responsiveness and auto-fluorescence.

    PubMed

    Li, Huiying; Zheng, Honghao; Tong, Weijun; Gao, Changyou

    2017-06-15

    Ionic strength-responsive microcapsules with auto-fluorescence were fabricated by incubation of poly(allylamine hydrochloride) (PAH)-doped CaCO3 particles in triethylamine (Et3N), followed by core removal using HCl. Based on the combination of hydrophobic interaction and hydrogen bonding, PAH and Et3N formed a complex with a molar ratio of 3:1 (repeating unit of PAH: Et3N). The as-prepared capsules showed extraordinary stability against 1M HCl, 1M NaOH and 6M urea solutions, and could swell or shrink reversibly in response to the ionic strength. Furthermore, the capsules possessed auto-fluorescence, allowing easily tracking of capsules during applications. Such interaction may be expanded to formation of stimuli-responsive multilayer films and other colloidal particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Formation and Structure of Calcium Carbonate Thin Films and Nanofibers Precipitated in the Presence of Poly(Allylamine Hydrochloride) and Magnesium Ions.

    PubMed

    Cantaert, Bram; Verch, Andreas; Kim, Yi-Yeoun; Ludwig, Henning; Paunov, Vesselin N; Kröger, Roland; Meldrum, Fiona C

    2013-12-23

    That the cationic polyelectrolyte poly(allylamine hydrochloride) (PAH) exerts a significant influence on CaCO3 precipitation challenges the idea that only anionic additives have this effect. Here, we show that in common with anionic polyelectrolytes such as poly(aspartic acid), PAH supports the growth of calcite thin films and abundant nanofibers. While investigating the formation of these structures, we also perform the first detailed structural analysis of the nanofibers by transmission electron microscopy (TEM) and selected area electron diffraction. The nanofibers are shown to be principally single crystal, with isolated domains of polycrystallinity, and the single crystal structure is even preserved in regions where the nanofibers dramatically change direction. The formation mechanism of the fibers, which are often hundreds of micrometers long, has been the subject of intense speculation. Our results suggest that they form by aggregation of amorphous particles, which are incorporated into the fibers uniquely at their tips, before crystallizing. Extrusion of polymer during crystallization may inhibit particle addition at the fiber walls and result in local variations in the fiber nanostructure. Finally, we investigate the influence of Mg(2+) on CaCO3 precipitation in the presence of PAH, which gives thinner and smoother films, together with fibers with more polycrystalline, granular structures.

  16. Transmission electron microscopy of unstained hybrid Au nanoparticles capped with PPAA (plasma-poly-allylamine): structure and electron irradiation effects.

    PubMed

    Gontard, Lionel C; Fernández, Asunción; Dunin-Borkowski, Rafal E; Kasama, Takeshi; Lozano-Pérez, Sergio; Lucas, Stéphane

    2014-12-01

    Hybrid (organic shell-inorganic core) nanoparticles have important applications in nanomedicine. Although the inorganic components of hybrid nanoparticles can be characterized readily using conventional transmission electron microscopy (TEM) techniques, the structural and chemical arrangement of the organic molecular components remains largely unknown. Here, we apply TEM to the physico-chemical characterization of Au nanoparticles that are coated with plasma-polymerized-allylamine, an organic compound with the formula C3H5NH2. We discuss the use of energy-filtered TEM in the low-energy-loss range as a contrast enhancement mechanism for imaging the organic shells of such particles. We also study electron-beam-induced crystallization and amorphization of the shells and the formation of graphitic-like layers that contain both C and N. The resistance of the samples to irradiation by high-energy electrons, which is relevant for optical tuning and for understanding the degree to which such hybrid nanostructures are stable in the presence of biomedical radiation, is also discussed.

  17. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    PubMed

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance.

  18. Exothermic-Endothermic Transition in the Titration of Poly(allylamine chloride) with Sodium Hexametaphoshate Associated with a Change in the Proton Release Regime.

    PubMed

    Maechling, Clarisse; Ball, Vincent

    2016-05-26

    The formation of complexes (aggregates) between oppositely charged macromolecular species or between macromolecular species and multivalent ions is a fascinating fundamental research topic that allows one to understand fundamental processes in biology and in polymer science. In addition interpolyelectrolyte complexes hold by strong interactions and polyelectrolyte coacervates in which the stabilizing interactions are weaker find many applications in food and in colloidal science. The interactions between oppositely charged species are usually investigated as a function of intensive variables like the temperature, the pH, the ionic strength, and parameters related to the charged species themselves (molecular mass, charge density, charge distribution, and so forth). It appeared however in the past few years that the interaction kinetics is also of fundamental importance; a fast mixing of the interacting species can lead to the formation of frozen and out-of-equilibrium structures. The present investigation is aimed to study the interactions between a small polyphosphate (sodium hexametaphosphate) (HMP) and a linear polyamine (poly(allylamine hydrochloride)) (PAH) from both a thermodynamic and kinetic point of view as a function of the ionic strength (in NaCl solutions). It is found, unexpectedly, that the interaction is of biphasic nature with a first exothermic regime followed by an endothermic regime. The transition between both regimes is ionic strength independent between 10 and 2000 mM emphasizing the strong interactions between both species. It occurs at a charge ratio of about 0.4 between the number of negative and positive charges and is correlated with proton release in the exothermic regime and a proton uptake in the endothermic regime. When HMP solutions are titrated in PAH solutions the turbidity of the mixtures is not the same as that obtained during the reverse titration at a given charge ratio, emphasizing the difficulty to establish an "equilibrium

  19. Determination of degree of ionization of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in layer-by-layer films using vacuum photoabsorption spectroscopy.

    PubMed

    Ferreira, Q; Gomes, P J; Ribeiro, P A; Jones, N C; Hoffmann, S V; Mason, N J; Oliveira, O N; Raposo, M

    2013-01-08

    Electrostatic and hydrophobic interactions govern most of the properties of supramolecular systems, which is the reason determining the degree of ionization of macromolecules has become crucial for many applications. In this paper, we show that high-resolution ultraviolet spectroscopy (VUV) can be used to determine the degree of ionization and its effect on the electronic excitation energies of layer-by-layer (LbL) films of poly(allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). A full assignment of the VUV peaks of these polyelectrolytes in solution and in cast or LbL films could be made, with their pH dependence allowing us to determine the pK(a) using the Henderson-Hasselbach equation. The pK(a) for PAZO increased from ca. 6 in solution to ca. 7.3 in LbL films owing to the charge transfer from PAH. Significantly, even using solutions at a fixed pH for PAH, the amount adsorbed on the LbL films still varied with the pH of the PAZO solutions due to these molecular-level interactions. Therefore, the procedure based on a comparison of VUV spectra from solutions and films obtained under distinct conditions is useful to determine the degree of dissociation of macromolecules, in addition to permitting interrogation of interface effects in multilayer films.

  20. pH- and sugar-sensitive multilayer films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PBA-PAH) and poly(vinyl alcohol) (PVA): A significant effect of PBA content on the film stability.

    PubMed

    Seno, Masaru; Yoshida, Kentaro; Sato, Katsuhiko; Anzai, Jun-ichi

    2016-05-01

    Multilayer thin films composed of phenylboronic acid (PBA)-modified poly(allylamine hydrochloride) (PAH), PBA-PAH, with different PBA contents were prepared to study the effect of PBA content on the stability of the films. An alternate deposition of PBA-PAH and poly(vinyl alcohol) (PVA) on the surface of a quartz slide afforded multilayer films through forming boronate ester bonds between PBA-PAH and PVA. The 10-layered (PBA-PAH/PVA)10 films constructed using PBA-PAHs containing 16% and 26% PBA residues were stable in aqueous solutions over the range of pH 4.0-10.0, whereas the multilayer films composed of PBA-PAHs with 5.9% and 8.3% PBA decomposed at pH 8.0 or lower. The pH-sensitive decomposition of the films was rationalized based on the destabilization of the boronate ester bonds in neutral and acidic solutions. In addition, the (PBA-PAH/PVA)10 films decomposed in glucose and fructose solutions as a result of competitive binding of sugars to PBA-PAH in the films. The sugar response of the films depended on the PBA content in PBA-PAH. The (PBA-PAH/PVA)10 films consisting of 16% and 26% PBA-substituted PBA-PAHs are sensitive to physiological relevant level of glucose at pH7.4 while stable in glucose-free solution, suggesting a potential use of the films in constructing glucose-induced delivery systems.

  1. Syntheses of sugar poly(orthoesters) through reverse anomeric effect.

    PubMed

    Li, Lingyao; Wang, Jun; Obrinske, Melissa; Milligan, Ian; O'Hara, Kylie; Bitterman, Lindsay; Du, Wenjun

    2015-04-25

    High molecular weight sugar poly(orthoesters) were synthesized through reverse anomeric effect (RAE). We demonstrated that when RAE-enabled promoters, such as 4-(dimethylamino)pyridine (DMAP), triphenylphosphine (TPP) or imidazole, were employed, efficient polymerizations were achieved, giving sugar poly(orthoesters) with molecular weights up to 18 kDa.

  2. Indirect determination of sulfite using a polyphenol oxidase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film.

    PubMed

    Sartori, Elen Romão; Vicentini, Fernando Campanhã; Fatibello-Filho, Orlando

    2011-12-15

    The modification of a glassy carbon electrode with multi-walled carbon nanotubes and gold nanoparticles within a poly(allylamine hydrochloride) film for the development of a biosensor is proposed. This approach provides an efficient method used to immobilize polyphenol oxidase (PPO) obtained from the crude extract of sweet potato (Ipomoea batatas (L.) Lam.). The principle of the analytical method is based on the inhibitory effect of sulfite on the activity of PPO, in the reduction reaction of o-quinone to catechol and/or the reaction of o-quinone with sulfite. Under the optimum experimental conditions using the differential pulse voltammetry technique, the analytical curve obtained was linear in the concentration of sulfite in the range from 0.5 to 22 μmol L(-1) with a detection limit of 0.4 μmol L(-1). The biosensor was applied for the determination of sulfite in white and red wine samples with results in close agreement with those results obtained using a reference iodometric method (at a 95% confidence level).

  3. Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks

    DOE PAGES

    Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; ...

    2016-02-09

    Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entiremore » visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.« less

  4. Properties of Poly- and Oligopentacenes Synthesized from Modular Building Blocks

    SciTech Connect

    Kumarasamy, Elango; Sanders, Samuel N.; Pun, Andrew B.; Vaselabadi, Saeed Ahmadi; Low, Jonathan Z.; Sfeir, Matthew Y.; Steigerwald, Michael L.; Stein, Gila E.; Campos, Luis M.

    2016-02-09

    Here, we describe a facile route to well-defined, solution-processable pentacene oligomers (2 to 7) and homopolymer using Suzuki–Miyaura cross-coupling reactions. This synthetic strategy leads to regioisomers, regiopure syn- and anti-trimers were also synthesized, revealing minimal changes in solution properties but significant changes in the solid state arising from differing levels of crystallinity. The materials were characterized by steady state absorption spectroscopy and cyclic voltammetry to study their electronic structure. The steady state absorption spectra exhibit a new high-energy transition in the oligomers, which intensifies as a function of oligomer length, thus increasing the range of absorption to include the entire visible spectrum. Density functional theory calculations indicate that the new peak results directly from the oligomerization. Solid state UV–vis suggests that while the monomer is amorphous, bricklayer packing in the higher oligomers significantly alters the solid state absorption relative to solution. The effect of oligomerization on packing was corroborated by GIWAXS analysis, which revealed crystalline domains in the oligomers. These domains, which are most evident in anti-trimer, become more pronounced upon thermal annealing. Photodegradation studies revealed considerable stability enhancement of oligomers toward oxygen and cycloaddition reactions relative to monomer. The synthesis and characterization of the first higher oligomers and homopolymer of pentacene should pave the way to applications in singlet fission, organic field-effect transistors, and organic photovoltaics.

  5. Allylamine-mediated DNA attachment to polycrystalline diamond surface

    NASA Astrophysics Data System (ADS)

    Zhuang, H.; Srikanth, Vadali. V. S. S.; Jiang, X.; Luo, J.; Ihmels, H.; Aronov, I.; Wenclawiak, B. W.; Adlung, M.; Wickleder, C.

    2009-10-01

    Allylamine, an unsaturated short carbon chain amine was used to mediate ss-DNA attachment to an H-terminated polycrystalline diamond thin film surface for biosensoric applications. At first, allylamine was photochemically tethered onto the diamond film surface; ss-DNA was then attached via the allylamine linkage. The DNA molecules are then hybridized with the complementary DNA molecules containing fluorescence labels followed by denaturing. Time-of-fight secondary ion mass spectrometry and fluorescence spectroscopy are used to confirm the allylamine bonding and the covalent DNA bonding to the diamond film surface, respectively.

  6. Stable biopassive insulation synthesized by initiated chemical vapor deposition of poly(1,3,5-trivinyltrimethylcyclotrisiloxane).

    PubMed

    O'Shaughnessy, W S; Murthy, S K; Edell, D J; Gleason, K K

    2007-08-01

    The permanent implantation of electronic probes capable of recording neural activity patterns requires long-term electrical insulation of these devices by biopassive coatings. In this work, the material properties and neural cell compatibility of a novel polymeric material, poly(trivinyltrimethylcyclotrisiloxane) (poly(V3D3)), are demonstrated to be suitable for application as permanently bioimplanted electrically insulating films. The poly(V3D3) polymeric films are synthesized by initiated chemical vapor deposition (iCVD), allowing for conformal and flexible encapsulation of fine wires. The poly(V3D3) also exhibits high adhesive strength to silicon substrates, a common material of manufacture for neural probes. The poly(V3D3) films were found to be insoluble in both polar and nonpolar solvents, consistent with their highly cross-linked structure. The films are pinhole-free and extremely smooth, having a root-mean-square (rms) roughness of 0.4 nm. The material possesses a bulk resistivity of 4 x 1015 Ohm-cm exceeding that of Parylene-C, the material currently used to insulate neurally implanted devices. The iCVD poly(V3D3) films are hydrolytically stable and are demonstrated to maintain their electrical properties under physiological soak conditions, and constant electrical bias, for more than 2 years. In addition, biocompatibility studies with PC12 neurons demonstrate that this material is noncytotoxic and does not influence cell proliferation.

  7. Enzyme-synthesized Poly(amine-co-esters) as Non-viral Vectors for Gene Delivery

    PubMed Central

    Liu, Jie; Jiang, Zhaozhong; Zhou, Jiangbing; Zhang, Shengmin; Saltzman, W. Mark

    2010-01-01

    A family of biodegradable poly(amine-co-esters) was synthesized in one step via enzymatic copolymerization of diesters with amino-substituted diols. Diesters of length C4–C12 (i.e., from succinate to dodecanedioate) were successfully copolymerized with diethanolamines with either an alkyl (methyl, ethyl, n-butyl, t-butyl) or an aryl (phenyl) substituent on the nitrogen. Upon protonation at slightly acidic conditions, these poly(amine-co-esters) readily turned to cationic polyelectrolytes, which were capable of condensing with polyanionic DNA to form nanometer-sized polyplexes. In vitro screening with pLucDNA revealed that two of the copolymers, poly(N-methyldiethyleneamine sebacate) (PMSC) and poly(N-ethyldiethyleneamine sebacate) (PESC), possessed comparable or higher transfection efficiencies compared to Lipofectamine 2000. PMSC/pLucDNA and PESC/pLucDNA nanoparticles had desirable particle sizes (40–70 nm) for cellular uptake and were capable of functioning as proton sponges to facilitate endosomal escape after cellular uptake. These polyplex nanoparticles exhibited extremely low cytotoxicity. Furthermore, in vivo gene transfection experiments revealed that PMSC is a substantially more effective gene carrier than PEI in delivering pLucDNAto cells in tumors in mice. All these properties suggest that poly(amine-co-esters) are promising non-viral vectors for safe and efficient DNA delivery in gene therapy. PMID:21171165

  8. Antibacterial Electrospun Poly(vinyl alcohol)/Enzymatic Synthesized Poly(catechol) Nanofibrous Midlayer Membrane for Ultrafiltration.

    PubMed

    Coelho, Dora; Sampaio, Ana; Silva, Carla J S M; Felgueiras, Helena P; Amorim, M Teresa P; Zille, Andrea

    2017-09-27

    Two different nanofibrous antibacterial membranes containing enzymatically synthesized poly(catechol) (PC) or silver nitrate (AgNO3, positive control) blended with poly(vinyl alcohol) (PVA) and electrospun onto a poly(vinylidene fluoride) (PVDF) basal disc to generate thin-film composite midlayers were produced for water ultrafiltration applications. The developed membranes were thoroughly characterized in terms of morphology, chemical composition, and general mechanical and thermal features, antimicrobial activity, and ultrafiltration capabilities. The electrospun blends were recognized as homogeneous. Data revealed relevant conformational changes in the PVA side groups, attributed to hydrogen bonding, high thermal stability, and residual mass. PVDF+PVA/AgNO3 membrane displayed 100% growth inhibition of both Gram-positive and Gram-negative bacteria strains, despite the wide range of fiber diameters generated, from 24 to 125 nm, formation of numerous beads, and irregular morphology. The PVDF+PVA/PC membrane showed a good growth inhibition of Staphylococcus aureus (92%) and revealed a smooth morphology with no relevant bead formations and diameters ranging from 68 to 131 nm. The ultrafiltration abilities of the membrane containing PVA/PC were tested in a dead-end high-pressure cell (4 bar) using a reactive dye in distilled water and seawater. After 5 cycles, a maximum rejection of ≈85% with an average flux rate of 70 L m(-2) h(-1) for distilled water and ≈64% with an average flux rate of 62 L m(-2) h(-1) for seawater were determined with an overall salt rejection of ≈5%.

  9. Preparation and structural characterization of poly-mannose synthesized by phosphoric acid catalyzation under microwave irradiation.

    PubMed

    Wang, Haisong; Cheng, Xiangrong; Shi, Yonghui; Le, Guowei

    2015-05-05

    Poly-mannose with molecular weight of 2.457 kDa was synthesized using d-mannose as substrate and phosphoric acid as catalyst under the condition of microwave irradiation for the first time. The optimum reaction conditions were microwave output power of 900 W, temperature 115°C, proton concentration 2.5 mol/L, and microwave irradiation time 5 min. The actual maximum yield was 91.46%. After purified by Sepherdex G-25 column chromatography, the structural features of poly-mannose were investigated by high-performance anion-exchange chromatography (HPAEC), high-performance gel-permeation chromatography (HPGPC), infrared (IR) spectroscopy, methylation analysis and NMR spectroscopy analysis ((1)H, (13)C, COSY, TOCSY, HMQC, and HMBC). HPAEC analysis showed that the composition of synthetic polysaccharides was d-mannose, its purity was demonstrated by HPGPC as a single symmetrical sharp peak, and additionally IR spectra demonstrated the polymerization of d-mannose. Methylation analysis and NMR spectroscopy revealed that the backbone of poly-mannose consisting of (1→3)-linked β-d-Manp, (1→3)-linked α-d-Manp, and (1→6)-linked α-d-Manp residues, and the main chain were branched at the O-2, O-3, O-4, O-6 position.

  10. Surface modification of poly(ether sulfone) membrane with a synthesized negatively charged copolymer.

    PubMed

    Zou, Wen; Qin, Hui; Shi, Wenbin; Sun, Shudong; Zhao, Changsheng

    2014-11-18

    In this study, we provide a new method to modify poly(ether sulfone) (PES) membrane with good biocompatibility, for which diazotized PES (PES-N2(+)) membrane is covalently coated by a negatively charged copolymer of sodium sulfonated poly(styrene-alt-maleic anhydride) (NaSPS-MA). First, aminated PES (PES-NH2) is synthesized by nitro reduction reaction of nitro-PES (PES-NO2), and then blends with pristine PES to prepare PES/PES-NH2 membrane; then the membrane is treated with NaNO2 aqueous solution at acid condition; after surface diazo reaction, surface positively charged PES/PES-N2(+) membrane is prepared. Second, poly(styrene-alt-maleic anhydride) (PS-alt-MA) is synthesized, then sulfonated and treated by sodium hydroxide solution to obtain sodium sulfonated (PS-alt-MA) (NaSPS-MA). Finally, the negatively charged NaSPS-MA copolymer is coated onto the surface positively charged PES/PES-N2(+) membrane via electrostatic interaction; after UV-cross-linking, the linkage between the PES-N2(+) and NaSPS-MA changes to a covalent bond. The surface-modified PES membrane is characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) analyses, and surface zeta potential analyses. The modified membrane exhibits good hemocompatibility and cytocompatibility, and the improved biocompatibility might have resulted from the existence of the hydrophilic groups (sodium carboxylate (-COONa) and sodium sulfonate (-SO3Na)). Moreover, the stability of the modified membrane is also investigated. The results indicated that the modified PES membrane using negatively charged copolymers had a lot of potential in blood purification fields and bioartificial liver supports for a long time.

  11. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride)

    PubMed Central

    Samyn, Pieter; Schoukens, Gustaaf; Stanssens, Dirk

    2015-01-01

    A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln) by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride) or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide) or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects. PMID:28793445

  12. Cytotoxicity and biocompatibility evaluation of a poly(magnesium acrylate) hydrogel synthesized for drug delivery.

    PubMed

    Cheddadi, Maha; López-Cabarcos, Enrique; Slowing, Karla; Barcia, Emilia; Fernández-Carballido, Ana

    2011-07-15

    We report the synthesis and characterization as well as cytotoxicity and biocompatibility studies of a poly(magnesium acrylate) hydrogel (PAMgA) developed for drug delivery applications. Two hydrogels with different mesh sizes, large and short, were synthesized (L-C PAMgA and S-C PAMgA). The hydrogels were characterized through swelling, FT-IR and DSC. Cytotoxicity in vitro was evaluated on cell line NIH-3T3 fibroblasts via direct contact and two indirect contact methods (MTT and flow citometry). Both PAMgA hydrogels exhibited low cytotoxicity with survival rates higher than 90%. To select their administration route, biocompatibility was evaluated after intraperitoneal, subcutaneous, and oral administration to mice of both hydrogels at different dose ranges. Swelling percentages obtained were 33.3 ± 4.2% and 166.7 ± 8.3% for L-C PAMgA and S-C PAMgA respectively, showing a great difference in both hydrogels. Among the administration routes assayed, the hydrogels were well tolerated after oral administration of a wide dose range (10-500 mg/kg), thereby indicating that both PAMgA hydrogels are excellent candidates for oral administration due to their in vitro biocompatibility and oral non-toxicity. These results together with the fact that their synthesis is simple and inexpensive make them good candidates for the design of oral drug delivery devices.

  13. Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli.

    PubMed

    Tappel, Ryan C; Wang, Qin; Nomura, Christopher T

    2012-04-01

    The composition of medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) biopolymers is normally an uncontrollable random mixture of repeating units with differing side chain lengths. Attempts to generate MCL PHA homopolymers and control repeating unit composition have been published in native PHA-producing organisms but have limited ranges for the different sizes of repeating units that can be synthesized. In this study, a new Escherichia coli-based system that exhibits control over repeating unit composition for both MCL PHAs and short-chain-length (SCL) PHAs has been developed, covering an unprecedented range of repeating units. The fadB and fadJ genes from the β-oxidation pathway were eliminated from the chromosome of E. coli LS5218. The subsequent blockage in β-oxidation caused a buildup of enoyl-CoA intermediates, which were converted to PHAs by an (R)-specific enoyl-CoA hydratase (PhaJ4) and PHA synthase [PhaC1(STQK)] expressed from a plasmid DNA construct. Fatty acid substrates were converted to PHAs with repeating units equal in the number of carbon atoms to the fatty acid substrate. The broad substrate specificities of the PhaJ4 and PhaC1(STQK) enzymes allowed for the production of homopolymers with strict control over the repeating unit composition from substrates of four to twelve carbons in length. Polymers were purified and analyzed by GC, GC-MS, and NMR for structural composition and by DSC, TGA, and GPC for thermal and physical characteristics. This study marks the development of the first single biological system to achieve consistent repeating unit control over such a broad range of repeating units in PHAs. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Poly(vinyl ester) Block Copolymers Synthesized by Reversible Addition−Fragmentation Chain Transfer Polymerizations

    SciTech Connect

    Lipscomb, Corinne E.; Mahanthappa, Mahesh K.

    2009-07-31

    Homopolymerizations and block copolymerizations of vinyl acetate (VAc), vinyl pivalate (VPv), and vinyl benzoate (VBz) by reversible addition-fragmentation chain transfer (RAFT) polymerization have been studied. Polymerizations of VAc initiated with 2,2{prime}-azobis(isobutyronitrile) (AIBN) at 60 C using two different xanthate RAFT agents C{sub 2}H{sub 5}OC(=S)SR (R = -CH(CH{sub 3})CO{sub 2}C{sub 2}H{sub 5} (1) and -CH(CH{sub 3})O{sub 2}CC(CH{sub 3}){sub 3} (2)) were examined to elucidate the dependence of the polydispersities of the resulting polymers on the RAFT agent leaving group R. RAFT agent 2, in which the leaving R-group mimics a growing vinyl ester polymer chain, consistently yields poly(vinyl acetates) having broader polydispersities than those synthesized using 1 (M{sub n} = 3.6-14 kg/mol and M{sub w}/M{sub n} = 1.15-1.33). While VPv exhibits similar controlled polymerization behavior to VAc, RAFT homopolymerizations of VBz mediated by 1 indicate this electron-deficient vinyl ester requires higher temperatures to effect controlled polymerizations to yield polymers having M{sub n} = 4-14 kg/mol and M{sub w}/M{sub n} = 1.29-1.53. Chain extension reactions from xanthate-terminated vinyl ester homopolymers with VAc, VPv, and VBz proceed with variable efficiencies to furnish block copolymers that microphase separate in the melt state as determined by small-angle X-ray scattering.

  15. Antimicrobial lubricant formulations containing poly(hydroxybenzene)-trimethoprim conjugates synthesized by tyrosinase.

    PubMed

    Gonçalves, Idalina; Botelho, Cláudia M; Teixeira, Ana; Abreu, Ana S; Hilliou, Loïc; Silva, Carla; Cavaco-Paulo, Artur

    2015-05-01

    Poly(hydroxybenzene)-trimethoprim conjugates were prepared using methylparaben as substrate of the oxidative enzyme tyrosinase. MALDI-TOF MS analysis showed that the enzymatic oxidation of methylparaben alone leads to the poly(hydroxybenzene) formation. In the presence of trimethoprim, the methylparaben tyrosinase oxidation leads poly(hydroxybenzene)-trimethoprim conjugates. All of these compounds were incorporated into lubricant hydroxyethyl cellulose/glycerol mixtures. Poly(hydroxybenzene)-trimethoprim conjugates were the most effective phenolic structures against the bacterial growth reducing by 96 and 97% of Escherichia coli and Staphylococcus epidermidis suspensions, respectively (after 24 h). A novel enzymatic strategy to produce antimicrobial poly(hydroxybenzene)-antibiotic conjugates is proposed here for a wide range of applications on the biomedical field.

  16. Investigation of nonfouling polypeptides of poly(glutamic acid) with lysine side chains synthesized by EDC·HCl/HOBt chemistry.

    PubMed

    Yang, Qinghua; Li, Wenchen; Wang, Longgang; Wang, Guangzhi; Wang, Zhen; Liu, Lingyun; Chen, Shengfu

    2014-01-01

    Nonfouling polypeptides with homogenous alternating charges draw peoples' attentions for their potential capability in biodegradation. Homogenous glutamic acid (E) and lysine (K) polypeptides were proposed and synthesized before. In this work, a new polypeptide formed by poly(glutamic acid) with lysine side chains (poly(E)-K) was synthesized by facile EDC·HCl/HOBt chemistry and investigated. Results show that these polypeptides also have good nonspecific protein resistance determined by enzyme-linked immunosorbent assay. The lowest nonspecific adsorption of the model proteins, anti-IgG and fibrinogen (Fg), on the self-assembling monolayers (SAMs) surface of poly(E)-K was only 3.3 ± 1.8 and 4.4 ± 1.6%, respectively, when protein adsorption on tissue culture polystyrene surface was set as 100%. And, the relative nonspecific protein adsorption increases when the polypeptide molecular weight increases due to the repression of low density polymer brushes. Moreover, almost no obvious cytotoxicity and hemolytic activity in vitro were detected. This work suggests that polypeptides with various formats of homogenous balanced charges could achieve excellent nonspecific protein resistance, which might be the intrinsic reason for the coexistence of high concentration serum proteins in blood.

  17. Syntheses, characterization, and in vitro degradation of ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) copolymers by sequential ring-opening polymerization.

    PubMed

    Yuan, Weizhong; Yuan, Jinying; Zhang, Fengbo; Xie, Xuming

    2007-04-01

    Well-defined ethyl cellulose-graft-poly(epsilon-caprolactone) (EC-g-PCL) graft copolymers were successfully synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) with an ethyl cellulose (EC) initiator and a tin 2-ethylhexanoate (Sn(Oct)2) catalyst in xylene at 120 degrees C. Then, novel ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) (EC-g-PCL-b-PLLA) graft-block copolymers were prepared by ROP of L-lactide (L-LA) with a hydroxyl-terminated EC-g-PCL macroinitiator and Sn(Oct)2 catalyst in bulk at 120 degrees C. Various graft and block lengths of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were obtained by adjusting the molar ratios of CL monomer to EC and the L-LA monomer to CL. The thermal properties and crystalline morphologies of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were different from those of linear PCL. The in vitro degradation rate of EC-g-PCL-b-PLLA was faster than those of linear PCL and EC-g-PCL due to the presence of PLLA blocks.

  18. Plasma polymerized allylamine coated quartz particles for humic acid removal.

    PubMed

    Jarvis, Karyn L; Majewski, Peter

    2012-08-15

    Allylamine plasma polymerization has been used to modify the surface of quartz particles for humic acid removal via an inductively coupled rotating barrel plasma reactor. Plasma polymerized allylamine (ppAA) films were deposited at a power of 25 W, allylamine flow rate of 4.4 sccm and polymerization times of 5-60 min. The influence of polymerization time on surface chemistry was investigated via X-ray photoelectron spectroscopy (XPS), time of flight secondary ion mass spectrometry (ToF-SIMS) and electrokinetic analysis. Acid orange 7 adsorption/desorption quantified the number of surface amine groups. Humic acid removal via ppAA quartz particles was examined by varying pH, removal time, humic acid concentration, and particle mass. Increasing the polymerization time increased the concentration of amine groups on the ppAA quartz surface, thus also increasing the isoelectric point. ToF-SIMS demonstrated uniform distribution of amine groups across the particle surface. Greatest humic acid removal was observed at pH 5 due to electrostatic attraction. At higher pH values, for longer polymerization times, humic acid removal was also observed due to hydrogen bonding. Increasing the initial humic acid concentration increased the mass of humic acid removed, with longer polymerization times exhibiting the greatest increases. Plasma polymerization using a rotating plasma reactor has shown to be a successful method for modifying quartz particles for the removal of humic acid. Further development of the plasma polymerization process and investigation of additional contaminants will aid in the development of a low cost water treatment system.

  19. Self-assembly of brush-like poly[poly(ethylene glycol) methyl ether methacrylate] synthesized via aqueous atom transfer radical polymerization.

    PubMed

    Hussain, Hazrat; Mya, Khine Yi; He, Chaobin

    2008-12-02

    Self-assembly of brush-like well-defined poly[poly(ethylene glycol) methyl ether methacrylate] homopolymers, abbreviated as P(PEGMA-475) and P(PEGMA-1100) is investigated in aqueous solution by employing dynamic/static light scattering (DLS/SLS) and transmission electron microscopy (TEM), whereas 475 and 1100 is molar mass of the respective PEGMA macromonomer. The mentioned brush-like homopolymers are synthesized by aqueous ATRP at room temperature. The critical association concentration (CAC) of the synthesized polymers in water depends on the length of the PEG side chains but not on the overall molar mass of the polymer. Thus, approximately the same CAC of approximately 0.35 mg/mL is estimated for various P(PEGMA-1100) samples, and approximately 0.7 mg/mL is estimated for P(PEGMA-475) series. All the investigated P(PEGMA-1100) samples form multimolecular micelles in aqueous solution, where the hydrodynamic size (Rh) and the aggregation number (Nagg) of micelles decreases as the molecular weight of P(PEGMA-1100) increases. This can be attributed to the increased steric hindrances between the PEG side chains in corona of micelles formed by higher molar mass P(PEGMA-1100). The tendency of micelle formation by samples of P(PEGMA-475) series is significantly lower than that of P(PEGMA-1100) series, as demonstrated by their significantly higher CAC and micelles of lower Nagg. The Rh of micelles does not depend strongly on polymer concentration, which suggests that these micelles are formed via the closed association model. Micelles formed by P(PEGMA-1100) series slightly shrink with increase in temperature from 25 to 60 degrees C, while those of P(PEGMA-475) series are found to be insensitive to the same temperature variation. Finally, TEM is carried out to visualize the formed micelles after transferring the aqueous solution to carbon film.

  20. Degree of branching in hyperbranched poly(glycerol-co-diacid)s synthesized in toluene

    USDA-ARS?s Scientific Manuscript database

    Hyperbranched polymers were synthesized by using a Lewis acid (dibutyltin(IV)oxide) to catalyze the polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutaric acid (n=3) or azelaic acid (n=7) in toluene. These are the first examples of diacid-glycerol hyperbranc...

  1. Gelation, swelling and water vapor permeability behavior of radiation synthesized poly(ethylene oxide) hydrogels

    NASA Astrophysics Data System (ADS)

    Savaş, Hülya; Güven, Olgun

    2002-04-01

    In this study, gamma ray induced gelation of aqueous solutions of poly(ethylene oxide), (PEO) with 73.300 Da average molecular weight has been studied. Percent of conversion of polymer into gel as well as swelling behavior were investigated gravimetrically. The effect of the dose rate on these properties was studied. Within the dose rate range studied, it is observed that low dose rate irradiation favors chain scission and although the dominant effect is still crosslinking, %gelation at a given dose decreases. Water vapor permeability (Wvp) of PEO hydrogels has been studied with regard to crosslink density changes and temperature. The water vapor permeability of hydrogels obtained at high dose rate was found to be lower than those obtained at low dose rate which was related to higher crosslink density achieved under higher dose rate irradiations.

  2. Frontiers in poly(ionic liquid)s: syntheses and applications.

    PubMed

    Qian, Wenjing; Texter, John; Yan, Feng

    2017-02-20

    We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.

  3. Synthesization and characterization of poly(lactic-co-glycolic acid) / calcium phosphate bone cement from crab shells

    NASA Astrophysics Data System (ADS)

    Hanan, M. R. Abdul; Daud, N. M.; Ismail, L. H.; Saidin, S.

    2017-05-01

    An injectable calcium phosphate (CaP) bone cement has been widely used for musculoskeletal and bone disorder due to its biocompatible and osteoconductive properties. In this study, CaP was successfully synthesized from crab shells by a wet chemical route. Poly(lactic-co-glycolic acid) (PLGA) microspheres which have been produced through a double emulsion technique were incorporated into the CaP mixture for the purpose of bone cement solidification. The ratio of both compounds, CaP and PLGA, were set at 8:2. The CaP and PLGA/CaP bone cement were analyzed by ATR-FTIR, FESEM-EDX and contact angle analyses. The bone cement was composed of CaP and PLGA where the micro-powders of CaP were agglomerated on the PLGA microspheres. Addition of the PLGA has increased the hydrophilicity of the bone cement which will be beneficial for materials degradation and bone integration.

  4. Preparation and characterization of poly(vinyl alcohol)/graphene nanofibers synthesized by electrospinning

    NASA Astrophysics Data System (ADS)

    Barzegar, Farshad; Bello, Abdulhakeem; Fabiane, Mopeli; Khamlich, Saleh; Momodu, Damilola; Taghizadeh, Fatemeh; Dangbegnon, Julien; Manyala, Ncholu

    2015-02-01

    We report on the synthesis and characterization of electrospun polyvinyl alcohol (PVA)/graphene nanofibers. The samples produced were characterized by Raman spectroscopy for structural and defect density analysis, scanning electron microscopy (SEM) for morphological analysis, and thermogravimetric (TGA) for thermal analysis. SEM measurements show uniform hollow PVA fibers formation and excellent graphene dispersion within the fibers, while TGA measurements show the improved thermal stability of PVA in the presence of graphene. The synthesized polymer reinforced nanofibers have potential to serve in many different applications such as thermal management, supercapacitor electrodes and biomedical materials for drug delivery.

  5. Antifungal activity of the allylamine derivative terbinafine in vitro.

    PubMed Central

    Petranyi, G; Meingassner, J G; Mieth, H

    1987-01-01

    Terbinafine, an allylamine derivative, represents the most effective of this new chemical class of antimycotic compounds. Under in vitro conditions, terbinafine proved to be highly active against dermatophytes (MIC range, 0.001 to 0.01 microgram/ml), aspergilli (MIC range, 0.05 to 1.56 micrograms/ml), and Sporothrix schenckii (MIC range, 0.1 to 0.4 microgram/ml) and also exerted good activity against yeasts (MIC range, 0.1 to greater than 100 micrograms/ml). The growth of Malassezia furfur was inhibited also (MIC range, 0.2 to 0.8 microgram/ml). Terbinafine displays a primary fungicidal action against dermatophytes, other filamentous fungi, and S. schenckii. The type of action against yeasts is species dependent and can be primarily fungicidal (Candida parapsilosis) or fungistatic (Candida albicans). The in vitro activity of terbinafine is pH dependent and rises with increasing pH value. PMID:3674847

  6. Calorimetrically recognized maximum yield of poly-3-hydroxybutyrate (PHB) continuously synthesized from toxic substrates.

    PubMed

    Maskow, T; Babel, W

    2000-02-17

    The broader usage of poly-beta-hydroxybutyrate (PHB), for instance as bulk plastics, calls for cheap raw materials and greater overall process efficiency. The bacterial synthesis is generally induced and promoted by the limitation of growth via nitrogen, oxygen or phosphate depletion with the simultaneous excess and higher concentration of the carbon substrate. Consequently, toxic substrates have been considered unsuitable for PHB synthesis. Nevertheless, a single-stage continuous process for producing PHB from toxic substrates using microorganisms was developed and is reported here. The maximum heat flux during continuous growth and the maximum yield of PHB versus the substrate consumption rate were found to coincide. This suggests the possibility of controlling the conversion of a growth-inhibiting substrate into PHB and maximizing the process efficiency. The observed correlation occurred irrespective of the substrates investigated (phenol or sodium benzoate), the PHB-producing strain (Ralstonia eutropha JMP 134 or Variovorax paradoxus JMP 116), or the type of limitation imposed. The maximum PHB yields obtained comprised up to 50% of cell dry mass.

  7. Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite hydrogels synthesized by photopolymerization.

    PubMed

    Ferse, Bernhard; Richter, Sven; Eckert, Franziska; Kulkarni, Amit; Papadakis, Christine M; Arndt, Karl-Friedrich

    2008-11-04

    The gelation process of poly-(N-isopropylacrylamide)-clay nanocomposite hydrogels (PNIPAAm-clay NC gels) was investigated by dynamic and static light scattering (DLS and SLS), as well as by fluorescence correlation spectroscopy (FCS). The photopolymerization method chosen for the radical polymerizing system ensured that, when the irradiation is removed, the reaction stopped immediately. Experiments showed that shortly before the gelation threshold is reached, no changes in the DLS autocorrelation functions appear, while the monomer conversion can be observed by 1H NMR spectroscopy. These results correspond to the formation of microparticles, in which the PNIPAAm chains are closely attached to the clay platelets. During the further polymerization process, clay clusters are developed before the sol-gel threshold is reached. FCS measurements were performed to obtain information on the motion of the clay platelets inside the NC gel. The DLS method gives only an average of the motions in the gel. In a time window between 10 micros and 1 s, the clay sheets labeled with Rhodamine B show no characteristic motions.

  8. Modulation of phosphoinositide metabolism in aortic smooth muscle cells by allylamine

    SciTech Connect

    Cox, L.R.; Murphy, S.K.; Ramos, K. )

    1990-08-01

    Aortic smooth muscle cells (SMC) modulate from a contractile to a proliferative phenotype upon subchronic exposure to allylamine. The present studies were designed to determine if this phenotypic modulation is associated with alterations in the metabolism of membrane phosphoinositides. 32P incorporation into phosphatidylinositol 4-phosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA) was lower by 31, 35, and 22%, respectively, in SMC from allylamine-treated animals relative to controls. In contrast, incorporation of (3H)myoinositol into inositol phosphates did not differ in allylamine cells relative to control cells. Exposure to dibutyryl (db) cAMP (0.2 mM) and theophylline (0.1 mM) reduced 32P incorporation into PIP and PIP2 in SMC from both experimental groups. Under these conditions, a decrease in (3H)myoinositol incorporation into inositol 1-phosphate was only observed in allylamine cells. The effects of db cAMP and theophylline in allylamine and control SMC correlated with a marked decrease in cellular proliferation. These results suggest that alterations in phosphoinositide synthesis and/or degradation contribute to the enhanced proliferation of SMC induced by allylamine. To further examine this concept, the effects of agents which modulate protein kinase C (PKC) activity were evaluated. Sphingosine (125-500 ng/ml), a PKC inhibitor, decreased SMC proliferation in allylamine, but not control cells. 12-O-Tetradecanoylphorbol-13-acetate (1-100 ng/ml), a PKC agonist, stimulated proliferation in control cells, but inhibited proliferation in cells from allylamine-treated animals. We conclude that allylamine-induced phenotypic modulation of SMC is associated with alterations in phosphoinositide metabolism.

  9. Preparation, Characterization, and Size Control of Chemically Synthesized CdS Nanoparticles Capped with Poly(ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Seoudi, R.; Allehyani, S. H. A.; Said, D. A.; Lashin, A. R.; Abouelsayed, A.

    2015-10-01

    We prepared cadmium sulfide (CdS) nanoparticles of a specific size via chemical precipitation at room temperature and characterized them using high-resolution transmission electron microscopy, x-ray powder diffraction, ultraviolet-visible spectroscopy, and Fourier-transform infrared (FTIR) measurements. The results showed that the samples were grown with a cubic phase; the particle size could be changed from 2 nm to 4 nm by varying the molar ratios of the precursors (cadmium chloride and sodium sulfide) in the presence of poly(ethylene glycol) (PEG) as an effective capping agent. The optical bandgap of the synthesized nanoparticles was calculated and ranged from 2.73 eV to 2.92 eV depending on the particle size. A large blue-shift from the bulk bandgap (2.42 eV) was observed owing to the quantum size effect. Surface passivation and adsorption of PEG on the CdS nanoparticles was explained on the basis of FTIR measurements; two bands were observed at 476 cm-1 and 622 cm-1, corresponding to cadmium and sulfide stretching vibrations. We conclude that particle size can be controlled by varying the molar ratios of the precursors. Owing to the PEG encapsulation, the as-prepared samples were extremely stable over time.

  10. Poly(ε-caprolactone) reinforced with sol-gel synthesized organic-inorganic hybrid fillers as composite substrates for tissue engineering.

    PubMed

    Russo, Teresa; Gloria, Antonio; D-Antò, Vincenzo; D'Amora, Ugo; Ametrano, Gianluca; Bollino, Flavia; De Santis, Roberto; Ausanio, Giovanni; Catauro, Michelina; Rengo, Sandro; Ambrosio, Luigi

    2010-01-01

    The importance of polymer-based composite materials to make multifunctional substrates for tissue engineering and the strategies to improve their performances have been stressed in the literature. Bioactive features of sol-gel synthesized poly(ε-caprolactone)/TiO₂ or poly(ε-caprolactone)/ZrO₂ organic-inorganic hybrid materials are widely documented. Accordingly, the aim of this preliminary research was to develop advanced composite substrates consisting of a poly(ε-caprolactone) matrix reinforced with sol-gel synthesized PCL/TiO₂ or PCL/ZrO₂ hybrid fillers. Micro-computed tomography and atomic force microscopy analyses allowed to study surface topography and roughness. On the other hand, mechanical and biological performances were evaluated by small punch tests and Alamar Blue™ assay, respectively. Micro-computed tomography and atomic force microscopy analyses highlighted the effect of the preparation technique. Results from small punch tests and Alamar Blue™ assay evidenced that PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers provided better mechanical and biological performances. PCL reinforced with Ti2 (PCL=12, TiO₂=88 wt%) and Zr2 (PCL=12, ZrO₂=88 wt%) hybrid fillers could be considered as advanced composite substrates for hard tissue engineering.

  11. The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-12-01

    Nanoparticles of CoFe2O4 were synthesized by hydrothermal process at 190 °C with and without poly vinyl alcohol (PVA) addition using treatment durations of 1.5-6 h. The synthesized powders were characterized with X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. XRD results show presence of CoFe2O4 as the main phase and Co3O4 as the lateral phase in some samples. The results show that in the samples synthesized without PVA addition considerable amount of lateral phase is present after 3 h of hydrothermal treatment while with PVA addition this phase is undetectable in the XRD patterns of the sample synthesized at the same conditions. Microstructural studies represent increasing of particle size with increasing of hydrothermal duration and formation of coarser particles with PVA addition. The highest maximum magnetization (Mmax) values in both of the samples that were synthesized with and without PVA addition are about 59 emu/g that were obtained after 4.5 h of hydrothermal treatment. Intrinsic coercive field (iHc) value of the sample without PVA addition increases from 210 to 430 Oe. While with PVA addition the iHc value changes from 83 Oe to 493 Oe. The mechanism of changes in Mmax and iHc values has been explained.

  12. Improvement of the titanium implant biological properties by coating with poly (ε-caprolactone)-based hybrid nanocomposites synthesized via sol-gel

    SciTech Connect

    Catauro, Michelina; Bollino, Flavia; Papale, Ferdinando

    2016-05-18

    When bioactive coatings are applied to medical implants by means of sol-gel dip coating technique, the biological proprieties of the implant surface can be modified to match the properties of the surrounding tissues. In this study organo-inorganic nanocomposites materials were synthesized via sol-gel. They consisted of an inorganic zirconium-based and silica-based matrix, in which a biodegradable polymer (the poly-ε-caprolactone, PCL) was incorporated in different weight percentages. The synthesized materials, in sol phase, were used to dip-coat a substrate of commercially pure titanium grade 4 (CP Ti gr. 4) in order to improve its biological properties. A microstructural analysis of the obtained films was carried out by scanning electron microscopy (SEM) and attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR). Biological proprieties of the coated substrates were investigated by means of in vitro tests.

  13. Palladium-catalyzed oxidative carbonylation of N-allylamines for the synthesis of β-lactams.

    PubMed

    Li, Wu; Liu, Chao; Zhang, Heng; Ye, Keyin; Zhang, Guanghui; Zhang, Wangzheng; Duan, Zhengli; You, Shuli; Lei, Aiwen

    2014-02-24

    β-Lactam scaffolds are considered to be ideal building blocks for the synthesis of nitrogen-containing compounds. A new palladium-catalyzed oxidative carbonylation of N-allylamines for the synthesis of α-methylene-β-lactams is reported. DFT calculations suggest that the formation of β-lactams via a four-membered-ring transition state is favorable. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Electro-optical properties of one pot synthesized polyindole in the presence of poly(vinyl acetate)

    NASA Astrophysics Data System (ADS)

    Bhagat, D. J.; Dhokane, G. R.

    2015-05-01

    Polyindole was prepared in the presence of poly(vinyl acetate) through a chemical polymerization technique. The indole monomer was polymerized using ferric chloride as an oxidant. Electrical conductivity measurements were performed through a two probe technique. The prepared composites were analyzed by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDAX), and ultraviolet-visible (UV-VIS) spectroscopy. The DC conductivity was found to be 4.46 × 10-6 S/cm at 383 K. An attempt has been made to investigate the electrooptical properties of PIN/PVAc composite films.[Figure not available: see fulltext.

  15. Syntheses and physical characterization of new aliphatic triblock poly(L-lactide-b-butylene succinate-b-L-lactide)s bearing soft and hard biodegradable building blocks.

    PubMed

    Ba, Chaoyi; Yang, Jing; Hao, Qinghui; Liu, Xiaoyun; Cao, Amin

    2003-01-01

    This study presents chemical syntheses and physical characterization of a new aliphatic poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolyester with soft and hard biodegradable building blocks. First, poly(butylene succinate) (PBS) prepolymers terminated with hydroxyl functional groups were synthesized through melt polycondensation from succinic acid and 1,4-butanediol. Further, a series of new PLLA-b-PBS-b-PLLA triblock copolyesters bearing various average PLLA block lengths were prepared via ring opening polymerization of L-lactide with the synthesized hydroxyl capped PBS prepolymer (Mn = 4.9 KDa) and stannous octanoate as the macroinitiator and catalyst, respectively. By means of GPC, NMR, FTIR, DSC, TGA, and wide-angle X-ray diffractometer (WAXD), the macromolecular structures and physical properties were intensively studied for these synthesized PBS prepolymer and PLLA-b-PBS-b-PLLA triblock copolyesters. 13C NMR and GPC experimental results confirmed the formation of sequential block structures without any detectable transesterification under the present experimental conditions, and the molecular weights of triblock copolyesters could be readily regulated by adjusting the feeding molar ratio of L-lactide monomer to the PBS macroinitiator. DSC measurements showed all single glass transitions, and their glass transition temperatures were found to be between those of PLLA and PBS, depending on the lengths of PLLA blocks. It was noteworthy that the segmental flexibilities of the hard PLLA blocks were found to be remarkably enhanced by the more flexible PBS block partner, and the PBS and PLLA building blocks were well mixed in the amorphous regions. Results of TGA analyses indicated that thermal degradation and stabilities of the PLLA blocks strongly depended on the average PLLA block lengths of triblock copolyesters. In addition, FTIR and WAXD results showed the coexistence of the assembled PLLA and PBS crystal structures when the average PLLA block

  16. Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA-SiO₂) hybrid material synthesized with different molar ratios.

    PubMed

    Clausen, Débora Nobile; Pires, Igor Matheus Ruiz; Tarley, César Ricardo Teixeira

    2014-11-01

    The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.

  17. A facile route to synthesize silver nanoparticles in polyelectrolyte capsules.

    PubMed

    Anandhakumar, S; Raichur, Ashok M

    2011-06-01

    We are reporting a novel green approach to incorporate silver nanoparticles (NPs) selectively in the polyelectrolyte capsule shell for remote opening of polyelectrolyte capsules. This approach involves in situ reduction of silver nitrate to silver NPs using PEG as a reducing agent (polyol reduction method). These nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by the synthesis of silver NPs and subsequently the dissolution of the silica core. The size of silver nanoparticles synthesized was 60±20 nm which increased to 100±20 nm when the concentration of AgNO(3) increased from 25 mM to 50 mM. The incorporated silver NPs induced rupture and deformation of the capsules under laser irradiation. This method has advantages over other conventional methods involving chemical agents that are associated with cytotoxicity in biological applications such as drug delivery and catalysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Lead-selective poly(vinyl chloride) electrodes based on some synthesized benzo-substituted macrocyclic diamides.

    PubMed

    Kazemi, Sayed Yahya; Shamsipur, Mojtaba; Sharghi, Hashem

    2009-12-15

    A series of recently synthesized benzo- and pyridine-substituted macrocyclic diamides were studied to characterize their abilities as lead ion carriers in PVC membrane electrodes. The electrode based on 3,15,21-triaza-4,5;13,14-dibenzo-6,9,12-trioxabicycloheneicosa-1,17,19-triene-2,16-dione exhibits a Nernstian response for Pb2+ ions over a wide concentration range (1.3 x 10(-2) to 3.6 x 10(-6) mol L(-1)) with a limit of detection of 2.0 x 10(-6) mol L(-1) (0.4 ppm). The response time of the sensor is approximately 16 s, and the membrane can be used for more than two months without observing any deviation. The electrode revealed comparatively good selectivities with respect to many cations including alkali earth, transition and heavy metal ions. The proposed sensor could be used in pH range of 3.7-6.5. It was used as an indicator electrode in potentiometric titration of chromate ions with a lead ion solution.

  19. Bactericidal effect of poly(acrylamide/itaconic acid)-silver nanoparticles synthesized by gamma irradiation against Pseudomonas aeruginosa.

    PubMed

    Eid, M; Araby, E

    2013-09-01

    Antimicrobial activity of silver nanoparticles is gaining importance due its broad spectrum of targets in cell compared to conventional antimicrobial agents. In this context, silver nanoparticles were synthesized by gamma irradiation-induced reduction method of acrylamide and itaconic acid with irradiation dose up to 70 kGy. Silver nanoparticles were examined by Fourier-transform infrared, scanning electron microscopic images (SEM), and ultraviolet-visible spectrophotometer. The particle size was determined by X-ray diffraction, transmission electron microscopy (TEM), and dynamic light scattering. The antibacterial effect was studied by disk diffusion method against some bacterial pathogenic strains. Silver nanoparticles showed promising activity against Pseudomonas aeruginosa and slightly active against Escherichia coli, methicillin-resistant Staphylococcus aureus, and Klebsiella pneumonia. The bactericidal effect of silver nanoparticles was tested against P. aeruginosa. The killing rate of P. aeruginosa was found to be 90 % of viability at (100 μl/ml) of silver nanoparticles. Exposure of P. aeruginosa cells to silver nanoparticles caused fast loss of 260 nm absorbing materials and release of potassium ions. The TEM and SEM observation showed that silver nanoparticles may destroy the structure of bacterial cell membrane in order to enter the bacterial cell resulting in the leakage of the cytoplasmic component and the eventual death.

  20. Synthese and characterization of boronic acid functionalized macroporous uniform poly(4-chloromethylstyrene-co-divinylbenzene) particles and its use in the isolation of antioxidant compounds from plant extracts.

    PubMed

    Cetinkaya, Onur; Duru, Mehmet Emin; Ciçek, Hüseyin

    2012-11-15

    Aminophenyl boronic acid (APBA) carrying uniform-macroporous poly(chloromethylstyrene-co-divinylbenzene), poly(CMS-co-DVB) particles were synthesized for selective separation of cis-diol-containing flavonoids from plant extracts. For this purpose, 2.5 μm polystyrene seed particles were first swelled by a mixture of dibutyl phthalate (DBP), toluene and dodecanol, then by a monomer mixture including CMS and DVB. The repolymerization of the monomer phase in the swollen seed particles provided macroporous and uniform particles, approximately 7 μm in size. Chlorine atoms on the surface of these particles were derivatized with APBA to gain affinity properties for flavonoids containing vicinal hydroxyl groups. Model adsorption studies showed that these particles selectively adsorbed quercetin and rutin containing cis-diol groups, but did not adsorb apigenin similar to quercetin and not carrying cis-diol groups. These particles were also tested in adsorption/desorption studies for ethanol and ethyl acetate extracts of the Hypericum perforatum (HP) stems to obtain high antioxidant mixtures. With ethanol extract, the antioxidant activity of the desorption solution was a bit higher than that of the post-adsorption solutions. However, the DPPH radical scavenging activity of the desorption solution decreased with respect to the original extract and post-adsorption solutions. A similar result was obtained for the antioxidant activity of the desorption solution using ethyl acetate extract. An interesting result was obtained that DPPH radical scavenging activity of the post-adsorption solution was higher than that of the original ethyl acetate extract and desorption solutions. These results were attributed to selective adsorption of antioxidant characterized cis-diol-containing apolar molecules much more rather than that radical scavenger characterized polar molecules.

  1. Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions.

    PubMed Central

    Boor, P. J.; Ferrans, V. J.

