Science.gov

Sample records for poly vinyl pyridines

  1. Dental Pulp Stem Cell Differentiation on Poly-4-vinyl-pyridine surfaces

    NASA Astrophysics Data System (ADS)

    Suarato, Giulia; Bherwani, Aneel; Chang, Chung-Chueh; Rafailovich, Miriam; Simon, Marcia

    2012-02-01

    In the regeneration of a natural tissue, the mechanics and the chemical properties of the artificial substrate play a critical role. In this study, the influence of poly-4-vinyl-pyridine scaffold morphology on dental pulp stem cell differentiation was analyzed. Cells were plated on spun cast films and electrospun fibers with diameters ranging from nano to micrometers. Confocal microscopy showed the presence of various cell morphologies: on microfibers cells conform precisely to the main axis of elongation, while on nanometric scaffolds they result spread and in contact with several fibers. Even if the surface chemistry was identical, a great variation in the curvature was present. From day 9 of incubation, spontaneous biomineralization in the absence of induction agents occurred only on the fibrous structures. The SEM revealed template deposits directly on the microfibers, while on the nanofibers large spherical islands were also present. EDAX determined hydroxyl apatite nature of the deposits. RT-PCR indicated upregulation of osteogenic markers, confirming differentiation. SEM also revealed the presence of ECM fibers covering the polymer structure, which may enhance the expression of focal adhesion sites on the cell membrane.

  2. Mechanism of titania deposition into cylindrical poly(styrene-block-4 vinyl pyridine) block copolymer templates.

    PubMed

    Lou, Qin; Chinthamanipeta, Pavan S; Shipp, Devon A

    2011-12-20

    A simple and effective way for TiO(2) to be deposited on silicon or indium tin oxide (ITO) substrates has been achieved by using a poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer template. In particular, a mechanism for the formation of TiO(2) within the P4VP phase was developed. Within this model, the TiO(2) deposition occurs by swelling of the protonated P4VP segments followed by transport of Ti precursor, probably protonated Ti(OH)(4) given the low pH conditions used, into the swollen P4VP followed by condensation into TiO(2) during the heating/plasma etch processes. TiO(2) nanostructure morphology is affected by pH and deposition temperatures, because these parameters affect the degree of protonation of P4VP segments and diffusion of the titanium(IV) bis(ammonium lactato)dihydroxide (TALH) precursor into the film. A pH range of 2.1-2.5 for silicon substrates and pH = 2.1 for ITO substrates gave the narrower TiO(2) nanostructures distributions, and deposition at 70 °C gave TiO(2) nanostructures with more regular arrangements and smoother surface than those deposited at room temperature. The use of 1,4-diiodobutane as a P4VP cross-linking compound is demonstrated to be a critical parameter for maintaining good cylindrical surface morphology for both the block copolymer template and the TiO(2) nanostructures.

  3. The effect of molecular weight on light scattering of photonic poly styrene-block-poly-2-vinyl pyridine nano-structure

    NASA Astrophysics Data System (ADS)

    Lim, Jin Youb; Yun, Jae Hoon; Jang, Da bin; Shin, Dong Myung

    2015-08-01

    Commonly, one dimensional construct has a restriction of viewing angle. We report a new, simplistic strategy to Particle Photonic Crystal: an ellipsoidal block copolymer nanoparticles. It has a wider viewing angle and is easier to make. We made a particle of photonic crystal based on Poly Styrene-block-Poly-2-Vinyl Pyridine(PS-b-P2VP) in chloroform. After using Poly Vinyl Alcohol(PVA), it was in state of emulsion and self assembly method followed afterwards. In the first trial, we observed particle structure variation according to the difference in molecular weight such as 52k-57k, 75k-66.5k, 102k-97k. Afterwards, we exhibited how particle structure change by the addition of swelling solution (Alcohol). The molecular structure of particle photonic crystal was investigated by Transmission Electron Microscope. The color was measured by color-difference meter.

  4. Synthesis and characterization of poly(4-vinyl pyridine-co-styrene)/FHAP nanocomposite, and its biomedical application

    NASA Astrophysics Data System (ADS)

    Dhanalakshmi, C. P.; Vijayalakshmi, L.; Narayanan, V.

    2013-10-01

    Among the composite materials, ceramic/polymer possesses significant advantages of high mechanical reliability and excellent biocompatibility for applications in load-bearing areas. In this work, PVPCS(Poly (4-vinyl pyridine-co-styrene))/FHAp nanocomposites of varying weight percentages were synthesized and characterized physical-chemically by XRD, FTIR, 31P NMR, TGA, DTA, and FE-SEM and biologically by antimicrobial and anti-inflammatory assays for evaluating their potential use for biomedical applications. The results indicated that the size and crystallinity of FHAp nanoparticles decrease with increase in PVPCS concentration in the composite. SEM confirmed the presence of FHAp nano rod crystals in PVPCS matrix. The nano PVPCS20/FHAp demonstrated the highest antifungal and antibacterial activity and favorable inhibition of human cell hemolysis. The designed PVPCS/FHAp nanocomposites constitute promising candidates for biomedical applications.

  5. Fabrication of 3D interconnected porous TiO2 nanotubes templated by poly(vinyl chloride-g-4-vinyl pyridine) for dye-sensitized solar cells.

    PubMed

    Koh, Joo Hwan; Koh, Jong Kwan; Seo, Jin Ah; Shin, Jong-Shik; Kim, Jong Hak

    2011-09-01

    Porous TiO(2) nanotube arrays with three-dimensional (3D) interconnectivity were prepared using a sol-gel process assisted by poly(vinyl chloride-graft-4-vinyl pyridine), PVC-g-P4VP graft copolymer and a ZnO nanorod template. A 7 µm long ZnO nanorod array was grown from the fluorine-doped tin oxide (FTO) glass via a liquid phase deposition method. The TiO(2) sol-gel solution templated by the PVC-g-P4VP graft copolymer produced a random 3D interconnection between the adjacent ZnO nanorods during spin coating. Upon etching of ZnO, TiO(2) nanotubes consisting of 10-15 nm nanoparticles were generated, as confirmed by wide-angle x-ray scattering (WAXS), energy-filtering transmission electron microscopy (EF-TEM) and field-emission scanning electron microscopy (FE-SEM). The ordered and interconnected nanotube architecture showed an enhanced light scattering effect and increased penetration of polymer electrolytes in dye-sensitized solar cells (DSSC). The energy conversion efficiency reached 1.82% for liquid electrolyte, and 1.46% for low molecular weight (M(w)) and 0.74% for high M(w) polymer electrolytes.

  6. Poly(4-vinyl pyridine) radiografted PVDF track etched membranes as sensors for monitoring trace mercury in water

    NASA Astrophysics Data System (ADS)

    Bessbousse, H.; Zran, N.; Fauléau, J.; Godin, B.; Lemée, V.; Wade, T.; Clochard, M.-C.

    2016-01-01

    By a radiation-induced grafting technique, we have functionalized track-etched nanoporous polymer membranes with mercury sensitive poly-4-vinyl pyridine (P4VP). Coating of these membranes with a very thin layer of gold results in an electrochemical sensor that is very selective and highly sensitive for mercury LOD 5 ng/L - well below the norms for water (0.015 μg/L potable water and 0.5 μg/L residual waters-French water norms of 27 October 2011). E-beam irradiation permitted optimization of the radiografting synthesis on PVDF thin films prior to ion-track grafting. Synthesis and characterization by EPR, FESEM and FTIR are described in detail. A comparison between FTIR in ATR and transmission modes enabled us to localize the grafting on the surface of the e-beam irradiated PVDF films allowing us to extrapolate what happens on the etched tracks. Using Square Wave Anodic Stripping Voltammetry (SW-ASV), mercury concentrations of 1 μg/L are detected in 2 h and low ng/L concentrations are detected after 24 h of adsorption. The adsorption is passive so sensors do not require instrumentation and the analysis takes only 3-4 min. Also, the P4VP functionalized sensor appears insensitive to pH variations (pHs 3-9), high salt concentrations (up to 1 g/L) and the presence of other heavy metals in the same solution.

  7. Novel liquid-crystalline polymeric materials via noncovalent grafting: Hydrogen-bonded complexes with poly(4-vinyl pyridine)

    SciTech Connect

    Brandys, F.A.; Bazuin, C.G.

    1993-12-31

    A new type of liquid crystalline polymeric material can be formed by mixing a classical small molecule liquid crystal, which has been functionalized by a strongly polar, ionic or ionisable group, with a polymer possessing complementary groups. Noncovalent {open_quotes}grafting{close_quotes} of the small molecule mesogen to the polymer can then take place through hydrogen-bonding or electrostatic interactions. The authors have end-functionalized a 4,4`-n-alkoxy-biphenyl mesogen with a carboxylic acid group, and mixed it with poly(4-vinyl pyridine). FTIR spectroscopy clearly shows that hydrogen-bonding takes place between the two species. Differential scanning calorimetry, polarizing optical microscopy and X-ray scattering studies show that the disordered smectic phase which exists in the functionalized liquid crystal alone is thermally stabilized when mixed with the polymer, and an ordered mesophase present in the liquid crystal disappears in the mixtures, at molar ratios of liquid crystal to polymer repeat unit of less than 1. Dynamic mechanical analysis, possible for mixtures with molar rations of 0.1 or less, show that the glass transition temperature of the polymer decreases by 80{degrees}C up to a molar ratio of 0.02, confirming the effectiveness of the interactions between the two species. No further decrease occurs at higher molar ratios, due to formation of the solid phase of the liquid crystalline material.

  8. Dynamic behavior of supramolecular comb polymers consisting of poly(2-vinyl pyridine) and palladium-pincer surfactants in the solid state.

    PubMed

    Davidi, Inbal; Hermida-Merino, Daniel; Keinan-Adamsky, Keren; Portale, Giuseppe; Goobes, Gil; Shenhar, Roy

    2014-06-01

    When poly(2-vinyl pyridine) is combined with Pd-pincer-based organometallic surfactants, a mesomorphic structure forms due to weak stacking interactions between the pyridine units and the Pd-pincer headgroups. The weak binding between the surfactant and the polymer competes with the tendency of the aliphatic tails of the surfactant to crystallize. Here, we demonstrate that over extended periods of incubation, the crystallization tendency of the surfactant tails causes the surfactant molecules to detach from the polymer and gives rise to additional packing modes of the alkyl tails featuring higher crystalline order. The dynamic behavior of these aged structures was investigated by variable-temperature small-angle X-ray scattering (SAXS) and solid-state (13)C NMR, and revealed the influence of thermal changes on the molecular level, and how these changes propagate to the mesoscale structure.

  9. High throughput analysis and capture of benzo[a]pyrene using supermacroporous poly(4-vinyl pyridine-co-divinyl benzene) cryogel matrix.

    PubMed

    Gupta, Ankur; Sarkar, Joyita; Kumar, Ashok

    2013-02-22

    A novel supermacroporous cryogel matrix, poly(4-vinyl pyridine-co-divinyl benzene) has been synthesized by free radical polymerization using 4-vinyl pyridine and divinyl benzene as monomers and poly(ethylene glycol) diacrylate as crosslinker. Hydrophobic property of such synthesized matrix allows capture of polyaromatic hydrocarbons like benzo[a]pyrene. The cryogel matrix produced is highly porous (porosity more than 80%) having large and interconnected pores in the range of 10-100 μm that allows easy passage of particulate matter and viscous liquids. The newly synthesized cryogel minicolumns (0.5 ml; 0.9 cm dia.× 1.2 cm height) were used to develop a high throughput analysis system in a miniaturized platform (open ended 96-well microtitre plate). The performance of the cryogel columns in 96-well microtitre plate was reproducible in different wells having approximately 72% binding. This system is drainage- and leakage- protected and can be used for the easy, fast and parallel analysis of many samples. The 96-well format also allows efficient analysis of benzo[a]pyrene in the spiked sample. The cryogel matrix was then used for column chromatography, which showed that the matrix has a binding capacity of 2 μg per ml of matrix for benzo[a]pyrene, thus providing a system for remediation/separation of benzo[a]pyrene. The chromatographic column could bind and partially separate the spiked mixture of benzo[a]pyrene and anthracene. PMID:23336940

  10. Cationic vinyl pyridine copolymers and products thereof

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1978-01-01

    Quaternized, cross-linked, insoluble copolymers of unsubstituted and substituted vinyl pyridines and a dihalo organic compound are spontaneously formed at ambient temperature on mixing the two monomers in bulk, in solution or in suspension. The amount of cross-linking may be varied according to the composition and reaction conditions. The polymer product exhibits ion exchange capacity and undergoes a reversible color change from black at a pH above 7 to yellow at a pH below 7. The polymer may be formed in the presence of preformed polymers, substrates such as porous or impervious particles or films to deposit an ion exchange film in situ or on the surface of the substrate. The coated or resin impregnated substrate may be utilized for separation of anionic species from aqueous solution.

  11. Exploring the influence of the poly(4-vinyl pyridine) segment on the solution properties and thermal phase behaviours of oligo(ethylene glycol) methacrylate-based block copolymers: the different aggregation processes with various morphologies.

    PubMed

    Dai, Yalan; Wu, Peiyi

    2016-08-01

    The assembly properties, thermal phase behavior and microdynamics of well-defined P(MEO2MA-co-OEGMA)-b-P4VP, (poly(2-(2-methoxyethoxy)ethylmethacrylate)-co-poly(oligo(ethylene glycol) methacrylate))-b-poly(4-vinyl pyridine), in aqueous solution during heating are investigated in detail by dynamic light scattering (DLS), turbidity measurements, temperature-variable (1)H NMR and FTIR spectroscopy in combination with two-dimensional correlation spectroscopy (2Dcos) and the perturbation correlation moving window (PCMW) technique. It is observed that the chain length of the relatively hydrophobic P4VP segment strongly affects the temperature-induced phase transition behavior of the block copolymers: the copolymers with shorter P4VP7/10 segments exhibit an abrupt phase transition process, while the copolymer with longer P4VP19 blocks presents a relatively gradual transition behavior. Moreover, the two systems with different P4VP segment lengths have different morphologies in aqueous solution: a single-chain globule for shorter P4VP7/10 systems and a core-shell micelle consisting of a relatively hydrophobic P4VP core and a hydrophilic POEGMA-based shell for the longer P4VP19 system. Analysis of spectral results clearly illustrates that the dehydration of the C[double bond, length as m-dash]O groups at the linkages between backbones and pendant chains predominates the sharp phase transition of P(MEO2MA-co-OEGMA)-b-P4VP10, while the dehydration of hydrophobic C-H groups on the side chains in P(MEO2MA-co-OEGMA)-b-P4VP19 leads to the continuous increase of the hydrodynamic diameter (Dh) upon heating. PMID:27425657

  12. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Poly(vinyl fluoride) resins. 175.270 Section 175... Substances for Use as Components of Coatings § 175.270 Poly(vinyl fluoride) resins. Poly(vinyl fluoride) resins identified in this section may be safely used as components of food-contact coatings...

  13. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly(vinyl fluoride) resins. 175.270 Section 175... Substances for Use as Components of Coatings § 175.270 Poly(vinyl fluoride) resins. Poly(vinyl fluoride) resins identified in this section may be safely used as components of food-contact coatings...

  14. MECHANICAL PROPERTIES OF BLENDS OF PAMAM DENDRIMERS WITH POLY(VINYL CHLORIDE) AND POLY(VINYL ACETATE)

    EPA Science Inventory

    Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...

  15. Poly(vinyl chloride) processes and products.

    PubMed

    Wheeler, R N

    1981-10-01

    Poly(vinyl chloride) resins are produced by four basic processes: suspension, emulsion, bulk and solution polymerization. PVC suspensions resins are usually relatively dust-free and granular with varying degrees of particle porosity. PVC emulsion resins are small particle powders containing very little free monomer. Bulk PVC resins are similar to suspension PVC resins, though the particles tend to be more porous. Solution PVC resins are smaller in particle size than suspension PVC with high porosity particles containing essentially no free monomer. The variety of PVC resin products does not lend itself to broad generalizations concerning health hazards. In studying occupational hazards the particular PVC process and the product must be considered and identified in the study.

  16. Worker exposure to vinyl chloride and poly(vinyl chloride).

    PubMed

    Jones, J H

    1981-10-01

    The National Institute for Occupational Safety and Health (NIOSH) in early 1974 began industrial hygiene studies of vinyl chloride exposed workers. Three VC monomer plants, three VC polymerization plants, and seven PVC fabrication plants were surveyed. V polymerization plant workers and workers in one job category in VC monomer plants were exposed to average levels above 1 ppm. The highest average exposure was 22 ppm. NIOSH health hazard evaluation studies since these initial surveys have primarily shown nondetectable levels of vinyl chloride. A NIOSH control technology study in 1977 showed that exposure levels in VC polymerization plants had been drastically reduced but exposure levels above 1 ppm were still found in several cases.

  17. Heat resistance poly(vinyl alcohol) hydrogel

    NASA Astrophysics Data System (ADS)

    Yoshii, F.; Makuuchi, K.; Darwis, D.; Iriawan, T.; Razzak, M. T.; Rosiak, Janusz M.

    1995-08-01

    Six methods were used to evaluate the heat resistance of poly(vinyl alcohol) (PVA) hydrogel prepared by a combination of electron beam irradiation and acetalization of PVA. The physical properties of the hydrogel depended on the degree of acetilization which was affected by content of water in PVA sheet of acetalization in formaldehyde solution at 60°C. It was found that the optimum water content was 20-30%. The acetalized PVA sheet gave maximum tensile strength in electron beams irradiation at 100 kGy. The tensile strength of the hydrogel film increased to 20 MPa from 14 MPa by the irradiation. Heat resistance of the hydrogel was evaluated by measuring the mechanical properties after sterilization in a steam autoclave at 121°C for 90 min. The tensile strength decreased to 10 MPa whereas the elongation at break increased to 300%. The tackiness of the hydrogel was improved by radiation grafting of acrylic acid. Wholesomeness of the hydrogel as a wound dressing was evaluated by attaching to a burn or wound of the back skin of marmots. Advantages of the hydrogel over a gauze dressing were homogeneous adhesion to the affected parts, easy removal without damage to renewed skin and slightly faster rate of reconstruction of the injured skin.

  18. Methods for the synthesis of deuterated vinyl pyridine monomers

    DOEpatents

    Hong, Kunlun; Yang, Jun; Bonnesen, Peter V

    2015-01-13

    Methods for synthesizing deuterated vinylpyridine compounds of the Formula (1), wherein the method includes: (i) deuterating an acyl pyridine of the Formula (2) in the presence of a metal catalyst and D.sub.2O, wherein the metal catalyst is active for hydrogen exchange in water, to produce a deuterated acyl compound of Formula (3); (ii) reducing the compound of Formula (3) with a deuterated reducing agent to convert the acyl group to an alcohol group, and (iii) dehydrating the compound produced in step (ii) with a dehydrating agent to afford the vinylpyridine compound of Formula (1). The resulting deuterated vinylpyridine compounds are also described.

  19. Methods for the synthesis of deuterated vinyl pyridine monomers

    SciTech Connect

    Hong, Kunlun; Yang, Jun; Bonnesen, Peter V

    2014-02-25

    Methods for synthesizing deuterated vinylpyridine compounds of the Formula (1), wherein the method includes: (i) deuterating an acyl pyridine of the Formula (2) in the presence of a metal catalyst and D.sub.2O, wherein the metal catalyst is active for hydrogen exchange in water, to produce a deuterated acyl compound of Formula (3); (ii) reducing the compound of Formula (3) with a deuterated reducing agent to convert the acyl group to an alcohol group, and (iii) dehydrating the compound produced in step (ii) with a dehydrating agent to afford the vinylpyridine compound of Formula (1). The resulting deuterated vinylpyridine compounds are also described.

  20. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Poly(vinyl fluoride) resins. 175.270 Section 175.270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF...

  1. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Poly(vinyl fluoride) resins. 175.270 Section 175.270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF...

  2. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Poly(vinyl fluoride) resins. 175.270 Section 175.270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components of...

  3. Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly (vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on m...

  4. Preparation of Syndiotactic Poly(vinyl alcohol)/Poly(vinyl pivalate/vinyl acetate) Microspheres with Radiopacity Using Suspension Copolymerization and Saponification

    NASA Astrophysics Data System (ADS)

    Seok Lyoo, Won; Wook Cha, Jin; Young Kwak, Kun; Jae Lee, Young; Yong Jeon, Han; Sik Chung, Yong; Kyun Noh, Seok

    2010-06-01

    To prepare Poly(vinyl pivalate/vinyl acetate) [P(VPi/VAc)] microspheres with radiopacity, the suspension copolymerization approach in the presence of aqueous radiopaque nanoparticles was used. After, The P(VPi/VAc) microspheres with radiopacity were saponified in heterogeneous system, and then P(VPi/VAc) microspheres without aggregates were converted to s-PVA/P(VPi/VAc) microspheres of skin/core structure through the heterogeneous surface saponification. Radiopacity of microspheres was confirmed with Computed tomography (CT).

  5. Characterisation of poly(vinyl alcohol) by liquid chromatography techniques

    SciTech Connect

    Meehan, E.; Warner, F.P.; Patterson, M.

    1995-12-01

    The molecular weight distribution of poly (vinyl alcohol) can be measured by aqueous size exclusion chromatography methods but the choice of eluent is critical in eliminating non size exclusion behavior. Aqueous size exclusion experiments have been carried out using a number of eluents including standard electrolytes and surfactants. The most favorable molecular size separation was obtained using 0.25% w/v sodium lauryl sulphate as eluent. Compositional distributions in copolymer systems can be assessed using high performance liquid chromatography employing a reverse phase separation mechanism. For poly (vinyl alcohol) gradient elution with water/tetrahydrofuran was found to produce a separation according to composition. Fast gradient elution (>10% tetrahydrofuran/minute) suggested abroad distribution of composition which was verified using a column packed with non-porous beads. Slower gradient elution (<1% tetrahydrofuran/minute) suggested that this was not due to a gradual composition change but rather discrete fractions of similarly hydrophobic material.

  6. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    PubMed

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. PMID:26614797

  7. Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement.

    PubMed

    Katta, Jayanth K; Marcolongo, Michele; Lowman, Anthony; Mansmann, Kevin A

    2007-11-01

    Many hydrogels have been proposed as articular cartilage replacements as an alternative to partial or total joint replacements. In the current study, poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) hydrogels were investigated as potential cartilage replacements by investigating their in vitro wear and friction characteristics in a pin-on-disk setup. A three-factor variable-level experiment was designed to study the wear and friction characteristics of PVA/PVP hydrogels. The three different factors studied were (a) polymer content of PVA/PVP hydrogels, (b) load, and (c) effect of lubricant. Twelve tests were conducted, with each lasting 100,000 cycles against Co-Cr pins. The average coefficient of friction for synovial fluid lubrication was a low 0.035 compared with 0.1 for bovine serum lubrication. Frictional behavior of PVA/PVP hydrogels did not follow Amonton's law of friction. Wear of the hydrogels was quantified by measuring their dry masses before and after the tests. Higher polymer content significantly reduced the wear of hydrogel samples with 15% PVA/PVP samples, showing an average dry polymer loss of 4.74% compared with 6.05% for 10% PVA/PVP samples. A trend change was observed in both the friction and wear characteristics of PVA/PVP hydrogels at 125 N load, suggesting a transition in the lubricating mechanism at the pin-hydrogel interface at the critical 125 N load.

  8. Biodegradable poly(ethylene-g-vinyl alcohol) copolymer

    SciTech Connect

    Watanabe, T.; Huang, S.J.

    1993-12-31

    A graft reaction of poly(vinyl alcohol), PVA, and polyethylene grafted width maleic anhydride has been carried out in order to add hydrophobicity to PVA. Biodegradabilities of PVA and the polyethylene derivative are well-known. The graft reaction product that was prepared by a simple procedure was characterized with FTIR, DSC, and TGA. The FTIR spectra indicated that ester bonds were formed in the product. It was also found from the thermal analysis that the graft compound was less crystalline that raw PVA and the thermal properties of the graft copolymer remarkably depended on molar ratio of succinic anhydride group in the polyethylene derivative that was used in the graft reaction. The degradation of the material will be discussed.

  9. Influence of Glyoxal on Preparation of Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Blend Film.

    PubMed

    Park, Ju-Young; Hwang, Kyung-Jun; Yoon, Soon-Do; Lee, Ju-Heon; Lee, In-Hwa

    2015-08-01

    The preparation of a poly(vinyl alcohol)/poly(acrylic acid)/glyoxal film (PVA = poly(vinyl alcohol); PAA = poly(acrylic acid)) with high tensile strength and hydrophobic properties by using the crosslinking reaction for OH group removal is reported herein. PAA was selected as a crosslinking agent because the functional carboxyl group in each monomer unit facilitates reaction with PVA. The OH groups on unreacted PVA were removed by the addition of glyoxal to the PVA/PAA solution. The chemical properties of the PVA/PAA films were investigated using Fourier transformation infrared spectroscopy and the thermal properties of the PVA/PAA/glyoxal films were investigated by means of differential scanning calorimetry and thermogravimetric analysis. A tensile strength of 48.6 N/mm2 was achieved at a PVA/PAA ratio of 85/15 for the PVA/PAA film. The tensile strength of the cross-linked PVA/PAA/glyoxal film (10 wt% glyoxal) was increased by 55% relative to the pure PVA/PAA (85/15) film. The degree of swelling (DS) and solubility (S) of the 10 wt% (PVA/PAA = 85/15, wt%) film added 10 wt% glyoxal were 1.54 and 0.6, respectively. PMID:26369179

  10. Effects of solvents on the radiation grafting reaction of vinyl compounds on poly (3-hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Torres, Maykel González; Talavera, José Rogelio Rodríguez; Muñoz, Susana Vargas; Pérez, Manuel González; Castro, Ma. Pilar. Carreón.; Cortes, Jorge Cerna; Muñoz, Rodrigo Alonso Esparza

    2015-03-01

    Vinyl Acetate was grafted onto poly (3-hydroxybutyrate) by the simultaneous gamma irradiation method using different types of solvents and in bulk (solvent free), at 10 kGy and 1.62 kGy/h dose and dose rate respectively. Subsequent complete hydrolysis allowed the conversion of grafted chains from poly (vinyl acetate) to poly (vinyl alcohol). The aim of this study is to determine the effect of solvent through the estimation of the dependence of the degree of grafting with the choice of solvent, the calculation of the degree of crystallinity, and to study the biodegradation of the products. The results showed a greater degree of grafting in bulk, while the more suitable solvent was hexane. Characterization of the grafted copolymer indicated that crystallinity percentage decreased by an increase in grafting, while the biodegradability was promoted by the increment in poly (vinyl alcohol) grafted.

  11. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  12. Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite

    SciTech Connect

    Patel, Jayesh D.; Chaudhuri, Tapas K.

    2009-08-05

    A simple solution growth method for synthesis of nanocomposite of PbS nanoparticles in poly(vinyl-pyrrolidone) (PVP) polymer is described. The nanocomposite is prepared from methanolic solution of lead acetate (PbAc), thiourea (TU) and PVP at room temperature ({approx}27 deg. C). Optical absorption spectrum of PbS/PVP nanocomposite solution shows strong absorption from 300 to 650 nm with significant bands at 400 and 590 nm which is characteristic of nanoscale PbS. Spin-coated nanocomposite films on glass have an absorption edge at {approx}650 nm with band gap of 2.55 eV. Fourier transform infrared (FTIR) spectroscopy of PbS/PVP nanocomposite and PVP shows strong chemical bond between PbS nanoparticles and host PVP polymer. The transmission electron microscope (TEM) images reveal that 5-10 nm PbS particles are evenly embedded in PVP polymer. The formation of PbS is confirmed by selective area electron diffraction (SAED) of a typical nanoparticle.

  13. Self-assembled hemocompatible coating on poly (vinyl chloride) surface

    NASA Astrophysics Data System (ADS)

    Zha, Zhengbao; Ma, Yan; Yue, Xiuli; Liu, Meng; Dai, Zhifei

    2009-11-01

    A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe 3+/Hep and DS/Fe 3+/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe 3+/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe 3+/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.

  14. Chitosan/poly (vinyl pyrollidone) coatings improve the antibacterial properties of poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Wang, Bai-liang; Wang, Jin-lei; Li, Dan-dan; Ren, Ke-feng; Ji, Jian

    2012-08-01

    Chitosan/poly (vinyl pyrollidone) (CHI/PVP) coatings were prepared to improve the antibacterial properties of poly (ethylene terephthalate) (PET) by a simple dip-coating method. The binding capability of CHI/PVP coatings was enhanced by successively pretreatment of PET by polyetherimide and polyacrylic acid and crosslinking. Measurements of water contact angle and atomic force microscope revealed that the coatings created a highly hydrophilic surface with low roughness. Adherences of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) on PET with CHI/PVP coating were significantly reduced. Bactericidal activity of CHI/PVP coatings was good against E. coli and S. aureus and the adding of PVP obviously increased its antiadhesion property. In vitro cytotoxicity tests, cell morphology and activity evaluation of human umbilical vein endothelial cells showed that CHI/PVP coatings had good biocompatibility.

  15. Poly(vinyl alcohol) functionalized poly(dimethylsiloxane) solid surface for immunoassay.

    PubMed

    Yu, Ling; Li, Chang Ming; Zhou, Qin; Luong, John H T

    2007-01-01

    In this communication, we describe a simple and robust method for the covalent bonding of poly(vinyl alcohol) (PVA) on a silanized poly(dimethylsiloxane) (PDMS) surface. Nonspecific adsorption of proteins via hydrophobic-hydrophobic interactions of the PVA-coated surface is greatly reduced, and biomolecules can be rapidly anchored on the PVA-coated surface with high loading and uniformity. On the basis of a sandwich immunoassay with the anti-rabbit IgG and IgG pair as a model, the detection limit for IgG is down to 1 pg/mL with linearity up to 11 microg the levels often encountered in biological, forensic, and environmental samples. PMID:17298027

  16. Fabrication of Poly (methyl methacrylate) and Poly(vinyl alcohol) Thin Film Capacitors on Flexible Substrates

    NASA Astrophysics Data System (ADS)

    Salim, Bindu; Meenaa Pria KNJ, Jaisree; Alagappan, M.; Kandaswamy, A.

    2015-11-01

    Flexible electronics is becoming more popular with introduction of more and more organic conducting materials and processes for making thin films. The use of polymers as gate dielectric has over ruled the usage of conventional inorganic oxides in Organic Thin Film Transistors (OTFTs) on account of its solution process ability and ease of making highly insulating thin film. In this work Capacitance is fabricated with polymeric dielectrics namely poly (methyl methacrylate) - PMMA and poly (vinyl alcohol) - PVA. The electrodes used for these capacitors are Indium Tin Oxide (ITO) and Aluminium. Capacitance value of 9.5nF/cm2 and 33.12nF/cm2 is achieved for thickness of 510 nm of PMMA and 80 nm of PVA respectively. This study on capacitance can be used for assessing the suitability of these polymers as gate insulators in OTFTs.

  17. Development of functionalized hydroxyapatite/poly(vinyl alcohol) composites

    NASA Astrophysics Data System (ADS)

    Stipniece, Liga; Salma-Ancane, Kristine; Rjabovs, Vitalijs; Juhnevica, Inna; Turks, Maris; Narkevica, Inga; Berzina-Cimdina, Liga

    2016-06-01

    Based on the well-known pharmaceutical excipient potential of poly(vinyl alcohol) (PVA) and clinical success of hydroxyapatite (HAp), the objective of this work was to fabricate functionalized composite microgranules. PVA was modified with succinic anhydride to introduce carboxyl groups (-COOH), respectively, by reaction between the -OH groups of PVA and succinic anhydride, for attachment of drug molecules. For the first time, the functionalized composite microgranules containing HAp/PVA in the ratio of 1:1 were prepared through in situ precipitation of HAp in modified PVA aqueous solutions followed by spray drying of obtained suspensions. The microgranules were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry (DSC). The presence of -COOH groups was verified by FT-IR, and the amount of functional groups added to PVA molecules (averaging 15 mol%) was determined by nuclear magnetic resonance spectroscopy (NMR). DSC results showed that modification with -COOH groups slightly decreased the thermal stability of PVA. FT-IR and XRD analysis confirmed that the resulting composites contain mainly nanocrystalline HAp and PVA. Moreover, the images taken by FE-SEM revealed that the microgranules consisted of nanosized HAp crystallites homogenously embedded in the PVA matrix. DSC measurements indicated that decomposition mechanism of the HAp/PVA differs from that of pure PVA and occurs at lower temperatures. However, the presence of HAp had minor influence on the thermal decomposition of the PVA modified with succinic anhydride. The investigation of composite microgranules confirmed interaction and integration between the HAp and PVA.

  18. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  19. Determination of vinyl chloride monomer residue in poly(vinyl chloride) at the parts-per-billion level with an automatic purge-and-trap technique.

    PubMed

    Poy, F; Cobelli, L; Banfi, S; Fossati, F

    1987-06-12

    A method for the determination of vinyl chloride residue in poly(vinyl chloride) using a commercial purge-and-trap ancillary unit has been developed. Concentrations lower than 10 ppb (10(9] with relative standard deviations in the region of 10% in up to 24 samples are detectable with fully automatic operation without operator attendance. With multiple extraction of the same sample an external standard is used; the matrix does not have any influence on the recovery of vinyl chloride.

  20. Evaluation of CO2-philicity of poly(vinyl acetate) and poly(vinyl acetate-alt-maleate) copolymers through molecular modeling and dissolution behavior measurement.

    PubMed

    Hu, Dongdong; Sun, Shaojun; Yuan, Peiqing; Zhao, Ling; Liu, Tao

    2015-02-19

    Multiscale molecular modeling and dissolution behavior measurement were both used to evaluate the factors conclusive on the CO2-philicity of poly(vinyl acetate) (PVAc) homopolymer and poly(vinyl acetate-alt-maleate) copolymers. The ab initio calculated interaction energies of the candidate CO2-philic molecule models with CO2, including vinyl acetate dimer (VAc), dimethyl maleate (DMM), diethyl maleate (DEM), and dibutyl maleate (DBM), showed that VAc was the most CO2-philc segment. However, the cohesive energy density, solubility parameter, Flory-Huggins parameter, and radial distribution functions calculated by using the molecular dynamics simulations for the four polymer and polymer-CO2 systems indicated that poly(VAc-alt-DBM) had the most CO2-philicity. The corresponding polymers were synthesized by using free radical polymerization. The measurement of cloud point pressures of the four polymers in CO2 also demonstrated that poly(VAc-alt-DBM) had the most CO2-philicity. Although copolymerization of maleate, such as DEM or DBM, with PVAc reduced the polymer-CO2 interactions, the weakened polymer-polymer interaction increased the CO2-philicity of the copolymers. The polymer-polymer interaction had a significant influence on the CO2-philicity of the polymer. Reduction of the polymer-polymer interaction might be a promising strategy to prepare the high CO2-philic polymers on the premise that the strong polymer-CO2 interaction could be maintained.

  1. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  2. Vinyl stilbazoles

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); Heimbuch, Alvin H. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1986-01-01

    Vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are disclosed. These vinylpyridines form copolymers with bismaleimides which copolymers have good fire retardancy and decreased brittleness. The cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone. Reinforced composites made from the cured copolymers are disclosed as well.

  3. Photophysics of poly(p-pyridine): Blue electroluminescent devices from a soluble conjugated polymer

    SciTech Connect

    Jessen, S.W.; Gebler, D.D.; Wang, Y.Z.

    1995-12-01

    Poly({rho}-pyridine) (PPy) is a conjugated polymer which luminesces strongly in the blue wavelength region. PPy is soluble in hydrochloric or formic acid and is stable in air. We report the fluorescence and transient absorption spectrum of PPy in the visible region.

  4. Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles.

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Kyulavska, Mariya; Bozukova, Dimitriya; Debuigne, Antoine; Detrembleur, Christophe

    2010-04-15

    A new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) (PVOH-b-PAN) copolymer obtained by selective hydrolysis of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) copolymer synthesized by cobalt mediated radical polymerization was used for the preparation of PVOH-b-PAN based micelles with embedded silver nanoparticles. The successful formation of silver loaded micelles has been confirmed by UV-vis, DLS and TEM analysis and their antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and spore solution of Bacillus subtilis (B. subtilis) has been studied. PVOH-b-PAN based micelles with embedded silver nanoparticles showed a strong bactericidal effect against E. coli, S. aureus and P. aeruginosa and the minimum bactericidal concentration for each system (MBC) has been determined.

  5. Structural and electronic properties of poly(vinyl alcohol) using density functional theory

    SciTech Connect

    Dabhi, Shweta Jha, Prafulla K.