    1985-01-01

    The late myocardial and vascular ultrastructural changes in rat hearts following consumption of the cardiovascular toxin allylamine were studied. Rats were given 0.1% allylamine HCl in drinking water for 10-104 days. From 10 to 21 days, there was organization of acute myocardial necrosis by macrophages and scattered polymorphonuclear leukocytes with prominent interstitial-cell proliferation. Alterations at 21-104 days included extensive scarring with formation of dense mature collagen with scattered fibroblasts present, grossly evident left-ventricular aneurysm, and gross and microscopic changes similar to those observed in the secondary form of endocardial fibroelastosis. Areas of scar contained highly cellular foci of smooth-muscle cells, myofibroblasts, and abundant extracellular elastin. Cardiac myocytes frequently showed markedly disorganized myofilaments, bizarrely distorted mitochondria with condensed cristae, and other severe degenerative changes. Small vessels within and adjacent to scar showed proliferation of intimal smooth-muscle cells. Endothelial lesions or recent or organized thrombi were not seen. Focal endocardial metaplasia, consisting of both chondroid and osseous tissue, was found in areas of transmural scarring, or ventricular aneurysm. Chondrocytes had the overall nuclear and cellular morphology, abundant rough endoplasmic reticulum, and surrounding lacunae typical of mature fibrocartilage. In some areas, the collagen matrix was undergoing calcification with the typical cross-banded pattern of calcifying connective tissue. Osteocytes were located in a densely calcified bone matrix and displayed characteristic cellular extensions into surrounding canaliculi. These findings indicate a severe myocardial, small-vessel, and endocardial injury during the course of chronic allylamine intoxication. Images Figure 13 Figure 14 Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 15 Figure

  2. Radiation synthesized poly( n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles as LSPR-based optical sensor for mercury ions estimation

    NASA Astrophysics Data System (ADS)

    Misra, Nilanjal; Kumar, Virendra; Goel, Narender Kumar; Varshney, Lalit

    2015-07-01

    Poly( n-vinyl-2-pyrrolidone)-stabilized-gold nanoparticles (PVP-Au-NPs) have been synthesized via a green-60Co-Gamma radiolytic route and employed as a localized surface plasmon resonance (LSPR)-based optical sensor for estimation of trace quantities of Hg2+ ion in aqueous solutions. The in situ generated PVP-Au-NPs were characterized using UV-vis spectroscopy, transmission electron microscopy, and particle size analysis techniques. Reaction conditions were optimized to obtain uniformly dispersed PVP-Au-NPs with average particle size of 7.1 ± 1.6 nm (±s), which exhibited a narrow LSPR band at 527 nm. The decrease in LSPR band intensity of PVP-Au-NPs with increase in Hg2+ ion concentration was found to be linear in the Hg2+ ion concentration range of 0-100 nM. The LSPR-based PVP-Au-NPs optical sensor system was found to be selective for Hg2+ and independent of interference from other metal ions such as Ca2+, Cu2+, Cd2+, and Fe2+ up to a concentration of 500 nM.

  3. Swelling of poly(N-isopropylacrylamide) P(NIPA)-based hydrogels with bacterial-synthesized prodigiosin for localized cancer drug delivery.

    PubMed

    Danyuo, Y; Dozie-Nwachukwu, S; Obayemi, J D; Ani, C J; Odusanya, O S; Oni, Y; Anuku, N; Malatesta, K; Soboyejo, W O

    2016-02-01

    We present the results of swelling experiments on poly(N-isopropylacrylamide) P(NIPA)-based hydrogels. The swelling characteristics of P(NIPA)-based homo-polymer and P(NIPA)-based co-polymers with Acrylamide (AM) and Butyl Methacrylate (BMA), were studied using weight gain experiments. The swelling due to the uptake of biosynthesized cancer drug, prodigiosin (PG), was compared to swelling in controlled environments (distilled water (DW), paclitaxel™ (PT) and bromophenol blue (BB)). PG was synthesized with Serratia marcescens (SM) subsp. marcescens bacteria. The mechanisms of drug diffusion and swelling of P(NIPA)-based hydrogels are also elucidated along with characterizing the heterogeneous porous structure of the P(NIPA)-based hydrogels. High Performance Liquefied Chromatography (HPLC) analysis revealed the purity of the biosynthesized prodigiosin to be 92.8%. PG was then absorbed by P(NIPA)-based hydrogels at temperatures between 28-48°C. This is a temperature range that might be encountered during the implantation of biomedical devices for localized cancer treatment via drug delivery and hyperthermia. The results obtained are shown to provide insights for the design of implantable biomedical devices for the localized treatment of breast cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).

    PubMed

    Wei, Dafu; Wang, Hao; Xiao, Huining; Zheng, Anna; Yang, Yang

    2015-06-05

    The biodegradable poly(butylene adipate-co-terephthalate)(PBAT)/thermoplastic starch (TPS) composite has received considerable attention because of the environmental concerns raised by solid waste disposal. However, the application of PBAT/TPS blends was limited due to the poor mechanical properties originating from the incompatibility between PBAT and TPS. In this work, two approaches were developed to improve the mechanical properties of PBAT/TPS blends. One approach is to use compatibilizers, including the synthesized reactive compatibilizer - a styrene-maleic anhydride-glycidyl methacrylate (SMG) terpolymer, and the commercial compatibilizer (Joncryl-ADR-4368). The chemical structures of SMG were analyzed with (1)H NMR and FT-IR. The other approach is to use the modified PBAT (M-PBAT) to replace part of PBAT in the PBAT/TPS blends. M-PBATs with higher molecular weight were obtained via reactive extrusion of PBAT in the presence of a chain extender. The better dispersion of TPS in PBAT was observed in SEM images when using M-PBAT, leading to the higher tensile strength and elongation at break of PBAT/TPS blends. However, the elongation at break decreased in the presence of compatibilizer (SMG or 4368), though the tensile strength remained in a similar level or slightly higher. Overall, the tensile strength and the elongation at break of the resulting biodegradable PBAT/M-PBAT/TPS blends (TPS=40wt%) were above 27.0MPa and 500%, respectively, which is promising for various applications, including packaging and agricultural mulching films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Infrared-induced conformer interconversion processes for allylamine in argon matrices: Wavelength dependence on the kinetics

    NASA Astrophysics Data System (ADS)

    Schriver, A.; Racine, S.; Schriver, L.

    1985-12-01

    Infrared photoisomerization of allylamine trapped in solid argon is studied by irradiation either at specific wavelengths emitted by a CO 2 laser in coincidence with bands of the three conformers (S + G +, ST and CT) or in several mid- or near-IR domains using broad band filters. Upon irradiation with broad band filters the CT → ST process is mainly observed whatever the frequency domain, with only a slight intensity increase of the S + G + bands. Upon irradiation with CO 2 lines in coincidence with CT bands the conversion CT → ST is observed; the reverse process is evidenced by irradiation at ST frequencies. Irradiation at S + G + frequency shows no effect on the conformational equilibrium. Kinetic rate constants are measured and normalized to constant light power absorbed by the sample. They are compared with those calculated by the RRKM theory of first-order processes, assuming the same torsional barrier around the CC bond as in the gas phase. The good agreement between experimental and calculated values suggests the absence of vibrational selectivity in this photoisomerization process.

  6. Hyaluronic acid immobilization on the poly-allylamine coated nano-network TiO2 surface.

    PubMed

    Shim, Jae-Won; Lee, Kang; Jeong, Moon-Jin; Jung, Sang-Chul; Kim, Byung-Hoon

    2011-08-01

    Recently, biocompatibility report revealed that the TiO2 nano-network (TiO2 NT) structure has much higher cells colonization than the native TiO2 on Ti surface. In this study, we prepared the hyaluronic acid (HA) immobilized TiO2 NT layer by plasma surface modification and then evaluated biological behavior of MC3T3-E1 on the Ti, TiO2 NT and TiO2 NT/NH2/HA surface. The cell viability tests revealed slightly enhanced viability on the TiO2 NT/NH2/HA surfaces than on the untreated Ti surfaces.

  7. Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly(vinyl sulphonate) composite film by cross-linking with glutaraldehyde.

    PubMed

    Colak, Ozlem; Yaşar, Ahmet; Cete, Servet; Arslan, Fatma

    2012-10-01

    In this study, a novel amperometric glucose biosensor was developed by immobilizing glucose oxidase (GOX) by cross-linking via glutaraldehyde on electrochemically polymerized polypyrrole-poly(vinyl sulphonate) (PPy-PVS) films on the surface of a platinum (Pt) electrode. Electropolymerization of pyrrole and poly(vinyl sulphonate) on the Pt surface was carried out with an electrochemical cell containing pyrrole and poly(vinyl sulphonate) by cyclic voltammetry between -1.0 and + 2.0 V (vs.Ag/AgCl) at a scan rate of 50 mV/s upon the Pt electrode. The amperometric determination was based on the electrochemical detection of H(2)O(2) generated in enzymatic reaction of glucose. Determination of glucose was carried out by the oxidation of enzymatically produced H(2)O(2) at 0.4 V vs. Ag/AgCl. The effects of pH and temperature were investigated and optimum parameters were found to be 7.5 and 65°C, respectively. The effect of working potential was investigated and optimum potential was determined to be 0.4 V. The operational stability of the enzyme electrode was also studied. The response of the PPy/PVS-GOX glucose biosensor exhibited good reproducibility with a relative standard deviation (RSD) of 2.48%. The glucose biosensor retained 63% of initial activity after 93 days when stored in 0.1 M phosphate buffer solution of pH 7.5 at 4°C. With the low operating potential, the biosensor demonstrated little interference from the possible interferants.

  8. Magnetic Relaxation Switch Detecting Boric Acid or Borate Ester through One-Pot Synthesized Poly(vinyl alcohol) Functionalized Nanomagnetic Iron Oxide.

    PubMed

    Zhang, Guilong; Lu, Shiyao; Qian, Junchao; Zhong, Kai; Yao, Jianming; Cai, Dongqing; Cheng, Zhiliang; Wu, Zhengyan

    2015-08-05

    We developed a highly efficient magnetic relaxation switch (MRS) system based on poly(vinyl alcohol) functionalized nanomagnetic iron oxide (PVA@NMIO) particles for the detection of boric acid or borate ester (BA/BE). It was found that the addition of BA/BE induced the aggregation of PVA@NMIO particles, resulting in a measurable change in the T2 relaxation time in magnetic resonance measurements. The main mechanism was proposed that the electron-deficient boron atoms of BA/BE caused the aggregation of PVA@NMIO particles through covalent binding to the hydroxyl groups of PVA. This novel detection system displayed excellent selectivity, high sensitivity, and rapid detection for BA/BE. Thus, this system may provide a great application prospect for detection of BA/BE.

  9. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    SciTech Connect

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; Mayes, Richard T.; Liao, Wei -Po; Liao, Chen; Tsouris, Costas; Stankovich, Joseph J.; Chen, Jihua; Hensley, Dale K.; Abney, Carter W.; Jiang, De-en; Brown, Suree; Dai, Sheng

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, which demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.

  10. A poly(acrylonitrile)-functionalized porous aromatic framework synthesized by atom-transfer radical polymerization for the extraction of uranium from seawater

    DOE PAGES

    Yue, Yanfeng; Zhang, Chenxi; Tang, Qing; ...

    2015-10-30

    In order to ensure a sustainable reserve of fuel for nuclear power generation, tremendous research efforts have been devoted to developing advanced sorbent materials for extracting uranium from seawater. In this work, a porous aromatic framework (PAF) was surface-functionalized with poly(acrylonitrile) through atom-transfer radical polymerization (ATRP). Batches of this adsorbent were conditioned with potassium hydroxide (KOH) at room temperature or 80 °C prior to contact with a uranium-spiked seawater simulant, with minimal differences in uptake observed as a function of conditioning temperature. A maximum capacity of 4.81 g-U/kg-ads was obtained following 42 days contact with uranium-spiked filtered environmental seawater, whichmore » demonstrates a comparable adsorption rate. A kinetic investigation revealed extremely rapid uranyl uptake, with more than 80% saturation reached within 14 days. Furthermore, relying on the semiordered structure of the PAF adsorbent, density functional theory (DFT) calculations reveal cooperative interactions between multiple adsorbent groups yield a strong driving force for uranium binding.« less

  11. One-pot syntheses and cell imaging applications of poly(amino acid) coated LaVO4:Eu3+ luminescent nanocrystals.

    PubMed

    Wang, Huanjie; Wang, Leyu

    2013-03-04

    For successful biological applications of luminescent nanocrystals, surface functionalization is very essential. It is very important to develop the facile synthetic methods to gain access to obtaining water-stable and biocompatible NPs with appropriate functional groups as well as high luminescence efficiency. Herein, a green and facile one-pot hydrothermal strategy was developed for the preparation of poly(amino acid) coated LaVO4:Eu(3+)-PASP luminescent nanocrystals by employing the hydrolysis of polysuccinimide (PSI) to polyaspartic acid (PASP) to provide a general platform for the surface modification. Because of the enriched carboxylic groups in the PASP coating, these as-prepared nanoparticles (NPs) demonstrated good water-stability, biocompatibility, and bioconjugatability. Due to their strong red luminescence and good bioconjugatability, the antibody bioconjugated LaVO4:Eu(3+)-PASP NPs were successfully used as the biomarkers for cancer cell specific luminescence imaging. The results indicate that these NPs have the potential to act as luminescent probes for luminescence assay and in vitro imaging.

  12. In vitro release studies of vitamin B 12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation

    NASA Astrophysics Data System (ADS)

    Eid, M.

    2008-12-01

    Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation to be used as drug delivery system. Their gel contents, grafting swelling and thermal gravimetric analysis were evaluated. The gel content increases by increasing the irradiation dose up to 50 kGy, then decreases. The grafting percent increases by the increasing of acrylic acid. The thermal stability and the rate of the thermal decomposition changed according to the different compositions. The maximum rate of the thermal decomposition decreases by increasing the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B 12 demonstrated a decrease release in acidic medium than the neutral one.

  13. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    PubMed

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  14. Protonation and Chemical Doping Behavior of Poly(P-Phenylene Benzobisthiazole) (BPZT): Towards Stable n-Type Conjugated Polymers (Preprint)

    DTIC Science & Technology

    2007-03-01

    RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YY) 2 . REPORT TYPE 3. DATES COVERED (From - To) March 2007 Journal Article Preprint...layer-by-layer deposition approach.36 Anywhere from 2 to 5 bilayers of a polycation (poly(allylamine hydrochloride)) and polyanion (polyacrylic acid...PBZT film and dissolve the methanesulfonic acid. 2 Absorption spectroscopy was performed on a Cary 5 UV-Vis-NIR spectrophotometer from Varian

  15. Synthesis and characterization of poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s

    NASA Astrophysics Data System (ADS)

    Haw, Tan Ching; Ahmad, Azizan; Anuar, Farah Hannan

    2015-09-01

    In this study, poly(D,L-lactide)-poly(ethylene glycol) multiblock poly(ether-ester-urethane)s was synthesized in the framework of environmental friendly products to meet the need for highly flexible polymers. Triblock copolymer with poly(ethylene glycol) as center block and poly(D,L-lactide) as side block were first synthesized by ring-opening polymerization of D,L-lactide, followed by chain extension reaction of triblocks using hexamethylene diisocyanate (HMDI). NMR and infra-red spectroscopies were used to determine the molecular composition whereas XRD analysis revealed crystallinity behavior of synthesized multiblock copolymers.

  16. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    PubMed

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  17. Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(D,L-lactic-co-glycolic acid) microparticles.

    PubMed

    Rogers, Catherine M; Deehan, David J; Knuth, Callie A; Rose, Felicity R A J; Shakesheff, Kevin M; Oldershaw, Rachel A

    2014-11-01

    Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time. The surfaces of both types of microparticles were functionalized by plasma polymerization with allylamine to increase hydrophilicity and promote cell attachment. HF-hMSCs attached to and spread along the surface of both forms of PLGA microparticle. The osteogenic response of HF-hMSCs was enhanced when cultured with PLGA compared with control cultures differentiated on tissue culture plastic and this was independent of the type of polymer used. We have demonstrated that surface engineered PLGA microparticles are an appropriate biomaterial for combining with HF-hMSCs and the selection of PLGA is relevant only when considering the biodegradation time for each biomedical application.

  18. Partial hydrophilic modification of biaxially oriented polypropylene film by an atmospheric pressure plasma jet with the allylamine monomer

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Yu, J. S.; Hu, W.; Chen, G. L.

    2016-11-01

    In this paper, the partial modification of the biaxially oriented polypropylene (BOPP) film for potential biological and packaging applications was achieved via hydrophilic modification using atmospheric pressure plasma jet (APPJ). In the APPJ system, the allylamine (ALA) monomer was polymerized on the BOPP surface by either the Ar/O2 or the He/O2 plasma. The results showed that plasmatic modification created many micro/nano sized holes on the BOPP film, which increased the surface roughness dramatically and the increased roughness enhanced the combining intensity between the BOPP film and the ALA polymer. However, such a plasmatic modification increased the water vapor permeability. The FTIR and XPS characterizations showed that the amine groups were grafted onto the BOPP film, and the contact angle of the BOPP film decreases from 98.5° to 8°. Compared with the BOPP films treated by the Ar or He plasma, the barrier property of the modified BOPP film increased significantly when the ALA polymer was incorporated. The bio-affinity/toxicity of ALA polymer was illustrated by the attachment of the cultured SMMC-7721 hepatoma cells on the modified BOPP film. The significant enhancement in the cell density indicated that modified BOPP film was highly bio-compatible and non-toxic, especially treated with the Ar/O2/ALA plasma.

  19. Synthesizing speech

    NASA Astrophysics Data System (ADS)

    Siltanen, Samuli

    2015-01-01

    Samuli Siltanen explains how solving an "inverse problem" will improve the quality of life of people who can't speak and have to use voice synthesizers - particularly women and children, whose only current option is to sound like an adult male.

  20. Waveform synthesizer

    DOEpatents

    Franks, Larry A.; Nelson, Melvin A.

    1981-01-01

    A method of producing optical and electrical pulses of desired shape. An optical pulse of arbitrary but defined shape illuminates one end of an array of optical fiber waveguides of differing lengths to time differentiate the input pulse. The optical outputs at the other end of the array are combined to form a synthesized pulse of desired shape.

  1. Synthesizing Chaos

    NASA Astrophysics Data System (ADS)

    Blakely, Jonathan; Corron, Ned; Hayes, Scott; Pethel, Shawn

    2007-03-01

    Chaos is usually attributed only to nonlinear systems. Yet it was recently shown that chaotic waveforms can be synthesized by linear superposition of randomly polarized basis functions. The basis function contains a growing oscillation that terminates in a large pulse. We show that this function is easily realized when viewed backward in time as a pulse followed by ringing decay. Consequently, a linear filter driven by random pulses outputs a waveform that, when viewed backward in time, exhibits essential qualities of chaos, i.e. determinism and a positive Lyapunov exponent. This phenomenon suggests that chaos may be connected to physical theories whose framework is not that of a deterministic dynamical system. We demonstrate that synthesizing chaos requires a balance between the topological entropy of the random source and the dissipation in the filter. Surprisingly, using different encodings of the random source, the same filter can produce both Lorenz-like and R"ossler-like waveforms. The different encodings can be viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing the Lorenz and R"ossler paradigms of nonlinear dynamics. Thus, the language of deterministic chaos provides a useful description for a class of signals not generated by a deterministic system.

  2. Performances of new sugar-bearing poly(acrylamide) copolymers as DNA sieving matrices and capillary coatings for electrophoresis.

    PubMed

    Chiari, M; Cretich, M; Riva, S; Casali, M

    2001-01-01

    We have synthesized two new sugar monomers, allylamine of gluconic and lactobionic acid, by opening the corresponding lactone ring with allylamine. These monomers were copolymerized with acrylamide leading to formation of copolymers with a relative molecular mass of 288000 and 180000 Da, respectively. Double-stranded DNA fragments were separated in entangled solutions of these linear polymers in capillary electrophoresis. Resolution, peak spacing and peak width were the parameters taken into account to evaluate the quality of the separation achieved with the new polymers. This work indicates that the copolymers of acrylamide and allyl gluconic acid have a high sieving capacity and provide a performance similar to that of hydroxyethylcellulose (HEC) of comparable viscosity. Unlike HEC, this copolymer selfcoats onto the capillary wall, allowing DNA fragments to be efficiently separated in an uncoated capillary.

  3. Synthesis and physicochemical properties of two analogs of poly(dA): poly(2-aminopurine-9-beta-D-deoxyribonucleotide) and poly 2-amino-deoxyadenylic acid.

    PubMed Central

    Scheit, K H; Rackwitz, H R

    1982-01-01

    Polymerization of chemically synthesized dn2h6ATP and dn2ATP by deoxynucleotidyl transferase from calf thymus furnished poly(dn2h6A) and poly(dn2A) respectively. The synthetic polynucleotides were characterized by spectroscopic, ultracentrifugation and enzymatic methods. In polynucleotide-polynucleotide interaction, poly(dn2h6A) and poly(dn2A) behaved like analogs of poly(dnA). PMID:6287431

  4. Effect of self-association of bovine serum albumin on the stability of surfactant-induced aggregates of allylamine-capped silicon quantum dots.

    PubMed

    Chatterjee, Surajit; Mukherjee, Tushar Kanti

    2013-12-19

    The concentration-dependent self-association of bovine serum albumin (BSA) and subsequent altered interaction with sodium dodecyl sulfate (SDS) has been explored by means of photoluminescence (PL) spectroscopy, dynamic light scattering (DLS), circular dichroism (CD), PL imaging, and atomic force microscopy (AFM). By using an extrinsic luminescent probe, allylamine-capped silicon quantum dots (Si-QDs), we have demonstrated the unusual concentration-dependent altered BSA-SDS interaction. Allylamine-capped Si-QDs forms ordered aggregates in the presence of 1 mM SDS due to hydrogen bonding with the surfactants head groups at pH 7.4. Although these aggregates remain stable in the presence of monomeric BSA in the concentration range 1-8 μM, they form typical ring-shaped doughnut-like structures due to "necklace and bead"-like complex formation. However, beyond 10 μM BSA, these aggregates of Si-QDs slowly dissociate and complete dissociation occurs at 150 μM BSA. These anomalous results have been explained by considering the altered hydrophilicity of self-associated BSA.

  5. Changes in permeability and in mechanical properties of layer-by-layer films made from poly(allylamine) and montmorillonite postmodified upon reaction with dopamine.

    PubMed

    Ball, Vincent; Apaydin, Kadir; Laachachi, Abdelghani; Toniazzo, Valérie; Ruch, David

    2012-12-01

    Polyelectrolyte multilayer (PEM) films present a versatile surface functionalization method allowing to address many applications. These coatings suffer; however, from weak mechanical properties this problem can be addressed by the regular incorporation of clays in the layering process. To allow for an even better control of a whole set of film properties, among them their thermal stability, their stability in water, and their impermeability to anions, we postmodify (PAH-MMT)(n) films with polydopamine, by putting the pristine PEM films in contact with an oxygenated dopamine solution. This straightforward treatment allows to totally suppress the diffusion of hexacyanoferrate anions in the films and affects significantly its mechanical properties even, if the distribution of polydopamine through the film thickness is not yet known.

  6. Fabrication and characterization of novel multilayered structures by stereocomplexion of poly(D-lactic acid)/poly(L-lactic acid) and self-assembly of polyelectrolytes

    PubMed Central

    Yang, Gesheng; Pastorino, Laura

    2016-01-01

    Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356

  7. EPR studies of amine radical cations. Part 2. Thermal and photo-induced rearrangements of propargylamine and allylamine radical cations in low-temperature freon matrices.

    PubMed

    Knolle, Wolfgang; Janovský, Igor; Naumov, Sergej; Williams, Ffrancon

    2006-12-28

    Matrix EPR studies and quantum chemical calculations have been used to characterize the consecutive H-atom shifts undergone by the nitrogen-centered parent radical cations of propargylamine (1b*+) and allylamine (5*+) on thermal or photoinduced activation. The radical cation rearrangements of these unsaturated parent amines occur initially by a 1,2 H-atom shift from C1 to C2 with pi-bond formation at the positively charged nitrogen; this is followed by a consecutive reaction involving a second H-atom shift from C2 to C3. Thus, exposure to red light (lambda > 650 nm) converts 1b*+ to the vinyl-type distonic radical cation 2*+ which in turn is transformed on further photolysis with blue-green light (lambda approximately 400-600 nm) to the allene-type heteroallylic radical cation 3*+. Calculations show that the energy ordering is 1b*+ > 2*+ > 3*+, so that the consecutive H-atom shifts are driven by the formation of more stable isomers. Similarly, the parent radical cation of allylamine 5*+ undergoes a spontaneous 1,2-hydrogen atom shift from C1 to C2 at 77 K with a t1/2 of approximately 1 h to yield the distonic alkyl-type iminopropyl radical cation 6*+; this thermal reaction is attributed largely to quantum tunneling, and the rate is enhanced on concomitant photobleaching with visible light. Subsequent exposure to UV light (lambda approximately 350-400 nm) converts 6*+ by a 2,3 H-shift to the 1-aminopropene radical cation 7*+, which is confirmed to be the lowest-energy isomer derived from the ionization of either allylamine or cyclopropylamine. Although the parent radical cations of N, N-dimethylallylamine (9*+) and N-methylallylamine (11*+) are both stabilized by the electron-donating character of the methyl group(s), the photobleaching of 9*+ leads to the remarkable formation of the cyclic 1-methylpyrrolidine radical cation 10*+. The first step of this transformation now involves the migration of a hydrogen atom to C2 of the allyl group from one of the methyl

  8. Surface-crosslinked poly(3-mercaptopropyl)methylsiloxane-coatings on silica as new platform for low-bleed mass spectrometry-compatible functionalized stationary phases synthesized via thiol-ene click reaction.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sievers-Engler, Adrian; Sanwald, Corinna; Lindner, Wolfgang; Kramer, Markus; Lämmerhofer, Michael

    2016-03-04

    A thin functional film of poly(3-mercaptopropyl)methylsiloxane was coated onto vinyl-modified silica particles (5μm, 100Å pore size) and chemically crosslinked to the surface. Excess of thiol functionalities allow bonding of alkene containing ligands by thiol-ene click reaction in a second step (QN-VII). Besides that a single step surface modification procedure was established in which alkene functional ligands were directly added to the polysiloxane coating solution and thus, after evaporation of the solvent, crosslinking to the vinylized surface and bonding of chromatographic ligand to the thiolated polysiloxane film occur simultaneously in one step (QN-VI). Successful bonding of the polysiloxane film was confirmed for both approaches by (29)Si cross-polarization/magic angle spinning NMR spectra. The new surface functionalization concept can be utilized as a new platform for the preparation of various low-bleed, mass spectrometry-compatible stationary phases with a variety of functional ligands. The concept was demonstrated by thiol-ene click reaction with quinine carbamate and its subsequent use for enantiomer separation by HPLC-UV and HPLC-ESI-QTOF-MS of acidic chiral analytes. Chromatographic enantioselectivities were similar to a comparable brush-type CSP (QN-V0). The greatly reduced background signal in LC-MS, however, comes at expense of somewhat lower chromatographic efficiencies (C-term by factor of 2 larger compared to brush-type CSP). For quantitative analysis in single reaction monitoring (MRM(HR)) in high sensitivity mode, limit of detection and limit of quantification results are comparable for both surface-polymer modified CSPs, with only slightly higher values for the conventional brush-type CSP (QN-V0). Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide)-b-Poly(L-Lysine Hydrochloride) and Poly(N-Isopropylacrylamide-co-Acrylamide)-b-Poly(L-Lysine Hydrochloride)

    PubMed Central

    Spasojević, Milica; Vorenkamp, Joop; Jansen, Mark R. P. A. C. S.; de Vos, Paul; Schouten, Arend Jan

    2014-01-01

    The synthesis of poly(N-isopropylacrylamide)-b-poly(L-lysine) and poly(N-isopropylacrylamide-co-acrylamide)-b-poly(L-lysine) copolymers was accomplished by combining atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP). For this purpose, a di-functional initiator with protected amino group was successfully synthetized. The ATRP of N-isopropylacrylamide yielded narrowly dispersed polymers with consistent high yields (~80%). Lower yields (~50%) were observed when narrowly dispersed random copolymers of N-isopropylacrylamide and acrylamide where synthesized. Amino-terminated poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylamide) were successfully used as macroinitiators for ROP of N6-carbobenzoxy-L-lysine N-carboxyanhydride. The thermal behavior of the homopolymers and copolymers in aqueous solutions was studied by turbidimetry, dynamic light scattering (DLS) and proton nuclear magnetic resonance spectroscopy (1H-NMR). PMID:28788130

  10. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization.

    PubMed

    Yang, Zhilu; Xiong, Kaiqin; Qi, Pengkai; Yang, Ying; Tu, Qiufen; Wang, Jin; Huang, Nan

    2014-02-26

    The creation of a platform for enhanced vascular endothelia cell (VEC) growth while suppressing vascular smooth muscle cell (VSMC) proliferation offers possibility for advanced coatings of vascular stents. Gallic acid (GA), a chemically unique phenolic acid with important biological functions, presents benefits to the cardiovascular disease therapy because of its superior antioxidant effect and a selectivity to support the growth of ECs more than SMCs. In this study, GA was explored to tailor such a multifunctional stent surface combined with plasma polymerization technique. On the basis of the chemical coupling reaction, GA was bound to an amine-group-rich plasma-polymerized allylamine (PPAam) coating. The GA-functionalized PPAam (GA-PPAam) surface created a favorable microenvironment to obtain high ECs and SMCs selectivity. The GA-PPAam coating showed remarkable enhancement in the adhesion, viability, proliferation, migration, and release of nitric oxide (NO) of human umbilical vein endothelial cells (HUVECs). The GA-PPAam coating also resulted in remarkable inhibition effect on human umbilical artery smooth muscle cell (HUASMC) adhesion and proliferation. These striking findings may provide a guide for designing the new generation of multifunctional vascular devices.

  11. The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility.

    PubMed

    Yang, Zhilu; Wang, Jin; Luo, Rifang; Maitz, Manfred F; Jing, Fengjuan; Sun, Hong; Huang, Nan

    2010-03-01

    For an improved hemocompatibility of 316L stainless steel (SS), we develop a facile and effective approach to fabricating a pulsed-plasma polymeric allylamine (P-PPAm) film that possesses a high cross-linking degree and a high density of amine groups, which is used for subsequent bonding of heparin. The P-PPAm film as a stent coating shows good resistance to the deformation behavior of compression and expansion of a stent. Using deionized water as an aging medium, it is demonstrated that the heparin-immobilized P-PPAm (Hep-P-PPAm) surface has a good retention of heparin. The systematic in vitro hemocompatibility evaluation reveals lower platelet adhesion, platelet activation and fibrinogen activation on the Hep-P-PPAm surface, and the activated partial thromboplastin time prolongs for about 15 s compared with 316L SS. The P-PPAm surface significantly promotes adhesion and proliferation of endothelial cells (ECs). For the Hep-P-PPAm, although EC adhesion and proliferation is slightly suppressed initially, after cultivation for 3 days, the growth behavior of ECs is remarkably improved over 316L SS. In vivo results indicate that the Hep-P-PPAm surface successfully restrain thrombus formation by growing a homogeneous and intact shuttle-like endothelium on its surface. The Hep-P-PPAm modified 316L SS shows a promising application for vascular devices.

  12. Syntheses and studies of acetylenic polymers

    SciTech Connect

    Yiwei, Ding

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity (σ = 10-3 S/cm) after doping with AsF5. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 x 103 to 5.3 x 103. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  13. Efficient syntheses of 17-β-amino steroids.

    PubMed

    Taylor, Scott D; Harris, Jesse

    2011-01-01

    17β-Amino steroids such as 17β-amino-1,3,5(10)-estratrien-3-ol (1), 17β-amino-5α-androstan-3β-ol (2) and, 17β-amino-3β-hydroxyandrost-5-ene (3) have been widely used as a key intermediates in the synthesis of a variety of biologically active steroid derivatives though concise, high yielding syntheses of these compounds has yet to be reported. 17β-Amino-1,3,5(10)-estratrien-3-ol (1) and 17β-amino-5α-androstan-3β-ol (2) were prepared in high yield by reductive amination of estrone and epiandrosterone using benzylamine and sodium triacetoxyborohydride followed by catalytic hydrogenolysis of the resulting 17β-benzylamino derivatives. Attempts to prepare 17β-amino-3β-hydroxyandrost-5-ene (3) from dehydroepiandosterone using a similar approach resulted in partial reduction of the double bond. 17β-Amino-3β-hydroxyandrost-5-ene (3) was ultimately obtained in high yield by reductive amination of dehydroepiandosterone using allylamine and sodium triacetoxyborohydride followed by removal of the allyl group from the resulting 17β-allylamino derivative with dimethylbarbituric acid and Pd(PPh(3))(4) as catalyst.

  14. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  15. Portable Speech Synthesizer

    NASA Technical Reports Server (NTRS)

    Leibfritz, Gilbert H.; Larson, Howard K.

    1987-01-01

    Compact speech synthesizer useful traveling companion to speech-handicapped. User simply enters statement on board, and synthesizer converts statement into spoken words. Battery-powered and housed in briefcase, easily carried on trips. Unit used on telephones and face-to-face communication. Synthesizer consists of micro-computer with memory-expansion module, speech-synthesizer circuit, batteries, recharger, dc-to-dc converter, and telephone amplifier. Components, commercially available, fit neatly in 17-by 13-by 5-in. briefcase. Weighs about 20 lb (9 kg) and operates and recharges from ac receptable.

  16. Uses of a Vinylpyridine Polymer in Undergraduate Organic Syntheses.

    ERIC Educational Resources Information Center

    Getman, Damon; And Others

    1984-01-01

    Presents a series of syntheses in which poly-4-vinylpyridine is substituted for pyridine or other tertiary amines, avoiding some of the safety problems associated with traditional reagents and providing a readily recoverable and recyclable reactant. Background information, procedures used, and results are included. (JN)

  17. Syntheses and insulin-like activity of phosphorylated galactose derivatives.

    PubMed

    Caro, H N; Martín-Lomas, M; Bernabé, M

    1993-02-24

    The syntheses of the poly-phosphorylated galactosides 6, 8, 10, 13, 16, and 20, isolated as sodium salts, have been performed. The non-phosphorylated disaccharide 17 and trisaccharide 21 have been prepared via glycosylation of the 2-(trimethylsilyl)ethyl galactosides 3 and 2, respectively, and subsequent complete deprotection. Preliminary insulin-like activity of the phosphorylated derivatives is reported.

  18. Multiplexed chirp waveform synthesizer

    DOEpatents

    Dudley, Peter A.; Tise, Bert L.

    2003-09-02

    A synthesizer for generating a desired chirp signal has M parallel channels, where M is an integer greater than 1, each channel including a chirp waveform synthesizer generating at an output a portion of a digital representation of the desired chirp signal; and a multiplexer for multiplexing the M outputs to create a digital representation of the desired chirp signal. Preferably, each channel receives input information that is a function of information representing the desired chirp signal.

  19. Ideal CO2/Light Gas Separation Performance of Poly(vinylimidazolium) Membranes and Poly(vinylimidazolium)-Ionic Liquid Composite Films

    SciTech Connect

    Carlisle, TK; Wiesenauer, EF; Nicodemus, GD; Gin, DL; Noble, RD

    2013-01-23

    Six vinyl-based, imidazolium room-temperature ionic liquid (RTIL) monomers were synthesized and photopolymerized to form dense poly(RTIL) membranes. The effect of polymer backbone (i.e., poly(ethylene), poly(styrene), and poly(acrylate)) and functional cationic substituent (e.g., alkyl, fluoroalkyl, oligo(ethylene glycol), and disiloxane) on ideal CO2/N-2 and CO2/CH4 membrane separation performance was investigated. The vinyl-based poly(RTIL)s were found to be generally less CO2-selective compared to analogous styrene- and acrylate-based poly(RTIL)s. The CO2 permeability of n-hexyl-(69 barrers) and disiloxane- (130 barrers) substituted vinyl-based poly(RTIL)s were found to be exceptionally larger than that of previously studied styrene and acrylate poly(RTIL)s. The CO2 selectivity of oligo(ethylene glycol)-functionalized vinyl poly(RTIL)s was enhanced, and the CO2 permeability was reduced when compared to the n-hexyl-substituted vinyl-based poly(RTIL). Nominal improvement in CO2/CH4 selectivity was observed upon fluorination of the n-hexyl vinyl-based poly(RTIL), with no observed change in CO2 permeability. However, rather dramatic improvements in both CO2 permeability and selectivity were observed upon blending 20 mol % RTIL (emim Tf2N) into the n-hexyl- and disiloxane-functionalized vinyl poly(RTIL)s to form solid liquid composite films.

  20. PULSE SYNTHESIZING GENERATOR

    DOEpatents

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  1. Wisdom, Intelligence & Creativity Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2009-01-01

    How is it that smart administrators who want to do a good job often find themselves in situations that degenerate into confrontation and, ultimately, termination? In this article, the author discusses why in terms of a model of leadership--which he refers to it as WICS, an acronym for wisdom, intelligence and creativity synthesized. He describes…

  2. Wisdom, Intelligence & Creativity Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2009-01-01

    How is it that smart administrators who want to do a good job often find themselves in situations that degenerate into confrontation and, ultimately, termination? In this article, the author discusses why in terms of a model of leadership--which he refers to it as WICS, an acronym for wisdom, intelligence and creativity synthesized. He describes…

  3. The Journal Synthesizing Activity.

    ERIC Educational Resources Information Center

    Garber, Zev

    The journal synthesizing activity is intended to combine aspects of the formal essay with that of a diary. Activities associated with lecture topics are written up as short journal entries of approximately five typewritten pages and are turned in during the weekly class session at which the related topic is being discussed. The journal project…

  4. Synthesized night vision goggle

    NASA Astrophysics Data System (ADS)

    Zhou, Haixian

    2000-06-01

    A Synthesized Night Vision Goggle that will be described int his paper is a new type of night vision goggle with multiple functions. It consists of three parts: main observing system, picture--superimposed system (or Cathode Ray Tube system) and Charge-Coupled Device system.

  5. Mechanism of Poly (A) Synthesis by Vaccinia Virus

    PubMed Central

    Sheldon, Robert; Kates, Joseph

    1974-01-01

    Data are presented which indicate that vaccinia DNA does not contain poly(dT) sequences the size of poly(A) sequences (50 to 200 nucleotides in length) found in vaccinia RNA. A hybridization experiment and polyacrylamide gel electrophoresis and DEAE-Sephadex chromatography of pyrimidine tracts show that poly(dT) sequences can account for no more than 0.1% of vaccinia DNA. Ultraviolet irradiation (which causes thymine dimer formation) and phleomycin (which binds to thymidine) both inhibit RNA synthesis but not poly(A) synthesis by vaccinia cores. These data are consistent with a nontranscriptive mechanism for vaccinia poly(A) synthesis. Both trypsin and 50 C heat treatment inhibit RNA synthesis more than poly(A) synthesis by cores, suggesting that separate enzymes may be involved in these syntheses. When the rate of core RNA synthesis is reduced by lowering the UTP and GTP concentrations, the size of the poly(A) sequences increase. These and other data suggest that transcription is involved in the termination of poly(A) synthesis in cores. This might be due to the displacement of growing poly(A) chains by recently completed RNA 3′ termini which have not yet acquired poly(A) sequences. PMID:4847326

  6. Mechanism of poly(A) synthesis by vaccinia virus.

    PubMed

    Sheldon, R; Kates, J

    1974-08-01

    Data are presented which indicate that vaccinia DNA does not contain poly(dT) sequences the size of poly(A) sequences (50 to 200 nucleotides in length) found in vaccinia RNA. A hybridization experiment and polyacrylamide gel electrophoresis and DEAE-Sephadex chromatography of pyrimidine tracts show that poly(dT) sequences can account for no more than 0.1% of vaccinia DNA. Ultraviolet irradiation (which causes thymine dimer formation) and phleomycin (which binds to thymidine) both inhibit RNA synthesis but not poly(A) synthesis by vaccinia cores. These data are consistent with a nontranscriptive mechanism for vaccinia poly(A) synthesis. Both trypsin and 50 C heat treatment inhibit RNA synthesis more than poly(A) synthesis by cores, suggesting that separate enzymes may be involved in these syntheses. When the rate of core RNA synthesis is reduced by lowering the UTP and GTP concentrations, the size of the poly(A) sequences increase. These and other data suggest that transcription is involved in the termination of poly(A) synthesis in cores. This might be due to the displacement of growing poly(A) chains by recently completed RNA 3' termini which have not yet acquired poly(A) sequences.

  7. Explaining Synthesized Software

    NASA Technical Reports Server (NTRS)

    VanBaalen, Jeffrey; Robinson, Peter; Lowry, Michael; Pressburger, Thomas; Lau, Sonie (Technical Monitor)

    1998-01-01

    Motivated by NASA's need for high-assurance software, NASA Ames' Amphion project has developed a generic program generation system based on deductive synthesis. Amphion has a number of advantages, such as the ability to develop a new synthesis system simply by writing a declarative domain theory. However, as a practical matter, the validation of the domain theory for such a system is problematic because the link between generated programs and the domain theory is complex. As a result, when generated programs do not behave as expected, it is difficult to isolate the cause, whether it be an incorrect problem specification or an error in the domain theory. This paper describes a tool we are developing that provides formal traceability between specifications and generated code for deductive synthesis systems. It is based on extensive instrumentation of the refutation-based theorem prover used to synthesize programs. It takes augmented proof structures and abstracts them to provide explanations of the relation between a specification, a domain theory, and synthesized code. In generating these explanations, the tool exploits the structure of Amphion domain theories, so the end user is not confronted with the intricacies of raw proof traces. This tool is crucial for the validation of domain theories as well as being important in everyday use of the code synthesis system. It plays an important role in validation because when generated programs exhibit incorrect behavior, it provides the links that can be traced to identify errors in specifications or domain theory. It plays an important role in the everyday use of the synthesis system by explaining to users what parts of a specification or of the domain theory contribute to what pieces of a generated program. Comments are inserted into the synthesized code that document these explanations.

  8. Low cytotoxic tissue adhesive based on oxidized dextran and epsilon-poly-L-lysine.

    PubMed

    Hyon, Suong-Hyu; Nakajima, Naoki; Sugai, Hajime; Matsumura, Kazuaki

    2014-08-01

    A novel adhesive hydrogel consisting of dextran and epsilon-poly(L-lysine) (dextran-PL) with multiple biomedical applications was developed. Periodate oxidation in aqueous media almost stoichiometrically introduces aldehyde groups in dextran molecules, and aldehyde dextran can react with the primary amino groups in epsilon-PL (ɛ-PL) at neutral pH to form a hydrogel. The gelation time of the hydrogel can be easily controlled by the extent of oxidation in dextran and of the acylation in ɛ-PL by anhydrides. The shear adhesion strength of dextran-PL was 10 times higher than that of fibrin glue, when wet collagen sheets were selected as test specimens. The cytotoxicity of aldehyde dextran and ɛ-PL were 1000 times lower than that of glutaraldehyde and poly(allylamine). The considerably low cytotoxicity of aldehyde dextran could be ascribed to its low reactivity with amine species when compared with glutaraldehyde. In contrast, a high reactivity of amino groups in ɛ-PL was observed when compared with glycine, L-lysine, and gelatin, which could be explained by their poor dissociation at neutral pH, thus leading to low cytotoxicity.

  9. Synthesizing folded band chaos

    NASA Astrophysics Data System (ADS)

    Corron, Ned J.; Hayes, Scott T.; Pethel, Shawn D.; Blakely, Jonathan N.

    2007-04-01

    A randomly driven linear filter that synthesizes Lorenz-like, reverse-time chaos is shown also to produce Rössler-like folded band wave forms when driven using a different encoding of the random source. The relationship between the topological entropy of the random source, dissipation in the linear filter, and the positive Lyapunov exponent for the reverse-time wave form is exposed. The two drive encodings are viewed as grammar restrictions on a more general encoding that produces a chaotic superset encompassing both the Lorenz butterfly and Rössler folded band paradigms of nonlinear dynamics.

  10. SYNTH: A spectrum synthesizer

    NASA Astrophysics Data System (ADS)

    Hensley, W. K.; McKinnon, A. D.; Miley, H. S.; Panisko, M. E.; Savard, R. M.

    1993-10-01

    A computer code has been written at the Pacific Northwest Laboratory (PNL) to synthesize the results of typical gamma ray spectroscopy experiments. The code, dubbed SYNTH, allows a user to specify physical characteristics of a gamma ray source, the quantity of the nuclides producing the radiation, the source-to-detector distance and the presence of absorbers, the type and size of the detector, and the electronic set up used to gather the data. In the process of specifying the parameters needed to synthesize a spectrum, several interesting intermediate results are produced, including a photopeak transmission function versus energy, a detector efficiency curve, and a weighted list of gamma and x rays produced from a set of nuclides. All of these intermediate results are available for graphical inspection and for printing. SYNTH runs on personal computers. It is menu driven and can be customized to user specifications. SYNTH contains robust support for coaxial germanium detectors and some support for sodium iodide detectors. SYNTH is not a finished product. A number of additional developments are planned. However, the existing code has been compared carefully to spectra obtained from National Institute for Standards and Technology (NIST) certified standards with very favorable results. Examples of the use of SYNTH and several spectral results are presented.

  11. Programmable electronic synthesized capacitance

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A predetermined and variable synthesized capacitance which may be incorporated into the resonant portion of an electronic oscillator for the purpose of tuning the oscillator comprises a programmable operational amplifier circuit. The operational amplifier circuit has its output connected to its inverting input, in a follower configuration, by a network which is low impedance at the operational frequency of the circuit. The output of the operational amplifier is also connected to the noninverting input by a capacitor. The noninverting input appears as a synthesized capacitance which may be varied with a variation in gain-bandwidth product of the operational amplifier circuit. The gain-bandwidth product may, in turn, be varied with a variation in input set current with a digital to analog converter whose output is varied with a command word. The output impedance of the circuit may also be varied by the output set current. This circuit may provide very small ranges in oscillator frequency with relatively large control voltages unaffected by noise.

  12. Polynucleotides. XLVI. 1 Synthesis and properties of poly (2'-amino-2'-deoxyadenylic acid).

    PubMed

    Ikehara, M; Fukui, T; Kakiuchi, N

    1977-04-01

    Poly (2'-amino-2'-deoxyadenylic acid) [poly (Aa)] was prepared from chemically synthesized 2'-amino-2'-deoxy-ADP by the catalysis of polynucleotide phosphorylase. Poly (Aa) showed a similar UV absorption spectra to poly (A), but quite different CD spectra at pH 7.0 and 5.7. At the former pH it showed a single negative Cotton band and at the latter a curve with a large splitting of bands. Acid titration of poly (Aa) suggested protonated form below pH 7.0. Temperature absorption profiles and their dependency on sodium ion concentration suggested an ordered structure for poly (Aa) which is stabilized by stacking of bases and intrastrand interaction between 2'-amino and internucleotidic phosphate groups. Poly (Aa) forms a 1:2 complex with poly (U) at neutrality and its Tm was 45 degrees in the presence of 0.15M sodium ion.

  13. Total syntheses of Prelactone V and Prelactone B.

    PubMed

    Raghavendra, S; Tadiparthi, Krishnaji; Yadav, J S

    2017-04-10

    The total syntheses of natural products Prelactone-V and Prelactone-B have been accomplished by a novel Chiron approach starting from d-glucose. The synthesis involves isopropylidene acetal formation of d-glucose using Poly(4-vinylpyridine) supported iodine as a catalyst, Tebbe olefination, Grignard reaction, Wittig olefination, selective mono deprotection of acetal using PMA/SiO2, hydrogenation and anti-1,3-diol formation are as key steps.

  14. Method for synthesizing HMX

    DOEpatents

    McGuire, Raymond R.; Coon, Clifford L.; Harrar, Jackson E.; Pearson, Richard K.

    1984-01-01

    A method and apparatus for electrochemically synthesizing N.sub.2 O.sub.5 cludes oxidizing a solution of N.sub.2 O.sub.4 /HNO.sub.3 at an anode, while maintaining a controlled potential between the N.sub.2 O.sub.4 /HNO.sub.3 solution and the anode. A potential of about 1.35 to 2.0 V vs. SCE is preferred, while a potential of about 1.80 V vs. SCE is most preferred. Thereafter, the N.sub.2 O.sub.5 is reacted with either 1.5-diacetyl-3,7-dinitro-1,3,5,7-tetraazacyclooctane (DADN) or 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane (TAT) to form cyclotetramethylenetetraamine (HMX).

  15. Synthesized light transients.

    PubMed

    Wirth, A; Hassan, M Th; Grguras, I; Gagnon, J; Moulet, A; Luu, T T; Pabst, S; Santra, R; Alahmed, Z A; Azzeer, A M; Yakovlev, V S; Pervak, V; Krausz, F; Goulielmakis, E

    2011-10-14

    Manipulation of electron dynamics calls for electromagnetic forces that can be confined to and controlled over sub-femtosecond time intervals. Tailored transients of light fields can provide these forces. We report on the generation of subcycle field transients spanning the infrared, visible, and ultraviolet frequency regimes with a 1.5-octave three-channel optical field synthesizer and their attosecond sampling. To demonstrate applicability, we field-ionized krypton atoms within a single wave crest and launched a valence-shell electron wavepacket with a well-defined initial phase. Half-cycle field excitation and attosecond probing revealed fine details of atomic-scale electron motion, such as the instantaneous rate of tunneling, the initial charge distribution of a valence-shell wavepacket, the attosecond dynamic shift (instantaneous ac Stark shift) of its energy levels, and its few-femtosecond coherent oscillations.

  16. Synthesis and characterization of novel biotinylated biodegradable poly(ethylene glycol)-b-poly(carbonate-lactic acid) copolymers.

    PubMed

    Xie, Zhigang; Guan, Huili; Lü, Changhai; Chen, Xuesi; Jing, Xiabin

    2005-11-01

    Poly(ethylene glycol)-b-poly(5-benzyloxy-trimethylene carbonate-lactic acid) copolymers (PEG-b-P(BTMC-LA)) were synthesized by ring-opening polymerization of lactide and 5-benzyloxy trimethylene carbonate in the presence of mono-hydroxyl poly(ethylene glycol) with diethyl zinc as catalyst. They were further converted into deprotected copolymers with the pendant hydroxyl groups by hydrogenolysis in the presence of Pd(OH)2/C, and finally conjugated with biotin through the free hydroxyl groups. Gel permeation chromatography, Fourier transform infrared, differential scanning calorimetry and 1H nuclear magnetic resonance studies confirmed the copolymer structures and successful attachment of biotin to the copolymer.

  17. Doclet To Synthesize UML

    NASA Technical Reports Server (NTRS)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  18. Controlled Degradation of Poly(Ethyl Cyanoacrylate-Co-Methyl Methacrylate)(PECA-Co-PMMA) Copolymers

    USDA-ARS?s Scientific Manuscript database

    This paper describes a method for modifying poly(ethyl cyanoacrylate) in order to control the degradation and the stability as well as the glass transition temperatures. Copolymers of poly(ethyl cyanoacrylate-co-methyl methacrylate) (PECA-co-PMMA) with various compositions were synthesized by free ...

  19. Synthesis, characterization and nanocomposite formation of poly(glycerol succinate-co-maleate) with cellulose nanowhiskers

    USDA-ARS?s Scientific Manuscript database

    A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with cellulose nanowhiskers. This glycerol-based polymer is thermally stable as...

  20. Solid-state synthesis of poly(3',4'-dimethoxy-2,2':5',2"- terthiophene): comparison with poly(terthiophene) and poly(3',4'-ethylenedioxy-2,2':5',2"- terthiophene).

    PubMed

    Abdiryim, Tursun; Jamal, Ruxangul; Ubul, Aminam; Nurulla, Ismayil

    2012-07-23

    A new terthiophene monomer: 3',4'-dimethoxy-2,2':5',2"-terthiophene (TMT) was synthesized and characterized by ¹H-NMR, ¹³C-NMR and FTIR. The solid-state oxidative polymerizations of TMT were performed in various ratios of oxidant (FeCl₃) to monomer (TMT). The resulting polymers were characterized by ¹H-NMR, FTIR, UV-vis-NIR, GPC, X-ray diffraction, CV, as well as TGA and conductivity measurements. The structure and properties of poly (TMT) were compared with those of polyterthiophene [poly(TT)] and poly (3',4'-ethylenedioxy-2,2':5',2"-terthiophene) [poly(TET)] prepared under the same polymerization conditions. After comparative analysis with poly(TT) and poly(TET), the effects of the dimethoxy substituent and FeCl₃ on the structural and physicochemical properties of the poly(TMT)s were discussed in depth. The comparison suggested that the dimethoxy-substituted polymer did not display higher crystallinity, thermal stability, conductivity and electrochemical activity than ethylenedioxy substituted one. The results also showed that the effect of FeCl₃ on poly(TMT) was similar that seen with the poly(TT), in which the oxidation degree, electrochemical activity and conductivity increased steadily with increasing [FeCl₃/[TT] ratio. Furthermore, the poly(TMT) and poly(TT) are mostly made up of dimers with a small amount of higher molecular weight components.

  1. Synthesis of novel poly(dG)–poly(dG)–poly(dC) triplex structure by Klenow exo− fragment of DNA polymerase I

    PubMed Central

    Kotlyar, Alexander; Borovok, Natalia; Molotsky, Tatiana; Klinov, Dmitry; Dwir, Benjamin; Kapon, Eli

    2005-01-01

    The extension of the G-strand of long (700 bp) poly(dG)–poly(dC) by the Klenow exo− fragment of DNA polymerase I yields a complete triplex structure of the H-DNA type. High-performance liquid chromatography analysis demonstrates that the length of the G-strand is doubled during the polymerase synthesis. Fluorescence resonance energy transfer analysis shows that the 5′ ends of the G- and the C-strands, labeled with fluorescein and TAMRA, respectively, are positioned close to each other in the product of the synthesis. Atomic force microscopy morphology imaging shows that the synthesized structures lack single-stranded fragments and have approximately the same length as the parent 700 bp poly(dG)–poly(dC). CD spectrum of the polymer has a large negative peak at 278 nm, which is characteristic of the poly(dG)–poly(dG)–poly(dC) triplex. The polymer is resistant to DNase and interacts much more weakly with ethidium bromide as compared with the double-stranded DNA. PMID:16314313

  2. Synthesis of novel poly(dG)-poly(dG)-poly(dC) triplex structure by Klenow exo- fragment of DNA polymerase I.

    PubMed

    Kotlyar, Alexander; Borovok, Natalia; Molotsky, Tatiana; Klinov, Dmitry; Dwir, Benjamin; Kapon, Eli

    2005-01-01

    The extension of the G-strand of long (700 bp) poly(dG)-poly(dC) by the Klenow exo(-) fragment of DNA polymerase I yields a complete triplex structure of the H-DNA type. High-performance liquid chromatography analysis demonstrates that the length of the G-strand is doubled during the polymerase synthesis. Fluorescence resonance energy transfer analysis shows that the 5' ends of the G- and the C-strands, labeled with fluorescein and TAMRA, respectively, are positioned close to each other in the product of the synthesis. Atomic force microscopy morphology imaging shows that the synthesized structures lack single-stranded fragments and have approximately the same length as the parent 700 bp poly(dG)-poly(dC). CD spectrum of the polymer has a large negative peak at 278 nm, which is characteristic of the poly(dG)-poly(dG)-poly(dC) triplex. The polymer is resistant to DNase and interacts much more weakly with ethidium bromide as compared with the double-stranded DNA.

  3. Structure Confirmation and Properties of Poly(Dimethylsiloxaneco-diethylsiloxane) Copolymer

    NASA Astrophysics Data System (ADS)

    Gao, Li-Juan; Ma, De-Peng; Feng, Sheng-Yu

    2016-05-01

    High molecular weight poly (dimethylsiloxane-co-diethylsiloxane) (PMES) copolymer was synthesized by anionic ring opening polymerization. Its composition and structures was determined by 29Si NMR spectroscopy. A random microstructure of copolymer was observed in the 29Si NMR spectrum. Further, PMES was characterized by GPC and DSC. The results show that PMES is crystallization-free copolymer with low glass transition temperatures.

  4. Synthesis of poly(aminoamides)via enzymatic means

    USDA-ARS?s Scientific Manuscript database

    Poly(aminoamides) constitute a subclass of polyamides that are water-soluble and useful for several applications. Commercially they are made via chemical reaction pathways. A review is made in this work of the enzymatic approaches towards their syntheses. Lipases and esterases have been found to ...

  5. Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles

    NASA Astrophysics Data System (ADS)

    Taheri, Shima; Baier, Grit; Majewski, Peter; Barton, Mary; Förch, Renate; Landfester, Katharina; Vasilev, Krasimir

    2014-08-01

    Infections associated with medical devices are a substantial healthcare problem. Consequently, there has been increasing research and technological efforts directed toward the development of coatings that are capable of preventing bacterial colonization of the device surface. Herein, we report on novel hybrid silver loaded poly(L-lactic acid) nanoparticles (PLLA-AgNPs) with narrowly distributed sizes (17 ± 3 nm) prepared using a combination of solvent evaporation and mini-emulsion technology. These particles were then immobilized onto solid surfaces premodified with a thin layer of allylamine plasma polymer (AApp). The antibacterial efficacy of the PLLA-AgNPs nanoparticles was studied in vitro against both gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. The minimal inhibitory concentration values against Staphylococcus epidermidis and Escherichia coli were 0.610 and 1.156 μg · mL-1, respectively. The capacity of the prepared coatings to prevent bacterial surface colonization was assessed in the presence of Staphylococcus epidermidis, which is a strong biofilm former that causes substantial problems with medical device associated infections. The level of inhibition of bacterial growth was 98%. The substrate independent nature and the high antibacterial efficacy of coatings presented in this study may offer new alternatives for antibacterial coatings for medical devices.

  6. Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery.

    PubMed

    Pavot, Vincent; Berthet, Morgane; Rességuier, Julien; Legaz, Sophie; Handké, Nadège; Gilbert, Sarah C; Paul, Stéphane; Verrier, Bernard

    2014-12-01

    The development of safe and effective vaccines for cancer and infectious diseases remains a major goal in public health. Over the last two decades, controlled release of vaccine antigens and immunostimulant molecules has been achieved using nanometer or micron-sized delivery vehicles synthesized using biodegradable polymers. In addition to achieving a depot effect, enhanced vaccine efficacy using such delivery vehicles has been attributed to efficient targeting of antigen presenting cells such as dendritic cells. Biodegradable and biocompatible poly(lactic acid) and poly(lactic-co-glycolic acid) polymers belong to one such family of polymers that have been a popular choice of material used in the design of these delivery vehicles. This review summarizes research findings from ourselves and others highlighting the promise of poly(lactic acid)- and poly(lactic-co-glycolic acid)-based vaccine carriers in enhancing immune responses.

  7. Poly(N-isopropylacrylamide)/poly(dopamine) capsules.

    PubMed

    Zhang, Yan; Teo, Boon M; Goldie, Kenneth N; Städler, Brigitte

    2014-05-20

    Polymer capsules are an interesting concept considered in nanobiotechnology. Approaches that facilitate their assembly remain sought after. Poly(dopamine) (PDA) has been considered and successfully applied in this context. We recently demonstrated that PDA could be copolymerized with different types of poly(N-isopropylacrylamide) (pNiPAAm) to assemble mixed films on planar substrates. Herein, we transferred this approach onto colloidal substrates and characterized the film thickness depending on the film composition and template particles size. While the membrane of capsules assembled using 5 μm template particles exhibited strong dependency on the film composition, smaller templates led to capsules with similar membrane thickness. We then compared the permeability of different capsules using fluorescently labeled dextran and fluorescein. We found that the permeability of capsules was heavily dependent on the polymer composition and the template particle size. These fundamental findings contribute to the potential of these capsules, assembled in one-step, for biomedical applications.

  8. Phenylethynyl-Terminated Poly(Arylene Ethers)

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Bryant, Robert G.; Hergenrother, Paul M.

    1994-01-01

    Phenylethynyl-terminated poly(arylene ethers) synthesized in wide range of molecular weights by adjusting monomer ratios and adding appropriate amounts of 4-phenylethynyl-4'-fluorobenzophenone to monomers to end-cap oligomers during polymerization. Have low molecular weights and low melt viscosities, and are easily processed as adhesives, composites, and moldings. Thermally cured to provide materials that are crosslinked and insoluble in common organic solvents. Exhibit increased resistance to solvents, greater tensile moduli, and better high-temperature properties. Useful as adhesives, composite matrices, and moldings, especially in applications in which combination of toughness and resistance to solvents needed.

  9. Copper nanocoils synthesized through solvothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  10. Copper nanocoils synthesized through solvothermal method.

    PubMed

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-11-26

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10-35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices.

  11. Copper nanocoils synthesized through solvothermal method

    PubMed Central

    Liu, Yanjuan; Liu, Xiaowei; Zhan, Yongjie; Fan, Haiming; Lu, Yang

    2015-01-01

    Recently helical nanostructures such as nanosprings and nanocoils have drawn great interests in nanotechnology, due to their unique morphologies and physical properties, and they may be potential building blocks in sorts of electromechanical, magnetic, photoelectronic and plasmonic devices at micro/nanoscales. In this report, multi-turns copper nanocoils were synthesized through a modified solvothermal method, in which the mixture of water and N-methyl-2-pyrrolidone (NMP) were selected as reaction medium and copolymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA 64E) as reductant. In the liquid solution, nanosprings could be formed from relaxed nanocoils and demonstrated high elasticity. These nanocoils and nanosprings are of single crystalline structure, with the characteristics wire diameters ranging from tens to a few hundreds of nanometers and the ring/coil diameters mostly ~10–35 microns. Their growth and deformation mechanisms were then investigated and discussed along with that of previously reported single-turn copper nanorings. This work could be of importance for researchers working on synthesis and applications of novel 1-D helical nanomaterials and their functional devices. PMID:26607386

  12. Electrospun nanofibers of polyCD/PMAA polymers and their potential application as drug delivery system.

    PubMed

    Oliveira, Michele F; Suarez, Diego; Rocha, Júlio Cézar Barbosa; de Carvalho Teixeira, Alvaro Vianna Novaes; Cortés, Maria E; De Sousa, Frederico B; Sinisterra, Rubén D

    2015-09-01

    Herein, we used an electrospinning process to develop highly efficacious and hydrophobic coaxial nanofibers based on poly-cyclodextrin (polyCD) associated with poly(methacrylic acid) (PMAA) that combines polymeric and supramolecular features for modulating the release of the hydrophilic drug, propranolol hydrochloride (PROP). For this purpose, polyCD was synthesized and characterized, and its biocompatibility was assessed using fibroblast cytotoxicity tests. Moreover, the interactions between the guest PROP molecule and both polyCD and βCD were found to be spontaneous. Subsequently, PROP was encapsulated in uniaxial and coaxial polyCD/PMAA nanofibers. A lower PROP burst effect (reduction of approximately 50%) and higher modulation were observed from the coaxial than from the uniaxial fibers. Thus, the coaxial nanofibers could potentially be a useful strategy for developing a controlled release system for hydrophilic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Immobilization of poly(acrylamide) brushes onto poly(caprolactone) surface by combining ATRP and "click" chemistry: Synthesis, characterization and evaluation of protein adhesion

    NASA Astrophysics Data System (ADS)

    Ma, Yuhao; Bian, Xinxiu; He, Liu; Cai, Mengtan; Xie, Xiaoxiong; Luo, Xianglin

    2015-02-01

    Developments of poly(caprolactone) in blood-contacting applications are often restricted due to its intrinsic hydrophobicity. One common way to improve its hemocompatibility is to attach hydrophilic polymers. Here we developed a non-destructive method to graft hydrophilic poly(acrylamide) (PAAm) onto poly(caprolactone) (PCL) surface. In this strategy, azido-ended PCL with low molecular weights was synthesized and blended with PCL to create a surface with "clickable" property. Alkyne-ended poly(acrylamide)s with controlled chain lengths were then synthesized by atom transfer radical polymerization (ATRP), and finally were immobilized onto PCL surface by "click" reaction. The occurrence of immobilization was verified qualitatively by water contact angle measurement and quantitatively by X-ray photoelectron spectroscopy (XPS). The PAAm grafted surface exhibited fouling resistant properties, as demonstrated by reduced bovine serum albumin (BSA) and fibrinogen (Fg) adhesion.

  14. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    USGS Publications Warehouse

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  15. Preparation of magnetic microspheres based on poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) copolymers by modified solvent diffusion method.

    PubMed

    Men, Ke; Zeng, Shi; Gou, MaLing; Guo, Gang; Gu, Ying Chun; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-06-01

    Magnetic microspheres have promising application in biomedical field. In this paper, biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) (PCEC) triblock copolymers were synthesized by ring-opening polymerization method. Through adjusting the epsilon-CL/PEG weight ratio in feed, PCEC copolymers with different block ratio were obtained. A novel modified solvent diffusion method was described to prepare magnetic PCEC composite microspheres containing magnetite nanoparticles. The particle size of microsphere decreased with increase in the PEG/PCL block ratio. The obtained microspheres could response to external magnetic field. This study described a novel method to prepare magnetic microspheres. The obtained magnetic polymeric microspheres might have potential application in drug delivery system or disease diagnosis field.

  16. Poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide)-templated synthesis of mesoporous alumina: effect of triblock copolymer and acid concentration.

    PubMed

    Materna, Kelly L; Grant, Stacy M; Jaroniec, Mietek

    2012-07-25

    Mesoporous alumina was synthesized via a one-pot self-assembly of aluminum isopropoxide and poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer in an acidic ethanol solution. The effects of the polymer concentration and nitric acid concentration, independently, on the adsorption properties (such as surface area, pore volume, microporosity, mesoporosity, and pore width) were studied. An increase in the specific surface area and the pore volume was seen for the samples containing a polymer/aluminum isopropoxide wt. ratio up to 0.71 and a polymer/acid wt ratio of 0.88. Titania isopropoxide was also added to the synthesis to illustrate the extension of this approach to alumina-based mixed metal oxides.

  17. A Family of Bioreducible Poly(disulfide amine)s for Gene Delivery

    PubMed Central

    Ou, Mei; Xu, Rongzuo; Kim, Sun Hwa; Bull, David A.; Kim, Sung Wan

    2009-01-01

    A family of bioreducible poly(disulfide amine)s, which differ in the length of polymethylene spacer [–(CH2)n–] in the main chain and the side chain, has been synthesized. These bioreducible poly(disulfide amine)s exhibit local environment specific degradability and are associated with lower cytotoxicity than branched poly(ethylenimine) (bPEI, 25kDa). These cationic polymers also show higher buffering capacity and protonation degree than bPEI, facilitating the endosomal escape of carried genetic materials. The transfection efficiency of these agents is polymethylene length dependent. Poly(cystaminebisacrylamide-spermine) [poly(CBA-SP);], poly(cystaminebisacrylamide-bis(3-aminopropyl)-1,3-propanediamine) [poly(CBA-APPD);], and poly(cyxtaminebisacrylamide-bis(3-aminopropyl)-ethylenediamine) [ploy(CBA-APED);] with longer propylene [–(CH2)3–] side spacer, demonstrate higher transfection efficacy than the counterpart poly(cystaminebisacrylamide-bis(2-aminoethyl)-1,3-propanediamine) [poly(CBA-AEPD);] and poly(cystaminebisacrylamide-triethylenetetramine) [poly(CBA-TETA);], which have shorter ethylene [–(CH2)2–] side spacer. The poly(CBA-SP), poly(CBA-APPD), poly(CBA-APED) with the main chain spacer of –(CH2)4–, –(CH2)3–, –(CH2)2– demonstrate similar transfection efficiency, indicating the length of polymer main chain spacer has less influence on transfection efficiency. However, with the same short ethylene [–(CH2)2–] side spacer, poly(CBA-AEPD), with the longer main chain oligomethylene units [–(CH2)3–], showed relatively higher transfection efficiency than poly(CBA-TETA), having shorter main chain oligomethylene units [–(CH2)2–]. Of these polymeric carriers, poly(CBA-SP) demonstrated the highest transfection in the C2C12 cell line, while poly(CBA-APED) showed the highest transfection in the Hela cell line. All of these agents showed greater transfection activity than commercialized bPEI 25kDa. The poly(disulfide amine)s are promising

  18. Reactanceless synthesized impedance bandpass amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L. (Inventor)

    1985-01-01

    An active R bandpass filter network is formed by four operational amplifier stages interconnected by discrete resistances. One pair of stages synthesize an equivalent input impedance of an inductance (L sub eq) in parallel with a discrete resistance (R sub o) while the second pair of stages synthesizes an equivalent input impedance of a capacitance (C sub eq) serially coupled to another discrete resistance (R sub i) coupled in parallel with the first two stages. The equivalent input impedances aggregately define a tuned resonant bandpass filter in the roll-off regions of the operational amplifiers.

  19. Copolymerization modification of poly (butylene itaconate)

    NASA Astrophysics Data System (ADS)

    Gao, Chuanhui; Wang, Jing; Han, Shijian; Hu, Zunfu; Liu, Yuetao

    2017-08-01

    A series of copolyesters-poly (butylene itaconate) (PBI) was synthesized by melt polycondensation from itaconic acid (IA) and 1,4-butanediol (BDO). On this basis, dimethyl terephthalate (DMT), adipic acid (AP) and sebacic acid (SA), respectively, was selected as the third comonomer component to modify PBI to poly (butylene itaconate-co-butylene terephthalate) (PBIT), poly (butylene itaconate-co-butylene adipate) (PBIA) and (butylene itaconate-co-butylene sebacate) (PBIS), of which structure and physical properties were characterized by FT-IR, 1H-NMR, GPC, DSC and TG. The results showed that PBI was amorphous material, and the molecular weight and the initial thermal decomposition temperature of PBI were 1108, 244°C, respectively. Compared to PBI, the molecular weight and the thermal stability of copolyesters (PBIA, PBIT and PBIS) could be increased by this treatment. Particularly, the molecular weight of PBIS was increased to 12,321, 12 times more than PBI, the initial thermal decomposition temperature was improved to 336°C, and PBIS had good crystallization performance.

  20. Synthesis of Optically Active Poly(diphenylacetylene)s Using Polymer Reactions and an Evaluation of Their Chiral Recognition Abilities as Chiral Stationary Phases for HPLC.

    PubMed

    Maeda, Katsuhiro; Maruta, Miyuki; Sakai, Yuki; Ikai, Tomoyuki; Kanoh, Shigeyoshi

    2016-11-07

    A series of optically active poly(diphenylacetylene) derivatives bearing a chiral substituent (poly-2S) or chiral and achiral substituents (poly-(2Sx-co-31-x)) on all of their pendant phenyl rings were synthesized by the reaction of poly(bis(4-carboxyphenyl)acetylene) with (S)-1-phenylethylamine ((S)-2) or benzylamine (3) in the presence of a condensing reagent. Their chiroptical properties and chiral recognition abilities as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were investigated. Poly-2S and poly-(2Sx-co-31-x) (0.06 < x < 0.71) formed a preferred-handed helical conformation with opposite helical senses after thermal annealing despite possessing the same chiral pendant (h-poly-2S and h-poly-(2Sx-co-31-x)). Furthermore, h-poly-2S and h-poly-(2S0.36-co-30.64) emitted circularly polarized luminescence with opposite signs. h-Poly-2S showed higher chiral recognition abilities toward a larger number of racemates than poly-2S without a preferred-handed helicity and the previously reported preferred-handed poly(diphenylacetylene) derivative bearing the same chiral substituent on half of its pendant phenyl rings. h-Poly-(2S0.36-co-30.64) also exhibited good chiral recognition abilities toward several racemates, though the elution order of some enantiomers was reversed compared with h-poly-2S.

  1. Poly(cyclohexylethylene)-block-poly(ethylene oxide) block polymers for metal oxide templating

    SciTech Connect

    Schulze, Morgan W.; Sinturel, Christophe

    2015-09-01

    A series of poly(cyclohexylethylene)-block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation produces an ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.

  2. Poly(cyclohexylethylene)-block-poly(ethylene oxide) block polymers for metal oxide templating

    DOE PAGES

    Schulze, Morgan W.; Sinturel, Christophe; Hillmyer, Marc A.

    2015-09-01

    A series of poly(cyclohexylethylene)-block-poly(ethylene oxide) (CEO) diblock copolymers were synthesized through tandem anionic polymerizations and heterogeneous catalytic hydrogenation. Solvent-annealed CEO diblock films were used to template dense arrays of inorganic oxide nanodots via simple spin coating of an inorganic precursor solution atop the ordered film. The substantial chemical dissimilarity of the two blocks enables (i) selective inclusion of the inorganic precursor within the PEO domain and (ii) the formation of exceptionally small feature sizes due to a relatively large interaction parameter estimated from mean-field analysis of the order–disorder transition temperatures of compositionally symmetric samples. UV/ozone treatment following incorporation produces anmore » ordered arrangement of oxide nanodots and simultaneously removes the block polymer template. However, we report the smallest particles (6 ± 1 nm) templated from a selective precursor insertion method to date using a block polymer scaffold.« less

  3. Synthesis and Properties of Poly(l-lactide)-b-poly (l-phenylalanine) Hybrid Copolymers

    PubMed Central

    Planellas, Marc; Puiggalí, Jordi

    2014-01-01

    Hybrid materials constituted by peptides and synthetic polymers have nowadays a great interest since they can combine the properties and functions of each constitutive block, being also possible to modify the final characteristics by using different topologies. Poly(l-lactide-b-l-phenylalanine) copolymers with various block lengths were synthesized by sequential ring-opening polymerization of l-lactide and the N-carboxyanhydride of l-phenylalanine. The resulting block copolymers were characterized by NMR spectrometry, IR spectroscopy, gel permeation chromatography, MALDI-TOF and UV-vis, revealing the successful incorporation of the polyphenylalanine (PPhe) peptide into the previously formed poly(l-lactide) (PLLA) polymer chain. X-ray diffraction and DSC data also suggested that the copolymers were phase-separated in domains containing either crystalline PLLA or PPhe phases. A peculiar thermal behavior was also found by thermogravimetric analysis when polyphenylalanine blocks were incorporated into polylactide. PMID:25075980

  4. Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor

    NASA Astrophysics Data System (ADS)

    Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar

    Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.

  5. Information Retrieval for Ecological Syntheses

    ERIC Educational Resources Information Center

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  6. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  7. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  8. Information Retrieval for Ecological Syntheses

    ERIC Educational Resources Information Center

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  9. Laboratory Syntheses of Insect Pheromones.

    ERIC Educational Resources Information Center

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  10. “Uncontrolled” Preparation of Disperse Poly(lactide)- block -poly(styrene)- block -poly(lactide) for Nanopatterning Applications

    SciTech Connect

    Vanderlaan, Marie E.; Hillmyer, Marc A.

    2016-11-08

    We report the facile synthesis of well-defined ABA poly(lactide)-block-poly(styrene)-block-poly(lactide) (LSL) triblock copolymers having a disperse poly(styrene) midblock (Ð = 1.27–2.24). The direct synthesis of telechelic α,ω-hydroxypoly(styrene) (HO-PS-OH) midblocks was achieved using a commercially available difunctional free radical diazo initiator 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide]. Poly(lactide) (PLA) end blocks were subsequently grown from HO-PS-OH macroinitiators via ring-opening transesterification polymerization of (±)-lactide using the most common and prevalent catalyst system available, tin(II) 2-ethylhexanoate. Fourteen LSL triblock copolymers with total molar masses Mn,total = 24–181 kg/mol and PLA volume fractions fPLA = 0.15–0.68 were synthesized and thoroughly characterized. The self-assembly of symmetric triblocks was analyzed in the bulk using small-angle X-ray scattering and in thin films using grazing incidence small-angle X-ray scattering and atomic force microscopy. We demonstrate both the bulk and thin film self-assembly of LSL disperse triblocks gave well-organized nanostructures with uniform domain sizes suitable for nanopatterning applications.

  11. Confined Flocculation of Ionic Pollutants by Poly(L-dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination.

    PubMed

    Yu, Li; Liu, Xiaokong; Yuan, Weichang; Brown, Lauren Joan; Wang, Dayang

    2015-06-16

    The development of simple and recyclable adsorbents with high adsorption capacity is a technical imperative for water treatment. In this work, we have successfully developed new adsorbents for the removal of ionic pollutants from water via encapsulation of polyelectrolyte complexes (PECs) made from positively charged poly(allylamine hydrochloride) (PAH) and negatively charged poly(l-3,4-dihydroxyphenylalanine) (PDopa), obtained via the self-polymerization of l-3,4-dihydroxyphenylalanine (l-Dopa). Given the outstanding mass transport through the hydrogel host matrixes, the PDopa-PAH PEC guests loaded inside can effectively and efficiently remove various ionic pollutants, including heavy metal ions and ionic organic dyes, from water. The adsorption efficiency of the PDopa-PAH PECs can be quantitatively correlated to and tailored by the PDopa-to-PAH molar ratio. Because PDopa embodies one catechol group, one carboxyl group, and one amino group in each repeating unit, the resulting PDopa-PAH PECs exhibit the largest capacity of adsorption of heavy metal ions compared to available adsorbents. Because both PDopa and PAH are pH-sensitive, the PDopa-PAH PEC-loaded agarose hydrogel beads can be easily and completely recovered after the adsorption of ionic pollutants by adjusting the pH of the surrounding media. The present strategy is similar to the conventional process of using PECs to flocculate ionic pollutants from water, while in our system flocculation is confined to the agarose hydrogel beads, thus allowing easy separation of the resulting adsorbents from water.

  12. Preparation of poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) monolithic column modified with β-cyclodextrin and nano-cuprous oxide and its application in polymer monolithic microextraction of polychlorinated biphenyls.

    PubMed

    Zheng, Haijiao; Liu, Qingwen; Jia, Qiong

    2014-05-23

    A poly(butyl methacrylate-co-ethyleneglyceldimethacrylate) (poly(BMA-EDMA)) monolithic column was prepared with in situ polymerization method and modified with allylamine-β-cyclodextrin (ALA-β-CD) and nano-cuprous oxide (Cu2O). A polymer monolith microextraction method was developed with the modified monolithic column for the preconcentration of polychlorinated biphenyls combined with gas chromatography-electron capture detector. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. Because of the hydrophobic properties of β-CD and the porous nano structure of Cu2O, the enrichment capacity of the poly(BMA-EDMA) monolithic column was significantly improved. The extraction efficiency followed the order: poly(BMA-EDMA-ALA-β-CD-Cu2O)>poly(BMA-EDMA-ALA-β-CD)>poly(BMA-EDMA)>direct GC analysis. When applied to the determination of polychlorinated biphenyls in wine samples, low limits of detection (0.09ngmL(-1)) were obtained under the preoptimized conditions (sample volume 1.0mL, sample flow rate 0.1mLmin(-1), eluent volume 0.1mL, and eluent flow rate 0.05mLmin(-1)). In addition, the present method was employed to determine polychlorinated biphenyls in red wine samples and the accuracy was assessed through recovery experiments. The obtained recovery values were in the range of 78.8-104.1% with relative standard deviations less than 9.0%.

  13. Research Update: Triblock copolymers as templates to synthesize inorganic nanoporous materials

    NASA Astrophysics Data System (ADS)

    Li, Yunqi; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke

    2016-04-01

    This review focuses on the application of triblock copolymers as designed templates to synthesize nanoporous materials with various compositions. Asymmetric triblock copolymers have several advantages compared with symmetric triblock copolymers and diblock copolymers, because the presence of three distinct domains can provide more functional features to direct the resultant nanoporous materials. Here we clearly describe significant contributions of asymmetric triblock copolymers, especially polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (abbreviated as PS-b-P2VP-b-PEO).

  14. Tunneling conduction in graphene/(poly)vinyl alcohol composite

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Banerjee, Sourish; Chakravorty, Dipankar

    2013-04-01

    Graphene/(Poly)vinyl alcohol (PVA) composite film with thickness 60μm was synthesized by solidification of a PVA solution comprising of dispersed graphene nanosheets. The close proximity of the graphene sheets enables the fluctuation induced tunneling of electrons to occur from one sheet to another. The dielectric data show that the present system can be simulated to a parallel resistance-capacitor network. The high frequency exponent of the frequency variation of the ac conductivity indicates that the charge carriers move in a two-dimensional space. The sample preparation technique will be helpful for synthesizing flexible conductors.

  15. Synthesis and characterization of β-napthalene sulphonic acid doped poly(o-anisidine)

    NASA Astrophysics Data System (ADS)

    Sangamithirai, D.; Narayanan, V.; Stephen, A.

    2014-04-01

    Poly(o-anisidine) doped with β-napthalene sulphonic acid (β-NSA) was synthesized using ammonium persulphate as an oxidizing agent. The polymer was characterized by using FTIR, XRD and conductivity measurements. The FTIR spectra reveal the presence of functional groups that account for the formation of polymer. The structure was characterized by XRD. The conductivity of the poly(o-anisidine) salt was found to be 2.25 × 10-6 S/m.

  16. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  17. Determinism in synthesized chaotic waveforms.

    PubMed

    Corron, Ned J; Blakely, Jonathan N; Hayes, Scott T; Pethel, Shawn D

    2008-03-01

    The output of a linear filter driven by a randomly polarized square wave, when viewed backward in time, is shown to exhibit determinism at all times when embedded in a three-dimensional state space. Combined with previous results establishing exponential divergence equivalent to a positive Lyapunov exponent, this result rigorously shows that such reverse-time synthesized waveforms appear equally to have been produced by a deterministic chaotic system.

  18. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, R.S.; Sansone, M.J.; Slegeir, W.A.R.

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  19. Catalytic method for synthesizing hydrocarbons

    DOEpatents

    Sapienza, Richard S.; Sansone, Michael J.; Slegeir, William A. R.

    1984-01-01

    A method for synthesizing hydrocarbons from carbon monoxide and hydrogen by contacting said gases with a slurry of a catalyst composed of palladium or platinum and cobalt supported on a solid phase is disclosed. The catalyst is prepared by heating a heterogeneous component of the palladium or platinum deposited on the solid support in a solution of cobalt carbonyl or precursors thereof. The catalyst exhibits excellent activity, stability in air, and produces highly desirable product fractions even with dilute gaseous reactants.

  20. TSS-Thermal Synthesizer System

    NASA Technical Reports Server (NTRS)

    Chimenti, Edward; Rickman, Steven; Vogt, Robert; Longo, Carlos R. Ortiz; Bauman, Noel; Lepore, Joseph; Mackey, Phil; Pavlovsky, James, II; Welch, Mark; Fogerson, Peter; Dawber, Mark; Fong, Cynthia Jone; Hecke, Peter; Morrison, Susan; Castillo, Ernie; Chou, ZU; Fried, Lawrence; Howard, Jerry; Lombardi, Mike; Middleton, Jack

    1996-01-01

    Thermal Synthesizer System (TSS) is integrated set of thermal-analysis application programs designed to solve problems encountered by thermal engineers. Combines functionality of Systems Improved Numerical Differencing Analyzer/Fluid Integrator (SINDA/FLUINT) and radiation analysis with friendly and easily understood user-interface environment coupled with powerful interactive color graphics and geometric modeling capability. Enables thermal engineers to spend more time solving engineering problems instead of laboriously constructing and verifying math models. Written in FORTRAN and C language.

  1. TSS-Thermal Synthesizer System

    NASA Technical Reports Server (NTRS)

    Chimenti, Edward; Rickman, Steven; Vogt, Robert; Longo, Carlos R. Ortiz; Bauman, Noel; Lepore, Joseph; Mackey, Phil; Pavlovsky, James, II; Welch, Mark; Fogerson, Peter; hide

    1996-01-01

    Thermal Synthesizer System (TSS) is integrated set of thermal-analysis application programs designed to solve problems encountered by thermal engineers. Combines functionality of Systems Improved Numerical Differencing Analyzer/Fluid Integrator (SINDA/FLUINT) and radiation analysis with friendly and easily understood user-interface environment coupled with powerful interactive color graphics and geometric modeling capability. Enables thermal engineers to spend more time solving engineering problems instead of laboriously constructing and verifying math models. Written in FORTRAN and C language.

  2. Solid phase syntheses of oligoureas

    SciTech Connect

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J.

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  3. Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene)

    PubMed Central

    2016-01-01

    Poly(ethylene dioxythiophene) with functional pendant groups bearing double bonds is synthesized and employed for the fabrication of electroactive hydrogels with advantageous characteristics: covalently cross-linked porous 3D scaffolds with notable swelling ratio, appropriate mechanical properties, electroactivity in physiological conditions, and suitability for proliferation and differentiation of C2C12 cells. This is a new approach for the fabrication of conductive engineered constructs. PMID:27656042

  4. Synthesis and characterization of triblock copolymers of methoxy poly(ethylene glycol) and poly(propylene fumarate).

    PubMed

    Behravesh, Esfandiar; Shung, Albert K; Jo, Seongbong; Mikos, Antonios G

    2002-01-01

    Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.

  5. Ketimine modifications as a route to novel amorphous and derived semicrystalline poly(arylene ether ketone) homo- and copolymers

    NASA Technical Reports Server (NTRS)

    Mohanty, D. K.; Lowery, R. C.; Lyle, G. D.; Mcgrath, J. E.

    1987-01-01

    A series of amine terminal amorphous poly(arylene ether ketone) oligomers of controlled molecular weights (2-15 K) were synthesized. These oligomers have been found to undergo 'self-crosslinking' reactions upon heating above 220 C, via the reaction of the terminal amine groups with the in-chain keto carbonyl functionalities. The resulting networks are ductile, chemically resistant, and nonporous. The networks obtained via generated ketimine functionality were characterized by solid state NMR. They have also been found to be remarkably stable toward hydrolysis. Ketimine functional bishalide monomers have also been synthesized. Such monomers have been utilized to synthesize a wide variety of amorphous poly(arylene ether) ketimine polymers. A high molecular weight hydroquinone functional poly(arylene ether) ketimine has been acid treated to regenerate a poly(arylene ether ketone) backbone in solution. This novel procedure thus allows for the synthesis of important matrix resins under relatively mild conditions.

  6. Chromatographic enantioseparation by poly(biphenylylacetylene) derivatives with memory of both axial chirality and macromolecular helicity.

    PubMed

    Ishidate, Ryoma; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji; Maeda, Katsuhiro

    2017-03-29

    Novel poly(biphenylylacetylene) derivatives bearing two acetyloxy groups at the 2- and 2'-positions and an alkoxycarbonyl group at the 4'-position of the biphenyl pendants (poly-Ac's) were synthesized by the polymerization of the corresponding biphenylylacetylenes using a rhodium catalyst. The obtained stereoregular (cis-transoidal) poly-Ac's folded into a predominantly one-handed helical conformation accompanied by a preferred-handed axially twisted conformation of the biphenyl pendants through noncovalent interactions with a chiral alcohol and both the induced main-chain helicity and the pendant axial chirality were maintained, that is, memorized, after complete removal of the chiral alcohol. The stability of the helicity memory of the poly-Ac's in a solution was lower than that of the analogous poly(biphenylylacetylene)s bearing two methoxymethoxy groups at the 2- and 2'-positions of the biphenyl pendants (poly-MOM's). In the solid state, however, the helicity memory of the poly-Ac's was much more stable and showed a better chiral recognition ability toward several racemates than that of the previously reported poly-MOM when used as a chiral stationary phase for high-performance liquid chromatography. In particular, the poly-Ac-based CSP with a helicity memory efficiently separated racemic benzoin derivatives into enantiomers.

  7. Cholic acid functionalized star poly(DL-lactide) for promoting cell adhesion and proliferation.

    PubMed

    Fu, Hui-Li; Zou, Tao; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2007-01-01

    Cholic acid functionalized star poly(DL-lactide) was synthesized through the ring-opening polymerization of DL-lactide initiated by cholic acid. The properties and cell behaviour of the cholic acid functionalized star poly(DL-lactide) were investigated as compared with linear poly(DL-lactide)s with different molecular weights and a star poly(DL-lactide) initiated by glycerol. In comparison to linear poly(DL-lactide)s, the cholic acid functionalized star poly(DL-lactide) had better wettability and slightly higher surface energy. The cell adhesion and proliferation on different materials were evaluated using two types of cells, 3T3 mouse fibroblasts and ECV304 human endothelial cells. Compared with the linear poly(DL-lactide)s, the cholic acid functionalized star poly(DL-lactide) showed obviously improved property for cell adhesion. The cell proliferation on the cholic acid functionalized star poly(DL-lactide) was also enhanced. The improvement in cell proliferation was not so significant as compared with the improvement in cell adhesion. This modification strategy provides an effective and simple way to promote cell attachment and growth in tissue engineering.

  8. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    PubMed

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  9. Synthesis and Characterization of Multiwalled Carbon Nanotubes/Poly(HEMA-co-MMA) by Utilizing Click Chemistry.

    PubMed

    Bach, Long Giang; Cao, Xuan Thang; Islam, Md Rafiqul; Jeong, Yeon Tae; Kim, Jong Su; Lim, Kwon Taek

    2016-03-01

    The hybrid material consisting of multi walled carbon nanotubes (MWNTs) and poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) [poly(HEMA-co-MMA)] was synthesized by a combination of RAFT and Click chemistry. In the primary stage, the copolymer poly(HEMA-co-MMA) was prepared by applying RAFT technique. Alkynyl side groups were incorporated onto the poly(HEMA-co-MMA) backbone by esterification reaction. Then, MWNTs-N3 was prepared by treating MWNTs with 4-azidobutylamine. The click coupling reaction between azide-functionalized MWNTs (MWNTs-N3) and the alkyne-functionalized random copolymer ((HEMA-co-MMA)-Alkyne) with the Cu(I)-catalyzed [3+2] Huisgen cycloaddition afforded the hybrid compound. The structure and properties of poly(MMA-co-HEMA)-g-MWNTs were investigated by FT-IR, EDX and TGA measurements. The copolymer brushes were observed to be immobilized onto the functionalized MWNTs by SEM and TEM analysis.

  10. PolyMorphine: an innovative biodegradable polymer drug for extended pain relief

    PubMed Central

    Rosario-Meléndez, Roselin; Harris, Carolyn L.; Delgado-Rivera, Roberto; Yu, Lei; Uhrich, Kathryn E.

    2012-01-01

    Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed “PolyMorphine”, was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopies, and infrared spectroscopy. The weight-average molecular weight and the thermal properties were determined. The hydrolytic degradation pathway of the polymer was determined by in vitro studies, showing that free morphine is released. In vitro cytocompatibility studies demonstrated that PolyMorphine is non-cytotoxic towards fibroblasts. In vivo studies using mice showed that PolyMorphine provides analgesia for 3 days, 20 times the analgesic window of free morphine. The animals retained full responsiveness to morphine after being subjected to an acute morphine challenge. PMID:22877734

  11. New aromatic activated dihalides and bisphenol monomers for the preparation of novel poly(arylene ethers)

    NASA Technical Reports Server (NTRS)

    Wolfe, James F.

    1993-01-01

    The goal of this research program was to synthesize a series of unique monomers of type I to be utilized at NASA-Langley in the preparation of new poly(arylene ether ketones), poly(arylene ether ketosulfones), and poly(arylene ether ketophosphine oxides). These A-A and A-B monomer systems, which possess activated aryl halide and/or phenolic end groups, are accessible via condensation reactions of appropriately substituted aryl acetonitrile carbanions with activated aryl dihalides followed by oxidative decyanation.

  12. Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials.

    PubMed

    Andreessen, Björn; Taylor, Nicolas; Steinbüchel, Alexander

    2014-11-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Poly(3-Hydroxypropionate): a Promising Alternative to Fossil Fuel-Based Materials

    PubMed Central

    Andreeßen, Björn; Taylor, Nicolas

    2014-01-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated. PMID:25149521

  14. Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly(SA) hydrogels.

    PubMed

    Bajpai, S K; Jadaun, Mamta; Tiwari, Seema

    2016-11-20

    In this work, zinc oxide nanoparticles were synthesized in-situ within the gum acacia/poly (acrylate) hydrogel network using hydrothermal approach. The synthesized zinc oxide nanoparticles were characterized by Surface plasmon resonance (SPR), X-Ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM). The water absorption behavior of ZnO/GA/poly(SA) hydrogels was investigated in the phosphate buffer saline (PBS) of pH 7.4 at 37°C. The water uptake data were analyzed with the help of various kinetic models. Finally, the antimicrobial action of nanocomposites was studied using E. coli as model bacteria.

  15. Aggregation Control by Multi-stimuli-Responsive Poly( N-vinylamide) Derivatives in Aqueous System

    NASA Astrophysics Data System (ADS)

    Kawatani, Ryo; Nishiyama, Yasuhiro; Kamikubo, Hironari; Kakiuchi, Kiyomi; Ajiro, Hiroharu

    2017-07-01

    Thermal and photo responsive copolymer based on N-vinylamide backbone was designed. Methoxyethyl group and azobenzene were selected to improve hydrophilicity and photoresponsive moieties, respectively. The N-(methoxyethyl)- N-vinylformamide was synthesized and copolymerized with N-vinylformamide by free radical polymerization. In order to control the nanosized structures, poly( N-vinylformamide) derivatives bearing azobenzene at the N-position near to the vinyl polymer main chain were synthesized by polymer reaction with the poly( N-vinylformamide- co- N-(methoxyethyl)- N-vinylformamide) and azobenzene. Aggregation size of the multi-stimuli-responsive polymer was controlled by preparation of the hydrophobic interaction at around N-position.

  16. Aggregation Control by Multi-stimuli-Responsive Poly(N-vinylamide) Derivatives in Aqueous System.

    PubMed

    Kawatani, Ryo; Nishiyama, Yasuhiro; Kamikubo, Hironari; Kakiuchi, Kiyomi; Ajiro, Hiroharu

    2017-12-01

    Thermal and photo responsive copolymer based on N-vinylamide backbone was designed. Methoxyethyl group and azobenzene were selected to improve hydrophilicity and photoresponsive moieties, respectively. The N-(methoxyethyl)-N-vinylformamide was synthesized and copolymerized with N-vinylformamide by free radical polymerization. In order to control the nanosized structures, poly(N-vinylformamide) derivatives bearing azobenzene at the N-position near to the vinyl polymer main chain were synthesized by polymer reaction with the poly(N-vinylformamide-co-N-(methoxyethyl)-N-vinylformamide) and azobenzene. Aggregation size of the multi-stimuli-responsive polymer was controlled by preparation of the hydrophobic interaction at around N-position.

  17. Physiologically driven avian vocal synthesizer

    NASA Astrophysics Data System (ADS)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  18. Method of synthesizing tungsten nanoparticles

    SciTech Connect

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  19. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NPREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,N

  1. A novel PLED architecture containing biologically synthesized gold nanoparticles and ultra thin silver layer

    NASA Astrophysics Data System (ADS)

    Pıravadılı Mucur, Selin; Tekin, Emine; San, Sait Eren; Duygulu, Özgür; Öztürk, Hasan Ümit; Utkan, Güldem; Denizci, Aziz Akın

    2015-09-01

    The influences of biologically synthesized gold nanoparticles (bio-GNPs) and ultra thin silver layer (UTSL) on the polymer light emitting diodes (PLEDs) are investigated for the first time. The performance of the fabricated PLEDs is enhanced by embedding of bio-GNPs into the hole transport layer (HTL). Furthermore, the tailored device architecture containing UTSL increases the electron transport through lightning rod effect. Bio-GNPs are successfully produced as spherical shape with size of circa 10.4 nm. Poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene (MEH-PPV) and [poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate); (PEDOT:PSS)/bio-GNPs blends are used as an active layer and HTL, respectively. Novel PLEDs fabricated with 0.125 wt% bio-GNPs/PEDOT:PSS and 0.5 nm UTSL exhibit nearly 2.5-fold enhancement in the device efficiency.

  2. Block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate).

    PubMed

    Chen, Zhifei; Cheng, Shaoting; Xu, Kaitian

    2009-04-01

    A series of block poly(ester-urethane) poly(3/4HB-HHxHO) urethanes (abbreviated as PUHO) based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB-diol) and poly(3-hydroxyhexanoate-co-3-hydroxyoctanoate) (PHHxHO-diol) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent, with different 3HB, 4HB, HHxHO compositions and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H, (13)C nuclear magnetic resonance spectrum (NMR), two-dimensional correlation spectroscopy (COSY ((1)H, (13)C) NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of water and CH(2)I(2). DSC revealed that the poly(3/4HB-HHxHO) urethanes are almost amorphous with a little crystallinity (less than 6%) and T(g) from -23 degrees C to -3 degrees C. The polyurethanes are more hydrophobic (water contact angle 88 degrees -117 degrees ) than the P3/4HB and PHHxHO raw materials. The lactate dehydrogenase (LDH) assay and platelet adhesion determination showed that the obtained polyurethanes have much higher platelet adhesion property than raw materials and common biodegradable polymers polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB). Hydrophobicity and crystallinity degree are important factors to affect the platelet adhesion. All the properties can be tailored by changing the composition and segment length of prepolymers P3/4HB-diol and PHHxHO-diol.

  3. Information retrieval for ecological syntheses.

    PubMed

    Bayliss, Helen R; Beyer, Fiona R

    2015-06-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with medicine that should be considered when planning and undertaking searches. We present ten recommendations for anyone considering undertaking information retrieval for ecological research syntheses that highlight the main differences with medicine and, if adopted, may help reduce biases in the dataset retrieved, increase search efficiency and improve reporting standards. They are as follows: (1) plan for information retrieval at an early stage, (2) identify and use sources of help, (3) clearly define the question to be addressed, (4) ensure that provisions for managing, recording and reporting the search are in place, (5) select an appropriate search type, (6) identify sources to be used, (7) identify limitations of the sources, (8) ensure that the search vocabulary is appropriate, (9) identify limits and filters that can help direct the search, and (10) test the strategy to ensure that it is realistic and manageable. These recommendations may be of value for other disciplines where search infrastructures are not yet sufficiently well developed. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  5. Imaging and Chemotherapeutic Comparisons of Iron Oxide Nanoparticles Chemically and Physically Coated with Poly(ethylene glycol)-b-Poly(ε-caprolactone)-g-Poly(acrylic acid).

    PubMed

    Chen, Guo-Jing; Hsu, Chin; Ke, Jyun-Han; Wang, Li-Fang

    2015-06-01

    We designed a new copolymer, poly(ethylene glycol)-block-poly(ε-caprolactone)-graft-poly(acrylic acid) (PAA-PEC), which could be chemically and physically coated onto iron oxide (Fe3O4) nanoparticles for theranostic applications. The chemically PAA-PEC-coated Fe3O4 nanoparticles (PAA-PEC-IO) were prepared using the carboxylic groups of PAA-PEC to bind the Fe3O4 nanoparticles during a co-precipitation reaction. Because of the amphiphilic properties of PAA-PEC, the compound self-assembled into a core-shell structure. The hydrophobic oleic acid-coated Fe3O4 nanoparticles could then be physically encapsulated inside the hydrophobic core of PAA-PEC (PAA-PEC-OA-IO) using an emulsion technique. A similar amount of iron content was controlled in both the PAA-PEC-IO and PAA-PEC-OA-IO (-23%). The particle diameters, morphologies, superparamagnetism, drug loading efficiency, and transversal relaxivity (r2) were studied and compared between the two magnetic nanoparticles. All results displayed the chemically-synthesized PAA-PEC-IO nanoparticles had higher potential than did the physically-synthesized PAA-PEC-OA-IO as an MRI contrast agent and a drug delivery carrier. Rodamine123-linked PAA-PEC-IO (PAA-PEC-IO-Rh123) was used as a molecular probe. Flow cytometric diagrams indicated that cellular internalization of PAA-PEC-IO occurred primarily through clathrin-mediated endocytosis.

  6. Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates.

    PubMed

    Myung, Jaewook; Flanagan, James C A; Waymouth, Robert M; Criddle, Craig S

    2017-12-01

    The first methanotrophic syntheses of polyhydroxyalkanoates (PHAs) that contain repeating units beyond 3-hydroxybutyrate and 3-hydroxyvalerate are reported. New PHAs synthesized by methanotrophs include poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), poly(3-hydroxybutyrate-co-5-hydroxyvalerate-co-3-hydroxyvalerate) (P(3HB-co-5HV-co-3HV)), and poly(3-hydroxybutyrate-co-6-hydroxyhexanoate-co-4-hydroxybutyrate) (P(3HB-co-6HHx-co-4HB)). This was achieved from a pure culture of Methylocystis parvus OBBP where the primary substrate is methane and the corresponding ω-hydroxyalkanoate monomers are added as a co-substrate after the cells are subjected to nitrogen-limited conditions.

  7. Synthetic evaluation of disulphide-bonded sarafotoxin on a poly(oxy ether) grafted dendrimeric poly(alkyl amine) support for polymer assisted organic synthesis.

    PubMed

    Siyad, M A; Kumar, G S Vinod

    2013-08-07

    The present paper describes the synthesis, characterization and assessment of a novel class of insoluble polymeric polystyrene supports which combines polar poly(ethylene glycol)dimethacrylate as a cross-linker and poly(ethylene glycol) grafted poly(N,N-bisethylamine) as a dendritic template. Poly(N,N-bisethylamine) dendrimers were generated by a series of reactions such as Schiff base integration, acidolysis, diazotization and thionyl chloride treatment. The same successive sequences of reactions have been followed for second generation dendrimers also and subjected to PEGylation (PEG 600) to achieve the desirable physico-chemical properties. The applicability of the novel PEGylated dendrimer support was demonstrated by synthesizing linear as well as disulfide bonded peptides in high yields and purities.

  8. Hydrophilic polymer composites synthesized by electrospinning under dense carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wahyudiono, Okamoto, Koichi; Machmudah, Siti; Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Electrospinning technique is feasible in some applications, it has attracted more attention in recent years. Various polymers have been successfully electrospun into ultrafine fibers in solvent solution and some in melt form. In this work, polyvinylpyrrolidone (PVP) as a hydrophilic polymer would be synthesized by electrospinning under dense carbon dioxide (CO2). The experiments were performed at 40 °C and ˜ 5 MPa. During the electrospinning process, the applied voltage was 10-17 kV and the distance of nozzle and collector was 8 cm. The concentration of PVP solution as a major component was 4 wt%. The results showed that the fibers surface morphology from PVP which blended with poly L-lactide acid (PLLA) were smooth with hollow core fibers at 5 MPa. At the same conditions, PVP-carbon nanotube was also successfully generated into electrospun fiber products with diameter ˜ 2 μm.

  9. Molecular Syntheses of Extended Materials

    NASA Astrophysics Data System (ADS)

    Paley, Daniel W.

    Bottom-up molecular synthesis is a route to chemically and crystallographically uniform polymers and solid-state materials. Through the use of molecular precursors, we gain atomic-level control of functionality and fine-tuning of the collective properties of materials. This dissertation presents two studies that demonstrate this approach. Ring-opening alkyne metathesis polymerization is a possible approach to monodisperse conjugated polymers, but its applications have been limited by difficult syntheses and high air sensitivity of known organometallic ROAMP initiators. We designed a dimeric, air-stable molybdenum alkylidyne with a tris(phenolate) supporting ligand. The precatalyst is activated by addition of methanol and polymerizes cyclooctynes with excellent chemical selectivity and functional group tolerance. The Nuckolls and Roy groups have introduced a new family of solid-state compounds synthesized from cobalt chalcogenide clusters Co6Q 8(PR3)6 and fullerenes. The first examples of these materials crystallized in superatom lattices with the symmetry of simple inorganic solids CdI2 (P-3m1) and NaCl (Fm-3m). This dissertation reveals that further members of the family feature extraordinary diversity of structure, including a pseudo-trigonal array of fulleride dimers in [Co 6Te8(PEt3)6]2[C140 ][C70]2 and a heterolayered van der Waals cocrystal [Co6Se8(PEt2phen)6][C 60]5. In addition to these unusual crystal structures, this dissertation presents a method for assigning redox states from crystallographic data in Co6Q8 clusters. Finally, a detailed guide to the collection and solution of single-crystal X-ray data is presented. The guide is intended for independent study by new crystallographers.

  10. Planar Poly(p-phenylene) Derivatives. Ladder Formation for Maximization of Extended Conjugation

    DTIC Science & Technology

    1993-11-22

    is the synthesis of ladder polymers with a poly(,p-phenylene) (PPP) backbone. The main PPP backbone was synthesized via palladium - catalyzed coupling ...bond cleavage to the two arene systems shown. Since Pd(O)- catalyzed oxidative addition reactions are facilitated with electron deficient ring systems, 4...we chose to keep the halides on the ketoaromatic portion. After several nearly quantitative model reactions , we synthesized the two key monomers

  11. Synthesis of Planar Poly(P-Phenylene) Derivatives for Maximization of Extended Pi-Conjugation

    DTIC Science & Technology

    1994-06-28

    synthesis of a ladder polymer with a poly(p-phenylene) (PPP) backbone. The main PPP backbone was synthesized via palladium - catalyzed coupling of an arylbis...The main PPP backbone was synthesized via palladium - catalyzed coupling of an arylbis(boronic ester) with an aryldibromide. Imine bridges, formed by... reactions are facilitated with electron deficient ring systems,4 we chose to keep the halides on the ketoaromatic portion. After several nearly quantitative

  12. Biodegradation, Biocompatibility, and Drug Delivery in Poly(ω-pentadecalactone-co-p-dioxanone) Copolyesters

    PubMed Central

    Liu, Jie; Jiang, Zhaozhong; Zhang, Shengmin; Liu, Chen; Gross, Richard A.; Kyriakides, Themis R.; Saltzman, W. Mark

    2011-01-01

    Poly(ω-pentadecalactone-co-p-dioxanone) [poly(PDL-co-DO)] copolyesters are copolymers of an isodimorphic system, which remain semicrystalline over the whole range of compositions. Here, we evaluated enzymatically synthesized poly(PDL-co-DO) copolymers as new materials for biomedical applications. In vivo experiments using mice showed that the copolyesters are well tolerated, with tissue responses that are comparable to poly(p-dioxanone). In addition, the copolymers were found to degrade hydrolytically at controlled rates over a period of several months under physiological conditions. The poly(PDL-co-DO) copolymers with up to 69 mol% DO units were successfully transformed to free-standing nanoparticles that are capable of encapsulating an anticancer drug, doxorubicin, or a polynucleotide, siRNA. Drug- or siRNA-loaded nanoparticles exhibited controlled and continuous release of agent over many weeks. In addition, siLUC-encapsulated poly(PDL-co-DO) nanoparticles were active in inhibiting luciferase gene expression in LUC-RKO cells. Because of substantial differences in structure and hydrophobicity between PDL and DO units, poly(PDL-co-DO) biodegradation rate and physical properties can be tuned over a wide range depending on the copolymer composition. Our results demonstrate that the semicrystalline and biodegradable poly(PDL-co-DO) copolyesters are promising biomaterials to serve as drug carriers, as well as potential raw materials for constructing bioabsorbable sutures and other medical devices. PMID:21641030

  13. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    SciTech Connect

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA

    2013-10-05

    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  14. Solar CalPoly

    SciTech Connect

    Stannard, Sandra

    2016-06-15

    The target budget of INhouse was about $650,000 for all materials and student expenses of the Solar Decathlon competition. In order to reach our goal, Cal Poly students and faculty worked with the College of Architecture and Environmental Design’s External Relations office to actively fundraise for INhouse. Students connected with Cal Poly alumni through phone calls, postal mail, email, and live presentations to reach as many alumni in the state of California as possible. Before construction begun, students and faculty met on a weekly basis to determine what brands of materials for the home to use and who would be responsible for reaching out to the company to seek a donation. Our College of Architecture and Environmental Design’s administration was essential in helping us fundraise. For some time, the college was hoping to depend on about half of our fundraising expenses to be covered through the sale of INhouse. However, plans to sell the home fell through during the design development phase; the college turned to the sale of a different asset in to help us meet our goal. If we were to do this project again, completing the design concept and securing a future location of our home sooner would have enhanced our fundraising activities.

  15. PLA nanovectors with encapsulated betulin: plant leaf extract-synthesized nanovectors are more efficacious than PVA-synthesized nanovectors.

    PubMed

    Yadav, Ramdhan; Kumar, Dharmesh; Kumari, Avnesh; Yadav, Sudesh Kumar

    2016-02-01

    Betulin (BT) is an abundant triterpene found predominantly in the bark of Himalayan birch. It is difficult to deliver it in vivo because of its low aqueous solubility. We have therefore developed novel formulations of BT for improving its solubility, bioavailability and therapeutic efficacy. Poly-D,L-lactide nanovectors (PLA NVs) were synthesized using poly(vinyl alcohol) and Lonicera japonica leaf extract (LE) as a stabiliser and named as PLA-1 NVs and PLA-2 NVs. PLA-1 NVs and PLA-2 NVs were used for the encapsulation of betulin (BT) and named as BT-En-1 and BT-En-2 NVs. The encapsulation efficiency of BT-En-1 and BT-En-2 NVs were 99.3 and 100 % respectively. Prepared nanoformulations were physically stable. An in vitro study revealed 45 % BT was released over 24 h. BT had a prolonged release from BT-En-2 NVs as compared to BT-En-1 NVs. BT-En-2 NVs had better anticancerous activity against SiHa cells than BT-En-1 NVs. Developed BT-EN-2 NVs had better biocompatibility, excellent stability and enhanced release characteristics than BT-En-1 NVs.

  16. Synthese de champs sonores adaptative

    NASA Astrophysics Data System (ADS)

    Gauthier, Philippe-Aubert

    La reproduction de champs acoustiques est une approche physique au probleme technologique de la spatialisation sonore. Cette these concerne l'aspect physique de la reproduction de champs acoustiques. L'objectif principal est l'amelioration de la reproduction de champs acoustiques par "synthese de champs acoustiques" ("Wave Field Synthesis", WFS), une approche connue, basee sur des hypotheses de champ libre, a l'aide du controle actif par l'ajout de capteurs de l'erreur de reproduction et d'une boucle fermee. Un premier chapitre technique (chapitre 4) expose les resultats d'appreciation objective de la WFS par simulations et mesures experimentales. L'effet indesirable de la salle de reproduction sur les qualites objectives de la WFS fut illustre. Une premiere question de recherche fut ensuite abordee (chapitre 5), a savoir s'il est possible de reproduire des champs progressifs en salle dans un paradigme physique de controle actif: cette possibilite fut prouvee. L'approche technique privilegiee, "synthese de champs adaptative" ("Adaptive Wave Field Synthesis" [AWFS]), fut definie, puis simulee (chapitre 6). Cette approche d'AWFS comporte une originalite en controle actif et en reproduction de champs acoustiques: la fonction cout quadratique representant la minimisation des erreurs de reproduction inclut une regularisation de Tikhonov avec solution a priori qui vient de la WFS. L'etude de l'AWFS a l'aide de la decomposition en valeurs singulieres (chapitre 7) a permis de comprendre les mecanismes propres a l'AWFS. C'est la deuxieme principale originalite de la these. L'algorithme FXLMS (LMS et reference filtree) est modifie pour l'AWFS (chapitre 8). Le decouplage du systeme par decomposition en valeurs singulieres est illustre dans le domaine du traitement de signal et l'AWFS basee sur le controle independant des modes de rayonnement est simulee (chapitre 8). Ce qui constitue la troisieme originalite principale de cette these. Ces simulations du traitement de signal

  17. Laser-synthesized epitaxial graphene.

    PubMed

    Lee, Sangwon; Toney, Michael F; Ko, Wonhee; Randel, Jason C; Jung, Hee Joon; Munakata, Ko; Lu, Jesse; Geballe, Theodore H; Beasley, Malcolm R; Sinclair, Robert; Manoharan, Hari C; Salleo, Alberto

    2010-12-28

    Owing to its unique electronic properties, graphene has recently attracted wide attention in both the condensed matter physics and microelectronic device communities. Despite intense interest in this material, an industrially scalable graphene synthesis process remains elusive. Here, we demonstrate a high-throughput, low-temperature, spatially controlled and scalable epitaxial graphene (EG) synthesis technique based on laser-induced surface decomposition of the Si-rich face of a SiC single-crystal. We confirm the formation of EG on SiC as a result of excimer laser irradiation by using reflection high-energy electron diffraction (RHEED), Raman spectroscopy, synchrotron-based X-ray diffraction, transmission electron microscopy (TEM), and scanning tunneling microscopy (STM). Laser fluence controls the thickness of the graphene film down to a single monolayer. Laser-synthesized graphene does not display some of the structural characteristics observed in EG grown by conventional thermal decomposition on SiC (0001), such as Bernal stacking and surface reconstruction of the underlying SiC surface.