    2014-04-24

    The first principles calculations have been carried out to investigate the structural, electronic band structure density of states along with the projected density of states for poly(vinyl alcohol). Our structural calculation suggests that the poly(vinyl alcohol) exhibits monoclinic structure. The calculated structural lattice parameters are in excellent agreement with available experimental values. The band structure calculations reveal that the direct and indirect band gaps are 5.55 eV and 5.363 eV respectively in accordance with experimental values.

  6. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production. PMID:24355619

  7. Modifying theophylline microparticle surfaces via the sequential deposition of poly(vinyl alcohol-co-vinyl acetate) copolymers.

    PubMed

    Zhao, Yanjun; Alas'ad, Mannar A; Jones, Stuart A

    2014-03-10

    The aim of this study was to investigate the manner in which amphiphilic poly(vinyl alcohol-co-vinyl acetate) copolymers (PVA-Ac) assembled on drug surfaces and use this information to generate a novel bi-layer polymer coating for a theophylline microparticle. Three grades of PVA-Ac, differing in hydrolysis degree and monomer distribution, were synthesised, characterised by nuclear magnetic resonance and shown to interact with theophylline when suspended in water. PVA-Ac deposition at the solid/liquid interface was driven by polymer hydrogen bond formation in a process that induced consequential structural changes in the macromolecule architecture. The most hydrophobic grades of the copolymer appeared to adsorb in a multistage process that passed through a series of equilibrium points. The PVA-Ac surface allowed two grades of the copolymer to be sequentially adsorbed and this resulted in the fabrication of a microparticle with desirable characteristics for pharmaceutical formulation production.

  8. Pyridine

    Integrated Risk Information System (IRIS)

    Pyridine ; CASRN 110 - 86 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  9. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  10. Electroactive characteristics of hydrogels composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide)

    NASA Astrophysics Data System (ADS)

    Kim, Seon Jeong; Park, Sang Jun; Kim, Sun I.; Kim, In Young; Lee, Young Moo; Kim, Hee Chan; Chung, Taek Dong

    2003-04-01

    Hydrogels composed of poly(vinyl alcohol) (PVA) and poly(N-isopropylacrylamide) (PNIPAAm) was prepared by the sequential-interpenetrating polymer network (IPN) method. The equilibrium swelling ratio and bending behavior under electric fields of the IPN hydrogel were measured in aqueous NaCl solution. The IPN exhibited a high equilibrium swelling ratio, in the range 280~380%. When the IPN in aqueous NaCl solution is subjected to an electric field, the IPN showed significant and quick bending toward the cathode. The IPN hydrogel also showed stepwise bending behavior depending on the electric stimulus. In addition, ionic conductivity of the IPN hydrogel was measured using dielectric analysis (DEA). The ionic conductive behavior of IPN hydrogel follows the Arrhenius equation. The conductivity of IPN hydrogel and the activation energy for the form of the IPN were 1.68 ×10-5 S/cm at 36 °C and 61.0 kJ/mol, respectively.

  11. Unusual Morphologies of Poly(vinyl alcohol) Thin Films Adsorbed on Poly(dimethylsiloxane) Substrates.

    PubMed

    Karki, Akchheta; Nguyen, Lien; Sharma, Bhanushee; Yan, Yan; Chen, Wei

    2016-04-01

    Adsorption of poly(vinyl alcohol) (PVOH), 99% and 88% hydrolyzed poly(vinyl acetate), to poly(dimethylsiloxane) (PDMS) substrates was studied. The substrates were prepared by covalently attaching linear PDMS polymers of 2, 9, 17, 49, and 116 kDa onto silicon wafers. As the PDMS molecular weight/thickness increases, the adsorbed PVOH thin films progressively transition from continuous to discontinuous morphologies, including honeycomb and fractal/droplet. The structures are the result of thin film dewetting that occurs upon exposure to air. The PVOH film thickness does not vary significantly on these PDMS substrates, implicating the PDMS thickness as the cause for the morphology differences. The adsorbed PVOH thin films are less stable and have a stronger tendency to dewet on thicker, more liquid-like PDMS layers. When PVOH(99%) and PVOH(88%) thin films are compared, fractal and droplet morphologies are observed on high molecular weight PDMS substrates, respectively. The formation of the unique fractal features in the PVOH(99%) thin films as well as other crystalline and semicrystalline thin films is most likely driven by crystallization during the dehydration process in a diffusion-limited aggregation fashion. The only significant enhancement in hydrophilicity via PVOH adsorption was obtained on PDMS(2k), which is completely covered with a PVOH thin film. To mimic the lower receding contact angle and less liquid-like character of the PDMS(2k) substrate, light plasma treatment of the higher molecular weight PDMS substrates was carried out. On the treated PDMS substrates, the adsorbed PVOH thin films are in the more continuous honeycomb morphology, giving rise to significantly enhanced wettability. Furthermore, hydrophobic recovery of the hydrophilized PDMS substrates was not observed during a 1 week period. Thus, light plasma oxidation and subsequent PVOH adsorption can be utilized as a means to effectively hydrophilize conventional PDMS substrates. This study

  12. Improved cellular response of chemically crosslinked collagen incorporated hydroxyethyl cellulose/poly(vinyl) alcohol nanofibers scaffold.

    PubMed

    Zulkifli, Farah Hanani; Jahir Hussain, Fathima Shahitha; Abdull Rasad, Mohammad Syaiful Bahari; Mohd Yusoff, Mashitah

    2015-02-01

    The aim of this research is to develop biocompatible nanofibrous mats using hydroxyethyl cellulose with improved cellular adhesion profiles and stability and use these fibrous mats as potential scaffold for skin tissue engineering. Glutaraldehyde was used to treat the scaffolds water insoluble as well as improve their biostability for possible use in biomedical applications. Electrospinning of hydroxyethyl cellulose (5 wt%) with poly(vinyl alcohol) (15 wt%) incorporated with and without collagen was blended at (1:1:1) and (1:1) ratios, respectively, and was evaluated for optimal criteria as tissue engineering scaffolds. The nanofibrous mats were crosslinked and characterized by scanning electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Scanning electron microscope images showed that the mean diameters of blend nanofibers were gradually increased after chemically crosslinking with glutaraldehyde. Fourier transform infrared spectroscopy was carried out to understand chemical interactions in the presence of aldehyde groups. Thermal characterization results showed that the stability of hydroxyethyl cellulose/poly(vinyl alcohol) and hydroxyethyl cellulose/poly(vinyl alcohol)/collagen nanofibers was increased with glutaraldehyde treatment. Studies on cell-scaffolds interaction were carried out by culturing human fibroblast (hFOB) cells on the nanofibers by assessing the growth, proliferation, and morphologies of cells. The scanning electron microscope results show that better cell proliferation and attachment appeared on hydroxyethyl cellulose/poly(vinyl alcohol)/collagen substrates after 7 days of culturing, thus, promoting the potential of electrospun scaffolds as a promising candidate for tissue engineering applications.

  13. Films from spruce galactoglucomannan blended with poly(vinyl alcohol), corn arabinoxylan and konjac glucomannan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The improvement of mechanical properties of spruce galactoglucomannan (GGM)-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and konjac glucomannan (KGM). The blend ratios were 3:1, 1:1, and 1:3(w/w), and in addition films were made from each o...

  14. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  15. Electrospun nanofibers of poly(vinyl alcohol)reinforced with cellulose nanofibrils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, nanofibers of poly(vinyl alcohol) (PVA) reinforced with cellulose nanofibrils (CnF) were produced by electrospinning. The effects of applied voltage, polymer concentration and injection rate, tip-to-collector distance (TCD), rotation speed of the collector, and relative humidity on mor...

  16. Microstructure and molecular interaction in glycerol plasticized chitosan/poly(vinyl alcohol) blending films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly (vinyl alcohol) (PVA)/chitosan (CS) blended films plasticized by glycerol were investigated using mechanical testing, atomic force microscopy (AFM), differential scanning calorimetry (DSC) and FTIR spectroscopy, with primary emphasis on the effects of the glycerol content and the molecular weig...

  17. Review of pulmonary effects of poly(vinyl chloride) and vinyl chloride exposure.

    PubMed

    Lilis, R

    1981-10-01

    The contributions of several recent reports to the definition of pulmonary effects of PVC dust inhalation are reviewed. Granulomatous reaction, with inclusion of PVC particles in macrophages and histocytes, and associated interstitial pulmonary fibrosis have been found to lead to exertional dyspnoea, diffuse micronodular chest radiographic opacities and restrictive pulmonary dysfunction. The effects of vinyl chloride (VC) monomer (gas) on proteins and the immunologic mechanisms triggered by the altered protein are possible mechanisms for the development in some cases of interstitial pulmonary fibrosis secondary to VC exposure. Vinyl chloride, a confirmed carcinogen, has been associated with, among other malignant tumors, a significant increase in the incidence of lung cancer. The magnitude of this effect has not yet been completely evaluated.

  18. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  19. Poly[aqua(μ-vinyl-phospho-nato)cadmium].

    PubMed

    Congiardo, Laura K Byington; Mague, Joel T; Funk, Aaron R; Yngard, Ria; Knight, D Andrew

    2011-04-01

    The title compound, [Cd(C(2)H(3)O(3)P)(H(2)O)](n), was obtained from vinyl-phospho-nic acid and cadmium nitrate. The vinyl groups project into the inter-lamellar space and the structure is held together via van der Waals forces. The Cd(2+) ion is six-coordinate and the geometry is best described as distorted octa-hedral, with O-Cd-O angles falling within the range 61.72 (13)-101.82 (14)°. Five of the coordinated oxygen atoms originate from the phospho-nate group and the sixth from a bound water molecule. Cd-O distances lie between 2.220 (3) and 2.394 (2) Å. The water mol-ecule is hydrogen bonded to a phospho-nate oxygen atom. PMID:21753970

  20. Amylopectin-g-poly(N-vinyl-2-pyrrolidone): synthesis, characterization and in vitro release behavior.

    PubMed

    Ahuja, Munish; Thakur, Kanika; Kumar, Ashok

    2014-08-01

    In the present study, amylopectin-g-poly(N-vinyl-2-pyrrolidone) was synthesized by UV-assisted grafting reactions. The effect of concentrations of amylopectin, N-vinyl-pyrrolidone and ammonium persulfate on the % grafting efficiency was studied using 3-factor, 2-level factorial experimental design. The graft co-polymer was characterized by Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. The concentrations of amylopectin, N-vinyl-2-pyrrolidone and ammonium persulfate were found to exert a significant synergistic effect on grafting efficiency. The optimized batch of graft co-polymer prepared using concentration of amylopectin (4%), N-vinyl-2-pyrrolidone (2%) and ammonium persulfate (10 mmol/L) had 83.16% grafting efficiency. On comparative evaluation of films of amylopectin-g-poly(N-vinyl-pyrrolidone) with amylopectin, the graft co-polymer film provided a prolonged release following Higuchi square release kinetics. PMID:24751256

  1. Polyblends of Poly(vinyl alcohol) and Poly(Vegr;-caprolactone) and Their Properties

    NASA Astrophysics Data System (ADS)

    Arcana, I. M.; Alio, L.

    2008-03-01

    The increasing volume of plastic has caused the serious problem in environment. One way to solve this problem is preparation of new plastic materials which can be decomposed by microorganisms in environment These plastics may be prepared from non-biodegradable material by modification of theirs physical and chemical properties, preparation of theirs copolymers and polyblends. The main problem in preparation of polyblends is compatibility between polymers mixtures. In this work has focused on preparation of polyblends between poly(vinyl alcohol) (PVA) and poly(ɛ-caprolactone) (PCL) in various compositions by casting of polymers solution. Characterizations of polyblends were carried out by analysis of functional groups (FTIR), thermal property (DSC and TGA/DTA), mechanical properties (Tensile tester), and crystallinity (XRD). The results of polyblends showed that the compatible and homogeneous polyblends were obtained in solvent composition (dimethyl sulfoxide/tetrahydrofurane) (DMSO/THF) of 3:1 and PCL ratio in polyblends less than 15 % (w/w). The absorption intensity of carbonyl and alkyl groups observed in 1725 cm-1 and 2940 cm-1 increased with increasing PCL composition in polyblends. The melting point (Tm) and fusion enthalpy (ΔHm) for PCL region in polyblends decreased with decreasing PCL composition, but melting point (Tm) and fusion of enthalpy (ΔHm) for PVA region increased. The total fusion enthalpy value obtained by observation was smaller than that of calculation value, indicating the presence of interaction between PCL and PVA to form a part of compatible polyblends with more amorphous structure. The mechanical properties of polyblends tended to decrease with increasing PCL ratio in polyblends. These results were supported by analysis of crystallinity with using X-ray diffraction.

  2. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  3. Tensile Properties of Poly (N-vinyl caprolactam) Gels

    NASA Technical Reports Server (NTRS)

    Morgret, Leslie D.; Hinkley, Jeffrey A.

    2004-01-01

    N-vinyl caprolactam was copolymerized with ethylene glycol dimethacrylate using a free-radical initiator in alcohol/water solution. The resulting gels were thermally-responsive in water, undergoing an approximate fivefold reversible volume shrinkage between room temperature and ca. 50 C. Tensile testing showed that the stress-strain behavior was qualitatively different in the collapsed state above the temperature-induced transition. At the higher temperature, gels were stiffer, more ductile, and showed greater time dependence. Implications for the design of gel actuators are briefly discussed.

  4. Poly(vinyl ester) Block Copolymers Synthesized by Reversible Addition−Fragmentation Chain Transfer Polymerizations

    SciTech Connect

    Lipscomb, Corinne E.; Mahanthappa, Mahesh K.

    2009-07-31

    Homopolymerizations and block copolymerizations of vinyl acetate (VAc), vinyl pivalate (VPv), and vinyl benzoate (VBz) by reversible addition-fragmentation chain transfer (RAFT) polymerization have been studied. Polymerizations of VAc initiated with 2,2{prime}-azobis(isobutyronitrile) (AIBN) at 60 C using two different xanthate RAFT agents C{sub 2}H{sub 5}OC(=S)SR (R = -CH(CH{sub 3})CO{sub 2}C{sub 2}H{sub 5} (1) and -CH(CH{sub 3})O{sub 2}CC(CH{sub 3}){sub 3} (2)) were examined to elucidate the dependence of the polydispersities of the resulting polymers on the RAFT agent leaving group R. RAFT agent 2, in which the leaving R-group mimics a growing vinyl ester polymer chain, consistently yields poly(vinyl acetates) having broader polydispersities than those synthesized using 1 (M{sub n} = 3.6-14 kg/mol and M{sub w}/M{sub n} = 1.15-1.33). While VPv exhibits similar controlled polymerization behavior to VAc, RAFT homopolymerizations of VBz mediated by 1 indicate this electron-deficient vinyl ester requires higher temperatures to effect controlled polymerizations to yield polymers having M{sub n} = 4-14 kg/mol and M{sub w}/M{sub n} = 1.29-1.53. Chain extension reactions from xanthate-terminated vinyl ester homopolymers with VAc, VPv, and VBz proceed with variable efficiencies to furnish block copolymers that microphase separate in the melt state as determined by small-angle X-ray scattering.

  5. Radiation-chemical synthesis of poly(vinyl alcohol) hydrogel containing dicyclohexano-18-crown-6

    NASA Astrophysics Data System (ADS)

    Zakurdaeva, O. A.; Nesterov, S. V.; Shmakova, N. A.; Semenova, G. K.; Sozontova, E. O.; Feldman, V. I.

    2007-12-01

    Radiation-chemical synthesis of poly(vinyl alcohol) hydrogels containing physically immobilized dicyclohexano-18-crown-6 was carried out. Remarkable gel fraction of 40-70% was observed at absorbed dose of about 5 kGy. Increasing degree of poly(vinyl alcohol) crosslinking led to growth of the efficiency of crown ether immobilization. Post-irradiation thermal annealing of the hydrogel samples at 120 °C for 0.5-5 h resulted in an increase of crown ether retention as compared with non-annealed samples by approximately 20% at the same absorbed dose. Preliminary results on a sorption behavior of the crown-containing hydrogels with respect to Sr 2+ cations in 2.4 M HNO 3 solution are presented.

  6. Controlled release of theophylline from poly(vinyl alcohol) hydrogels/porous silicon nanostructured systems

    NASA Astrophysics Data System (ADS)

    Cervantes-Rincón, N.; Medellín-Rodríguez, F. J.; Escobar-Barrios, V. A.; Palestino, G.

    2013-03-01

    In this research, hybrid hydrogels of poly (vinyl alcohol)/ porous silicon (PSi)/theophylline were synthesized by the freezing and thawing method. We evaluated the influence of the synthesis parameters of the poly (vinyl alcohol) (PVA) hydrogels in relation to their ability to swell and drug released. The parameters studied (using an experimental design developed in Minitab 16) were the polymer concentration, the freezing temperature and the number of freezing/thawing (f/t) cycles. Nanostructured porous silicon particles (NsPSi) and theophylline were added within the polymer matrix to increase the drug charge and the polymer mechanical strength. The hybrid hydrogels were characterized by Infrared Spectroscopy Fourier Transform (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Differential Scanning Calorimetry (DSC), drug delivery kinetics were engineered according to the desired drug release schedule.

  7. Purification and characterization of an esterase involved in poly(vinyl alcohol) degradation by Pseudomonas vesicularis PD.

    PubMed

    Sakai, K; Fukuba, M; Hasui, Y; Moriyoshi, K; Ohmoto, T; Fujita, T; Ohe, T

    1998-10-01

    An esterase catalyzing the hydrolysis of acetyl ester moieties in poly(vinyl alcohol) was purified 400-fold to electrophoretic homogeneity from the cytoplasmic fraction of Pseudomonas vesicularis PD, which was capable of assimilating poly(vinyl alcohol) as the sole carbon and energy source. The purified enzyme was a homodimeric protein with a molecular mass of 80 kDa and the isoelectric point was 6.8. The pH and temperature optima of the enzyme were 8.0 and 45 degrees C. The enzyme catalyzed the hydrolysis of side chains of poly(vinyl alcohol), short-chain p-nitrophenyl esters, 2-naphthyl acetate, and phenyl acetate, and was slightly active toward aliphatic esters. The enzyme was also active toward the enzymatic degradation products, acetoxy hydroxy fatty acids, of poly(vinyl alcohol). The K(m) and Vmax of poly(vinyl alcohol) (degree of polymerization, 500; saponification degree, 86.5-89.0 mol%) and p-nitrophenyl acetate were 0.381% (10.6 mM as acetyl content in the polymer) and 2.56 microM, and 6.52 and 12.6 mumol/min/mg, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate at a concentration of 5 mM, which indicated that the enzyme was a serine esterase. The pathway for the metabolism of poly(vinyl alcohol) is also discussed.

  8. Biomedical applications of stereoregular poly(vinyl alcohol) micro- and nanoparticles

    NASA Astrophysics Data System (ADS)

    Lyoo, Won Seok; Kim, Joon Ho; Kim, Sam Soo; Ghim, Han Do

    2002-11-01

    Syndiotactic poly(vinyl alcohol) (PVA)/poly(vinyl pivalate/vinyl acetate) (P(VPi/VAc)) and atactic PVA/PVAc micro- and nanoparticles with skin/core structure have been prepared by heterogeneous saponification of P(VPi/VAc) and PVAc micro- and nanoparticles. Especially, to prepare P(VPi/VAc) and PVAc microparticles having various particle sizes and uniform particle size distribution, vinyl pivalate (VPi)/vinyl acetate (VAc) and VAc were suspension-polymerized using a low-temperature initiator, 2,2"-azobis(2,4-dimethylvaleronitrile). P(VPi/VAc) particles are promising precursor of stereoregular PVA embolic materials which can be introduced through catheters in the management of gastrointestinal bleeders, arteriovenous malformations, hemangiomas, and traumatic rupture of blood vessels. Monodisperse and/or nearly monodisperse P(VPi/VAc) and PVAc microparticles with various particle diameters were obtained by controlling suspension polymerization conditions. Monodisperse P(VPi/VAc) and PVAc microparticles having various particle sizes were partially saponified in the heterogeneous system. PVA/P(VPi/VAc) and PVA/PVAc microparticles having various tacticity and degree of saponification were produced by controlling various polymerization and saponification conditions. The coating of stereoregular PVA micro- and nanoparticles for drug release experiments was conducted with the strepo-avidin-alkaline phosphatase conjugate in variable conditions of pH value, coating buffer, and reaction temperature. Protein-coated syndiotactic PVA micro- and nanoparticles, which does not crosslinking, were more superior to controllability of drug release, durability, and dimensional stability to water and blood than atactic one.

  9. X-ray structures of precursors of styrylpyridine-derivatives used to obtain 4-((E)-2-(pyridin-2-yl)vinyl)benzamido-TEMPO: synthesis and characterization.

    PubMed

    Soriano-Moro, Guillermo; Percino, María Judith; Sánchez, Ana Laura; Chapela, Víctor Manuel; Cerón, Margarita; Castro, María Eugenia

    2015-04-02

    The synthesis and characterization of the precursor isomers trans-4-(2-(pyridin-2-yl)vinylbenzaldehyde (I), trans-4-(2-(pyridin-4-yl)vinylbenzaldehyde (II), trans-4-(2-(pyridin-2-yl)vinylbenzoic acid (III) and (E)-4-(2-(pydridin-4-yl)vinylbenzoic acid (IV) are reported. These compounds were prepared in order to obtain trans-4-((E)-2-(pyridin-2-yl)vinyl)benzamide-TEMPO (V). Compounds I and II were obtained by using a Knoevenagel reaction in the absence of a condensing agent and solvent. Oxidation of the aldehyde group using the Jones reagent afforded the corresponding acid forms III and IV. A condensation reaction with 4-amino-TEMPO using oxalyl chloride/DMF/CH2Cl2 provided the 4-((E)-2-(pyridin-2-yl)vinyl)benzamide-TEMPO. Single crystals of compounds I, II and III were obtained and characterized by X-ray diffraction. Compound I belongs to space group P2(1)/c, a = 12.6674(19) Å, b = 7.2173(11) Å, c = 11.5877(14) Å, b = 97.203(13)° and the asymmetric unit was Z = 4, whereas compound II was in the space group P2(1), with a = 3.85728(9) Å, b = 10.62375(19) Å, c = 12.8625(2) Å, b = 91.722 (2)° and the asymmetric unit was Z = 2. Compound III crystallized as single colorless needle crystals, belonging to the monoclinic system with space group P2(1), with Z = 2, with a = 3.89359(7) Å, b = 17.7014(3) Å, c = 8.04530(12) Å, b = 94.4030 (16)°. All compounds were completely characterized by IR, (1)H-NMR, EI-MS and UV-Vis.

  10. X-ray structures of precursors of styrylpyridine-derivatives used to obtain 4-((E)-2-(pyridin-2-yl)vinyl)benzamido-TEMPO: synthesis and characterization.

    PubMed

    Soriano-Moro, Guillermo; Percino, María Judith; Sánchez, Ana Laura; Chapela, Víctor Manuel; Cerón, Margarita; Castro, María Eugenia

    2015-01-01

    The synthesis and characterization of the precursor isomers trans-4-(2-(pyridin-2-yl)vinylbenzaldehyde (I), trans-4-(2-(pyridin-4-yl)vinylbenzaldehyde (II), trans-4-(2-(pyridin-2-yl)vinylbenzoic acid (III) and (E)-4-(2-(pydridin-4-yl)vinylbenzoic acid (IV) are reported. These compounds were prepared in order to obtain trans-4-((E)-2-(pyridin-2-yl)vinyl)benzamide-TEMPO (V). Compounds I and II were obtained by using a Knoevenagel reaction in the absence of a condensing agent and solvent. Oxidation of the aldehyde group using the Jones reagent afforded the corresponding acid forms III and IV. A condensation reaction with 4-amino-TEMPO using oxalyl chloride/DMF/CH2Cl2 provided the 4-((E)-2-(pyridin-2-yl)vinyl)benzamide-TEMPO. Single crystals of compounds I, II and III were obtained and characterized by X-ray diffraction. Compound I belongs to space group P2(1)/c, a = 12.6674(19) Å, b = 7.2173(11) Å, c = 11.5877(14) Å, b = 97.203(13)° and the asymmetric unit was Z = 4, whereas compound II was in the space group P2(1), with a = 3.85728(9) Å, b = 10.62375(19) Å, c = 12.8625(2) Å, b = 91.722 (2)° and the asymmetric unit was Z = 2. Compound III crystallized as single colorless needle crystals, belonging to the monoclinic system with space group P2(1), with Z = 2, with a = 3.89359(7) Å, b = 17.7014(3) Å, c = 8.04530(12) Å, b = 94.4030 (16)°. All compounds were completely characterized by IR, (1)H-NMR, EI-MS and UV-Vis. PMID:25849803

  11. Synthesis and Luminescent Property of Poly(9-(3-vinyl-phenyl)-anthracene).

    PubMed

    Lee, Sunmi; Shin, Hwangyu; Park, Beom-Soo Michael; Lee, Jaehyun; Park, Jongwook

    2015-07-01

    Polymer light-emitting diodes (PLEDs) have attracted much attention from academia and industry field because of their various applications such as large area flat-panel displays and lightings. In this paper, we suggest new blue emitting polymer based on anthracene, Poly(9-(3-Vinyl-phenyl)-anthracene) (PVPA). From NMR data, vinyl group protons were disappeared and aromatic protons showed broad proton peaks because of polymer characteristics. PVPA had film property well and it exhibited vivid PL maximum values of 431, 455, 482 nm and broad PL spectrum. Three dopants for green, red, yellow were used to PVPA, all energy transfer was happened well. By using rubrene dopant of yellow emission, doped film provided white PL. PMID:26373155

  12. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    DOE PAGES

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-03-11

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly-(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligandsmore » (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42 3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Lastly, adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.« less

  13. Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Chuang, L. C.; Kannan, A. M.; Lin, C. W.

    A series of hydrocarbon membranes consisting of poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA) and poly(vinyl pyrrolidone) (PVP) were synthesized and characterized for direct methanol fuel cell (DMFC) applications. Fourier transform infrared (FT-IR) spectra confirm a semi-interpenetrating (SIPN) structure based on a cross-linked PVA/SSA network and penetrating PVP molecular chains. A SIPN membrane with 20% PVP (SIPN-20) exhibits a proton conductivity value comparable to Nafion ® 115 (1.0 × 10 -2 S cm -1 for SIPN-20 and 1.4 × 10 -2 S cm -1 for Nafion ® 115). Specifically, SIPN membranes reveal excellent methanol resistance for both sorption and transport properties. The methanol self-diffusion coefficient through a SIPN-20 membrane conducted by pulsed field-gradient nuclear magnetic resonance (PFG-NMR) technology measures 7.67 × 10 -7 cm 2 s -1, which is about one order of magnitude lower than that of Nafion ® 115. The methanol permeability of SIPN-20 membrane is 5.57 × 10 -8 cm 2 s -1, which is about one and a half order of magnitude lower than Nafion ® 115. The methanol transport behaviors of SIPN-20 and Nafion ® 115 membranes correlate well with their sorption characteristics. Methanol uptake in a SIPN-20 membrane is only half that of Nafion ® 115. An extended study shows that a membrane-electrode assembly (MEA) made of SIPN-20 membrane exhibits a power density comparable to Nafion ® 115 with a significantly higher open current voltage. Accordingly, SIPN membranes with a suitable PVP content are considered good methanol barriers, and suitable for DMFC applications.

  14. Radiation grafting of hydrophilic monomers on to plasticized poly(vinyl chloride) sheets. II. Migration behaviour of the plasticizer from N-vinyl pyrrolidone grafted sheets.

    PubMed

    Krishnan, V K; Jayakrishnan, A; Francis, J D

    1991-07-01

    The grafting of N-vinyl pyrrolidone, a hydrophilic monomer, on to flexible poly(vinyl chloride) sheets used in medical applications using ionizing radiation from a 60Co source was studied. The graft yield was found to increase linearly with monomer concentration and also with increasing radiation doses. The migration of the plasticizer di-(2-ethylhexyl)phthalate into a strong organic extractant such as n-hexane was studied at different time intervals for different grafted systems of poly(vinyl chloride) at 30 degrees C. The results indicated a drastic reduction in the leaching of the plasticizer from grafted systems versus ungrafted controls. Incorporation of ethylene dimethacrylate cross-linker during grafting did not seem to affect the graft yield considerably but appeared to further reduce the plasticizer migration. Surface energy calculations of the grafted samples indicate that the surfaces are highly hydrophilic compared to ungrafted poly(vinyl chloride) and the polar and dispersion components tend to vary with increasing cross-linker concentration.

  15. 60-MeV C5+ ion irradiation effects on conducting poly (o-toluidine)-poly vinyl chloride blend films

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Ali, Vazid; Siddiqui, Azher M.; Kulriya, P. K.; Husain, M.; Zulfequar, M.

    Poly (o-toluidine) was synthesized from a derivative of aniline (o-toluidine) monomer by chemical oxidative polymerization method. After polymerization, the polymer prepared was blended with poly vinyl chloride and irradiated by 60-MeV C5+ ions at five different fluences of 1×1011, 3.3×1011, 1×1012, 3.3×1012 and 1×1013 ions/cm2. The swift heavy ion irradiation effects on crystallinity and DC conductivity were studied. X-ray diffraction study showed variations in crystallinity of the blend films upon irradiation. The crystallinity, DC conductivity and activation energy were found to vary discontinuously with fluence. The DC conductivity and activation energy were obeying Meyer-Neldel rule.

  16. Poly(vinyl alcohol)/Liquid Crystal Composite Films with Low Driving Voltage

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1994-12-01

    A poly(vinyl alcohol) (PVA)/liquid crystal (LC) composite film with a low driving voltage of 6 Vrms, a low hysteresis of less than 0.2 Vrms, and a fast response time of 11 ms at the operating voltage of 6 Vrms was formed from the emulsion composed of a mixture of water with methanol (WM-mixture), PVA, LC, and a photocrosslinkable mixture of nonaoxyethylenediacrylate (9EG-A) with perfluorooctylethylacrylate (FA-108). It was found in the composite film that the liquid crystal droplets, surrounded by a thin layer of the photocured polymer, were deformed as well as disordered, which enhanced light scattering.

  17. Biodegradability of poly(3-hydroxybutyrate) film grafted with vinyl acetate: Effect of grafting and saponification

    NASA Astrophysics Data System (ADS)

    Wada, Yuki; Seko, Noriaki; Nagasawa, Naotsugu; Tamada, Masao; Kasuya, Ken-ichi; Mitomo, Hiroshi

    2007-06-01

    Radiation-induced graft polymerization of vinyl acetate (VAc) onto poly(3-hydroxybutyrate) (PHB) film was carried out. At a degree of grafting higher than 5%, the grafted films (PHB-g-VAc) completely lost the enzymatic degradability that is characteristic of PHB due to the grafted VAc covering the surface of the PHB film. However, the biodegradability of the PHB-g-VAc films was recovered when the films were saponified in alkali solution under optimum conditions. Graft chains of the PHB-g-VAc film reacted selectively to become biodegradable polyvinyl alcohol (PVA). The biodegradability of the saponified PHB-g-VAc film increased rapidly with time.

  18. Novel synthesis and DC electrical studies of polyindole/poly(vinyl acetate) composite films

    NASA Astrophysics Data System (ADS)

    Bhagat, D. J.; Dhokane, G. R.

    2015-01-01

    Novel one pot synthesis of polyindole/poly(vinyl acetate) composite films was prepared chemically. The monomer indole was polymerized using oxidant cupric chloride. As-synthesized composites were analyzed by X-ray diffraction, Fourier transform infrared spectroscopy and field emission scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The DC conductivity measurements were done through two probe technique. The DC conductivity value was found to be 8.648 × 10-6 S/cm at 383 K. The transference number measurement shows that ionic conductivity was dominant over electronic conductivity.

  19. Thermo-responsive devices using poly(vinyl methyl ether) hydrogels

    SciTech Connect

    Kishi, R.; Ichijo, H.; Hirasa, O.

    1993-10-01

    Aqueous solution of poly(vinyl methyl ether) (PVME) shows phase transition around 38 C. PVME hydrogel cross-linked by gamma-ray irradiation is also a thermally responsive hydrogel and undergoes volume change at the same temperature; it swells below and shrinks above 38 C. PVME hydrogel prepared near phase transition temperature has heterogeneous and macroporous structure. The volume change of the macroporous hydrogel takes place rapidly with changing temperature. An attempt has been made to develop thermally activated chemomechanical devices such as an artificial muscle model, an automatic separation system, an artificial finger model, and a photo-responsive device.

  20. Study on dehydrochlorination of waste poly (vinyl chloride) resins by microwave irradiation

    NASA Astrophysics Data System (ADS)

    Moriwaki, Saburo; Qian, Qingrong; Sunohara, Satoshi; Machida, Motoi; Tatsumoto, Hideki

    Waste poly (vinyl chloride: PVC) resins are experimentally dehydrochlorinated by microwave irradiation. The following unique results are obtained: (1) plasticizer in PVC resin absorbs microwave power more effectively than PVC polymer. The higher the plasticizer content in PVC resin, the higher is the dehydrochlorination reaction (2) low PVC polymer content materials such as cushion floor require high microwave irradiation power to secure a high dehydrochlorination yield, (3) calcium carbonate in PVC resin reacts with released hydrochloric acid gas and results calcium chloride during microwave irradiation, (4) additives in PVC resin strongly influence dehydrochlorination yield, (5) it is evidenced that the PVC copolymer is also dehydrochlorinated by microwave irradiation.

  1. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations

    NASA Astrophysics Data System (ADS)

    Mondino, A. V.; González, M. E.; Romero, G. R.; Smolko, E. E.

    1999-08-01

    Poly(vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose, in the case of acetalized films the dose necessary for maximum tensile strength was only 40 kGy. The combination of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength.

  2. Transparent poly(vinyl acetate)-silica gels by a sol-gel process

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1993-12-01

    Rod shaped silica-poly(vinyl acetate) (PVAc) gels have been prepared by a sol gel process. In situ polymerization of tetraethoxysilane (TEOS) was accomplished in the presence of low molecular weight PVAc by dissolving various amounts of PVAc in a mixture of TEOS, ethanol, water and hydrochloric acid (HCl). Gelation of this mixture was carried out between room temperature and slightly above. Silica-PVAc rods recovered from cylindrical molds were homogeneous and transparent. Gels with weight percents of PVAc ranging from 2% to 50% were prepared. Silica-PVAc gels have higher flexure strengths, less brittle character and improved water durability in comparison with pure sol- gel silica.

  3. Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry

    NASA Astrophysics Data System (ADS)

    Bernard, C. A.; Bahlouli, N.; Wagner-Kocher, C.; Ahzi, S.; Rémond, Y.

    2015-09-01

    Plasticized poly(vinyl chloride) (PPVC) is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.

  4. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  5. Synthesis and Luminescent Properties of Poly(9-(3-vinyl-phenyl)-phenanthrene).

    PubMed

    Yang, Garam; Lee, Hayoon; Lee, Suji; Jung, Hyocheol; Shin, Hwangyu; Lee, Jaehyun; Park, Jongwook

    2016-02-01

    Recently, interest of polymer light-emitting diode (PLED) fabricated from conjugated polymer has augmented because PLED has advantage property that is well-suited to flexible lighting and solution processed device. In this presentation, we suggest a new polymer host based on phenanthrene, poly(9-(3-Vinyl-phenyl)-phenanthrene) (PVPP). It can be easily synthesized through simple synthetic methods which are Suzuki and Wittig reactions. PVPP film can be obtained from spin coating with solution used by common solvent. It exhibited PL maximum value of 381 nm and broad PL spectrum. Energy transfer smoothly occurred when the three dopants for green, red and yellow were used in PVPP. PMID:27433663

  6. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    PubMed

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. PMID:26428121

  7. Novel Poly(3-hydroxybutyrate-g-vinyl alcohol) Polyurethane Scaffold for Tissue Engineering

    PubMed Central

    Reyes, Adriana Pétriz; Martínez Torres, Ataúlfo; Carreón Castro, Ma. del Pilar; Rodríguez Talavera, José Rogelio; Muñoz, Susana Vargas; Aguilar, Víctor Manuel Velázquez; Torres, Maykel González

    2016-01-01

    The design of new synthetic grafted poly(3-hydroxybutyrate) as composite 3D-scaffolds is a convenient alternative for tissue engineering applications. The chemically modified poly(3-hydroxybutyrate) is receiving increasing attention for use as biomimetic copolymers for cell growth. As of yet, these copolymers cannot be used efficiently because of the lack of good mechanical properties. Here, we address this challenge, preparing a composite-scaffold of grafted poly(3-hydroxybutyrate) polyurethane for the first time. However, it is unclear if the composite structure and morphology can also offer a biological application. We obtained the polyurethane by mixing a polyester hydroxylated resin with polyisocyanate and the modified polyhydroxyalkanoates. The results show that the poly(3-hydroxybutyrate) grafted with poly(vinyl alcohol) can be successfully used as a chain extender to form a chemically-crosslinked thermosetting polymer. Furthermore, we show a proposal for the mechanism of the polyurethane synthesis, the analysis of its morphology and the ability of the scaffolds for growing mammalian cells. We demonstrated that astrocytes isolated from mouse cerebellum, and HEK293 can be cultured in the prepared material, and express efficiently fluorescent proteins by adenoviral transduction. We also tested the metabolism of Ca2+ to obtain evidence of the biological activity. PMID:27502732

  8. Novel Poly(3-hydroxybutyrate-g-vinyl alcohol) Polyurethane Scaffold for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Reyes, Adriana Pétriz; Martínez Torres, Ataúlfo; Carreón Castro, Ma. Del Pilar; Rodríguez Talavera, José Rogelio; Muñoz, Susana Vargas; Aguilar, Víctor Manuel Velázquez; Torres, Maykel González

    2016-08-01

    The design of new synthetic grafted poly(3-hydroxybutyrate) as composite 3D-scaffolds is a convenient alternative for tissue engineering applications. The chemically modified poly(3-hydroxybutyrate) is receiving increasing attention for use as biomimetic copolymers for cell growth. As of yet, these copolymers cannot be used efficiently because of the lack of good mechanical properties. Here, we address this challenge, preparing a composite-scaffold of grafted poly(3-hydroxybutyrate) polyurethane for the first time. However, it is unclear if the composite structure and morphology can also offer a biological application. We obtained the polyurethane by mixing a polyester hydroxylated resin with polyisocyanate and the modified polyhydroxyalkanoates. The results show that the poly(3-hydroxybutyrate) grafted with poly(vinyl alcohol) can be successfully used as a chain extender to form a chemically-crosslinked thermosetting polymer. Furthermore, we show a proposal for the mechanism of the polyurethane synthesis, the analysis of its morphology and the ability of the scaffolds for growing mammalian cells. We demonstrated that astrocytes isolated from mouse cerebellum, and HEK293 can be cultured in the prepared material, and express efficiently fluorescent proteins by adenoviral transduction. We also tested the metabolism of Ca2+ to obtain evidence of the biological activity.