  18. Sophorolipid-derived unsaturated and epoxy fatty acid estolides as plasticizers for poly(3-hydroxybutyrate)

    USDA-ARS?s Scientific Manuscript database

    Unsaturated and epoxy fatty acid estolides were synthesized from the omega and omega-1 hydroxy fatty acids derived from sophorolipids (SLs) prepared by fermentation from glucose:soybean oil and glucose:oleic acid, respectively. These estolides were utilized as additives in solution-cast poly(3-hydro...

  19. Synthesis and structural dependence of the functional properties of new green fluorescent poly(propyleneamine) dendrimers

    NASA Astrophysics Data System (ADS)

    Grabchev, Ivo; Mokreva, Pavlina; Gancheva, Valeria; Terlemezyan, Levon

    2013-04-01

    Two new green fluorescence poly(propyleneamine) dendrimers from second generation, comprising eight 1,8-naphthalimide signaling units in their periphery have been synthesized and investigated. Тheir photophysical characteristics have been determined in organic solvents of different polarity. Particular attention has been paid to the spectral characteristics of the solid dendrimer films. The photostability of the dendrimers has also been studied.

  20. Synthesis and characterization of poly(sodium acrylate)/ bentonite superabsorbent composite

    NASA Astrophysics Data System (ADS)

    Xie, Yiming; Wei, Yuelin; Huang, Yunfang; Lin, Jianming; Wu, Jihuai

    2012-01-01

    Poly(sodium acrylate)/bentonite superabsorbent composite with water absorbency 1562 g·g-1 was synthesized by inverse suspension polymerization. The introduction of bentonite improves the water absorbency and facilitates the particle size even distribution of the composite. The network structure in the superabsorbent hydrogel is confirmed.

  1. Poly(hydroxyalkanoate) Biosynthesis from Crude Alaskan Pollock (Theragra chalcogramma) Oil

    USDA-ARS?s Scientific Manuscript database

    Six strains of Pseudomonas were tested for their abilities to synthesize poly(hydroxyalkanoate) (PHA) polymers from crude Pollock oil, a large volume byproduct of the Alaskan fishing industry. All six strains were found to produce PHA polymers from hydrolyzed Pollock oil with productivities (P; the...

  2. Thermo- and electro-dual responsive poly(ionic liquid) electrolyte based smart windows.

    PubMed

    Chen, Fei; Ren, Yongyuan; Guo, Jiangna; Yan, Feng

    2017-01-31

    Thermo- and electro-dual responsive poly(ionic liquid) (PIL) based electrolytes were synthesized by co-polymerization of N-isopropylacrylamide (NIPAM) with (or without) 3-butyl-1-vinyl-imidazolium bromide ([BVIm][Br]) using diallyl-viologen (DAV) as both the cross-linking agent and electrochromic material.

  3. Kinetics of synthesizing polymer-supported quaternary ammonium catalysts.

    PubMed

    Wu, Ho-Shing; Lo, Chi-Wei

    2006-01-01

    This study attempted to synthesize the optimum quaterary ammonium poly(styrene-co-methylstyrene) catalyst using the combinatorial chemistry method. The catalyst was synthesized by a mix-split method. A phase-transfer catalyst library with 25 kinds of polystyrene-supported quaternary ammonium salt catalyst was the the result of the reaction of five kinds of chloromethylated crosslinked polystyrene with five tert-amines. The allylation of phenol and the oxidation of benzyl alcohol were used as the probing reaction to screen out the most active catalyst for the reaction using the iterative deconvolution method. The screening conditions included teritary amine and organic solvent. The structure of the most active catalyst in the allylation of phenol shows 20 mol % ring substitution and 0.177-0.25-mm pellet size activated with trihexylamine. For oxidation of benzyl alcohol, the reaction conditions of the most active catalyst included a resin of 20% ring substitution and pellet size of 0.177-0.25 mm, activated with triethylamine reacting in an organic solvent of n-hexane.

  4. Poly(carbonate–amide)s Derived from Bio-Based Resources: Poly(ferulic acid-co-tyrosine)

    PubMed Central

    2015-01-01

    Ferulic acid (FA), a bio-based resource found in fruits and vegetables, was coupled with a hydroxyl-amino acid to generate a new class of monomers to afford poly(carbonate–amide)s with potential to degrade into natural products. l-Serine was first selected as the hydroxyl-amino partner for FA, from which the activated p-nitrophenyl carbonate monomer was synthesized. Unfortunately, polymerizations were unsuccessful, and the elimination product was systematically obtained. To avoid elimination, we revised our strategy and used l-tyrosine ethyl ester, which lacks an acidic proton on the α position of the ethyl ester. Four new monomers were synthesized and converted into the corresponding poly(carbonate–amide)s with specific regioselectivities. The polymers were fully characterized through thermal and spectroscopic analyses. Preliminary fluorescent studies revealed interesting photophysical properties for the monomers and their corresponding poly(carbonate–amide)s, beyond the fluorescence characteristics of l-tyrosine and FA, making these materials potentially viable for sensing and/or imaging applications, in addition to their attractiveness as engineering materials derived from renewable resources. PMID:24839309

  5. Synthesis of biocompatible poly(ɛ-caprolactone)- block-poly(propylene adipate) copolymers appropriate for drug nanoencapsulation in the form of core-shell nanoparticles.

    PubMed

    Nanaki, Stavroula G; Pantopoulos, Kostas; Bikiaris, Dimitrios N

    2011-01-01

    Poly(propylene adipate)-block-poly(ɛ-caprolactone) copolymers were synthesized using a combination of polycondensation and ring-opening polymerization of ɛ-caprolactone in the presence of poly(propylene adipate). Gel permeation chromatography was used for molecular weight determination, whereas hydrogen-1 nuclear magnetic resonance and carbon-13 nuclear magnetic resonance spectroscopy were employed for copolymer characterization and composition evaluation. The copolymers were found to be block while their composition was similar to the feeding ratio. They formed semicrystalline structures, while only poly(ɛ-caprolactone) formed crystals, as shown by wide angle X-ray diffraction. Differential scanning calorimetry data suggest that the melting point and heat of fusion of copolymers decreased by increasing the poly(propylene adipate) amount. The synthesized polymers exhibited low cytotoxicity and were used to encapsulate desferrioxamine, an iron-chelating drug. The desferrioxamine nanoparticles were self-assembled into core shell structures, had mean particle size <250 nm, and the drug remained in crystalline form. Further studies revealed that the dissolution rate was mainly related to the melting temperature, as well as to the degree of crystallinity of copolymers.

  6. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).

    PubMed

    Loh, Xian Jun; Colin Sng, Kian Boon; Li, Jun

    2008-08-01

    Thermo-responsive multiblock poly(ester urethane)s comprising poly(epsilon-caprolactone) (PCL), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. The copolymers were characterized by GPC, NMR, FTIR, XRD, DSC and TGA. Water-swelling analysis carried out at different temperatures revealed that the bulk hydrophilicity of the copolymers could be controlled either by adjusting the composition of the copolymer or by changing the temperature of the environment. These thermo-responsive copolymer films formed highly swollen hydrogel-like materials when soaked in cold water and shrank when soaked in warm water. The changes are reversible. The mechanical properties of the copolymer films were assessed by tensile strength measurement. These copolymers were ductile when compared to PCL homopolymers. Young's modulus and the stress at break increased with increasing PCL content, whereas the strain at break increased with increasing PEG content. The results of the cytotoxicity tests based on the ISO 10993-5 protocol demonstrated that the copolymers were non-cytotoxic and could be potentially used in biomedical applications.

  7. Synthesizing Diamond from Liquid Feedstock

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua

    2005-01-01

    A relatively economical method of chemical vapor deposition (CVD) has been developed for synthesizing diamond crystals and films. Unlike prior CVD methods for synthesizing diamond, this method does not require precisely proportioned flows of compressed gas feedstocks or the use of electrical discharges to decompose the feedstocks to obtain free radicals needed for deposition chemical reactions. Instead, the feedstocks used in this method are mixtures of common organic liquids that can be prepared in advance, and decomposition of feedstock vapors is effected simply by heating. The feedstock used in this method is a solution comprising between 90 and 99 weight percent of methanol and the balance of one or more other oxyhydrocarbons that could include ethanol, isopropanol, and/or acetone. This mixture of compounds is chosen so that dissociation of molecules results in the desired proportions of carbon-containing radicals (principally, CH3) and of OH, H, and O radicals. Undesirably, the CVD temperature and pressure conditions thermodynamically favor the growth of graphite over the growth of diamond. The H radicals are desirable because they help to stabilize the growing surface of diamond by shifting the thermodynamic balance toward favoring the growth of diamond. The OH and O radicals are desirable because they preferentially etch graphite and other non-diamond carbon, thereby helping to ensure the net deposition of pure diamond. The non-methanol compounds are included in the solution because (1) methanol contains equal numbers of C and O atoms; (2) an excess of C over O is needed to obtain net deposition of diamond; and (3) the non-methanol molecules contain multiple carbon atoms for each oxygen atom and thus supply the needed excess carbon A typical apparatus used in this method includes a reservoir containing the feedstock liquid and a partially evacuated stainless-steel reaction chamber. The reservoir is connected to the chamber via tubing and a needle valve or

  8. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.

    PubMed

    Yu, Ling; Shi, ZhuanZhuan; Gao, LiXia; Li, ChangMing

    2015-09-01

    In vitro cell-based analysis is strongly affected by material's surface chemical properties. The cell spreading, migration, and proliferation on a substrate surface are initiated and controlled by successful adhesion, particularly for anchor-dependent cells. Unfortunately, polydimethylsiloxane (PDMS), one of the most used polymeric materials for construction of microfluidic and miniaturized biomedical analytic devices, is not a cell-friendly surface because of its inherent hydrophobic property. Herein, a poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] (poly(GMA-co-pEGMA)) polymer brush was synthesized on a PDMS surface through a surface-initiated atom-transfer radical polymerization method. Contact angle and Fourier transform infrared characterization show that the poly (GMA-co-pEGMA) polymer brush functionalization can increase wettability of PDMS and introduce epoxy, hydroxyl, and ether groups into PDMS surface. In vitro cell growth assay demonstrates that cell adhesion and proliferation on poly(GMA-co-pEGMA) polymer brush-functionalized PDMS (poly(GMA-co-pEGMA)@PDMS) are better than on pristine PDMS. Additionally, immobilization of collagen type I (CI) and fibronectin (FN) on poly(GMA-co-pEGMA)@PDMS is better than direct coating of CI and FN on pristine PDMS to promote cell adhesion. Furthermore, increased intracellular reactive oxygen species and cell mitochondrial membrane depolarization, two indicators of cell oxidative stress, are observed from cells growing on pristine PDMS, but not from those on poly(GMA-co-pEGMA)@PDMS. Collectively, we demonstrate that poly(GMA-co-pEGMA) functionalization can enhance cell adhesion and proliferation on PDMS, and thus can be potentially used for microfluidic cell assay devices for cellular physiology study or drug screening. © 2015 Wiley Periodicals, Inc.

  9. Polycaprolactone-poly(ethylene glycol) multiblock copolymers as potential substitutes for di(ethylhexyl) phthalate in flexible poly(vinyl chloride) formulations.

    PubMed

    Ferruti, Paolo; Mancin, Ivan; Ranucci, Elisabetta; De Felice, Claudio; Latini, Giuseppe; Laus, Michele

    2003-01-01

    New high-molecular-weight hydrophobic/hydrophilic segmented copolymers of poly(ester ether carbonate) structure, containing poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) segments in their main chain, were synthesized and characterized. These copolymers were obtained by a two-step chain-extension reaction carried out in the presence of alpha,omega-dihydroxy-oligoPCL of molecular weight 1250 and PEG samples of molecular weight 150, 400, 600, 1000, and 2000. The molecular structures of all synthesized materials were characterized by means of (1)H NMR and (13)C NMR spectroscopy, their molecular weights were determined by means of size exclusion chromatography, and their thermal properties were obtained by means of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The poly(ester ether carbonate)s of this study are partly or totally miscible at least up to 50 wt % with poly(vinyl chloride) (PVC) and could be used to produce flexible PVC formulations. The miscibility between PVC and the poly(ester ether carbonate)s reported in this paper was investigated by means of DSC and DMA analysis. PVC blends were also analyzed by determining their swellability and the amount of extractables in aqueous media. By comparison purposes, the chain-extension product of PCL1250, that is, PCL polycarbonate, was also synthesized and characterized. The results obtained demonstrated that the copolymers with shortest PEG segment length, i.e. PEG150, 400, and 600, give the best results in terms of miscibility with PVC and lead to blends with maximum resistance to extraction by water. Therefore, they represent, in principle, good substitutes for low-molecular-weight, leachable PVC plasticizers, such as di(ethylhexyl) phthalate.

  10. POLY-1,2,4-TRIAZOLES AND POLY-1,3,4-OXADIAZOLES FROM PRECURSOR POLY-N-ACYLHYDRAZIDINES,

    DTIC Science & Technology

    oxadiazole . Whereas, conversion of the precursor poly-N-acylhydrazidine predominantly to poly-1,2,4-triazole was affected by refluxing in solvents such... oxadiazole depending upon the heating rate. Poly-N-acylhydrazidine was of sufficient molecular weight to cast a clear yellow film which exhibited good...flexibility. The film, upon thermal treatment to temperatures as high as 300C, became brittle. The poly-1,3,4- oxadiazole and poly-1,2,4-triazole

  11. Preparation and characterization of emulsifier-free polyphenylsilsesquioxane-poly (styrene-butyl acrylate) hybrid particles

    NASA Astrophysics Data System (ADS)

    Bai, Ruiqin; Qiu, Teng; Han, Feng; He, Lifan; Li, Xiaoyu

    2013-10-01

    The core-shell polyphenylsilsesquioxane-poly (styrene-butyl acrylate) hybrid latex paticles with polyphenylsilsesquioxane as core and poly (styrene-butyl acrylate) as shell were successfully synthesized by seeded emulsion polymerization using polyphenylsisesquioxane (PPSQ) latex particles as seeds. X-ray diffraction (XRD) indicated that the polyphenylsilsesquioxane (PPSQ) had ladder structure, and PPSQ had incorporated into the hybrid latex particles. Transmission electron microscopy (TEM) confirmed that the resultant hybrid latex particles had the core-shell structure. TEM and dynamic light scattering (DLS) analysis indicated that the polyphenylsisesquioxane latex particles and obtained core-shell hybrid latex particles were uniform and possessed narrow size distributions. X-ray photoelectron spectroscopy (XPS) analysis also indicated that the PPSQ core particles were enwrapped by the polymer shell. In addition, compared with pure poly (styrene-butyl acrylate) latex film, the polyphenylsilsesquioxane-poly (styrene-butyl acrylate) hybrid latex film exhibited lower water uptake, higher pencil hardness and better thermal stability.

  12. Synthesis of controlled, high-molecular weight poly(l-glutamic acid) brush polymers.

    PubMed

    Baumgartner, Ryan; Kuai, Diane; Cheng, Jianjun

    2017-08-22

    We report the synthesis and characterization of high-molecular weight poly(l-glutamic acid) based brush polymers. Utilizing a combination of ring-opening metathesis polymerization of norbornene based monomers and ring-opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride, high-molecular weight γ-benzyl protected poly(l-glutamic acid) brush polymers are synthesized. Controlled and complete deprotection of the benzyl groups using trimethylsilyl iodide resulted in poly(l-glutamic acid) based brush polymers with molecular weights up to 3.6 MDa, which may potentially be used to prepare size-controlled unimolecular polymeric nanomedicine for drug delivery applications. Camptothecin brush poly(l-glutamic acid) conjugates were prepared and their stability, drug release kinetics, and in vitro toxicity were studied.

  13. Engineering and Design of Polymeric Shells: Inwards Interweaving Polymers as Multilayer Nanofilm, Immobilization Matrix, or Chromatography Resins.

    PubMed

    Pan, Houwen Matthew; Yu, Han; Guigas, Gernot; Fery, Andreas; Weiss, Matthias; Patzel, Volker; Trau, Dieter

    2017-02-15

    Hydrogels with complex internal structures are required for advanced drug delivery systems and tissue engineering or used as inks for 3D printing. However, hydrogels lack the tunability and diversity of polymeric shells and require complicated postsynthesis steps to alter its structure or properties. We report on the first integrated approach to assemble and design polymeric shells to take on various complex structures and functions such as multilayer nanofilms, multidensity immobilization matrix, or multiadhesive chromatography resins via the tuning of four assembly parameters: (a) poly(allylamine) (PA) concentration, (b) number of poly(allylamine)/poly(styrenesulfonic acid) (PA/PSSA) incubations, (c) poly(allylamine) (PA) to poly(ethylene glycol) (PEG) grafting ratio, and (d) % H2O present during assembly. Our approach combines the complex 3D structures of hydrogels with the versatility of self-assembled polymeric layers. Polymeric shells produced from our method have a highly uniform material distribution and well-defined shell boundaries. Shell thickness, density, and adhesive properties are easily tunable. By virtue of such unique material features, we demonstrate that polymeric shells can be designed to expand beyond its conventional function as thin films and serve as immobilization matrix, chromatography resins, or even reaction compartments. This technique could also uncover interesting perspectives in the development of novel multimaterials for 3D printing to synthesize scaffolds at a higher order of complexity.

  14. Effects of Poly(cyclohexanedimethylene terephthalate) on Microstructures, Crystallization Behavior and Properties of the Poly(ester ether) Elastomers

    PubMed Central

    Feng, Yi-Cheng; Zhao, Hui; Hao, Tong-Hui; Hu, Guo-Hua; Jiang, Tao; Zhang, Qun-Chao

    2017-01-01

    To understand the role of molecular structure on the crystallization behavior of copolyester in thermoplastic poly(ether ester) elastomers (TPEEs), series of poly(butylene-co-1,4-cyclohexanedimethylene terephthalate) (P(BT-co-CT))-b-poly(tetramethylene glycol) (PTMG) are synthesized through molten polycondensation process. The effects of poly(cyclohexanedimethylene terephthalate) (PCT) content on the copolymer are investigated by Fourier transform infrared spectroscopy (FT-IR), 1H and 13C nuclear magnetic resonance (NMR), gel permeation chromatographs (GPC), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), mechanical, and visible light transmittance tests. FT-IR and NMR results confirm the incorporation of PCT onto the copolymer. WAXD and DSC indicate that the crystalline structure of the copolymers changed from α-PBT lattice to trans-PCT lattice when the molar fraction of PCT (MPCT) is above 30%, while both crystallization and melting temperatures reach the minima. An increase in MPCT led to an increase in the number sequence length of PCT, the thermal stability and the visible light transmittance of the copolymer, but to a slight decrease in tensile strength and elastic modulus. PMID:28773054

  15. Ocular permeability of pirenzepine hydrochloride enhanced by methoxy poly(ethylene glycol)-poly(D, L-lactide) block copolymer.

    PubMed

    Tu, Jiasheng; Pang, Hui; Yan, Zhen; Li, Pengmei

    2007-10-01

    Methoxy poly(ethylene glycol)-poly(D, L-lactide) block copolymer was tested as an ocular permeation enhancer for pirenzepine hydrochloride. The block copolymers with the methoxy poly(ethylene glycol) to poly(D, L-lactide) weight ratio of 80/20, 50/50, 40/60 were synthesized by a ring-opening polymerization procedure. In vitro transcorneal experiments demonstrated that the block copolymer 80/20 significantly enhanced the transcorneal permeation of pirenzepine at the mass ratio of 1/1.4 (pirenzepine hydrochloride/copolymer). Interaction between pirenzepine and copolymer was identified by infrared spectroscopy analysis and dialysis experiments. Ocular pharmacokinetics of pirenzepine/copolymer preparation by in vivo instillation experiments confirmed that block copolymer could enhance the ocular penetration of pirenzepine. Ocular chronic toxicity experiments of block copolymer and pirenzepine/copolymer preparation were studied on rabbits, and no significant toxicity in both groups was observed within 9 months. It could conclude that pirenzepine/copolymer preparation is effective and safe in ocular delivery of pirenzepine.

  16. Structure and properties of poly(benzyl acrylate) synthesized under microwave energy

    NASA Astrophysics Data System (ADS)

    Oberti, Tamara G.; Schiavoni, M. Mercedes; Cortizo, M. Susana

    2008-05-01

    Benzyl acrylate was polymerized under microwave irradiation using radical initiation (benzoyl peroxide, BP). The effect of the concentration of BP and power irradiation on the conversion, average molecular weights and the polydispersity index ( Mw/ Mn) were investigated. The 1H NMR and 13C NMR spectra analysis showed tendency to syndiotacticity and branched polymers were obtained at high conversion of reactions. A significant enhancement of the rates of polymerization and similar thermodynamic behavior, as compared with those obtained under thermal conditions was found.

  17. The mouse immune response to the double stranded polyribonucleotide complex poly(G) . poly(C).

    PubMed Central

    Gaffiero, G V; Robin, P; Nahon, E

    1984-01-01

    Ten inbred strains of mice were immunized with the double stranded polyribonucleotide complex polyguanylic . polycytidylic acid [poly(G) . poly(C)]. While some immunogenic properties of this duplex were comparable to those of other nucleic acids antigens, differences were also noted. High (SJL/J, BALB/c), low (DBA/2, AKR) and intermediate responders were observed; these differences were not abolished by adsorption of the duplex to MBSA. This pattern of immune response is distinct both from that observed with two other synthetic polyribonucleotide double helices [poly(A) . poly(U) and poly(I) . poly(C)] and with single stranded DNA. The anti-poly(G) . poly(C) activity was localized in the 7S region, whether the sera came from high or low responders, from mice immunized with or without a carrier, after one or several injections. In contrast with anti-poly(A) . poly(U) sera which do not react with poly(G) . poly(C), anti-poly(G) . poly(C) exhibited poly(A) . poly(U) binding activity; no clear relationship between the two activities, however, could be demonstrated. Thus a series of immunological properties differentiates poly(G) . poly(C) not only from the natural polydeoxyribonucleotide single stranded DNA, but also, and more unexpectedly, from two other double stranded polyribonucleotide complexes. These observations suggest that the mechanism controlling the antibody response to poly(G) . poly(C) differs from that regulating poly(A) . poly(U) and/or poly(I) . poly(C), and are to be connected with the fact that the anti-poly(G) . poly(C) antibodies occurring in the sera of patients with systemic lupus erythematosus did not correlate with the antibody activities directed toward the other duplexes. PMID:6697564

  18. Synthesis of Poly(3-alkylthiophene)–Poly(arylisocyanide) Diblock Copolymers. Two Mechanistically Distinct, Sequential Living Polymerizations Using a Single Catalyst

    SciTech Connect

    Wu, Zong-Quan; Ono, Robert J.; Chen, Zheng; Bielawski, Christopher W.

    2010-09-21

    Block copolymers of poly(3-hexylthiophene) and a poly(arylisocyanide) were synthesized in a single pot via the addition of 2-bromo-3-hexyl-5-chloromagnesiothiophene followed by n-decyl 4-isocyanobenzoate to a solution of Ni(1,3-bis(diphenylphosphino)propane)Cl 2. The respective mechanistically distinct polymerizations proceeded in a controlled fashion and afforded well-defined block copolymers with tunable molecular weights and compositions. The block copolymers exhibited microphase separation characteristics in the solid state.

  19. Synthesis of Degradable Poly[(Ethylene Glycol)-co-(Glycolic Acid)] via the Post-Polymerization Oxyfunctionalization of Poly(Ethylene Glycol).

    PubMed

    Liu, Di; Bielawski, Christopher W

    2016-10-01

    To enhance the limited degradability of poly(ethylene glycol) (PEG), a straightforward method of synthesizing poly[(ethylene glycol)-co-(glycolic acid)] (P(EG-co-GA)) via a ruthenium-catalyzed, post-polymerization oxyfunctionalization of various PEGs is developed. Using this method, a set of copolymers with GA compositions of up to 8 mol% are prepared with minimal reduction in molecular weight (<10%) when compared to their commercially available starting materials. The P(EG-co-GA) copolymers are shown to undergo hydrolysis under mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cellular behaviour of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid).

    PubMed

    Roh, Hyun; Yang, Dae Hyeok; Chun, Heung Jae; Khang, Gilson

    2015-07-01

    Previously, the galactosylation of poly(d,l-lactic-co-glycolic acid) (PLGA) surface was accomplished by grafting allylamine (AA), using inductively coupled plasma-assisted chemical vapour deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation for hepatic tissue-engineering purposes. As a continuation study, the cellular behaviour of hepatocyte-like cells (HLCs) on the surface of the galactosylated PLGA were investigated. Nude mouse bone marrow-derived mesenchymal stem cells (MSCs) were cultured under hepatogenic conditions and the differentiated cells were characterized by reverse-transcription polymerase chain reaction (RT-PCR), immunofluorescence and periodic acid-Schiff (PAS) staining. Galactosylated PLGA enhanced the proliferation rate of HLCs compared to the control; HLCs on the surface of the sample became aggregated and formed spheroids after 3 days of culture. A large number of cells on the surface of the sample exhibited increased liver-specific functional activities, such as albumin and urea secretions. In addition, multicellular spheroids in the sample strongly expressed phospholyated focal adhesion kinase (pFAK) (cell-matrix interactions), E-cadherin (cell-cell interactions) and connexin 32 (Cox32; gap junction).

  1. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery

    PubMed Central

    Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf

    2016-01-01

    Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy. PMID:27264609

  2. Maleimide Functionalized Poly(ε-caprolactone)-b-poly(ethylene glycol) (PCL-PEG-MAL): Synthesis, Nanoparticle Formation, and Thiol Conjugation

    PubMed Central

    Ji, Shengxiang; Zhu, Zhengxi; Hoye, Thomas R.; Macosko, Christopher W.

    2010-01-01

    Summary Carboxylic acid terminated poly(ε-caprolactone)s (PCL-COOHs) with narrow polydispersity were synthesized and coupled with poly(ethylene glycol) (HO-PEG-OH) to afford PCL-PEG-OH copolymers. The hydroxyl groups in the PCL-PEG-OHs were then converted to maleimide groups to afford maleimide terminated PCL-PEG-MALs that contained 70–90% maleimide functionality. Nanoparticles with maleimide functionality on their surfaces were prepared by impingement mixing. Particle sizes and size distributions were determined by dynamic light scattering. Conjugation of reduced glutathione with model maleimides and two MAL-functional nanoparticles was also demonstrated. The amount of accessible maleimide on the particle surface was measured using Ellman’s reagent to range between ~51–67%. PMID:21731402

  3. Preparation of graphene oxide/poly (3,4-ethylenedioxytriophene): Poly (styrene sulfonate) (PEDOT:PSS) electrospun nanofibers

    SciTech Connect

    Efelina, Vita; Widianto, Eri; Rusdiana, Dadi; Nugroho, A. A.; Kusumaatmaja, Ahmad; Triyana, Kuwat; Santoso, Iman

    2016-04-19

    Graphene oxide (GO)/Poly (3,4-Ethylenedioxytriophene):Poly (styrene Sulfonate) (PEDOT:PSS) nanofibers have been successfully fabricated by a simple electrospinning technique to develop conductive nanofibers with polyvinyl alcohol (PVA) act as a carrier solution. Graphene oxide has been synthesized by Hummer’s method and has been confirmed by Raman Spectroscopy, FTIR and UV-Vis Spectroscopy. GO/PEDOT:PSS composite nanofibers. The structural and morphological properties were characterized by Scanning Electron Microscopy (SEM). The result of SEM show that GO/PEDOT:PSS nanofibers has a relatively uniform morphology nanofiber with diameter between 180 nm - 340 nm with smooth nanofiber surface. The produced nanofibers from this study can be utilized for various applications such as flexible, conductive and transparent electrode.

  4. Preparation and evaluation of poly(ethylene glycol)-poly(lactide) micelles as nanocarriers for oral delivery of cyclosporine a.

    PubMed

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-03-27

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  5. Synthesis of poly(epsilon-caprolactone)-b-poly(gamma-benzyl-L-glutamic acid) block copolymer using amino organic calcium catalyst.

    PubMed

    Rong, Guangzhuo; Deng, Mingxiao; Deng, Chao; Tang, Zhaohui; Piao, Longhai; Chen, Xuesi; Jing, Xiabin

    2003-01-01

    A biodegradable two block copolymer, poly(epsilon-caprolactone)-b- poly(gamma-benzyl-L-glutamic acid) (PCL-PBLG) was synthesized successfully by ring-opening polymerization of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with aminophenyl-terminated PCL as a macroinitiator. The aminophenethoxyl-terminated PCL was prepared via hydrogenation of a 4-nitrophenethoxyl-terminated PCL, which was novelly obtained from the polymerization of epsilon-caprolactone (CL) initiated by amino calcium 4-nitrobenzoxide. The structures of the block copolymer and its precursors from the initial step of PCL were confirmed and investigated by 1H NMR, FT-IR, GPC, and FT-ICRMS analyses and DSC measurements.

  6. Synthesis of poly(methyl methacrylate)-block-poly(L-histidine) and its use as a hybrid silver nanoparticle conjugate.

    PubMed

    Shin, Nam Ho; Lee, Jin Kyu; Li, Haiqing; Ha, Chang-Sik; Shchipunov, Yury A; Kim, Il

    2010-10-01

    Poly[(methyl methacrylate)-block-poly(L-histidine)] (PMMA-b-PHIS) was synthesized by combining atom transfer radical polymerization and living ring-opening polymerization of alpha-amino acid-N-carboxyanhydride. The resulting hybrid block copolymer forms reverse micelles in the mixture solution of water and N,N-dimethylformamide (DMF) and self-assembles into PHIS/PMMA core/shell spheres with controllable size in the range of 80 to 250 nm depending on the micellization temperature. The self-assembly of PMMA-b-PHIS was carried out in H2O/DMF (3/7) mixture in the presence of AgNO3. Reduction of the resulting Ag ions encapsulated inside of the reverse micelles yielded an attractive Ag nanoparticle core/polymer shell conjugate system.

  7. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    NASA Astrophysics Data System (ADS)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  8. Surface modification by grafting of poly(SBMA-co-AEMA)-g-PDA coating and its application in CE.

    PubMed

    Chen, Lijuan; Tan, Lin; Liu, Songtao; Bai, Longchao; Wang, Yanmei

    2014-01-01

    In this paper, a novel copolymer consisting of sulfobetaine methacrylate (SBMA) and 2-aminoethyl methacrylate (AEMA) named as poly(SBMA-co-AEMA) was synthesized by conventional free-radical polymerization, the poly(SBMA-co-AEMA) zwitterionic copolymer was immobilized onto glass slides surface through polydopamine (PDA)-anchored coating and formed poly(SBMA-co-AEMA)-g-PDA coating. The defined copolymer was characterized by nuclear magnetic resonance hydrogen spectroscopy ((1)H NMR) and gel permeation chromatography. The surface morphology, thickness, and chemical component of poly(SBMA-co-AEMA)-g-PDA coating were studied by atom force microscope, ellipsometry, and X-ray photoelectron spectroscopy, respectively. The hydrophilicity and stability of these coatings were investigated by static water contact angles. And finally, the poly(SBMA-co-AEMA)-g-PDA coating was successfully applied into capillary inner surface for suppression electro-osmotic flow and protein separation by capillary electrophoresis.

  9. Poly-instanton inflation

    SciTech Connect

    Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo E-mail: f.pedro1@physics.ox.ac.uk

    2011-12-01

    We propose a new inflationary scenario in type IIB Calabi-Yau compactifications, where the inflaton is a Kähler modulus parameterising the volume of an internal four-cycle. The inflaton potential is generated via poly-instanton corrections to the superpotential which give rise to a naturally flat direction due to their double exponential suppression. Given that the volume mode is kept stable during inflation, all the inflaton-dependent higher dimensional operators are suppressed. Moreover, string loop effects can be shown to be negligible throughout all the inflationary dynamics for natural values of the underlying parameters. The model is characterised by a reheating temperature of the order T{sub rh} ≅ 10{sup 6} GeV which requires N{sub e} ≅ 54 e-foldings of inflation. All the inflationary observables are compatible with current observations since the spectral index is n{sub s} ≅ 0.96, while the tensor-to-scalar ratio is r ≅ 10{sup −5}. The volume of the Calabi-Yau is of order 10{sup 3} in string units, corresponding to an inflationary scale around 10{sup 15} GeV.

  10. Poly-instanton inflation

    NASA Astrophysics Data System (ADS)

    Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo

    2011-12-01

    We propose a new inflationary scenario in type IIB Calabi-Yau compactifications, where the inflaton is a Kähler modulus parameterising the volume of an internal four-cycle. The inflaton potential is generated via poly-instanton corrections to the superpotential which give rise to a naturally flat direction due to their double exponential suppression. Given that the volume mode is kept stable during inflation, all the inflaton-dependent higher dimensional operators are suppressed. Moreover, string loop effects can be shown to be negligible throughout all the inflationary dynamics for natural values of the underlying parameters. The model is characterised by a reheating temperature of the order Trh simeq 106 GeV which requires Ne simeq 54 e-foldings of inflation. All the inflationary observables are compatible with current observations since the spectral index is ns simeq 0.96, while the tensor-to-scalar ratio is r simeq 10-5. The volume of the Calabi-Yau is of order 103 in string units, corresponding to an inflationary scale around 1015 GeV.

  11. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied.

  12. Preparation and study of poly(vinyl acetate) and poly(styrene) nanosized latex with indometacin.

    PubMed

    Andonova, V; Georgiev, G; Toncheva, V; Kassarova, M

    2012-07-01

    During the last decade the number of investigations on the preparation and application of more effective drug release systems on the basis of nanocarriers from biocompatible and biodegradable polymers are considerably increasing. This is notably in force for practically water insoluble drugs to be applied in liquid forms (eye solutions for an example). The aim of the work presented was the preparation of model poly(vinyl acetate) and poly(styrene) nanosupports for indometacin and their potential inclusion in eye drops. The polymers are synthesized as nanosized latex by a radical polymerization of the monomers in the presence of indometacin. It is proved that the low polymerization temperature and initiator used do not influence indometacin structure and properties. The nanoparticles were characterized by attenuated total reflection Fourier transform infrared spectroscopic analyses, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The size of the latex particles was around 200 nm, determined by the scan electron microscopy. The indometacin delivery rate from the supports discussed in aqueous solutions was determined at pH 7.4. The change of this rate, in comparison with that for a pure drug substance, was established also as well as its dependence on the nature of the carrier.

  13. The anti-bacterial poly(caprolactone)-poly(quaternary ammonium salt) as drug delivery carriers.

    PubMed

    Leng, Mengtian; Hu, Shaodong; Lu, Aijing; Cai, Mengtan; Luo, Xianglin

    2016-04-01

    Anti-bacterial materials play significant role in biomedical field. Researches and applications of new anti-bacterial materials are necessary. Novel linear and star-shaped copolymers of poly(caprolactone)-poly(quaternary ammonium salt) (PCL-PJDMA) were synthesized by a combination of ring-opening polymerization and atom transfer radical polymerization. The structures of the copolymers were confirmed by nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy. The copolymers self-assembled into ball-shaped micelles with low critical micelle concentration (10(-4) ∼ 10(-3) mg/ml). An anti-bacterial drug, triclosan, was chosen as a model drug to investigate the potential application of the copolymers in drug-controlled release. The anti-bacterial experiments against Escherichia coli indicated that all the copolymer micelles had anti-bacterial ability and drug-loaded star-shaped PCL-PJDMA micelles were the best. The slow release of the drug from the drug-loaded micelles prolonged anti-bacterial effect. Therefore, PCL-PJDMA themselves have not only anti-bacterial ability but also the copolymer micelles can be used as carriers for anti-bacterial drugs.

  14. Biologic activities of poly (2-azaadenylic acid) and poly (2-azainosinic acid).

    PubMed Central

    De Clercq, E; Huang, G F; Torrence, P F; Fukui, T; Kakiuchi, N; Ikehara, M

    1977-01-01

    Poly (2-azaadenylic acid) [(aza2A)n] and poly(2-azainosinic acid [(aza2I)n], two newly synthesized analogues of (A)n and (I)n, in which CH-2 of the purine ring is replaced by a nitrogen atom, have been evaluated in various biological assay systems. (Aza2A) n formed a complex with (U)n and (br5U)n, and (aza2I)n formed a complex with (C)n and (br5C)n, but these complexes were markedly destabilized relative to the corresponding (A)n or (I)n complexes. The (aza2A)n-and (aza2I)n-derived complexes failed to stimulate the production of interferon in primary rabbit kidney cells and human diploid fibroblasts, under conditions (A)n. (U)n, (I)n. (C)n and (I)n. (br5C)n induced high amounts of interferon. both (aza2A)n and (aza2I)n exerted a marked inhibitory effect on the endogenous RNA directed DNA polymerase (reverse transcriptase) activity associated with murine leukemia virus. They caused a relatively mild inhibition of complement activity in an hemolytic assay system. PMID:73166

  15. Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy

    DOE PAGES

    Cao, Pengfei; Rong, Li-Han; Mangadlao, Joey; ...

    2017-02-07

    We synthesized a synthetic trefoil knotted poly(e-caprolatone) block-poly(L-lactide) (TK-PLA-b-PCL) via a ring expansion strategy from a trefoil knotted tin (Sn) initiator. Ring closing reaction between the bis-copper(I) templated phenanthro line complex and dibutyldimethoxytin results in a templated trefoil knotted initiator. Furthermore, the bis-copper(I) templated trefoil knotted poly(L-lactide) (TK-PLA) can be synthesized by ring-opening polymerization of L-lactide monomer, and decomplexation reaction of the templated TK-PLA will result in a geniune TK-PLA without constraint from the copper template. Subsequent insertion of e caprolactone in the bis-copper(I) templated TK-PLA forms the templated trefoil knotted block copolymer, i.e., TK-PLA-b-PCL, and the copper-free TK-PLA-b-PCL canmore » be obtained by decomplexation reaction. Finally, both TK-PLA and TK-PLA-b-PCL are analyzed by the 1 H NMR, FT-IR, UV-vis, DLS, and GPC.« less

  16. Preparation and characterization of tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) nanogels for controlled release of naltrexone.

    PubMed

    Asadi, H; Rostamizadeh, K; Salari, D; Hamidi, M

    2011-09-15

    Tri-block poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) copolymers and related acrylated derivative were synthesized and used to prepare micelles and nanogels for controlled release of naltrexone. The resulting copolymers, micelles and nanogels were characterized by various techniques such as proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, gel permeation chromatography, fluorescence spectrometry, differential scanning calorimetry, photon correlation spectroscopy and scanning electron microscopy. The nanogels exhibited high encapsulation efficiency around 60% and excellent stability for long periods of time. The drug release profiles of micelles and nanogels were compared and it was found that the naltrexone loaded nanogels offered a steady and long-term release pattern for different periods of time up to 35 days, depending on the crosslinker concentration, compared to the micelles. The size of nanogels could be manipulated easily in the range of 128-200nm by variations in polymer concentration used in the nanogels preparation step. From the results obtained it can be concluded that PLA-PEG-PLA nanogels can be considered as a promising carrier for drug delivery purpose. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites.

    PubMed

    Fu, Shaozhi; Guo, Gang; Gong, Changyang; Zeng, Shi; Liang, Hang; Luo, Feng; Zhang, Xiaoning; Zhao, Xia; Wei, Yuquan; Qian, Zhiyong

    2009-12-31

    In this study, we synthesized a biodegradable triblock copolymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) by ring-opening copolymerization, and nanohydroxyapatite (n-HA) powder was prepared by a hydrothermal precipitation method. The obtained n-HA was incorporated into the PECE matrix to prepare injectable thermosensitive hydrogel nanocomposites. (1)H NMR, FT-IR, XRD, DSC, and TEM were used to investigate the properties of PECE copolymer and n-HA/PECE nanocomposites. The rheological measurements for n-HA/PECE nanocomposites revealed that the gelation temperature was approximately 36 degrees C. The sol-gel-sol transition behavior and phase transition diagrams were recorded through a test tube inverting method. The results showed that n-HA/PECE nanocomposites still had thermoresponsivity like that of PECE thermosensitive hydrogel. The morphology of the nanocomposites was observed by SEM; the results showed that the nanocomposites had a 3D network structure. In addition, the effects of n-HA contents on the properties of n-HA/PECE nanocomposites are also discussed in the paper. From the results, n-HA/PECE hydrogel is believed to be promising for injectable orthopedic tissue engineering due to its good thermosensitivity and injectability.

  18. Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution.

    PubMed

    Tan, B H; Hussain, H; Liu, Y; He, C B; Davis, T P

    2010-02-16

    Well-defined fluorinated brush-like amphiphilic diblock copolymers of poly[poly(ethylene glycol)methyl ether methacrylate] (P(PEGMA)) and poly(pentafluorostyrene) (PPFS) have been successfully synthesized via atom transfer radical polymerization (ATRP). The self-assembly behavior of these polymers in aqueous solutions was studied using (1)H NMR, fluorescence spectrometry, static and dynamic light scattering and transmission electron microscopy techniques. The micellar structure comprised of PPFS as the core and brush-like (hydrophobic main chain and hydrophilic branches) polymers as the coronas. The hydrodynamic radius (R(h)) of the micelles in aqueous solution was in the nanometer range, independent of the polymer concentration, consistent with a closed association model. Diblock copolymers with a longer P(PEGMA) block formed micelles with smaller R(h) and lower aggregation numbers consistent with an improved solubilization of the core. The micelles possessed a thick hydration layer as verified by the ratio of the radius of gyration, R(g) to the hydrodynamic radius, R(h). The aggregation number and ratio of R(g) to R(h) were observed to increase with temperature (20-50 degrees C), while the R(h) of the micelle decreased slightly over the same temperature range. An increase in temperature induced the brush-like PEG segments in the corona to dehydrate and shrink while forming micelles with larger aggregation numbers.

  19. 21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Poly(p-methylstyrene) and rubber-modified poly(p... Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene). Poly(p-methylstyrene) and rubber... purposes of this section, poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene) are...

  20. 21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Poly(p-methylstyrene) and rubber-modified poly(p... Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene). Poly(p-methylstyrene) and rubber... purposes of this section, poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene) are...

  1. 21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Poly(p-methylstyrene) and rubber-modified poly(p... Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene). Poly(p-methylstyrene) and rubber... purposes of this section, poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene) are...

  2. 21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly(p-methylstyrene) and rubber-modified poly(p... Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene). Poly(p-methylstyrene) and rubber... purposes of this section, poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene) are...

  3. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  4. Patterned Poly(dopamine) Films for Enhanced Cell Adhesion.

    PubMed

    Chen, Xi; Cortez-Jugo, Christina; Choi, Gwan H; Björnmalm, Mattias; Dai, Yunlu; Yoo, Pil J; Caruso, Frank

    2017-01-18

    Engineered materials that promote cell adhesion and cell growth are important in tissue engineering and regenerative medicine. In this work, we produced poly(dopamine) (PDA) films with engineered patterns for improved cell adhesion. The patterned films were synthesized via the polymerization of dopamine at the air-water interface of a floating bed of spherical particles. Subsequent dissolution of the particles yielded free-standing PDA films with tunable geometrical patterns. Our results show that these patterned PDA films significantly enhance the adhesion of both cancer cells and stem cells, thus showing promise as substrates for cell attachment for various biomedical applications.

  5. Photo and Thermo Responsive Poly-N-isopropylacrylamide Gel

    NASA Astrophysics Data System (ADS)

    Zwaschka, J'nae; Cai, Tong; Garcia, Antonio; Marquez, Manuel; Gust, Devens; Vail, Sean; Hu, Zhibing

    2006-10-01

    Hydrogels composed with poly (N-isopropylacrylamide)-co-Spiropyran acrylamide (PNIPAM-co-SP) were studied for their photo and thermal responsive properties. A mixture of a certain amount of N-isopropylacrylamide monomers, spiropyran acrylamide, crosslinker N, N'-methylene-bis-acrylamide, and photo initiator in acetone/ water solvent was irradiated by UV light to synthesize this PNIPAM-co-SP hydrogel. PNIPAM-co-SP hydrogel was then balanced in water for two days and its property measured by using UV-visible spectroscopy. It is found that the gel's size and charge may be altered using stimuli including light of different wavelengths and temperature.

  6. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites.

    PubMed

    Wang, Xuejiang; Li, Yubao; Wei, Jie; de Groot, Klass

    2002-12-01

    In this study, acicular nano-hydroxyapatite (n-HA) was used to make a new biomimetic composite with polyamide (poly hexamethylene adipamide) by a unique technique. The physical and chemical characteristics of the composites were tested. It was found that these synthesized n-HA crystals were similar to bone apatite in size, phase composition and crystal structure. The biomimetic n-HA crystals were uniformly distributed in the polymer matrix and its content can reach 65%, close to that in natural bone. Chemical binding between inorganic n-HA and polyamide was investigated and discussed. The mechanical properties of the composites were found to match well with those of natural bone.

  7. Synthesis and Conformations of Dendronized Poly(L-lysine)

    PubMed Central

    Lee, Cameron C.; Fréchet, Jean M. J.

    2008-01-01

    Dendronized polymers based on a poly(L-lysine) backbone have been synthesized up to the fourth generation. The hydroxyl-terminated polymers are completely water-soluble, which makes them good candidates for drug delivery applications. The dendronized polypeptide backbones are helical at lower generations, but undergo a dramatic conformational change from α-helical to disordered upon increasing the dendron size to the third generation. This conformational change, attributed to steric repulsions between dendrons, is supported by spectroscopic measurements while chain extension upon dendronization is confirmed by scanning force microscopy. PMID:18833337

  8. Vault-poly-ADP-ribose polymerase in the Octopus vulgaris brain: a regulatory factor of actin polymerization dynamic.

    PubMed

    De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria

    2013-09-01

    Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity.

  9. Synthesizing Regression Results: A Factored Likelihood Method

    ERIC Educational Resources Information Center

    Wu, Meng-Jia; Becker, Betsy Jane

    2013-01-01

    Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…

  10. "Comments on Slavin": Synthesizing Causal Inferences

    ERIC Educational Resources Information Center

    Briggs, Derek C.

    2008-01-01

    When causal inferences are to be synthesized across multiple studies, efforts to establish the magnitude of a causal effect should be balanced by an effort to evaluate the generalizability of the effect. The evaluation of generalizability depends on two factors that are given little attention in current syntheses: construct validity and external…

  11. Composites comprising biologically-synthesized nanomaterials

    DOEpatents

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  12. Synthesizing Regression Results: A Factored Likelihood Method

    ERIC Educational Resources Information Center

    Wu, Meng-Jia; Becker, Betsy Jane

    2013-01-01

    Regression methods are widely used by researchers in many fields, yet methods for synthesizing regression results are scarce. This study proposes using a factored likelihood method, originally developed to handle missing data, to appropriately synthesize regression models involving different predictors. This method uses the correlations reported…

  13. Synthesizing Smart Polymeric and Composite Materials

    NASA Astrophysics Data System (ADS)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  14. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    PubMed

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Efficient gene transfection using novel cationic polymers poly(hydroxyalkylene imines).

    PubMed

    Zaliauskiene, Lolita; Bernadisiute, Ula; Vareikis, Ausvydas; Makuska, Ricardas; Volungeviciene, Ieva; Petuskaite, Agne; Riauba, Laurynas; Lagunavicius, Arunas; Zigmantas, Sarunas

    2010-09-15

    A series of novel cationic polymers poly(hydroxyalkylene imines) were synthesized and tested for their ability to transfect cells in vitro and in vivo. Poly(hydroxyalkylene imines), in particular, poly(2-hydroxypropylene imine) (pHP), poly(2-hydroxypropylene imine ethylene imine) (pHPE), and poly(hydroxypropylene imine propylene imine) (pHPP) were synthesized by polycondensation reaction from 1,3-diamino-2-propanol and the appropriate dibromide. Electron microscopic examination demonstrated that the resulting polymers condensed DNA into toroid shape complexes of 100-150 nm in size. Transfection studies showed that all three polymers were able to deliver genetic material into the cell, with pHP being superior to pHPP and pHPE. pHP acted as an efficient gene delivery agent in a variety of different cell lines and outcompeted most of the widely used polymer or lipid based transfection reagents. Intravenous administration of pHP-DNA polyplexes in mice followed by the reporter gene analysis showed that the reagent was suitable for in vivo applications. In summary, the results indicate that pHP is a new efficient reagent for gene delivery in vitro and in vivo.

  16. High-molecular-weight poly(Gly-Val-Gly-Val-Pro) synthesis through microwave irradiation.

    PubMed

    Goto, Mitsuaki; Endo, Takeshi

    2016-07-01

    In this study, we synthesized a polypeptide from its pentapeptide unit using microwave irradiation. Effective methods for polypeptide synthesis from unit peptides have not been reported. Here, we used a key elastin peptide, H-GlyValGlyValPro-OH (GVGVP), as the monomer peptide. It is difficult to obtain poly(Gly-Val-Gly-Val-Pro) (poly(GVGVP)) from the pentapeptide unit of elastin, GVGVP, via polycondensation. Poly(GVGVP) prepared from genetically recombinant Escherichia coli is a well-known temperature-sensitive polypeptide, and this temperature sensitivity is known as the lower critical solution temperature. When microwave irradiation was performed in the presence of various additives, the pentapeptide (GVGVP) polycondensation reaction proceeded smoothly, resulting in a product with a high molecular weight in a relatively good yield. The reaction conditions, like microwave irradiation, coupling agents, and solvents, were optimized to increase the reaction efficiency. The product exhibited a molecular weight greater than Mr 7000. Further, the product could be synthesized on a gram scale. The synthesized polypeptide exhibited a temperature sensitivity that was similar to that of poly(GVGVP) prepared from genetically recombinant E. coli. Therefore, this technique offers a facile and quick approach to prepare polypeptides in large amounts. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Overview on poly(ADP-ribose) immuno-biomedicine and future prospects

    PubMed Central

    KANAI, Yoshiyuki

    2016-01-01

    Poly(ADP-ribose), identified in 1966 independently by three groups Strassbourg, Kyoto and Tokyo, is synthesized by poly(ADP-ribose) polymerases (PARP) from NAD+ as a substrate in the presence of Mg2+. The structure was unique in that it has ribose-ribose linkage. In the early-1970s, however, its function in vivo/in vitro was still controversial and the antibody against it was desired to help clear its significance. Thereupon, the author tried to produce antibody against poly(ADP-ribose) in rabbits and succeeded in it for the first time in the world. Eventually, this success has led to the following two groundbreaking papers in Nature: “Naturally-occurring antibody against poly(ADP-ribose) in patients with autoimmune disease SLE”, and “Induction of anti-poly(ADP-ribose) antibody by immunization with synthetic double-stranded RNA, poly(A)·poly(U)”. On the way to the publication of the first paper, a reviewer gave me a friendly comment that there is “heteroclitic” fashion as a mechanism of the production of natural antibody. This comment was really a God-send for me, and became a train of power for publication of another paper, as described above. Accordingly, I thought this, I would say, episode is worth describing herein. Because of its importance in biomedical phenomena, a certain number of articles related to “heteroclitic” have become to be introduced in this review, although they were not always directly related to immuno-biological works on poly(ADP-ribose). Also, I tried to speculate on the future prospects of poly(ADP-ribose), product of PARP, as an immuno-regulatory molecule, including either induced or naturally-occurring antibodies, in view of “heteroclitic”. PMID:27477457

  18. Controlled synthesis of poly(3-hexylthiophene) in continuous flow.

    PubMed

    Seyler, Helga; Subbiah, Jegadesan; Jones, David John; Holmes, Andrew Bruce; Wong, Wallace Wing Ho

    2013-01-01

    There is an increasing demand for organic semiconducting materials with the emergence of organic electronic devices. In particular, large-area devices such as organic thin-film photovoltaics will require significant quantities of materials for device optimization, lifetime testing and commercialization. Sourcing large quantities of materials required for the optimization of large area devices is costly and often impossible to achieve. Continuous-flow synthesis enables straight-forward scale-up of materials compared to conventional batch reactions. In this study, poly(3-hexylthiophene), P3HT, was synthesized in a bench-top continuous-flow reactor. Precise control of the molecular weight was demonstrated for the first time in flow for conjugated polymers by accurate addition of catalyst to the monomer solution. The P3HT samples synthesized in flow showed comparable performance to commercial P3HT samples in bulk heterojunction solar cell devices.

  19. Parallel DNA Synthesis on Poly(ethylene terephthalate).

    PubMed

    Holden, Matthew T; Carter, Matthew C D; Ting, Shannon K; Lynn, David M; Smith, Lloyd M

    2017-10-05

    The fabrication of DNA arrays directly on aminolyzed sheets of poly(ethylene terephthalate) (PET) is described. Array surfaces typically employ bifunctional linkers or layers of covalently attached polymers to provide substrate hydroxy groups as synthesis attachment points. An amine treatment is used here to expose hydroxy groups on films of PET. These hydroxy groups can then be used to couple phosphoramidites and initiate the array synthesis without further functionalization steps. Arrays fabricated on these substrates with a maskless array synthesizer are tolerant of the high number of chemical exposure steps required to synthesize relatively long oligonucleotides. The results might be of the greatest use to the synthetic biology community, for whom a flexible and robust substrate could enable new strategies to enhance the throughput of oligonucleotide synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pathways to poly-victimization.

    PubMed

    Finkelhor, David; Ormrod, Richard; Turner, Heather; Holt, Melissa

    2009-11-01

    Some children, whom we have labeled poly-victims, experience very high levels of victimizations of different types. This article finds support for a conceptual model suggesting that there may be four distinct pathways to becoming such a poly-victim: (a) residing in a dangerous community, (b) living in a dangerous family, (c) having a chaotic, multiproblem family environment, or (d) having emotional problems that increase risk behavior, engender antagonism, and compromise the capacity to protect oneself. It uses three waves of the Developmental Victimization Survey, a nationally representative sample of children aged 2-17 years. All four hypothesized pathways showed significant independent association with poly-victim onset. For the younger children, the symptom score representing emotional problems was the only significant predictor. For the older children, the other three pathway variables were significant predictors--dangerous communities, dangerous families, and problem families--but not symptom score. Poly-victimization onset was also disproportionately likely to occur in the year prior to children's 7th and 15th birthday, corresponding roughly to the entry into elementary school and high school. The identification of such pathways and the ages of high onset should help practitioners design programs for preventing vulnerable children from becoming poly-victims.

  1. A new combinatorial method for synthesizing, screening, and discovering antifouling surface chemistries.

    PubMed

    Imbrogno, Joseph; Williams, Matthew D; Belfort, Georges

    2015-02-04

    A set of diverse monomers were synthesized using combinatorial chemistry and tested using our unique high-throughput screening platform. The versatility of our platform is exemplified by possible applications in reducing biological fouling on ship hulls, filtration membranes, and surgical instruments, to name a few. To demonstrate its efficacy, the novel monomers were graft-polymerized onto light sensitive poly(ether sulfone) (PES) membranes via atmospheric-pressure plasma polymerization. A diverse library was synthesized by reacting a common vinyl ester linker with a library of maleimides containing various different functional groups. This allowed us to produce a library of many different surfaces and graft them all using the same linker chemistry. The modified surfaces were then tested and screened for the best antiprotein adsorption (nonfouling) properties. Membranes, functionalized with carboxylic acid, zwitterionic, and ester groups, had the lowest protein adhesion compared with that of an unmodified control PES membrane after a static fouling test. After dynamic fouling, these same functionalities as well as a hydroxyl group exhibited the highest permeability. These monomers performed better than our best previously synthesized amide monomers as well as our best poly(ethylene glycol) monomers, which are known to have very high protein resistance. Hansen solubility parameters qualitatively predicted which monomers performed best, indicating favorable interactions with water molecules.

  2. Poly(lactic acid) microparticles coated with insulin-containing layer-by-layer films and their pH-dependent insulin release.