  9. Novel Poly(3-hydroxybutyrate-g-vinyl alcohol) Polyurethane Scaffold for Tissue Engineering.

    PubMed

    Reyes, Adriana Pétriz; Martínez Torres, Ataúlfo; Carreón Castro, Ma Del Pilar; Rodríguez Talavera, José Rogelio; Muñoz, Susana Vargas; Aguilar, Víctor Manuel Velázquez; Torres, Maykel González

    2016-01-01

    The design of new synthetic grafted poly(3-hydroxybutyrate) as composite 3D-scaffolds is a convenient alternative for tissue engineering applications. The chemically modified poly(3-hydroxybutyrate) is receiving increasing attention for use as biomimetic copolymers for cell growth. As of yet, these copolymers cannot be used efficiently because of the lack of good mechanical properties. Here, we address this challenge, preparing a composite-scaffold of grafted poly(3-hydroxybutyrate) polyurethane for the first time. However, it is unclear if the composite structure and morphology can also offer a biological application. We obtained the polyurethane by mixing a polyester hydroxylated resin with polyisocyanate and the modified polyhydroxyalkanoates. The results show that the poly(3-hydroxybutyrate) grafted with poly(vinyl alcohol) can be successfully used as a chain extender to form a chemically-crosslinked thermosetting polymer. Furthermore, we show a proposal for the mechanism of the polyurethane synthesis, the analysis of its morphology and the ability of the scaffolds for growing mammalian cells. We demonstrated that astrocytes isolated from mouse cerebellum, and HEK293 can be cultured in the prepared material, and express efficiently fluorescent proteins by adenoviral transduction. We also tested the metabolism of Ca(2+) to obtain evidence of the biological activity. PMID:27502732

  10. Blend miscibility of cellulose propionate with poly(N-vinyl pyrrolidone-co-methyl methacrylate).

    PubMed

    Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2013-10-15

    The blend miscibility of cellulose propionate (CP) with poly(N-vinyl pyrrolidone-co-methyl methacrylate) (P(VP-co-MMA)) was investigated. The degree of substitution (DS) of CP used ranged from 1.6 to >2.9, and samples for the vinyl polymer component were prepared in a full range of VP:MMA compositions. Through DSC analysis and solid-state (13)C NMR and FT-IR measurements, we revealed that CPs of DS<2.7 were miscible with P(VP-co-MMA)s of VP≥~10mol% on a scale within a few nanometers, in virtue of hydrogen-bonding interactions between CP-hydroxyls and VP-carbonyls. When the DS of CP exceeded 2.7, the miscibility was restricted to the polymer pairs using P(VP-co-MMA)s of VP=ca. 10-40 mol%; the scale of mixing in the blends concerned was somewhat larger (ca. 5-20 nm), however. The appearance of such a "miscibility window" was interpretable as an effect of intramolecular repulsion in the copolymer component. Results of DMA and birefringence measurements indicated that the miscible blending of CP with the vinyl polymer invited synergistic improvements in thermomechanical and optical properties of the respective constituent polymers. Additionally, it was found that the VP:MMA composition range corresponding to the miscibility window was expanded by modification of the CP component into cellulose acetate propionate. PMID:23987378

  11. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  12. Thermal properties of composites with bismaleimide-vinyl poly(styrylpyridine) blends

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1988-01-01

    Thermal properties, flammability, and selected mechanical properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement were investigated and compared with the properties of an epoxy composite, MXB 7203. The resin matrices included XU71775/H795, a blend of vinyl poly(styrylpyridine) and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a poly(styrylpyridine). The graphite fiber was AS-4 used in the form of tape or fabric. It was found that the XU71775/H795 blend with the graphite tape was the optimum design giving the lowest heat release rate, while the control epoxy panel exhibited the highest total heat release and heat release rates, highest smoke and CO evolution, highest mass losses, and lowest oxygen index of all the composites tested.

  13. Multi-stage Mass Spectrometry of Poly(vinyl pyrrolidone) and Its Vinyl Succinimide Copolymer Formed upon Exposure to Sodium Hypochlorite

    PubMed Central

    Fouquet, Thierry; Torimura, Masaki; Sato, Hiroaki

    2016-01-01

    The degradation routes of poly(vinyl pyrrolidone) (PVP) exposed to sodium hypochlorite (bleach) have been previously investigated using chemical analyses such as infrared spectroscopy. So far, no reports have proposed mass spectrometry (MS) as an alternative tool despite its capability to provide molecular and structural information using its single stage electrospray (ESI) or matrix assisted laser desorption ionization (MALDI) and multi stage (MSn) configurations, respectively. The present study thus reports on the characterization of PVP after its exposure to bleach by high resolution MALDI spiralTOF-MS and Kendrick mass defect analysis providing clues as to the formation of a vinyl pyrrolidone/vinyl succinimide copolymeric degradation product. A thorough investigation of the fragmentation pathways of PVP adducted with sodium and proton allows one main route to be described—namely the release of the pyrrolidone pendant group in a charge remote and charge driven mechanism, respectively. Extrapolating this fragmentation pathway, the oxidation of vinyl pyrrolidone into vinyl succinimide hypothesized from the single stage MS is validated by the detection of an alternative succinimide neutral loss in lieu of the pyrrolidone release in the ESI-MSn spectra of the aged PVP sample. It constitutes an example of application of multi-stage mass spectrometry for the characterization of the degradation of polymeric samples at a molecular level. PMID:27800293

  14. Silk fibroin/poly (vinyl alcohol) blend scaffolds for controlled delivery of curcumin.

    PubMed

    Li, Xiaomeng; Qin, Jinli; Ma, Jun

    2015-06-01

    A silk fibroin/poly (vinyl alcohol) porous scaffold with a water vapor transmission rate of 2125 ± 464 g/m(2)/day has been developed via thermally induced phase separation (gelation) and freeze-drying process. A hierarchical architecture of micropores and nanofibers was observed inside the scaffolds, and the related structures were analyzed. The viability and proliferation of 3T3 fibroblasts were examined, which indicated that the scaffolds exerted low cytotoxicity. After loading curcumin, the scaffolds can suppress the growth of 3T3 fibroblasts. The release behavior of curcumin from the scaffolds was investigated. At pH = 7.2, the release profiles showed no significant difference for the loading amounts of 0.5 mg and 0.25 mg per sample. Meanwhile, the cumulative amount of released drug at pH = 5.7 was significantly more than that in neutral solution due to more degradation of the scaffolds. It was suggested that the silk fibroin/poly (vinyl alcohol) blend scaffolds could be potentially used as wound dressing materials. PMID:26816634

  15. Bioseparation of papain from Carica papaya latex by precipitation of papain-poly (vinyl sulfonate) complexes.

    PubMed

    Braia, Mauricio; Ferrero, Maximiliano; Rocha, María Victoria; Loureiro, Dana; Tubio, Gisela; Romanini, Diana

    2013-09-01

    The formation of insoluble complexes between enzymes and polyelectrolytes is a suitable technique for isolating these biomolecules from natural sources, because it is a simple and rapid technique that allows the concentration of the protein. This technique can be used in most purification protocols at the beginning of the downstream process. The aim of this investigation is to isolate papain from Carica papaya latex by precipitation of insoluble complexes between this enzyme and poly (vinyl sulfonate). The papain-poly (vinyl sulfonate) complex was insoluble at pH lower than 6, with a PVS/PAP stoichiometric ratio of 1:279. Ionic strength affected the complex formation. The presence of the polymer increased the enzymatic activity and protected the enzyme from autodegradation. The optimal conditions for the formation of insoluble papain-polyelectrolyte complex formation were applied to C. papaya latex and a high recovery was obtained (around 86%) and a purification factor around 2. This method can be applied as an isolation method of papain from C. papaya latex or as a first step in a larger purification strategy.

  16. Silk fibroin/poly (vinyl alcohol) blend scaffolds for controlled delivery of curcumin

    PubMed Central

    Li, Xiaomeng; Qin, Jinli; Ma, Jun

    2015-01-01

    A silk fibroin/poly (vinyl alcohol) porous scaffold with a water vapor transmission rate of 2125 ± 464 g/m2/day has been developed via thermally induced phase separation (gelation) and freeze-drying process. A hierarchical architecture of micropores and nanofibers was observed inside the scaffolds, and the related structures were analyzed. The viability and proliferation of 3T3 fibroblasts were examined, which indicated that the scaffolds exerted low cytotoxicity. After loading curcumin, the scaffolds can suppress the growth of 3T3 fibroblasts. The release behavior of curcumin from the scaffolds was investigated. At pH = 7.2, the release profiles showed no significant difference for the loading amounts of 0.5 mg and 0.25 mg per sample. Meanwhile, the cumulative amount of released drug at pH = 5.7 was significantly more than that in neutral solution due to more degradation of the scaffolds. It was suggested that the silk fibroin/poly (vinyl alcohol) blend scaffolds could be potentially used as wound dressing materials. PMID:26816634

  17. Effects of nanoscale dispersion in the dielectric properties of poly(vinyl alcohol)-bentonite nanocomposites.

    PubMed

    Hernández, María C; Suárez, N; Martínez, Luis A; Feijoo, José L; Lo Mónaco, Salvador; Salazar, Norkys

    2008-05-01

    We investigate the effects of clay proportion and nanoscale dispersion in the dielectric response of poly(vinyl alcohol)-bentonite nanocomposites. The dielectric study was performed using the thermally stimulated depolarization current technique, covering the temperature range of the secondary and high-temperature relaxation processes. Important changes in the secondary relaxations are observed at low clay contents in comparison with neat poly(vinyl alcohol) (PVA). The high-temperature processes show a complex peak, which is a combination of the glass-rubber transition and the space-charge relaxations. The analysis of these processes shows the existence of two segmental relaxations for the nanocomposites. Dielectric results were complemented by calorimetric experiments using differential scanning calorimetry. Morphologic characterization was performed by x-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM and XRD results show a mixture of intercalated and exfoliated clay dispersion in a trend that promotes the exfoliated phase as the bentonite content diminishes. Dielectric and morphological results indicate the existence of polymer-clay interactions through the formation of hydrogen bounds and promoted by the exfoliated dispersion of the clay. These interactions affect not only the segmental dynamics, but also the secondary local dynamics of PVA. PMID:18643091

  18. Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films.

    PubMed

    Hajji, Sawssen; Chaker, Achraf; Jridi, Mourad; Maalej, Hana; Jellouli, Kemel; Boufi, Sami; Nasri, Moncef

    2016-08-01

    The development and characterization of biodegradable blend films based on chitosan and poly (vinyl alcohol) for possible use in a variety of biological activities are reported. Fourier transform infrared spectroscopy (FTIR) spectra of chitosan-poly (vinyl alcohol) (Ch/PVA) films showed characteristics peaks shifting to a lower frequency range due to hydrogen bonding between -OH of PVA and -NH2 of chitosan. The chitosan and PVA polymers presented good compatibility. The morphology study of chitosan and composite films showed a compact and homogenous structure. The tensile strength and elongation at break increased with PVA content. In fact, the highest tensile strength and elongation at break (53.58 MPa and 454 %) occurs with pure PVA film. The results showed that PVA incorporation in the blends contributes to increase the intermolecular interactions, thus improving the mechanical properties. In addition, the prepared films demonstrated high antioxidant activities monitored by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging, reducing power, and β-carotene bleaching activity. Nevertheless, PVA addition reduced antioxidant and antibacterial activities against Gram-positive and Gram-negative bacteria tested. PMID:27106077

  19. Cosolvent gel-like materials from partially hydrolyzed poly(vinyl acetate)s and borax.

    PubMed

    Angelova, Lora V; Terech, Pierre; Natali, Irene; Dei, Luigi; Carretti, Emiliano; Weiss, Richard G

    2011-09-20

    A gel-like, high-viscosity polymeric dispersion (HVPD) based on cross-linked borate, partially hydrolyzed poly(vinyl acetate) (xPVAc, where x is the percent hydrolysis) is described. Unlike hydro-HVPDs prepared from poly(vinyl alcohol) (PVA) and borate, the liquid portion of these materials can be composed of up to 75% of an organic cosolvent because of the influence of residual acetate groups on the polymer backbone. The effects of the degree of hydrolysis, molecular weight, polymer and cross-linker concentrations, and type and amount of organic cosolvent on the rheological and structural properties of the materials are investigated. The stability of the systems is explored through rheological and melting-range studies. (11)B NMR and small-angle neutron scattering (SANS) are used to probe the structure of the dispersions. The addition of an organic liquid to the xPVAc-borate HVPDs results in a drastic increase in the number of cross-linked borate species as well as the agglomeration of the polymer into bundles. These effects result in an increase in the relaxation time and thermal stability of the networks. The ability to make xPVAc-borate HVPDs with very large amounts of and rather different organic liquids, with very different rheological properties that can be controlled easily, opens new possibilities for applications of PVAc-based dispersions.

  20. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    SciTech Connect

    Warangkhana, Phromma; Rathanawan, Magaraphan; Jana Sadhan, C.

    2015-05-22

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter led to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.

  1. Exploration of CO2-Philicity of Poly(vinyl acetate-co-alkyl vinyl ether) through Molecular Modeling and Dissolution Behavior Measurement.

    PubMed

    Hu, Dongdong; Sun, Shaojun; Yuan, Pei-Qing; Zhao, Ling; Liu, Tao

    2015-09-24

    Hydrocarbon CO2-philes are of great interest for use in expanding CO2 applications as a green solvent. In this work, multiscale molecular modeling and dissolution behavior measurement were both applied to explore CO2-philicity of the poly(vinyl acetate) (PVAc)-based copolymer. Introduction of a favorable comonomer, i.e., vinyl ethyl ether (VEE), could significantly reduce the polymer-polymer interaction on the premise that the polymer-CO2 interaction was not weakened but enhanced. The ab initio calculated interaction of the model molecules with CO2 demonstrated that the ether group in VEE or VBE was the suitable CO2-philic segment. From the molecular dynamics (MD) simulations of polymer/CO2 systems, the interaction energy and Flory-Huggins parameter (χ12) of poly(VAc-alt-VEE)/CO2 supported that poly(VAc-alt-VEE) possessed better CO2-philicity than PVAc. The dissolution behaviors of the synthesized poly(VAc-co-alkyl vinyl ether) copolymers in CO2 showed the best CO2-phile had the VEE content of about 34 mol %. The MD simulations also indicated that the interaction of random poly(VAc-co-VEE) containing about 30 mol % VEE with CO2 was the strongest and the χ12 was the smallest in these polymer/CO2 systems. Not only could the VEE monomer reduce the polymer-polymer interaction, but it could also enhance the polymer-CO2 interaction with an optimized composition. Introducing a suitable comonomer with a certain composition might be a promising strategy to form the synergistic effect of polymer-polymer interaction and polymer-CO2 interaction for screening the hydrocarbon CO2-philes.

  2. Graphene functionalized with poly(vinyl alcohol) as a Pickering stabilizer for suspension polymerization of poly(methyl methacrylate).

    PubMed

    Erdenedelger, Gansukh; Dao, Trung Dung; Jeong, Han Mo

    2016-08-15

    Two types of thermally reduced graphenes (TRGs) having different lateral sizes were non-covalently modified with poly(vinyl alcohol) to endow water-dispersibility. The modified TRGs were examined as Pickering stabilizers for the suspension polymerization of methyl methacrylate (MMA). They were effective graphene-based Pickering stabilizers for the system with almost all of the polymerized composite microparticles having a regular spherical shape. The particle size of the composite microparticles was tunable by the size or the amount of modified TRG used as stabilizer. The almost perfect core-shell structure of the composite microparticles effectively enhanced the thermal stability of the core PMMA. In addition, when the core-shell microparticles were compression molded into a monolith, the obtained composite exhibited an ultra-low percolation threshold of electrical conductivity of around 0.04vol%. PMID:27187559

  3. A novel biobased plasticizer of epoxidized cardanol glycidylether: Synthesis and application in soft poly(vinyl chloride) films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel plasticizer derived from cardanol, epoxied cardanol glycidyl ether (ECGE), was synthesized and characterized by 1H-NMR and 13C-NMR. Effects of the ECGE combined with dioctyl phthalate (DOP), a commercial plasticizer, in soft poly(vinyl chloride) (PVC) films were studied. Dynamic mechanical a...

  4. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  5. Time-resolved spectroscopy of solid poly/1-vinyl naphthalene/ following electron beam pulse radiolysis - Pulse radiolytic studies on polymers

    NASA Technical Reports Server (NTRS)

    Coulter, D. R.; Liang, R. H.; Di Stefano, S.; Moacanin, J.; Gupta, A.

    1982-01-01

    Transient emission studies following pulse radiolysis of solid poly(1-vinyl naphthalene) show existence of excited monomers and two excimers. Quenching experiments indicate that excimers are not formed directly by recombination of ions but probably by trapping of migrating monomeric excitation in preformed traps whose density is approximately one in 1000.

  6. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    PubMed

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-01

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions.

  7. Hydrogen Bonding Based Layer-by-Layer Assembly of Poly(vinyl alcohol) with Weak Polyacids

    NASA Astrophysics Data System (ADS)

    Lee, Hyomin; Mensire, Remy; Cohen, Robert; Rubner, Michael

    2012-02-01

    Multilayer thin films that consist of poly(vinyl alcohol) (PVA) and weak polyacids such as poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) were prepared by hydrogen bonding interactions. Both the degree of hydrolysis and molecular weight of PVA were investigated in terms of their influence on growth behavior and pH stability. Multilayer films containing PVA and PAA could be assembled successfully only by using partially hydrolyzed PVA and low pH solutions. By comparing films containing PAA with those containing a more strongly interacting partner, PMAA, it was shown that the extent of PVA hydrolysis becomes significant only when weak hydrogen bonding pairs such as PVA and PAA were used. pH-triggered dissolution experiments demonstrated that the degree of hydrolysis can be used as an additional parameter by which to tune the pH stability of the film. Also, the presence of an abundance of free hydroxyl and carboxylic acid groups in the multilayer allowed enhanced pH stability to be obtained by thermal and chemical methods as well as numerous opportunities for post-assembly functionalization.

  8. Nanoarrays of tethered lipid bilayer rafts on poly(vinyl alcohol) hydrogels.

    PubMed

    Lee, Bong Kuk; Lee, Hea Yeon; Kim, Pilnam; Suh, Kahp Y; Kawai, Tomoji

    2009-01-01

    Lipid rafts are cholesterol- and sphingolipid-rich domains that function as platforms for signal transduction and other cellular processes. Tethered lipid bilayers have been proposed as a promising model to describe the structure and function of cell membranes. We report a nano(submicro) array of tethered lipid bilayer raft membranes (tLBRMs) comprising a biosensing platform. Poly(vinyl alcohol) (PVA) hydrogel was directly patterned onto a solid substrate, using ultraviolet-nanoimprint lithography (UV-NIL), as an inert barrier to prevent biofouling. The robust structures of the nanopatterned PVA hydrogel were stable for up to three weeks in phosphate-buffered saline solution despite significant swelling (100% in height) by hydration. The PVA hydrogel strongly restricted the adhesion of vesicles, resulting in an array of highly selective hydrogel nanowells. tLBRMs were not formed by direct vesicle fusion, although raft vesicles containing poly(ethylene glycol) lipopolymer were selectively immobilized on gold substrates patterned with PVA hydrogel. The deposition of tLBRM nano(submicro) arrays was accomplished by a mixed, self-assembled monolayer-assisted vesicle fusion method. The monolayer was composed of a mixture of 2-mercaptoethanol and poly(ethylene glycol) lipopolymer, which promoted vesicle rupture. These results suggest that the fabrication of inert nanostructures and the site-selective modification of solid surfaces to induce vesicle rupture may be essential in the construction of tLBRM nano(submicro) arrays using stepwise self-assembly.

  9. Clay flocculation improved by cationic poly(vinyl alcohol)/anionic polymer dual-component system.

    PubMed

    Sang, Yizhou; Xiao, Huining

    2008-10-15

    The synthesis of cationically modified poly(vinyl alcohol), CPVA, by copolymerization of vinyl acetate and diallyldimethyl ammonium chloride (DADMAC), followed by alkaline hydrolysis was systematically studied. The application of the resulting polymer to the fine clay flocculation was also reported. The charge density and the structure of the resulting CPVA were characterized by polyelectrolyte titration and NMR. A photometric dispersion analyzer was used to conduct the dynamic flocculation experiments. Under fine clay experimental conditions, the CPVA alone contributed little to inducing clay flocculation. However, in conjunction with anionic polyacrylamide-based polymer with high molecular weight and low charge density, significant improvement in the flocculation of fine clay particles was achieved. The influence of factors such as pH and shear force on clay flocculation was also investigated to identify optimum application conditions for clay flocculation. The electrostatic interactions between the clay and CPVA, as well as those between the CPVA pre-treated clay and anionic polymer, were studied to explore the flocculation mechanism.

  10. Clay flocculation improved by cationic poly(vinyl alcohol)/anionic polymer dual-component system.

    PubMed

    Sang, Yizhou; Xiao, Huining

    2008-10-15

    The synthesis of cationically modified poly(vinyl alcohol), CPVA, by copolymerization of vinyl acetate and diallyldimethyl ammonium chloride (DADMAC), followed by alkaline hydrolysis was systematically studied. The application of the resulting polymer to the fine clay flocculation was also reported. The charge density and the structure of the resulting CPVA were characterized by polyelectrolyte titration and NMR. A photometric dispersion analyzer was used to conduct the dynamic flocculation experiments. Under fine clay experimental conditions, the CPVA alone contributed little to inducing clay flocculation. However, in conjunction with anionic polyacrylamide-based polymer with high molecular weight and low charge density, significant improvement in the flocculation of fine clay particles was achieved. The influence of factors such as pH and shear force on clay flocculation was also investigated to identify optimum application conditions for clay flocculation. The electrostatic interactions between the clay and CPVA, as well as those between the CPVA pre-treated clay and anionic polymer, were studied to explore the flocculation mechanism. PMID:18657822

  11. Polyurethane/poly(vinyl alcohol) hydrogel coating improves the cytocompatibility of neural electrodes

    PubMed Central

    Li, Mei; Zhou, Hai-han; Li, Tao; Li, Cheng-yan; Xia, Zhong-yuan; Duan, Yanwen Y.

    2015-01-01

    Neural electrodes, the core component of neural prostheses, are usually encapsulated in polydimethylsiloxane (PDMS). However, PDMS can generate a tissue response after implantation. Based on the physicochemical properties and excellent biocompatibility of polyurethane (PU) and poly(vinyl alcohol) (PVA) when used as coating materials, we synthesized PU/PVA hydrogel coatings and coated the surface of PDMS using plasma treatment, and the cytocompatibility to rat pheochromocytoma (PC12) cells was assessed. Protein adsorption tests indicated that the amount of protein adsorption onto the PDMS substrate was reduced by 92% after coating with the hydrogel. Moreover, the PC12 cells on the PU/PVA-coated PDMS showed higher cell density and longer and more numerous neurites than those on the uncoated PDMS. These results indicate that the PU/PVA hydrogel is cytocompatible and a promising coating material for neural electrodes to improve their biocompatibility. PMID:26889197

  12. Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly(vinyl alcohol) clay nanocomposites.

    PubMed

    Sabaa, Magdy W; Abdallah, Heba M; Mohamed, Nadia A; Mohamed, Riham R

    2015-11-01

    Crosslinked poly(vinyl alcohol) (PVA)/carboxymethyl chitosan (CMCh) nanocomposites were synthesized using terephthaloyl diisothiocyanate crosslinker, in the presence of montmorillonite (MMT), in different ratios of the two matrices. Characterization of nanocomposites was performed using different analyses. Swelling behavior was studied in different buffered solutions. It was found that formation of crosslinked CMCh/PVA hydrogels increased the swellability. Metal ion adsorption has also been investigated. The results indicated that crosslinked CMCh adsorbs various metal ions much more than non crosslinked CMCh. Antimicrobial activity was examined against Gram positive bacteria, against Gram negative bacteria, and also against fungi. Results indicated that most of these nanocomposites exhibited good antimicrobial potency. Degradation study was carried out in Simulated Body Fluid (SBF) for different time periods in order to find out degradation index (Di). Results showed that weight loss of most of the nanocomposites increased as a function of incubation time. PMID:26249602

  13. Interpenetrating polymer network of locust bean gum-poly (vinyl alcohol) for controlled release drug delivery.

    PubMed

    Kaity, Santanu; Isaac, Jinu; Ghosh, Animesh

    2013-04-15

    A novel interpenetrating polymer network (IPN) microspheres of locust bean gum (LBG) and poly (vinyl alcohol) (PVA) was developed for oral controlled release of buflomedil hydrochloride (BH) by emulsion crosslinking method using glutaraldehyde as crosslinker. The effects of gum-polymer ratio, concentration of crosslinker and internal phase viscosity were evaluated thoroughly. Drug entrapment efficiency, particle size distribution, swelling property and in vitro release characteristics with kinetic modelling of microspheres were evaluated. The microspheres were characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), solid state C(13) NMR, X-ray diffraction study (XRD) and differential scanning colorimetry (DSC). The microspheres showed control release property without showing any incompatibility in IPN device. Hence, IPN microspheres of LBG and PVA can be used as a potential carrier for controlled oral delivery of highly water soluble drugs like BH.

  14. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration.

  15. Anisotropic Poly(Vinyl Alcohol) Hydrogel: Connection Between Structure and Bulk Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Hudson, Stephen; Hutter, Jeffrey; Millon, Leonardo; Wan, Wankei; Nieh, Mu-Ping

    2009-03-01

    Poly(vinyl alcohol) (PVA) hydrogels are formed from PVA solution by creation of physical cross-links during freeze/thaw cycling. By choosing a suitable freeze/thaw protocol and applying a strain during thermal processing, gels with permanent, anisotropic bulk mechanical properties matching those of cardiovascular tissues can be made, making them useful for applications ranging from artificial heart valves to vascular grafts. We have performed small- and ultra small-angle neutron scattering (SANS and USANS) measurements covering length scales from 2 nm to 10 μm, and modeled the structure as interconnected PVA blobs of size 20 to 50 nm arranged in fractal aggregates extending to at least 10 μm. Here, we discuss the relationship between the microstructure and bulk mechanical properties. Strength increases with the number of thermal cycles due to reinforcement of the small-scale gel phase, while anisotropy is due to elongation of the much larger fractal aggregates.

  16. Catalytic poly(vinyl alcohol) functionalized membranes obtained by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Casimiro, M. H.; Silva, A. G.; Pinto, J. V.; Ramos, A. M.; Vital, J.; Ferreira, L. M.

    2012-09-01

    Polymeric catalytic membranes bearing sulfonic acid functions have been prepared by mutual gamma irradiation at a 60Co source, of poly(vinyl alcohol) (PVA) membranes and methanesulfonic acid. The effect of various synthesis conditions on membranes' physical-chemical properties and catalytic activity in the esterification reaction between acetic acid and isoamyl alcohol to obtain isoamyl acetate (banana flavor), was evaluated. The membranes were characterized by ATR-FTIR, TPP, AFM and SEM. Water contact angle determinations were also performed. The obtained results showed that within the range of conditions studied the increase in sulfonic acid groups' content is accompanied by an enhancement in the membranes catalytic activity, while the increase in absorbed dose leads to a decrease in catalytic activity.

  17. Development and characterization of poly(1-vinylpyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes.

    PubMed

    Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

    2014-01-01

    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10(-6) S cm(-1) for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

  18. Enhanced mechanical properties and morphological characterizations of poly(vinyl alcohol) carbon nanotube composite films

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Tao, Xiaoming; Xue, Pu; Cheng, Xiaoyin

    2005-12-01

    Tensile tests were carried out on free-standing composite films of poly(vinyl alcohol) (PVA) and multiwall carbon nanotubes (MWNTs) for different loading levels. Results show that overall mechanical properties of the composite were greatly improved as compared to the neat PVA film. For PVA-based materials at significant high loading level such as 9.1 wt.% MWNTs, considerable increases in Young's modulus, tensile strength and toughness by factors of 4.5, 2.7 and 4.1, respectively, were achieved. Raman, SEM, TEM, and DSC techniques were used to evaluate the PVA/MWNTs composite system. Strong acid-modification of the pristine MWNTs and the subsequent ultrasonication processing allowed good distribution of the nanotubes in the matrix. SEM together with DSC result shows apparent good wetting of the nanotubes by the PVA matrix, which are supportive of good interfacial bonding between the modified carbon nanotubes and the hosting polymer matrix.

  19. Fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning

    NASA Astrophysics Data System (ADS)

    Junkasem, Jirawut; Rujiravanit, Ratana; Supaphol, Pitt

    2006-09-01

    The present contribution reports, for the first time, the successful fabrication of α-chitin whisker-reinforced poly(vinyl alcohol) (PVA) nanocomposite nanofibres by electrospinning. The α-chitin whiskers were prepared from α-chitin flakes from shrimp shells by acid hydrolysis. The as-prepared chitin whiskers exhibited lengths in the range 231-969 nm and widths in the range 12-65 nm, with the average length and width being about 549 and 31 nm, respectively. Successful incorporation of the chitin whiskers within the as-spun PVA/chitin whisker nanocomposite nanofibres was verified by infrared spectroscopic and thermogravimetric methods. The incorporation of chitin whiskers within the as-spun nanocomposite fibre mats increased the Young's modulus by about 4-8 times over that of the neat as-spun PVA fibre mat.

  20. Poly(vinyl alcohol) physical hydrogels: new vista on a long serving biomaterial.

    PubMed

    Alves, Marie-Helene; Jensen, Bettina E B; Smith, Anton A A; Zelikin, Alexander N

    2011-10-10

    Poly(vinyl alcohol), PVA, and physical hydrogels derived thereof have an excellent safety profile and a successful history of biomedical applications. However, these materials are hardly in the focus of biomedical research, largely due to poor opportunities in nano- and micro-scale design associated with PVA hydrogels in their current form. In this review we aim to demonstrate that with PVA, a (sub)molecular control over polymer chemistry translates into fine-tuned supramolecular association of chains and this, in turn, defines macroscopic properties of the material. This nano- to micro- to macro- translation of control is unique for PVA and can now be accomplished using modern tools of macromolecular design. We believe that this strategy affords functionalized PVA physical hydrogels which meet the demands of modern nanobiotechnology and have a potential to become an indispensable tool in the design of biomaterials.

  1. Mechanical and dielectric properties of carbon nanotubes/poly (vinyl alcohol) nanocomposites

    NASA Astrophysics Data System (ADS)

    Amrin, Sayed; Deshpande, V. D.

    2016-05-01

    In this work, two series of nanocomposites of poly(vinyl alcohol) (PVA) incorporated with multiwalled carbon nanotubes (MWNT) and carboxyl functionalized multiwalled carbon nanotubes (MWNT-COOH) were fabricated using solution-cast method and their tensile and dielectric properties were studied. Tensile tests were carried out on composite films of MWNT/PVA and MWNT-COOH/PVA for different loading levels. Results show that overall mechanical properties of the MWNT-COOH/PVA composite was greatly improved as compared to the MWNT/PVA film. The dielectric properties of nanocomposites were investigated in a frequency range from 0.1Hz to 10MHz at room temperature respectively. Compared to MWNT/PVA composites, higher dielectric constant and ac conductivity was achieved in MWNT-COOH/PVA nanocomposite, which can be well explained by the interfacial polarization effect.

  2. Nanocomposites with fumed silica/poly(vinyl pyrrolidone) prepared at a low content of solvents

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Voronin, E. F.; Nosach, L. V.; Pakhlov, E. M.; Voronina, O. E.; Guzenko, N. V.; Kazakova, O. A.; Leboda, R.; Skubiszewska-Zięba, J.

    2006-12-01

    Highly disperse nanocomposites with fumed silica/poly(vinyl pyrrolidone) (PVP) prepared using different methods were studied by infrared spectroscopy, adsorption, and quantum chemistry methods. Low amounts of water or ethanol (30 wt.% with respect to the silica content) promote appropriate distribution of PVP on silica particles. The use of ethanol leads to a smaller loss of the specific surface area ( SBET) than in the case of water used as a solvent. On PVP distribution on a silica surface, treatment of the system in a pseudo-liquid state reactor (PLSR) provides slightly better results (a lower loss in SBET) in comparison with mechanochemical activation (MCA) in a ball mill at the PVP monolayer coverage. An increase in the activation time to 6-9 h leads to an increase in the |Δ SBET/ SBET| value to 0.29-0.35 for both treatment methods.

  3. Spectroelectrochemical Studies on Quinacridone by Using Poly(vinyl alcohol) Coating as Protection Layer

    PubMed Central

    Enengl, Sandra; Enengl, Christina; Stadler, Philipp; Neugebauer, Helmut; Sariciftci, Niyazi Serdar

    2015-01-01

    Spectroscopic measurements in the infrared range combined with electrochemistry are a powerful technique for investigation of organic semiconductors to track changes during oxidation and reduction (p- and n-doping) processes. For these measurements it is important that the studied material, mostly deposited as a thin film on an internal reflection element, does not dissolve during this characterization. In this study we introduce a technique that allows infrared spectroelectrochemical characterization of films of these materials for the first time. In many cases so far this has been impossible, due to solubility in the oxidized and/or reduced form. This novel technique is shown on thin films of quinacridone by adding a protection layer of poly(vinyl alcohol) (PVA). PMID:26013836

  4. Modification of cycloolefin copolymer and poly(vinyl chloride) surfaces by superimposition of nano- and microstructures

    NASA Astrophysics Data System (ADS)

    Koponen, Hanna-Kaisa; Saarikoski, Inka; Korhonen, Tuulia; Pääkkö, Marjo; Kuisma, Risto; Pakkanen, Tuula T.; Suvanto, Mika; Pakkanen, Tapani A.

    2007-04-01

    Cycloolefin copolymer (COC) and poly(vinyl chloride) (PVC) surfaces were patterned with nanopillars or with microbumps on which nanopillars were superimposed. The area of patterned surfaces was several square centimeters. Patterning was achieved by applying nanoporous anodized aluminum oxide (AAO) membrane as a mask in injection molding or imprinting. Nanostructures superimposed on microstructures were achieved by patterning the AAO mask with microstructures before anodization. Micro- and nanometer-sized structures could then be transferred simultaneously to polymer surfaces. Structures were characterized by SEM, AFM, and contact profilometry. The effect of different-sized structures on properties of the polymer surface was studied by contact angle measurements. Relative to the smooth surface, the increase in water contact angle on a COC surface with nanostructures superimposed on microstructures was up to 50°.