    PubMed

    Hashide, Ryosuke; Yoshida, Kentaro; Hasebe, Yasushi; Seno, Masaru; Takahashi, Shigehiro; Sato, Katsuhiko; Anzai, Jun-Ichi

    2014-04-01

    Poly(lactic acid) (PLA) microparticles were coated with layer-by-layer (LbL) films containing insulin and the pH-dependent release of insulin was studied. The LbL films were prepared on the surface of PLA microparticles by the alternate deposition of insulin and poly(allylamine hydrochloride) (PAH) through the electrostatic attraction between insulin and PAH. The insulin loading on the PLA microparticles depended on the film thickness, which corresponded to the number of insulin layers, and on the pH of the solution used to deposit insulin. The insulin loading increased with the film thickness and when the film was prepared at pH 7.4. The LbL films decomposed upon exposure to acidic solutions because the electrostatic attraction between the insulin and the PAH in the films disappeared when the charge on insulin changed from negative to positive at an acidic pH, which resulted in the release of insulin. The temperature and salt concentration did not affect the pH stability of the LbL films. The pH threshold for insulin release was pH 5.0-6.0, which corresponds to isoelectric point of insulin, 5.4. The release of insulin from the microparticles was rapid, and was almost complete within a few minutes. The circular dichroism spectra showed that the released insulin retained its original secondary structure. Our insulin-loaded PLA microparticles may be useful for the controlled release of insulin.

  3. Star-shaped poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) with porphyrin core: synthesis, self-assembly, singlet oxygen research and recognition properties.

    PubMed

    Dai, Xiao-Hui; Wang, Zhi-Ming; Pan, Jian-Ming; Yuan, Si-Song; Yan, Yong-sheng; Liu, Dong-Ming; Sun, Lin

    2014-01-01

    Star-shaped porphyrin-cored poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) block copolymers (SPPLA-b-PLAMA) were synthesized via RAFT of unprotected Lactobionamidoethyl methacrylate (LAMA) in 1-methyl-2-pyrrolidinone (NMP) solution at 70 °C. The structure of this as-synthesized SPPLA-b-PLAMA block copolymer was thoroughly studied by nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transforms infrared. Moreover, under the irradiation, such SPPLA-b-PGAMA copolymer exhibits efficient singlet oxygen generation (0.17) and indicates high fluorescence quantum yields (0.20). Notably, with UV-vis investigation, SPPLA-b-PLAMA showed a very specific recognition with RCA120 lectin. This will not only provide potentially prophyrin-cored star-shaped SPPLA-b-PLAMA block copolymers for targeted photodynamic therapy, but also improve the physical, biodegradation, biocompatibility properties of PLA-based biomaterials.

  4. Synthesis of Well-Defined Miktoarm Star Copolymer composed of Poly(3-hexylthiophene) and Poly(methyl methacrylate) via combining anionic polymerization and click reaction

    NASA Astrophysics Data System (ADS)

    Park, Jicheol; Moon, Hong Chul; Kim, Jin Kon

    2013-03-01

    We synthesized well-defined miktoarm star copolymer composed of regioregular poly(3-hexylthiophene) and poly(methyl methacrylate) ((P3HT)2- b-PMMA) by combining anionic polymerization and click reaction. First, we synthesized PMMA terminated with 1,3,5-tris(bromomethy)lbenzene (PMMA-(br)2) by anionic polymerization. Then, the bromide end groups transformed to azide group (PMMA-(N3)2) . For the synthesis (P3HT)2- b-PMMA, click reaction between ethynyl-capped P3HT and PMMA-(N3)2 was performed. The optical property and thin film morphology of (P3HT)2- b-PMMA were investigated by using UV-Vis spectra and atomic force microscopy, respectively.

  5. Syntheses of Novel Nitrogen and Phosphorus Heterocycles.

    DTIC Science & Technology

    2014-09-26

    Chemicals and Materials Research Department, Ultrasystems, Inc. under Contract F49620-82-C-0021, "Syntheses of Novel Nitrogen and Phosphorus Hetero- * cycles ...ADl-NISS9 449 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES In (U) ULTRRSYSTENS INC IRVINE CR K L PRCIOREK ET RL. 26 RPR 85 SN-209?-F RFOSR...MICROCOPY RESOLUTION TEST CHART NATIONAL BURE&U OF STAOACS-963-A SR-I"I" s, -Ŕ 500 4 SYNTHESES OF NOVEL NITROGEN AND PHOSPHORUS HETEROCYCLES Contract No

  6. Aggregation Behavior of Chemically Synthesized, Full-Length Huntingtin Exon1

    PubMed Central

    2015-01-01

    Repeat length disease thresholds vary among the 10 expanded polyglutamine (polyQ) repeat diseases, from about 20 to about 50 glutamine residues. The unique amino acid sequences flanking the polyQ segment are thought to contribute to these repeat length thresholds. The specific portions of the flanking sequences that modulate polyQ properties are not always clear, however. This ambiguity may be important in Huntington’s disease (HD), for example, where in vitro studies of aggregation mechanisms have led to distinctly different mechanistic models. Most in vitro studies of the aggregation of the huntingtin (HTT) exon1 fragment implicated in the HD mechanism have been conducted on inexact molecules that are imprecise either on the N-terminus (recombinantly produced peptides) or on the C-terminus (chemically synthesized peptides). In this paper, we investigate the aggregation properties of chemically synthesized HTT exon1 peptides that are full-length and complete, containing both normal and expanded polyQ repeat lengths, and compare the results directly to previously investigated molecules containing truncated C-termini. The results on the full-length peptides are consistent with a two-step aggregation mechanism originally developed based on studies of the C-terminally truncated analogues. Thus, we observe relatively rapid formation of spherical oligomers containing from 100 to 600 HTT exon1 molecules and intermediate formation of short protofibril-like structures containing from 500 to 2600 molecules. In contrast to this relatively rapid assembly, mature HTT exon1 amyloid requires about one month to dissociate in vitro, which is similar to the time required for neuronal HTT exon1 aggregates to disappear in vivo after HTT production is discontinued. PMID:24921664

  7. Mesoporous CeO2 nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation

    NASA Astrophysics Data System (ADS)

    Nabih, Nermeen; Schiller, Renate; Lieberwirth, Ingo; Kockrick, Emanuel; Frind, Robert; Kaskel, Stefan; Weiss, Clemens K.; Landfester, Katharina

    2011-04-01

    Cerium(IV) oxide nanoparticles were synthesized using an inverse miniemulsion technique with cerium nitrate hexahydrate as precursor. The resulting nanocrystallites are as small as 5 nm with a specific surface area of 158 m2 g - 1 after calcination at 400 °C. With the addition of cetyltrimethylammonium bromide (CTAB) or (poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)) triblock copolymers (PEO-PPO-PEO) as template in the miniemulsion droplets, the specific surface area can be increased up to 255 m2 g - 1. The miniemulsions were characterized by dynamic light scattering (DLS) and the obtained oxides were examined by x-ray diffraction (XRD), nitrogen sorption (BET and BJH), and transmission electron microscopy (TEM). The catalytic activity of the resulting ceria was investigated for the temperature-programmed oxidation (TPO) of methane.

  8. Poly(lactide)-block-poly([epsilon]-caprolactone-co-[epsilon]-decalactone)-block-poly(lactide) copolymer elastomers

    SciTech Connect

    Schneiderman, Deborah K.; Hill, Erin M.; Martello, Mark T.; Hillmyer, Marc A.

    2015-08-28

    Batch ring opening transesterification copolymerization of ε-caprolactone and ε-decalactone was used to generate statistical copolymers over a wide range of compositions and molar masses. Reactivity ratios determined for this monomer pair, rCL = 5.9 and rDL = 0.03, reveal ε-caprolactone is added preferentially regardless of the propagating chain end. Relative to poly(ε-caprolactone) the crystallinity and melting point of these statistical copolymers were depressed by the addition of ε-decalactone; copolymers containing greater than 31 mol% (46 wt%) ε-decalactone were amorphous. Poly(lactide)-block-poly(ε-caprolactone-co-ε-decalactone)-block-poly(lactide) triblock polymers were also prepared and used to explore the influence of midblock composition on the temperature dependent Flory-Huggins interaction parameter (χ). In addition, uniaxial extension tests were used to determine the effects of midblock composition, poly(lactide) content, and molar mass on the mechanical properties of these new elastomeric triblocks.

  9. Active targeting co-delivery system based on pH-sensitive methoxy-poly(ethylene glycol)2K-poly(ε-caprolactone)4K-poly(glutamic acid)1K for enhanced cancer therapy.

    PubMed

    Li, Nuannuan; Huang, Chunzhi; Luan, Yuxia; Song, Aixin; Song, Yunmei; Garg, Sanjay

    2016-06-15

    In this paper, we successfully synthesized folate-modified pH-sensitive copolymer methoxy-poly(ethylene glycol)2K-poly(ε-caprolactone)4K-poly(glutamic acid)1K (mPEG2K-PCL4K-PGA1K-FA), which could form the polymeric assembly in an aqueous solution, for co-delivering hydrophilic drugs doxorubicin hydrochloride (DOX) and verapamil hydrochloride (VER) (FA-poly(DOX+VER)). Since VER was an effective P-glycoprotein inhibitor, the combination of DOX and VER could reverse the multidrug resistance efficiently and enhance the therapeutic effect. Therefore, the inhibition ratios of MCF-7/ADR resistant cancer cell treated by FA-poly (DOX+VER) were almost more than 30% higher than those of FA-polyDOX after 48h and 72h. Furthermore, the conjugation of FA could lead the co-delivery systems actively targeting into the FA receptor over-expressing cancer cells in addition to the passive accumulation of the assembly in tumor tissues. Importantly, the prepared mPEG2K-PCL4K-PGA1K-FA assembly showed high pH-sensitive property, which made the drugs mostly released in tumor tissue (acid environment) than in physiological environment (neutral environment). In summary, the as-prepared co-delivery system FA-poly(DOX+VER) demonstrated a high efficiency in reversing the multidrug resistance and targeting FA receptor to improve the anticancer effect of DOX in MCF-7/ADR resistant cells.

  10. The Trajectory Synthesizer Generalized Profile Interface

    NASA Technical Reports Server (NTRS)

    Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.

    2010-01-01

    The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.

  11. Thermoelectric Properties of Solution Synthesized Nanostructured Materials.

    PubMed

    Finefrock, Scott W; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2015-01-01

    Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)2(Te,Se)3, PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.

  12. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  13. ORGANIC SYNTHESES USING MICROWAVES AND SUPPORTED REAGENTS

    EPA Science Inventory

    Microwave-accelerated chemical syntheses under solvent-free conditions have witnessed an explosive growth. The technique has found widespread application predominantly exploiting the inexpensive unmodified household microwave (MW) ovens although the use of dedicated MW equipment...

  14. Method to synthesize metal chalcogenide monolayer nanomaterials

    SciTech Connect

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  15. Preparation of albumin preferential surfaces on poly(vinyl chloride) membranes via surface self-segregation.

    PubMed

    Ji, Jian; Feng, Linxian; Shen, Jiacong; Barbosa, M A

    2002-08-01

    Poly(vinyl chlorides)-graft-[omega-stearyl-poly(ethylene oxide)] (PVC-g-SPEO), which has a poly(vinyl chloride) (PVC) backbone, poly(ethylene oxide) (PEO) side chain, and stearyl end groups, has been synthesized. Self-organizing blends of the amphiphilic comb polymer in poly(vinyl chlorides) have been examined as a means to create albumin preferential surfaces on polymer films. X-ray photoelectron spectroscopy (XPS) analysis indicates substantial surface segregation of the PVC-g-SPEO. A surface concentration of 59.9 EO wt % is achieved by the solution casting and heat treatment of a film with a bulk concentration of only 3.78 EO wt %. In the aqueous environment, the surface rearrangement of PVC-g-SPEO/PVC blend film is limited and presents a high interfacial energy and high depolar component of interfacial energy due to the "tail-like" SPEO side chain. Protein adsorption tests confirm that PVC-g-SPEO/PVC blend films absorb high levels of albumin and dramatically resist fibrinogen adsorption. Surfaces to attract and reversibly bind albumin, which might diminish the occurrence of thrombosis, inflammation, and infection, are developed by self-organizing blends of the amphiphilic comb polymer in poly(vinyl chlorides).

  16. Poly-carboxylic acids functionalized chitosan nanocarriers for controlled and targeted anti-cancer drug delivery.

    PubMed

    Rajan, Mariappan; Murugan, Maruthamuthu; Ponnamma, Deepalekshmi; Sadasivuni, Kishor Kumar; Munusamy, Murugan A

    2016-10-01

    The present study evaluates the in-vitro cisplatin (CDDP) release from four different poly oxalates cross-linked chitosan (CS) nanocomposites. The poly oxalates were synthesized from the reaction of four different dicarboxylic acids with ethylene glycol (EG). The encapsulation of CDDP on CS cross-linked with Oxalic acid-EG, Succinic acid-EG, Citric acid-EG and tartaric acid-EG carriers were carried out by the ionic gelation technique. The poly-oxalate nanocarriers were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction studies and zeta potential analysis. The stability of poly-oxalates was calculated by the density functional theory (DFT) using Gaussview 05. Excellent drug release kinetics and good biocompatibility of nanocomposites were observed for the in-vitro analysis. The unloaded poly oxalate nanocomposites perform to have a low inherent cytotoxicity, whereas the loaded nanocomposites were as active as free CDDP in the MCF-7 cancer cell line. The tumor growth inhibitions of CDDP-loaded nanocomposites are more or equal to that of free CDDP. Taken together, these two poly oxalate nanocomposites are established as promising drug carriers for the delivery of CDDP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Biodegradable Poly(aminoester)-Mediated p53 Gene Delivery for Cancer Therapy.

    PubMed

    Shen, He; Liu, Min; Zhang, Zhijun

    2016-03-01

    Gene therapy is a promising strategy in cancer treatment. However, efficient gene translation still remains challenging. In the previous work, a hydrolytically degradable poly(aminoester) with good biocompatibility was synthesized. Herein, the poly(aminoester) was explored as a vector for gene delivery and cancer therapy. The experiments revealed that the poly(aminoester) condensed plasmid DNA into nanosized particles via electrostatic interaction. The pEGFP-N1 and pGL-3 were first used as two reporter genes to study intracellular transfection. The poly(aminoester) showed higher GFP expression (33%) than PEI 25 kDa (21%). Intracellular trafficking of Cy3-labelled pGL-3 also indicated that the poly(aminoester) showed superior DNA delivery ability to nucleus compared to PEI 25 kDa. Furthermore, the therapeutic gene (p53) was translated into the breast cancer cell line (MCF-7), and then induced cell apoptosis. These results suggested that the degradable poly(aminoester) is a promising and efficient gene delivery vector for gene therapeutic applications.

  18. Selective Ion Pair Adsorption of Cobalt and Copper Salts on Cationically Produced Poly(1,3-divinylimidazolid-2-one)/Silica Hybrid Particles.

    PubMed

    Meyer, Torsten; Prause, Silvio; Spange, Stefan; Friedrich, Manfred

    2001-04-15

    For quantitative metal salt adsorption, poly(1,3-divinylimidazolid-2-one)/silica [poly BVU(cat.)/silica] particles with different polymer contents have been synthesized by a cationic surface polymerization of 1,3-divinylimidazolid-2-one onto silica. Preliminary experiments with the metal ion salts CoCl(2), CoI(2), CuCl(2), and FeCl(3) on poly-BVU(cat.)/silica particles, a radically produced poly-BVU(rad.) resin, and a cationically produced poly-BVU(cat.) resin have been carried in acetone solution to check the suitability of the adsorbents. The adsorption mechanism for Co(2+) and Cu(2+) on poly-BVU(cat.)/silica is in accordance with the Langmuir model for monolayer adsorption as shown by quantitative adsorption measurements by means of UV/vis spectroscopy. An ion pair adsorption mechanism is suggested for CoCl(2), CoI(2), and CuCl(2) on poly-BVU(cat.)/silica because both environments cationically produced poly-BVU and residual silanol groups are required for linking the cation and anion. ESR spectroscopic results of CoCl(2)-, CuCl(2)-, and FeCl(3)-poly-BVU(cat.)/silica hybrid adsorbates show selective adsorption for Co(2+) and Cu(2+). However, two different adsorption sites are indicated for Fe(3+) on poly-BVU(cat.)/silica. Copyright 2001 Academic Press.

  19. Synthesis, characterization and biological application of four novel metal-Schiff base complexes derived from allylamine and their interactions with human serum albumin: Experimental, molecular docking and ONIOM computational study.

    PubMed

    Kazemi, Zahra; Rudbari, Hadi Amiri; Sahihi, Mehdi; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Gharaghani, Sajjad

    2016-09-01

    Novel metal-based drug candidate including VOL2, NiL2, CuL2 and PdL2 have been synthesized from 2-hydroxy-1-allyliminomethyl-naphthalen ligand and have been characterized by means of elemental analysis (CHN), FT-IR and UV-vis spectroscopies. In addition, (1)H and (13)C NMR techniques were employed for characterization of the PdL2 complex. Single-crystal X-ray diffraction technique was utilized to characterise the structure of the complexes. The Cu(II), Ni(II) and Pd(II) complexes show a square planar trans-coordination geometry, while in the VOL2, the vanadium center has a distorted tetragonal pyramidal N2O3 coordination sphere. The HSA-binding was also determined, using fluorescence quenching, UV-vis spectroscopy, and circular dichroism (CD) titration method. The obtained results revealed that the HSA affinity for binding the synthesized compounds follows as PdL2>CuL2>VOL2>NiL2, indicating the effect of metal ion on binding constant. The distance between these compounds and HSA was obtained based on the Förster's theory of non-radiative energy transfer. Furthermore, computational methods including molecular docking and our Own N-layered Integrated molecular Orbital and molecular Mechanics (ONIOM) were carried out to investigate the HSA-binding of the compounds. Molecular docking calculation indicated the existence of hydrogen bond between amino acid residues of HSA and all synthesized compounds. The formation of the hydrogen bond in the HSA-compound systems leads to their stabilization. The ONIOM method was utilized in order to investigate HSA binding of compounds more precisely in which molecular mechanics method (UFF) and semi empirical method (PM6) were selected for the low layer and the high layer, respectively. The results show that the structural parameters of the compounds changed along with binding to HSA, indicating the strong interaction between the compounds and HSA. The value of binding constant depends on the extent of the resultant changes. This

  20. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    PubMed Central

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-01-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results. PMID:27515383

  2. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers

    NASA Astrophysics Data System (ADS)

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O.; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B.; Ebenso, Eno E.

    2016-08-01

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results.

  3. Experimental and theoretical studies on inhibition of mild steel corrosion by some synthesized polyurethane tri-block co-polymers.

    PubMed

    Kumar, Sudershan; Vashisht, Hemlata; Olasunkanmi, Lukman O; Bahadur, Indra; Verma, Hemant; Singh, Gurmeet; Obot, Ime B; Ebenso, Eno E

    2016-08-12

    Polyurethane based tri-block copolymers namely poly(N-vinylpyrrolidone)-b-polyurethane-b-poly(N-vinylpyrrolidone) (PNVP-PU) and poly(dimethylaminoethylmethacrylate)-b-polyurethane-b-poly(dimethylaminoethylmethacrylate) (PDMAEMA-PU) were synthesized through atom transfer radical polymerization (ATRP) mechanism. The synthesized polymers were characterized using nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC) methods. The corrosion inhibition performances of the compounds were investigated on mild steel (MS) in 0.5 M H2SO4 medium using electrochemical measurements, surface analysis, quantum chemical calculations and molecular dynamic simulations (MDS). Potentiodynamic polarization (PDP) measurements revealed that the polymers are mixed-type corrosion inhibitors. Electrochemical impedance spectroscopy (EIS) measurements showed that the polymers inhibit MS corrosion by adsorbing on MS surface to form pseudo-capacitive interface. The inhibitive effects of the polymers increase with increasing concentration and decrease with increasing temperature. The adsorption of both the polymers on MS surface obey the Langmuir adsorption isotherm and involves both physisorption and chemisorption mechanisms. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed that the polymers formed protective film on MS surface and shield it from direct acid attack. Quantum chemical calculations and molecular dynamic simulations studies corroborate experimental results.

  4. Psychoacoustic Analysis of Synthesized Jet Noise

    NASA Technical Reports Server (NTRS)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  5. Degradation behavior of poly(glycerol sebacate).

    PubMed

    Pomerantseva, Irina; Krebs, Nicholas; Hart, Alison; Neville, Craig M; Huang, Albert Y; Sundback, Cathryn A

    2009-12-15

    Poly(glycerol sebacate) (PGS), a promising scaffold material for soft tissue engineering applications, is a soft, tough elastomer with excellent biocompatibility. However, the rapid in vivo degradation rate of PGS limits its use as a scaffold material. To determine the impact of crosslink density on degradation rate, a family of PGS materials was synthesized by incrementally increasing the curing time from 42 to 144 h, at 120 degrees C and 10 mTorr vacuum. As expected, PGS became a stiffer, tougher, and stronger elastomer with increasing curing time. PGS disks were subcutaneously implanted into rats and periodically harvested; only mild tissue responses were observed and the biocompatibility remained excellent. Regardless of crosslink density, surface erosion degradation was observed. The sample dimensions linearly decreased with implantation time, and the mass loss rates were constant after 1-week implantation. As surface erosion degradation frequently correlates with enzymatic digestion, parallel in vitro digestion studies were conducted in lipase solutions which hydrolyze ester bonds. Enzymatic digestion played a significant role in degrading PGS, and the mass loss rates were not a function of curing time. Alternative chemistry approaches will be required to decrease the enzymatic hydrolysis rate of the ester bonds in PGS polymers.

  6. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    NASA Astrophysics Data System (ADS)

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-01

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels' network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  7. Properties of radiation-synthesized polyvinylpyrrolidone/chitosan hydrogel blends

    SciTech Connect

    Mahmud, Maznah; Daik, Rusli; Adam, Zainah

    2015-09-25

    Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activity were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.

  8. Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries.

    PubMed

    Cheng, Fangyi; Tang, Wei; Li, Chunsheng; Chen, Jun; Liu, Huakun; Shen, Panwen; Dou, Shixue

    2006-04-03

    The primary aim of this work was to synthesize aligned perchloric-acid-doped poly(aniline) (HClO(4)-doped PANI) nanotubes by a simple alumina template method and to investigate their application in lithium/poly(aniline) rechargeable batteries. Powder X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis were used to characterize the nanostructures obtained. The second aim addressed the preparation of HClO(4)-doped PANI microspheres and nanofibers on a large scale through a modified spraying technique, since the template synthesis has limitations in mass production. The present synthesis methods are simple and can be extended to the preparation of a broad range of one-dimensional conductive polymers. Furthermore, electrochemical measurements showed that the as-prepared HClO(4)-doped PANI nanotubes exhibit better electrode performances than their commercial counterparts because they possess more active sites, higher conductivity, and relative flexibility. This indicates that HClO(4)-doped poly(aniline) nanomaterials are promising in the application of lithium/polymer rechargeable batteries.

  9. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface.

    PubMed

    Lu, Yi; Wang, Dingfang; Li, Tao; Zhao, Xueqing; Cao, Yuliang; Yang, Hanxi; Duan, Yanwen Y

    2009-09-01

    A major problem which hinders the applications of neural prostheses is the inconsistent performance caused by tissue responses during long-term implantation. The study investigated a new approach for improving the electrode-neural tissue interface. Hydrogel poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PVA/PAA IPNs) were synthesized and tailored as coatings for poly(dimethylsiloxane) (PDMS) based neural electrodes with the aid of plasma pretreatment. Changes in the electrochemical impedance and maximum charge injection (Q(inj)) limits of the coated iridium oxide microelectrodes were negligible. Protein adsorption on PDMS was reduced by approximately 85% after coating. In the presence of nerve growth factor (NGF), neurite extension of rat pheochromocytoma (PC12) cells was clearly greater on PVA/PAA IPN films than on PDMS substrates. Furthermore, the tissue responses of PDMS implants coated with PVA/PAA IPN films were studied by 6-week implantation in the cortex of rats, which found that the glial fibrillary acidic protein (GFAP) immunoreactivity in animals (n=8) receiving coated implants was significantly lower (p<0.05) compared to that of uncoated implants (n=7) along the entire distance of 150 microm from the outer skirt to the implant interface. The coated film remained on the surface of the explanted implants, confirmed by scanning electron microscopy (SEM). All of these suggest the hydrogel coating is feasible and favorable to neural electrode applications.

  10. Characterization, biodegradability and blood compatibility of poly[(R)-3-hydroxybutyrate] based poly(ester-urethane)s.

    PubMed

    Liu, Qiaoyan; Cheng, Shaoting; Li, Zibiao; Xu, Kaitian; Chen, Guo-Qiang

    2009-09-15

    Poly(ester-urethane)s (PUs) were synthesized using hexamethylene diisocyanate (HDI) or toluene diisocyanate (TDI) to join short chains (M(n) = 2000) of poly(R-3-hydroxybutyrate) (PHB) diols and poly(epsilon-caprolactone) (PCL) diols with different feed ratios under different reaction conditions. The multiblock copolymers were characterized by nuclear magnetic resonance spectrometer (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), X-ray diffraction (XRD), and scanning electron microscope (SEM). XRD spectra and second DSC heat thermograms of the multiblock copolymers revealed that the crystallization of both PHB and PCL segments was mutually restricted, and, especially, the PCL segment limited the cold crystallization of the PHB segment. The SEM of platelet adhesion experiments showed that the hemocompatibility was affected to some extent by the chain flexibility of the polymers. Hydrolysis studies demonstrated that the hydrolytic degradation of PUs was generated from the scission of their ester bonds or/and urethane bonds. Simultaneously, the rate of ester bond scission was determined to some extent by the crystallization degree, which was further affected by the configuration of polymer chains. These highly elastic multiblock copolymers combining hemocompatibility and biodegradability may be developed into blood contact implant materials for biomedical applications. Copyright 2008 Wiley Periodicals, Inc.

  11. Promoting chondrocyte cell clustering through tuning of a poly(ethylene glycol)-poly(peptide) thermosensitive hydrogel with distinctive microarchitecture.

    PubMed

    Peng, Sydney; Wu, Chih-Wei; Lin, Ji-Yu; Yang, Chin-Yu; Cheng, Ming-Huei; Chu, I-Ming

    2017-07-01

    Hydrogels are considered to be attractive cell-matrix for chondrocytes due to their similarity in properties to the natural cartilage. However, the formation of chondrocyte cell clusters in hydrogels has been mostly limited to naturally-derived or relatively fast degrading materials. In this study, a series of diblock copolymer poly(ethylene glycol)-poly(alanine) (mPEG-PA) was synthesized and investigated as injectable biomimic hydrogels for the culturing of chondrocytes. Depending on the poly(alanine) chain length, afforded hydrogels exhibited variable mechanical property and microarchitecture due to difference in secondary structure arrangement. After 21days of culture, cell clusters were observed in all hydrogels with longer PA chains and these hydrogels supported more homogenous and established clustering as well as significantly higher glycosaminoglycan and collagen deposition. Interestingly, scanning electron microscopy revealed a distinct micron range fibrillar-like microarchitecture that may be responsible for maintaining chondrocyte phenotype and matrix production. In addition, micrographs revealed the presence of collagen fibrils and an extensive extracellular matrix network. Therefore, it is reasonable to conclude that mPEG-PA hydrogels possess the desirable properties for chondrocyte cluster formation and serve as potential candidate in cartilage tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Massachusetts Special Olympics Poly Hockey.

    ERIC Educational Resources Information Center

    Morrissey, Jim

    Poly Hockey is featured in this manual of instructions for coaches and teachers to use with mentally retarded boys and girls of all ages and ability levels. It is noted that the sport has been supported by the Board of Directors of the Special Olympics and has been used in Massachusetts for over 7 years. Explained is use of the game indoors, and…

  13. Stereo matching image processing by synthesized color and the characteristic area by the synthesized color

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Mutoh, Eiichiro; Kumagai, Hideo

    2014-09-01

    We have developed the stereo matching image processing by synthesized color and the corresponding area by the synthesized color for ranging the object and image recognition. The typical images from a pair of the stereo imagers may have some image disagreement each other due to the size change, missed place, appearance change and deformation of characteristic area. We constructed the synthesized color and corresponding color area with the same synthesized color to make the distinct stereo matching. We constructed the synthesized color and corresponding color area with the same synthesized color by the 3 steps. The first step is making binary edge image by differentiating the focused image from each imager and verifying that differentiated image has normal density of frequency distribution to find the threshold level of binary procedure. We used Daubechies wavelet transformation for the procedures of differentiating in this study. The second step is deriving the synthesized color by averaging color brightness between binary edge points with respect to horizontal direction and vertical direction alternatively. The averaging color procedure was done many times until the fluctuation of averaged color become negligible with respect to 256 levels in brightness. The third step is extracting area with same synthesized color by collecting the pixel of same synthesized color and grouping these pixel points by 4 directional connectivity relations. The matching areas for the stereo matching are determined by using synthesized color areas. The matching point is the center of gravity of each synthesized color area. The parallax between a pair of images is derived by the center of gravity of synthesized color area easily. The experiment of this stereo matching was done for the object of the soccer ball toy. From this experiment we showed that stereo matching by the synthesized color technique are simple and effective.

  14. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats.

    PubMed

    S, Saravanan; S, Malathi; P S L, Sesh; S, Selvasubramanian; S, Balasubramanian; V, Pandiyan

    2017-02-01

    The aim of the present study is to evaluate the effect of insulin loaded poly(ethylene glycol) capped poly(lactic-co-glycolic)acid nanoparticles (ISPPLG NPs) by subcutaneous administration in diabetic rats. A series of biodegradable low molecular weight PLGA [90/10 (PLG2) and 80/20 (PLG4)] copolymers were synthesized by melt polycondensation and their ISPPLG NPs were synthesized by water-oil-water (W/O/W) emulsion solvent evaporation method. The PLGA copolymers and their nanoparticles were characterized. The maximum encapsulation efficiency of ISPPLG4 NPs is 66% and the diameter of the nanoparticles is about 140nm. The in-vivo studies of ISPPLG NPs carried out in diabetic rats by subcutaneous administration show considerable reduction in serum glucose level along with partial restoration of tissue defense systems. Histopathological studies reveal that ISPPLG NPs could restore the damages caused by oxidants during hyperglycaemia. The subcutaneous administration of ISPPLG4 NPs is thus an effective method of reducing hyperglycaemia associated complications.

  15. 21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Poly(p-methylstyrene) and rubber-modified poly(p... Components of Single and Repeated Use Food Contact Surfaces § 177.1635 Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene). Poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene)...

  16. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  17. A novel biobased plasticizer of epoxidized cardanol glycidylether: Synthesis and application in soft poly(vinyl chloride) films

    USDA-ARS?s Scientific Manuscript database

    A novel plasticizer derived from cardanol, epoxied cardanol glycidyl ether (ECGE), was synthesized and characterized by 1H-NMR and 13C-NMR. Effects of the ECGE combined with dioctyl phthalate (DOP), a commercial plasticizer, in soft poly(vinyl chloride) (PVC) films were studied. Dynamic mechanical a...

  18. The directing effect of linking units on building microporous architecture in tetraphenyladmantane-based poly(Schiff base) networks.

    PubMed

    Li, Guiyang; Zhang, Biao; Yan, Jun; Wang, Zhonggang

    2014-02-21

    Tetraphenyladamantane-based porous poly(Schiff base)s with BET surface area (>1000 m(2) g(-1)), CO2 uptake (15 wt%, 273 K/1 bar) and H2 uptake (1.26 wt%, 77 K/1 bar) were synthesized. The structure-directing effect of isomers of phenyl diamines on building porous architecture was investigated.

  19. MICROWAVE-ASSISTED SHAPE CONTROLLED BULK SYNTHESIS OF AG AND FE NANORODS IN POLY (ETHYLENE GLYCOL) SOLUTIONS

    EPA Science Inventory

    Bulk syntheses of silver (Ag) and iron (Fe) nanorods using poly (ethylene glycol), PEG, under microwave irradiation (MW) conditions are reported. Favorable conditions to make Ag nanorods were established and can be extended to make Fe nanorods with uniform size and shape. The nan...

  20. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    USDA-ARS?s Scientific Manuscript database

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  1. Nanostructured carbon-crystalline titania composites from microphase separation of poly(ethylene oxide-b-acrylonitrile) and titania sols.

    PubMed

    Stefik, Morgan; Lee, Jinwoo; Wiesner, Ulrich

    2009-05-14

    A simple "one-pot" method utilizing a graphitic carbon source containing poly(ethylene oxide-b-acrylonitrile) diblock copolymer as a structure directing agent was used to synthesize carbon-crystalline titania composites as well as crystalline mesoporous titania materials after oxidative carbon removal.

  2. Electrical properties of bilayer graphene synthesized using surface wave microwave plasma techniques at low temperature

    NASA Astrophysics Data System (ADS)

    Yamada, Takatoshi; Kato, Hiromitsu; Okigawa, Yuki; Ishihara, Masatou; Hasegawa, Masataka

    2017-01-01

    Bilayer graphene was synthesized at low temperature using surface wave microwave plasma techniques where poly(methyl metacrylate) (PMMA) and methane (CH4) were used as carbon sources. Temperature-dependent Hall effect measurements were carried out in a helium atmosphere. Sheet resistance, sheet carrier density and mobility showed weak temperature dependence for graphene from PMMA, and the highest carrier mobility is 740 cm2 V-1 s-1. For graphene from CH4, tunneling of the domain boundary limited carrier transport. The difference in average domain size was determined by Raman signal maps. In addition, residuals of PMMA were detected on graphene from PMMA. The low sheet resistances of graphene synthesized at a temperature of 280 °C using plasma techniques were explained by the PMMA related residuals rather than the domain sizes.

  3. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Deng, Jiangxia; Zheng, Liang; Wu, Jun; Deng, Longjiang; Qin, Huibin

    2014-08-01

    In this work, we synthesize barium ferrite (BaFe12O19) nanowire array in porous silicon template. The porous silicon templates are prepared via gold-assisted chemical etching method. The gold (Au) nanoparticles with mean diameter of 30 nm and distance of 100 nm were ordered on the surface of Si substrate through the Polystyrene (510000)-block-poly (2-vinylpyridine) (31000) (PS510000-b-P2VP31000) diblock copolymer. Porous silicon templates with mean diameter of 500 nm and distance between the pores of 500 nm were fabricated by two etching steps. BaFe12O19 nanowires with mean diameter of 200 nm were synthesized into a porous silicon template by a sol-gel method. Magnetic hysteresis loops show an isotropic feature of the BaFe12O19 nanowires array. The coercivity (Hc) and squareness ratio (Mr/Ms) of nanowire arrays are 2560 Oe and 0.6, respectively.

  4. Menthols as Chiral Auxiliaries for Asymmetric Cycloadditive Oligomerization: Syntheses and Studies of β-Proline Hexamers.

    PubMed

    Kudryavtsev, Konstantin V; Ivantcova, Polina M; Muhle-Goll, Claudia; Churakov, Andrei V; Sokolov, Mikhail N; Dyuba, Artem V; Arutyunyan, Alexander M; Howard, Judith A K; Yu, Chia-Chun; Guh, Jih-Hwa; Zefirov, Nikolay S; Bräse, Stefan

    2015-12-18

    To produce a novel class of structurally ordered poly-β-prolines, an emergent method for synthesizing chiral β-peptide molecular frameworks was developed based on 1,3-dipolar cycloaddition chemistry of azomethine ylides. Functionalized short β-peptides with up to six monomeric residues were efficiently synthesized in homochiral forms using a cycloadditive oligomerization approach. X-ray, NMR, and CD structural analyses of the novel β-peptides revealed secondary structure features that were generated primarily by Z/E-β-peptide bond isomerism. Anticancer in cellulo activity of the new β-peptides toward hormone-refractory prostate cancer cells was observed and was dependent on the absolute configuration of the stereogenic centers and the chain length of the β-proline oligomers.

  5. Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors.

    PubMed

    Zhang, Zhenfang; Yang, Cuihong; Duan, Yajun; Wang, Yanming; Liu, Jianfeng; Wang, Lianyong; Kong, Deling

    2010-07-01

    A novel class of non-viral gene vectors consisting of low molecular weight poly(ethylene imine) (PEI) (molecular weight 800 Da) grafted onto degradable linear poly(ethylene glycol) (PEG) analogs was synthesized. First, a Michael addition reaction between poly(ethylene glycol) diacrylates (PEGDA) (molecular weight 258 Da) and d,l-dithiothreitol (DTT) was carried out to generate a linear polymer (PEG-DTT) having a terminal thiol, methacrylate and pendant hydroxyl functional groups. Five PEG-DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from 1.2:1 to 1:1.2. Then PEI (800 Da) was grafted onto the main chain of the PEG-DTTs using 1,1'-carbonyldiimidazole as the linker. The above reaction gave rise to a new class of non-viral gene vectors, (PEG-DTT)-g-PEI copolymers, which can effectively complex DNA to form nanoparticles. The molecular weights and structures of the copolymers were characterized by gel permeation chromatography, (1)H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The size of the nanoparticles was<200 nm and the surface charge of the nanoparticles, expressed as the zeta potential, was between+20 and+40 mV. Cytotoxicity assays showed that the copolymers exhibited much lower cytotoxicities than high molecular weight PEI (25 kDa). Transfection was performed in cultured HeLa, HepG2, MCF-7 and COS-7 cells. The copolymers showed higher transfection efficiencies than PEI (25 kDa) tested in four cell lines. The presence of serum (up to 30%) had no inhibitory effect on the transfection efficiency. These results indicate that this new class of non-viral gene vectors may be a promising gene carrier that is worth further investigation.

  6. VCO PLL Frequency Synthesizers for Spacecraft Transponders

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian

    2007-01-01

    Two documents discuss a breadboard version of advanced transponders that, when fully developed, would be installed on future spacecraft to fly in deep space. These transponders will be required to be capable of operation on any deepspace- communications uplink frequency channel between 7,145 and 7,235 MHz, and any downlink frequency channel between 8,400 and 8,500 MHz. The document focuses on the design and operation of frequency synthesizers for the receiver and transmitter. Heretofore, frequency synthesizers in deep-space transponders have been based on dielectric resonator oscillators (DROs), which do not have the wide tuning bandwidth necessary to tune over all channels in the uplink or downlink frequency bands. To satisfy the requirement for tuning bandwidth, the present frequency synthesizers are based on voltage-controlled-oscillator (VCO) phase-locked loops (PLLs) implemented by use of monolithic microwave integrated circuits (MMICs) implemented using inGaP heterojunction bipolar transistor (HBT) technology. MMIC VCO PLL frequency synthesizers similar to the present ones have been used in commercial and military applications but, until now, have exhibited too much phase noise for use in deep-space transponders. The present frequency synthesizers contain advanced MMIC VCOs, which use HBT technology and have lower levels of flicker (1/f) phase noise. When these MMIC VCOs are used with high-speed MMIC frequency dividers, it becomes possible to obtain the required combination of frequency agility and low phase noise.

  7. Characterization of synthesized and treated gem diamonds

    NASA Astrophysics Data System (ADS)

    Song, Ohsung

    2007-10-01

    Synthesized diamonds have been widely employed as polishing media for precise machining and noble substrates for microelectronics. The recent development of the split sphere press has led to the commercial HPHT (high pressure high temperature) synthesis of bulk gem diamonds from graphite and to the enhancement of low quality natural diamonds. Synthesized and treated diamonds are sometimes traded deceptively as high quality natural diamonds because it is hard to distinguish among these diamonds with conventional gemological characterization methods. Therefore, we need to develop a new identification method that is non-destructive, fast, and inexpensive. We proposed using new methods of UV fluorescence and X-ray Lang topography for checking the local HPHT stress field as well as using a vibrating sample magnetometer for checking ferromagnetic residue in synthesized diamonds to distinguish these diamonds from natural ones. We observe unique differences in the local stress field images in synthesized and treated diamonds using Lang topography and UV fluorescence characterization. Our result implies that our proposed methods may be appropriate for identification of the synthesized and treated diamonds.

  8. Localization performance with synthesized directional audio

    NASA Astrophysics Data System (ADS)

    Agnew, Jeffrey R.; German, Valencia; Calhoun, Gloria L.; Ericson, Mark A.

    1990-07-01

    This report summarizes three studies designed to measure and compare the ability of subjects to localize sounds in azimuth, via headphones, generated by two prototype auditory localization cue synthesizers. In the first study, performance differences were found between the two synthesizers in certain areas of the azimuth plane. Additionally, the design of a synthesizer (e.g., resolution and interpolating between head-related transfer functions (HRTF's)) can impact the perceived direction of the acoustic signals. Previous research with directional audio suggests that the veridicality of 3-D auditory displays could be optimized if individualized HRTF's are employed to synthesize the virtual sound sources, particularly in elevation. However, data from this experiment suggest that this design requirement can be relaxed, especially if only azimuth information is to be conveyed by the localization synthesizer. In the second study, two response methods for measuring localization performance were evaluated. No performance differences were found when subjects either verbally reported angular estimates or pointed to a circle to indicate the perceived direction of the target stimuli. In the third study, performance was impacted by manipulating the bandwidth of the acoustic signal and head movement.

  9. Synthesis and characterization of novel biodegradable poly(carbonate ester)s with photolabile protecting groups.

    PubMed

    Xie, Zhigang; Hu, Xiuli; Chen, Xuesi; Sun, Jing; Shi, Quan; Jing, Xiabin

    2008-01-01

    Novel biodegradable poly(carbonate ester)s with photolabile protecting groups were synthesized by ring-opening copolymerization of L-lactide (LA) with 5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one (MNC) with diethyl zinc (Et2Zn) as catalyst. The poly(L-lactide-co-5-methyl-5-carboxyl-1,3-dioxan-2-one) (P(LA-co-MCC)) was obtained by UV irradiation of poly(L-lactide acid-co-5-methyl-5-(2-nitro-benzoxycarbonyl)-1,3-dioxan-2-one) (P(LA-co-MNC)) to remove the protective 2-nitrobenzyl group. The free carboxyl groups on the copolymers P(LA-co-MCC) were reacted with paclitaxel, a common antitumor drug. Gel permeation chromatography and NMR studies confirmed the copolymer structures and successful attachment of paclitaxel to the copolymer.

  10. Hyperbranched poly(epsilon-caprolactone) as a nonmigrating alternative plasticizer for phthalates in flexible PVC.

    PubMed

    Choi, Jeongsoo; Kwak, Seung-Yeop

    2007-05-15

    Hyperbranched (dendritic) poly(epsilon-caprolactone)s (HPCLs) were synthesized to have architectural variations, which are the different lengths of linear segments and different numbers of branches, and were used as plasticizers for flexible poly(vinyl chloride) (PVC). The plasticization efficiency estimated by the lowering of glass transition temperature and the enhancement in ultimate elongation indicated that the HPCLs with the shorter linear segments and the larger number of branches imparted as high flexibility as di(ethylhexyl) phthalate (DEHP) and much higher flexibility than their linear analogue, linear poly(epsilon-caprolactone), which is one of currently used polymer plasticizers. Volatility, extractability, and exudation tests for PVC/HPCL samples showed that there was no plasticizer migration even at very harsh condition, while ca. 7-78% of additives in PVC/DEHP was migrated out of samples, indicating that the HPCL can be used as an alternative plasticizer to remove the potential health risk from migrating phthalates during end use.

  11. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery

    PubMed Central

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo. PMID:24424156

  12. Poly(ortho-phenylenediamine-co-aniline) based copolymer with improved capacitance

    NASA Astrophysics Data System (ADS)

    Olmedo-Martínez, Jorge L.; Farías-Mancilla, Bárbara I.; Vega-Rios, Alejandro; Zaragoza-Contreras, E. Armando

    2017-10-01

    A poly(ortho-phenylenediamine-co-aniline) copolymer is synthesized via the oxidative route, using a 1:1 M ratio of aniline to ortho-phenylenediamine (oPDA) and ammonium persulfate as the oxidizing agent. Infrared spectroscopy indicates that the copolymer contains the functional groups typically present in polyaniline and poly(ortho-phenylenediamine); whereas UV-vis-NIR spectroscopy shows that the copolymer adopts a phenazine-type structure. Cyclic voltammetry evidences the copolymer synthesis, as a redox peak at -65 mV, different from those exhibited by polyaniline (160 mV and 600 mV) or poly(o-phenylenediamine) (-240 mV) is observed. Finally, electrochemical impedance spectroscopy and the charge/discharge test provide support to propose the copolymer application in electrodes for supercapacitors.

  13. Chemoenzymatic Synthesis and Chemical Recycling of Poly(ester-urethane)s

    PubMed Central

    Hayashi, Hiroto; Yanagishita, Yoshio; Matsumura, Shuichi

    2011-01-01

    Novel poly(ester-urethane)s were prepared by a synthetic route using a lipase that avoids the use of hazardous diisocyanate. The urethane linkage was formed by the reaction of phenyl carbonate with amino acids and amino alcohols that produced urethane-containing diacids and hydroxy acids, respectively. The urethane diacid underwent polymerization with polyethylene glycol and α,ω-alkanediols and also the urethane-containing hydroxy acid monomer was polymerized by the lipase to produce high-molecular-weight poly(ester-urethane)s. The periodic introduction of ester linkages into the polyurethane chain by the lipase-catalyzed polymerization afforded chemically recyclable points. They were readily depolymerized in the presence of lipase into cyclic oligomers, which were readily repolymerized in the presence of the same enzyme. Due to the symmetrical structure of the polymers, poly(ester-urethane)s synthesized in this study showed higher Tm, Young’s modulus and tensile strength values. PMID:22016604

  14. Surface decorated poly(ester-ether-urethane)s nanoparticles: a versatile approach towards clinical translation.

    PubMed

    Piras, Anna Maria; Sandreschi, Stefania; Malliappan, Sivakumar Ponnurengam; Dash, Mamoni; Bartoli, Cristina; Dinucci, Dinuccio; Guarna, Francesco; Ammannati, Enrico; Masa, Marc; Múčková, Marta; Schmidtová, Ludmila; Chiellini, Emo; Chiellini, Federica

    2014-11-20

    Poly(ester-ether-urethane)s copolymers are a resourceful class of biopolymers for the preparation of nanocarriers for drug delivery applications. However, a simple clinical translation for this synthetic material with biological and quality features is still needed. In this view, poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers were synthesized as semi-bulk pilot (Kg) scale under mild conditions in absence of catalyst, bearing functional termini such as fluorescein tag and anticancer targeting moieties. The obtained materials were processed into surface decorated paclitaxel (PTX) loaded nanoparticles (NPs). The NPs were fully characterized in vitro and in vivo biodistribution in healthy mice evidenced no sign of toxicity and lower levels of PTX in lung and spleen, compared to clinically applied PTX dosage form.

  15. Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.

    PubMed

    Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao

    2014-01-01

    Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.

  16. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters).

    PubMed

    Erdmann, L; Uhrich, K E

    2000-10-01

    A biodegradable poly(anhydride-ester) was synthesized by melt condensation polymerization of the acetylated monomer to yield a novel polymeric prodrug. The polymer we have synthesized is composed of alkyl chains linked by ester bonds to aromatic moieties, specifically salicylic acid--the active component of aspirin. With the medicinal properties attributed to salicylic acid and the ease of metabolism, the incorporation of this compound into a polymer backbone yields a polymeric prodrug that may have potential in a variety of applications (i.e., inflammatory bowel disease). For these reasons, we have designed a synthetic scheme that yields the desired poly(anhydride-ester). The in vitro hydrolytic degradation of these polymers has been performed and results indicate that the polymer degradation rate is pH-dependent.

  17. Poly(N-vinylpyrrolidone)-block-poly(vinyl acetate) as a drug delivery vehicle for hydrophobic drugs.

    PubMed

    Bailly, Nathalie; Thomas, Mark; Klumperman, Bert

    2012-12-10

    Poly((N-vinylpyrrolidone)-block-poly(vinyl acetate)) (PVP-b-PVAc) block copolymers of varying molecular weight and hydrophobic block lengths were synthesized via controlled radical polymerization and investigated as carriers for the solubilization of highly hydrophobic riminophenazine compounds. These compounds have recently been shown to exhibit a strong activity against a variety of cancer types. PVP-b-PVAc self-assembles into polymer vesicles in aqueous media, and the dialysis method was used to load the water-insoluble drug (clofazimine) into these polymer vesicles. The polymer vesicles were characterized by 1H NMR spectroscopy to confirm vesicle formation and the incorporation of the anticancer drugs into the polymer vesicles. Dynamic light scattering was used to determine the particle size and particle size distribution of the drug-loaded vesicles as well as the stability of the vesicles under physiological conditions. The size of the polymer vesicles did not increase upon loading with clofazimine, and the particle size of 180-200 nm and the narrow particle size distribution were maintained. The morphology of the vesicles was examined by transmission electron microscopy. The polymer vesicles had a relatively high drug loading capacity of 20 wt %. In vitro cytotoxicity studies of PVP-b-PVAc and drug-loaded PVP-b-PVAc were performed against MDA-MB-231 multidrug-resistant breast epithelial cancer cells and MCF12A nontumorigenic breast epithelial cells. In vitro experiments demonstrated that the PVP-b-PVAc drug carrier showed no cytotoxicity, which confirms the biocompatibility of the PVP-b-PVAc drug carrier. The results indicate that the present PVP-b-PVAc block copolymer could be a potential candidate as a drug carrier for hydrophobic drugs.

  18. Composition dependent structural modulations in transparent poly(vinyl alcohol) hydrogels.

    PubMed

    Gupta, Siddhi; Pramanik, Ashit Kumar; Kailath, Ansu; Mishra, Trilochan; Guha, Avijit; Nayar, Suprabha; Sinha, Arvind

    2009-11-01

    Transparent and stable Poly(vinyl alcohol) hydrogels were synthesized from polymer aqueous solution without resorting to a mixed solvent such as dimethyl sulfoxide and water. Contrary to the reported methods involving hydrogen bond induced physical crosslinking by repeated freeze-thawing at -20 degrees C, the present process demonstrates the gelation taking place at relatively higher temperature, i.e. 0 degrees C. While maintaining transparency in all the synthesized hydrogels, the present paper reports systematic structural and morphological variations in the hydrogels as a function of polymer concentration.

  19. Synthesize, Synthesize, Synthesize.

    ERIC Educational Resources Information Center

    Nugent, Susan Monroe, Ed.

    1987-01-01

    Focusing on synthesis--the ability to recognize and create new ideas that subsume and relate to others--as one of the most sophisticated skills writers can attain, the articles in this journal present many ideas for teaching synthesis and a number of classroom approaches that combine the study of English with other fields. The following titles and…

  20. Synthesize, Synthesize, Synthesize.

    ERIC Educational Resources Information Center

    Nugent, Susan Monroe, Ed.

    1987-01-01

    Focusing on synthesis--the ability to recognize and create new ideas that subsume and relate to others--as one of the most sophisticated skills writers can attain, the articles in this journal present many ideas for teaching synthesis and a number of classroom approaches that combine the study of English with other fields. The following titles and…

  1. Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and cross-linking

    SciTech Connect

    Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi; Safranj, Agneza; Yoshida, Masaru; Omichi, Hideki

    1993-12-20

    Poly(N-isopropylacrylamide) [poly(NIPAAm)] shows a typical thermal reversibility of phase transition in aqueous solutions. That is, it precipitates from solution above a critical temperature called the lower critical solution temperature (LCST) and dissolves below this temperature. When it is cross-linked, the obtained hydrogel collapses above LCST, while it swells and expands below LCST. This hydrogel has received much attention recently and has been used as a model system to demonstrate the validity of theories describing the coil-globule transition, swelling of networks, and folding and unfolding of biopolymers. It has also been proposed for various applications ranging from controlled drug delivery to solute separation. Poly(NIPAAm) hydrogel is usually synthesized at room temperature from an aqueous solution of the monomer by using a redox initiator composed of ammonium persulfate and N,N,N{prime},N{prime}-tetramethylethylenediamine in the presence of N,N{prime}-methylenebisacrylamide as a cross-linker. Since the LCST of poly(NIPAAm) is around 32 C, the polymerization at room temperature proceeds in a homogeneous solution. Recently, poly(NIPAAm) hydrogels were synthesized by starting the polymerization below the LCST and then elevating the temperature above it, by which method macroporous gels with fast temperature response were obtained. The idea is to apply a radiation--induced polymerization method for the synthesis of poly(NIPAAm) hydrogels. This method offers unique advantages for synthesis: it is a simple and additive-free process at all temperatures, and the degree of cross-linking can be easily controlled by irradiation conditions. Therefore, radiation methods are especially attractive for the synthesis of hydrogels with potential biomedical application where the residual chemical initiators may contaminate the product. It is possible to combine into one step the synthesis and sterilization of the product, and it is economically competitive.

  2. Optoelectronic characteristics of inorganic/organic hybrid device based on poly(N-vinylcarbazole)/ cadmium selenide thin films.

    PubMed

    Tang, Aiwei; Teng, Feng; Hou, Yanbing; Xiong, Sha; Feng, Bin; Qian, Lei; Wang, Yongsheng

    2008-03-01

    Inorganic/organic hybrid light-emitting diodes were easily fabricated with a thin film containing water-soluble cadmium selenide nanocrystals and poly(N-vinylcarbazole) as an emitting layer by a spin-coating method. The cadmium selenide nanocrystals were synthesized in aqueous solution with L-cysteine hydrochloride as the stabilizer and were transferred from the aqueous solution into chloroform by a cationic surfactant cetyltrimethyl ammonium bromide. A broad emission spanning the whole visible wavelength range was obtained from the inorganic/organic hybrid devices whether poly(N-vinylcarbazole) was present in the devices or not, and the electroluminescence intensity of the devices increased as the applied voltages increased. However, an obvious blue-shift of the wavelength was observed with the increasing applied voltages in the device with poly(N-vinylcarbazole). Accordingly, the emission color of the device made with poly(N-vinylcarbazole) could be tuned from white to blue by varying the applied voltages, but the emission color of the device made without poly(N-vinylcarbazole) was almost constrained in the white region. This can be attributed to a limited contribution of poly(N-vinylcarbazole) emission to the electroluminescence spectra under the higher applied voltage. By comparing the electroluminescence intensity and the current-voltage characteristics of the devices made with and without poly(N-vinylcarbazole), the performance of the device with poly(N-vinylcarbazole) was improved greatly, which indicated that poly(N-vinylcarbazole) played an important role in the carrier injection and transportation in the device with poly(N-vinylcarbazole).

  3. Synthesis and characterization of poly(lactic acid-co-glycolic acid) complex microspheres as drug carriers.

    PubMed

    Wang, Fang; Liu, Xiuxiu; Yuan, Jian; Yang, Siqian; Li, Yueqin; Gao, Qinwei

    2016-10-01

    Poly(lactic-co-glycolic) acid (PLGA) is synthesized via melt polycondensation directly from lactic acid and glycolic acid with a feed molar ratio of 75/25. Bovine serum albumin, which is used as model protein, is entrapped into the poly(lactic-co-glycolic acid) microspheres with particle size of 260.9 ± 20.0 nm by the double emulsification method. Then it is the first report of producing more carboxyl groups by poly(lactic-co-glycolic acid) surface hydrolysis. The purpose is developing poly(lactic-co-glycolic acid) microspheres surface, which is modified with chitosan by chemical reaction between carboxyl groups and amine groups. The particle size and the positive zeta potential of the poly(lactic-co-glycolic acid)/chitosan microspheres are 388.2 ± 35.6 nm and 10.4 ± 2.9 mV, respectively. The drug loading ratio and encapsulation efficacy of poly(lactic-co-glycolic acid)/chitosan microspheres are 36.3% and 57.5%, which are higher than PLGA microspheres. Furthermore, the drug burst release of poly(lactic-co-glycolic acid)/chitosan microspheres at 10 h is decreased to 21.72% while the corresponding value of the poly(lactic-co-glycolic acid) microsphere is 64.56%. These results reveal that surface hydrolysis modification of poly(lactic-co-glycolic acid) is an efficient method to improve the negative potential and chemical reaction properties of the polymer. And furthermore, this study shows that chitosan-modified poly(lactic-co-glycolic acid) microspheres is a promising system for the controlled release of pharmaceutical proteins.

  4. A poly(A) binding protein-specific sequence motif: MRTENGKSKGFGFVC binding to mRNA poly(A) and polynucleotides and its role on mRNA translation.