  5. Promoting Cell Survival and Proliferation in Degradable Poly(vinyl alcohol)-Tyramine Hydrogels.

    PubMed

    Lim, Khoon S; Ramaswamy, Yogambha; Roberts, Justine J; Alves, Marie-Helene; Poole-Warren, Laura A; Martens, Penny J

    2015-10-01

    A photopolymerizable-tyraminated poly(vinyl alcohol) (PVA-Tyr) system that has the ability to covalently bind proteins in their native state was evaluated as a platform for cell encapsulation. However, a key hurdle to this system is the radicals generated during the cross-linking that can cause oxidative stress to the cells. This research hypothesized that incorporation of anti-oxidative proteins (sericin and gelatin) into PVA-Tyr gels would mitigate any toxicity caused by the radicals. The results showed that although incorporation of 1 wt% sericin promoted survival of the fibroblasts, both sericin and gelatin acted synergistically to facilitate long-term 3D cell function. The encapsulated cells formed clusters with deposition of laminin and collagen, as well as remaining metabolically active after 21 d. PMID:26097045

  6. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    SciTech Connect

    Prabhudesai, S. A. Mitra, S.; Mukhopadhyay, R.; Lawrence, Mathias B.; Desa, J. A. E.

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  7. Synthesis and dielectric studies of poly (vinyl pyrrolidone) / titanium dioxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Vasudevan, Prathibha; Thomas, Sunil; V, Arunkumar K.; S, Karthika; V, Unnikrishnan N.

    2015-02-01

    In this paper, we present the synthesis of poly vinyl pyrrolidone (PVP) / titanium dioxide nanocomposites via sol- gel technique. The structural and dielectric properties of the samples were also analysed in this work. PVP doped with varying concentrations of TiO2 are prepared by the sol-gel route. The prepared composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and impedance spectroscopy. XRD and TEM confirm the presence of TiO2 nanoparticles in the composites. The dielectric response and the AC electrical conductivity of the samples are investigated for the frequency range 1 kHz-2MHz at room temperature. The dielectric studies show low values for dielectric constant and loss at high frequencies.

  8. Facile fabrication of mesoporous poly(ethylene-co-vinyl alcohol)/chitosan blend monoliths.

    PubMed

    Wang, Guowei; Xin, Yuanrong; Uyama, Hiroshi

    2015-11-01

    Poly(ethylene-co-vinyl alcohol) (EVOH)/chitosan blend monoliths were fabricated by thermally-induced phase separation method. Chitosan was successfully incorporated into the polymeric monolith by selecting EVOH as the main component of the monolith. SEM images exhibit that the chitosan was located on the inner surface of the monolith. Fourier-transform infrared analysis and elemental analysis indicate the successful blend of EVOH and chitosan. BET results show that the blend monoliths had high specific surface area and uniform mesopore structure. Good adsorption ability toward various heavy metal ions was found in the blend monoliths due to the large chelation capacity of chitosan. The blend monoliths have potential application for waste water purification or bio-related applications.

  9. Characterization and potential applications of gamma irradiated chitosan and its blends with poly(vinyl alcohol).

    PubMed

    Bano, Ijaz; Ghauri, Muhammad Afzal; Yasin, Tariq; Huang, Qingrong; Palaparthi, Annie D'Souza

    2014-04-01

    Naturally available chitosan (CHI), of high molecular weight, results in reduced efficiency of these polymers for antibacterial activity. In this regard, irradiation is a widely used method for achieving reduction in molecular weight of polymers, which may improve some of its characteristics. Chitosan was extracted from crab shells and degraded by gamma radiations. Effect of radiation dose on chitosan was analyzed by Fourier transform infrared (FTIR) spectroscopy. Furthermore, the irradiated chitosan was blended with poly(vinyl alcohol) (PVA) and crosslinked with tetraethylorthosilicate (TEOS) into membranes. The membranes were found to be smooth, transparent and macroporous in structure, exhibiting high tensile strength (TS: 27-47 MPa) and elongation at break (EB: 292.6-407.3%). The effect of molecular weight of chitosan and chitosan blends on antibacterial activity was determined. Irradiated low molecular weight chitosan and membranes showed strong antibacterial activity against Escherichia coli and Bacillus subtilis.

  10. Down shifting in poly(vinyl alcohol) gels doped with terbium complex.

    PubMed

    Di Lorenzo, Maria Laura; Cocca, Mariacristina; Avella, Maurizio; Gentile, Gennaro; Gutierrez, David; Della Pirriera, Monica; Torralba-Calleja, Elena; Kennedy, Manus; Ahmed, Hind; Doran, John

    2016-09-01

    Novel poly(vinyl alcohol) (PVA) based soft gels with luminescent properties are detailed in this contribution. Lanthanide complex of terbium ions with anthranilic acid, Tb(ant)3·2H2O, was synthesized and incorporated into a DMSO/water solution, followed by addition of PVA, to attain soft gels at room temperature. Morphological and thermal analyses revealed homogeneous distribution of Tb(ant)3·2H2O into the PVOH/DMSO/water gel, and that incorporation of the terbium complex does not alter the thermal properties of the gels. The gels are transparent and luminescent, as they exhibit Large Stokes shift down shifting (LSS DS) up to 400nm, with very high emission quantum yield, that was found to be function of Tb complex concentration. PMID:27236842

  11. Synthesis of hybrid polymer networks of irradiated chitosan/poly(vinyl alcohol) for biomedical applications

    NASA Astrophysics Data System (ADS)

    Islam, Atif; Yasin, Tariq; Rehman, Ihtesham ur

    2014-03-01

    Hybrid polymer network (HPN) of chitosan (CS) with poly(vinyl alcohol) (PVA) was prepared by using radiation degraded chitosan. The chemical structure of chitosan promoted chain scission reactions upon irradiation which lowered its molecular weight and also changed its hydrophilic balance. The effect of molecular weight and hydrophilicity of irradiated chitosan on structural, thermal and surface properties of the HPN were studied. The increased hydrophilicity of irradiated chitosan lowered the crystallinity of the HPN. The endothermic peak was shifted towards higher temperatures in HPN having irradiated chitosan. The decreased value of contact angle with increasing dose, further confirmed the increased hydrophilicity of the HPN. The cytotoxicity results of HPN showed the viability of human fibroblast cells and their non-toxic nature making it suitable for tissue engineering and other biomedical applications.

  12. Fabrication and Characterization of Graphene/Graphene Oxide-Based Poly(vinyl alcohol) Nanocomposite Membranes

    NASA Astrophysics Data System (ADS)

    Hieu, Nguyen Huu; Long, Nguyen Huynh Bach Son; Kieu, Dang Thi Minh; Nhiem, Ly Tan

    2016-05-01

    Graphene (GE)- or graphene oxide (GO)-based poly(vinyl alcohol) (PVA) nanocomposite membranes have been prepared by the solution blending method. Raman spectra and atomic force microscopy images confirmed that GE and GO were synthesized with average thickness of 0.901 nm and 0.997 nm, respectively. X-ray diffraction patterns indicated good exfoliation of GE or GO in the PVA matrix. Fourier-transform infrared spectra revealed the chemical fractions of the nanocomposite membranes. Differential scanning calorimetry results proved that the thermal stability of the nanocomposite membranes was enhanced compared with neat PVA membrane. Transmission electron microscopy images revealed good dispersion of GE or GO sheets in the PVA matrix with thickness in the range of 19 nm to 39 nm. As a result, good compatibility between GE or GO and PVA was obtained at 0.5 wt.% filler content.

  13. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  14. Electrospinning of Poly (ethylene-co-vinyl acetate)/Clay Nanocomposite Fibers

    SciTech Connect

    Liu, Y.; Li, C; Chen, S; Koga, T; Sokolov, J; Rafailovich, M

    2009-01-01

    Poly(ethylene-co-vinyl acetate)/clay nanocomposite fibers were fabricated using electrospinning. The fiber diameters were controlled by varying the polymer/chloroform concentration, which resulted in fibers with diameters ranging from 1 to 15 {micro}m. The clay concentration was varied from 0.35 to 6.6 wt %. Scanning electron microscopy revealed that the fiber diameter increased with increasing clay concentration, whereas beading decreased. Transmission electron microscopy revealed a disruption of the spherulite structures by clay, which is consistent with heterogeneous nucleation. Shear modulus force microscopy indicated a reduction in melting point (T{sub m}) with decreasing diameter for fibers thinner than 15 {micro}m, which was confirmed by temperature dependent X-ray diffraction data. For fibers thinner than 8 {micro}m, the presence of clay further enhanced the reduction of T{sub m}.

  15. Flexural properties of sugarcane bagasse pith and rind reinforced poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Wirawan, R.; Sapuan, S. M.; Robiah, Y.; Khalina, A.

    2010-05-01

    Sugarcane bagasse is divided into two major components. They are pith and rind. Pith is the inner part of sugarcane bagasse while rind is the outer part of it. In this study, the flexural properties of pith reinforced poly (vinyl chloride) composites were compared to that of rind composites with the same matrix in variation of fibre content. The composites were produced by compression moulding method. The fibre contents were 10%, 20%, 30%, 40%, and 50% in weight. Three-point bending tests were carried out to measure the flexural properties of the composites. It has been found that, in general, the addition of fibre improved the flexural modulus of the materials. Meanwhile, the rind composites were of superior flexural properties compared to the pith composites.

  16. Study on the phase transition behavior of poly(butylene adipate) in its blends with poly(vinyl phenol).

    PubMed

    Sun, Xiaoli; Pi, Fuwei; Zhang, Jianming; Takahashi, Isao; Wang, Feng; Yan, Shouke; Ozaki, Yukihiro

    2011-03-10

    The phase transition behavior of poly(butylene adipate) (PBA) crystals in its blends with poly(vinyl phenol) (PVPh) was investigated by infrared (IR) spectroscopy and X-ray diffraction (XRD). The IR and XRD studies indicate that the hydrogen bonding between the C═O group of PBA and the OH group of PVPh developed in the PBA/PVPh blends with the ratios of 80/20 and 50/50 does not influence the solution crystallization behavior of PBA. The phase transition behavior of PBA in the blends is, however, significantly altered by the blending. In the neat PBA, linear changes of the intensities of IR bands at 1077, 930, and 910 cm(-1) are observed in the temperature range of 25-47.5 °C followed by an abrupt change corresponding to the occurrence of β-to-α phase transition. In the blends, the accelerated intensity changes of the those IR bands occur before the β-to-α phase transition, which is contributed to the melting of imperfect β-PBA crystals at relatively lower temperature. In addition, the significantly depressed β-to-α phase transition temperature is also identified.

  17. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-xing; Liao, Fei; He, Zhen-zhen; Yang, Jing-hui; Huang, Ting; Zhang, Nan; Wang, Yong; Gao, Xiao-ling

    2015-12-01

    In this work, different contents of poly(L-lactide) (PLLA) (20-50 wt%) were introduced into poly(ethylene vinyl acetate) (EVA) to prepare the samples with a tunable shape memory behavior. Morphological characterization demonstrated that with increasing PLLA content from 20 to 50 wt%, the blend morphology changed from sea-island structure to cocontinuous structure. In all the samples, PLLA was amorphous and it did not affect the crystallization of polyethylene part in the EVA component. The presence of PLLA greatly enhanced the storage modulus of samples, especially at relatively low temperatures. The shape memory behaviors of samples were systematically investigated and the results demonstrated that the EVA/PLLA blends exhibited a tunable shape memory effect. On one hand, PLLA accelerated the shape fixation and enhanced the fixity ratio of samples. On the other hand, PLLA reduced the dependence of shape fixity of samples on fixity temperatures. Specifically, for the first time, a critical recovery temperature was observed for the immiscible shape memory polymer blends. In this work, the critical recovery temperature was about 53 °C. At recovery temperature below the critical value, the blends exhibited smaller recovery ratios compared with the pure EVA, however, at recovery temperature above 53 °C, the blends exhibited higher recovery ratios.

  18. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.

    PubMed

    Unger, Florian; Wittmar, Matthias; Morell, Frank; Kissel, Thomas

    2008-05-01

    Branched polyesters of the general structure poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) have shown potential for nano- and micro-scale drug delivery systems. Here the in vitro degradation behaviour with a special emphasis on elucidating structure-property relationships is reported. Effects of type and degree of amine substitution as well as PLGA side chain length were considered. In a first set of experiment, the weight loss of solvent cast films of defined size from 19 polymers was measured as a function of incubation in phosphate buffer (pH 7.4) at 37 degrees C over a time of 21 days. A second study was initiated focusing on three selected polymers in a similar set up, but with additional observation of pH influences (pH 2 and pH 9) and determination of water uptake (swelling) and molecular weights during degradation. Scanning electron micrographs have been recorded at selected time points to characterize film specimens morphologically after degradation. Our investigations revealed the potential to influence the degradation of this polymer class by the degree of amine substitution, higher degrees leading to faster erosion. The erosion rate could further be influenced by the type of amine functionality, DEAPA-modified polyesters degrading as fast as or slightly faster than DMAPA-modified polyesters and these degrading faster than DEAEA-PVA-g-PLGA. As a third option the degradation rate could be modified by the PLGA side chain length, shorter side chains leading to faster erosion. As compared to linear PLGA, remarkably shorter degradation times could be achieved by grafting short PLGA side chains onto amine-modified PVA backbones. Erosion times from less than 5 days to more than 4 weeks could be realized by selecting the type of amine functionality, the degree of amine substitution and the PLGA side chain length at the time of synthesis. In addition, the pathway of hydrolytic degradation can be

  19. Measurements of Dynamic Viscoelasticity of Poly (vinyl alcohol) Hydrogel for the Development of Blood Vessel Biomodeling

    NASA Astrophysics Data System (ADS)

    Kosukegawa, Hiroyuki; Mamada, Keisuke; Kuroki, Kanju; Liu, Lei; Inoue, Kosuke; Hayase, Toshiyuki; Ohta, Makoto

    In vitro blood vessel biomodeling with realistic mechanical properties and geometrical structures is helpful for training in surgical procedures, especial those used in endovascular treatment. Poly (vinyl alcohol) hydrogel (PVA-H), which is made of Poly (vinyl alcohol) (PVA) and water, may be useful as a material for blood vessel biomodeling due to its low surface friction resistance and good transparency. In order to simulate the mechanical properties of blood vessels, measurements of mechanical properties of PVA-H were carried out with a dynamic mechanical analyzer, and the storage modulus (G’) and loss modulus (G”) of PVA-H were obtained. PVA-Hs were prepared by the low-temperature crystallization method. They were made of PVA with various concentrations (C) and degrees of polymerization (DP), and made by blending two kinds of PVA having different DP or saponification values (SV). The G’ and G” of PVA-H increased, as the C or DP of PVA increased, or as the proportion of PVA with higher DP or SV increased. These results indicate that it is possible to obtain PVA-H with desirable dynamic viscoelasticity. Furthermore, it is suggested that PVA-H is stable in the temperature range of 0°C to 40°C, indicating that biomodeling made of PVA-H should be available at 37°C, the physiological temperature. The dynamic viscoelasticity of PVA-H obtained was similar to that of the dog blood vessel measured in previous reports. In conclusion, PVA-H is suggested to be useful as a material of blood vessel biomodeling.

  20. Microcontact imprinting of algae on poly(ethylene-co-vinyl alcohol) for biofuel cells.

    PubMed

    Chen, Wen-Janq; Lee, Mei-Hwa; Thomas, James L; Lu, Po-Hsun; Li, Ming-Huan; Lin, Hung-Yin

    2013-11-13

    Hydrogen can be produced using microorganisms (e.g., bacteria and algae); algal production has the additional ecological benefit of carbon dioxide fixation. The conversion of hydrogen to electricity via fuel cells may be more efficient compared to other energy sources of electricity. However, the anode of biofuel cells requires the immobilization of microorganisms or enzymes. In this work, poly(ethylene-co-vinyl alcohol) (EVAL), was coated on the electrode, and green algae was microcontact imprinted onto the EVAL film. The readsorption of algae onto algae-imprinted EVAL thin films was compared to determine the ethylene content that gave highest imprinting effectiveness and algal binding. Scanning electron microscopy and fluorescence spectrometry were employed to characterize the surface morphology, recognition capacity, and reusability of the algae-imprinted cavities. The recognition of an individual algal cell by binding to the imprinted cavities was directly observed by video microscopy. Finally, the power and current density of the algal biofuel cell using the algae-imprinted EVAL-coated electrode were measured at about 2-fold higher than electrode sputtered platinum on poly(ethylene terephthalate).

  1. Microcontact imprinting of algae on poly(ethylene-co-vinyl alcohol) for biofuel cells.

    PubMed

    Chen, Wen-Janq; Lee, Mei-Hwa; Thomas, James L; Lu, Po-Hsun; Li, Ming-Huan; Lin, Hung-Yin

    2013-11-13

    Hydrogen can be produced using microorganisms (e.g., bacteria and algae); algal production has the additional ecological benefit of carbon dioxide fixation. The conversion of hydrogen to electricity via fuel cells may be more efficient compared to other energy sources of electricity. However, the anode of biofuel cells requires the immobilization of microorganisms or enzymes. In this work, poly(ethylene-co-vinyl alcohol) (EVAL), was coated on the electrode, and green algae was microcontact imprinted onto the EVAL film. The readsorption of algae onto algae-imprinted EVAL thin films was compared to determine the ethylene content that gave highest imprinting effectiveness and algal binding. Scanning electron microscopy and fluorescence spectrometry were employed to characterize the surface morphology, recognition capacity, and reusability of the algae-imprinted cavities. The recognition of an individual algal cell by binding to the imprinted cavities was directly observed by video microscopy. Finally, the power and current density of the algal biofuel cell using the algae-imprinted EVAL-coated electrode were measured at about 2-fold higher than electrode sputtered platinum on poly(ethylene terephthalate). PMID:24095224

  2. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).

    PubMed

    Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I

    2016-09-12

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.

  3. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol)

    PubMed Central

    2016-01-01

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications—from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action. PMID:27476873

  4. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  5. Effects of poly(2-hydroxyethyl methacrylate) and poly(vinyl-pyrrolidone) hydrogel implants on myopic and normal chick sclera

    PubMed Central

    Su, James; Iomdina, Elena; Tarutta, Elena; Ward, Brian; Song, Jie; Wildsoet, Christine F.

    2008-01-01

    There has been generally little attention paid to the utilization of biomaterials as an anti-myopia treatment. The purpose of this study was to investigate whether polymeric hydrogels, either implanted or injected adjacent to the outer scleral surface, slow ocular elongation. White Leghorn (gallus gallus domesticus) chicks were used at 2 weeks of age. Chicks had either (1) strip of poly(2-hydroxyethyl methacrylate) (pHEMA) implanted monocularly against the outer sclera at the posterior pole, or (2) an in situ polymerizing gel [main ingredient: poly(vinyl-pyrrolidone) (PVP)] injected monocularly at the same location. Some of the eyes injected with the polymer were fitted with a diffuser or a −10D lens. In each experiment, ocular lengths were measured at regular intervals by high frequency A-scan ultrasonography, and chicks were sacrificed for histology at staged intervals. No in vivo signs of either orbital or ocular inflammation were observed. The pHEMA implant significantly increased scleral thickness by the third week, and the implant became encapsulated with fibrous tissue. The PVP-injected eyes left otherwise untreated, showed a significant increase in scleral thickness, due to increased chondrocyte proliferation and extracellular matrix deposition. However, there was no effect of the PVP injection on ocular elongation. In eyes wearing optical devices, there was no effect on either scleral thickness or ocular elongation. These results represent “proof of principle” that scleral growth can be manipulated without adverse inflammatory responses. However, since neither approach slowed ocular elongation, additional factors must influence scleral surface area expansion in the avian eye. PMID:19109950

  6. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  7. Poly(anhydride-ester) and poly(N-vinyl-2-pyrrolidone) blends: salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation.

    PubMed

    Ouimet, Michelle A; Fogaça, Renata; Snyder, Sabrina S; Sathaye, Sameer; Catalani, Luiz H; Pochan, Darrin J; Uhrich, Kathryn E

    2015-03-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3-4 d in contrast to 3 h, and that blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly the inflammatory cytokine, TNF-α, in vitro without negative effects. PMID:25333420

  8. Poly(vinyl alcohol)-based film potentially suitable for antimicrobial packaging applications.

    PubMed

    Musetti, Alessandro; Paderni, Katia; Fabbri, Paola; Pulvirenti, Andrea; Al-Moghazy, Marwa; Fava, Patrizia

    2014-04-01

    This work aimed at developing a thin and water-resistant food-grade poly(vinyl alcohol) (PVOH)-based matrix able to swell when in contact with high moisture content food products without rupturing to release antimicrobial agents onto the food surface. This film was prepared by blending PVOH and 7.20% (wt/wt of PVOH) of poly(ethylene glycol) (PEG) with citric acid as crosslinking agent. The film-forming solution was then casted onto a flat surface and the obtained film was 60 μm in thickness and showed a good transparency (close to T = 100%) in the visible region (400 to 700 nm). After immersion in water for 72 h at room temperature, the crosslinked matrix loses only 19.2% of its original weight (the percentage includes the amount of unreacted crosslinking agent, antimicrobial in itself). Water content, degree of swelling, and crosslinking density of the film prove that the presence of PEG diminishes the hydrophilic behavior of the material. Also the mechanical properties of the wet and dry film were assessed. Alongside this, 2.5% (wt/wt of dry film) of grapefruit seed extract (GSE), an antimicrobial agent, was added to the film-forming solution just before casting and the ability of the plastic matrix to release the additive was then evaluated in vitro against 2 GSE-susceptible microorganisms, Salmonella enteritidis and Listeria innocua. The results indicate that the developed matrix may be a promising food-grade material for the incorporation of active substances. PMID:24611868

  9. Elastic properties of thin poly(vinyl alcohol)-cellulose nanocrystal membranes

    NASA Astrophysics Data System (ADS)

    Pakzad, A.; Simonsen, J.; Yassar, R. S.

    2012-03-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)-poly(acrylic acid) (PAA)-cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content.

  10. Graphene-poly(vinyl alcohol) composites: Fabrication, adsorption and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Chang, Peter R.; Zheng, Pengwu; Ma, Xiaofei

    2014-09-01

    Porous composites of graphene oxide (GO)-poly(vinyl alcohol) (PVA) were fabricated using a process of aqueous suspension precursor freezing, solvent exchange, and ethanol drying. When frozen, ice crystals formed leaving a porous structure, composed of randomly oriented GO sheets consolidated by PVA. The yellow GO-PVA composite could be reduced with glucose to obtain a black porous RGO (PRGO). XRD revealed that PVA enlarged the GO interlay spacing in the GO-PVA composite, and that RGO sheets were highly disordered in single or several layers in PRGO. GO-PVA and PRGO exhibited ultralight densities of 10.52 and 11.42 mg/cm3, respectively. GO-PVA adsorbed greater quantities of water, ethanol, and soybean oil than PRGO. The methylene blue (MB) adsorption pattern for both materials was also investigated. The kinetic adsorption and isotherm data fit the pseudo second-order and the Langmuir models, respectively. The maximum adsorption capacity according to the Langmuir isotherm model was 571.4 mg/g for GO-PVA. The electrochemical properties of PRGO were estimated using cyclic voltammetry, electrochemical impedance spectrometry, and chronopotentiometry. The PRGO electrode exhibited large capacitance (82.8 F/g) and small internal resistance (0.52 Ω).

  11. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    DOE PAGES

    Patel, Mogon; Pitts, Simon; Beavis, Peter; Robinson, Mathew; Morrell, Paul; Khan, Niaz; Khan, Imran; Pockett, Nicola; Letant, Sonia; Von White, Gregory; et al

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageingmore » induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.« less

  12. Poly(vinyl alcohol) hydrogel as a biocompatible viscoelastic mimetic for articular cartilage.

    PubMed

    Grant, Colin; Twigg, Pete; Egan, Alex; Moody, Alexandra; Smith, Annie; Eagland, Donald; Crowther, Nicholas; Britland, Steve

    2006-01-01

    The prevalence of suboptimal outcome for surgical interventions in the treatment of full-thickness articular cartilage damage suggests that there is scope for a materials-based strategy to deliver a more durable repair. Given that the superficial layer of articular cartilage creates and sustains the tribological function of synovial joints, it is logical that candidate materials should have surface viscoelastic properties that mimic native articular cartilage. The present paper describes force spectroscopy analysis by nano-indentation to measure the elastic modulus of the surface of a novel poly(vinyl alcohol) hydrogel with therapeutic potential as a joint implant. More than 1 order of magnitude decrease in the elastic modulus was detected after adsorption of a hyaluronic acid layer onto the hydrogel, bringing it very close to previously reported values for articular cartilage. Covalent derivatization of the hydrogel surface with fibronectin facilitated the adhesion and growth of cultured rat tibial condyle chondrocytes as evidenced morphologically and by the observance of metachromatic staining with toluidine blue dye. The present results indicate that hydrogel materials with potential therapeutic benefit for injured and diseased joints can be engineered with surfaces with biomechanical properties similar to those of native tissue and are accepted as such by their constituent cell type. PMID:17022680

  13. Electric field-controlled benzoic acid and sulphanilamide delivery from poly(vinyl alcohol) hydrogel.

    PubMed

    Sittiwong, Jarinya; Niamlang, Sumonman; Paradee, Nophawan; Sirivat, Anuvat

    2012-12-01

    The controlled release of benzoic acid (3.31 Å) and sulphanilamide (3.47 Å) from poly(vinyl alcohol), PVA, hydrogels fabricated by solution casting at various cross-linking ratios, were investigated. The PVA hydrogels were characterized in terms of the degree of swelling, the molecular weight between cross-links, and the mesh size. The drug release experiment was carried out using a modified Franz diffusion cell, at a pH value of 5.5 and at temperature of 37°C. The amount of drug release and the diffusion coefficients of the drugs from the PVA hydrogels increased with decreasing cross-linking ratio, as a larger mesh size was obtained with lower cross-linking ratios. With the application of an electric field, the amount of drug release and the diffusion coefficient increased monotonically with increasing electric field strength, since the resultant electrostatic force drove the ionic drugs from the PVA matrix. The drug size, matrix pore size, electrode polarity, and applied electric field were shown to be influential controlling factors for the drug release rate. PMID:23065453

  14. Fabrication and characterization of hybrid nanofibers from poly(vinyl alcohol), milk protein and metal carbonates.

    PubMed

    Mahanta, Narahari; Teow, Yiwei; Valiyaveettil, Suresh

    2012-08-01

    Porous three dimensional nanofibrous membranes were fabricated from poly(vinyl alcohol) (PVA), milk protein and inorganic salts such as calcium carbonate (CaCO3) or magnesium carbonate (MgCO3). Microscopic investigations showed that the fibers have smooth morphology with an average diameter of 300-500 nm and a surface area of 5.29 m2g(-1). Thermal analysis of the composite nanofibers showed a decrease in glass transition temperature as compared to PVA nanofiber. Incorporation of CaCO3 and MgCO3 into the nanofiber matrix was confirmed by energy dispersive spectroscopy and X-ray diffraction analysis. The cytocompatibility of electrospun composite nanofiber sheets was evaluated using human lung fibroblasts (IMR-90). There was an increase in cell attachment and cell density on milk protein incorporated to PVA-CaCO3 and PVA-MgCO3 fibers within a week of cell seeding. The cytocompatibility and increase in cell adhesion property of the hybrid nanofiber may provide significant advantages for such materials in biomedical applications. PMID:22962721

  15. Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement

    PubMed Central

    Ino, Julia M.; Chevallier, Pascale; Letourneur, Didier; Mantovani, Diego; Le Visage, Catherine

    2013-01-01

    Tailoring the interface interactions between a biomaterial and the surrounding tissue is a capital aspect to consider for the design of medical devices. Poly(vinyl alcohol) (PVA) hydrogels present suitable mechanical properties for various biological substitutes, however the lack of cell adhesion on their surface is often a problem. The common approach is to incorporate biomolecules, either by blending or coupling. But these modifications disrupt PVA intra- and intermolecular interactions leading therefore to a loss of its original mechanical properties. In this work, surface modification by glow discharge plasma, technique known to modify only the surface without altering the bulk properties, has been investigated to promote cell attachment on PVA substrates. N2/H2 microwave plasma treatment has been performed, and the chemical composition of PVA surface has been investigated. X-ray photoelectron and Fourier transform infrared analyses on the plasma-treated films revealed the presence of carbonyl and nitrogen species, including amine and amide groups, while the main structure of PVA was unchanged. Plasma modification induced an increase in the PVA surface wettability with no significant change in surface roughness. In contrast to untreated PVA, plasma-modified films allowed successful culture of mouse fibroblasts and human endothelial cells. These results evidenced that the grafting was stable after rehydration and that it displayed cell adhesive properties. Thus plasma amination of PVA is a promising approach to improve cell behavior on contact with synthetic hydrogels for tissue engineering. PMID:23989063

  16. Comparison of properties of poly(vinyl alcohol) nanocomposites containing two different clays.

    PubMed

    Chang, Jin-Hae; Ham, Miran; Kim, Jeong-Cheol

    2014-11-01

    Morphologies, thermo-optical properties, and gas barriers of poly(vinyl alcohol) (PVA) hybrid films containing two different clays are compared. Saponite (SPT) and hydrophilic bentonite (BTT) were used as the reinforcing filler in the fabrication of PVA hybrid films, which were synthesized from aqueous solutions and were solvent-cast at room temperature under vacuum, yielding 20-31-μm-thick PVA hybrid films with varying clay contents. The addition of small amounts of clay is sufficient to improve the thermal properties and gas barriers of PVA hybrid films. Even polymers with a low clay content (3-10 wt%) were found to exhibit much higher transition temperature values than pure PVA. The addition of BTT was more effective than the addition of SPT for improving the thermal properties and gas barrier in the PVA matrix. The PVA hybrid films containing 5 wt% SPT were equibiaxially stretched, with stretching ratios ranging from 150% to 250%. Clay dispersion, morphology, optical transparency, and gas permeability were then examined as a function of the equibiaxial stretching ratio. PVA hybrid films with a stretching ratio of ≥ 150% displayed homogeneously dispersed clay within the polymer matrix and exfoliated nanocomposites.

  17. FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation.

    PubMed

    Dong, Zhe-Qin; Wang, Bao-Juan; Ma, Xiao-hua; Wei, Yong-Ming; Xu, Zhen-Liang

    2015-10-14

    This study develops a novel type of electrospun nanofiber membranes (ENMs) with high permeability and robust superhydrophobicity for membrane distillation (MD) process by mimicking the unique unitary microstructures of ramee leaves. The superhydrophobic ENMs were fabricated by the eletrospinning of poly(vinyl alcohol) (PVA), followed by chemical cross-linking with glutaraldehyde and surface modification via low surface energy fluoroalkylsilane (FAS). The resultant FAS grafted PVA (F-PVA) nanofiber membranes were endowed with self-cleaning properties with water contact angles of 158° and sliding angles of 4° via the modification process, while retaining their high porosities and interconnected open structures. For the first time, the robust superhydrophobicity of the ENMs for MD was confirmed by testing the F-PVA nanofiber membranes under violent ultrasonic treatment and harsh chemical conditions. Furthermore, vacuum membrane distillation experiments illustrated that the F-PVA membranes presented a high and stable permeate flux of 25.2 kg/m2 h, 70% higher than those of the commercial PTFE membranes, with satisfied permeate conductivity (<5 μm/cm) during a continuous test of 16 h (3.5 wt % NaCl as the feed solution, and feed temperature and permeate pressure were set as 333 K and 9 kPa, respectively), suggesting their great potentials in myriad MD processes such as high salinity water desalination and volatile organiccompounds removal. PMID:26411526

  18. The impedance characterization of Carbon Nanotubes - Fumed Silica Poly (vinyl alcohol) Composites

    NASA Astrophysics Data System (ADS)

    Othman, R. N.; Wilkinson, A. N.

    2016-06-01

    Carbon Nanotube (CNT) was grown on the surface of fumed silica via chemical vapor deposition (CVD) method. In this work, silica acted as a site that holds CNT together, which prevents further agglomeration during composite processing. Iron catalyst at different loading (7.5 wt. % up to 25 wt. %) was introduced via impregnation method to synthesize CNT at 1000°C, under methane flow. Floating catalyst method was used where ferrocene (2.5 wt. % and 5 wt. %) was used as starting reactants together with toluene at 760°C. The reaction time was set at 1 hour for both methods. It was later confirmed via SEM images that the floating catalyst method is more suitable to produce a large amount of CNTs. The sample synthesized via floating catalyst method at both 2.5 wt.% and 5 wt. % ferrocene was later used to prepare composites. Composite films of the particles in poly (vinyl alcohol) (PVOH) were cast and their TEM images show that the dispersion is indeed uniform. From impedance measurement, it was found that the particles synthesized via floating catalyst method were found to form an electrically-conductive percolated network with percolation threshold of 1 wt. %, obtained via percolation equation.

  19. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.

    PubMed

    Sun, Xunwen; Lu, Canhui; Liu, Yong; Zhang, Wei; Zhang, Xinxing

    2014-01-30

    Waste cotton fabrics (WCFs), which are generated in a large volume from the textile industry, have caused serious disposal problem. Recycling WCFs into value-added products is one of the vital measures for both environmental and economic benefits. In this study, microcrystalline cellulose (MCC) was prepared by acid hydrolysis of WCFs, and used as reinforcement for melt-processed poly(vinyl alcohol) (PVA) with water and formamide as plasticizer. The microstructure and mechanical properties of the melt-processed PVA/MCC composites were characterized by Fourier transform infrared spectra, Raman spectra, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, tensile tests and dynamic mechanical analysis. The results indicated that MCC could establish strong interfacial interaction with PVA through hydrogen bonding. As a result, the crystallization of PVA was confined and its melting temperature was decreased, which was beneficial for the melt-processing of PVA. Compared with the unfilled PVA, the PVA/MCC composites exhibited remarkable improvement in modulus and tensile strength.

  20. The plasticizing mechanism and effect of calcium chloride on starch/poly(vinyl alcohol) films.

    PubMed

    Jiang, Xiancai; Jiang, Ting; Gan, Lingling; Zhang, Xiaofei; Dai, Hua; Zhang, Xi

    2012-11-01

    Starch/poly(vinyl alcohol) (PVA) films were prepared with calcium chloride (CaCl(2)) as the plasticizer. The micro morphology of pure starch/PVA film and CaCl(2) plasticized starch/PVA film was observed by scanning electron microscope. The interaction between CaCl(2) and starch/PVA molecules was investigated by Fourier transform infrared spectroscopy. The influence of CaCl(2) on the crystalline, thermal and mechanical properties of starch/PVA films was studied by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. The results indicated that CaCl(2) could interact with starch and PVA molecules and then effectively destroy the crystals of starch and PVA. Starch/PVA films plasticized with CaCl(2) became soft and ductile, with lower tensile strength and higher elongation at break compared with pure starch/PVA film. The water content of starch/PVA film would increase with the addition of CaCl(2). This is an important cause of the plasticization of CaCl(2) on starch/PVA film.

  1. Epidemiological study of pneumoconiosis in the Italian poly(vinyl chloride) industry.

    PubMed

    Mastrangelo, G; Saia, B; Marcer, G; Piazza, G

    1981-10-01

    Among 1216 workers employed in a poly(vinyl chloride) production factory, 20 cases of pneumoconiosis were found. None of these workers had had previous exposure to organic or inorganic dusts; 731 had been exposed to PVC dust (employed in drying, sacking and blending of polymer) and 485 had been exposed to monomer alone. Chest x-ray films were read by two independent physicians utilizing the ILO/UC Pneumoconiosis Classification, 1971. X-ray abnormalities were characterized by limited profusion, irregular type and low gravidity; in a small percentage of cases these were associated with slight restrictive respiratory function impairments. All 20 workers with PVC-induced pneumoconiosis had been exposed to high PVC dust pollution for at least five years. Mild nonspecific alterations (profusion of 0/1 class) were found both in the group exposed to PVC dust and in the group exposed to VCM alone. Such changes (observed in 388 cases, 31.9% of the whole population), are related mainly to age and smoking habits, and the role of exposure is minor.

  2. Char characterization-thermal decomposition chemistry of poly(vinyl alcohol)

    SciTech Connect

    Gilman, J.W.; VanderHart, D.L.; Kashiwagi, Takashi

    1995-12-01

    Currently, due to concerns over the environmental effects of halogenated compound, there is an international demand for the control of polymer flammability without the use of halogenated additives. An alternative to the use of halogenated fire retardants, which control flammability primarily in the gas phase, is to control polymer flammability by manipulating the condensed phase chemistry. Our approach is to increase the amount of char that forms during polymer combustion. Char formation reduces, through crosslinking reactions, the amount of small volatile polymer pyrolysis fragments, or fuel, available for burning in the gas phase; this, in turn reduces the amount of heat feedback to the polymer surface. The char also insulates the underlying virgin polymer. The polymer we chose to investigate was polyvinyl alcohol, PVA, because it is one of the few linear, non-halogenated, aliphatic, polymers with a measurable (approximately 4%) char yield. We report the CP/MAS {sup 13}C NMR characterization of the fundamental condensed phase processes and structures which lead to char formation during the pyrolysis of poly (vinyl-alcohol), PVA, and PVA with nonhalogenated additives.