    PubMed

    Rubin, H N; Halim, M N; Leavis, P C

    1994-06-01

    A consensus sequence (GKSKGFGFV) was recognized in all the sequenced poly(A) binding proteins. We synthesized a 15-amino acid peptide (corresponding to 354-368 in the yeast poly(A) binding protein) which includes the consensus sequence to test its binding affinity to different nucleotides, polynucleotides and mRNA with or without a poly(A) tail. Biochemical and biophysical studies revealed that the 15-amino acid peptide has a strong binding affinity to poly(A) alone or poly(A) attached at the 3' end of mRNA. Circular dichroism spectroscopy demonstrated that the secondary structure of the 15-mer is consistent with that expected based on the structure of the native RNP domain. Furthermore, among the various mononucleotides performed in the present studies, ATP was preferentially found to bind to the 15-mer. To further examine the biological significance of the binding of the 15-mer to the poly(A) tail of mRNA, in vitro translation of the mRNA poly(A)+ in the presence of the 15-mer drastically increased globin synthesis by almost 2-fold, while translation of the deadenylated mRNA in the presence of the 15-mer almost did not alter the rate of incorporation of radiolabeled leucine into globin.

  5. A Scalable High-Throughput Chemical Synthesizer

    PubMed Central

    Livesay, Eric A.; Liu, Ying-Horng; Luebke, Kevin J.; Irick, Joel; Belosludtsev, Yuri; Rayner, Simon; Balog, Robert; Johnston, Stephen Albert

    2002-01-01

    A machine that employs a novel reagent delivery technique for biomolecular synthesis has been developed. This machine separates the addressing of individual synthesis sites from the actual process of reagent delivery by using masks placed over the sites. Because of this separation, this machine is both cost-effective and scalable, and thus the time required to synthesize 384 or 1536 unique biomolecules is very nearly the same. Importantly, the mask design allows scaling of the number of synthesis sites without the addition of new valving. Physical and biological comparisons between DNA made on a commercially available synthesizer and this unit show that it produces DNA of similar quality. PMID:12466300

  6. An automated Teflon microfluidic peptide synthesizer.

    PubMed

    Zheng, Hui; Wang, Weizhi; Li, Xiaojun; Wang, Zihua; Hood, Leroy; Lausted, Christopher; Hu, Zhiyuan

    2013-09-07

    We present a microfluidic synthesizer made entirely of Teflon material for solid phase peptide synthesis (SPPS). Solvent-resistant perfluoroalkoxy (PFA) was used to construct chip-sized devices featuring multiple tri-layer pneumatic microvalves. Using these devices, model peptides were automatically synthesized and cleaved in situ in a continuous-flow manner. The total coupling and cleavage time was significantly reduced compared to conventional bulk reactors. The synthesis of a decapeptide, for instance, took less than 6 h using our device while it usually takes more than three days using conventional reactors.

  7. Improving hydrothermal carbonization by using poly(ionic liquid)s.

    PubMed

    Zhang, Pengfei; Yuan, Jiayin; Fellinger, Tim-Patrick; Antonietti, Markus; Li, Haoran; Wang, Yong

    2013-06-03

    Pores for thought: Porous nitrogen-doped carbon materials (HTC Carbon with PILs) composed of spherical nanoparticles, and also those with Au-Pd core-shell nanoparticles embedded (Au-Pd@N-Carbon) were synthesized. These materials can be prepared from sugars by hydrothermal carbonization (160-200 °C) in the presence of poly(ionic liquid)s (PILs), which act as a stabilizer, pore-generating agent, and nitrogen source.

  8. Biodegradable Poly (Ester Urethane) Urea Biomaterials For Applications in Combat Casualty Care

    DTIC Science & Technology

    2006-11-01

    conflict culture positive for bacteria .2 Open fractures are a common source of these infections, and represent the most challenging to treat. In...stearate, stannous octoate, glycerol, and ε-caprolactone were purchased from Aldrich (St. Louis, MO). Glycolide and DL- lactide were purchased from...comprising a poly(ε-caprolactone-co- glycolide-co- lactide ) triol.5 Foams were synthesized from a 900-Da triol. Additionally, water (the blowing agent

  9. Radiolysis of Resist Polymers. 2. Poly(haloalkylmethacrylates) and Copolymers with Methylmethacrylate.

    DTIC Science & Technology

    1983-08-01

    AD-Ai32 095 RADIOLYSIS OF RESIST POLYMERS 2OYHLRKLMTRRLTS i/iOPLME-U I S MASSACHUSETTS UNIV AMHERST MATERIALS RESEARCH LAB UNCLASSIFIED G N BABU ET...CATALOG NUMBER 27 4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED Radiolysis of Resist Polymers. II. Technical Report Poly...2,3-Sdibromopropyl methacrylate (DBPMA) and copolymers with MMA over a range of composi - tions have been synthesized. Gamma- radiolysis yields for

  10. Hierarchical polymerized high internal phase emulsions synthesized from surfactant-stabilized emulsion templates.

    PubMed

    Wong, Ling L C; Villafranca, Pedro M Baiz; Menner, Angelika; Bismarck, Alexander

    2013-05-21

    In building construction, structural elements, such as lattice girders, are positioned specifically to support the mainframe of a building. This arrangement provides additional structural hierarchy, facilitating the transfer of load to its foundation while keeping the building weight down. We applied the same concept when synthesizing hierarchical open-celled macroporous polymers from high internal phase emulsion (HIPE) templates stabilized by varying concentrations of a polymeric non-ionic surfactant from 0.75 to 20 w/vol %. These hierarchical poly(merized)HIPEs have multimodally distributed pores, which are efficiently arranged to enhance the load transfer mechanism in the polymer foam. As a result, hierarchical polyHIPEs produced from HIPEs stabilized by 5 vol % surfactant showed a 93% improvement in Young's moduli compared to conventional polyHIPEs produced from HIPEs stabilized by 20 vol % of surfactant with the same porosity of 84%. The finite element method (FEM) was used to determine the effect of pore hierarchy on the mechanical performance of porous polymers under small periodic compressions. Results from the FEM showed a clear improvement in Young's moduli for simulated hierarchical porous geometries. This methodology could be further adapted as a predictive tool to determine the influence of hierarchy on the mechanical properties of a range of porous materials.

  11. Aggregation behavior of poly(ethylene glycol-bl-propylene sulfide) di- and triblock copolymers in aqueous solution.

    PubMed

    Cerritelli, Simona; O'Neil, Conlin P; Velluto, Diana; Fontana, Antonella; Adrian, Marc; Dubochet, Jacques; Hubbell, Jeffrey A

    2009-10-06

    Block copolymers of poly(ethylene glycol)-bl-poly(propylene sulfide) (PEG-PPS) have recently emerged as a new macromolecular amphiphile capable of forming a wide range of morphologies when dispersed in water. To understand better the relationship between stability and morphology in terms of the relative and absolute block compositions, we have synthesized a collection of PEG-PPS block copolymers and quantified their critical aggregation concentration and observed their morphology using cryogenic transmission electron microscopy after thin film hydration with extrusion and after solvent dispersion from tetrahydrofuran, a solvent for both blocks. By understanding the relationship between aggregate character and block copolymer architecture, we have observed that whereas the relative block lengths control morphology, the stability of the aggregates upon dilution is determined by the absolute block length of the hydrophobic PPS block. We have compared results obtained with PEG-PPS to those obtained with poly(ethylene glycol)-bl-poly(propylene oxide)-bl-poly(ethylene glycol) block copolymers (Pluronics). The results reveal that the PEG-PPS aggregates are substantially more stable than Pluronic aggregates, by more than an order of magnitude. PEG-PPS can form a wide variety of stable or metastable morphologies in dilute solution within normal time and temperature ranges, whereas Pluronics can generally form only spherical micelles under the same conditions. On the basis of these results, block copolymers of PEG with poly(propylene sulfide) may present distinct advantages over those with poly(propylene glycol) for a number of applications.

  12. Complex Polymeric Architectures Synthesized and Functionalized using Robust Chemistries

    NASA Astrophysics Data System (ADS)

    Killops, Kathryn L.

    Niche applications for polymeric materials put stringent requirements on their properties and architecture. Although polymer synthesis techniques have improved significantly to produce well-defined materials with narrow molecular weight distributions from a variety of monomeric precursors, the final materials often require fine-tuning of the structure or functionality to achieve the properties necessary for a given high performance application. The ability to modify and synthesize soft materials in precise and predictable manner requires the use of robust, efficient, and orthogonal chemistries. The highly branched structure of dendrimers provides an ideal platform to rigorously evaluate the ability of a reaction to proceed with quantitative conversion and high specificity. In order to achieve a macromolecular structure having a monodisperse molecular weight of over 10,000 Da, highly efficient reactions must be used. The synthesis of dendrimers up to the fourth generation was accomplished using successive iterations of thiol--ene 'click' chemistry and esterification reactions. The high molecular weight dendrimers were subsequently derivitized at the periphery using a variety of functional groups to demonstrate the orthogonality of the thiol--ene reaction. An extension of this work provided direct comparison of the thermally- and photochemically-initiated thiol--ene reactions, as applied to the functionalization of polymers both along the backbone and at the chain ends. With block copolymers, access to nanoscale features is afforded by the propensity of two chemically-distinct, covalently-linked polymer chains phase separate into discrete domains. These nanoscopic features have important implications for high performance applications like microelectronics and water purification. Precise modification of these structures expands the number of applications that could benefit from their implementation. In the search for a poly(ethylene oxide)-based nanoparticle with

  13. Dendritic poly(L-lysine)-b-Poly(L-lactide)-b-dendritic poly(L-lysine) amphiphilic gene delivery vectors: roles of PLL dendritic generation and enhanced transgene efficacies via termini modification.

    PubMed

    Li, Yang; Zhu, Yingdan; Xia, Kejia; Sheng, Ruilong; Jia, Lin; Hou, Xiaodong; Xu, Yuhong; Cao, Amin

    2009-08-10

    As an effort to prepare new efficient gene delivery vectors, we have recently developed and reported an amphiphilic dendritic poly(L-lysine)-b-poly(L-lactide)-b-dendritic poly(L-lysine) D(2)-PLLA-D(2) with two-generation PLL dendrons and a PLLA block. In this work, we continued to explore the roles of dendritic PLL generation in DNA binding and intracellular delivery of gene, and a new series of amphiphilic dendritic poly(L-lysine)-b-poly(L-lactide)-b-dendritic poly(L-lysine)s D(n)-PLLA-D(n) (n = 3-5) were synthesized and were structurally characterized. Furthermore, plasmid DNA binding affinity for these cationic amphiphiles was examined by agarose gel electrophoresis and fluorescence titration assay in pure water and PBS buffer solution containing 150 mM NaCl (pH = 7.4), respectively. By dynamic light scattering (DLS) and transmission electronic microscopy (TEM), the interaction and complexation in between were investigated, concerning the DNA/vector polyplex particle morphologies and zeta potentials. Utilizing a human hepatocellular carcinoma cell-line SMMC-7721, cell toxicity, and gene transfection in vitro were explored. To further improve transgene efficiency for these synthetic cationic amphiphiles as gene delivery vectors, new structural DE(n)-PLLA-DE(n) (n = 2-3) were prepared through an amino termini modification of the D(n)-PLLA-D(n) (n = 2-3) with less toxic 4,7,10,13-tetraazatridecanoic acids, and gene transfection with these DE(n)-PLLA-DE(n) (n = 2-3) was examined with an alternative human gastric carcinoma cell-line HGC-27. As a result, the high plasmid DNA binding affinity, low cytotoxicity, and much enhanced transgene efficacy suggest a new possible clue to design effective synthetic gene delivery vectors with amphiphilic skeleton and less toxic polyamine building blocks.

  14. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    NASA Astrophysics Data System (ADS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-02-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.

  15. Benzene containing polyhydroxyalkanoates homo- and copolymers synthesized by genome edited Pseudomonas entomophila.

    PubMed

    Shen, Rui; Cai, Longwei; Meng, Dechuan; Wu, Linping; Guo, Kai; Dong, Guoxing; Liu, Lei; Chen, Jinchun; Wu, Qiong; Chen, Guoqiang

    2014-01-01

    Microbial synthesis of functional polymers has become increasingly important for industrial biotechnology. For the first time, it became possible to synthesize controllable composition of poly(3-hydroxyalkanoate) (P3HA) consisting of 3-hydroxydodecanoate (3HDD) and phenyl group on the side-chain when chromosome of Pseudomonas entomophila was edited to weaken its β-oxidation. Cultured in the presence of 5-phenylvaleric acid (PVA), the edited P. entomophila produced only homopolymer poly(3-hydroxy-5-phenylvalerate) or P(3HPhV). While copolyesters P(3HPhV-co-3HDD) of 3-hydroxy-5-phenylvalerate (3HPhV) and 3-hydroxydodecanoate (3HDD) were synthesized when the strain was grown on mixtures of PVA and dodecanoic acid (DDA). Compositions of 3HPhV in P(3HPhV-co-3HDD) were controllable ranging from 3% to 32% depending on DDDA/PVA ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated that the polymers were homopolymer of P(3HPhV) and random copolymers of 3HPhV and 3HDD. Their mechanical and thermal properties varied dramatically depending on the monomer ratios. Our results demonstrated the possibility to produce tailor-made, novel functional PHA using the chromosome edited P. entomophila.

  16. Poly(2-methyl-2-oxazoline)-b-poly(tetrahydrofuran)-b-poly(2-methyl-2-oxazoline) amphiphilic triblock copolymers: synthesis, physicochemical characterizations, and hydrosolubilizing properties.

    PubMed

    Rasolonjatovo, Bazoly; Gomez, Jean-Pierre; Même, William; Gonçalves, Cristine; Huin, Cécile; Bennevault-Celton, Véronique; Le Gall, Tony; Montier, Tristan; Lehn, Pierre; Cheradame, Hervé; Midoux, Patrick; Guégan, Philippe

    2015-03-09

    Block copolymers assembled into micelles have gained a lot of attention to improve drug delivery. The recent drawbacks of the poly(ethylene oxide) blocks (PEO) contained in amphiphilic pluronics derivatives made of a central poly(propylene oxide) block surrounded by two PEO blocks were recently revealed, opening the way to the design of new amphiphilic block copolymers able to self-assemble in water and to entrap molecules of interest. Here, a family of p(methyloxazoline)-b-p(tetrahydrofuran)-b-p(methyloxazoline) triblock copolymers (called TBCP) is synthesized using cationic ring opening polymerization. Studies of micelle formation using dynamic light scattering, isothermal titration calorimetry (ITC), NMR diffusion-ordered spectroscopy (DOSY), and fluorescence experiments lead us to draw a relationship between copolymer structure and the physicochemical properties of the block copolymers (critical micellar concentration (CMC), Nagg, core diameter, shell thickness, etc.). The packing parameter of the block copolymers indicates the formation of a core-corona structure. Hydrosolubilizing properties of TBCPs were exemplified with curcumin selected as a highly insoluble drug model. Curcumin, a natural polyphenolic compound, has shown a large spectrum of biological and pharmacological activity, including anti-inflammatory, antimicrobial, antioxidant, and anticarcinogenic activities. An optimized formulation process reveals that the aggregation number is the parameter affecting drug encapsulation. Patch clamp experiments carried out to study the interaction of TBCP with the cell membrane demonstrate their permeation property suitable to promote the cellular internalization of curcumin.

  17. Application of poly(ethylene glycol)-b-poly(epsilon-caprolactone) copolymers with different Poly(ethylene glycol) contents for the preparation of PEG-coated nanoparticles.

    PubMed

    Hou, Jingwen; Qian, Changyun; Zhang, Yanting; Guo, Shengrong

    2013-02-01

    This work used one poly(ethylene glycol)-b-poly(epsilon-caprolactone) (PEG-b-PCL) copolymer with low PEG content as matrix material and the copolymers with high PEG content as emulsifier to prepare PEG-coated nanoparticles for controlled release of paclitaxel by solvent evaporation technique. The copolymers were synthesized by ring-opening polymerization and characterized by 1H NMR and gel permeation chromatography (GPC). The effects of the composition and concentration of the copolymers used as emulsifier on the diameters and encapsulation efficiency of nanoparticles were investigated. The mean hydrodynamic diameters of the nanoparticles measured by dynamic light scattering ranged from 70 to 160 nm. The higher PEG content of emulsifier led to bigger diameter of nanoparticles and the emulsifier concentration (0.1%-1.0%) had no obvious influence on the diameters. The paclitaxel-loaded nanoparticles could achieve a sustained drug release for 7 days. When 2%-30% (w/v) of inulin was used as cryoprotectant during freeze drying process, the lyophilized nanoparticles could be well reconstituted into aqueous solution and the hydrodynamic diameter was not obviously changed.

  18. Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers.

    PubMed

    Xu, Lifang; Zhang, Zhiqing; Wang, Fang; Xie, Dongdong; Yang, Shan; Wang, Tao; Feng, Lijuan; Chu, Chengchai

    2013-03-01

    Amphiphilic triblock copolymers of PEO-PPO-PCL with various block compositions have been synthesized by ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) initiated by the OH group of methoxy-poly(ethylene oxide)-poly(propylene oxide) (Me-PEO-PPO). Their structures were confirmed by Fourier transform infrared (FT-IR) measurements, and their self-assembly in aqueous solution was studied using fluorescence spectroscopy, transmission electron microscopy (TEM), UV-vis spectra, differential scanning calorimetry (DSC), and surface tension. For the copolymers studied in this paper, the critical aggregation concentrations (CAC) ranged from 5×10(3) to 2 mg/L. The critical micelle concentrations (CMC) decreased with increasing PCL block length, and the downtrend was more significant in the short PCL block length. All of the three copolymers were capable of solubilizing hydrophobic molecules (pyrene) in aqueous solution and copolymers with a longer PCL block exhibited a stronger solubilizing ability. The TEM images showed that the size and morphology of the aggregations could be tuned by varying the compositions or the concentration.

  19. Evaluating Text-to-Speech Synthesizers

    ERIC Educational Resources Information Center

    Cardoso, Walcir; Smith, George; Fuentes, Cesar Garcia

    2015-01-01

    Text-To-Speech (TTS) synthesizers have piqued the interest of researchers for their potential to enhance the L2 acquisition of writing (Kirstein, 2006), vocabulary and reading (Proctor, Dalton, & Grisham, 2007) and pronunciation (Cardoso, Collins, & White, 2012; Soler-Urzua, 2011). Despite their proven effectiveness, there is a need for…

  20. Digital Frequency Synthesizer For Radar Astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, Ramin; Satorius, Edgar; Robinett, J. Loris, Jr.; Olson, Erlend

    1992-01-01

    Report discusses conceptual digital frequency synthesizer part of programmable local oscillator in radar-astronomy system. Phase must remain continuous during adjustments of frequency, phase noise must be low, and spectral purity must be high. Discusses theory of operation in some mathematical detail and presents new analysis of spectral purity of output.

  1. Method and apparatus for synthesizing filamentary structures

    DOEpatents

    Height, Murray J [Somerville, MA; Howard, Jack B [Winchester, MA; Vandersande, John B [Newbury, MA

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  2. Method and apparatus for synthesizing filamentary structures

    DOEpatents

    Height, Murray J.; Howard, Jack B.; Vandersande, John B.

    2008-02-26

    Method and apparatus for producing filamentary structures. The structures include single-walled nanotubes. The method includes combusting hydrocarbon fuel and oxygen to establish a non-sooting flame and providing an unsupported catalyst to synthesize the filamentary structure in a post-flame region of the flame. Residence time is selected to favor filamentary structure growth.

  3. Synthesizing Diacetylenes With Nonlinear Optical Properties

    NASA Technical Reports Server (NTRS)

    Mcmanus, Samuel P.; Frazier, Donald P.; Paley, Mark S.

    1993-01-01

    Diacetylene compounds being investigated to determine whether they have nonlinear optical properties making them useful for four-wave mixing, generation of third harmonics, phase conjugation, and like. Diacetylene monomers synthesized by sequences of chemical reactions. Monomers polymerized by ultraviolet light, forming potentially useful nonlinear optical materials.

  4. Syntheses of novel substituted-boranophosphate nucleosides.

    PubMed

    Vyakaranam, Kamesh; Rana, Geeta; Spielvogel, Bernard F; Maguire, John A; Hosmane, Narayan S

    2002-01-01

    A number of substituted (borano) nucleic acids, 3'-[diethylphosphite(cyano, carboxy, or carbamoyl) borano] deoxynucleosides (3a-4c) and 5'-[diethylphosphite(cyano or carboxy) borano] deoxynucleosides (6a-7d) were prepared by a variety of synthetic procedures. The syntheses of the pyrophosphates (2a-2c), as precursors for 3a-4c, are also described.

  5. Concise total syntheses of (+/-)-strychnine and (+/-)-akuammicine.

    PubMed

    Sirasani, Gopal; Paul, Tapas; Dougherty, William; Kassel, Scott; Andrade, Rodrigo B

    2010-05-21

    Concise total syntheses of Strychnos alkaloids strychnine (1) and akuammicine (2) have been realized in 13 and 6 operations, respectively. Key steps include (1) the vinylogous Mannich reaction; (2) a novel, sequential one-pot spirocyclization/intramolecular aza-Baylis-Hillman reaction; and (3) a Heck cyclization. The synthesis of 1 proceeds via the Wieland-Gumlich aldehyde (26).

  6. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    NASA Astrophysics Data System (ADS)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  7. Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization

    SciTech Connect

    Zhang, Hong-Hai; Ma, Chuanxu; Bonnesen, Peter V.; Zhu, Jiahua; Sumpter, Bobby G.; Carrillo, Jan-Michael Y.; Yin, Panchao; Wang, Yangyang; Li, An-Ping; Hong, Kunlun

    2016-07-12

    Whereas Poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI) and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small angle x-ray scattering (SAXS) and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5- 2 butyl-2,3-thiophene) (P5BT) on highly oriented pyrolytic graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV-vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5- thiophene) (P3HT) (λ = 450 nm) indicated that the degree of conjugation of the backbone in P5HT is less than in P3HT, which may be a consequence of the helical geometry of the former compared to the more planar geometry of the latter. Moreover, we found that P5HT can emit green fluorescence under UV (λ = 360 nm) irradiation

  8. Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization

    DOE PAGES

    Zhang, Hong-Hai; Ma, Chuanxu; Bonnesen, Peter V.; ...

    2016-07-12

    Whereas Poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI) and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small angle x-ray scattering (SAXS) and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5- 2 butyl-2,3-thiophene) (P5BT) on highly oriented pyrolyticmore » graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV-vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5- thiophene) (P3HT) (λ = 450 nm) indicated that the degree of conjugation of the backbone in P5HT is less than in P3HT, which may be a consequence of the helical geometry of the former compared to the more planar geometry of the latter. Moreover, we found that P5HT can emit green fluorescence under UV (λ = 360 nm) irradiation« less

  9. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    PubMed Central

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  10. Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery.

    PubMed

    Sun, Han-Wen; Zhang, Lian-Ying; Zhu, Xin-Jun; Wang, Xin-Fang

    2009-01-01

    Poly(PEGMA-MAA)-coated superparamagnetic nanoparticles were synthesized by in situ photochemical polymerization in magnetite aqueous suspension under UV irradiation. The magnetic poly(PEGMA-MAA) nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), photo correlation spectroscopy (PCS) and vibration sample magnetometry (VSM), respectively. The results indicated that the magnetic poly(PEGMA-MAA) nanoparticles were of regularly spherical shape and remained monodisperse. The average size measured in aqueous media was 96.4 nm, which was much bigger than that in dry state, the nanoparticles behaved superparamagnetic with saturated magnetization of 64.8 emu/g, the zeta potential was -18.3 mV at physiological pH 7.2, and the magnetic poly(PEGMA-MAA) nanoparticles had a high stability in vitro. A typical anti-inflammatory drug, ibuprofen, was used for drug loading, and the release behavior of ibuprofen in a simulated body fluid (SBF, pH 7.4) was studied. The results indicated that these novel magnetic nanoparticles had a high drug-loading capacity and favorable release properties for ibuprofen. The magnetic poly(PEGMA-MAA) nanoparticles are very promising for application in drug delivery.

  11. Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization

    SciTech Connect

    Zhang, Hong-Hai; Ma, Chuanxu; Bonnesen, Peter V.; Zhu, Jiahua; Sumpter, Bobby G.; Carrillo, Jan-Michael Y.; Yin, Panchao; Wang, Yangyang; Li, An-Ping; Hong, Kunlun

    2016-07-12

    Whereas Poly(3-alkyl-2,5-thiophene)s (P3AT), with many potential applications, have been extensively investigated, their ortho-connected isomers, poly(5-alkyl-2,3-thiophene)s (P5AT), have never been reported because of the difficulty in their syntheses. We herein present the first synthesis of regioregular P5AT via controlled Suzuki cross-coupling polymerization with PEPPSI-IPr as catalyst, affording the polymers with tunable molecular weight, narrow polydispersity (PDI) and well-defined functional end groups at the gram scale. The helical geometry of P5AT was studied by a combination of NMR, small angle x-ray scattering (SAXS) and scanning tunneling microscopy (STM). Particularly, the single polymer chain of poly(5- 2 butyl-2,3-thiophene) (P5BT) on highly oriented pyrolytic graphite (HOPG) substrates with either M or P helical conformation was directly observed by STM. The comparison of UV-vis absorption between poly(5-hexyl-2,3-thiophene) (P5HT) (λ = 345 nm) and poly(3-hexyl-2,5- thiophene) (P3HT) (λ = 450 nm) indicated that the degree of conjugation of the backbone in P5HT is less than in P3HT, which may be a consequence of the helical geometry of the former compared to the more planar geometry of the latter. Moreover, we found that P5HT can emit green fluorescence under UV (λ = 360 nm) irradiation

  12. [Removal Congo Red from Aqueous Solution Using Poly (AM-co-DVB)].

    PubMed

    Zhang, Luan-luan; Liao, Yun-wen; Gao, He-jun; Wang, Zhong-zhi; Shuai, Chao

    2015-06-01

    Poly(AM-co-DVB) was synthesized by acrylamide(AM) and divinylbenzene(DVB) via the crosslinking reaction. The microscope structure and thermal stability of Poly(AM-co-DVB) were characterized by FT-IR, SEM and TG. Congo red (CR) was used to measure the adsorptive capacity of Poly (AM-co-DVB). The effects of initial pH, contact time and temperature on the adsorption of CR on Poly (AM-co-DVB) were investigated in this work. The kinetics, equilibrium, and thermodynamics of the adsorption process were also discussed. The results showed that the maximum adsorption capacities were 319.1 mg x g(-1) at pH = 7.25 and contact time = 3 h. The adsorption kinetics was well fitted by a pseudo-second-order model and the adsorption isotherms agreed well with the Langmuir model. The adsorption process was spontaneous process. Above all, the adsorption capacity of Poly (AM-co-DVB) on Congo red is significant.

  13. Hydrophobic poly(alkoxysilane) organogels as sorbent material for oil spill cleanup.

    PubMed

    Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal

    2015-07-15

    In this study, reusable poly(alkoxysilane) organogels with high absorption capacities were synthesized by the condensation of a cyclo aliphatic glycol (UNOXOL™) and altering the chain length of the alkyltriethoxysilanes. The structural and thermal properties of cross-linked poly(alkoxysilane) polymers were determined by FTIR, solid-state (13)C and (29)Si CPMAS NMR and TGA. The oil absorbency of poly(alkoxysilane)s was determined through oil absorption tests, absorption and desorption kinetics. Results showed that the highest oil absorbency capacities were found to be 295% for hexane, 389% for euro diesel, 428% for crude oil, 652% for gasoline, 792% for benzene, 792% for toluene, 868% for tetrahydrofuran, and 1060% for dichloromethane for the poly(alkoxysilane) gels based on UNOXOL™ and dodecyltriethoxysilane. Owing to their hydrophobic structure, the poly(alkoxysilane) organogels can selectively absorb crude oil from water. The reusability of the absorbents was quantitatively investigated, demonstrating that absorbents can be used effectively at least nine times. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Microwave-assisted preparation of poly(ionic liquids)-modified magnetic nanoparticles for pesticide extraction.

    PubMed

    Zhang, Ruizhe; Su, Ping; Yang, Lu; Yang, Yi

    2014-06-01

    Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid-phase extraction prior to high-performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)-modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R(2) > 0.9988) for pesticide concentrations in the range of 0.100-10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29-3.31%. The limits of detection and quantification were 0.29-0.88 and 0.97-2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)-modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.

  15. Removal of diethyl phthalate from aqueous phase using magnetic poly(EGDMA-VP) beads.

    PubMed

    Özer, Elif Tümay; Osman, Bilgen; Kara, Ali; Beşirli, Necati; Gücer, Seref; Sözeri, Hüseyin

    2012-08-30

    The barium hexaferrite (BaFe(12)O(19)) containing magnetic poly(ethylene glycol dimethacrylate-vinyl pyridine), (mag-poly(EGDMA-VP)) beads (average diameter=53-212 μm) were synthesized and characterized. Their use as an adsorbent in the removal of diethyl phthalate (DEP) from an aqueous solution was investigated. The mag-poly(EGDMA-VP) beads were prepared by copolymerizing of 4-vinyl pyridine (VP) with ethylene glycol dimethacrylate (EGDMA). The mag-poly(EGDMA-VP) beads were characterized by N(2) adsorption/desorption isotherms (BET), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), elemental analysis, scanning electron microscope (SEM) and swelling studies. At a fixed solid/solution ratio, the various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. The maximum DEP adsorption capacity of the mag-poly(EGDMA-VP) beads was determined as 98.9 mg/g at pH 3.0, 25°C. All the isotherm data can be fitted with both the Langmuir and the Dubinin-Radushkevich isotherm models. The pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The thermodynamic parameters obtained indicated the exothermic nature of the adsorption. The DEP adsorption capacity did not change after 10 batch successive reactions, demonstrating the usefulness of the magnetic beads in applications.

  16. Zwitterionic Poly(amino acid methacrylate) Brushes

    PubMed Central

    2014-01-01

    A new cysteine-based methacrylic monomer (CysMA) was conveniently synthesized via selective thia-Michael addition of a commercially available methacrylate-acrylate precursor in aqueous solution without recourse to protecting group chemistry. Poly(cysteine methacrylate) (PCysMA) brushes were grown from the surface of silicon wafers by atom-transfer radical polymerization. Brush thicknesses of ca. 27 nm were achieved within 270 min at 20 °C. Each CysMA residue comprises a primary amine and a carboxylic acid. Surface zeta potential and atomic force microscopy (AFM) studies of the pH-responsive PCysMA brushes confirm that they are highly extended either below pH 2 or above pH 9.5, since they possess either cationic or anionic character, respectively. At intermediate pH, PCysMA brushes are zwitterionic. At physiological pH, they exhibit excellent resistance to biofouling and negligible cytotoxicity. PCysMA brushes undergo photodegradation: AFM topographical imaging indicates significant mass loss from the brush layer, while XPS studies confirm that exposure to UV radiation produces surface aldehyde sites that can be subsequently derivatized with amines. UV exposure using a photomask yielded sharp, well-defined micropatterned PCysMA brushes functionalized with aldehyde groups that enable conjugation to green fluorescent protein (GFP). Nanopatterned PCysMA brushes were obtained using interference lithography, and confocal microscopy again confirmed the selective conjugation of GFP. Finally, PCysMA undergoes complex base-catalyzed degradation in alkaline solution, leading to the elimination of several small molecules. However, good long-term chemical stability was observed when PCysMA brushes were immersed in aqueous solution at physiological pH. PMID:24884533

  17. Influence of poly(ethylene glycol) as pore-generator on morphology and performance of chitosan/poly(vinyl alcohol) membrane adsorbents

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Madaeni, S. S.

    2014-01-01

    Macroporous chitosan/poly(vinyl alcohol) membrane adsorbents were synthesized by solvent evaporation in the presence of poly(ethylene glycol) which was utilized as porogen. The membranes were applied for Cu(II) ion adsorption from water. SEM, AFM and wettability analyses were performed for membrane characterization. Insertion of poly(ethylene glycol) generated macrovoids in the dense structure of CS/PVA membranes through particulate leaching out mechanism. According to the static adsorption tests, the uptake capacity of the porous membranes is elevated (∼26 mg/g) compared to that of the dense membranes (∼10 mg/g). This phenomenon is attributed to the increase in the density of active sites, water affinity and surface roughness as a result of the porogen effects. The approachability of the ions to the active sites was also affected by these important parameters. Both size and density of the macrovoids increased with increasing PEG content from nil to 5 wt%. Fragility of the resultant porous structures prohibited synthesizing CS/PVA membranes with higher porogen contents. Desorption tests showed that the porous membranes were better regenerated in comparison to the dense membranes using Na2EDTA as eluant. Generally, the results suggested that the CS/PVA membranes, comprising PEG as pore-generator agent, are potential candidates for adsorption and elimination of Cu(II) ions from water.

  18. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.

    PubMed

    Yang, Zhiqiang; Zhang, Yuehua; Markland, Peter; Yang, Victor C

    2002-10-01

    A class of new biodegradable hydrogels based on poly(ethylene glycol) methacrylate-graft-poly(glutamic acid) and poly(ethylene glycol) dimethacrylate was synthesized by photoinduced polymerization. Because all the polymeric constituents were highly hydrophilic, crosslinking could be performed in aqueous solutions. This type of crosslinked hydrogel was prepared by modifying a select number of acidic side-groups on poly(glutamic acid) with poly(ethylene glycol) methacrylate. These modified chains were then crosslinked in the presence of poly(ethylene glycol) dimethacrylate under a photoinduced polymerization at a wavelength of 365 nm. Swelling experiments were conducted to study the crosslinking density, pH-responsive behavior, and degradation of the hydrogel. Results showed that the degree of swelling of this type of hydrogels increased as the crosslinker concentration (or density) was reduced. Because of the presence of acidic side chains on poly(glutamic acid), swelling behavior was found to be pH-responsive, increasing at high pH in response to the increase in the amount of ionized acidic side chains. The degradation rate of these hydrogels also varied with pH. More rapid degradation was observed under stronger alkaline conditions because of the hydrolysis of the ester bonds between the crosslinker and the polymer backbone. Practically useful degradation rates could be achieved for such hydrogels under physiological conditions. Drug release rates from these hydrogels were found to be proportional to the protein molecular weight and the crosslinker density; increasing at lower protein molecular weight or crosslinker density. The preliminary findings presented in this article suggest that this class of biodegradable hydrogels could be an attractive avenue for drug delivery applications. The specific photoinduced crosslinking chemistry used would permit hydrogels to be synthesized in existence of the entrapped macromolecular drugs including peptides, proteins, and

  19. Amphiphilic cationic [dendritic poly(L-lysine)]-block-poly(L-lactide)-block-[dendritic poly(L-lysine)]s in aqueous solution: self-aggregation and interaction with DNA as gene delivery carriers.

    PubMed

    Zhu, Yingdan; Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Wenyan; Li, Yang; Cao, Amin

    2011-02-11

    A new series of triblock [dendritic poly(L-lysine)]-block-PLLA-block-[dendritic poly(L-lysine)]s (DL(2) -PLLA-DL(2) ) with PLLA block lengths of 11.5-26.5 and double 2-generation PLL dendrons DL(2) as model cationic amphiphiles were synthesized and characterized. Their CAC, self-aggregation and plasmid DNA binding affinities in pure water and PBS were studied. The PLLA block length dependence of particle size, morphology and ξ potential for organized pDNA/amphiphile polyplex aggregates were examined. Finally, toxicities of these DL(2) -PLLA-DL(2) amphiphiles and their polyplexes were assayed by MTT with HeLa, SMMC-7721 and COS-7 cells, and COS-7 cell luciferase and eGFP gene transfection efficacies with these amphiphiles as the delivery carriers were investigated.

  20. Synthesizing analytic evidence to refine care pathways.

    PubMed

    Liu, Haifeng; Li, Xiang; Yu, Yiqin; Mei, Jing; Xie, Guotong; Perer, Adam; Wang, Fei; Hu, Jianying

    2015-01-01

    Care pathways play significant roles in delivering evidence-based and coordinated care to patients with specific conditions. In order to put care pathways into practice, clinical institutions always need to adapt them based on local care settings so that the best local practices can be incorporated and used to develop refined pathways. However, it is knowledge-intensive and error-prone to incorporate various analytic insights from local data sets. In order to assist care pathway developers in working effectively and efficiently, we propose to automatically synthesize the analytical evidences derived from multiple analysis methods, and recommend modelling operations accordingly to derive a refined care pathway for a specific patient cohort. We validated our method by adapting a Congestive Heart Failure (CHF) Ambulatory Care Pathway for patients with additional condition of COPD through synthesizing the results of variation analysis and frequent pattern mining against patient records.

  1. Biofunctionalization and capping of template synthesized nanotubes.

    PubMed

    Hillebrenner, Heather; Buyukserin, Fatih; Stewart, Jon D; Martin, Charles R

    2007-07-01

    Using alumina templates both nanotubes (open on both ends) and nano test tubes (open on only one end) have been synthesized from many different materials and these have great potential as delivery vehicles for biomedical applications. This review focuses on our recent results directed towards developing "smart" nanotubes for biomolecule delivery applications. While intensive efforts have focused on spherical nanoparticles that are easier to make, cylindrical particles or nanotubes offer many advantages. First, the tunable alumina template allows one to dictate both the pore diameter and length of the nanotube. In addition, template synthesized nanotubes can be differentially functionalized on their inner and outer surfaces. This review highlights these advantages in the contexts of drug extraction and antibody-antigen interactions, the synthesis of protein nanotubes, and recent advances in covalently capped ("corked") nanotubes designed to prevent premature payload leakage. Though diverse applications for nanotubes have already been discovered, many new and exciting paths await exploration.

  2. BRUCE/KYLIE: Pulsating star spectra synthesizer

    NASA Astrophysics Data System (ADS)

    Townsend, Rich

    2014-12-01

    BRUCE and KYLIE, written in Fortran 77, synthesize the spectra of pulsating stars. BRUCE constructs a point-sampled model for the surface of a rotating, gravity-darkened star, and then subjects this model to perturbations arising from one or more non-radial pulsation modes. Departures from adiabaticity can be taken into account, as can the Coriolis force through adoption of the so-called traditional approximation. BRUCE writes out a time-sequence of perturbed surface models. This sequence is read in by KYLIE, which synthesizes disk-integrated spectra for the models by co-adding the specific intensity emanating from each visible point toward the observer. The specific intensity is calculated by interpolation in a large temperature-gravity-wavelength-angle grid of pre-calculated intensity spectra.

  3. (m.n)-Homorubins. Syntheses and Structures

    PubMed Central

    Pfeiffer, William P.

    2014-01-01

    Five new homorubin analogs of bilirubin with their two dipyrrinone components conjoined to (CH2)2, (CH2)3, and (CH2)4 units were synthesized with propionic acid chains shortened to acetic and elongated to butyric, and examined by spectroscopy and molecular mechanics computations for an ability to form conformation-determining hydrogen bonds. With m designating the number of conjoining CH2 units and n indicating the number of CH2 units of the alkanoic acid chains of (m.n)-homorubins, (2.1), (3.2), (4.2), and (4.3) homorubins were prepared and compared with previously synthesized (2.2) and (2.3), which adopt intramolecularly hydrogen bonded conformations in CHCl3. PMID:25544780

  4. Maize mitochondria synthesize organ-specific polypeptides

    SciTech Connect

    Newton, K.J.; Walbot, V.

    1985-10-01

    The authors detected both quantitative and qualitative organ-specific differences in the total protein composition of mitochondria of maize. Labeling of isolated mitochondria from each organ demonstrated that a few protein differences are due to changes in the polypeptides synthesized by the organelle. The synthesis of developmental stage-specific mitochondrial polypeptides was found in the scutella of developing and germinating kernels. The approximately 13-kDa polypeptide synthesized by mitochondria from seedlings of the Texas (T) male-sterile cytoplasm was shown to be constitutively expressed in all organs of line B37T tested. Methomyl, an insecticide known to inhibit the growth of T sterile plants, was shown to be an effective inhibitor of protein synthesis in mitochondria from T plants.

  5. Syntheses and studies of organosilicon compounds

    SciTech Connect

    Xie, Ren

    1999-02-12

    The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

  6. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  7. Method of synthesizing a low density material

    DOEpatents

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  8. Interference coatings based on synthesized silicon nitride.

    PubMed

    Lee, C C; Chen, H L; Hsu, J C; Tien, C L

    1999-04-01

    Silicon nitrides are synthesized by ion-assisted deposition with only one coating material and a nitrogen-ion-beam source. All the SiN(x) films are amorphous and mechanically strong. A wide range of refractive indices from 3.43 to 1.72 at a wavelength of 1550 nm is obtained. Near-IR antireflection coating and a bandpass filter based on the multilayers of SiN(x) and Si are demonstrated.

  9. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J.; Ho, Pauline

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  10. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement.

    PubMed

    Hu, Dongdong; Sun, Shaojun; Yuan, Peiqing; Zhao, Ling; Liu, Tao

    2015-02-19

    Multiscale molecular modeling and dissolution behavior measurement were both used to evaluate the factors conclusive on the CO2-philicity of poly(vinyl acetate) (PVAc) homopolymer and poly(vinyl acetate-alt-maleate) copolymers. The ab initio calculated interaction energies of the candidate CO2-philic molecule models with CO2, including vinyl acetate dimer (VAc), dimethyl maleate (DMM), diethyl maleate (DEM), and dibutyl maleate (DBM), showed that VAc was the most CO2-philc segment. However, the cohesive energy density, solubility parameter, Flory-Huggins parameter, and radial distribution functions calculated by using the molecular dynamics simulations for the four polymer and polymer-CO2 systems indicated that poly(VAc-alt-DBM) had the most CO2-philicity. The corresponding polymers were synthesized by using free radical polymerization. The measurement of cloud point pressures of the four polymers in CO2 also demonstrated that poly(VAc-alt-DBM) had the most CO2-philicity. Although copolymerization of maleate, such as DEM or DBM, with PVAc reduced the polymer-CO2 interactions, the weakened polymer-polymer interaction increased the CO2-philicity of the copolymers. The polymer-polymer interaction had a significant influence on the CO2-philicity of the polymer. Reduction of the polymer-polymer interaction might be a promising strategy to prepare the high CO2-philic polymers on the premise that the strong polymer-CO2 interaction could be maintained.

  11. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  12. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  13. Synthesis and optoelectronic properties of nanocomposites comprising of poly(9,9-dioctylfluorene)-block-poly(3-hexylthiophene) block copolymer and graphene nanosheets.

    PubMed

    Chiu, Po-Chun; Su, Reagen Ying-Tai; Yeh, Je-Yuan; Yeh, Cheng-Yang; Tsiang, Raymond Chien-Chao

    2013-06-01

    A novel conjugated block copolymer, poly(9,9-dioctylfluorene)-block-poly(3-hexylthiophene) (PFBPT) and its nanocomposite containing graphene sheets were synthesized for enhancing optoelectronic performance. Graphene sheets were in-situ formed in the polymer matrix via a reduction of octadecylamine-functionalized graphite oxide, where the graphite oxide came from acidification and exfoliation of graphite. The blue-green light-emitting poly(9,9-dioctylfluorene) block and red-orange light-emitting poly(3-hexylthiophene) block exhibit a combined white electroluminescence when the composite materials were fabricated as the emitting layer of a polymeric light-emitting diode (PLED). Graphene does not alter the optical characteristics wavelength of PFBPT but electric conductivity increases with the amount of graphene. The HOMO and LUMO were measured and the band gap is smaller with existence of graphene. The threshold voltage decreases with an increase in the graphene content. The device fabricated with PFBPT/graphene nanocomposite containing 1% graphene has a maximum white-light luminescence at a voltage of 9.0 V.

  14. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  15. Villain's fractal growth of poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt] J-aggregates onto layer-by-layer films and its effect on film absorbance spectrum

    NASA Astrophysics Data System (ADS)

    Ferreira, Quirina; António Ribeiro, Paulo; Raposo, Maria

    2013-06-01

    Morphology of poly(allylamine hydrochloride) and poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) layer-by-layer (LBL) films is shown to influence the orientation of PAZO chromophores with respect to solid support surface, which in turn is related with observed red-shifts changes of the chromophore absorbance peak position relative to that of solution spectrum, as the bilayers are being deposited. For the first bilayers, an increase of red shift values is observed, while roughness and grain radius are kept practically constant; after the 5th bilayer, the red-shift values decrease, while grain sizes increase and the number of grains decreases. This behavior is consistent with adsorption of coiled PAZO molecules, treated as pseudo-particles, with the chromophores head-to-head oriented-J aggregates. These aggregates adsorb perpendicularly to the substrate surface for the first layers and, as roughness and grain radius increase, the adsorption of the J aggregates takes place parallel to the solid support surface, which gives rise to a decrease in the red shift value. Moreover, the adsorption of these pseudo-particles follows a fractal growth characterized by a scaling exponent of α = 0.80 ± 0.02 and a temporal growth exponent of β = 0.17 ± 0.02. These values suggest a layer growth according with Villain model, which accounts for the interactions between deposited particles and the surface. This is in accordance with the electrostatic forces driving LbL film formation and accounts for the observed morphology behavior for the different number of layers.

  16. Poly(1,3,4-oxadiazoles) via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Wolf, Peter (Inventor)

    1992-01-01

    Poly(1,3,4-oxadiazoles) (POX) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) 1,3,4-oxadiazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as sulfolane or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) 1,3,4-oxadiazole monomers are synthesized by reacting 4-hydroxybenzoic hydrazide with phenyl 4-hydrobenzoate in the melt and also by reacting aromatic dihydrazides with two moles of phenyl 4-hydroxybenzoate in the melt. This synthetic route has provided high molecular weight POX of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the large variety of activated aromatic dihalides which are available.

  17. Controlled release of curcumin from poly(HEMA-MAPA) membrane.

    PubMed

    Caka, Müşerref; Türkcan, Ceren; Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2017-05-01

    In this work, poly(HEMA-MAPA) membranes were prepared by UV-polymerization technique. These membranes were characterized by SEM, FTIR, and swelling studies. Synthesized membranes had high porous structure. These membranes were used for controlled release of curcumin which is already used as folk remedy and used as drug for some certain diseases and cancers. Curcumin release was investigated for various pHs and temperatures. Optimum drug release yield was found to be as 70% at pH 7.4 and 37 °C within 2 h period. Time-depended release of curcumin was also investigated and its slow release from the membrane demonstrated within 48 h.

  18. Hysteresis Behaviors of Poly (Naphthalene Quinone) Radical Electrorheological Fluid

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung J.; Cho, Min S.; Jhon, Myung S.

    As a potential electrorheological(ER) material, poly(naphthalene quinone) radical (PNQR) ER fluid was prepared, and its rheological behavior and hysteresis phenomenon were investigated. PNQR was synthesized by Friedel-Crafts acylation between naphthalene and phthalic anhydride, using zinc chloride as a catalyst at 256°C. A Physica rheometer equipped with a high voltage generator was used to measure the rheological properties of the ER fluids, which were prepared by dispersing PNQR in silicone oil at several particle concentrations. Shear stresses were observed to decrease as shear rate increased in the region of slow deformation rate. It was further found that ER fluid showed different hysteresis behaviors according to the shear rate ranges; thixotropy was observed in the low shear rate region (0.007-0.51/s) and anti-thixotropy in the high shear rate region (0.5-10001/s). Controlled shear stress mode was also applied to observe similar behaviors.

  19. An improved approach to poly(ester-carbonate) conjugates.

    PubMed

    Mo, Guojun; Yue, Jun; Ma, Ping'an; Huang, Yubin; Chen, Xuesi; Jing, Xiabin

    2012-01-01

    A novel poly(ester-carbonate) (P(LA-co-NPC)) with activated pendant carboxyl groups was synthesized by ring-opening polymerization of L-lactide (LA) and 2-methyl-2-(4-nitrophenoxycarbonyl)-propylene carbonate (NPC) with diethyl zinc (ZnEt(2)) as catalyst. GPC and NMR studies confirmed the co-polymer structure. The pendant 4-nitrophenyl carboxylate groups can react with amino-containing molecules, such as 3,6,9-trioxa-1,11-undecanediamine, doxorubicin and chitosan under mild conditions. Therefore, any amino-containing molecules of biomedical interests can be conjugated to P(LA-co-NPC) efficiently and easily. The biocompatibility of the co-polymer was tested using L929 cell line, indicating that P(LA-co-NPC) is a promising biomedical material.

  20. Clickable Poly(ionic liquids): A Materials Platform for Transfection.

    PubMed

    Freyer, Jessica L; Brucks, Spencer D; Gobieski, Graham S; Russell, Sebastian T; Yozwiak, Carrie E; Sun, Mengzhen; Chen, Zhixing; Jiang, Yivan; Bandar, Jeffrey S; Stockwell, Brent R; Lambert, Tristan H; Campos, Luis M

    2016-09-26

    The potential applications of cationic poly(ionic liquids) range from medicine to energy storage, and the development of efficient synthetic strategies to target innovative cationic building blocks is an important goal. A post-polymerization click reaction is reported that provides facile access to trisaminocyclopropenium (TAC) ion-functionalized macromolecules of various architectures, which are the first class of polyelectrolytes that bear a formal charge on carbon. Quantitative conversions of polymers comprising pendant or main-chain secondary amines were observed for an array of TAC derivatives in three hours using near equimolar quantities of cyclopropenium chlorides. The resulting TAC polymers are biocompatible and efficient transfection agents. This robust, efficient, and orthogonal click reaction of an ionic liquid, which we term ClickabIL, allows straightforward screening of polymeric TAC derivatives. This platform provides a modular route to synthesize and study various properties of novel TAC-based polymers.

  1. Radiation synthesis of nanosilver nanohydrogels of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Gautam, Deepti; Anjum, Sadiya; Saxena, Shalini; Kapil, Arti

    2013-11-01

    Nanosilver nanohydrogels (nSnH) of poly(methacrylic acid) were synthesized and stabilized using gamma irradiation. The main objective of this study was to develop silver nanoparticles and to evaluate the antimicrobial activity. Radiation helps in the polymerization, crosslinking and reduction of silver nitrate as well. Highly stable and uniformly distributed silver nanoparticles have been obtained within hydrogel network by water in oil nanoemulsion polymerization and were evaluated by dynamic light scattering (DLS) and transmission electron microscopy (TEM) respectively. TEM showed almost spherical and uniform distribution of silver nanoparticles through the hydrogel network. The mean size of silver nanoparticles ranging is 10-50 nm. The nanohydrogels showed good swelling in water. Antibacterial studies of nSnH suggest that it can be a good candidate as coating material in biomedical applications.

  2. Poly(N-arylenebenzimidazole)s via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Jr., Joseph G. (Inventor)

    1996-01-01

    Novel poly(N-arylenebenzimidazole)s (PNABls) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl-N-arylenebenzimidazole) monomers are synthesized by reacting phenyl-4-hydroxybenzoate with bis(2-aminoanilino)arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyI-N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.

  3. Preparation and characterization of graphene/poly(diphenylamine) composites.

    PubMed

    Lingappan, Niranjanmurthi; Jeong, Yeon Tae; Gal, Yeong-Soon; Lim, Kwon Taek

    2013-05-01

    Nanocomposites of graphene nanosheets and poly(diphenylamine) (graphene-PDPA) were synthesized via the in-situ oxidative polymerization of diphenylamine in a sulphuric acid medium. First, graphite oxide (GO) was prepared by oxidation of natural graphite using the modified Hummer's method and subsequently reduced using hydrazine monohydrate. The as-prepared graphene sheets were noncovalently grafted with PDPA using ammonium peroxydisulphate as an oxidant. During the polymerization, graphene sheets were homogeneously dispersed in the PDPA matrix. The formation of the hybrid material was confirmed by FTIR, XPS, TGA, HRTEM, FESEM and XRD measurements. XPS analysis revealed the removal of oxygen functionality from the GO surface after reduction and the bonding structure of the reduced hybrids. In addition, the nanocomposites showed better thermal properties due to the intrinsic property of the graphene sheets.

  4. Poly(N-arylenbenzimidazoles) via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel poly(N-arylenebenzimidazole)s (PNABIs) are prepared by the aromatic nucleophilic displacement reaction of novel di(hydroxyphenyl-N-arylene benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl N-arylenebenzimidazole) monomers are synthesized by reacting phenyl 4-hydroxybenzoate with bis(2-aminoanilino) arylenes in diphenylsulfone. Moderate molecular weight PNABIs of new chemical structures were prepared that exhibit a favorable combination of physical and mechanical properties. The use of the novel di(hydroxyphenyl N-arylenebenzimidazole)s permits a more economical and easier way to prepare PNABIs than previous routes.

  5. Tacticity influence on the electrochemical reactivity of group transfer polymerization-synthesized PTMA.

    PubMed

    López-Peña, Hugo A; Hernández-Muñoz, Lindsay S; Frontana-Uribe, Bernardo A; González, Felipe J; González, Ignacio; Frontana, Carlos; Cardoso, Judith

    2012-05-10

    Spectroscopic, thermal, and electrochemical characterization results are presented for the redox active polymer poly(2,2,6,6-tetramethyl-1-piperinidyloxy-4-yl methacrylate) or PTMA, synthesized by group transfer polymerization (GTP), and its precursors 4-hydroxy-tetramethylpiperidine-N-oxyl (HO-TEMPO) and 4-methacryloyloxy-tetramethylpiperidine-N-oxyl (MO-TEMPO). DSC analysis of synthesized PTMA showed that the glass transition temperature (T(g)) of the polymer structure occurs at 155 °C, corroborated by dynamic mechanical analysis (DMA), which is higher when compared with T(g) data for PTMA synthesized by other methods. Also, the amount of radical species present in PTMA synthesized by GTP reactions (100%) is higher than the values typically upon synthesizing PTMA by radical polymerization. Electrochemical and spectroelectrochemical-electron spin resonance studies in acetonitrile revealed two redox events in the PTMA polymer, one of which is reversible, accounting for ca. 80% of the spins in the polymer and giving rise to the battery behavior. The other redox event is irreversible, accounting for the remaining ca. 20% of spins, which has not previously been reported. These two redox events are linked to a structural property associated with the tacticity of the polymer, where the reversible feature (responsible for cathode behavior) is the dominant species. This corresponds to a number of isotactic domains of the polymer (determined by high temperature (1)H NMR). The second feature accounts for the three-line impurity observed in the ESR, which has been reported previously but poorly explained, associated to the number of heterotactic/syndiotactic triads.

  6. Influence of sulfur oxidation on the absorption and electronic energy levels of poly(thienothiophene) derivatives.

    PubMed

    He, Youjun; Zhang, Maojie; Min, Jie; Zhao, Guangjin; Li, Yongfang

    2009-11-12

    Two poly(thienothiophene) derivatives containing thieno[3,2-b]thiophene-4,4-dioxide unit were synthesized by Pd-catalyzed Stille coupling method. They were poly(3,6-dihexyl-thieno[3,2-b]thiophene-4,4-dioxide vinylene) (P2) and poly(2,5-diyl-3,6-dihexyl-thieno[3,2-b]thiophene-4,4-dioxide)-co-(2,5-diyl-thiophene) (P4). Poly(3,6-dihexyl-thieno[3,2-b] thiophene vinylene) (P1) and poly(2,5-diyl-3,6-dihexyl-thieno[3,2-b] thiophene)-co-(2,5-diyl-thiophene) (P3) were synthesized for comparison with P2 and P4. After sulfur oxidation on the thienothiophene units, the absorption peaks of the polymer solutions were red-shifted from 540 nm of P1 to 625 nm of P2 and from 445 nm of P3 to 520 nm of P4. The absorption peaks of the polymer films were red-shifted more significantly from 542 nm of P1 to 630 nm of P2 and from 480 nm of P3 to 564 nm of P4. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels also decreased a lot after the sulfur oxidation. In comparison with P1, the LUMO and HOMO energy levels of P2 decreased by 0.59 and 0.35 eV, respectively. The levels were 0.87 and 0.39 eV lower in the LUMO and HOMO energy levels of P4 than in that of P3.

  7. Poly(vinylidene fluoride) Containing Phosphonic Acid as Anticorrosion Coating for Steel.

    PubMed

    Banerjee, Sanjib; Wehbi, Mohammad; Manseri, Abdellatif; Mehdi, Ahmad; Alaaeddine, Ali; Hachem, Ali; Ameduri, Bruno

    2017-02-22

    Vinylidene fluoride (VDF)-based copolymers bearing pendant phosphonic acid function for potential application as anticorrosion coatings were synthesized via free radical copolymerization of VDF with a new phosphorus containing 2-trifluoromethacrylate monomer, (dimethoxyphosphoryl)methyl 2-(trifluoromethyl)acrylate (MAF-DMP). MAF-DMP was prepared from 2-trifluoromethacrylic acid in 60% overall yield. Radical copolymerizations of VDF with MAF-DMP initiated by tert-amyl peroxy-2-ethylhexanoate at varying ([VDF]0/[MAF-DMP]0) feed ratios led to several poly(VDF-co-MAF-DMP) copolymers having different molar percentages of VDF (79-96%) and number-average molecular weights (Mn's) up to ca. 10 000 g mol(-1) in fair yields (47-53%). Determination of the composition and microstructure of all the synthesized copolymers was done by (1)H and (19)F NMR spectroscopies. The monomer reactivity ratios of this new VDF/MAF-DMP pair were also determined (rVDF = 0.76 ± 0.34 and rMAF-DMP = 0 at 74 °C). The resulting poly(VDF-co-MAF-DMP) copolymers exhibited high melting temperature (162-171 °C, with respect to the VDF content), and the degree of crystallinity reached up to 51%. Finally, the pendant dimethyl phosphonate ester groups of the synthesized poly(VDF-co-MAF-DMP) copolymer were quantitatively hydrolyzed, giving rise to novel phosphonic acid-functionalized PVDF (PVDF-PA). In comparison to hydrophobic poly(VDF-co-MAF-DMP) copolymers (the water contact angle, WCA, was 98°), the hydrophilic character of the PVDF-PA was found to be surprisingly rather pronounced, exhibiting low WCA (15°). Finally, steel plates coated with PVDF-PA displayed satisfactory anticorrosion properties under simulated seawater environment.

  8. Thermally-responsive poly(ester urethane)s

    NASA Astrophysics Data System (ADS)

    Pierce, Benjamin Franklin

    Thermally-responsive materials are quite useful in the biomedical field, but their full potential has yet to be realized. For example, polyurethanes are capable of exhibiting shape-memory properties, or the ability to change shape upon the application of a stimulus, but only a few practical thermally responsive polyurethanes have been reported due to the lack of novel starting materials and optimized systems. This work describes the synthesis of several degradable polymers and the characterization of their thermally responsive behavior. First, several amorphous polyester prepolymers are synthesized and incorporated in thermoplastic poly(ester urethane)s, which are highly elastic but display impractical thermal properties. Their potential as degradable implants is investigated, as well as their bulk and surface properties. These systems are then optimized and tailored for more practical purposes, resulting in the synthesis of thermoset elastomers based on poly(1,4-cyclohexanedimethanol 1,4-cyclohexanedicarboxylate) (PCCD) prepolymers that display a broad range of useful mechanical properties, thermal properties, and shape-memory properties. A novel method for controlling a microscopic and nanoscopic topographical shape-memory phenomenon is presented. Finally, the synthesis of amine-functionalized polyesters is presented. All materials are characterized by 1H and 13C NMR, GPC, DSC, TGA, and Instron.

  9. Poly(Limonene Thioether) Scaffold for Tissue Engineering.

    PubMed

    Fischer, Kristin M; Morgan, Kathy Ye; Hearon, Keith; Sklaviadis, Demetra; Tochka, Zachary L; Fenton, Owen S; Anderson, Daniel G; Langer, Robert; Freed, Lisa E

    2016-04-06

    A photocurable thiol-ene network polymer, poly(limonene thioether) (PLT32o), is synthesized, characterized, fabricated into tissue engineering scaffolds, and demonstrated in vitro and in vivo. Micromolded PLT32o grids exhibit compliant, elastomeric mechanical behavior similar to grids made of poly(glycerol sebacate) (PGS), an established biomaterial. Multilayered PL32o scaffolds with regular, geometrically defined pore architectures support heart cell seeding and culture in a manner similar to multilayered PGS scaffolds. Subcutaneous implantation of multilayered PLT32o scaffolds with cultured heart cells provides long-term 3D structural support and retains the exogenous cells, whereas PGS scaffolds lose both their structural integrity and the exogenous cells over 31 d in vivo. PLT32o membrane implants retain their dry mass, whereas PGS implants lose 70 percent of their dry mass by day 31. Macrophages are initially recruited to PLT32o and PGS membrane implants but are no longer present by day 31. Facile synthesis and processing in combination with the capability to support heart cells in vitro and in vivo suggest that PLT32o can offer advantages for tissue engineering applications where prolonged in vivo maintenance of 3D structural integrity and elastomeric mechanical behavior are required.

  10. Thiol-ene Clickable Poly(glycidol) Hydrogels for Biofabrication.

    PubMed

    Stichler, Simone; Jungst, Tomasz; Schamel, Martha; Zilkowski, Ilona; Kuhlmann, Matthias; Böck, Thomas; Blunk, Torsten; Teßmar, Jörg; Groll, Jürgen

    2017-01-01

    In this study we introduce linear poly(glycidol) (PG), a structural analog of poly(ethylene glycol) bearing side chains at each repeating unit, as polymer basis for bioink development. We prepare allyl- and thiol-functional linear PG that can rapidly be polymerized to a three-dimensionally cross-linked hydrogel network via UV mediated thiol-ene click reaction. Influence of polymer concentration and UV irradiation on mechanical properties and swelling behavior was examined. Thiol-functional PG was synthesized in two structural variations, one containing ester groups that are susceptible to hydrolytic cleavage, and the other one ester-free and stable against hydrolysis. This allowed the preparation of degradable and non-degradable hydrogels. Cytocompatibility of the hydrogel was demonstrated by encapsulation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Rheological properties of the hydrogels were adjusted for dispense plotting by addition of high molecular weight hyaluronic acid. The optimized formulation enabled highly reproducible plotting of constructs composed of 20 layers with an overall height of 3.90 mm.

  11. Biodegradable poly(ethylenimine) for plasmid DNA delivery.

    PubMed

    Ahn, Cheol-Hee; Chae, Su Young; Bae, You Han; Kim, Sung Wan

    2002-04-23

    Poly(ethylenimine) (PEI) has been known as an efficient gene carrier with the highest cationic charge potential. High transfection efficiency of PEI, along with its cytotoxicity, strongly depends on the molecular weight. Synthesis of cationic copolymers derived from the low molecular weight of PEI and hydrophilic poly(ethylene glycol) (PEG), which are water soluble and degradable under physiological conditions, was investigated for plasmid delivery. Hydrophilic PEG is expected to reduce the toxicity of the copolymer, improve the poor solubility of the PEI and DNA complexes, and help to introduce degradable bonds by reaction with the primary amines in the PEI. Considering the dependence of transfection efficiency and cytotoxicity on the molecular weight of the PEI, high transfection efficiency is expected from an increased molecular weight of the copolymer and low cytotoxicity from the introduction of PEG and the degradation of the copolymer into low molecular weight PEIs. Reaction conditions were carefully controlled to produce water soluble copolymers. Results from a gel retardation assay and zetapotentiometer indicated that complete neutralization of the complexes was achieved at the charge ratios of copolymer/pSV-beta-gal plasmid from 0.8 to 1.0 with the mean particle size of the polyplexes ranging from 129.8+/-0.9 to 151.8+/-3.4 nm. In vitro transfection efficiency of the synthesized copolymer increased up to three times higher than that of starting low molecular weight PEI, while the cell viability was maintained over 80%.

  12. Targeting poly(ADP-ribose) polymerase activity for cancer therapy

    PubMed Central

    Mégnin-Chanet, Frédérique; Bollet, Marc A.

    2010-01-01

    Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD+. The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD+ at the enzyme’s activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated. PMID:20725763

  13. Metal silicide/poly-Si Schottky diodes for uncooled microbolometers

    PubMed Central

    2013-01-01

    Nickel silicide Schottky diodes formed on polycrystalline Si 〈P〉 films are proposed as temperature sensors of monolithic uncooled microbolometer infrared focal plane arrays. The structure and composition of nickel silicide/polycrystalline silicon films synthesized in a low-temperature process are examined by means of transmission electron microscopy. The Ni silicide is identified as a multi-phase compound composed of 20% to 40% of Ni3Si, 30% to 60% of Ni2Si, and 10% to 30% of NiSi with probable minor content of NiSi2 at the silicide/poly-Si interface. Rectification ratios of the Schottky diodes vary from about 100 to about 20 for the temperature increasing from 22℃ to 70℃; they exceed 1,000 at 80 K. A barrier of around 0.95 eV is found to control the photovoltage spectra at room temperature. A set of barriers is observed in photo-electromotive force spectra at 80 K and attributed to the Ni silicide/poly-Si interface. Absolute values of temperature coefficients of voltage and current are found to vary from 0.3%℃ to 0.6%/℃ for forward bias and around 2.5%/℃ for reverse bias of the diodes. PMID:23594606

  14. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.

    PubMed

    Ali, Saniya; Cuchiara, Maude L; West, Jennifer L

    2014-01-01

    This protocol describes the techniques to synthesize and fabricate micropatterned poly(ethylene glycol) diacrylate-based hydrogels that can be used as substrates in cellular studies and tissue engineering scaffolds. These materials provide an essentially bioinert background material due to the very low protein adsorption characteristics of poly(ethylene glycol), but the materials can be modified with covalently grafted peptides, proteins, or other biomolecules of interest to impart specific biofunctionality to the material. Further, it is possible to use micropatterning technologies to control the localization of such covalent grafting of biomolecules to the hydrogel materials, thus spatially controlling the cell-material interactions. This protocol presents a relatively simple approach for mask-based photolithographic patterning, generally best suited for patterning the surface of hydrogel materials for 2D cell studies. A more sophisticated technique, two-photon laser scanning lithography, is also presented. This technique allows free-form, 3D micropatterning in hydrogels. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.

  16. Microstructure characterization and thermal analysis of hybrid block copolymer α-methoxy-poly(ethylene glycol)- block-poly[ ɛ-(benzyloxycarbonyl)- L-lysine] for biomedical applications

    NASA Astrophysics Data System (ADS)

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2010-08-01

    Hybrid block copolymers, which combine the economy and processibility of synthetic polymers with the functionality and highly ordered structures of polypeptides, can enhance control over structure formation at the nanoscale, as well as afford interesting materials that interface with Nature for a diversity of biomedical applications, such as drug delivery, tissue engineering and bioimaging. Hybrid block copolymer, α-methoxy-poly(ethylene glycol)- b-poly[ ɛ-(benzyloxycarbonyl)- L-lysine], MPEG- b-PLL(Z), was synthesized by anionic ring-opening polymerization in excellent yield, and fully characterized using IR, 1H, 13C and 2-D NMR, GPC, TGA, DTGA, DSC, MDSC and polarimetry. Its precursor NCA, ɛ-(benzyloxycarbonyl)- L-lysine N-carboxyanhydride, L-Lys(Z)-NCA, was prepared in 97% yield; and a double doublet observed in the 1850-1750 cm -1 absorption region of its infrared spectrum, for the characteristic NCA carbonyl absorption bands, is discussed.

  17. Synthesis, characterization and comparison of polyaniline 1D-structure controlled by poly(L-lactide) and poly(D-lactide)

    NASA Astrophysics Data System (ADS)

    Gu, Zhou-Jie; Shen, Qing

    2016-01-01

    1D-structural polyaniline (PANI) was controllably synthesized by utilizing the poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) as controllers. FESEM images showed that the morphology of 1D-structural PANI controlled by PDLA likes a joint obviously unlike PLLA controlled vertebra structure reported previously. To set the ratio of ANI/PLLA (ml/g) at 0.45/0.135, 0.45/0.270 and 0.45/0.540, the formed PANI 1D structure was changed in the cross-section as four round leaves, four non-round leaves and four sharp leaves, respectively. FTIR and XRD analysis indicated that the PLLA and PDLA both were doped in PANI chains while the PLLA was strongly in the electrons delocalization than that of the PDLA due probably to the L-type stronger in crystal polymorphism than that of the D-type.

  18. Water and drug transport in radiation-crosslinked poly(2-methoxyethylacrylate- co-dimethyl acrylamide) and poly(2-methoxyethylacrylate- co-acrylamide) hydrogels

    NASA Astrophysics Data System (ADS)

    Martellini, Flavia; Mei, Lúcia H. I.; Baliño, Jorge L.; Carenza, Mario

    2003-02-01

    Hydrogels of poly( N, N'-dimethylacrylamide- co-2-methoxyethylacrylate) and poly(acrylamide- co-2-methoxyethylacrylate) have been synthesized by radiation polymerization in dimethylformamide solution with trimethylolpropane trimethacrylate as a crosslinker. In this work, some investigations on the in vitro release of gentamicin sulphate, an antibiotic entrapped in the hydrogels, are reported. The kinetics of drug release from hydrogels matrices were examined and the results indicate that the release for the proposed geometry practically occurs in the first 24 h. The fractional cumulative release of the drug from the DMAA/MOEA matrices is linear when plotted against the square root of time, pointing out a Fickian process. On the other hand, AAm/MOEA matrices showed an initial non-Fickian behaviour, probably indicating a comparable rates of Fickian diffusion and polymer relaxation.

  19. Poly(DL-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate): synthesis, characterization, micellization behavior in aqueous solutions, and encapsulation of the hydrophobic drug dipyridamole.

    PubMed

    Karanikolopoulos, Nikos; Zamurovic, Miljana; Pitsikalis, Marinos; Hadjichristidis, Nikos

    2010-02-08

    We synthesized a series of well-defined poly(dl-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLLA-b-PDMAEMA) amphiphilic diblock copolymers by employing a three-step procedure: (a) ring-opening polymerization (ROP) of dl-lactide using n-decanol and stannous octoate, Sn(Oct)(2), as the initiating system, (b) reaction of the PDLLA hydroxyl end groups with bromoisobutyryl bromide, and (c) atom transfer radical polymerization, ATRP, of DMAEMA with the newly created bromoisobutyryl initiating site. The aggregation behavior of the prepared block copolymers was investigated by dynamic light scattering and zeta potential measurements at 25 degrees C in aqueous solutions of different pH values. The hydrophobic drug dipyridamole was efficiently incorporated into the copolymer aggregates in aqueous solutions of pH 7.40. High partition coefficient values were determined by fluorescence spectroscopy.

  20. Sub-5 nm Domains in Ordered Poly(cyclohexylethylene)-block-poly(methyl methacrylate) Block Polymers for Lithography.

    SciTech Connect

    Kennemur, Justin; Yao, Li; Bates, Frank Stephen; Hillmyer, Marc

    2014-01-01

    A series of poly(cyclohexylethylene)-block-poly- (methyl methacrylate) (PCHE PMMA) diblock copolymers with varying molar mass (4.9 kg/mol Mn 30.6 kg/mol) and narrow molar mass distribution were synthesized through a combination of anionic and atom transfer radical polymerization (ATRP) techniques. Heterogeneous catalytic hydrogenation of -(hydroxy)polystyrene (PS-OH) yielded -(hydroxy)poly(cyclohexylethylene) (PCHEOH) with little loss of hydroxyl functionality. PCHE-OH was reacted with -bromoisobutyryl bromide (BiBB) to produce an ATRP macroinitiator used for the polymerization of methyl methacrylate. PCHE PMMA is a glassy, thermally stable material with a large effective segment segment interaction parameter, eff = (144.4 6.2)/T (0.162 0.013), determined by meanfield analysis of order-to-disorder transition temperatures (TODT) measured by dynamic mechanical analysis and differential scanning calorimetry. Ordered lamellar domain pitches (9 D 33 nm) were identified by small-angle X-ray scattering from neat BCPs containing 43 52 vol % PCHE ( f PCHE). Atomic force microscopy was used to show 7.5 nm lamellar features (D = 14.8 nm) which are some of the smallest observed to date. The lowest molar mass sample (Mn = 4.9 kg/mol, f PCHE = 0.46) is characterized by TODT = 173 3 C and sub-5 nm nanodomains, which together with the sacrificial properties of PMMA and the high overall thermal stability place this material at the forefront of high- systems for advanced nanopatterning applications.

  1. Poly(ester urea)-Based Adhesives: Improved Deployment and Adhesion by Incorporation of Poly(propylene glycol) Segments.

    PubMed

    Zhou, Jinjun; Bhagat, Vrushali; Becker, Matthew L

    2016-12-14

    The adhesive nature of mussels arises from the catechol moiety in the 3,4-dihydroxyphenylalanine (DOPA) amino acid, one of the many proteins that contribute to the unique adhesion properties of mussels. Inspired by these properties, many biomimetic adhesives have been developed over the past few years in an attempt to replace adhesives such as fibrin, cyanoacrylate, and epoxy glues. In the present work, we synthesized ethanol soluble but water insoluble catechol functionalized poly(ester urea) random copolymers that help facilitate delivery and adhesion in wet environments. Poly(propylene glycol) units incorporated into the polymer backbone impart ethanol solubility to these polymers, making them clinically relevant. A catechol to cross-linker ratio of 10:1 with a curing time of 4 h exceeded the performance of commercial fibrin glue (4.8 ± 1.4 kPa) with adhesion strength of 10.6 ± 2.1 kPa. These adhesion strengths are significant with the consideration that the adhesion studies were performed under wet conditions.

  2. Actuator based on sulfonated comb copolymer of poly (ethylene-co-vinyl alcohol) grafted by poly (ethylene glycol)

    NASA Astrophysics Data System (ADS)

    Gong, Guifen; Li, Lei; Zhang, Yujun

    2007-07-01

    Comb copolymer consisting of poly (ethylene-co-vinyl alcohol) (EVAL) as backbone and poly (ethylene glycol) (PEG) as side chains (EVAL-g-PEG) has been synthesized, then it was sulfonated by 1,3-propane sultone to get the final ionomer (EVAL-g-SPEG), and ionic polymer-metal composite (IPMC) based on EVAL-g-SPEG was prepared through electroless deposition of platinum onto the surfaces of EVAL-g-SPEG membrane. The graft copolymers were characterized with respect to molecular weight using gel permeation chromatography (GPC) and composition using 1H-NMR. The results showed that the No. of PEG graft of the side chains is n=1, 2 and others. Thermal properties were examined by DSC and TG. The melt temperature (T m) and glass transition temperature (T g) of the comb copolymer increase with the increasing length and the number of the side chains. Moreover, the deformation performance of IPMC material was tested and its results show that the starting response voltage of IPMC actuator decreases with the increasing IEC value. On the other hand, the starting response voltage increases with the decreased side chain length. The IPMC with n=2 side chain length of PEG has the maximum tip displacement, and the maximum tip displacement of IPMC membrane generally decreases with the side chain length of EVAL-g-SPEG. This feature may be the reflection of two opposite effects, namely the decreasing ion densities and increasing water sorption of the membrane.

  3. A thermosensitive hydrogel based on biodegradable amphiphilic poly(ethylene glycol) polycaprolactone poly(ethylene glycol) block copolymers

    NASA Astrophysics Data System (ADS)

    Gong, Chang Yang; Qian, Zhi Yong; Liu, Cai Bing; Juan Huang, Mei; Gu, Ying Chun; Wen, Yan Jun; Kan, Bing; Wang, Ke; Dai, Mei; Li, Xing Yi; Gou, Ma Ling; Tu, Ming Jing; Wei, Yu Quan

    2007-06-01

    A series of low molecular weight poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) biodegradable block copolymers were successfully synthesized using isophorone diisocyanate (IPDI) as the coupling agent, and were characterized using 1H NMR and Fourier transform infrared spectroscopy. The aqueous solutions of the PEG-PCL-PEG copolymers displayed a special thermosensitive gel-sol transition when the concentration was above the corresponding critical gel concentration. Gel-sol phase diagrams were recorded using the test-tube-inversion method; they depended on the hydrophilic/hydrophobic balance in the macromolecular structure, as well as some other factors, including the heating history, volume, and the ageing time of the copolymer aqueous solutions and dissolution temperature of the copolymers. As a result, the gel-sol transition temperature range could be altered, which might be very useful for application in injectable drug delivery systems. This work was financially supported by the Chinese Key Basic Research Program (2004CB518800 and 2004CB518807), and the Sichuan Key Project of Science and Technology (06(05SG022-021-02)).

  4. New Poly(dimethylsiloxane)/Poly(perfluorooctylethyl acrylate) Block Copolymers: Structure and Order Across Multiple Length Scales in Thin Films

    SciTech Connect

    E Martinelli; G Galli; S Krishnan; M Paik; C Ober; D Fischer

    2011-12-31

    Three sets of a new class of low surface tension block copolymers were synthesized consisting of a poly(dimethylsiloxane) (PDMS) block and a poly(perfluorooctylethyl acrylate) (AF8) block. The polymers were prepared using a bromo-terminated PDMS macroinitiator, to which was attached an AF8 block grown using atom transfer radical polymerization (ATRP) in such a designed way that the molecular weight and composition of the two polymer blocks were regularly varied. The interplay of both the phase separated microstructure and the mesomorphic character of the fluorinated domains with their effect on surface structure was evaluated using a suite of analytical tools. Surfaces of spin-coated and thermally annealed films were assessed using a combination of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies. Both atomic force microscopy (AFM) measurements and grazing incidence small angle X-ray scattering (GISAXS) studies were carried out to evaluate the microstructure of the thin films. Even in block copolymers in which the PDMS block was the majority component, a significant presence of the lower surface energy AF8 block was detected at the film surface. Moreover, the perfluorooctyl helices of the AF8 repeat units were highly oriented at the surface in an ordered, tilted smectic structure, which was compared with those of the bulk powder samples using wide-angle X-ray powder diffraction (WAXD) studies.

  5. Poly(cyclohexylethylene)- block -Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition

    SciTech Connect

    Yao, Li; Oquendo, Luis E.; Schulze, Morgan W.; Lewis, Ronald M.; Gladfelter, Wayne L.; Hillmyer, Marc A.

    2016-03-08

    Poly(cyclohexylethylene)-block-poly(lactide) (PCHE–PLA) block polymers were synthesized through a combination of anionic polymerization, heterogeneous catalytic hydrogenation and controlled ring-opening polymerization. Ordered thin films of PCHE–PLA with ultrasmall hexagonally packed cylinders oriented perpendicularly to the substrate surface were prepared by spin-coating and subsequent solvent vapor annealing for use in two distinct templating strategies. In one approach, selective hydrolytic degradation of the PLA domains generated nanoporous PCHE templates with an average pore diameter of 5 ± 1 nm corroborated by atomic force microscopy and grazing incidence small-angle X-ray scattering. Alternatively, sequential infiltration synthesis (SIS) was employed to deposit Al2O3 selectively into the PLA domains of PCHE–PLA thin films. A combination of argon ion milling and O2 reactive ion etching (RIE) enabled the replication of the Al2O3 nanoarray from the PCHE–PLA template on diverse substrates including silicon and gold with feature diameters less than 10 nm.

  6. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide).

    PubMed

    Ogura, Michihiro; Tokuda, Hiroyuki; Imabayashi, Shin-ichiro; Watanabe, Masayoshi

    2007-08-28

    A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles. The formation of the core-shell micelles is supported by the solubilization of a dye (1,6-diphenyl-1,3,5-hexatriene) in the hydrophobic core, which is recognized for a copolymer solution in the temperature range between 20 and 40 degrees C. In this temperature range, the core-shell micelles and the unimers coexist and the fraction of the former gradually increases with increasing temperature, suggesting equilibrium between the micelles and the unimers. In the concentrated regime (40 wt % solution), the solution forms a gel and the small-angle X-ray scattering measurements reveal the successive formation of hexagonal and lamellar liquid crystal phases with increasing temperature.

  7. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  8. In vitro release of clomipramine HCl and buprenorphine HCl from poly adipic anhydride (PAA) and poly trimethylene carbonate (PTMC) blends.

    PubMed

    Dinarvand, Rassoul; Alimorad, Mohammed Massoud; Amanlou, Massoud; Akbari, Hamid

    2005-10-01

    Controlled drug-delivery technology is concerned with the systematic release of a pharmaceutical agent to maintain a therapeutic level of the drug in the body for modulated and/or prolonged periods of time. This may be achieved by incorporating the therapeutic agent into a degradable polymer vehicle, which releases the agent continuously as the matrix erodes. In this study, poly trimethylene carbonate (PTMC), an aliphatic polycarbonate, and poly adipic anhydride (PAA), an aliphatic polyanhydride, were synthesized via melt condensation and ring-opening polymerization of trimethylene carbonate and adipic acid, respectively. The release of clomipramine HCl and buprenorphine HCl from discs prepared with the use of PTMC-PAA blends in phosphate buffer (pH 7.4) are also described. Clomipramine HCl and buprenorphine HCl were both used as hydrophilic drug models. Theoretical treatment of the data with the Peppas model revealed that release of clomipramine HCl (5%) in devices containing 70% PTMC or more followed a Fickian diffusion model. However, the releases of buprenorphine HCl (5%) in the same devices were anomalous. For devices containing 50% and more PAA, surface erosion may play a significant role in the release of both molecules.

  9. Constructing polyamidoamine dendrons from poly(poly(ethylene glycol) monomethacrylate) brushes grafted from planar silicon hydride surfaces for biomedical applications

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Zheng, Hong-Ning; Yan, Qin; Wang, Cuie; Ma, Yin-Zhou; Tang, Yan-Chun; Xiao, Shou-Jun

    2011-06-01

    A facile approach was established to construct polyamidoamine (PAMAM) dendrons from polymer brushes of poly(poly(ethylene glycol) monomethacrylate) (Si-g-P(PEGMA-OH)) grafted from a planar silicon hydride surface. First the Si-g-P(PEGMA-OH) brushes were grown via surface-initiated atom transfer radical polymerization with robust Si-C links on silicon surfaces. The side-chain hydroxyl groups of Si-g-P(PEGMA-OH) were chlorinated with thionyl chloride and further chlorines were substituted with amino groups of ethylenediamine, giving terminal primary amines. Borrowing the solution synthesis approach, we constructed second and third generations of PAMAM dendrons on-chip by surface-initiated alternative growth of two monomers, methyl acrylate and ethylenediamine. Two applications of silicon-based PAMAM dendrons were shown: the dense amino groups were activated via a cross-linker, N-succinimidyl-6-maleimidylhexanoate, to capture a free-thiol-carrying peptide of oxytocin and the third generation of PAMAM dendrons was used as a platform to on-chip synthesize a three amino acid peptide of Arg-Gly-Asp (RGD). The above conclusions were mainly derived from a home-built multiple transmission-reflection infrared spectroscopy, and complemented by X-ray photoelectron spectroscopy, UV-Vis spectroscopy and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry.

  10. Synthesis and micellar characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers.

    PubMed

    Letchford, Kevin; Zastre, Jason; Liggins, Richard; Burt, Helen

    2004-05-15

    A series of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone) diblock copolymers was synthesized and characterized in order to assess the potential of these copolymers as a micellar drug-delivery system. Varying the caprolactone:MePEG weight ratio in the reaction mixture allowed the synthesis of diblock copolymers with a MePEG molecular weight of 750 g/mol and PCL block lengths of 2, 5 or 10 repeat units. Phase diagrams of aqueous solutions of the copolymers were constructed which displayed characteristic cloud points and Krafft points. As the degree of polymerization of PCL increased, critical micelle concentration (CMC) values decreased from 6.97 x 10(-1) to 3.38 x 10(-3) g/l, partition equilibrium coefficients (Kv) increased from 1.09 x 10(4) to 22.2 x 10(4),and hydrodynamic diameters increased from 12.2 to 19.5 nm. The micelle morphology was determined to be spherical by transmission electron microscopy.

  11. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams.

    PubMed

    Haryanto; Singh, Deepti; Huh, Pil Ho; Kim, Seong Cheol

    2016-01-01

    A microporous hydrogel scaffold was developed from hyperbranched poly(glycidol) (HPG) and poly(ethylene oxide) (PEO) using electron beam (e-beam) induced cross-linking for tissue engineering applications. In this study, HPG was synthesized from glycidol using trimethylol propane as a core initiator and cross-linked hydrogels were made using 0, 10, 20, and 30% HPG with respect to PEO. The effects of %-HPG on the swelling ratio, cross-linking density, mechanical properties, morphology, degradation, and cytotoxicity of the hydrogel scaffolds were then investigated. Increasing the HPG content increased the pore size of the hydrogel scaffold, as well as the porosity, elongation at break, degree of degradation and swelling ratio. In contrast, the presence of HPG decreased the cross-linking density of the hydrogel. There was no significant difference in compressive modulus and tensile strength of all compositions. The pore size of hydrogel scaffolds could be easily tailored by controlling the content of HPG in the polymer blend. Evaluation of the cytotoxicity demonstrated that HPG/PEO hydrogel scaffold has potential for use as a matrix for cellular attachment and proliferation. These results indicate that cross-linked HPG/PEO hydrogel can function as a potential material for tissue engineering scaffolds. Moreover, a facile method to prepare hydrogel microporous scaffolds for tissue engineering by e-beam irradiation was developed.

  12. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel.

    PubMed

    Zhao, Yanli; Li, Yanli; Ge, Jianjun; Li, Na; Li, Ling-Bing

    2014-11-01

    The aim of the study is to synthesize a thiolated Pluronic copolymer, Pluronic-poly (acrylic acid)-cysteine copolymer, to construct a mixed micelle system with the Pluronic-poly (acrylic acid)-cysteine copolymer and Pluronic L121 (PL121) and to evaluate the potential of these mixed micelles as an oral drug delivery system for paclitaxel. Compared with Pluronic-poly (acrylic acid)-cysteine micelles, drug-loading capacity of Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles was increased from 0.4 to 2.87%. In vitro release test indicated that Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles exhibited a pH sensitivity. The permeability of drug-loaded micelles in the intestinal tract was studied with an in situ perfusion method in rats. The presence of verapamil and Pluronic both improved the intestinal permeability of paclitaxel, which further certified the inhibition effect of thiolated Pluronic on P-gp. In pharmacokinetic study, the area under the plasma concentration-time curve (AUC0→∞) of paclitaxel-loaded mixed micelles was four times greater than that of the paclitaxel solution (p < 0.05). In general, Pluronic-poly (acrylic acid)-cysteine/PL121 micelles were proven to be a potential oral drug delivery system for paclitaxel.

  13. Electrochemical properties of electrospun poly(5-cyanoindole) submicron-fibrous electrode for zinc/polymer secondary battery

    NASA Astrophysics Data System (ADS)

    Cai, Zhijiang; Guo, Jie; Yang, Haizheng; Xu, Yi

    2015-04-01

    This study aims to develop an aqueous zinc/electrospun poly(5-cyanoindole) fibers secondary battery system. Zn foil and ZnCl2 are used as anode active materials and the electrolytic solution, respectively. Poly(5-cyanoindole) synthesized by chemical oxidation is electrospun into fibers and used as cathode active materials. FTIR and NMR test are carried out to investigate the chemical structure of poly(5-cyanoindole). Surface properties of electrospun poly(5-cyanoindole) fibers are studied by SEM, TEM, and BET. The performance of zinc/electrospun poly(5-cyanoindole) fibers battery system is evaluated in term of electrical conductivity, cyclic voltammogram, electrochemical impedance spectroscopy, discharge capacity and durability test. The cell achieves 2.0 V electromotive force with about 107-61 Ah Kg-1 discharge capacity at 0.2C-10C rate. At 800th cycle, the discharge capacity remains 80-57 Ah Kg-1 at 0.2C-2C rate, which is about 75-63% of the maximum discharge capacity. These results indicate that the cell has very excellent cyclic properties as well as fast charge/discharge properties. Electrospun poly(5-cyanoindole) fibers have been proved to be a better candidate than polyindole powder as cathode material in zinc/polymer battery.

  14. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation.

    PubMed

    Kühn, Uwe; Buschmann, Juliane; Wahle, Elmar

    2017-04-01

    The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.

  15. The operation of enzymatic fuel cell fabricated with rationally designed poly(caprolactone-g-ethylene glycol) copolymers.

    PubMed

    Korkut, Seyda; Kilic, Muhammet Samet; Sanal, Timur; Hazer, Baki

    2017-07-01

    This study describes construction of an enzymatic fuel cell comprised of poly(caprolactone-g-ethylene glycol) coated novel glucose oxidase anode and laccase cathode. Rationally designed poly(caprolactone-g-ethylene glycol) containing various poly(ethylene glycol) percentages ranging between 2.67 and 15.04% were synthesized chemically and tested separately for operation of the fuel cell system to achieve the best energy generation. The maximum power density was found to be 80.55μWcm(-2) at 0.91V (vs. Ag/AgCl) in pH5, 100mM citrate buffer (20°C) by the addition of 30mM of glucose from the electrodes coated with 11.34% poly(ethylene glycol) containing polymer with a quantity of 600μg. High poly(ethylene glycol) percentages with more numbers of long poly(ethylene glycol) brushes lead to the creation of a complexity in the polymer morphology and steric hindrance effect for electron transport. The graft copolymer was easily used for the fuel cell system owing to its biocompatible and microporous film morphology. The grafted polymer was able to facilitate enzymatic glucose oxidation and oxygen reduction while simultaneously producing high catalytic electrical currents. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermal Conductivity Measurement of Synthesized Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Luo, S.; Mosenfelder, J. L.; Liu, W.; Staneff, G. D.; Ahrens, T. J.; Chen, G.

    2002-12-01

    Direct thermal conductivity (k) measurement of mantle minerals is crucial to constrain the thermal profile of the Earth as well as geodynamic studies of the mantle (e.g., to determine the Rayleigh number). We have embarked on systematic multi-anvil syntheses of dense polycrystalline specimens of mantle phases of adequate size and zero porosity for precise thermal conductivity measurements by the 3ω method (\\textit{Cahill and Pohl, Phys. Rev. B, 1987}) under elevated temperatures (T). Coesite and stishovite (see \\textit{Luo et al., GRL, 2002}) as well as majorite and wadsleyite have been synthesized; ringwoodite and perovskite are scheduled. Preliminary thermal conductivity measurements at ambient pressure on coesite (120 - 300 K, 9.53 Wm-1K-1 at 300 K) are consistent with prior room temperature data (\\textit{Yukutake & Shimada, PEPI, 1978}), while our stishovite data at 300 K appear to be low (1.96 Wm-1K-1). Efforts are being made to extend the measurement to higher temperatures (e.g., above Debye temperature Θ D), thus allowing determination of k(T) relationship (say, k~ T-n); success will depend on the decomposition kinetics of these metastable phases. The pressure dependence of k of these synthesized samples can also be measured (\\textit{e.g., Osako et al., HPMPS-6, 2002; Xu et al., EOS, 2001}). Recent thermal conductivity measurement on LiF and Al2O_3 from shock wave loading (\\textit{Holland & Ahrens, 1998}) is consistent with the modeling on MgO and Al2O_3 (\\textit{Manga & Jeanloz, JGR, 1997}) with classical theories. Thus, k values at modest pressures and T (say, above Θ D) would allow extrapolation of k to appropriate mantle conditions.

  17. Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles.

    PubMed

    Chang, Zhenqi; Serra, Christophe A; Bouquey, Michel; Prat, Laurent; Hadziioannou, Georges

    2009-10-21

    An easy assembling-disassembling co-axial capillaries microfluidic device was built up for the production of double droplets. Uniform polymer core-polymer shell particles were synthesized by polymerizing the two immiscible monomer phases composing the double droplet. Thus poly(acrylamide) core-poly(tri(propylene glycol) diacrylate) shell particles with controlled core diameter and shell thickness were simply obtained by adjusting operating parameters. An empirical law was extracted from experiments to predict core and shell sizes. Additionally uniform and predictable non-spherical polymer objects were also prepared without adding shape-formation procedures in the experimental device. An empirical equation for describing the lengths of rod-like polymer particles is also presented.

  18. Stable, hydroxyl functional polycarbonates with glycerol side chains synthesized from CO(2) and isopropylidene(glyceryl glycidyl ether).

    PubMed

    Geschwind, Jeannette; Frey, Holger

    2013-01-25

    A series of functional polycarbonates, poly((isopropylidene glyceryl glycidyl ether)-co-(glycidyl methyl ether) carbonate) (P((IGG-co-GME) C)) random copolymers with different fractions of 1,2-isopropylidene glyceryl glycidyl ether (IGG) units, is synthesized. After acidic hydrolysis of the acetal protecting groups, a new type of functional polycarbonate prepared directly from CO(2) and glycerol is obtained, namely poly((glyceryl glycerol)-co-(glycidyl methyl ether) carbonate) (P((GG-co-GME) C)). All hydroxyl functional samples exhibit monomodal molecular weight distributions with PDIs between 2.5 and 3.3 and M(n) between 12 000 and 25 000 g mol(-1) . Thermal properties reflect the amorphous structure of the polymers. The materials are stable in bulk and solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Evaluating and synthesizing broadcasting satellite systems

    NASA Technical Reports Server (NTRS)

    Knouse, G. H.

    1974-01-01

    A system model and a computer program have been developed which are representative of broadcasting satellite systems employing several types of receiving terminals. The program provides a user-oriented tool for (1) evaluating performance/cost tradeoffs, (2) synthesizing minimum cost systems for a given set of system requirements, and (3) performing sensitivity analyses to identify critical user requirements, system parameters, and technology. The types of systems which can be evaluated are described, and the capabilities of the program are illustrated by means of several examples.

  20. Syntheses of Synthetic Hydrocarbons Via Alpha Olefins.

    DTIC Science & Technology

    1981-10-01

    Chem. Educ., 42, 502 (1965). 4. A. Priola, C. Corna , and S. Cesca, Macromolecules, 13, 1110 (1980). 5. R. F . Brown, Organic Chemistry, Wadsworth...AD-A110 380 GULF RESEARCH AND DEVELOPENT Co PITTSBURGH PA F /G T/A 1 SYNTHESES OF SYNTHETIC HYDROCARBONS VIA ALPHA OLEFINS.(U) OCT 81 B L CUPPLES, A...FOR THE COMMANDER F . D. CHERRY, Chief Nonmetallic Materials Division "If your address has changed, if you wish to be removed from our mailing list

  1. Biogenic synthesized nanoparticles and their applications

    NASA Astrophysics Data System (ADS)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  2. Squid Giant Axons Synthesize NF Proteins.

    PubMed

    Crispino, Marianna; Chun, Jong Tai; Giuditta, Antonio

    2017-05-02

    Squid giant axon has been an excellent model system for studying fundamental topics in neurobiology such as neuronal signaling. It has been also useful in addressing the questions of local protein synthesis in the axons. Incubation of isolated squid giant axons with [(35)S]methionine followed by immunoprecipitation with a rabbit antibody against all squid neurofilament (NF) proteins demonstrates the local synthesis of a major 180 kDa NF protein and of several NF proteins of lower molecular weights. Their identification as NF proteins is based on their absence in the preimmune precipitates. Immunoprecipitates washed with more stringent buffers confirmed these results. Our data are at variance with a recent study based on the same experimental procedure that failed to visualize the local synthesis of NF proteins by the giant axon and thereby suggested their exclusive derivation from nerve cell bodies (as reported by Gainer et al. in Cell Mol Neurobiol 37:475-486, 2017). By reviewing the pertinent literature, we confute the claims that mRNA translation is absent in mature axons because of a putative translation block and that most proteins of mature axons are synthesized in the surrounding glial cells. Given the intrinsic axonal capacity to synthesize proteins, we stress the glial derivation of axonal and presynaptic RNAs and the related proposal that these neuronal domains are endowed with largely independent gene expression systems (as reported by Giuditta et al. in Physiol Rev 88:515-555, 2008).

  3. Synthesizing new, high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Weaver, Claire; Aronson, Meigan

    2015-03-01

    Currently, there is no accepted theory behind type-II, high-temperature superconductors, but there is a distinct relationship between anti-ferromagnetism and superconductivity. Our research focuses on synthesizing new superconducting materials by observing the link between atomic structure and magnetic moments of anti-ferromagnetic compounds and attempting to reproduce the molecular physics of these known materials in new compounds. Consider the square-planar arrangement of the transition metal Fe in the Fe-pnictide superconductors of the ZrCuSiAs ``11 11'' and the ThCr2Si2 ``122'' structure types. We believe that the physics behind this superconductor, where Fe has d6 valence electrons, contributes to the superconducting state, not the presence of Fe itself. For this reason, we are synthesizing materials containing neighboring transition metals, like Mn and Co, combined with other elements in similar crystal lattice arrangements, having ionization properties that hopefully impose d6 valence electrons on the transition metals. This project was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

  4. Biogenic synthesized nanoparticles and their applications

    SciTech Connect

    Singh, Abhijeet Sharma, Madan Mohan

    2016-05-06

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  5. Novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer micelles loading curcumin: preparation, characterization, and in vitro evaluation.

    PubMed

    Lv, Li; Shen, Yuanyuan; Li, Min; Xu, Xiaofen; Li, Mingna; Guo, Shengrong; Huang, Shengtang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α -, ω -acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by (1)H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL). The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  6. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    PubMed Central

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. PMID:27877362

  7. Poly(arylene ether ketone) carrying hyperquaternized pendants: Preparation, stability and conductivity

    NASA Astrophysics Data System (ADS)

    Shen, Kunzhi; Zhang, Zhenpeng; Zhang, Haibo; Pang, Jinhui; Jiang, Zhenhua

    2015-08-01

    A new strategy to synthesize comb-shaped poly(arylene ether ketone) ionomers with hyperquaternized pendants was detailed in this work. Poly(arylene ether ketone) with electron-rich phenyl rings on the side chain was copolymerized. These electron-rich phenyl rings which could be chloromethylated and serve as precursors to cationic sites, are introduced during monomer synthesis. After chloromethylation and quaternization on the side chain, these resulting anion exchange membranes exhibit high conductivities and good dimensional stability, which benefit from the side chain type structure. The highest chloride conductivity of 0.047 S cm-1 was observed in PAEK-QTPM-30 (IEC = 1.58 mmol g-1) and swelling ratio is 31.7% at 80 °C. The structural properties of the synthesized poly(arylene ether ketone)s were investigated by 1H NMR spectroscopy. The anion exchange membranes showed excellent thermal stability up to 200 °C under nitrogen and good chemical stability for high conductivity after treating in alkaline condition up to 30 days. These membranes were studied by IEC, water uptake, dimensional stability. The nano-phase separation from ionic aggregation was confirmed by SAXS. This work implies a viable strategy to improve the performance of anion exchange membranes.

  8. Biosynthesis of poly(3-hydroxybutyrate) copolymers by Azotobacter chroococcum 7B: A precursor feeding strategy.

    PubMed

    Bonartsev, A P; Zharkova, I I; Yakovlev, S G; Myshkina, V L; Mahina, T K; Voinova, V V; Zernov, A L; Zhuikov, V A; Akoulina, E A; Ivanova, E V; Kuznetsova, E S; Shaitan, K V; Bonartseva, G A

    2017-02-07

    A precursor feeding strategy for effective biopolymer producer strain Azotobacter chroococcum 7B was used to synthesize various poly(3-hydroxybutyrate) (PHB) copolymers. We performed experiments on biosynthesis of PHB copolymers by A. chroococcum 7B using various precursors: sucrose as the primary carbon source, various carboxylic acids and ethylene glycol (EG) derivatives [diethylene glycol (DEG), triethylene glycol (TEG), poly(ethylene glycol) (PEG) 300, PEG 400, PEG 1000] as additional carbon sources. We analyzed strain growth parameters including biomass and polymer yields as well as molecular weight and monomer composition of produced copolymers. We demonstrated that A. chroococcum 7B was able to synthesize copolymers using carboxylic acids with the length less than linear 6C, including poly(3-hydroxybutyrate-co-3-hydroxy-4-methylvalerate) (PHB-4MHV) using Y-shaped 6C 3-methylvaleric acid as precursor as well as EG-containing copolymers: PHB-DEG, PHB-TEG, PHB-PEG, and PHB-HV-PEG copolymers using short-chain PEGs (with n ≤ 9) as precursors. It was shown that use of the additional carbon sources caused inhibition of cell growth, decrease in polymer yields, fall in polymer molecular weight, decrease in 3-hydroxyvalerate content in produced PHB-HV-PEG copolymer, and change in bacterial cells morphology that were depended on the nature of the precursors (carboxylic acids or EG derivatives) and the timing of its addition to the growth medium.

  9. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    SciTech Connect

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi; Alanyalıoğlu, Murat

    2014-07-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene.

  10. Synthesis of poly(methyl urethane) acrylate oligomer using 2-isocyanatoethyl methacrylate for UV curable coating.

    PubMed

    Park, M N; Oh, S W; Ahn, B H; Moon, M J; Kang, Y S

    2009-02-01

    The poly(methyl urethane) acrylate oligomer was obtained by the reaction of methyl acrylate oligomer and 2-isocyanatoethyl methacrylate. Synthesis of poly(methyl urethane) acrylate oligomer was done with 2-mercaptoethanol (2-MEOH), methyl acrylate, 2,2'-azobisisobutyronitrile (AIBN, initiator) and dibutyltin dilaurate as a catalyst. Then 2-MEOH was used for functional chain transfer agent. The structure and property of the synthesized oligomers were characterized by FT-IR, FT-NMR, rheometer, and DSC. In this study, by synthetic method including the addition of 2-isocyanatoethyl methacrylate, thermal behavior of synthesized material was improved more than that reported in the previous study. Poly(methyl urethane) oligomer can be used for UV curable coatings, inks and adhesives. UV curable coating have high resistance against weather, ozone, aging, frictional wear, and heat. Besides they can absorb the shock and resist rust according to the thickness of film. It is used as an adhesive, paint, optical fiber coating agent, and waterproof agent because of these advantages at the present time.

  11. Poly(PS-b-DMA) Micelles for Reactive Oxygen Species Triggered Drug Release

    PubMed Central

    Gupta, Mukesh K.; Meyer, Travis A.; Nelson, Christopher E.; Duvall, Craig L.

    2013-01-01

    A new micelle drug carrier that consists of a diblock polymer of propylene sulfide (PS) and N,N-dimethylacrylamide (poly(PS74−b-DMA310)) has been synthesized and characterized for site-specific release of hydrophobic drugs to sites of inflammation. Propylene sulfide was first polymerized using a thioacyl group transfer (TAGT) method with the RAFT chain transfer agent (CTA) 4-cyano-4-(ethylsulfanylthiocarbonylsulfanyl) pentanoic acid (CEP), and the resultant poly(PS74−CEP) macro-CTA was used to polymerize a second polymer block of DMA using reversible addition-fragmentation chain transfer (RAFT). The formation of the poly(PS74−b-DMA310) diblock polymer was confirmed by 1H NMR spectra and gel permeation chromatography (GPC). poly(PS74−b-DMA310) formed 100 nm micelles in aqueous media as confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Micelles loaded with the model drugs Nile red and DiO were used to demonstrate the ROS-dependent drug release mechanism of these micelles following treatment with hydrogen peroxide (H2O2), 3-morpholinosydnonimine (SIN-1), and peroxynitrite. These oxidants were found to oxidize the micelle PPS core, making it more hydrophilic and triggering micelle disassembly and cargo release. Delivery of poly(PS74−b-DMA310) micelles dual-loaded with the Förster Resonance Energy Transfer (FRET) fluorophore pair DiI and DiO was used to prove that endogenous oxidants generated by lipopolysaccharide (LPS)-treated RAW 264.7 macrophages significantly increased release of nanocarrier contents relative to macrophages that were not activated. In vitro studies also demonstrated that the poly(PS74−b-DMA310) micelles were cytocompatible across a broad range of concentrations. These combined data suggest that the poly(PS74−b-DMA310) micelles synthesized using a combination of TAGT and RAFT have significant potential for site-specific drug delivery to tissues with high levels of oxidative stress. PMID:22889714

  12. A chemically synthesized peptoid-based drag-tag enhances free-solution DNA sequencing by capillary electrophoresis.

    PubMed

    Haynes, Russell D; Meagher, Robert J; Barron, Annelise E

    2011-01-01

    We report a capillary-based DNA sequencing read length of 100 bases in 16 min using end-labeled free-solution conjugate electrophoresis (FSCE) with a monodisperse poly-N-substituted glycine (polypeptoid) as a synthetic drag-tag. FSCE enabled rapid separation of single-stranded (ss) DNA sequencing fragments with single-base resolution without the need for a viscous DNA separation matrix. Protein-based drag-tags previously used for FSCE sequencing, for example, streptavidin, are heterogeneous in molar mass (polydisperse); the resultant band-broadening can make it difficult to obtain the single-base resolution necessary for DNA sequencing. In this study, we synthesized and HPLC-purified a 70mer poly-N-(methoxyethyl)glycine (NMEG) drag-tag with a molar mass of - 11 kDa. The NMEG monomers that comprise this peptoid drag-tag are interesting for bioanalytical applications, because the methoxyethyl side chain's chemical structure is reminiscent of the basic monomer unit of polyethylene glycol, a highly biocompatible commercially available polymer, which, however, is not available in monodisperse preparation at an - 11 kDa molar mass. This is the first report of ssDNA separation and of four-color, base-by-base DNA sequencing by FSCE through the use of a chemically synthesized drag-tag. These results show that high-molar mass, chemically synthesized drag-tags based on the polyNMEG structure, if obtained in monodisperse preparation, would serve as ideal drag-tags and could help FSCE reach the commercially relevant read lengths of 100 bases or more.

  13. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid.

    PubMed

    Geng, Weitao; Cao, Mingfeng; Song, Cunjiang; Xie, Hui; Liu, Li; Yang, Chao; Feng, Jun; Zhang, Wei; Jin, Yinghong; Du, Yang; Wang, Shufang

    2011-07-01

    Bacillus amyloliquefaciens is one of most prevalent Gram-positive aerobic spore-forming bacteria with the ability to synthesize polysaccharides and polypeptides. Here, we report the complete genome sequence of B. amyloliquefaciens LL3, which was isolated from fermented food and presents the glutamic acid-independent production of poly-γ-glutamic acid.

  14. Physicochemical and morphological properties of poly (acrylamide) and methylcellulose hydrogels: rffects of monomer, crosslinker and polysaccharide compositions, polymer engineering and science

    USDA-ARS?s Scientific Manuscript database

    This paper describes the physicochemical (mechanical and swelling) and morphological characterization of poly (acrylamide) and methylcellulose (PAAm-MC) hydrogels synthesized with different formulations by the free radical polymerization method. The structure-property relationship of the PAAm-MC hyd...

  15. Synthesis and photocatalytic activity of poly(triazine imide).

    PubMed

    Ham, Yeilin; Maeda, Kazuhiko; Cha, Dongkyu; Takanabe, Kazuhiro; Domen, Kazunari

    2013-01-01

    Poly(triazine imide) was synthesized with incorporation of Li(+) and Cl(-) ions (PTI/Li(+)Cl(-)) to form a carbon nitride derivative. The synthesis of this material by the temperature-induced condensation of dicyandiamide was examined both in a eutectic mixture of LiCl-KCl and without KCl. On the basis of X-ray diffraction measurements of the synthesized materials, we suggest that a stoichiometric amount of LiCl is necessary to obtain the PTI/Li(+)Cl(-) phase without requiring the presence of KCl at 873 K. PTI/Li(+)Cl(-) with modification by either Pt or CoO(x) as cocatalyst photocatalytically produced H(2) or O(2), respectively, from water. The production of H(2) or O(2) from water indicates that the valence and conduction bands of PTI/Li(+)Cl(-) were properly located to achieve overall water splitting. The treatment of PTI/Li(+)Cl(-) with [Pt(NH(3))(4)](2+) cations enabled the deposition of Pt through ion exchange, demonstrating photocatalytic activity for H(2) evolution, while treatment with [PtCl(6)](2-) anions resulted in no Pt deposition. This was most likely because of the preferential exchange between Li(+) ions and [Pt(NH(3))(4)](2+) cations.

  16. Synthesis and characterization of poly(methoxyl ethylene glycol-caprolactone-co-methacrylic acid-co-poly(ethylene glycol) methyl ether methacrylate) pH-sensitive hydrogel for delivery of dexamethasone.

    PubMed

    Wang, Ke; Xu, Xu; Wang, YuJun; Yan, Xi; Guo, Gang; Huang, MeiJuan; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2010-04-15

    In this work, a novel pH-sensitive hydrogels based on macromonomer of methoxyl poly(ethylene glycol)-poly(caprolactone)-acryloyl chloride (MPEG-PCL-AC, PCE-AC), poly(ethylene glycol) methyl ether methacrylate (MPEGMA), and methacrylic acid (MAA) were successfully synthesized by heat-initiated free radical polymerization method. The obtained macromonomers and hydrogels were characterized by (1)H NMR and FT-IR, respectively. Morphology study, swelling behavior, in vitro drug release behavior, acute oral toxicity of hydrogels, and cytotoxicity of PCE-AC macromonomer were also investigated in this paper. Finally, the hydrogels demonstrated that the sharp change in different pH value, thus believing to be promising the suitability of the candidate for oral drug-delivery systems.

  17. Automated solid-phase synthesis of high capacity oligo-dT cellulose for affinity purification of poly-A tagged biomolecules.

    PubMed

    Sau, Sujay P; Larsen, Andrew C; Chaput, John C

    2014-12-15

    Affinity purification of poly-adenylated biomolecules using solid supports that are derivatized with poly-thymidine oligonucleotides provides a powerful method for isolating cellular mRNA. These systems have also been used to purify mRNA-peptide fusions generated by RNA-display. However, the commercial source for high capacity oligo-dT cellulose was recently discontinued. To overcome this problem, we have developed a low cost solid-phase synthesis protocol to generate oligo-dT cellulose. Comparative binding studies indicate that chemically synthesized oligo-dT cellulose functions with superior loading capacity when compared to the discontinued product. We suggest that this method could be used to synthesize oligo-dT resin for routine purification of poly-adenylated biomolecules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Electroluminescence of zinc selenium (ZnSe) nanocrystals co-doped with poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV).

    PubMed

    Yin, Yuehong; Deng, Zhenbo; Lü, Zhaoyue; Zou, Ye; Chen, Zheng; Du, Hailiang; Wang, Yongsheng

    2011-11-01

    We have synthesized water soluble zinc selenium (ZnSe) nanocrystals by using mercaotoacetic acid (TGA) as the stabilizer. The synthesized ZnSe nanocrystals were co-doped with poly[2-methoxy-5-(2'-ethylhexyloxy-p-phenylenevinylene)] (MEH-PPV) to fabricate an organic/ inorganic hybrid multilayer light-emitting device (LED). The structure of the device was indium-tin-oxide (ITO)/poly (ethylene-dioxythiophene):poly(styrenesul-fonate) (PEDOT:PSS)/MEH-PPV:ZnSe/bathocuproine (BCP)/tris-(8-hydroxylquinoline)-aluminum (Alq3)/Al. We demonstrate that the device has a lower driving voltage and increased current densities and power efficiencies owing to the co-doped ZnSe quantum dots. We obtained good efficiency of the devices when the quality ratio of MEH-PPV and ZnSe quantum dots was 1:1.

  19. Algorithm That Synthesizes Other Algorithms for Hashing

    NASA Technical Reports Server (NTRS)

    James, Mark

    2010-01-01

    An algorithm that includes a collection of several subalgorithms has been devised as a means of synthesizing still other algorithms (which could include computer code) that utilize hashing to determine whether an element (typically, a number or other datum) is a member of a set (typically, a list of numbers). Each subalgorithm synthesizes an algorithm (e.g., a block of code) that maps a static set of key hashes to a somewhat linear monotonically increasing sequence of integers. The goal in formulating this mapping is to cause the length of the sequence thus generated to be as close as practicable to the original length of the set and thus to minimize gaps between the elements. The advantage of the approach embodied in this algorithm is that it completely avoids the traditional approach of hash-key look-ups that involve either secondary hash generation and look-up or further searching of a hash table for a desired key in the event of collisions. This algorithm guarantees that it will never be necessary to perform a search or to generate a secondary key in order to determine whether an element is a member of a set. This algorithm further guarantees that any algorithm that it synthesizes can be executed in constant time. To enforce these guarantees, the subalgorithms are formulated to employ a set of techniques, each of which works very effectively covering a certain class of hash-key values. These subalgorithms are of two types, summarized as follows: Given a list of numbers, try to find one or more solutions in which, if each number is shifted to the right by a constant number of bits and then masked with a rotating mask that isolates a set of bits, a unique number is thereby generated. In a variant of the foregoing procedure, omit the masking. Try various combinations of shifting, masking, and/or offsets until the solutions are found. From the set of solutions, select the one that provides the greatest compression for the representation and is executable in the

  20. Degradability in vitro of polyurethanes based on synthetic atactic poly[(R,S)-3-hydroxybutyrate].

    PubMed

    Brzeska, J; Janeczek, H; Janik, H; Kowalczuk, M; Rutkowska, M

    2015-01-01

    The aim of the present study was to determine the degradability of aliphatic polyurethanes, based on a different amount of synthetic, atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB), in hydrolytic (phosphate buffer) and oxidative (H2O2/CoCl2) solutions. The soft segments were built with atactic poly[(R,S)-3-hydroxybutyrate] and polycaprolactone or polyoxytetramethylenediols, whereas hard segments were the reaction product of 4,4'-methylenedicyclohexyl diisocyanate and 1,4-butanediol.The selected properties - density and morphology of polymer surfaces - which could influence the sensitivity of polymers to degradation processes - were analyzed.The analysis of molecular mass (GPC), thermal properties (DSC) and the sample weight changes were undertaken to estimate the degree of degradability of polymer samples after incubation in environments studied.Investigated polyurethanes were amorphous with the very low amount of crystalline phases of hard segments.The polyurethane synthesized with a poly[(R,S)-3-hydroxybutyrate] and polyoxytetramethylenediol at a molar ratio of NCO:OH=3.7:1 (prepolymer step) appeared as the most sensitive for both degradative solutions. Its weight and molecular mass losses were the highest in comparison to other investigated polyurethanes.It could be expected that playing with the amount of poly[(R,S)-3-hydroxybutyrate] in polyurethane synthesis the rate of polyurethane degradation after immersion in living body would be modeled.