  3. Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications.

    PubMed

    Chen, Changfeng; Liu, Li; Huang, Tao; Wang, Qiong; Fang, Yue'e

    2013-11-01

    The present investigation involves the synthesis of chitosan based composite sponges in view of their applications in wound dressing, antibacterial and haemostatic. A facile CO2 bubbles template freeze-drying method was developed for the fabrication of macroporous chitosan-poly(vinyl alcohol) (PVA) composite sponges with a typical porosity of 50% and pore size of 100-300 μm. Effects of the content of cross-linking agent and PVA on morphology, mechanical properties, water uptake and moisture permeability were examined. The macroporous chitosan/PVA composite sponges exhibited an enhanced water absorption capacity over those reported microporous chitosan sponges prepared using traditional free-drying methods. Improved strength and flexibility of the chitosan sponges were observed with the presence of PVA. Further, the antibacterial and haemostatic activities have been also demonstrated. The chitosan/PVA composite sponges showed higher haemostatic activity than pure chitosan sponges and solutions. Erythrocytes cells bind first to the surface of chitosan polymer in the sponges and then promote the binding with other cells in the solution. The chitosan/PVA sponges of high liquid absorbing, appropriate moisture permeability, antimicrobial property and unique haemostatic behavior can be used for wound dressing applications.

  4. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study

    PubMed Central

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag+ was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130–192 nm. The diameters of the AgNPs were in the range of 15–22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing. PMID:24204142

  5. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure.

    PubMed

    Sun, Xiaoxia; Uyama, Hiroshi

    2013-10-04

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields.

  6. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: a preclinical study.

    PubMed

    Li, Chenwen; Fu, Ruoqiu; Yu, Caiping; Li, Zhuoheng; Guan, Haiyan; Hu, Daqiang; Zhao, Dehua; Lu, Laichun

    2013-01-01

    In this study, a mixture of poly(vinyl alcohol) (PVA) and chitosan oligosaccharides (COS) was electrospun with silver nanoparticles (AgNPs) to produce fibrous mats for use in wound healing. The AgNPs were reduced by COS prior to electrospinning or Ag(+) was reduced via ultraviolet irradiation in nanofibers. The morphologies of the PVA/COS/AgNO3 and PVA/COS-AgNP nanofibers were analyzed by scanning electron microscopy. Formation of the AgNPs was investigated by field emission transmission electron microscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. We also evaluated the biocompatibility of the nanofibers, particularly their cytotoxicity to human skin fibroblasts and potential to cause primary skin irritation. The in vitro antibacterial activity and in vivo wound healing capacity of the nanofibers were also investigated. The nanofibers had a smooth surface with an average diameter of 130-192 nm. The diameters of the AgNPs were in the range of 15-22 nm. The nanofibers significantly inhibited growth of Escherichia coli and Staphylococcus aureus bacteria. PVA/COS-AgNP nanofibers accelerated the rate of wound healing over that of the control (gauze). The results of our in vitro and in vivo animal experiments suggest that PVA/COS-AgNP nanofibers should be of greater interest than PVA/COS/AgNO3 nanofibers for clinical use as a bioactive wound dressing.

  7. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    SciTech Connect

    Patel, Mogon; Pitts, Simon; Beavis, Peter; Robinson, Mathew; Morrell, Paul; Khan, Niaz; Khan, Imran; Pockett, Nicola; Letant, Sonia; Von White, Gregory; Labouriau, Andrea

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageing induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.

  8. Development and Characterization of Poly(1-vinylpyrrolidone-co-vinyl acetate) Copolymer Based Polymer Electrolytes

    PubMed Central

    Sa'adun, Nurul Nadiah; Subramaniam, Ramesh; Kasi, Ramesh

    2014-01-01

    Gel polymer electrolytes (GPEs) are developed using poly(1-vinylpyrrolidone-co-vinyl acetate) [P(VP-co-VAc)] as the host polymer, lithium bis(trifluoromethane) sulfonimide [LiTFSI] as the lithium salt and ionic liquid, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [EMImTFSI] by using solution casting technique. The effect of ionic liquid on ionic conductivity is studied and the optimum ionic conductivity at room temperature is found to be 2.14 × 10−6 S cm−1 for sample containing 25 wt% of EMImTFSI. The temperature dependence of ionic conductivity from 303 K to 353 K exhibits Arrhenius plot behaviour. The thermal stability of the polymer electrolyte system is studied by using thermogravimetric analysis (TGA) while the structural and morphological properties of the polymer electrolyte is studied by using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction analysis (XRD), respectively. PMID:25431781

  9. Sulfoacetic acid modifying poly(vinyl alcohol) hydrogel and its electroresponsive behavior under DC electric field

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Liu, Genqi; Zhang, Cheng; Liao, Jiae

    2013-01-01

    A strong electrolyte hydrogel was prepared by modifying poly (vinyl alcohol) hydrogel with sulfoacetic acid (SA-PVA). Its swelling properties, mechanical properties, and electroresponsive behavior in Na2SO4 solutions were studied. The results indicated that the water take-up ability of the hydrogel decreased with the increasing ionic strength of Na2SO4 solution. The Young’s modulus, elongation at break and tensile strength of the hydrogel swollen in deionized water are 1.247 MPa, 187% and 2.2 MPa, respectively. The hydrogel swollen in a Na2SO4 solution bent towards the cathode under non-contact dc electric fields, and its bending speed and equilibrium strain increased with increasing applied voltage. There is a critical ionic strength of 0.03 at which the maximum equilibrium strain of the hydrogel occurs. Also the bending behavior of hydrogel was not affected by the pH changes. By altering the direction of the applied potential cyclically, the hydrogel exhibited good reversible bending behavior. On this basis, a gel-worm was designed. Under a cyclically varying electric field (the period was 8 s, and the voltage ranged from -10 to 10 V), the walking speed was up to 15 cm min-1 in Na2SO4 solution with an ionic strength of 0.03.

  10. Effect of sonication on the mechanical properties of poly (vinyl alcohol)/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Truong, Van-Tan; Tsang, Kelly M. C.; Keough, Shannon J.; St John, Nigel A.

    2006-12-01

    Several sonication procedures were performed on multi-walled carbon nanotubes (MWNTs) in water by varying the length of time, the output power and the type of sonicating horn. Depending on the sonicating conditions, the multi-walled carbon nanotubes (MWNTs) could be well or poorly exfoliated and dispersed. Poly (vinyl alcohol) (PVA) and MNWT (0.5 wt%) composites were cast from the PVA/MWNT aqueous mixture. Enhancement of the mechanical properties of the composites was related to two factors: (1) crystallinity formed at the PVA and MWNT interface and (2) the size of nanotube agglomerates. The poorly dispersed solution produced nanotube agglomerates with the size of 50-100 μm that did not induce crystallization at the polymer/nanotube interface. They became stress concentrators reducing the Young's modulus and the tensile strength. Optimized sonication procedures resulted in well-dispersed nanotube agglomerates of submicron dimensions efficiently enhancing the mechanical properties. As centrifugation facilitated the removal of large agglomerates, noticeable enhancement of mechanical properties of the composites was achieved.

  11. Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Rathod, Sunil G.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Sheela, T.; Naik, Jagadish

    2014-04-01

    In this work the composite films of poly(vinyl alcohol) (PVA) doped with functionalized Graphene Oxide (GO) were prepared by solution casting method. The films were characterized using FT-IR, DSC, XRD, mechanical properties and dielectric studies at room temperature. FTIR spectra shows the formation of hydrogen bonds between hydroxyl groups of PVA and the hydroxy groups of GO. The DSC thermograms shows the addition of GO to PVA greatly improves the thermal stability of the composites. XRD patterns shows that the GO exfoliated and uniformly dispersed in PVA matrix. Mechanical properties are significantly improved in PVA/GO composites. The tensile strength increased from 8.2 to 13.7 MPa and the Young's modulus increased from 7.5 to 24.8 MPa for 5 wt% GO doped sample. Dielectric spectroscopy showed a highest dielectric constant for the 5 wt% GO doped PVA films. This work provides a potential design strategy on PVA/GO composite, which would lead to higher-performance, flexible dielectric materials, high charge-storage devices.

  12. Chromaticity and color saturation of ultraviolet irradiated poly(vinyl alcohol)-anthocyanin coatings

    NASA Astrophysics Data System (ADS)

    Mat Nor, N. A.; Aziz, N.; Mohd-Adnan, A. F.; Taha, R. M.; Arof, A. K.

    2016-06-01

    The purpose of this paper is to evaluate the chromaticity and color saturation of anthocyanin extraction from fruit pericarps of Ixora siamensis in a poly(vinyl alcohol) (PVA) matrix. The colored PVA matrix was exposed to UV-B irradiation for 93 days at UV intensity of 17.55 lux. Anthocyanin colorant has been extracted using methanol acidified with 0.5% trifluoroacetic acid (TFA). Different concentrations of ferulic acid (FA) (0, 1, 2, 3, 4 and 5 wt.%) have been added to the anthocyanin extractions before mixing with PVA to form a coating system. The PVA-anthocyanin-FA mixtures have been coated on glass slides and kept overnight in the dark for curing before exposure to UV-B irradiation. The FA-free sample undergoes more color degradation compared to samples containing FA. The coating with 2% FA has the most stable color with chromaticity of 41% and color saturation of 0.88 compared to other FA containing coats. The FA-free coat exhibits 29% chromaticity and color saturation of 0.38 at the end of the experiment.

  13. The influence of the vinyl terminal group on the poly(para-phenylenevinylene) charge transfer integrals.

    PubMed

    Ottonelli, Massimo; Duce, Daniele; Thea, Sergio; Dellepiane, Giovanna

    2013-07-01

    The charge transport properties of organic semiconductors are one of the foremost limiting factors in technological applications of these materials, which are becoming important competitors with respect to the inorganic semiconductors. In fact, conjugated organic molecules are used at present as active materials in different types of devices. For this reason, the theoretical study of the electron and hole mobility, carried out in order to give hints for the design of new molecules or for the optimization of their supramolecular organization, is a task of great interest. Here, we present the results of a quantum chemical study, in the framework of the Marcus and density functional theories, on the effects of terminal groups (when they directly interact with the pi-conjugated system of the organic semiconductors) on the charge carriers mobility of organic semiconductors. In particular, using a representative oligomer of poly(para-phenylenevinylene) as a model system, we have found that strong effects on the predicted values of the intramolecular transfer integrals as well as on their dependence on the supramolecular organizations occur, when the vinyl moiety (as ending group) is taken into account.

  14. Egg white/poly (vinyl alcohol)/MMT nanocomposite hydrogels for wound dressing.

    PubMed

    Jahani-Javanmardi, Azinsadat; Sirousazar, Mohammad; Shaabani, Yasaman; Kheiri, Farshad

    2016-08-01

    Nanocomposite hydrogels on the basis of egg white and poly (vinyl alcohol) (PVA) containing 0, 5, and 10 wt.% of montmorillonite (MMT) nanoclay were prepared by a facile cyclic freezing-thawing technique and their properties investigated for wound dressing application. The morphological, structural, thermal, physical, and in vitro cytotoxic properties of the prepared nanocomposite hydrogel wound dressings (NHWDs) were experimentally studied. The NHWDs had an exfoliated morphology with a porous structure having pores sizes in the nanometric scale. It was shown that MMT acted as cross-linker in the network of NHWDs and improved their thermal stabilities. The prepared wound dressings were transparent and their equilibrium water contents and water vapor transmission rates, as two important factors of wound dressings, were very close to the properties of human skin which means that the prepared wound dressings could interact appropriately with the damaged tissues of wounds and protect them like an artificial skin during the wound healing process. The in vitro cytotoxicity assay also confirmed the non-cytotoxic nature of the prepared NHWDs. It was finally concluded that the prepared egg white/PVA/MMT nanocomposite hydrogels are promising materials to be used as novel wound dressings in wound and burn care. PMID:27193240

  15. Poly(vinyl alcohol)/silica nanocomposites: morphology and thermal degradation kinetics.

    PubMed

    Peng, Zheng; Kong, Ling Xue; Li, Si-Dong; Spiridonov, Pavel

    2006-12-01

    The morphology of self-assembled poly(vinyl alcohol)/silica (PVA/SiO2) nanocomposites is investigated with atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the SiO2 nanoparticles are homogenously distributed throughout the PVA matrix in a form of spherical nano-cluster. The average size of the SiO2 clusters is below 50 nm at the low contents (SiO2 < or =5 5 wt%), while particle aggregations are clearly observed and their average size markedly increases to 110 nm when 10 wt% SiO2 is loaded. The thermogravimetric analysis (TGA) shows that the nanocomposite significantly outperforms the pure PVA in the thermal resistance. By using a multi-heating-rate method, the thermal degradation kinetics of the nanocomposite with a SiO2 content of 5 wt% is compared to the PVA host. The reaction activation energy (E) of the nanocomposite, similar to the pure PVA, is divided into two main stages corresponding to two degradation steps. However, at a given degradation temperature, the nanocomposite presents much lower reaction velocity constants (k), while its E is 20 kJ/mol higher than that of the PVA host. PMID:17256356

  16. Plasticized poly(vinyl chloride)-based photonic crystal for ion sensing.

    PubMed

    Aki, Shoma; Endo, Tatsuro; Sueyoshi, Kenji; Hisamoto, Hideaki

    2014-12-16

    In this study, we, for the first time, developed a plasticized poly(vinyl chloride) (PVC)-based two-dimensional photonic crystal (2D-PhC) optical sensor using nanoimprint lithography (NIL), which can perform highly sensitive, fast, and selective ion sensing based on ion extraction. Concerning the principle of response, present plasticized PVC-based PhC works as a waveguide and a grating. Incident light was guided in the bulk of plasticized PVC and, then, guided light of a specific wavelength was diffracted by a periodic nanostructure. The guided and diffracted light intensity changes of PVC-based PhCs possessing various thicknesses were monitored at 580 nm; then, we found that the 0.35 μm-thick PhC film exhibited the highest diffraction intensity. For the ion-sensing application, potassium-selective sensing elements involving potassium ionophore and lipophilic dye were dissolved in a plasticized PVC-based PhC, and the K(+)-selective response was successfully observed by monitoring the diffracted peak intensity change. The present 2D-PhC optical sensor exhibited a fast response within 5 s (95% response time) due to the use of thin film, and sensitivity was 20 times higher than that of a PVC plane-film optical sensor, due to efficient collection of diffracted light by employing a periodic nanostructure of the photonic crystal. PMID:25397688

  17. Preparation and Properties of Nano-Hydroxyapatite/Gelatin/Poly(vinyl alcohol) Composite Membrane.

    PubMed

    Liao, Haotian; Shi, Kun; Peng, Jinrong; Qu, Ying; Liao, Jinfeng; Qian, Zhiyong

    2015-06-01

    In this study, the bone-like composite membrane based on blends of gelatin (Gel), nano-hydroxyapatite (n-HA) and poly(vinyl alcohol) (PVA) was fabricated by solvent casting and evaporation methods. The effect of n-HA content and the ratio of Gel/PVA on the properties of the composite was investigated. The Gel/PVA and n-HA/Gel/PVA composite membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), water contact angle measurement and scanning electron microscopy (SEM). The mechanical properties of the composites were determined by tensile tests. The as prepared composite membranes exhibited hydrophobility, the water contact angle of composite membrane was 126.6 when its mass ratio of n-HA/Gel/PVA was 10/50/40. The tensile strength of composite membranes was greatly increased due to the introduction of n-HA, and the tensile strength was increased to 74.92 MPa when the mass ratio of n-HA/Gel/PVA was 10/50/40. SEM observation indicated that n-HA was dispersed in the membranes and a sea-island structure was formed in the n-HA/Gel/PVA composite membranes, resulting in a significant increase in tensile strength. The as-prepared n-HA/Gel/PVA composite membranes may be applied in the field of bone tissue engineering. PMID:26369028

  18. Biodegradable starch/poly (vinyl alcohol) film reinforced with titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Hejri, Zahra; Seifkordi, Ali Akbar; Ahmadpour, Ali; Zebarjad, Seyed Mojtaba; Maskooki, Abdolmajid

    2013-10-01

    Biodegradable starch/poly (vinyl alcohol)/nano-titanium dioxide (ST/PVA/nano-TiO2) nanocomposite films were prepared via a solution casting method. Their biodegradability, mechanical properties, and thermal properties were also studied in this paper. A general full factorial experimental approach was used to determine effective parameters on the mechanical properties of the prepared films. ST/PVA/TiO2 nanocomposites were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of mechanical analysis show that ST/PVA films with higher contents of PVA have much better mechanical properties. In thermal analysis, it is found that the addition of TiO2 nanoparticles improves the thermal stability of the films. SEM micrographs, taken from the fracture surface of samples, illustrate that the addition of PVA makes the film softer and more flexible. The results of soil burial biodegradation indicate that the biodegradability of ST/PVA/TiO2 films strongly depends on the starch proportion in the film matrix. The degradation rate is increased by the addition of starch in the films.

  19. Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes.

    PubMed

    Ibrahim, Maha M; Koschella, Andreas; Kadry, Ghada; Heinze, Thomas

    2013-06-01

    Cellulose was isolated from rice straw and converted to carboxymethyl cellulose (CMC). Both polymers were crosslinked with poly(vinyl alcholo) (PVA). The physical properties of the resulting membranes were characterized by FT-IR, TGA, DSC and SEM. The cellulose and CMC were first prepared from bleached rice straw pulp. The infrared spectroscopy of the resulting polymer membranes indicated a decrease in the absorbance of the OH group at 3300-3400 cm(-1), which is due to bond formation with either the cellulose or CMC with the PVA. The thermal stability of PVA/cellulose and PVA/CMC membranes was lower than PVA membrane. The surface of the resulting polymer membranes showed smooth surface in case of the PVA/CMC membrane and rough surface in case of the PVA/cellulose membrane. Desalination test, using 0.2% NaCl, showed that pure PVA membranes had no effect while membranes containing either cellulose or CMC as filler were able to decrease the content of the NaCl from the solution by 25% and 15%, respectively. Transport properties, including water and chloroform vapor were studied. The moisture transport was reduced by the presence of both cellulose and CMC. Moreover, the membranes containing cellulose and CMC showed significantly reduced flux compared to the pure PVA. The water sorption, solubility and soaking period at different pH solutions were also studied and showed that the presence of both cellulose and CMC influences the properties.

  20. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Belmonte, Guilherme Kretzmann; Charles, German; Strumia, Miriam Cristina; Weibel, Daniel Eduardo

    2016-09-01

    Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35-40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, Cdbnd O, Csbnd O and Cdbnd C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  1. Barrier properties of poly(vinyl alcohol) membranes containing carbon nanotubes or activated carbon.

    PubMed

    Surdo, Erin M; Khan, Iftheker A; Choudhury, Atif A; Saleh, Navid B; Arnold, William A

    2011-04-15

    Carbon nanotube addition has been shown to improve the mechanical properties of some polymers. Because of their unique adsorptive properties, carbon nanotubes may also improve the barrier performance of polymers used in contaminant containment. This study compares the barrier performance of poly(vinyl alcohol) (PVA) membranes containing single-walled carbon nanotubes (SWCNTs) to that for PVA containing powdered activated carbon (PAC). Raw and surface-functionalized versions of each sorbent were tested for their abilities to adsorb 1,2,4-trichlorobenzene and Cu(2+), representing the important hydrophobic organic and heavy metal contaminant classes, as they diffused across the PVA. In both cases, PAC (for 1,2,4-trichlorobenzene) and functionalized PAC (for Cu(2+)) outperformed SWCNTs on a per mass basis by trapping more of the contaminants within the barrier membrane. Kinetics of sorption are important in evaluating barrier properties, and poor performance of SWCNT-containing membranes as 1,2,4-TCB barriers is attributed to kinetic limitations. PMID:21349636

  2. Using carboxylated nanocrystalline cellulose as an additive in cellulosic paper and poly (vinyl alcohol) fiber paper.

    PubMed

    Cha, Ruitao; Wang, Chengyu; Cheng, Shaoling; He, Zhibin; Jiang, Xingyu

    2014-09-22

    Specialty paper (e.g. cigarette paper and battery diaphragm paper) requires extremely high strength properties. The addition of strength agents plays an important role in increasing strength properties of paper. Nanocrystalline cellulose (NCC), or cellulose whiskers, has the potential to enhance the strength properties of paper via improving inter-fibers bonding. This paper was to determine the potential of using carboxylated nanocrystalline cellulose (CNCC) to improve the strength properties of paper made of cellulosic fiber or poly (vinyl alcohol) (PVA) fiber. The results indicated that the addition of CNCC can effectively improve the strength properties. At a CNCC dosage of 0.7%, the tear index and tensile index of the cellulosic paper reached the maximum of 12.8 mN m2/g and 100.7 Nm/g, respectively. More importantly, when increasing the CNCC dosage from 0.1 to 1.0%, the tear index and tensile index of PVA fiber paper were increased by 67.29%, 22.55%, respectively.

  3. Treatment of desizing wastewater containing poly(vinyl alcohol) by wet air oxidation

    SciTech Connect

    Chen, G.; Lei, L.; Yue, P.L.; Cen, P.

    2000-05-01

    The effectiveness of wet air oxidation (WAO) is studied in a 2-L autoclave for the treatment of desizing wastewater from man-made fiber textile plants. At an oxygen pressure of less than 2 MPa, over 30-min, chemical oxygen demand (COD) removal was found to increase from 15 to 65% when the temperature was raised from 150 to 250 C. The biodegradability of the wastewater was also simultaneously increased. Up to 90% of the COD could be removed within 120 min. A simplified reaction mechanism is proposed which involves a direct mineralization step in parallel with a step in which an intermediate is formed prior to mineralization. A kinetic model for COD removal was developed based on this reaction mechanism. The model was tested with experimental COD results over the temperature range of the experiments. The dependence of the specific reaction rate constants was found to follow the Arrhenius type of equation. The direct oxidation of poly(vinyl alcohol) (PVA) to carbon dioxide and water is the dominant reaction step. The intermediates formed are not likely to be the acetic acid but may be short segments of PVA that are easily oxidized.

  4. Synthesis, characterization and applications of N-quaternized chitosan/poly(vinyl alcohol) hydrogels.

    PubMed

    Mohamed, Riham R; Abu Elella, Mahmoud H; Sabaa, Magdy W

    2015-09-01

    Hydrogels composed of N-quaternized chitosan (NQC) and poly(vinyl alcohol) (PVA) in different weight ratios (1:3), (1:1) and (3:1) chemically crosslinked by glutaraldehyde in different weight ratios – 1.0 and 5.0% – have been prepared. The prepared hydrogels were characterized via several analysis tools such as: Fourier transform IR (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Different applications have been done on NQC/PVA hydrogels including; metal ions uptake, swellability in different buffer solutions (pH: 4, 7 and 9), swellability and degradation studies in simulated body fluid (SBF) solutions and antimicrobial activity towards bacteria and fungi. The results indicated that crosslinked NQC/PVA hydrogels with glutaraldehyde (GA) are more thermallystable than non crosslinked hydrogels, NQC/PVA hydrogels swell highly in different buffer solutions as PVA content increases and the antimicrobial activity of NQC/PVA hydrogels is higher than NQC itself.

  5. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.

    PubMed

    Zhang, Dong-Hao; Peng, Li-Juan; Wang, Yun; Li, Ya-Qiong

    2015-05-01

    Poly(vinyl acetate-acrylamide) microspheres with an average diameter of 2-4μm were successfully prepared and characterized via SEM and FTIR. Then the microspheres were modified with epoxy groups through reacting with epichlorohydrin and used as carriers to covalently immobilize Candida rugosa lipase. The results revealed that agitation played an important role on epoxy activation and the immobilization ratio increased with the increase of the epoxy density. On the other hand, the specific activity of the immobilized lipase as well as the activity recovery declined gradually with the increase in the immobilization ratio from 72% to 93%, which were attributed to the steric hindrance effects caused by enzyme overloading. When epoxy density was 76μmol/g microsphere, the activity recovery reached the maximum at 47.5%, and the activity of the immobilized lipase was 261.3U/g microsphere. Moreover, the thermal stability of the immobilized lipase was much better than that of the free one, which indicated potential applications of the immobilized lipase.

  6. Immobilized laccase on activated poly(vinyl alcohol) microspheres for enzyme thermistor application.

    PubMed

    Bai, Xue; Gu, Haixin; Chen, Wei; Shi, Hanchang; Yang, Bei; Huang, Xin; Zhang, Qi

    2014-07-01

    Poly(vinyl alcohol) (PVA) microspheres were prepared by inverse suspension crosslinked method, with glutaraldehyde as a crosslinking agent. PVA microspheres activated with aldehyde groups were employed for Trametes versicolor laccase immobilization. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the activated PVA microspheres and PVA microspheres with immobilized laccase (Lac/PVA microspheres), which show that laccase was successfully immobilized on the PVA microspheres. The optimum pH and temperature coupling conditions for the immobilized laccase were determined to be 3.3 and 30 °C, respectively. Residual activity was also investigated by soaking the immobilized laccase in organic solvents at different concentrations, proving it chemically stable. Immobilized laccase exhibited good storage stability at 4 °C. The enzyme biosensor showed good performance in 2,2-azinobis(3-ethylthiazoline-6-sulfonate) and bisphenol A, with concentration ranges of 2 to 8 mM and 0.05 to 0.25 mM, respectively. Therefore, PVA microspheres may have high potential as support for enzyme thermistor applications.

  7. Mucoadhesive polymers: Synthesis and in vitro characterization of thiolated poly(vinyl alcohol).

    PubMed

    Suchaoin, Wongsakorn; Pereira de Sousa, Irene; Netsomboon, Kesinee; Rohrer, Julia; Hoffmann Abad, Patricia; Laffleur, Flavia; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-04-30

    The aim of this study was to synthesize thiolated poly(vinyl alcohol) (PVA) and to evaluate its mucoadhesive properties. Thiourea and 3-mercaptopropionic acid were utilized in order to obtain thiolated PVAs, namely, TPVA1 and TPVA2, respectively. TPVA1 and TPVA2 displayed 130.44 ± 14.99 and 958.35 ± 155.27 μmol immobilized thiol groups per gram polymer, respectively, which were then evaluated regarding reactivity of thiol groups, swelling behavior and mucoadhesive properties. Both thiolated PVAs exhibited the highest reactivity at pH 8.0 whereas more than 95% of free thiol groups were preserved at pH 5.0. Thiolation of PVA decelerated water uptake and prolonged disintegration time of test discs compared to unmodified PVA. Contact time of TPVA1- and TPVA2-based test discs on porcine intestinal mucosa was 3.2- and 15.8-fold prolonged, respectively, in comparison to non-thiolated PVA as measured by rotating cylinder method. According to tensile studies on mucosa, the total work of adhesion (TWA) and the maximum detachment force (MDF) were increased when compared to PVA. Furthermore, thiolated PVAs preserved higher percentage of viable cells compared to unmodified PVA within 24h as evaluated by MTT assay. Accordingly, thiolated PVA represents a novel excipient that can likely improve the mucoadhesive properties of various pharmaceutical formulations. PMID:26965199

  8. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Bodugoz-Senturk, Hatice; Macias, Celia; Muratoglu, Orhun K.

    2007-12-01

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%.

  9. Wheat gluten-thiolated poly(vinyl alcohol) blends with improved mechanical properties.

    PubMed

    Dicharry, Rebecca M; Ye, Peng; Saha, Gobinda; Waxman, Eleanor; Asandei, Alexandru D; Parnas, Richard S

    2006-10-01

    A multifunctional macromolecular thiol (TPVA) obtained by esterification of poly(vinyl alcohol) (PVA) with 3-mercaptopropionic acid was characterized by a combination of NMR, IR, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC), and was used as a wheat gluten (WG) reactive modifier. The effect of TPVA molecular weight (M(w) = 2000, 9500, 50 000, and 205 000) and blend composition (5, 20, and 40% w/w TPVA/WG) on the mechanical properties of compression-molded bars indicates that TPVA/WG blends increase the fracture strength by up to 76%, the elongation by 80%, and the modulus by 25% above WG. In contrast, typical WG additives such as glycerol and sorbitol improve flexibility but decrease modulus and strength. Preliminary investigations of suspension rheology, water uptake, molecular weight distribution and electron microscopy of TPVA/WG and PVA/WG blends illustrate the different protein interactions with PVA and TPVA. Further work is underway to determine whether TPVA and WG form protein conjugates or microphase-separated morphologies.

  10. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    NASA Astrophysics Data System (ADS)

    Jipa, Iuliana Mihaela; Stroescu, Marta; Stoica-Guzun, Anicuta; Dobre, Tanase; Jinga, Sorin; Zaharescu, Traian

    2012-05-01

    Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different γ radiation doses using an irradiator GAMMATOR provided with 137Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during γ irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV-Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for γ irradiated products.

  11. A poly(vinyl alcohol)/sodium alginate blend monolith with nanoscale porous structure

    PubMed Central

    2013-01-01

    A stimuli-responsive poly(vinyl alcohol) (PVA)/sodium alginate (SA) blend monolith with nanoscale porous (mesoporous) structure is successfully fabricated by thermally impacted non-solvent induced phase separation (TINIPS) method. The PVA/SA blend monolith with different SA contents is conveniently fabricated in an aqueous methanol without any templates. The solvent suitable for the fabrication of the present blend monolith by TINIPS is different with that of the PVA monolith. The nanostructural control of the blend monolith is readily achieved by optimizing the fabrication conditions. Brunauer Emmett Teller measurement shows that the obtained blend monolith has a large surface area. Pore size distribution plot for the blend monolith obtained by the non-local density functional theory method reveals the existence of the nanoscale porous structure. Fourier transform infrared analysis reveals the strong interactions between PVA and SA. The pH-responsive property of the blend monolith is investigated on the basis of swelling ratio in different pH solutions. The present blend monolith of biocompatible and biodegradable PVA and SA with nanoscale porous structure has large potential for applications in biomedical and environmental fields. PMID:24093494

  12. Poly(vinyl alcohol)-heparin biosynthetic microspheres produced by microfluidics and ultraviolet photopolymerisation.

    PubMed

    Young, Cara; Rozario, Kester; Serra, Christophe; Poole-Warren, Laura; Martens, Penny

    2013-01-01

    Biosynthetic microspheres have the potential to address some of the limitations in cell microencapsulation; however, the generation of biosynthetic hydrogel microspheres has not been investigated or applied to cell encapsulation. Droplet microfluidics has the potential to produce more uniform microspheres under conditions compatible with cell encapsulation. Therefore, the aim of this study was to understand the effect of process parameters on biosynthetic microsphere formation, size, and morphology with a co-flow microfluidic method. Poly(vinyl alcohol) (PVA), a synthetic hydrogel and heparin, a glycosaminoglycan were chosen as the hydrogels for this study. A capillary-based microfluidic droplet generation device was used, and by varying the flow rates of both the polymer and oil phases, the viscosity of the continuous oil phase, and the interfacial surface tension, monodisperse spheres were produced from ∼200 to 800 μm. The size and morphology were unaffected by the addition of heparin. The modulus of spheres was 397 and 335 kPa for PVA and PVA/heparin, respectively, and this was not different from the bulk gel modulus (312 and 365 for PVA and PVA/heparin, respectively). Mammalian cells encapsulated in the spheres had over 90% viability after 24 h in both PVA and PVA/heparin microspheres. After 28 days, viability was still over 90% for PVA-heparin spheres and was significantly higher than in PVA only spheres. The use of biosynthetic hydrogels with microfluidic and UV polymerisation methods offers an improved approach to long-term cell encapsulation.

  13. Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix.

    PubMed

    Gupta, Vinod K; Jain, Ajay K; Maheshwari, Gaurav

    2007-06-15

    Al(3+) selective sensor has been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier morin as ionophore. Best performance was exhibited by the membrane having composition as morin:PVC:sodium tetraphenyl borate:tri-n-butylphosphate in the ratio 5:150:5:150 (w/w, mg). This membrane worked well over a wide activity range of 5.0x10(-7) to 1.0x10(-1)M of Al(3+) with a Nernstian slope of 19.7+/-0.1mV/decade of Al(3+) activity and a limit of detection 3.2x10(-7)M. The response time of the sensor is approximately 5s and membrane could be used over a period of 2 months with good reproducibility. The proposed sensor works well over a pH range (3.5-5.0) and demonstrates good discriminating power over a number of mono-, di- and trivalent cations. The sensor can also be used in partially non-aqueous media having up to 20% (v/v) methanol, ethanol or acetone content with no significant change in the value of slope or working activity range. The sensor has also been used in the potentiometric titration of Al(3+) with EDTA and for its determination in zinc plating mud and red mud.

  14. Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal.

    PubMed

    Gong, Guisheng; Zhang, Faai; Cheng, Zehong; Zhou, Li

    2015-11-01

    This study presents a simple method to fabricate magnetic carboxymethyl starch/poly(vinyl alcohol) (mCMS/PVA) composite gel. The obtained mCMS/PVA was characterized by Fourier transform infrared (FTIR) spectra, vibrating-sample magnetometer (VSM) and scanning electron microscopy (SEM) measurements. The application of mCMS/PVA as an adsorbent for removal of cationic methylene blue (MB) dye from water was investigated. Benefiting from the combined merits of carboxymethyl starch and magnetic gel, the mCMS/PVA simultaneously exhibited excellent adsorption property toward MB and convenient magnetic separation capability. The effects of initial dye concentration, contact time, pH and ionic strength on the adsorption performance of mCMS/PVA adsorbent were investigated systematically. The adsorption process of mCMS/PVA for MB fitted pseudo-second-order model and Freundlich isotherm. Moreover, desorption experiments revealed that the mCMS/PVA adsorbent could be well regenerated in ethanol solution without obvious compromise of removal efficiency even after eight cycles of desorption/adsorption. Considering the facile fabrication process and robust adsorption performance, the mCMS/PVA composite gel has great potential as a low cost adsorbent for environmental decontamination.

  15. FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation.

    PubMed

    Dong, Zhe-Qin; Wang, Bao-Juan; Ma, Xiao-hua; Wei, Yong-Ming; Xu, Zhen-Liang

    2015-10-14

    This study develops a novel type of electrospun nanofiber membranes (ENMs) with high permeability and robust superhydrophobicity for membrane distillation (MD) process by mimicking the unique unitary microstructures of ramee leaves. The superhydrophobic ENMs were fabricated by the eletrospinning of poly(vinyl alcohol) (PVA), followed by chemical cross-linking with glutaraldehyde and surface modification via low surface energy fluoroalkylsilane (FAS). The resultant FAS grafted PVA (F-PVA) nanofiber membranes were endowed with self-cleaning properties with water contact angles of 158° and sliding angles of 4° via the modification process, while retaining their high porosities and interconnected open structures. For the first time, the robust superhydrophobicity of the ENMs for MD was confirmed by testing the F-PVA nanofiber membranes under violent ultrasonic treatment and harsh chemical conditions. Furthermore, vacuum membrane distillation experiments illustrated that the F-PVA membranes presented a high and stable permeate flux of 25.2 kg/m2 h, 70% higher than those of the commercial PTFE membranes, with satisfied permeate conductivity (<5 μm/cm) during a continuous test of 16 h (3.5 wt % NaCl as the feed solution, and feed temperature and permeate pressure were set as 333 K and 9 kPa, respectively), suggesting their great potentials in myriad MD processes such as high salinity water desalination and volatile organiccompounds removal.

  16. Poly(N-vinyl-2-pyrrolidone) and 1-Octyl-2-pyrrolidinone Modified Ionic Microemulsions.

    PubMed

    Beitz, T.; Kötz, J.; Wolf, G.; Kleinpeter, E.; Friberg, S. E.