  1. Synthesis and fabrication of a degradable poly(N-isopropyl acrylamide) scaffold for tissue engineering applications

    PubMed Central

    Galperin, Anna; Long, Thomas J.; Garty, Shai; Ratner, Buddy D.

    2013-01-01

    Biodegradable poly(N-isopropyl acrylamide) (poly-NIPAM) hydrogels with controlled molecular weight of the parent polymer and its degradation products were synthesized by atom transfer radical polymerization in the presence of a polycaprolactone-based di-chlorinated macroinitiator and polycaprolactone dimethacrylate. The phase transition temperature, swelling, hydrolytic degradability, and mechanical properties at 25 and 37°C were explored. A cytocompatibility study showed good NIH3T3 cell response over 5 days culture on the surface of the hydrogels, demonstrated by a consistent increase in cell proliferation detected by an Alamar Blue assay. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide] results suggested that the hydrogels and their degradation products in the concentration range of 1–25 mg/ mL were not cytotoxic to NIH3T3 cells. A sphere-templating technique was utilized to fabricate biodegradable polyNIPAM scaffolds with monodisperse, pore size. Scaffolds with pore diameter of 48 ± 6 μm were loaded with A-10 smooth muscle cells and then warmed to 37°C entrapping cells in pores approximately 40 μm in diameter, a size we have found to be optimal for angiogenesis and biointegration. Due to their degradable nature, tunable molecular weight, highly interconnected morphology, thermally controlled monodisperse pore size, and temperature-induced volume expansion–contraction, the polyNIPAM-based scaffolds developed in this work will be valuable in tissue engineering. PMID:22961921

  2. Preparation of well-defined poly(ether-ester) macromers: photogelation and biodegradability.

    PubMed

    Nakayama, Yasuhide; Okuda, Kanna; Takamizawa, Keiichi; Nakayama, Atsuyoshi

    2011-04-01

    Two series of poly(ether-ester)-based bis-functional macromers terminated with acrylate groups and a well-defined number of ester bonds were synthesized. One series had a chain of 1, 3 or 5 ester bonds at both ends of the central poly(ethylene glycol) block (molecular weight, about 1000), while the other had an alternating structure of oligo(ethylene glycol) each of them linked to two ester bonds, in which 6 or 10 ester bonds were incorporated equally in the macromer molecules and the total molecular weight was adjusted by about 1000. Irradiation of all poly(ether-ester) macromers mixed with camphorquinone resulted in the formation of gels. Gel yield increased and hydrophilic properties of the gels produced decreased with irradiation time. The elastic modulus of the gels decreased with the number of ester bonds. Upon incubation in a PBS solution (pH 8.04), all gels were gradually degraded with time. At 3 weeks of incubation, the degradation ratio increased linearly with the number of ester bonds per unit of molecular weight of the macromers. The order of in vivo degradation rates determined from weight loss was similar to that of the in vitro study. Thus, these poly(ether-ester) macromers may be useful for biodegradable biomaterials or tissue engineering scaffolds.

  3. Electrochemical Interrogation of G3-Poly(propylene thiophenoimine) Dendritic Star Polymer in Phenanthrene Sensing

    PubMed Central

    Makelane, Hlamulo R.; Tovide, Oluwakemi; Sunday, Christopher E.; Waryo, Tesfaye; Iwuoha, Emmanuel I.

    2015-01-01

    A novel dendritic star-copolymer, generation 3 poly(propylene thiophenoimine) (G3PPT)-co-poly(3-hexylthiophene) (P3HT) star co-polymer on gold electrode (i.e., Au|G3PPT-co-P3HT) was used as a sensor system for the determination of phenanthrene (PHE). The G3PPT-co-P3HT star co-polymer was synthesized via in situ electrochemical co-polymerization of generation 3 poly (propylene thiophenoimine) and poly (3-hexylthiophene) on gold electrode. 1HNMR spectroscopy was used to determine the regioregularity of the polymer composites, whereas Fourier transform infrared spectroscopy and scanning electron microscopy were used to study their structural and morphological properties. Au|G3PPT-co-P3HT in the absence of PHE, exhibited reversible electrochemistry attributable to the oligo (thiophene) ‘pendants’ of the dendrimer. PHE produced an increase in the voltammetric signals (anodic currents) due to its oxidation on the dendritic material to produce catalytic current, thereby suggesting the suitability of the Au|G3PPT-co-P3HT electrode as a PHE sensor. The electrocatalysis of PHE was made possible by the rigid and planar oligo-P3HT species (formed upon the oxidation of the oligo (thiophene) pendants of the star-copolymer), which allowed the efficient capture (binding) and detection (electrocatalytic oxidation) of PHE molecules. PMID:26404296

  4. Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly.

    PubMed

    Zhao, Qiang; Fellinger, Tim-Patrick; Antonietti, Markus; Yuan, Jiayin

    2012-07-13

    Layer-by-layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen-doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3-cyanomethyl-1-vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen-doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as-synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m(2) g(-1). Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Poly(ethylene glycol) grafted polylactide based copolymers for the preparation of PLA-based nanocarriers and hybrid hydrogels.

    PubMed

    Riva, Raphaël; Schmeits, Stéphanie; Croisier, Florence; Lecomte, Philippe; Jérôme, Christine

    2015-01-01

    In previous works, poly(D,L-lactide-co-ɛCL-poly(ethylene glycol) (poly(D,L-La-co-αPEGɛCL) amphiphilic graft-copolymers were successfully synthesized according to a copper azide-alkyne cycloaddition (CuAAC) strategy. This paper aims at reporting on the behavior of this amphiphilic copolymer in water, which was not studied in the previous paper. Moreover, the ability of the copolymer to stabilize a PLA nanoparticles aqueous suspension is presented. For this purpose, dynamic light scattering (DLS) and transmission electron microscopy (TEM) are proposed to characterize the nanoparticles in solution. Otherwise, the strategy developed for the synthesis of the amphiphilic copolymers was adapted and extended to the synthesis of PLA-based degradable hydrogel, potentially applicable as drug-loaded degradable polymer implant.

  6. Flexible transparent electrodes based on silver nanowires synthesized via a simple method.

    PubMed

    Li, De; Han, Tao; Zhang, Lei; Zhang, Huai; Chen, Hui

    2017-09-01

    Silver nanowires (Ag NWs) with the length of approximately 60 µm and the diameter of approximately 300 nm are prepared via a simple, cost-effective, high-yield and eco-friendly procedure under a high molar concentration ratio of silver nitrate (AgNO3) solution to poly(vinyl pyrrolidone) solution. The pre-synthesized Ag NWs were analysed by scanning electron microscopy, X-ray diffraction and UV-visible spectrophotometer. Furthermore, the as-prepared silver nanowires were roll-coated on the surfaces of the polyethylene terephthalate (PET) substrates. By optimizing the concentration of silver nanowire solution, the flexible Ag NW/PET transparent electrodes with a sheet resistance of 3.8 Ω sq(-1) at a transmittance of 70% can be fabricated. The results reported in this paper provide a basis for optimizing the growth of silver nanowires and performances of transparent electrodes.

  7. Effect of sedimentation through sucrose solutions on the protein-synthesizing ability of rat liver microsomes

    PubMed Central

    Leslie, Ruth A.; Mansbridge, J. N.

    1970-01-01

    1. Centrifugation of the postmitochondrial supernatant of rat liver through 1.0m-sucrose produces particles that have 85–95% less incorporating ability in a cell-free protein-synthesizing system than either ribosomes or microsomes. 2. The incorporation of [14C]phenylalanine into protein by particles prepared by sedimentation through 1.0m-sucrose is stimulated about 20-fold by addition of poly U. 3. The content of rapidly labelled RNA of microsomes is decreased during centrifugation through 1.0m-sucrose. 4. It is suggested that degradation of mRNA occurs during the formation of the pellet in the centrifuge tube as a result of a membrane-bound alkaline ribonuclease, after removal of the ribonuclease inhibitor of the soluble fraction. PMID:5451910

  8. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles.

    PubMed

    Fortunati, E; Rinaldi, S; Peltzer, M; Bloise, N; Visai, L; Armentano, I; Jiménez, A; Latterini, L; Kenny, J M

    2014-01-30

    Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.

  9. Poly(meth)acrylate-based coatings.

    PubMed

    Nollenberger, Kathrin; Albers, Jessica

    2013-12-05

    Poly(meth)acrylate coatings for pharmaceutical applications were introduced in 1955 with the launch of EUDRAGIT(®) L and EUDRAGIT(®) S, two types of anionic polymers. Since then, by introducing various monomers into their polymer chains and thus altering their properties, diverse forms with specific characteristics have become available. Today, poly(meth)acrylates function in different parts of the gastrointestinal tract and/or release the drug in a time-controlled manner. This article reviews the properties of various poly(meth)acrylates and discusses formulation issues as well as application possibilities.

  10. Mining poly-regions in DNA.

    PubMed

    Papapetrou, Panagiotis; Benson, Gary; Kollios, George

    2012-01-01

    We study the problem of mining poly-regions in DNA. A poly-region is defined as a bursty DNA area, i.e., area of elevated frequency of a DNA pattern. We introduce a general formulation that covers a range of meaningful types of poly-regions and develop three efficient detection methods. The first applies recursive segmentation and is entropy-based. The second uses a set of sliding windows that summarize each sequence segment using several statistics. Finally, the third employs a technique based on majority vote. The proposed algorithms are tested on DNA sequences of four different organisms in terms of recall and runtime.

  11. Simplification of Methods for PET Radiopharmaceutical Syntheses

    SciTech Connect

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  12. Synthesizing Biomolecule-based Boolean Logic Gates

    PubMed Central

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  13. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  14. Syntheses and degradations of fluorinated heterocyclics

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kratzer, R. H.; Kaufman, J.; Rosser, R. W.

    1975-01-01

    The relative stability of two ring systems, the triazine rings and 1,2,4-oxadiazoles, which offer potential crosslinks useful for curing perfluoroalkyl ether elastomers, has been investigated. Tris (perfluoro-n-heptyl)-s-triazine, the perfluoroether substituted-s-triazine, 1,4-bis/(5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl/benzene, its perfluoroalkyl ether substituted analog, and 3,5-bis-(perfluoro-n-heptyl)-1,2,4-oxadiazole were synthesized and subjected to thermal and oxidative degradation at 235 and 325 C and to hydrolytic degradation at 235 C. The perfluoroalkyl ether substituted triazine and 3,5-bis(perfluoro-n-heptyl)-1,2,4-oxadiazole were found to be stable under all conditions investigated.

  15. Energy storage materials synthesized from ionic liquids.

    PubMed

    Gebresilassie Eshetu, Gebrekidan; Armand, Michel; Scrosati, Bruno; Passerini, Stefano

    2014-12-01

    The advent of ionic liquids (ILs) as eco-friendly and promising reaction media has opened new frontiers in the field of electrochemical energy storage. Beyond their use as electrolyte components in batteries and supercapacitors, ILs have unique properties that make them suitable as functional advanced materials, media for materials production, and components for preparing highly engineered functional products. Aiming at offering an in-depth review on the newly emerging IL-based green synthesis processes of energy storage materials, this Review provides an overview of the role of ILs in the synthesis of materials for batteries, supercapacitors, and green electrode processing. It is expected that this Review will assess the status quo of the research field and thereby stimulate new thoughts and ideas on the emerging challenges and opportunities of IL-based syntheses of energy materials.

  16. Syntheses and degradations of fluorinated heterocyclics

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Kratzer, R. H.; Kaufman, J.; Rosser, R. W.

    1975-01-01

    The relative stability of two ring systems, the triazine rings and 1,2,4-oxadiazoles, which offer potential crosslinks useful for curing perfluoroalkyl ether elastomers, has been investigated. Tris (perfluoro-n-heptyl)-s-triazine, the perfluoroether substituted-s-triazine, 1,4-bis/(5-perfluoro-n-heptyl)-1,2,4-oxadiazolyl/benzene, its perfluoroalkyl ether substituted analog, and 3,5-bis-(perfluoro-n-heptyl)-1,2,4-oxadiazole were synthesized and subjected to thermal and oxidative degradation at 235 and 325 C and to hydrolytic degradation at 235 C. The perfluoroalkyl ether substituted triazine and 3,5-bis(perfluoro-n-heptyl)-1,2,4-oxadiazole were found to be stable under all conditions investigated.

  17. Digital frequency synthesizer for radar astronomy

    NASA Technical Reports Server (NTRS)

    Sadr, R.; Satorius, E.; Robinett, L.; Olson, E.

    1990-01-01

    The digital frequency synthesizer (DFS) is an integral part of the programmable local oscillator (PLO) which is being developed for the NASA's Deep Space Network (DSN) and radar astronomy. Here, the theory of operation and the design of the DFS are discussed, and the design parameters in application for the Goldstone Solar System Radar (GSSR) are specified. The spectral purity of the DFS is evaluated by analytically evaluating the output spectrum of the DFS. A novel architecture is proposed for the design of the DFS with a frequency resolution of 1/2(exp 48) of the clock frequency (0.35 mu Hz at 100 MHz), a phase resolution of 0.0056 degrees (16 bits), and a frequency spur attenuation of -96 dBc.

  18. Intermetallic Nanocrystals: Syntheses and Catalytic Applications.

    PubMed

    Yan, Yucong; Du, Jingshan S; Gilroy, Kyle D; Yang, Deren; Xia, Younan; Zhang, Hui

    2017-02-24

    At the forefront of nanochemistry, there exists a research endeavor centered around intermetallic nanocrystals, which are unique in terms of long-range atomic ordering, well-defined stoichiometry, and controlled crystal structure. In contrast to alloy nanocrystals with no elemental ordering, it is challenging to synthesize intermetallic nanocrystals with a tight control over their size and shape. Here, recent progress in the synthesis of intermetallic nanocrystals with controllable sizes and well-defined shapes is highlighted. A simple analysis and some insights key to the selection of experimental conditions for generating intermetallic nanocrystals are presented, followed by examples to highlight the viable use of intermetallic nanocrystals as electrocatalysts or catalysts for various reactions, with a focus on the enhanced performance relative to their alloy counterparts that lack elemental ordering. Within the conclusion, perspectives on future developments in the context of synthetic control, structure-property relationships, and applications are discussed.

  19. Synthesizing biomolecule-based Boolean logic gates.

    PubMed

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2013-02-15

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.

  20. Molecular scale electronics: syntheses and testing

    NASA Astrophysics Data System (ADS)

    Reinerth, William A.; Jones, LeRoy, II; Burgin, Timothy P.; Zhou, Chong-wu; Muller, C. J.; Deshpande, M. R.; Reed, Mark A.; Tour, James M.

    1998-09-01

    This paper describes four significant breakthroughs in the syntheses and testing of molecular scale electronic devices. The 16-mer of oligo(2-dodecylphenylene ethynylene) was prepared on Merrifields resin using the iterative divergent/convergent approach which significantly streamlines the preparation of this molecular scale wire. The formation of self-assembled monolayers and multilayers on gold surfaces of rigid rod conjugated oligomers that have thiol, 0957-4484/9/3/016/img11-dithiol, thioacetyl, or 0957-4484/9/3/016/img11-dithioacetyl end groups have been studied. The direct observation of charge transport through molecules of benzene-1, 4-dithiol, which have been self-assembled onto two facing gold electrodes, has been achieved. Finally, we report initial studies into what effect varying the molecular alligator clip has on the molecule scale wire's conductivity.

  1. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1985-04-16

    A method and apparatus for synthesizing a mixture of aliphatic alcohols having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further optionally includes Na ions present as substitutional cations in an amount of about 5 to 10 atom %. At a temperature of about 570 to 630/sup 0/K, and at pressures of about 20 to 50 atm, methanol and isobutanol are the predominant products and are produced in amounts of about 90 wt % of the total hydrocarbon mixture. 6 figs.

  2. Method and apparatus for synthesizing hydrocarbons

    DOEpatents

    Colmenares, C.A.; Somorjai, G.A.; Maj, J.J.

    1983-06-21

    A method and apparatus for synthesizing a mixture of hydrocarbons having five carbons or less is disclosed. An equal molar ratio of CO and H/sub 2/ gases is caused to pass through a ThO/sub 2/ catalyst having a surface area of about 80 to 125 m/sup 2//g. The catalyst further includes Na present as a substitutional cation in an amount of about 5 to 10 atom %. At a temperature of about 340 to 360/sup 0/C, and at pressures of about 20 to 50 atm, CH/sub 3/OH is produced in an amount of about 90 wt % of the total hydrocarbon mixture, and comprised 1 mole % of the effluent gas.

  3. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach

    PubMed Central

    Yadav, Sudesh Kumar

    2012-01-01

    Background Green synthesis of metallic nanoparticles (NPs) has been extensively carried out by using plant extracts (PEs) which have property of stabilizers/ emulsifiers. To our knowledge, there is no comprehensive study on applying a green approach using PEs for fabrication of biodegradable PLA NPs. Conventional methods rely on molecules like polyvinyl alcohol, polyethylene glycol, D-alpha-tocopheryl poly(ethylene glycol 1000) succinate as stabilizers/emulsifiers for the synthesis of such biodegradable NPs which are known to be toxic. So, there is urgent need to look for stabilizers which are biogenic and non-toxic. The present study investigated use of PEs as stabilizers/emulsifiers for the fabrication of stable PLA NPs. Synthesized PLA NPs through this green process were explored for controlled release of the well known antioxidant molecule quercetin. Methodology/Principal Findings Stable PLA NPs were synthesized using leaf extracts of medicinally important plants like Syzygium cumini (1), Bauhinia variegata (2), Cedrus deodara (3), Lonicera japonica (4) and Eleaocarpus sphaericus (5). Small and uniformly distributed NPs in the size range 70±30 nm to 143±36 nm were formed with these PEs. To explore such NPs for drugs/ small molecules delivery, we have successfully encapsulated quercetin a lipophilic molecule on a most uniformly distributed PLA-4 NPs synthesized using Lonicera japonica leaf extract. Quercetin loaded PLA-4 NPs were observed for slow and sustained release of quercetin molecule. Conclusions This green approach based on PEs mediated synthesis of stable PLA NPs pave the way for encapsulating drug/small molecules, nutraceuticals and other bioactive ingredients for safer cellular uptake, biodistribution and targeted delivery. Hence, such PEs synthesized PLA NPs would be useful to enhance the therapeutic efficacy of encapsulated small molecules/drugs. Furthermore, different types of plants can be explored for the synthesis of PLA as well as other

  4. Synthesizing plant phenological indicators from multispecies datasets

    NASA Astrophysics Data System (ADS)

    Rutishauser, This; Peñuelas, Josep; Filella, Iolanda; Gehrig, Regula; Scherrer, Simon C.; Röthlisberger, Christian

    2014-05-01

    Changes in the seasonality of life cycles of plants from phenological observations are traditionally analysed at the species level. Trends and correlations with main environmental driving variables show a coherent picture across the globe. The question arises whether there is an integrated phenological signal across species that describes common interannual variability. Is there a way to express synthetic phenological indicators from multispecies datasets that serve decision makers as usefull tools? Can these indicators be derived in such a robust way that systematic updates yield necessary information for adaptation measures? We address these questions by analysing multi-species phenological data sets with leaf-unfolding and flowering observations from 30 sites across Europe between 40° and 63°N including data from PEP725, the Swiss Plant Phenological Observation Network and one legacy data set. Starting in 1951 the data sets were synthesized by multivariate analysis (Principal Component Analysis). The representativeness of the site specific indicator was tested against subsets including only leaf-unfolding or flowering phases, and by a comparison with a 50% random sample of the available phenophases for 500 time steps. Results show that a synthetic indicators explains up to 79% of the variance at each site - usually 40-50% or more. Robust linear trends over the common period 1971-2000 indicate an overall change of the indicator of -0.32 days/year with lower uncertainty than previous studies. Advances were more pronounced in southern and northern Europe. The indicator-based analysis provides a promising tool for synthesizing site-based plant phenological records and is a companion to, and validating data for, an increasing number of phenological measurements derived from phenological models and satellite sensors.

  5. Syntheses and Structure Determinations of Calcium Thiolates.

    PubMed

    Chadwick, Scott; Englich, Ulrich; Noll, Bruce; Ruhlandt-Senge, Karin

    1998-09-07

    The exploration of synthetic methodologies toward heavy alkaline-earth chalcogenolates resulted in the preparation and structural characterization of a family of calcium thiolates, including [Ca(SC(6)F(5))(2)(py)(4)], 1 (py = pyridine), the separated ion-triple [Ca(18-crown-6)(NH(3))(3))][SMes](2).2THF, 2 (Mes = 2,4,6-tBu(3)C(6)H(2)), and the contact triple [Ca(18-crown-6)(SMes)(2)].THF, 3. Compound 1 was prepared by treating [Ca(N(SiMe(3))(2))(2)](2) with 4 equiv of HSC(6)F(5) under addition of pyridine. The thiolates 2 and 3 were synthesized by treatment of calcium metal dissolved in dry, liquid NH(3) under addition of 2 equiv of HSMes and crown ether or, alternatively, by the reduction of MesSSMes with calcium metal in dry, liquid ammonia. We also report two reaction products isolated during attempted calcium thiolate syntheses: [CaBr(4)(THF)(2)(&mgr;(2)-Li)(2)(THF)(4)], 4, isolated as the product of a salt elimination reaction between CaBr(2) and 2 equiv of [Li(THF)(n)()S-2,4,6-(i)()Pr(3)C(6)H(2)](m)(). [(NH(4))(py)(SC(6)F(5))], 5, was obtained as the sole product in the reaction of metallic calcium with HSC(6)F(5) in liquid ammonia under addition of pyridine. All compounds were characterized by single-crystal X-ray crystallography in addition to IR and NMR spectroscopy.

  6. Poly-alpha-glutamic acid synthesis using a novel catalytic activity of RimK from Escherichia coli K-12.

    PubMed

    Kino, Kuniki; Arai, Toshinobu; Arimura, Yasuhiro

    2011-03-01

    Poly-L-α-amino acids have various applications because of their biodegradable properties and biocompatibility. Microorganisms contain several enzymes that catalyze the polymerization of L-amino acids in an ATP-dependent manner, but the products from these reactions contain amide linkages at the side residues of amino acids: e.g., poly-γ-glutamic acid, poly-ε-lysine, and cyanophycin. In this study, we found a novel catalytic activity of RimK, a ribosomal protein S6-modifying enzyme derived from Escherichia coli K-12. This enzyme catalyzed poly-α-glutamic acid synthesis from unprotected L-glutamic acid (Glu) by hydrolyzing ATP to ADP and phosphate. RimK synthesized poly-α-glutamic acid of various lengths; matrix-assisted laser desorption ionization-time of flight-mass spectrometry showed that a 46-mer of Glu (maximum length) was synthesized at pH 9. Interestingly, the lengths of polymers changed with changing pH. RimK also exhibited 86% activity after incubation at 55°C for 15 min, thus showing thermal stability. Furthermore, peptide elongation seemed to be catalyzed at the C terminus in a stepwise manner. Although RimK showed strict substrate specificity toward Glu, it also used, to a small extent, other amino acids as C-terminal substrates and synthesized heteropeptides. In addition, RimK-catalyzed modification of ribosomal protein S6 was confirmed. The number of Glu residues added to the protein varied with pH and was largest at pH 9.5.

  7. Effect of Cerium Doped on the Poly(3-(Trimethoxysilyl)propyl methacrylate) Characteristic as Corrosion Protection Material of Carbon Steel

    NASA Astrophysics Data System (ADS)

    Rochmah, D. N.; Syakir, N.; Susilawati, T.; Suryaningsih, S.; Fitrilawati

    2017-05-01

    The hybrid polymer precursor was synthesized from monomer of 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) using sol-gel method and doped with inhibitor of Cerium Nitrate Hexahydrate with a concentration of 0.2%. The synthesized material was coated on a carbon steel surface by solution casting technique and followed by a photopolymerisation process. Corrosion tests were performed by using Electrochemical Impedance Spectroscopy (EIS) in 3.5% NaCl at the critical temperature of 75°C. Result of EIS data and their fitting analysis using an equivalent circuit model shows that a coating of poly(TMSPMA)-Cerium on the surface of carbon steel form a layer of protection and caused increasing of impedance value significantly. The impedance is higher compared to the carbon steel that coated with poly(TMSPMA) only.

  8. The synthesis and in vitro characterization of the mucoadhesion and swelling of poly(acrylic acid) hydrogels.

    PubMed

    Warren, S J; Kellaway, I W

    1998-05-01

    The purpose of this research was to synthesize insoluble, mucoadhesive hydrogels by crosslinking linear poly(acrylic acid) with sucrose and investigate the relationship between hydrogel crosslink density, swelling, and in vitro mucoadhesion. A condensation reaction was employed to synthesize the hydrogels and crosslink density was varied by altering sucrose concentration and cure time. Equilibrium swelling at pH 7.4 was measured both gravimetrically and geometrically. In vitro mucoadhesion was determined by a tensile technique. Equilibrium swelling studies indicated that the crosslink density was proportional to both sucrose concentration and duration of cure time. In vitro mucoadhesive properties of the hydrogels improved as crosslink density increased. This was attributed to an increase in poly(acrylic acid) chain density/unit area of the equilibrium swollen hydrogel, which promoted interaction of the mucoadhesive and glycoprotein polymer chains.

  9. Functional Aromatic Poly(1,3,4-Oxadiazole-Ether)s with Benzimidazole Pendants: Synthesis, Thermal and Dielectric Studies

    PubMed Central

    Ganesh, Shimoga D.; Pai, Vasantakumar K.; Kariduraganavar, Mahadevappa Y.; Jayanna, Madhu B.

    2014-01-01

    Poly(1,3,4-oxadiazole-ether) with reactive carboxylic acid pendants was synthesized from solution polymerization via nucleophilic displacement polycondensation among 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole (BFPOx) and 4,4′-bis(4-hydroxyphenyl) valeric acid (BHPA). Without altering the polymeric segments, benzimidazole modified poly(1,3,4-oxadiazole-ether)s were prepared by varying stoichiometric ratios of 1,2-phenylenediamine. The molecular structural characterization of these polymers was achieved by, FT-IR, NMR, TGA, elemental analysis, and analytical techniques. The weight-average molecular weight of virgin polymer with carboxylic acid functionality was determined by gel permeation chromatography (GPC) and was found to be 22400 (Mw/Mn = 2.07). All the synthesized polyethers were compressed into pellets and electrical contacts were established to perform dielectric properties. PMID:27437448

  10. New Poly(amide-imide)/Nanocomposites Reinforced Silicate Nanoparticles Based on N-pyromellitimido-L-phenyl Alanine Containing Ether Moieties

    NASA Astrophysics Data System (ADS)

    Faghihi, Khalil; Shabanian, Meisam; Dadfar, Ehsan

    2012-02-01

    A series of Poly(amide-imide)/montmorillonite nanocomposites containing N-pyromellitimido-L-phenyl alanine moiety in the main chain were synthesized by a convenient solution intercalation technique. Poly(amide-imide) (PAI) 5 as a source of polymer matrix was synthesized by the direct polycondensation reaction of N-pyromellitimido-L-phenyl alanine 3 with 4,4'-diamino diphenyl ether 4 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PAI matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.

  11. Enhanced surface segregation of poly(methyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate by introduction of a second block.

    PubMed

    Ni, Huagang; Gao, Jie; Li, Xuehua; Hu, Yanyan; Yan, Donghuan; Ye, XiuYun; Wang, Xinping

    2012-01-01

    New fluorinated copolymers of poly(methyl methacrylate)-b-poly(butyl methacrylate) or poly(n-octadecyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate (PMMA(x)-b-PBMA(y)-ec-PFMA(z) or PMMA(x)-b-PODMA(y)-ec-PFMA(z)) were synthesized by living atom transfer radical polymerization. Thin films made of PMMA(230)-b-PODMA(y)-ec-PFMA(1) were characterized by differential scanning calorimetry, angle-resolved X-ray photoelectron spectroscopy and X-ray diffraction. These films were found to exhibit robust surface segregation of the end groups. Furthermore, the fluorine enrichment factor at the film surface was found to increase linearly with increasing degree of polymerization of poly(n-octadecyl methacrylate) and its increasing fusion enthalpy in the second block, which enhances the segregation of the fluorinated moieties.

  12. Synthesis and characterization of sulfonated poly(ether sulfone)s containing mesonaphthobifluorene for polymer electrolyte membrane fuel cell.

    PubMed

    Lim, Youngdon; Seo, Dongwan; Lee, Soonho; Hossain, Md Awlad; Lim, Jinseong; Lee, Sangyoung; Hong, Taehoon; Kim, Whangi

    2014-10-01

    The novel sulfonated poly(ether sulfone)s containing mesonaphthobifluorene (MNF) moiety were synthesized and characterized their properties. The prepared polymers have highly conjugated aromatic structure due to the MNF group which is an allotrope of carbon and one atom thick planar sheets of sp2-bonded carbon atoms. Poly(ether sulfone)s bearing tetraphenylethylene on polymer backbone were synthesized by polycondensation and followed intra-cyclization from tetraphenylethylene to form MNF by Friedel-craft reaction with Lewis acid (FeCl3). The sulfonation was performed selectively on MNF units with conc. sulfuric acid. The structural properties of the sulfonated polymers were investigated by 1H-NMR spectroscopy. The membranes were studied by ion exchange capacity (IEC), water uptake, and proton conductivity. The synthesized polymer electrolyte membranes showed better thermal and dimensional stabilities owing to the inducted highly conjugated aromatic structure in the polymer backbone. The water uptake of the synthesized membranes ranged from 23-52%, compared with 32.13% for Nafion 211 at 80 degrees C. The synthesized membranes exhibited proton conductivities (80 degrees C, RH 90%) of 74.6-100.4 mS/cm, compared with 102.7 mS/cm for Nafion 211.

  13. Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection.

    PubMed

    Yu, Lin; Xu, Wei; Shen, Wenjia; Cao, Luping; Liu, Yan; Li, Zhaoshen; Ding, Jiandong

    2014-03-01

    Endoscopic submucosal dissection (ESD) is a clinical therapy for early stage neoplastic lesions in the gastrointestinal tract. It is, however, faced with a crucial problem: the high occurrence of perforation. The formation of a submucosal fluid cushion (SFC) via a fluid injection is the best way to avoid perforation, and thus an appropriate biomaterial is vital for this minimally invasive endoscopic technique. In this study, we introduced an injectable thermogel as a novel submucosal injection substance in ESD. The hydrogel synthesized by us was composed of poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers. The polymer/water system was a low-viscosity fluid at room temperature and thus easily injected, and turned into a non-flowing gel at body temperature after injection. The submucosal injection of the thermogel to create SFCs was performed in both resected porcine stomachs and living minipigs. High mucosal elevation with a clear margin was maintained for a long duration. Accurate en bloc resection was achieved with the assistance of the thermogel. The mean procedure time was strikingly reduced. Meanwhile, no obvious bleeding, perforation and tissue damage were observed. The application of the thermogel not only facilitated the ESD procedure, but also increased the efficacy and safety of ESD. Therefore, the PLGA-PEG-PLGA thermogel provides an excellent submucosal injection system, and has great potential to improve the ESD technique significantly.

  14. Effects of the fluorine substituent positions of the intercalating ligands on the binding behavior and third-strand stabilization of two Ru(II) complexes toward poly(U)•poly(A)*poly(U) triplex RNA.

    PubMed

    Peng, Mengna; Ni, Wen; Tan, Lifeng

    2017-10-01

    Two new Ru(II) polypyridyl complexes containing fluorine substituents, [Ru(bpy)2(o-fpip)](2+) (Ru1, bpy=2,2'-bipyridine, o-fpip=2-(2-fluorophenyl)imidazo[4,5-f] [1,10]phenanthroline) and [Ru(bpy)2(p-fpip)](2+) (Ru2, p-fpip=2-(4-fluorophenyl)imidazo[4,5-f] [1,10]phenanthroline) have been synthesized as binders for poly(U)•poly(A)∗poly(U) triplex RNA. The binding of the two complexes with the triplex RNA has been investigated by spectroscopic methods and viscosity measurements. Analysis of the electronic absorption spectra indicates that the association of intercalating Ru2 with the triplex RNA is greater than that of Ru1, which is also supported by spectroscopic titrations and viscosity measurements. Thermal denaturation studies reflect that third-strand stabilization depend on the nature of the two complexes and Ru2 is more effective for stabilization of the triplex RNA. Circular dichroism spectra of the triplex RNA in the presence of metal complexes indicate that the binding-induced CD perturbation of the triplex structure is more obvious by Ru2. The main results obtained here suggest that the positions of fluorine substituent in the intercalating ligands have a significant effect on the two complexes stabilizing the third strand. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synthesis of poly glycidylmethacrylate grafted azobenzene copolymer: Photosensitivity and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Sousani, Abbas; Moghadam, Peyman Najafi; Hasanzadeh, Reza; Motiei, Hamideh; Bagheri, Massoumeh

    2016-01-01

    In this work poly glycidylmethacrylate grafted 4-hydroxy-4‧-methoxy-azobenzene (Azo-PGMA) was synthesized. For this propose firstly 4-hydroxy-4‧-methoxy-azobenzene (AZO) was prepared, then poly glycidylmethacrylate was prepared by free radical polymerization of glycidylmethacrylate in the presence of benzoyl peroxide as initiator under inert atmosphere in dry THF. Finally the homopolymer was functionalized by AZO moieties. The characterization of the synthesized copolymer was carried out by 1H NMR, FT-IR, thermal gravimetric analyze (TGA), differential scanning calorimetry (DSC) and optical polarizing microscope (POM) analysis. The UV-vis studies were carried out on Azo-PGMA copolymer and the results showed that the synthesized Azo-PGMA copolymer has ultra-fast response to UV light and has slow relaxation time. Also the third-order nonlinear optical properties of the Azo-PGMA copolymer and AZO were studied by using Z-scan technique. Nonlinear refraction and absorption coefficients of the above mentioned materials were measured by the closed and open aperture Z-scan method using a continuous wave Nd-YAG laser at 532 nm. The positive nonlinear absorption in Azo-PGMA and AZO was investigated at the wavelength of λ = 532 nm, respectively and the measured values of nonlinear refraction in both of the samples were from the order of 10-8 cm2/W.

  16. Synthesis and characterization of injectable, thermally and chemically gelable, amphiphilic poly(N-isopropylacrylamide)-based macromers.

    PubMed

    Hacker, Michael C; Klouda, Leda; Ma, Brandy B; Kretlow, James D; Mikos, Antonios G

    2008-06-01

    In this study, we synthesized and characterized a series of macromers based on poly( N-isopropylacrylamide) that undergo thermally induced physical gelation and, following chemical modification, can be chemically cross-linked. Macromers with number average molecular weights typically ranging from 2000-3500 Da were synthesized via free radical polymerization from, in addition to N-isopropylacrylamide, pentaerythritol diacrylate monostearate, a bifunctional monomer containing a long hydrophobic chain, acrylamide, a hydrophilic monomer, and hydroxyethyl acrylate, a hydrophilic monomer used to provide hydroxyl groups for further chemical modification. Results indicated that the hydrophobic-hydrophilic balance achieved by varying the relative concentrations of comonomers used during synthesis was an important parameter in controlling the transition temperature of the macromers in solution and stability of the resultant gels. Storage moduli of the macromers increased over 4 orders of magnitude once gelation occurred above the transition temperature. Furthermore, chemical cross-linking of these macromers resulted in gels with increased stability compared to uncross-linked controls. These results demonstrate the feasibility of synthesizing poly( N-isopropylacrylamide)-based macromers that undergo tandem gelation and establish key criteria relating to the transition temperature and stability of these materials. The data suggest that these materials may be attractive substrates for tissue engineering and cellular delivery applications as the combination of mechanistically independent gelation techniques used in tandem may offer superior materials with regard to gelation kinetics and stability.

  17. Poly(aryl ethers) and related polysiloxane copolymer molecular coatings: Preparation and radiation degradation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.

    1982-01-01

    The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.

  18. Controlled release of theophylline from poly(vinyl alcohol) hydrogels/porous silicon nanostructured systems

    NASA Astrophysics Data System (ADS)

    Cervantes-Rincón, N.; Medellín-Rodríguez, F. J.; Escobar-Barrios, V. A.; Palestino, G.

    2013-03-01

    In this research, hybrid hydrogels of poly (vinyl alcohol)/ porous silicon (PSi)/theophylline were synthesized by the freezing and thawing method. We evaluated the influence of the synthesis parameters of the poly (vinyl alcohol) (PVA) hydrogels in relation to their ability to swell and drug released. The parameters studied (using an experimental design developed in Minitab 16) were the polymer concentration, the freezing temperature and the number of freezing/thawing (f/t) cycles. Nanostructured porous silicon particles (NsPSi) and theophylline were added within the polymer matrix to increase the drug charge and the polymer mechanical strength. The hybrid hydrogels were characterized by Infrared Spectroscopy Fourier Transform (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC), drug delivery kinetics were engineered according to the desired drug release schedule.

  19. Thin films from hydrophilic poly(N,N-dimethyl acrylamide) copolymers as optical indicators for humidity

    NASA Astrophysics Data System (ADS)

    Lazarova, K.; Todorova, L.; Christova, D.; Vasileva, M.; Georgiev, R.; Madjarova, V.; Babeva, T.

    2017-01-01

    In the present paper we study thin films from poly(N,N-dimethyl acrylamide)-poly(ethylene oxide) (PDMAA/PEO) copolymers of different composition and structure in order to implement them as sensitive media for optical indicators for humidity. PDMAA/PEO di- and triblock copolymers were synthesized via redox polymerization in aqueous media. Thin films were deposited on silicon substrates by spin coating method using polymers solutions with appropriate concentrations. Refractive index, extinction coefficient and thickness of the films are calculated from reflectance spectra of the films deposited on silicon substrates using non-linear curve fitting method. Sensing properties of the films were tested by films exposure to different humidity levels followed by in-situ monitoring of the changes in the optical properties. The influence of the polymer structure and postdeposition annealing on the optical and sensing properties of the films was investigated. The potential application of selected polymers for optical sensing of humidity were demonstrated and discussed.

  20. Synthesis of photosensitive poly(methyl methacrylate-co-glycidyl methacrylate) for optical waveguide devices

    NASA Astrophysics Data System (ADS)

    Fei, Xu; Shi, Yuan; Cao, Yang

    2010-08-01

    Photosensitive poly(MMA-co-GMA) for optical waveguide was synthesized, and the refractive index of the polymer film was tuned in the range of 1.481-1.588 at 1550 nm by mixing with bis-phenol-A epoxy resin. The film, which was made by spinning coated the poly(MMA-co-GMA) with photo initiator, had good UV light lithograph sensitivity, high glass transition temperature ( T g : 153°C, after crosslinking) and good thermal stabilities ( T d : up to 324°C, after crosslinking). The optical waveguides with very smooth top surface were fabricated from the resulting polymer by direct UV exposure and chemical development. For waveguides with cladding, the propagation losses of the channel waveguides were measured to be below 3 dB/cm at 1550 nm.

  1. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    SciTech Connect

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-28

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance ({sup 1}HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in {sup 1}HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF{sub 3}SO{sub 3} show the highest conductivity. The complexation between EMG30 and LiCF{sub 3}SO{sub 3} were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR)

  2. Synthesis of organic soluble poly(substituted-aniline) from 2-methyl-6-ethylaniline tar

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Shu-Bai; Yao, Pei; Zhang, Qi-Meng

    2017-07-01

    Organic soluble poly(substituted-aniline) was synthesized by chemical oxidative polymerization from 2-methyl-6-ethylaniline tar. The structural information of samples was characterized using FT-IR and SEM techniques. The influences of acid concentration, mole ratio of oxidants to tar, reaction time and temperature were investigated. The solubility of polymers was also studied. The results indicate that the conductivity of poly(substituted-aniline) could reach 2.51 ×-4 S ṡ cm-1 under the reaction conditions with 1 mol./L hydrochloric acid, mole ratio of oxidants to tar = 1, and at 10∘C for 3 h. The polymers show better solubility than polyaniline in most organic solvents.

  3. A two-stage enzymatic synthesis of conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Wang, Jing; Fang, Bai-Shan; Chou, Kuang-Ying; Chen, Chien-Chung; Gu, Yesong

    2014-01-10

    The conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), possesses attractive properties that show the potential applications in many fields. In this study, we have proposed a two-stage enzymatic synthesis of conductive PEDOT. Horseradish peroxidase (HRP) acts as the catalyst to promote the generation of EDOT free radicals followed by the polymerization under the room temperature in the presence of poly(sodium 4-styrenesulfonate) (PSS), then a mild heating process is employed for further chain extension. The final PEDOT:PSS is purified with n-butanol and subjected to various characterizations, which indicate that PEDOT with enzymatic approach exhibits a similar molecular structure to that with chemical method. However, the enzymatically synthesized PEDOT:PSS demonstrates advantages, such as stable integration of PEDOT with PSS and better electrochemical properties, suggesting its future prospective applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Effect of epoxidation on 30% poly(methyl methacrylate)-grafted natural rubber polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Nazir, Khuzaimah; Aziz, Ahmad Fairoz; Adam, Nurul Ilham; Yahya, Muhd Zu Azhan; Ali, Ab Malik Marwan

    2015-08-01

    Epoxidized 30% poly(methyl methacrylate)-grafted natural rubber (EMG 30) as a polymer host in solid polymer electrolytes (SPEs) has been investigated. EMG30 was synthesized via performicepoxidation method onto 30% poly(methyl methacrylate)-grafted natural rubber (MG30) and the formations of epoxy group were discussed. The EMG30 were characterized by proton nuclear magnetic resonance (1HNMR) to investigate their chemical structure and differential scanning calorimeter to determine their crystallinity. A new peak in 1HNMR spectra (2.71 ppm) confirmed the appearance of epoxy group. SPE based on EMG30 doped with 40 wt% LiCF3SO3 show the highest conductivity. The complexation between EMG30 and LiCF3SO3 were confirmed by attenuated total reflection Fourier transform infrared (ATR-FTIR).

  5. In situ spectroelectrochemistry of poly(N,N'-ethylenebis(salicylideneiminato)Cu(II)).

    PubMed

    Tarábek, Ján; Rapta, Peter; Kalbác, Martin; Dunsch, Lothar

    2004-10-01

    In situ ESR, UV-visible, and FT-IR-ATR spectroelectrochemistry were used to study the charge transfer for electrochemically synthesized poly(N,N'-ethylenebis(salicylideneiminato)Cu(II)), which represents a macromolecular metal chelate with ESR-active central metal ions. Structural evidence for different charged states in electroactive poly(Cu(II)-salen) was obtained from ESR, UV-visible, and FT-IR spectra under reversible redox cycling. The changes in a characteristic broad ESR line without hyperfine splitting originating from Cu(II) as well as in the corresponding UV-visible and infrared spectra are discussed in order to describe an electron transfer to the redox-active sites within the polymer chains in detail.

  6. Extracellular poly(ADP-ribose) is a pro-inflammatory signal for macrophages

    PubMed Central

    Krukenberg, Kristin A.; Kim, Sujeong; Tan, Edwin S.; Maliga, Zoltan; Mitchison, Timothy J.

    2015-01-01

    Summary Poly(ADP-ribose) polymerase 1 (PARP1) synthesizes poly(ADP-ribose) (PAR), an essential post-translational modification whose function is important in many cellular processes including DNA damage signalling, cell death, and inflammation. All known PAR biology is intracellular, but we suspected it might also play a role in cell-to-cell communication during inflammation. We found that PAR activated cytokine release in human and mouse macrophages, a hallmark of innate immune activation, and determined structure-activity relationships. PAR was rapidly internalized by murine macrophages, while the monomer, ADP-ribose, was not. Inhibitors of TLR2 and TLR4 signaling blocked macrophage responses to PAR, and PAR induced TLR2 and TLR4 signaling in reporter cell lines suggesting it was recognized by these TLRs, much like bacterial pathogens. We propose that PAR acts as an extracellular “Damage Associated Molecular Pattern” (DAMP) that drives inflammatory signaling. PMID:25865309

  7. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template.

    PubMed

    Grama, S; Horák, D

    2015-01-01

    Monodisperse macroporous poly(glycidyl methacrylate) (PGMA) microspheres were used as a template for preparing porous silica particles. The starting polymer microspheres that were 9.3 microm in size were synthesized by multistep swelling polymerization using a modified Ugelstad technique. Subsequently, silica (SiO2) was deposited on the surface and inside the PGMA microspheres to produce poly(glycidyl methacrylate)-silica hybrid particles (PGMA-SiO2). Upon calcination of the PGMA-SiO2 microspheres, porous silica particles were formed. The morphology, particle size, polydispersity and inner structure of the silica microspheres were investigated by scanning and transmission electron microscopy. Thermogravimetric analysis and dynamic adsorption of nitrogen determined the amount of silica formed and its specific surface area. Compared with the starting PGMA microspheres, the size of the porous silica particles decreased by up to 30%. These porous silica microspheres are promising for chromatography and biomedical applications.

  8. Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes.

    PubMed

    Chen, Dongyang; Hickner, Michael A

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by ¹H NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 °C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 °C but much lower stability at 80 °C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  9. Synthesis of the first poly(diaminosulfide)s and an investigation of their applications as drug delivery vehicles

    PubMed Central

    Yoo, Jun; D’Mello, Sheetal R.; Graf, Tyler; Salem, Aliasger K.; Bowden, Ned B.

    2012-01-01

    This paper reports the first examples of poly(diaminosulfide)s that were synthesized by the reaction of a sulfur transfer reagent and several secondary diamines. The diaminosulfide group has the general structure of R2N-S-NR2 and, although it has been used in the synthesis of small molecules, it has never been utilized in the synthesis of macromolecules until this report. A series of poly(diaminosulfide)s were synthesized at elevated temperatures, and the molecular weights of the polymers were as high as 12,400 g mol−1 with conversions for the polymerization reaction up to 99%. The rate constants for the transamination reactions that lead to the polymers were measured in several solvents to provide an understanding the reaction conditions necessary to polymerize the monomers. The degradation of diaminosulfides were studied in D2O, C6D6, CD3OD, CDCl3, and DMSO-d6/D2O to demonstrate that they were very stable in organic solvents but degraded within hours under aqueous conditions. These results clearly demonstrated that diaminosulfides are very stable in organic solvents under ambient conditions. Poly(diaminosulfide)s have sufficient stabilities to be useful for many applications. The ability of these polymers to function as drug delivery vehicles were studied by the fabrication of nanoparticles of a water-insoluble poly(diaminosulfide) with a dye. The microparticles were readily absorbed into human embryonic 293 cells and possessed no measureable toxicity towards these same cells. PMID:22347726

  10. Degradation of Imidazolium- and Quaternary Ammonium-Functionalized Poly(fluorenyl ether ketone sulfone) Anion Exchange Membranes

    SciTech Connect

    Chen, DY; Hickner, MA

    2012-11-01

    Imidazolium and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone)s were synthesized successfully with the same degree of cationic functionalization and identical polymer backbones for a comparative study of anion exchange membranes (AEMs) for solid-state alkaline membrane fuel cells (AMFCs). Both anion exchange membranes were synthesized using a new methyl-containing monomer that avoided the use of toxic chloromethylation reagents. The polymer chemical structures were confirmed by H-1 NMR and FTIR. The derived AEMs were fully characterized by water uptake, anion conductivity, stability under aqueous basic conditions, and thermal stability. Interestingly, both the cationic groups and the polymer backbone were found to be degraded in 1 M NaOH solution at 60 degrees C over 48 h as measured by changes of ion exchange capacity and intrinsic viscosity. Imidazolium-functionalized poly(fluorenyl ether ketone sulfone)s had similar aqueous alkaline stability to quaternary ammonium-functionalized materials at 60 degrees C but much lower stability at 80 degrees C. This work demonstrates that quaternary ammonium and imidazolium cationic groups are not stable on poly(arylene ether sulfone) backbones under relatively mild conditions. Additionally, the poly(arylene ether sulfone) backbone, which is one of the most common polymers used in ion exchange membrane applications, is not stable in the types of molecular configurations analyzed.

  11. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.

    PubMed

    Fuoco, Tiziana; Finne-Wistrand, Anna; Pappalardo, Daniela

    2016-04-11

    Biodegradable aliphatic polyesters such as poly(lactide) and poly(ε-caprolactone), largely used in tissue engineering applications, lack suitable functional groups and biological cues to enable interactions with cells. Because of the ubiquity of thiol groups in the biological environment and the pliability of thiol chemistry, we aimed to design and synthesize poly(ester) chains bearing pendant thiol-protected groups. To achieve this, 3-methyl-6-(tritylthiomethyl)-1,4-dioxane-2,5-dione, a lactide-type monomer possessing a pendant thiol-protected group, was synthesized. This molecule, when used as a monomer in controlled ring-opening polymerization in combination with lactide and ε-caprolactone, appeared to be a convenient "building block" for the preparation of functionalized aliphatic copolyesters, which were easily modified further. A polymeric sample bearing pyridyl disulfide groups, able to bind a cysteine-containing peptide, was efficiently obtained from a two-step modification reaction. Porous scaffolds were then prepared by blending this latter copolymer sample with poly(L-lactide-co-ε-caprolactone) followed by salt leaching. A further disulfide exchange reaction performed in aqueous medium formed porous scaffolds with covalently linked arginine-glycine-aspartic acid sequences. The scaffolds were characterized by thermal and mechanical tests, and scanning electron microscopy surface images revealed a highly porous morphology. Moreover, a cytotoxicity test indicated good cell viability.

  12. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  13. Room temperature synthesized rutile TiO(2) nanoparticles induced by laser ablation in liquid and their photocatalytic activity.

    PubMed

    Liu, Peisheng; Cai, Weiping; Fang, Ming; Li, Zhigang; Zeng, Haibo; Hu, Jinlian; Luo, Xiangdong; Jing, Weiping

    2009-07-15

    TiO(2) nanoparticles were prepared by one-step pulsed laser ablation of a titanium target immersed in a poly-(vinylpyrrolidone) solution at room temperature. The products were systematically characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The results indicated that the rutile TiO(2) nanocrystalline particles were one-step synthesized at room temperature and the mean size in diameter is about 50 nm with a narrow size distribution. A probable formation process was proposed on the basis of the microstructure and the instantaneous plasma plume induced by the laser. Photocatalytic activity was monitored by degradation of a methylene blue solution. The as-prepared rutile TiO(2) nanoparticles demonstrate a good photocatalytic performance. This work shows that pulsed laser ablation in liquid media is a good method to synthesize some nanosized materials which are difficult to produce by other conventional methods.

  14. Photoinduced bending behavior of cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone.

    PubMed

    Lv, Jiu-an; Wang, Weiru; Xu, Jixiang; Ikeda, Tomiki; Yu, Yanlei

    2014-07-01

    Cross-linked azobenzene liquid-crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  15. Porous Thin Films Based on Photo-Cross-Linked Star-Shaped Poly(D,L-lactide)s

    DTIC Science & Technology

    2007-03-01

    pentaerythritol initiator. Solutions of the PDLLAs were cast in a , ordered honeycomb structures (or breath figures) were obtained. Correlatio er sol y...defined four-arm star-shaped poly(D,L-lactide) (PDLLA) thin films. The four-arm star-shaped PDLLAs were synthesized using an ethoxylated pentaerythritol ...picoliter beaker.” The synthesis and photo-cross-linking of functionalized polymers has received much attention in our laboratories.37-39 We also recently

  16. A new synthesis of lamellar-mesostructured silica by using poly(ethylene glycol) distearate as template

    SciTech Connect

    Zhang Huanzhi; Jin Zhengwei; Wang Xiaodong

    2008-11-03

    A lamellar-mesostructured silica has been synthesized by using poly(ethylene glycol) distearate as template in ethanol solution. Highly ordered lamellar mesostructure was confirmed by X-ray diffraction pattern, transmission electronic microscopy, and nitrogen adsorption-desorption isotherm. The material obtained in this work has a large interlayer distance, and good thermal and mechanical stabilities, which can favor the preparation of the in situ polymerized nanocomposites based on intercalation of polymers in the lamellar-mesostructured silica.

  17. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices.

    PubMed

    Couto, Ricardo; Chambon, Sylvain; Aymonier, Cyril; Mignard, Emmanuel; Pavageau, Bertrand; Erriguible, Arnaud; Marre, Samuel

    2015-01-21

    We report for the first time the use of a microfluidic supercritical antisolvent process (μSAS) to synthesize semiconducting polymer nanoparticles (NPs) of poly(3-hexylthiophene) (P3HT). Solvent-free P3HT NPs with average diameters as small as 36 ± 8 nm are obtained. They are continuously spray-coated on substrates to fabricate OFET devices, demonstrating hole mobility through the nanoparticle film equivalent to that of conventional spin-coated P3HT.

  18. Effect of polypyrrole embedment on non-isothermal crystallization kinetics of poly (vinylidene fluoride-co-hexafluoropropylene)

    NASA Astrophysics Data System (ADS)

    Biswas, Swarup; Bhattacharya, S.

    2017-05-01

    Polypyrrole (PPy)/Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) blend is synthesized by in situ polymerization of pyrrole. FTIR confirms the formation of Polypyrrole (PPy) within PVDF-HFP matrices. Weight percentages of different components within composites are estimated by TGA. Detailed study of nucleation and kinetics at its melt condition under non-isothermal environment is done by the DSC measurement. The presence of PPy within the PVDF-HFP matrices accelerated the nucleation rate of the polymer.

  19. Poly(alkylene phosphates): from synthetic models of biomacromolecules and biomembranes toward polymer-inorganic hybrids (mimicking biomineralization).

    PubMed

    Penczek, Stanislaw; Pretula, Julia; Kaluzynski, Krzysztof

    2005-01-01

    Syntheses of poly(alkylene phosphates), with repeating units having two or three methylene groups and phosphoryl groups and mimicking backbones of biomacromolecules, are reviewed. Two major methods elaborated in this laboratory, namely, ring-opening polymerization and transesterification, are described. The resulting polymers were used as carriers of cations (Ca2+ and Mg2+) in membrane processes and in controlling the crystallization of CaCO3, in a process related to biomineralization.

  20. Direct Synthesis of Poly(dimethylsiloxane) Copolymers with TPE-Properties via CuAAC (Click Chemistry).

    PubMed

    Schmidt, Udo; Zehetmaier, Philip C; Rieger, Bernhard

    2010-03-16

    Poly(dimethylsiloxane) copolymers were synthesized directly from AA/BB monomers employing a CuAAC reaction (click chemistry) in a polyaddition approach. Using organic dialkynes and oligo(siloxane)s end-functionalized with azide moieties it was possible to obtain siloxane-based copolymers with TPE properties by click chemistry for the first time. As seen from DSC experiments, properties were strongly dependent on the incorporated organic comonomer.