    2001-08-15

    The influence of the nonionic polymer poly(N-vinyl-2-pyrrolidone) (PVP) in comparison to the surfactant 1-octyl-2-pyrrolidinone (OP) on the phase behavior of the system SDS/pentanol/xylene/water was studied. In both modified systems a strong increase in the water solubilization capacity was found, accompanied by a change in the spontaneous curvature toward zero. In the polymer-modified system an isotropic phase channel is formed with increasing polymer content that connects the L1 and the L2 phase. The lamellar liquid crystalline phase is destabilized in both cases. In the L1 phase the adsorption of PVP at the surface of the microemulsion droplets and the formation of a cluster-like structure is proven by several methods like (13)C NMR T(1) relaxation time measurments, zeta potential measurements, and rheology. In the L2 phase a modification of the interface of the inverse droplets is detected by a shift in the percolation boundary (conductivity) and (13)C NMR T(1) relaxation measurements. The formation of a cluster-like structure can be assumed on the basis of our rheological measurements. Copyright 2001 Academic Press. PMID:11482969

  17. Electrically controlled release of sulfosalicylic acid from crosslinked poly(vinyl alcohol) hydrogel.

    PubMed

    Juntanon, Kanokporn; Niamlang, Sumonman; Rujiravanit, Ratana; Sirivat, Anuvat

    2008-05-22

    Electrically controlled drug delivery using poly(vinyl alcohol) (PVA) hydrogels as the matrix/carriers for a model drug was investigated. The drug-loaded PVA hydrogels were prepared by solution-casting using sulfosalicylic acid as the model drug and glutaraldehyde as the crosslinking agent. The average molecular weight between crosslinks, the crosslinking density, and the mesh size of the PVA hydrogels were determined from the equilibrium swelling theory as developed by Peppas and Merril, and the latter data were compared with those obtained from scanning electron microscopy. The release mechanisms and the diffusion coefficients of the hydrogels were studied using modified Franz-Diffusion cells in an acetate buffer with pH 5.5 and temperature 37 degrees C during a period of 48 h, in order to determine the effects of crosslinking ratio, electric field strength, and electrode polarity. The amounts of drug released were analyzed by UV-vis spectrophotometry. The amounts of drug released vary linearly with square root of time. The diffusion coefficients of drug-loaded PVA hydrogels decrease with increasing crosslink ratio. Moreover, the diffusion coefficients of the charged drug in the PVA hydrogels depend critically on the electric field strength between 0 and 5 V as well as on the electrode polarity. Thus, the release rate of sulfosalicylic acid can be altered and controlled precisely through electric field stimulation.

  18. Conductive, tough, hydrophilic poly(vinyl alcohol)/graphene hybrid fibers for wearable supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Shaohua; Ma, Wujun; Xiang, Hengxue; Cheng, Yanhua; Yang, Shengyuan; Weng, Wei; Zhu, Meifang

    2016-07-01

    Graphene fibers based flexible supercapacitors have great potential as wearable power sources for textile electronics. However, their electrochemical performance is limited by the serious stacking of graphene sheets and their hydrophobicity in aqueous electrolytes. Meanwhile, their brittleness is unfavorable for practical application. Incorporation of nanofillers into graphene fibers has been proved effective for enhancing their capacitance, whereas often leading to deteriorated mechanical strength. Herein we demonstrate that the strength, toughness and capacitive performance of graphene-based fibers can be significantly enhanced simultaneously, simply by incorporating hydrophilic poly(vinyl alcohol) (PVA) into a non-liquid-crystalline graphene oxide (GO) dispersion before wet spinning and chemical reduction. The structure and properties of the resulted PVA/graphene hybrid fibers are systematically investigated, and the mechanism behind these enhancements is discussed in detail. The hybrid fiber with a PVA/GO weight ratio of 10/90 possesses a strength of 186 MPa, a toughness of 11.3 J cm-3, and a capacitance of 241 F cm-3 in 1 M H2SO4. A solid-state yarn supercapacitor assembled from these fibers exhibits a device energy of 5.97 mW h cm-3, and features excellent flexibility and bending stability. This device is robust enough to be integrated into textile and thus promising as wearable power supply for smart textiles.

  19. Adsorption of α-amylase onto poly(N-vinyl 2-pyrrolidone/itaconic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Tümtürk, Hayrettin; Çaykara, Tuncer; Kantoǧlu, Ömer; Güven, Olgun

    1999-05-01

    α-Amylase enzyme was adsorbed on poly(N-vinyl 2-pyrrolidone/itaconic acid) (P(VP/IA)) hydrogels prepared by irradiating the ternary mixtures of VP/IA/water by γ-rays at ambient temperature. The adsorption capacity of the hydrogels was determined to increase from 2.30 to 3.40 mg α-amylase/g dry gel with increasing amount of IA in gel system. Kinetic parameters were calculated as 2.51 g/dm 3 for Km and 1.67 × 10 -3 g/dm 3 min for Vmax for free enzyme and in the range of 3.88-5.02 g/dm 3 for Km and 1.62 × 10 -3-2.27 × 10 -3 g/dm 3 min for Vmax depending on the amount of IA in the hydrogel. Enzyme activities were found to increase from 49.9% to 77.4% with increasing amount of IA in the gel system and retained their activities for one month storage. On the other hand, the free enzyme loses its activity completely after 20 days.

  20. The molecular interfacial structure and plasticizer migration behavior of "green" plasticized poly(vinyl chloride).

    PubMed

    Zhang, Xiaoxian; Li, Yaoxin; Hankett, Jeanne M; Chen, Zhan

    2015-02-14

    Tributyl acetyl citrate (TBAC), a widely-used "green" plasticizer, has been extensively applied in products for daily use. In this paper, a variety of analytical tools including sum frequency generation vibrational spectroscopy (SFG), coherent anti-Stokes Raman spectroscopy (CARS), contact angle goniometry (CA), and Fourier transform infrared spectroscopy (FTIR) were applied together to investigate the molecular structures of TBAC plasticized poly(vinyl chloride) (PVC) and the migration behavior of TBAC from PVC-TBAC mixtures into water. We comprehensively examine the effects of oxygen and argon plasma treatments on the surface structures of PVC-TBAC thin films containing various bulk percentages of plasticizers and the leaching behavior of TBAC into water. It was found that TBAC is a relatively stable PVC plasticizer compared to traditional non-covalent plasticizers but is also surface active. Oxygen plasma treatment increased the hydrophilicity of TBAC-PVC surfaces, but did not enhance TBAC leaching. However, argon plasma treatment greatly enhanced the leaching of TBAC molecules from PVC plastics to water. Based on our observations, we believe that oxygen plasma treatment could be applied to TBAC plasticized PVC products to enhance surface hydrophilicity for improving the biocompatibility and antibacterial properties of PVC products. The structural information obtained in this study will ultimately facilitate a molecular level understanding of plasticized polymers, aiding in the design of PVC materials with improved properties. PMID:25579625

  1. Interaction of vinyl chloride with poly(vinyl chloride) by inverse gas chromatography: effect of monomer concentration, plasticizer content and temperature.

    PubMed

    Demertzis, P G; Kontominas, M G

    1986-08-01

    The interaction of vinyl chloride (VC) with poly(vinyl)chloride) (PVC) has been studied by inverse gas chromatography (IGC). The present work focusses on the effect of monomer concentration, temperature and plasticizer content. Values for thermodynamic parameters such as free energy (delta GS), excess free energy (delta GSXS), enthalphy (delta HS), entropy (delta SS) and activity coefficient (gamma S) corresponding to sorption of the monomer (VCM) by the polymer, have been calculated using chromatographic data. It was found that retention of VC by PVC is favored at lower monomer concentrations. Increase in temperature resulted in increase of delta GS, delta GSXS, and gamma S values corresponding to a less spontaneous process or a weaker interaction between VC and PVC. An increase in plasticizer content of the polymer resulted in an increase of degree of binding of the monomer. Data support the hypothesis that at significantly low concentrations of residual monomer, low storage temperatures and high concentrations of plasticizer, in the polymer, the probability of migration of VC from a plastics packaging material into a food contacting phase is markedly reduced.

  2. Effect of monomer sequence distribution in poly(vinyl alcohol-co-vinyl acetate) on the hydrogen bonding structure and physical properties

    NASA Astrophysics Data System (ADS)

    Tasaka, Shun; Urakawa, Osamu; Inoue, Tadashi

    2015-03-01

    It has been well known that hydrogen (H-) bonding interaction in polymer materials strongly affects their properties. For example, glass transition temperature (Tg) and terminal relaxation time increase by introducing H-bonding sites. This is because the molecular motion is restricted due to the formation of inter- and intra-chain H-bonds. For H-bonding copolymers in which H-bonding monomer and non- bonding one are incorporated, the fraction dependence of their properties has been examined so far. However, the influence of sequence distribution on their properties has not been studied in detail. In this work, we investigated the H-bonding structure and physical properties of molten poly(vinyl alcohol-co-vinyl acetate) with different monomer sequences to clarify the effect of the sequence distribution. We found that, with increasing the randomness in monomer sequences, the number of H-bonds between carbonyl group and hydroxyl (OH) group increased. Moreover, OH groups form linearly connected structure (OH-OH-OH) and its number also increases with the sequence randomness. Tg for the samples with higher sequence randomness are higher than those with lower randomness for high VOH copolymers. These results indicate that formation of larger number of H-bonds makes Tg higher.

  3. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    NASA Astrophysics Data System (ADS)

    Abd-El Kader, F. H.; Osman, W. H.; Hafez, R. S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  4. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  5. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  6. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  7. Radiation grafting of pH-sensitive acrylic acid and 4-vinyl pyridine onto nylon-6 using one- and two-step methods

    NASA Astrophysics Data System (ADS)

    Ortega, Alejandra; Alarcón, Darío; Muñoz-Muñoz, Franklin; Garzón-Fontecha, Angélica; Burillo, Guillermina

    2015-04-01

    Acrylic acid (AAc) and 4-vinyl pyridine (4VP) were γ-ray grafted onto nylon-6 (Ny6) films via pre-irradiation oxidative method. These monomers were grafted using a one-step method to render Ny6-g-(AAc/4VP). A two-step or sequential method was used to render (Ny6-g-AAc)-g-4VP. Random copolymer branches were obtained when the grafting was carried out via one-step method using the two monomers together. The two-step method was applied to graft chains of 4VP on both Ny6 substrate and previously grafted AAc chains (Ny6-g-AAc). The two types of binary copolymers synthesized were characterized to determine the amount of grafted polymers, the thermal behavior (DSC and TGA), the surface composition (XPS), and the pH responsiveness. In the two-step process, it is possible to achieve a higher graft yield, better control of the amount of each monomer, good reversibility in the swelling/deswelling process and shorter time to achieve equilibrium swelling.

  8. Anion exchange membrane prepared from simultaneous polymerization and quaternization of 4-vinyl pyridine for non-aqueous vanadium redox flow battery applications

    NASA Astrophysics Data System (ADS)

    Maurya, Sandip; Shin, Sung-Hee; Sung, Ki-Won; Moon, Seung-Hyeon

    2014-06-01

    A simple, single step and environmentally friendly process is developed for the synthesis of anion exchange membrane (AEM) by simultaneous polymerization and quaternization, unlike the conventional membrane synthesis which consists of separate polymerization and quaternization step. The membrane synthesis is carried out by dissolving polyvinyl chloride (PVC) in cyclohexanone along with 4-vinyl pyridine (4VP) and 1,4-dibromobutane (DBB) in the presence of thermal initiator benzoyl peroxide, followed by film casting to get thin and flexible AEMs. The membrane properties such as ion exchange capacity, ionic conductivity and swelling behaviour are tuned by varying the degree of crosslinking. These AEMs exhibit low vanadium permeability, while retaining good dimensional and chemical stability in an electrolyte solution, making them appropriate candidates for non-aqueous vanadium acetylacetonate redox flow battery (VRFB) applications. The optimized membrane displays ion exchange capacity and ionic conductivity of 2.0 mequiv g-1 and 0.105 mS cm-1, respectively, whereas the efficiency of 91.7%, 95.7% and 87.7% for coulombic, voltage and energy parameter in non-aqueous VRFB, respectively. This study reveals that the non-aqueous VRFB performance is greatly influenced by membrane properties; therefore the optimal control over the membrane properties is advantageous for the improved performance.

  9. Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites.

    PubMed

    Chen, Hong-Bing; Liu, Bo; Huang, Wei; Wang, Jun-Sheng; Zeng, Guang; Wu, Wen-Hao; Schiraldi, David A

    2014-09-24

    Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning. PMID:25164075

  10. Thermochemical reaction mechanism of lead oxide with poly(vinyl chloride) in waste thermal treatment.

    PubMed

    Wang, Si-Jia; Zhang, Hua; Shao, Li-Ming; Liu, Shu-Meng; He, Pin-Jing

    2014-12-01

    Poly(vinyl chloride) (PVC) as a widely used plastic that can promote the volatilization of heavy metals during the thermal treatment of solid waste, thus leading to environmental problems of heavy metal contamination. In this study, thermogravimetric analysis (TGA) coupled with differential scanning calorimeter, TGA coupled with Fourier transform infrared spectroscopy and lab-scale tube furnace experiments were carried out with standard PVC and PbO to explicate the thermochemical reaction mechanism of PVC with semi-volatile lead. The results showed that PVC lost weight from 225 to 230°C under both air and nitrogen with an endothermic peak, and HCl and benzene release were also detected. When PbO was present, HCl that decomposed from PVC instantly reacted with PbO via an exothermal gas-solid reaction. The product was solid-state PbCl2 at <501°C, which was the most volatile lead-containing compound with a low melting point and high vapor pressure. At >501°C, PbCl2 melted, volatilized and transferred into flue gas or condensed into fly ash. Almost all PbCl2 volatilized above 900°C, while PbO just started to volatilize slowly at this temperature. Therefore, the chlorination effect of PVC on lead was apt to lower-temperature and rapid. Without oxygen, Pb2O was generated due to the deoxidizing by carbon, with oxygen, the amount of residual Pb in the bottom ash was significantly decreased.

  11. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model.

    PubMed

    Cutiongco, Marie F A; Kukumberg, Marek; Peneyra, Jonnathan L; Yeo, Matthew S; Yao, Jia Y; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K F

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  12. Ferrocene bound poly(vinyl chloride) as ion to electron transducer in electrochemical ion sensors.

    PubMed

    Pawlak, Marcin; Grygolowicz-Pawlak, Ewa; Bakker, Eric

    2010-08-15

    We report here on the synthesis of poly(vinyl chloride) (PVC) covalently modified with ferrocene groups (FcPVC) and the electrochemical behavior of the resulting polymeric membranes in view of designing all solid state voltammetric ion sensors. The Huisgen cycloaddition ("click chemistry") was found to be a simple and efficient method for ferrocene attachment. A degree of PVC modification with ferrocene groups between 1.9 and 6.1 mol % was achieved. The chemical modification of the PVC backbone does not significantly affect the ion-selective properties (selectivity, mobility, and solvent casting ability) of potentiometric sensing membranes applying this polymer. Importantly, the presence of such ferrocene groups may eliminate the need for an additional redox-active layer between the membrane and the inner electric contact in all solid state sensor designs. Electrochemical doping of this system was studied in a symmetrical sandwich configuration: glassy carbon electrode |FcPVC| glassy carbon electrode. Prior electrochemical doping from aqueous solution, resulting in a partial oxidation of the ferrocene groups, was confirmed to be necessary for the sandwich configuration to pass current effectively. The results suggest that only approximately 2.3 mol % of the ferrocene groups are electrochemically accessible, likely due to surface confined electrochemical behavior in the polymer. Indeed, cyclic voltammetry of aqueous hexacyanoferrate (III) remains featureless at cathodic potentials (down to -0.5 V). This indicates that the modified membrane is not responsive to redox-active species in the sample solution, making it possible to apply this polymer as a traditional, single membrane. Yet, the redox capacity of the electrode modified with this type of membrane was more than 520 microC considering a 20 mm(2) active electrode area, which appears to be sufficient for numerous practical ion voltammetric applications. The electrode was observed to operate reproducibly, with 1

  13. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite

    PubMed Central

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  14. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model.

    PubMed

    Cutiongco, Marie F A; Kukumberg, Marek; Peneyra, Jonnathan L; Yeo, Matthew S; Yao, Jia Y; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K F

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery.

  15. Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model

    PubMed Central

    Cutiongco, Marie F. A.; Kukumberg, Marek; Peneyra, Jonnathan L.; Yeo, Matthew S.; Yao, Jia Y.; Rufaihah, Abdul Jalil; Le Visage, Catherine; Ho, Jackie Pei; Yim, Evelyn K. F.

    2016-01-01

    Microvascular surgery is becoming a prevalent surgical practice. Replantation, hand reconstruction, orthopedic, and free tissue transfer procedures all rely on microvascular surgery for the repair of venous and arterial defects at the millimeter and submillimeter levels. Often, a vascular graft is required for the procedure as a means to bridge the gap between native arteries. While autologous vessels are desired for their bioactivity and non-thrombogenicity, the tedious harvest process, lack of availability, and caliber or mechanical mismatch contribute to graft failure. Thus, there is a need for an off-the-shelf artificial vascular graft that has low thrombogenic properties and mechanical properties matching those of submillimeter vessels. Poly(vinyl alcohol) hydrogel (PVA) has excellent prospects as a vascular graft due to its bioinertness, low thrombogenicity, high water content, and tunable mechanical properties. Here, we fabricated PVA grafts with submillimeter diameter and mechanical properties that closely approximated those of the rabbit femoral artery. In vitro platelet adhesion and microparticle release assay verified the low thrombogenicity of PVA. A stringent proof-of-concept in vivo test was performed by implanting PVA grafts in rabbit femoral artery with multilevel arterial occlusion. Laser Doppler measurements indicated the improved perfusion of the distal limb after implantation with PVA grafts. Moreover, ultrasound Doppler and angiography verified that the submillimeter diameter PVA vascular grafts remained patent for 2 weeks without the aid of anticoagulant or antithrombotics. Endothelial cells were observed in the luminal surface of one patent PVA graft. The advantageous non-thrombogenic and tunable mechanical properties of PVA that are retained even in the submillimeter diameter dimensions support the application of this biomaterial for vascular replacement in microvascular surgery. PMID:27376059

  16. Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution

    NASA Astrophysics Data System (ADS)

    Capponi, S.; Arbe, A.; Cerveny, S.; Busselez, R.; Frick, B.; Embs, J. P.; Colmenero, J.

    2011-05-01

    We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ≲ 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegría, Macromolecules, 38, 7056 (2005), 10.1021/ma050811t]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.

  17. Soy proteins as environmentally friendly sizing agents to replace poly(vinyl alcohol).

    PubMed

    Chen, Lihong; Reddy, Narendra; Yang, Yiqi

    2013-09-01

    An environmentally friendly and inexpensive substitute to the widely used poly(vinyl alcohol) (PVA) has been developed from soy proteins for textile warp sizing. Textile processing is the major source of industrial water pollution across the world, and sizing and desizing operations account for nearly 30 % of the water consumed in a textile plant. PVA is one of the most common sizing agents used for synthetic fibers and their blends due to PVA's easy water solubility and ability to provide desired sizing performance. However, PVA does not degrade and is a major contributor to pollution in textile effluent treatment plants. Although considerable efforts have been made to replace PVA with biodegradable sizing materials, the performance properties provided by PVA on synthetic fibers and their blends have been unmatched so far. Soy proteins are inexpensive, biodegradable, and have been widely studied for potential use in food packaging, as resins and adhesives. In this research, the potential of using soy proteins as textile sizing agents to replace PVA was studied. Polyester and polyester/cotton rovings, yarns, and fabrics sized with soy protein showed a considerably better improvement in strength and abrasion resistance compared to commercially available PVA-based size. Soy protein size had a 5-day biochemical oxygen demand /chemical oxygen demand ratio of 0.57 compared to 0.01 for PVA indicating that soy protein sizes were easily biodegradable in activated sludge. The total and ammonia nitrogen released from the proteins also did not adversely impact the biodegradability. Good sizing performance and easy biodegradability demonstrate that soy protein-based sizes have potential to replace PVA-based sizes leading to substantial benefits to the textile industry and the environment. PMID:23536274

  18. Solution Spinning and Characterization of Poly (vinyl alcohol) /Soybean Polyblend Fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiefei; Kumar, Satish

    2002-03-01

    Solution Spinning and Characterization of Poly (vinyl alcohol) /Soybean Polyblend Fibers Xiefei Zhang and Satish Kumar School of Textile and Fiber Engineering Georgia Institute of Technology Atlanta GA 30032 During 1930s and 40s there was significant research activity in processing fibers from regenerated proteins. However, due to development of synthetic fibers and partially due to low tensile strength of the regenerated protein fibers, there has not been much interest in this field over last half a century. To improve strength of the regenerated protein, an attempt has been made to process PVA /soybean protein polyblend fibers. PVA/Soybean protein ratio of 100/0, 90/10, 70/30, 50/50, 40/60, 20/80 and 0/100 have been utilized. This has been done in an attempt to take advantage of the PVA/soybean interaction. Urea, sodium sulfite, as well as heat, were used to make denatured soybean protein solution, which was suitable for solution spinning. The polyblend fibers underwent post-spinning treatment, such as crosslinking, washing, drying and heat treatment. The fibers have been characterized for thermal behavior and tensile as well as dynamic mechanical properties. Blend fiber morphology was studied using scanning electron microscopy and fiber structure characterized using wide angle X-ray diffraction. Effects of draw ratio, crosslinking time, crosslinking agent, heat treatment conditions as well as PVA/soybean composition on the mechanical properties of polyblend fibers have been studied. Dynamic mechanical analysis as well as scanning electron microscopy exhibit PVA /soybean protein compatibility.

  19. Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites.

    PubMed

    Chen, Hong-Bing; Liu, Bo; Huang, Wei; Wang, Jun-Sheng; Zeng, Guang; Wu, Wen-Hao; Schiraldi, David A

    2014-09-24

    Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning.

  20. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    PubMed

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments. PMID:25482413

  1. Nitric oxide-releasing poly(vinyl alcohol) film for increasing dermal vasodilation.

    PubMed

    Marcilli, Raphael H M; de Oliveira, Marcelo G

    2014-04-01

    Pathological conditions associated with the impairment of nitric oxide (NO) production in the vasculature, such as Raynaud's syndrome and diabetic angiopathy, have stimulated the development of new biomaterials capable of delivering NO topically. With this purpose, we modified poly(vinyl-alcohol) (PVA) by chemically crosslinking it via esterification with mercaptosuccinic acid. This reaction allowed the casting of sulfhydrylated PVA (PVA-SH) films. Differential scanning calorimetry and X-ray diffractometry showed that the crosslinking reaction completely suppressed the crystallization of PVA, leading to a non-porous film with a homogeneous distribution of -SH groups. The remaining free hydroxyl groups in the PVA-SH network conferred partial hydrophylicity to the material, which was responsible for a swelling degree of ca. 110%. The PVA-SH films were subjected to an S-nitrosation reaction of the -SH groups, yielding a PVA containing S-nitrosothiol groups (PVA-SNO). Amperometric and chemiluminescence measurements showed that the PVA-SNO films were capable of releasing NO spontaneously after immersion in physiological medium. Laser Doppler-flowmetry, used to assess the blood flow in the dermal microcirculation, showed that the topical application of hydrated PVA-SNO films on the health skin led to a dose- and time-dependent increase of more than 5-fold in the dermal baseline blood flow in less than 10min, with a prolonged action of more than 4h during continuous application. These results show that PVA-SNO films might emerge as a new material with potential for the topical treatment of microvascular skin disorders.

  2. Inhibition of nucleation and growth of ice by poly(vinyl alcohol) in vitrification solution.

    PubMed

    Wang, Hai-Yan; Inada, Takaaki; Funakoshi, Kunio; Lu, Shu-Shen

    2009-08-01

    Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.

  3. The reactive blending of a thermoplastic polyurethane in situ with poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Parnell, Shane Richard

    A novel reactive blending process was investigated to produce high performance poly(vinyl chloride)/thermoplastic polyurethane (PVC/TPU) blends of significant commercial utility. In this process, a high molecular weight TPU with poly(butylene adipate) (PBA) soft segments and 4,4 '-diphenylmethane diisocyanate/1,4-butanediol (MDI/BDO) hard segments was polymerized in situ with PVC. More specifically, the process was broken down into two fundamental stages: the compounding and plasticization of PVC with PBA and BDO, and, upon adding MDI, the subsequent polymerization of TPU in situ with PVC to produce a PVC/TPU blend. A powerful, versatile characterization tool, Raman spectroscopy was used to elucidate the presence of intermolecular interactions in both stages of the PVC/TPU reactive blending process and measure the kinetics of TPU polymerization in situ with PVC. Initially, model studies of the PVC/TPU reactive blending process were conducted on a batch internal mixer. In the first stage of the process, the TPU reactants PBA and BDO effectively functioned as plasticizers as they were completely miscible with PVC. In the second stage of the process, TPU polymerization in situ with PVC was accompanied by reaction induced PVC/TPU blend phase separation. Partially miscible, PVC/TPU blends were characterized by multi-phase morphologies at room temperature, with a broad distribution of phase sizes and compositions. In measuring their effect on reaction kinetics, both PVC and its tin mercaptide thermal stabilizer catalyzed TPU polymerization. In measuring some of their mechanical properties, PVC/TPU blends produced via reactive blending had comparable and even superior tensile properties to analogous PVC/TPU blends produced via melt blending. Using information gleaned from the former model studies, the PVC/TPU reactive blending process was also conducted on a continuous, counter-rotating, intermeshing, twin screw extruder. In these reactive extrusion studies (REX

  4. Interfacial insertion of a poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) layer between the poly(3-hexyl thiophene) semiconductor and cross-linked poly(vinyl alcohol) insulator layer in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Cruz-Cruz, Isidro; Tavares, Ana C. B.; Reyes-Reyes, Marisol; López-Sandoval, Román; Hümmelgen, Ivo A.

    2014-02-01

    The role of a thin layer of conductive poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT : PSS), inserted between the gate dielectric and the active layer in poly(3-hexylthiophene)-based transistors was investigated. The devices were fabricated in the bottom-gate top-contact geometry by using cross-linked poly(vinyl alcohol) as the dielectric, whereas the PEDOT : PSS layer was prepared by using an aged aqueous dispersion with addition of different amounts of dimethyl sulfoxide (DMSO) as a secondary dopant. Under these conditions, both a significant reduction in the number of electrically active traps at the interface with the semiconductor and an improvement in the field-effect mobility were obtained, whereas the low power consumption was preserved. The threshold voltage was also displaced by approximately -1 V.

  5. Characterisation and in vitro stability of low-dose, lidocaine-loaded poly(vinyl alcohol)-tetrahydroxyborate hydrogels.

    PubMed

    Abdelkader, D H; Osman, M A; El-Gizawy, S A; Faheem, A M; McCarron, P A

    2016-03-16

    Poly(vinyl alcohol) hydrogels cross-linked with the tetrahydroxyborate anion possess textural and rheological properties that can be used as novel drug-loaded vehicles for application to traumatic wounds. However, addition of soluble drug substances causes concentration-dependent phase separation and rheological changes. The aim of this work was to investigate the effect of adding a local anaesthetic, but keeping the concentration low in an attempt to prevent these changes. Cross-linked hydrogels prepared from three grades of poly(vinyl alcohol) were characterised rheologically. Temperature sweep studies showed an elevated complex viscosity upon moving from 25°C to 80°C, which remained high for 48 h following completion of the cycle. Adhesion to model dermal surfaces achieved a maximum of 2.62 N cm(-2) and were greater than that observed to epidermal substrates, with a strong dependence on the rate of detachment used during testing. An optimised formulation (6% w/w PVA (31-50; 99) and 2% w/w THB) containing lidocaine hydrochloride loaded to an upper maximum concentration of 1.5% w/w was assessed for phase separation and drug crystallisation. After six months, crystallisation was present in formulations containing 0.7% and 1.5% lidocaine HCl. Changes in pH in response to increases in lidocaine loading were low. Drug release was shown to operate via a non-Fickian process for all three concentrations, with 60% occurring after approximately 24h. It can be concluded that using a low concentration of lidocaine hydrochloride in hydrogels based on poly(vinyl alcohol) will result in crystallisation. Furthermore, these hydrogels are unlikely to induce rapid anaesthesia due to the low loading and slow release kinetics. PMID:26802495

  6. Surface modification of poly(vinyl chloride) by physisorbed free radical initiation for reduced plasticizer migration and antimicrobial properties

    NASA Astrophysics Data System (ADS)

    McGinty, Kathryn

    Poly(vinyl chloride), PVC, is a particularly important commodity polymer that accounts for an annual world-wide production of 26 million tons. It is used frequently in the medical field as blood storage bags, endotracheal and dialysis tubing and intravenous catheters. Common plasticizers, namely di(2-ethylhexyl) phthalate (DEHP), are added to PVC to improve the processability and flexibility by lowering the glass transition temperature. However, most phthalate plasticizers are potential carcinogens. There has been extensive research on PVC with surface coatings to improve biocompatibility, surface crosslinking to create a barrier to the plasticizer leaching and surface grafting of hydrophilic polymers for both biocompatibility and reduced plasticizer migration. A novel surface grafting technique is the grafting of hydrophilic monomers by physisorbed free radical initiators. This modification method can be applied to PVC to attach vinyl hydrophilic monomers by the "grafting from" method. This approach, extending on earlier work involving polymer brush formation on poly(dimethylsiloxane), involves a two-step process: physisorption of a hydrophobic free radical initiator onto a polymer surface followed by radical polymerization of hydrophilic monomers in water. The key step is creating a hydrophobic/hydrophilic diffusional barrier that promotes radical reactions at the polymer surface. Polymers that have been successfully grafted from PVC films and tubing include: poly(hydroxyethyl methacrylate) (PHEMA), poly(dimethylacrylamide) (PDMA), poly(hydroxyethyl acrylate) (PHEA), poly(dimethylaminoethyl methacrylate) (PDMAEMA), poly(acrylic acid) (PAA), and poly(4-vinylpyridine) (P4VP). Characterization methods performed include bulk chemical composition by transmission infrared spectroscopy, surface composition using X-ray photoelectron spectroscopy, surface wettability by tensiometry and capillary rise, film thickness determination by infrared, gravimetric analysis and UV

  7. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    NASA Astrophysics Data System (ADS)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  8. Hydrogen generation from hydrolytic dehydrogenation of hydrazine borane by poly(N-vinyl-2-pyrrolidone)-stabilized palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Tunç, Nihat; Abay, Bayram; Rakap, Murat

    2015-12-01

    Poly(N-vinyl-2-pyrrolidone)-stabilized palladium nanoparticles (3.5 ± 1.0 nm) are efficient catalysts in the hydrolytic dehydrogenation of hydrazine borane to give hydrogen gas. The catalyst, prepared by reduction of palladium metal ion in ethanol/water mixture by an alcohol reduction method, is durable and efficient catalysts for hydrogen generation from the hydrolytic dehydrogenation of hydrazine borane even at very low concentrations and temperature, providing an average turnover frequency of 42.9 min-1 with an activation energy of 54.5 ± 2 kJ mol-1 for the hydrolytic dehydrogenation of hydrazine borane.

  9. Radial liquid crystal alignment based on circular rubbing of a substrate coated with poly(N-vinyl carbazole) film

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Di; Ying-Guey Fuh, Andy; Liu, Cheng-Kai; Cheng, Ko-Ting

    2011-06-01

    This paper presents a simple method to produce radial liquid crystal (LC) alignment layers using circular rubbing of poly(N-vinyl carbazole) (PVK) films. The produced layer can be used for fabricating axially symmetric homogeneous-radial, homeotropic-radial and radial-radial LC alignment devices by combining a rubbed PVK-coated substrate with another one with a desired LC alignment layer. The transmittance-voltage curves of the fabricated LC devices at various positions are measured to examine the uniformity of the alignment effect. Additionally, the PVK film does not absorb visible light, and can be operated at high temperatures.

  10. Neutron Scattering and Dielectric Study on the Structural and Dynamical Peculiar Properties of Poly(vinyl chloride)

    SciTech Connect

    Arbe, A.; Farago, B.; Frick, B.

    2004-04-30

    In this work we have studied the anomalous dynamical behavior of poly(vinyl chloride) (PVC) searching its origin in the dynamical heterogeneities arising from the structural peculiarities of this polymer. For this purpose we have combined dielectric spectroscopy, coherent and incoherent neutron scattering for the dynamics investigation, and SANS for resolving the heterogeneous structure of PVC. The SANS experiments indicate the existence of structural modulations that persist in the temperature range T < 430 K. We show that a distribution of glass transition temperatures due to these density modulations causes the broadening of the response from the structural relaxation and the anomalous momentum transfer dependence of the incoherent scattering function.

  11. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  12. Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shaikh, Abdul Rajjak; Rajabzadeh, Saeid; Matsuo, Ryuichi; Takaba, Hiromitsu; Matsuyama, Hideto

    2016-04-01

    Polyvinyl chloride (PVC) membranes are widely used in water treatment because of their low cost and chemical stability. However, PVC membranes can become fouled, and this restricts their applications in membrane technology. In order to enhance the antifouling property of PVC membranes, copolymers such as poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) (poly(VC-co-PEGMA)) with different PEGMA segment percentages were synthesized in our previous work. Experimentally, it was observed that the poly(VC-co-PEGMA) copolymer has better antifouling properties than those of PVC membranes. Here, we explore effect of the PEGMA segment percentage on the surface hydration properties of poly(VC-co-PEGMA) copolymers. Density functional theory calculations and molecular dynamics simulations were carried out to understand the interactions between PVC and PEGMA. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. MD studies showed that increasing PEGMA percentage in the copolymer increases the interaction with water molecules, leading to improved resistance to fouling. The antifouling mechanism is also discussed with respect to surface hydration and water dynamicity. This study could form a basis for the systematic studies of polymeric membranes as well as their stability from the extent of solvent-polymer, solvent-solvent, and polymer-polymer interactions.

  13. Correlation between Raman and fluorescence microscopy studies of field-aged commercial urethane-backed poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Remillard, J. T.; Weber, W. H.; Jones, J.; Helms, J.; Poindexter, B. D.

    1998-03-01

    Urethane-foam-backed poly(vinyl chloride) (PVC) composites are widely used in vehicle interiors. Exposure to heat and light causes vinyl to degrade through dehydrochlorination, a process which results in the formation of conjugated polyene sequences. This leads to the cracking and discoloration that commonly occurs with age in commercial PVC. We present the results of Raman and fluorescence microscopy measurements used to quantify the degradation of two commercial field-aged foam/PVC composites containing different heat stabilizer packages. Raman spectroscopy provides chemically-specific evidence of polyene formation, and clearly indicates differences in the durability of the two materials. After extracting the low molecular weight components from the vinyl, we find the variations in fluorescence intensity with weathering time are closely correlated with the variations in polyene concentration measured using Raman microscopy. This suggests fluorescence techniques can be used as a semiquantitative measure of PVC degradation. These measurements are most easily performed using a fluorescence microscope and CCD camera to record images of the samples. Intensities are quickly determined through the use of image processing software.

  14. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    NASA Astrophysics Data System (ADS)

    Palani, P. Bahavan; Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-01

    The highest proton conductivity value of 0.0802 Scm-1 is obtained at 6wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na+ MMT was modified (protonated) to H+ MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  15. Singly and binary grafted poly(vinyl chloride) urinary catheters that elute ciprofloxacin and prevent bacteria adhesion.

    PubMed

    Islas, Luisa; Alvarez-Lorenzo, Carmen; Magariños, Beatriz; Concheiro, Angel; del Castillo, Luis Felipe; Burillo, Guillermina

    2015-07-01

    Acrylic acid (AAc) and poly(ethylene glycol) methacrylate (PEGMA) were singly and dually grafted onto poly(vinyl chloride) (PVC) urinary catheters with the aim of preventing biofouling by endowing the catheters with the ability to load and release antimicrobial agents and to avoid bacteria adhesion. The polymers were grafted applying an oxidative pre-irradiation ((60)Co source) method in two steps. Grafting percentage and kinetics were evaluated by varying the absorbed pre-irradiation dose, reaction time, monomer concentration, and reaction temperature. Catheters with grafting percentages ranging from 8 to 207% were characterized regarding thermal stability, surface hydrophilicity, mechanical properties, swelling, and lubricity. The modified catheters proved to have better compatibility with fibroblast cells than PVC after long exposure times. Furthermore, grafted catheters were able to load ciprofloxacin and sustained its release in urine medium for several hours. Ciprofloxacin-loaded catheters inhibited the growth of Escherichia coli and Staphylococcus aureus in the catheter surroundings and prevented bacteria adhesion.

  16. Nonlinear optical properties of ZnO/poly (vinyl alcohol) nanocomposite films

    SciTech Connect

    Jeeju, P. P.; Jayalekshmi, S.; Chandrasekharan, K.

    2014-01-28

    Extensive studies have already been reported on the optical characteristics of ZnO/polymer nanocomposite films, using a variety of polymers including transparent polymers such as polystyrene, polymethyl methacrylate etc and many interesting results have been established regarding the non linear optical characteristics of these systems. Poly (vinyl alcohol)(PVA) is a water soluble polymer. Though the structural and optical studies of ZnO/PVA nanocomposite films have already been investigated, there are no detailed reports on the nonlinear optical characteristics of ZnO/PVA nanocomposite films, irrespective of the fact that these nanocomposite films can be synthesized using quite easy and cost effective methods. The present work is an attempt to study in detail the nonlinear optical behaviour of ZnO/PVA nanocomposite films using Z-scan technique. Highly transparent ZnO/PVA nanocomposite films were prepared from the ZnO incorporated PVA solution in water using spin coating technique. The ZnO nanoparticles were synthesized by the simple chemical route at room temperature. High-resolution transmission electron microscopy studies show that the ZnO nanoparticles are of size around 10 nm. The ZnO/PVA nanocomposite films were structurally characterized by X-ray diffraction technique, from which the presence of both PVA and ZnO in the nanocomposite was established. The optical absorptive nonlinearity in the nanocomposite films was investigated using open aperture Z-scan technique. The results indicate optical limiting type nonlinearity in the films due to two photon absorption in ZnO with efficiency more than 50%. These films also show a self defocusing type negative nonlinear refraction in closed aperture Z-scan experiment. The present studies indicate that, highly transparent and homogeneous films of ZnO/PVA nanocomposite can be obtained on glass substrates using simple methods, in a highly cost effective way, since PVA is water soluble. These nanocomposite films offer

  17. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration

    NASA Astrophysics Data System (ADS)

    Kudo, Kushi; Ishida, Junichi; Syuu, Gika; Sekine, Yurina; Ikeda-Fukazawa, Tomoko

    2014-01-01

    To investigate the mechanism of structural changes of water and polymer networks with drying and swelling, we measured the Raman spectra of a physically cross-linked poly(vinyl alcohol) (PVA) hydrogel synthesized using the freezing-thawing method. The results show that the vibrational frequencies of the O-H and C-H stretching modes decrease with dehydration. The frequency shifts observed are attributed to reduction of free water inside the polymer network. The C-H bonds elongate as the water density decreases, and the average length of the O-H bonds increases with increasing proportion of bound water to the total amount of water. On the basis of the dependence of the frequency shifts on the PVA concentration of the original solution, it was found that the structure of the polymer network in the reswollen hydrogel becomes inhomogeneous due to shrinkage of the polymer network with drying. Furthermore, to investigate the effects of the cross-linking structure on the drying process, these results were compared with those of a chemically cross-linked PVA hydrogel synthesized using glutaraldehyde as a cross-linker. The result shows that the vibrational frequency of the O-H stretching mode for the chemically cross-linked hydrogel increases with dehydration, whereas that of the C-H stretching mode decreases. The opposite trend observed in the O-H stretching mode between the physically and chemically cross-linked hydrogels is due to the difference in the shrinkage rate of the polymer network. Because the rate of shrinking is slow compared with that of dehydration in the chemically cross-linked hydrogel, water density in the polymer network decreases. For the physically cross-linked hydrogel, the polymer network structure can be easily shrunken, and the average strength of hydrogen bonds increases with dehydration. The results show that the structures of the polymer network and water change with the gel preparation process, cross-linking method, and drying and reswelling

  18. 5 V driving organic non-volatile memory transistors with poly(vinyl alcohol) gate insulator and poly(3-hexylthiophene) channel layers

    NASA Astrophysics Data System (ADS)

    Nam, Sungho; Seo, Jooyeok; Kim, Hwajeong; Kim, Youngkyoo

    2015-10-01

    Organic non-volatile memory devices were fabricated by employing organic field-effect transistors (OFETs) with poly(vinyl alcohol) (PVA) and poly(3-hexylthiophene) as a gate insulating layer and a channel layer, respectively. The 10-nm-thick nickel layers were inserted for better charge injection between the channel layer and the top source/drain electrodes. The fabricated PVA-OFET memory devices could be operated at low voltages (≤5 V) and showed pronounced hysteresis characteristics in the transfer curves, even though very small hysteresis was measured from the output curves. The degree of hysteresis was considerably dependent on the ratio of channel width (W) to channel length (L). The PVA-OFET memory device with the smaller W/L ratio (25) exhibited better retention characteristics upon 700 cycles of writing-reading-erasing-reading operations, which was assigned to the stability of charged states in devices.

  19. Performance enhancement of poly(3-hexylthiophene-2,5-diyl) based field effect transistors through surfactant treatment of the poly(vinyl alcohol) gate insulator surface.

    PubMed

    Nawaz, Ali; Cruz-Cruz, Isidro; Rodrigues, Rafael; Hümmelgen, Ivo A

    2015-10-28

    We report on the improvement of field effect transistors based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as a channel semiconductor and crosslinked poly(vinyl alcohol) (cr-PVA) as a gate insulator, through the treatment of the cr-PVA film surface before P3HT deposition. We treated the cr-PVA either with hydrochloric acid (HCl) or with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), aiming at the passivation of the hole traps at the cr-PVA/P3HT interface. The treatment with HCl leads to an excessive increase in the transistor leakage current and unstable electrical characteristics, despite implying an increase in the gate capacitance. The treatment with CTAB leads to transistors with ca. 50% higher specific capacitance and a tenfold increase in the charge carrier field-effect mobility, when compared to devices based on untreated cr-PVA.

  20. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  1. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation

    PubMed Central

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies. PMID:24957172

  2. Poly(anhydride-ester) and Poly(N-vinyl-2-pyrrolidone) Blends: Salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation

    PubMed Central

    Ouimet, Michelle A.; Fogaça, Renata; Snyder, Sabrina S.; Sathaye, Sameer; Catalani, Luiz H.; Pochan, Darrin J.

    2015-01-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, the release of physically admixed therapeutics from hydrogels has been evaluated, but with limited control over drug release profiles. To overcome these limitations, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3–4 days in contrast to 3 hours, as observed with diffusion-controlled hydrogels. Generally, blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly reduce the inflammatory cytokine, TNF-α, in vitro without cytotoxic or anti-proliferative effects, further demonstrating their potential as a wound dressing with enhanced healing and decreased scar tissue formation. PMID:25333420

  3. Investigation into the potential use of poly(vinyl alcohol)/methylglyoxal fibres as antibacterial wound dressing components.

    PubMed

    Bulman, Sophie E L; Goswami, Parikshit; Tronci, Giuseppe; Russell, Stephen J; Carr, Chris

    2015-03-01

    As problems of antibiotic resistance increase, a continuing need for effective bioactive wound dressings is anticipated for the treatment of infected chronic wounds. Naturally derived antibacterial agents, such as Manuka honey, consist of a mixture of compounds, more than one of which can influence antimicrobial potency. The non-peroxide bacteriostatic properties of Manuka honey have been previously linked to the presence of methylglyoxal. The incorporation of methylglyoxal as a functional antibacterial additive during fibre production was explored as a potential route for manufacturing wound dressing components. Synthetic methylglyoxal and poly(vinyl alcohol) were fabricated into webs of sub-micron fibres by means of electrostatic spinning of an aqueous spinning solution. Composite fabrics were also produced by direct deposition of the poly(vinyl alcohol)-methylglyoxal fibres onto a preformed spunbonded nonwoven substrate. Attenuated total reflectance fourier transform infrared and proton nuclear magnetic resonance spectroscopies confirmed the presence of methylglyoxal within the resulting fibre structure. The antibacterial activity of the fibres was studied using strains of Staphylococcus aureus and Escherichia coli. Strong antibacterial activity, as well as diffusion of methylglyoxal from the fibres was observed at a concentration of 1.55 mg/cm(2).

  4. Investigation into the potential use of poly(vinyl alcohol)/methylglyoxal fibres as antibacterial wound dressing components.

    PubMed

    Bulman, Sophie E L; Goswami, Parikshit; Tronci, Giuseppe; Russell, Stephen J; Carr, Chris

    2015-03-01

    As problems of antibiotic resistance increase, a continuing need for effective bioactive wound dressings is anticipated for the treatment of infected chronic wounds. Naturally derived antibacterial agents, such as Manuka honey, consist of a mixture of compounds, more than one of which can influence antimicrobial potency. The non-peroxide bacteriostatic properties of Manuka honey have been previously linked to the presence of methylglyoxal. The incorporation of methylglyoxal as a functional antibacterial additive during fibre production was explored as a potential route for manufacturing wound dressing components. Synthetic methylglyoxal and poly(vinyl alcohol) were fabricated into webs of sub-micron fibres by means of electrostatic spinning of an aqueous spinning solution. Composite fabrics were also produced by direct deposition of the poly(vinyl alcohol)-methylglyoxal fibres onto a preformed spunbonded nonwoven substrate. Attenuated total reflectance fourier transform infrared and proton nuclear magnetic resonance spectroscopies confirmed the presence of methylglyoxal within the resulting fibre structure. The antibacterial activity of the fibres was studied using strains of Staphylococcus aureus and Escherichia coli. Strong antibacterial activity, as well as diffusion of methylglyoxal from the fibres was observed at a concentration of 1.55 mg/cm(2). PMID:25323605

  5. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    PubMed

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  6. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Huan, Guan-Sheng; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo; Huang, Fang

    2014-08-13

    Gigaporous polystyrene (PS) microspheres were hydrophilized by in situ polymerization to give a stable cross-linked poly(vinyl alcohol) (PVA) hydrogel coating, which can shield proteins from the hydrophobic PS surface underneath. The amination of microspheres (PS-NH2) was first carried out through acetylization, oximation and reduction, and then 4,4'-azobis (4-cyanovaleric acid) (ACV), a polymerization initiator, was covalently immobilized on PS-NH2 through amide bond formation, and the cross-linked poly(vinyl acetate) (PVAc) was prepared by radical polymerization at the surfaces of ACV-immobilized PS microspheres (PS-ACV). Finally, the cross-linked PVA hydrogel coated gigaporous PS microspheres (PS-PVA) was easily achieved through alcoholysis of PVAc. Results suggested that the PS microspheres were effectively coated with cross-linked PVA hydrogel, where the gigaporrous structure remained under optimal conditions. After hydrophilic modification (PS-PVA), the protein-resistant ability of microspheres was greatly improved. The hydroxyl-rich PS-PVA surface can be easily derivatized by classical chemical methods. Performance advantages of the PS-PVA column in flow experiment include good permeability, low backpressure, and mechanical stability. These results indicated that PS-PVA should be promising in rapid protein chromatography.

  7. Poly(vinyl chloride) blend with biodegradable cellulose acetate in presence of N-(phenyl amino) maleimides.

    PubMed

    Abdel-Naby, Abir S; Al-Ghamdi, Azza A

    2014-09-01

    Wider plastic applications of poly(vinyl chloride) (PVC) has raised serious problem to the environment. Since (PVC) waste products resist biodegradation and persist in the environment for longer time. The object of this study is to blend (PVC) with biodegradable cellulose acetate to thermally support the polymer during the molding process as well as to enhance the biodegradability of (PVC) waste products. Blending of poly(vinyl chloride) and cellulose acetate (CA) in presence of N-(phenyl amino) maleimides (R-PhAM) where (R=H, 4-NO2) led to improvement in the thermal stability of the blend film at high temperatures as shown from the high values of initial decomposition temperature (To) determined from their thermogravimetry (TG) curves. Also, blending (PVC) with (CA) led to improvement in the mechanical properties of the blend films as compared to (PVC). The crystalline regions of cellulose acetate enhanced the elasticity of the blend films as shown from their high Young's modulus values.

  8. The synthesis of high molecular weight partially hydrolysed poly(vinyl alcohol) grades suitable for nanoparticle fabrication.

    PubMed

    Chana, Jasminder; Forbes, Ben; Jones, Stuart Allen

    2008-11-01

    Poly(vinyl alcohol) (PVA) is a highly versatile synthetic polymer that is formed by full or partial hydrolysis of poly(vinyl acetate) (PVAc). A wide range of PVA partially hydrolysed grades are commercially available, but the amphiphilic grades of the polymer (30-60% hydrolysis), which probably the most interesting in terms of drug delivery, are not readily available. As a consequence few studies have assessed the application of low hydrolysis PVA polymers to form nanocarriers. The aims of this study were to synthesise amphiphilic grades of PVA on a laboratory scale, analyse their chemical properties and determine whether these grades could be used to form nanoparticles. PVA 30%, PVA 40%, PVA 50% and PVA 60% were synthesised via direct saponification of PVAc. All grades of PVA synthesised had degrees of hydrolysis close to those predicted from the stoichiometry of the saponification reaction. The PVA grades displayed <1.5% batch to batch variability (n=3) in terms of percentage hydrolysis, demonstrating the manufacture process was both reproducible and predictable. Analysis of the polymer characteristics using 13C nuclear magnetic resonance and differential scanning calorimetry revealed that all PVA grades contained block distributions (i.e., eta <1) of vinyl alcohol monomers (eta ranged from 0.33-0.45) with a high probability of adjacency calculated for the hydroxylated units (P(OH) ranged 0.926-0.931). All the grades of PVA formed nanoparticles using a precipitation technique with a trend towards smaller particle size with increasing degree of PVA hydrolysis; PVA 30% resulted in significantly larger nanoparticles (225 nm) compared to PVA 40-60% (137-174 nm).

  9. In vitro mechanical fatigue behavior of poly-ɛ-caprolactone macroporous scaffolds for cartilage tissue engineering: Influence of pore filling by a poly(vinyl alcohol) gel.

    PubMed

    Panadero, J A; Vikingsson, L; Gomez Ribelles, J L; Lanceros-Mendez, S; Sencadas, V

    2015-07-01

    Polymeric scaffolds used in regenerative therapies are implanted in the damaged tissue and submitted to repeated loading cycles. In the case of articular cartilage engineering, an implanted scaffold is typically subjected to long-term dynamic compression. The evolution of the mechanical properties of the scaffold during bioresorption has been deeply studied in the past, but the possibility of failure due to mechanical fatigue has not been properly addressed. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. In this work fatigue studies of polycaprolactone scaffolds were carried by subjecting the scaffold to repeated compression cycles in conditions simulating the scaffold implanted in the articular cartilage. The behavior of the polycaprolactone sponge with the pores filled with a poly(vinyl alcohol) gel simulating the new formed tissue within the pores was compared with that of the material immersed in water. Results were analyzed with Morrow's criteria for failure and accurate fittings are obtained just up to 200 loading cycles. It is also shown that the presence of poly(vinyl alcohol) increases the elastic modulus of the scaffolds, the effect being more pronounced with increasing the number of freeze/thawing cycles.

  10. Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing.

    PubMed

    Schanuel, Fernanda Seabra; Raggio Santos, Karen Slis; Monte-Alto-Costa, Andréa; de Oliveira, Marcelo G

    2015-06-01

    Nitric oxide (NO) releasing biomaterials represent a potential strategy for use as active wound dressings capable of accelerating wound healing. Topical NO-releasing poly(vinyl alcohol) (PVA) films and Pluronic F127 hydrogels (F127) have already exhibited effective skin vasodilation and wound healing actions. In this study, we functionalized PVA films with SNO groups via esterification with a mixture of mercaptosucinic acid (MSA) and thiolactic acid (TLA) followed by S-nitrosation of the SH moieties. These films were combined with an underlying layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), i.e., PEO-PPO-PEO (Pluronic F127) hydrogel and used for the topical treatment of skin lesions in an animal model. The mixed esterification of PVA with MSA and TLA led to chemically crosslinked PVA-SNO films with a high swelling capacity capable of spontaneously releasing NO. Real time NO-release measurements revealed that the hydrogel layer reduces the initial NO burst from the PVA-SNO films. We demonstrate that the combination of PVA-SNO films with F127 hydrogel accelerates wound contraction, decreases wound gap and cellular density and accelerates the inflammatory phase of the lesion. These results were reflected in an increase in myofibroblastic differentiation and collagen type III expression in the cicatricial tissue. Therefore, PVA-SNO films combined with F127 hydrogel may represent a new approach for active wound dressings capable of accelerating wound healing. PMID:25907598

  11. Electroactive behavior of poly(acrylic acid) grafted poly(vinyl alcohol) samples, their synthesis using a Ce(IV) glucose redox system and their characterization

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Lee, Jae-Rock; Han, Jae Hung; Lee, In

    2006-04-01

    Grafted copolymers of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) were prepared using a Ce(IV) glucose redox initiator by free radical polymerization. Three grafted copolymers having 20%, 50% and 80% grafting were selected for this study. Thus-modified polymer was characterized by means of Fourier transform infrared spectra, 1H NMR, gel permeation chromatography, thermogravimetric analysis and universal testing machine approaches. The membranes were prepared by a solution casting method, where the cross-linking process was performed through the in situ addition of glutaraldehyde and hydrochloric acid as the cross-linking agent and catalyst respectively. The following four membranes were prepared: (i) pure PVA; (ii) 20% grafted PVA; (iii) 50% grafted PVA; (iv) 80% grafted PVA. The membranes obtained were employed in the electroactive behavior study under a DC electric stimulus in different concentrations of electrolyte. The equilibrium bending angles (EBA) of these polymers were studied with respect to time, poly(acrylic acid) content, electric voltage applied across the polymer and ionic strength of the electrolyte used. Experimental results show stable reversibility of the bending behavior of these polymers under an applied DC electric field. The EBA increased with increase in the applied electric voltage and poly(acrylic acid) content within the polymer.

  12. Statistics-enhanced multistage process models for integrated design &manufacturing of poly (vinyl alcohol) treated buckypaper

    NASA Astrophysics Data System (ADS)

    Wang, Kan

    Carbon nanotube (CNT) is considered a promising engineering material because of its exceptional mechanical, electrical, and thermal properties. Buckypaper (BP), a thin sheet of assembled CNTs, is an effective way to handle CNTs in macro scale. Pristine BP is a fragile material which is held together by weak van der Waals attractions among CNTs. This dissertation introduces a modified filtration based manufacturing process which uses poly (vinyl alcohol) (PVA) to treat BP. This treatment greatly improves the handleability of BP, reduces the spoilage during transferring, and shortens the production time. The multistage manufacturing process of PVA-treated BP is discussed in this dissertation, and process models are developed to predict the nanostructure of final products from the process parameters. Based on the nanostructure, a finite element based physical model for prediction of Young's modulus is also developed. This accuracy of this physical model is further improved by statistical methods. The aim of this study is to investigate and improve the scalability of the manufacturing process of PVA-treated BP. To achieve this goal, various statistical tools are employed. The unique issues in nanomanufacturing also motivate the development of new statistical tools and modification of existing tools. Those issues include the uncertainties in nanostructure characterization due to the scale, limited number experimental data due to high cost of raw materials, large variation in final product due to the random nature in structure, and the high complexity in physical models due to the small scale of structural building blocks. This dissertation addresses those issues by combining engineering field knowledge and statistical methods. The resulting statistics-enhanced physical model provides an approach to design the manufacturing process of PVA-treated BP for a targeting property and tailor the robustness of the final product by manipulating the process parameters. In addition

  13. MICROWAVE-ASSISTED SYNTHESIS OF CROSSLINKED POLY(VINYL ALCOHOL) NANOCOMPOSITES COMPRISING SINGLE-WALLED CARBON NANOTUBES, MULTI-WALLED CARBON NANOTUBES AND BUCKMINSTERFULLERENE

    EPA Science Inventory

    We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...

  14. Films prepared from poly(vinyl alcohol) and amylose-fatty acid salt inclusion complexes with increased surface hydrophobicity and high elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, water-soluble amylose-inclusion complexes were prepared from high amylose corn starch and sodium salts of lauric, palmitic, and stearic acid by steam jet cooking. Cast films were prepared by combining the amylose complexes with poly(vinyl alcohol)(PVOH) solution at ratios varying from...

  15. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    NASA Astrophysics Data System (ADS)

    Sreedhar, Sreeja; Illyaskutty, Navas; Sreedhanya, S.; Philip, Reji; Muneera, C. I.

    2016-05-01

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  16. Poly[bis­{μ-N′-[(pyridin-4-yl)methyl­idene]benzohydrazidato}copper(II)

    PubMed Central

    Wu, Qiong; Chen, Da-Chi; Wu, Chu-Yi; Yan, Chang-Xiu; Liao, Jian-Zhen

    2013-01-01

    In the title complex, [Cu(C13H10N3O)2]n, the copper(II) cation is located on a crystallographic inversion centre and adopts an elongated octa­hedral coordination geometry with the equatorial plane provided by trans-arranged bis-N,O-chelating acyl­hydrazine groups from two ligands and the apices by the N atoms of two pyridine rings belonging to symmetry-related ligands. The ligand adopts a Z conformation about the C=N double bond. The dihedral angle between the pyridine and phenyl rings is 2.99 (13)°. An intra­ligand C—H⋯N hydrogen bond is observed. In the crystal, each ligand bridges two adjacent metal ions, forming a (4,4) grid layered structure. π–π stacking inter­actions [centroid–centroid distances in the range 3.569 (4)–3.584 (9) Å] involving rings of adjacent layers result in the formation of a three-dimensional supra­molecular network. PMID:24046562

  17. Influence of poly(ethylene glycol) as pore-generator on morphology and performance of chitosan/poly(vinyl alcohol) membrane adsorbents

    NASA Astrophysics Data System (ADS)

    Salehi, E.; Madaeni, S. S.

    2014-01-01

    Macroporous chitosan/poly(vinyl alcohol) membrane adsorbents were synthesized by solvent evaporation in the presence of poly(ethylene glycol) which was utilized as porogen. The membranes were applied for Cu(II) ion adsorption from water. SEM, AFM and wettability analyses were performed for membrane characterization. Insertion of poly(ethylene glycol) generated macrovoids in the dense structure of CS/PVA membranes through particulate leaching out mechanism. According to the static adsorption tests, the uptake capacity of the porous membranes is elevated (˜26 mg/g) compared to that of the dense membranes (˜10 mg/g). This phenomenon is attributed to the increase in the density of active sites, water affinity and surface roughness as a result of the porogen effects. The approachability of the ions to the active sites was also affected by these important parameters. Both size and density of the macrovoids increased with increasing PEG content from nil to 5 wt%. Fragility of the resultant porous structures prohibited synthesizing CS/PVA membranes with higher porogen contents. Desorption tests showed that the porous membranes were better regenerated in comparison to the dense membranes using Na2EDTA as eluant. Generally, the results suggested that the CS/PVA membranes, comprising PEG as pore-generator agent, are potential candidates for adsorption and elimination of Cu(II) ions from water.

  18. Dry fracturing and cutting techniques for scanning electron microscopy of poly-vinyl chloride particles: application to internal structure observations.

    PubMed

    Yañez, M J; de Lozano, V S

    1991-12-01

    Two methods for examining the internal structure of poly-vinyl chloride (PVC) particles are described. Very small PVC particles, polymerized by the emulsion process, were mounted on an aluminium adhesive tape and pressed with a similar tape. Both tapes were then pulled apart so that the specimen was broken in two fractions, which were observed by scanning electron microscopy. On the other hand, bigger PVC particles manufactured by following the suspension polymerization process, were frozen and hand sectioned with a razor blade under liquid nitrogen vapor. The results were highly satisfactory. These methods were easy to implement, the cost of materials for sample preparation was negligible, and they offered the ability to obtain multiple information from a single sample. PMID:1797991

  19. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles.

    PubMed

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-31

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  20. Photoinduced crystallization of calcium carbonate from a homogeneous precursor solution in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-04-01

    Photoinduced crystallization of calcium carbonate (CaCO3) was demonstrated by the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphenyl)propionic acid) under alkaline conditions (pH 10). In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol %) was used as the precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. Thermogravimetric analysis of the obtained xerogels showed that increasing the UV irradiation time increased the amount of CaCO3 formed and the complete conversion of calcium ions to calcite was achieved after 50 min of UV irradiation. Furthermore, solid phase analyses suggested that nanometer-to-micron-sized calcite crystals were formed and dispersed in the obtained PVAPS matrix.

  1. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent.

    PubMed

    Hoppe, Cristina E; Lazzari, Massimo; Pardiñas-Blanco, Iván; López-Quintela, M Arturo

    2006-08-01

    Synthesis of gold and silver hydrosols was carried out in a one-step process by reduction of aqueous solutions of metal salts using poly(N-vinyl-2-pyrrolidone) (PVP). Both kinds of metal nanoparticles were obtained without the addition of any other reducing agent, at low temperatures and using water as the synthesis solvent. Shape, size, and optical properties of the particles could be tuned by changing the employed PVP/metal salt ratio. It is proposed that PVP acts as the reducing agent suffering a partial degradation during the nanoparticles synthesis. Two possible mechanisms are proposed to explain the reduction step: direct hydrogen abstraction induced by the metal ion and/or reducing action of macroradicals formed during degradation of the polymer. Initial formation of the macroradicals might be associated with the metal-accelerated decomposition of low amounts of peroxides present in the commercial polymer.

  2. Preparation and characterization of NaClO4 doped poly(vinyl alcohol)/sodium alginate composite electrolyte

    NASA Astrophysics Data System (ADS)

    Sheela, T.; Bhajantri, R. F.; Ravindrachary, V.; Pujari, P. K.; Rathod, Sunil G.

    2013-02-01

    The 60:40 wt% poly(vinyl alcohol) (PVA)/sodium alginate blend doped with different concentrations of NaClO4 composite films were prepared by solution casting method. The prepared samples were characterized by FTIR, UV-Vis, DC and AC conductivity. The FTIR spectra confirms the complexation of NaClO4 with host polymer blend. From the UV-Vis spectra, the calculated optical band gap decreases from 5.2eV to 4.6eV. The frequency dependent dielectric constant decreases, and hence the dielectric loss and ac conductivity increases with doping level. The mechanical study shows the Young's modulus, tensile strength, stiffness were increases with the NaClO4 concentrations.

  3. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  4. Resistive switching memory devices based on electrical conductance tuning in poly(4-vinyl phenol)-oxadiazole composites.

    PubMed

    Sun, Yanmei; Miao, Fengjuan; Li, Rui; Wen, Dianzhong

    2015-11-28

    Nonvolatile memory devices, based on electrical conductance tuning in thin films of poly(4-vinyl phenol) (PVP) and 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) composites, are fabricated. The current-voltage characteristics of the fabricated devices show different electrical conductance behaviors, such as the write-once read-many-times (WORM) memory effect, the rewritable flash memory effect and insulator behavior, which depend on the content of PBD in the PVP + PBD composites. The OFF and ON states of the WORM and rewritable flash memory devices are stable under a constant voltage stress or a continuous pulse voltage stress at a read voltage. The memory mechanism is deduced from the modeling of the nature of currents in both states in the devices. PMID:26490192

  5. Electro-optical properties of one pot synthesized polyindole in the presence of poly(vinyl acetate)

    NASA Astrophysics Data System (ADS)

    Bhagat, D. J.; Dhokane, G. R.

    2015-05-01

    Polyindole was prepared in the presence of poly(vinyl acetate) through a chemical polymerization technique. The indole monomer was polymerized using ferric chloride as an oxidant. Electrical conductivity measurements were performed through a two probe technique. The prepared composites were analyzed by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (FE-SEM), energy dispersive x-ray spectroscopy (EDAX), and ultraviolet-visible (UV-VIS) spectroscopy. The DC conductivity was found to be 4.46 × 10-6 S/cm at 383 K. An attempt has been made to investigate the electrooptical properties of PIN/PVAc composite films.[Figure not available: see fulltext.

  6. Strong Surface Treatment Effects on Reinforcement Efficiency in Biocomposites Based on Cellulose Nanocrystals in Poly(vinyl acetate) Matrix.

    PubMed

    Ansari, Farhan; Salajková, Michaela; Zhou, Qi; Berglund, Lars A

    2015-12-14

    In this work, the problem to disperse cellulose nanocrystals (CNC) in hydrophobic polymer matrices has been addressed through application of an environmentally friendly chemical modification approach inspired by clay chemistry. The objective is to compare the effects of unmodified CNC and modified CNC (modCNC) reinforcement, where degree of CNC dispersion is of interest. Hydrophobic functionalization made it possible to disperse wood-based modCNC in organic solvent and cast well-dispersed nanocomposite films of poly(vinyl acetate) (PVAc) with 1-20 wt % CNC. Composite films were studied by infrared spectroscopy (FT-IR), UV-vis spectroscopy, dynamic mechanical thermal analysis (DMTA), tensile testing, and field-emission scanning electron microscopy (FE-SEM). Strongly increased mechanical properties were observed for modCNC nanocomposites. The reinforcement efficiency was much lower in unmodified CNC composites, and specific mechanisms causing the differences are discussed.

  7. Synthesis and characterization of silver/poly( N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Krklješ, Aleksandra; Stojkovska, Jasmina; Tomić, Simonida; Obradović, Bojana; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2011-11-01

    This work describes radiolytic synthesis of silver nanoparticles (Ag NPs) within the poly( N-vinyl-2-pyrrolidone) (PVP) hydrogel. The hydrogel matrix was obtained by gamma irradiation-induced crosslinking, while the in situ reduction of Ag + ions was performed using strong reducing species formed under water radiolysis. Absorption spectrum of the Ag/PVP nanocomposite confirmed the formation of Ag NPs, showing the surface plasmon band maxima at 405 nm. Ag/PVP nanocomposites were characterized by XRD and TEM analysis, accompanied with investigations of swelling and diffusion properties in the simulated body fluid at 37 °C, and mechanical properties in bioreactor conditions. It was shown that Ag/PVP nanocomposite exhibited higher values of equilibrium swelling degree, Young's modulus, and molar mass between crosslinks, while lower values of the diffusion coefficient and effective crosslink density were obtained, as compared to the pure PVP.

  8. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  9. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  10. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  11. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  12. Ultrasound assisted green synthesis of poly(vinyl alcohol) capped silver nanoparticles for the study of its antifilarial efficacy

    NASA Astrophysics Data System (ADS)

    Saha, Swadhin Kr.; Chowdhury, Pranesh; Saini, Prasanta; Babu, Santi P. Sinha

    2014-01-01

    Poly(vinyl alcohol) (PVA) capped stable silver nanoparticles (AgNP) have been synthesized sonochemically with the help of catalytic amount of a biomolecule (tyrosine). An attempt has been made to reduce the harmfull chemical additives (like sodium borohydride, hydrazine, dimethyl formamide, etc.) used in conventional methods. Tyrosine shows excellent reducing activity in presence of PVA stabilizer. Ultra-sound increased the reaction rate and yield, and improved the quality of the AgNP in terms of regular size distribution. The synthetic route follows the principles of green chemistry. Bioactivity has been tested in the light of antifilarial efficacy through induction of apoptosis. The biocompatible polymer (PVA) capped AgNPs are suitable for the treatment of filarial nematode.

  13. Synthesis, characterization and electrical properties of Fe3O4/poly(vinyl alcohol-co-acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    P, Jayakrishnan; Ramesan, M. T.

    2014-10-01

    This work focused on the synthesis of magnetite (Fe3O4)/poly(vinyl alcohol-co-acrylic acid) nanocomposite by in situ polymerization. The composite were characterized by FT-IR spectroscopy, XRD, SEM, TGA, AC and DC conductivity measurements. The spectroscopic studies revealed the molecular interaction between the polymer and nanocomposites. SEM, XRD indicated the uniform dispersion of nanoparticle inside the molecular chain of copolymer. TGA studies indicated the excellent thermal stability of copolymer nanocomposites. AC and DC conductivity of nanocomposites were higher than that of the copolymer and conductivity values were significantly increased with increase in concentration of metal oxide nanoparticles. These properties suggest that the polymer composite can be used as multifunctional material for nanoelectronics.

  14. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone.

    PubMed

    Arlyapov, V A; Yudina, N Yu; Asulyan, L D; Alferov, S V; Alferov, V A; Reshetilov, A N

    2013-09-10

    An amperometric biosensor for assessing the biochemical oxygen demand (BOD) was formed by immobilizing Debaryomyces hansenii VKM Y-2482 yeast cells in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Modification provided for a high sensitivity and stability of the bioreceptor. A high oxidative activity of the receptor element and the absence of any toxic effect of assayed compounds were shown for 34 substrates (alcohols, carbohydrates, carboxylic acids, amino acids, nitrophenols and surfactants) that may occur in wastewaters. Estimates of the measurement range and region of the linear dependence of signals on the BOD level, pH and temperature sensitivities, dependences of signals on concentrations of salts, stability, Michaelis kinetic constants and assay rates were obtained. The BOD values determined by the biosensor in assayed wastewater samples were shown to have a high correlation with those obtained by the standard dilution method. PMID:23931691

  15. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization.

    PubMed

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-03-01

    Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery.

  16. High strength paper production based on esterification of thermomechanical pulp fibers in the presence of poly(vinyl alcohol).

    PubMed

    Awada, Houssein; Bouatmane, Mohamed; Daneault, Claude

    2015-11-01

    Thermomechanical pulp (TMP) fibers, generally used to produce newspapers and carton materials, have poor inter- and intra-fiber bonding contributing to low strength properties. Poly(vinyl alcohol) (PVOH) was applied as a co-additive of 1,2,3,4-butanetetracarboxylic acid (BTCA), in the presence of sodium hypophosphite (SHP) as a catalyst, to esterify paper sheets based on TMP fibers. Fourier transform infrared (FTIR) spectroscopy technique was used to confirm the formation of the ester bond. The effects of curing temperature, molar mass and mass amount of the PVOH on the tensile index were investigated. The increasing of the curing temperature improved further the wet tensile index. The presence of PVOH increased both the dry and the wet tensile index of the paper sheets. The rise of both the molar mass and the mass amount of PVOH improved the tensile index. PMID:27441224

  17. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    NASA Astrophysics Data System (ADS)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  18. Colloidal Properties of Aqueous Poly(vinyl acetate)-Borate Dispersions with Short-Chain Glycol Ethers.

    PubMed

    Duncan, Teresa T; Berrie, Barbara H; Weiss, Richard G

    2016-08-18

    We report the influence of adding five short-chain glycol ethers (SCGEs) on the structure, stability, and viscoelastic properties of aqueous dispersions of partially hydrolyzed poly(vinyl acetate) and borax. The properties of these gel-like materials have been investigated as a function of the structure of the added SCGE both below and above the critical aggregation (or micellar) concentrations using (11) B and (13) C NMR, rheology, and small-angle neutron scattering. The results indicate that the SCGE aggregation behavior is not affected by incorporation into the gel-like network. However, changes in the viscoelasticity and structural properties of the dispersions were detected that can be correlated to the nature of the solvent system. Also, the ability of these materials to clean an unvarnished acrylic paint surface coated with synthetic soil has been evaluated using colorimetery, and the surface of the dispersion after cleaning was visualized with scanning electron microscopy. PMID:27387383

  19. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone.

    PubMed

    Arlyapov, V A; Yudina, N Yu; Asulyan, L D; Alferov, S V; Alferov, V A; Reshetilov, A N

    2013-09-10

    An amperometric biosensor for assessing the biochemical oxygen demand (BOD) was formed by immobilizing Debaryomyces hansenii VKM Y-2482 yeast cells in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Modification provided for a high sensitivity and stability of the bioreceptor. A high oxidative activity of the receptor element and the absence of any toxic effect of assayed compounds were shown for 34 substrates (alcohols, carbohydrates, carboxylic acids, amino acids, nitrophenols and surfactants) that may occur in wastewaters. Estimates of the measurement range and region of the linear dependence of signals on the BOD level, pH and temperature sensitivities, dependences of signals on concentrations of salts, stability, Michaelis kinetic constants and assay rates were obtained. The BOD values determined by the biosensor in assayed wastewater samples were shown to have a high correlation with those obtained by the standard dilution method.

  20. Optical sensing of phenylalanine in urine via extraction with magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsu, Chung-Yi; Lee, Mei-Hwa; Thomas, James L.; Shih, Ching-Ping; Hung, Tzu-Lin; Whang, Thou-Jen; Lin, Hung-Yin

    2015-07-01

    Incorporation of superparamagnetic nanoparticles into molecularly imprinted polymers (MIPs) is useful for both bioseparations and for concentration and sensing of biomedically relevant target molecules in physiological fluids, through the application of a magnetic field. In this study, we combined the separation and concentration of a target (phenylalanine) in urine, using magnetic molecularly imprinted polymeric composite nanoparticles, with optical sensing, to improve assay sensitivity. This target is important as a catecholamine precursor, and as an important amino acid constituent of proteins. Poly(ethylene-co-vinyl alcohol)s were imprinted with target molecules, and showed a high imprinting effectiveness (target binding compared with binding to non-imprinted polymer particles.) Fluorescence spectrophotometry was used to measure binding of the target, and also binding of possible interfering compounds. These measurements suggest that functional groups on phenylalanine dominate the selectivity of the synthesized MIPs. Finally, the composite nanoparticles were used to separate and sense the target molecule in urine by Raman scattering microscopy.

  1. Rainfastness of Poly(vinyl alcohol) Deposits on Vicia faba Leaf Surfaces: From Laboratory-Scale Washing to Simulated Rain.

    PubMed

    Symonds, Brett L; Thomson, Niall R; Lindsay, Christopher I; Khutoryanskiy, Vitaliy V

    2016-06-01

    Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants. PMID:27070864

  2. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe: characterization and evaluation in vitro.

    PubMed

    Xu, Fenglan; Li, Yubao; Deng, Yingpin; Xiong, Jie

    2008-01-01

    A nano-hydroxyapatite/poly(vinyl alcohol) (n-HA/PVA) composite hydrogel was employed as artificial cornea fringe to improve biocompatibility for the firm fixation between material and surrounding host tissues. The morphology and swelling behavior, as well as mechanical strength of the fringes were characterized. The results showed that the n-HA/PVA fringes had interconnective porous structure, high water content and good mechanical properties. With the aid of cell culture observed by inverted microscopy, scanning electron microscopy (SEM) and MTT test, it was concluded that PVA hydrogel modified with n-HA can improve biocompatibility and has no negative effects on the corneal fibroblasts in vitro. These findings indicate that the porous n-HA/PVA fringe can allow invasion and proliferation of cells, and can function as a fringe for artificial cornea.

  3. Study of enhanced red emission from Sm(Sal) 3Phen ternary complexes in Poly Vinyl Alcohol film

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Dwivedi, Y.; Rai, S. B.

    2010-09-01

    In the present work, dinuclear complexes of salicylic acid (Sal) and 1,10-phenanthroline (Phen) were synthesized with different concentrations of Samarium ion (Sm 3+) in Poly Vinyl Alcohol (PVA) polymer films and their structural and spectroscopic properties were investigated. Judd-Ofelt theory has been employed to estimate the several radiative parameters for SmCl 3 and Sm(Sal) 3Phen complex in PVA polymer film which are in fairly agreement between the experimental and the theoretical values supporting the J-O theory. Photoluminescence properties of the complex have been studied on 355 nm and 400 nm excitations in steady state as well as in time domain. On the basis of the UV-Vis absorption, FT-IR absorption, excitation, emission spectra and decay curves, spectroscopic properties of these films were studied and the photophysics involved was explained in terms of energy transfer and the RE encapsulation effect.

  4. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    SciTech Connect

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40, and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  5. The Gelation of Poly(Vinyl Alcohol) with Na2B4O7 10H2O: Killing Slime

    NASA Astrophysics Data System (ADS)

    McLaughlin, K. W.; Wyffels, N. K.; Jentz, A. B.; Keenan, M. V.

    1997-01-01

    The gelation of poly(vinyl alcohol), PVA, with sodium tetraborate decahydrate (borax) to produce "slime" is a popular chemistry demonstration (1). Since the borate serves to cross-link the PVA, the degree of cross-linking can be varied by changing the borate concentration (2). One way of changing the concentration of borate available to hold the PVA chains together is to "disable" the borate by protonation with a strong acid (3, 4). The titration of slime with sulfuric acid (eq 1) allows students to examine the relationship between cross-linking, viscosity, and the onset of gelation. This modification to a popular chemistry demonstration produces an interesting chemistry laboratory experiment designed to introduce students to the relationship between molecular structure and the bulk properties of macromolecules.

  6. Neutron spin-echo studies on dynamic and static fluctuations in two types of poly(vinyl alcohol) gels

    NASA Astrophysics Data System (ADS)

    Kanaya, T.; Takahashi, N.; Nishida, K.; Seto, H.; Nagao, M.; Takeda, T.

    2005-01-01

    We report neutron spin-echo measurements on two types of poly(vinyl alcohol) (PVA) gels. The first is PVA gel in a mixture of dimethyl sulfoxide (DMSO) and water with volume ratio 60/40 , and the second is PVA gel in an aqueous borax solution. The observed normalized intermediate scattering functions I(Q,t)/I(Q,0) are very different between them. The former I(Q,t)/I(Q,0) shows a nondecaying component in addition to a fast decay, but the latter does not have the nondecaying one. This clearly indicates that the fluctuations in the former PVA gel consist of static and dynamic fluctuations whereas the latter PVA gel does include only the dynamic fluctuations. The dynamic fluctuations of the former and latter gels have been analyzed in terms of a restricted motion in the network and Zimm motion, respectively, and the origins of these motions will be discussed.

  7. Magnetic properties of the Fe II spin crossover complex in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsushi; Iguchi, Motoi; Oku, Takeo; Fujiwara, Motoyasu

    2010-04-01

    Influence of chemical substitution in the Fe II spin crossover complex on magnetic properties in emulsion polymerization of trifluoroethylmethacrylate using poly(vinyl alcohol) as a protective colloid was investigated near its high spin/low spin (HS/LS) phase transition. The obvious bi-stability of the HS/LS phase transition was considered by the identification of multiple spin states between the quintet ( S=2) states to single state ( S=0) across the excited triplet state ( S=1). Magnetic parameters of gradual shifts of anisotropy g-tensor supported by the molecular distortion of the spin crossover complex would arise from a Jahn-Teller effect regarding ligand field theory on the basis of a B3LYP density functional theory using electron spin resonance (ESR) spectrum and X-ray powder diffraction.

  8. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  9. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  10. Poly(vinyl alcohol) gel sublayers for reverse osmosis membranes. I. Insolubilization by acid-catalyzed dehydration

    SciTech Connect

    Immelman, E.; Sanderson, R.D.; Jacobs, E.P.; Van Reenan, A.J. . Inst. of Polymer Science)

    1993-11-10

    Both flat-sheet and tubular composite reverse osmosis (RO) membranes were prepared by depositing aqueous solutions of poly(vinyl alcohol) (PVA) and a dehydration catalyst on asymmetric poly(arylether sulfone) (PES) substrate membranes. The PVA coatings were insolubilized by heat treatment to create stable hydrophilic gel-layer membranes. The influence of variables such as PVA concentration, catalyst concentration, curing time, and curing temperature was investigated. It was shown that a simple manipulation of one or two variables could lead to membranes with widely differing salt retention and water permeability characteristics. The insolubilized PVA coatings were intended to serve as hydrophilic gel sublayers on which ultra thin salt-retention barriers could ultimately be formed by interfacial polycondensation. For this purpose, high-flux gel layers were required, whereas salt-retention capabilities were not regarded as important. However, the promising salt retentions obtained as 2 MPa (up to 85% NaCl retention and 92% MgSO[sub 4] retention) showed that some of these PES-PVA composite membranes could function as medium-retention, medium-flux RO membranes, even in the absence of an interfacially formed salt-retention barrier.

  11. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  12. Synthesis, characterization and in vitro cell compatibility study of a poly(amic acid) graft/cross-linked poly(vinyl alcohol) hydrogel.

    PubMed

    Padavan, Donna T; Hamilton, Amanda M; Millon, Leonardo E; Boughner, Derek R; Wan, Wankei

    2011-01-01

    Although physically cross-linked poly(vinyl alcohol) (PVA) hydrogels have tunable mechanical properties to match that of soft tissues, such as vascular tissue, their hydrophilic nature is not conducive to cell adhesion and spreading. For applications such as small diameter vascular grafts for coronary bypass both mechanical matching and hemocompatibility are important. Poly(amic acid) (PAA), derived from ethylene diamine tetraacetic dianhydride, is a cell-compatible polymer. It was grafted/cross-linked onto physically cross-linked PVA to provide cell compatibility. Functionalization was achieved via a one-step esterification reaction using 1,3-dicyclohexylcarbodiimide as the coupling agent and 4-dimethylaminopyridine as the catalyst. The success of the grafting reaction was verified using Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance spectroscopy and X-ray photoelectron spectroscopy. The mechanical properties of the starting PVA hydrogel were largely preserved after the grafting reaction within the physiological strain range of vascular tissue. In vitro cell culture studies using primary porcine endothelial cells confirmed cell compatibility of the PAA graft PVA hydrogel, making it an attractive candidate for small diameter vascular graft development.

  13. Poly(vinyl alcohol)-Poly(ethylene glycol) Double-Network Hydrogel: A General Approach to Shape Memory and Self-Healing Functionalities.

    PubMed

    Li, Guo; Zhang, Hongji; Fortin, Daniel; Xia, Hesheng; Zhao, Yue

    2015-10-27

    A double-network polymer hydrogel composed of chemically cross-linked poly(ethylene glycol) (PEG) and physically cross-linked poly(vinyl alcohol) (PVA) was prepared. When the hydrogel (70 wt % of water) is subjected to freezing/thawing treatment under strain, the enhanced physical network as a result of crystallization of PVA chains can stabilize the hydrogel deformation after removal of the external force at room temperature. Subsequent disruption of the physical network of PVA by heating allows for the recovery of the initial shape of the hydrogel. Moreover, the double-network hydrogel exhibits self-healing capability stemming from the physical network of PVA by virtue of the extensive interchain hydrogen bonding between the hydroxyl side groups. This study thus demonstrates a general approach to imparting both the shape memory and self-healing properties to chemically cross-linked hydrogels that otherwise do not have such functionalities. Moreover, by making use of the fixed hydrogel elongation, the effect of anisotropy arising from chain orientation on the self-healing was also observed.

  14. Field and laboratory determination of a poly(vinyl/vinylidene chloride) additive in brick mortar.

    PubMed

    Law, S L; Newman, J H; Ptak, F L

    1990-02-01

    A polymerized vinyl/vinylidene chloride additive, used in brick mortar during the 60s and 70s, is detected at the building site by the field method, which employs a commercially available chloride test strip. The field test results can then be verified by the laboratory methods. In one method, total chlorine in the mortar is determined by an oxygen-bomb method and the additive chloride is determined by difference after water-soluble chlorides have been determined on a separate sample. In the second method, the polymerized additive is extracted directly from the mortar with tetrahydrofuran (THF). The difference in weight before and after extraction of the additive gives the weight of additive in the mortar. Evaporation of the THF from the extract leaves a thin film of the polymer, which gives an infrared "fingerprint" spectrum characteristic of the additive polymer.

  15. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies.

  16. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone.

    PubMed

    Luan, Shifang; Zhao, Jie; Yang, Huawei; Shi, Hengchong; Jin, Jing; Li, Xiaomeng; Liu, Jingchuan; Wang, Jianwei; Yin, Jinghua; Stagnaro, Paola

    2012-05-01

    Poly(N-vinyl pyrrolidone) (PNVP) was covalently grafted onto the surface of biomedical poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) elastomer via a technique of UV-induced graft polymerization combined with plasma pre-treatment. The surface graft polymerization of N-vinyl pyrrolidone (NVP) was confirmed by ATR-FTIR and XPS. Effect of the parameters of graft polymerization, i.e., the initiator concentration, the UV irradiation time and the monomer concentration on the grafting density was investigated. The morphology and the wettability of the PNVP-modified surfaces were characterized by AFM and DSA, respectively. Protein adsorption and platelet adhesion were obviously suppressed after PNVP was grafted onto the SEBS substrates. PMID:22264686

  17. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    PubMed

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. PMID:27434159

  18. Using poly([1-vinyl-3-hexylimidazolium] [bis(trifluoromethylsulfonyl)imide]) to adsorb bio-ethanol from a Chamaecyparis obtuse leaves fermentation broth.

    PubMed

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2013-06-01

    Poly([1-vinyl-3-hexylimidazolium] [bis(trifluoromethylsulfonyl)imide]) (poly([VHIM][Tf2N])) was assessed for its ability to adsorb bio-ethanol from Chamaecyparis obtuse leaves fermentation broths. Poly([VHIM][Tf2N]) was prepared by poly([VHIM][Br]) ion exchange with Li(Tf2N). Poly([VHIM][Br]) was obtained using a thermal-initiated polymerization method. The factors affecting the adsorption capacity of poly([VHIM][Tf2N]), such as the initial concentration of bio-ethanol in the fermentation broth, adsorption temperature and dosage of the adsorbent, as well as the adsorption kinetics and equilibrium of poly([VHIM][Tf2N]) were investigated. The Langmuir, Freundlich and Temkin isotherms used to describe the adsorption of bio-ethanol on the adsorbent showed good correlation coefficients of 0.97, 0.96 and 0.98, respectively. A comparison of the separation factors for ethanol/water, ethanol/glucose and ethanol/xylose revealed poly([VHIM][Tf2N]) to have preferential selectivity for bio-ethanol. Compared to activated carbon, poly([VHIM][Tf2N]) exhibited higher adsorption capacity for bio-ethanol under the same adsorption conditions. The adsorbent could be used for 5 cycles with good efficiency, highlighting its reusability as an adsorbent.

  19. Radiation synthesis of hydrogels based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol and their interaction with poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mun, G. A.; Nurkeeva, Z. S.; Khutoryanskiy, V. V.; Yermukhambetova, B. B.; Koblanov, S. M.; Arkhipova, I. A.

    2003-08-01

    Novel hydrogels of cationic nature were synthesized by gamma-radiation copolymerization of vinyl ethers of monoethanolamine and ethyleneglycol in the presence of cross-linking agent. The effect of absorbed dose on the gel fraction and equilibrium swelling degree of hydrogels in water is shown. It was demonstrated that the hydrogels are able to bind poly(acrylic acid) to form polyelectrolyte complexes with swelling properties typical for polyampholytes.

  20. Discrimination of poly(vinyl chloride) samples with different plasticizers and prediction of plasticizer contents in poly(vinyl chloride) using near-infrared spectroscopy and neural-network analysis.

    PubMed

    Saeki, Kazumitsu; Funatsu, Kimito; Tanabe, Kazutoshi

    2003-02-01

    In the recycling of poly(vinyl chloride) (PVC), it is required to discriminate every plasticizer for quality control. For this purpose, the near-infrared spectra were measured for 41 kinds of PVC samples with different plasticizers (DINP, DOP, DOA, TOTM and Polyester) and different plasticizer contents (0-49%). A neural-network analysis was applied to the near-infrared spectra pretreated by second-derivative processing. They were discriminated from one another. The neural-network analysis also allowed us to propose a calibration model which predicts the contents of plasticizers in PVC. The correlation coefficient (R) and the root-mean-square error of prediction (RMSEP) for the DINP calibration model were found to be 0.999 and 0.41 wt%, respectively. In comparison, a partial least-squares regression analysis was carried out. The R and RMSEP of the DINP calibration model were calculated to be 0.993 and 1.27 wt%, respectively. It is found that a near-infrared spectra measurement combined with a neural-network analysis is useful for plastic recycling.

  1. Spectrometric measurements and DFT studies on new complex of copper (II) with 2-((E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole.

    PubMed

    Zhang, Haoyang; Hu, Jie; Zhao, Jianying; Zhang, Yu

    2016-11-01

    The molecular structure of a new complex of copper (II) with (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole ([Cu2(emppc)2Cl2]Cl2) was optimized with B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ theoretical level. The ligand, (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole (emppc), binds to Cu(II) ions with a bi-dentate mode, two Cl(-) serve as bridging ligand, each Cu(II) ion has a highly distorted tetrahedron coordination geometry. With M062X/LanL2DZ theoretical level, the calculated interaction energies of Cu(II) with coordination atoms N are between 183.3-200.0kJmol(-1) for α spin and 319.4-324.9kJmol(-1) for β spin, and interaction energies of Cu(II) with coordination atoms Cl atom are 248.0-252.4kJmol(-1) for α spin and 332.6-333.6kJmol(-1) for β spin. The experimental Fourier transform infrared spectrum was assigned. The calculated IR based on B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ methods were performed and compared with experimental results. The UV-Vis experimental spectra of [Cu2(emppc)2Cl2]Cl2 was measured in methanol solution. The calculated electronic spectrum was performed with TD/M062X and PCM-TD/M062X methods with LanL2DZ basis set. The nature bond orbital analysis and temperature dependence of the thermodynamic properties were calculated with the same methods. PMID:27285472

  2. Spectrometric measurements and DFT studies on new complex of copper (II) with 2-((E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole

    NASA Astrophysics Data System (ADS)

    Zhang, Haoyang; Hu, Jie; Zhao, Jianying; Zhang, Yu

    2016-11-01

    The molecular structure of a new complex of copper (II) with (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole ([Cu2(emppc)2Cl2]Cl2) was optimized with B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ theoretical level. The ligand, (E)-9-ethyl-3-(2-(6-(4-methylpyridin-2-yl)pyridin-3-yl)vinyl)-9H-carbazole (emppc), binds to Cu(II) ions with a bi-dentate mode, two Cl- serve as bridging ligand, each Cu(II) ion has a highly distorted tetrahedron coordination geometry. With M062X/LanL2DZ theoretical level, the calculated interaction energies of Cu(II) with coordination atoms N are between 183.3-200.0 kJ mol- 1 for α spin and 319.4-324.9 kJ mol- 1 for β spin, and interaction energies of Cu(II) with coordination atoms Cl atom are 248.0-252.4 kJ mol- 1 for α spin and 332.6-333.6 kJ mol- 1 for β spin. The experimental Fourier transform infrared spectrum was assigned. The calculated IR based on B3LYP/LanL2DZ, PBE1PBE/LanL2DZ and M062X/LanL2DZ methods were performed and compared with experimental results. The UV-Vis experimental spectra of [Cu2(emppc)2Cl2]Cl2 was measured in methanol solution. The calculated electronic spectrum was performed with TD/M062X and PCM-TD/M062X methods with LanL2DZ basis set. The nature bond orbital analysis and temperature dependence of the thermodynamic properties were calculated with the same methods.

  3. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    PubMed

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important. PMID:26287451

  4. Recycled Poly(vinyl alcohol) Sponge for Carbon Encapsulation of Size-Tunable Tin Dioxide Nanocrystalline Composites.

    PubMed

    Ma, Yue; Tai, Cheuk-Wai; Gustafsson, Torbjörn; Edström, Kristina

    2015-06-22

    The recycling of industrial materials could reduce their environmental impact and waste haulage fees and result in sustainable manufacturing. In this work, commercial poly(vinyl alcohol) (PVA) sponges are recycled into a macroporous carbon matrix to encapsulate size-tunable SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) through a scalable, flash-combustion method. The hydroxyl groups present copiously in the recycled PVA sponges guarantee a uniform chemical coupling with a tin(IV) citrate complex through intermolecular hydrogen bonds. Then, a scalable, ultrafast combustion process (30 s) carbonizes the PVA sponge into a 3D carbon matrix. This PVA-sponge-derived carbon could not only buffer the volume fluctuations upon the Li-Sn alloying and dealloying processes but also afford a mixed conductive network, that is, a continuous carbon framework for electrical transport and macropores for facile electrolyte percolation. The best-performing electrode based on this composite delivers a rate performance up to 9.72 C (4 A g(-1) ) and long-term cyclability (500 cycles) for Li(+) ion storage. Moreover, cyclic voltammograms demonstrate the coexistence of alloying and dealloying processes and non-diffusion-controlled pseudocapacitive behavior, which collectively contribute to the high-rate Li(+) ion storage. PMID:26033927

  5. Composite films based on biorelated agro-industrial waste and poly(vinyl alcohol). Preparation and mechanical properties characterization.

    PubMed

    Chiellini, E; Cinelli, P; Imam, S H; Mao, L

    2001-01-01

    As a part of an ongoing project on the production of composite materials based on poly(vinyl alcohol) (PVA) and polymeric materials from renewable resources, the present paper reports on the incorporation of agricultural waste materials as organic fillers in a film matrix based on PVA as continuous phase. In this study lignocellulosic fibers byproducts, derived from sugar cane (SC) and apple (AP) and orange (OR) fruit juice extraction, were cast from PVA aqueous solutions. The effect of fiber type and composition on the relative properties of cast films was evaluated and compared. OR resulted to be suitable for blending in higher amounts by weight than SC and AP. Glycerol and urea were added as plasticizing agents and were observed to be effective in giving flexible films. Additionally, cornstarch was added to further increase the composition of polymers from renewable resources in cost-effective and ecoefficient composite film formulations. The prepared films resulted sensitive to moisture and water. To reduce water sensitivity, hexamethoxymethylmelamine (HMMM) was tested as a cross-linking agent for the present composite formulations. Cross-linked films exhibited significant improvement in water-resistance that can be taken as a tuneable structural feature for customized applications. The mechanical properties of the prepared composite films (elongation at break, tensile strength, Young modulus) were found to be dependent upon the nature and content of the filler and on environmental conditions.

  6. Facile synthesis of glucose-sensitive chitosan-poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties.

    PubMed

    Abureesh, Mosab Ali; Oladipo, Akeem Adeyemi; Gazi, Mustafa

    2016-09-01

    The study describes the development of glucose-sensitive hydrogel and optimization of bovine serum albumin release profile from the hydrogel. To enhance the glucose sensitivity and improve the swelling behaviors of the hydrogel system, boric acid crosslinking, and freeze-thawing cycle techniques were used to prepare chitosan-poly(vinyl alcohol) hydrogel. The structure of the resultant hydrogel was confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. The experimental results revealed that the swelling of the hydrogel was influenced by the pH of the medium, and the hydrogel displayed explicit glucose-sensitivity under physiological conditions. The values of the diffusion exponent range between 0.34 and 0.44 and the diffusion of water into the gel system are assumed to be pseudo-Fickian in nature. Under optimized conditions, the cumulative Bovine serum albumin (BSA) drug releases ranged between 69.33±1.95% and 86.45±1.16% at 37°C in the presence of glucose and pH 7.4, respectively. PMID:26459171

  7. Preparation, characterization and surface p Ka values of poly( N-vinyl-2-pyrrolidone)/chitosan blend films

    NASA Astrophysics Data System (ADS)

    Demirci, Serkan; Alaslan, Ali; Caykara, Tuncer

    2009-03-01

    Blend films of poly( N-vinyl-2-pyrrolidone) (PVP) and chitosan (CTS) were prepared by casting method from acetic acid solutions. All blend films obtained are optically clear to the naked eye. The structure and physical properties of the blend films were analyzed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mechanical testing (Instron) and contact-angle measurements. The ATR-FTIR results indicated that there is no detectable band shifts at 1650 cm -1. From TGA studies, it was found that the onset degradation temperature of the blends almost unchanged due to the presence of a weak interaction between PVP and CTS chains. The DSC analysis showed a single glass transition temperature for all the blends, indicating that these polymers are miscible over the entire composition range. The mechanical properties of the blends, such as breaking stress and elongation at break and Young modulus were greatly affected with increase of CTS content. In addition, we found that the blends exhibit well defined contact angle titration curves from which the surface p Ka values were determined. In conclusion, these experimental findings provide fundamental knowledge for the preparation of bioreactive surfaces of controlled reactivity on CTS based blends.

  8. Protein-resistant cross-linked poly(vinyl alcohol) micropatterns via photolithography using removable polyoxometalate photocatalyst.

    PubMed

    Pavli, Pagona; Petrou, Panagiota S; Douvas, Antonios M; Dimotikali, Dimitra; Kakabakos, Sotirios E; Argitis, Panagiotis

    2014-10-22

    In the last years, there has been an increasing interest in controlling the protein adsorption properties of surfaces because this control is crucial for the design of biomaterials. On the other hand, controlled immobilization of proteins is also important for their application as solid surfaces in immunodiagnostics and biosensors. Herein we report a new protein patterning method where regions of the substrate are covered by a hydrophilic film that minimizes protein adsorption. Particularly, poly(vinyl alcohol) (PVA) cross-linked structures created by an especially developed photolithographic process are proved to prevent protein physisorption and they are used as a guide for selective protein adsorption on the uncovered areas of a protein adsorbing substrate such as polystyrene. The PVA cross-linking is induced by photo-oxidation using, as a catalyst, polyoxometalate (H3PW12O40 or α-(NH4)6P2W18O62), which is removed using a methyl alcohol/water mixed solvent as the developer. We demonstrate that the polystyrene and the cross-linked PVA exhibit dramatically different performances in terms of protein physisorption. In particular, the polystyrene areas presented up to 130 times higher protein binding capacity than the PVA ones, whereas the patterning resolution could easily reach dimensions of a few micrometers. The proposed approach can be applied on any substrate where PVA films can be coated for controlling protein adsorption onto surface areas custom defined by the user.

  9. High-Strength Single-Walled Carbon Nanotube/Permalloy Nanoparticle/Poly(vinyl alcohol) Multifunctional Nanocomposite Fiber.

    PubMed

    Zhou, Gengheng; Wang, Yi-Qi; Byun, Joon-Hyung; Yi, Jin-Woo; Yoon, Sang-Su; Cha, Hwa-Jin; Lee, Jea-Uk; Oh, Youngseok; Jung, Byung-Mun; Moon, Ho-Jun; Chou, Tsu-Wei

    2015-11-24

    Magnetic nanocomposite fibers are a topic of intense research due to their potential breakthrough applications such as smart magnetic-field-response devices and electromagnetic interference (EMI) shielding. However, clustering of nanoparticles in a polymer matrix is a recognized challenge for obtaining a property-controllable nanocomposite fiber. Another challenge is that the strength and ductility of the nanocomposite fiber decrease significantly with increased weight loading of magnetic nanoparticles in the fiber. Here, we report high-strength single-walled carbon nanotube (SWNT)/permalloy nanoparticle (PNP)/poly(vinyl alcohol) multifunctional nanocomposite fibers fabricated by wet spinning. The weight loadings of SWNTs and PNPs in the fiber were as high as 12.0 and 38.0%, respectively. The tensile strength of the fiber was as high as 700 MPa, and electrical conductivity reached 96.7 S m(-1). The saturation magnetization (Ms) was as high as 24.8 emu g(-1). The EMI attenuation of a fabric woven from the prepared fiber approached 100% when tested with electromagnetic waves with a frequency higher than 6 GHz. The present study demonstrates that a magnetic-field-response device can be designed using the fabricated multifunctional nanocomposite fiber. PMID:26431310

  10. Facile and green fabrication of electrospun poly(vinyl alcohol) nanofibrous mats doped with narrowly dispersed silver nanoparticles

    PubMed Central

    Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua

    2014-01-01

    Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests. PMID:25170264

  11. Electromechanical behavior of polyaniline/poly (vinyl alcohol) blend films under static, dynamic and time-dependent strains

    NASA Astrophysics Data System (ADS)

    Akhilesan, S.; Lakshmana Rao, C.; Varughese, S.

    2014-07-01

    We report on the experimentally observed electrical conductivity enhancement in polyaniline/poly (vinyl alcohol) blend films under uniaxial tensile loading. Polyaniline (PANI) is an intrinsically conducting polymer, which does not form stretchable free-standing films easily and hence its electromechanical characterization is a challenge. Blending of PANI with other insulating polymers is a good choice to overcome the processability problem. We report the electromechanical response of solution blended and HCl doped PANI/PVA blends subjected to uniaxial, static, dynamic and time-dependent tensile loading. The demonstrated viscoelastic and morphological contributions of the component polymers to the electrical conductivity behavior in these blends could lead to interesting applications in strain sensors and flexible electronics. The reversibility of the electromechanical response under dynamic strain is found to increase in blends with higher PANI content. Time-dependent conductivity studies during mechanical stress relaxation reveal that variations in the micro-domain ordering and the relative relaxation rate of the individual polymer phases can give rise to interesting electrical conductivity changes in PANI blends. From morphological and electrical conductivity studies, we show that PANI undergoes primary and secondary agglomeration behavior in these blends that contributes to the changes in conductivity behavior during the deformation. A 3D variable range hopping (VRH) process, which uses a deformable core and shell concept based on blend morphology analysis, is used to explain the experimentally observed electromechanical behavior.

  12. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers

    PubMed Central

    2015-01-01

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729

  13. Fabrication of high quality carbonaceous coating on Cu nanoparticle using poly(vinyl pyrrolidone) and its application for oxidation prevention

    NASA Astrophysics Data System (ADS)

    Pyo, Youngjun; Choi, Dahyun; Son, Yeon-Ho; Kang, Suhee; Yoon, Eric H.; Jung, Seung-Boo; Kim, Yongil; Sunyong Lee, Caroline

    2016-05-01

    A novel method of carbonaceous coating on the surface of copper particles was developed through a chemical vapor deposition (CVD) process to prevent the oxidation of copper nanoparticles (CNPs). The types of poly(vinyl pyrrolidone) (PVP) used were K-12 (M W 3,500) and K-30 (M W 45,000). The amounts of PVP used ranged from 10 to 50 wt %. Additionally, processing temperatures of 900 and 875 °C were tested and compared. The optimum CVD process conditions for the carbonaceous coating were as follows: 875 °C processing temperature, 50 wt % K12 PVP solution, and gas conditions of \\text{Ar}:\\text{H}2 = 1:1. The resistivity change in the fabricated copper pattern was confirmed that the initial resistivity value of the ink with a mixing ratio of carbonaceous-coated CNPs to 1-octanethiol-coated CNPs of 4:6 (w/w) maintained its initial resistivity value of 2.93 × 10-7 Ω·m for more than 210 days.

  14. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  15. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.

    PubMed

    He, Yao; Ma, Xiaoqian; Zeng, Guangbo

    2015-02-01

    The thermochemical processes of lignocellulosic biomass and its mixtures with poly(vinyl chloride) (PVC) fractions were investigated by thermogravimetric analysis in CO2 atmosphere. Superposition property was assumed to examine whether and/or to what extent interactions occurred during the mixture decomposition. Results showed that interactions existed, of which the intensities changed with reaction stage, heating rate and PVC quantity, and they actively behaved toward the decomposition in most cases. With PVC presence, lignocellulosic biomass turned from three-stage to four-stage decomposition process where the reactions occurred at lower temperatures with heightened intensity, especially in the first stage. The measured activation energies calculated by Ozawa-Flynn-Wall and Vyazovkin methods were of minor difference <5 kJ/mol, and comparing them between materials in each stage confirmed the results of interaction impact. This work provides a theoretical basis bringing about the possibilities of recycling CO2 into a reaction medium of thermo-treatment of lignocellulosic material with PVC contaminants. PMID:25506821

  16. Thermodynamic and spectroscopic analysis of the conformational transition of poly(vinyl alcohol) by temperature-dependent FTIR

    NASA Astrophysics Data System (ADS)

    Han, Shan; Luan, Ye-Mei; Pang, Shu-Feng; Zhang, Yun-Hong

    2015-03-01

    The conformational change of poly(vinyl alcohol) has been studied by Fourier transform infrared spectroscopy at various temperatures in the 4000-400 cm-1 region. The molecular motion and the trans/gauche content are sensitive to the Csbnd H, Csbnd C stretching modes. FTIR spectra show that the I2920/I2849 decreases from 1.84 to 1.0 with increasing temperature, companying the decrease in I1047/I1095 from 0.78 to 0.58, implying the conformational transition from trans to gauche in alkyl chain. Based on the van't Hoff relation, the enthalpies and entropies have been calculated in different temperatures, which are 4.61 kJ mol-1 and 15.23 J mol-1 K-1, respectively, in the region of 80-140 °C. From the Cdbnd O stretching mode and Osbnd H band, it can be concluded that the intermolecular hydrogen bonds decrease owing to elevating temperature, which leads to more gauche conformers.

  17. Research on a novel poly (vinyl alcohol)/lysine/vanillin wound dressing: Biocompatibility, bioactivity and antimicrobial activity.

    PubMed

    Zhou, Gang; A, Ruhan; Ge, Heng; Wang, Lin; Liu, Meili; Wang, Binbin; Su, Haisheng; Yan, Ming; Xi, Yuan; Fan, Yubo

    2014-12-01

    Burn wound dressings have played significant roles in daily clinical practice. An "ideal" burn wound dressing is non-adhesion, absorbency and antimicrobial activity. However, such a dressing is currently not available. A novel composite hydrogel was based on poly (vinyl alcohol) (PVA) containing lysine (Lys) and vanillin (V) using freezing-thawing method. The properties of this hydrogel were characterized by environmental scanning electron microscope (ESEM), attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR), tensile testing, differential scanning calorimetry (DSC) and water vapour transmission rate (WVTR). Then the antibacterial activity of PVA/Lys/V composite hydrogel was examined by bacteriolytic plate. In vivo experiment, a burn rat model was used to evaluate the histological analysis of this hydrogel. In results, the Schiff base formed in the three-phase system. It improved the tensile strength and crystallization of the PVA/Lys/V composite hydrogel. Meanwhile, this hydrogel showed excellent bactericidal activities to both gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) due to the Schiff base. And the antibacterial activity toward gram-negative bacteria was better than another. On Day 7, 95-100% of the surface areas of PVA/Lys/V composite treated burns were covered with regenerating epidermis. And the new tissue and capillary vessel formed around the wounds after treatment. Therefore, it is suggested that treatment with PVA/Lys/V composite hydrogel will be effective also in patients with burns and other skin wounds.

  18. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-En; Lin, Chi-Wen; Hwang, Bing-Joe

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO 3H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 × 10 -2 S cm -1 at room temperature from one of the synthesized membranes, higher than that of the Nafion ® membrane. Methanol permeability of the synthesized membranes measures about 1 × 10 -7 cm 2 S -1, about one order of magnitude lower than that of the Nafion ® membrane.

  19. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery

    PubMed Central

    Krogstad, Emily A.; Woodrow, Kim A.

    2014-01-01

    Electrospun fibers containing antiretroviral drugs have recently been investigated as a new dosage form for topical microbicides against HIV-1. However, little work has been done to evaluate the scalability of the fiber platform for pharmaceutical production of medical fabrics. Scalability and cost-effectiveness are essential criteria in developing fibers as a practical platform for use as a microbicide and for translation to clinical use. To address this critical gap in the development of fiber-based vaginal dosage forms, we assessed the scale-up potential of drug-eluting fibers delivering tenofovir (TFV), a nucleotide reverse transcriptase inhibitor and lead compound for topical HIV-1 chemoprophylaxis. Here we describe the process of free-surface electrospinning to scale up production of TFV fibers, and evaluate key attributes of the finished products such as fiber morphology, drug crystallinity, and drug loading and release kinetics. Poly(vinyl alcohol) (PVA) containing up to 60 wt% TFV was successfully electrospun into fibers using a nozzle-free production-scale electrospinning instrument. Actual TFV loading in fibers increased with increasing weight percent TFV in solution, and encapsulation efficiency was improved by maintaining TFV solubility and preventing drug sedimentation during batch processing. These results define important solution and processing parameters for scale-up production of TFV drug-eluting fibers by wire electrospinning, which may have significant implications for pharmaceutical manufacturing of fiber-based medical fabrics for clinical use. PMID:25169075

  20. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria.

  1. Surface-coated fly ash reinforced biodegradable poly(vinyl alcohol) composite films: part 2-analysis and characterization

    NASA Astrophysics Data System (ADS)

    Nath, D. C. D.; Bandyopadhyay, S.; Campbell, J.; Yu, A.; Blackburn, D.; White, C.

    2010-12-01

    Composite films of poly(vinyl alcohol) (PVA) reinforced with 5, 10, 15, 20 and 25 wt.% surface-coated fly ash by surfactant, sodium lauryl sulphate (SLS-FA) along with 1 wt.% cross-linking agent, glutaraldehyde (GLA) were prepared by aqueous casting method. The tensile strengths of the composite films were increased proportionally with the addition of SLS-FA. The maximum 75% higher strength of the composite with 20 wt.% was achieved compared to that of neat PVA. The modulus of the composites was also increased proportionally with SLS-FA and the maximum 218% reached in composite with 20 wt.%, but the strain at break was decreased with addition of SLS-FA. Changes in FTIR spectra reflect the chemical and/or physical bonding in the ternary PVA, SLS-FA and GLA component systems. In the study of surface morphology, the connectivity was visualized in SEM images along with interstitial voids. The films with SLS-FA show 53% smoother surface calculated with AFM compared to unmodified FA composite films.

  2. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Jinxing; Xie, Yunyun; Wang, Mozhen; Ge, Xuewu

    2016-04-01

    Bi2WO6 has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi2WO6 particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi2WO6, but the distribution of PVP on the initially formed Bi2WO6 nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi2WO6 with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi2WO6 varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi2WO6 with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi2WO6 particles, but also provides the controllable way to the preparation of Bi2WO6 with various morphologies taking advantage of the stabilizer PVP.

  3. In situ fabricated platinum—poly(vinyl alcohol) nanocomposite thin film: a highly reusable ‘dip catalyst’ for hydrogenation

    NASA Astrophysics Data System (ADS)

    Divya Madhuri, U.; Kesava Rao, V.; Hariprasad, E.; Radhakrishnan, T. P.

    2016-04-01

    A simple protocol for the in situ generation of platinum nanoparticles in a poly(vinyl alcohol) (PVA) thin film is developed. Chloroplatinic acid as well as potassium platinum(II) chloride are used as precursors and the film is fabricated by spin coating followed by mild thermal annealing. The chemical process occurring inside the film, wherein the polymer itself acts as the reducing agent, is explored through different spectroscopy and microscopy techniques. The Pt-PVA film, <100 nm thick and containing ˜1 nm size Pt nanoparticles, is shown to be a highly efficient catalyst for the reduction of methylene blue using sodium borohydride. The ease of retrieval and reuse of the thin film is highlighted by the term ‘dip catalyst’. The reaction yield, kinetics and rate are reproducible through several reuses of the same catalyst film. Turnover number (TON = number of mols of product/number of mols of catalyst) and turnover frequency (TOF = TON/reaction time) are significantly higher than those reported earlier for this reaction using metal nanocatalysts. Utility of Pt-PVA film as an efficient catalyst for other hydrogenation reactions is demonstrated.

  4. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers.

    PubMed

    Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I

    2015-09-14

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.

  5. Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel.

    PubMed

    Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue

    2015-06-10

    Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.

  6. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid) Bioadhesive Nanoparticles

    PubMed Central

    Varshosaz, J.; Minaiyan, M.; Forghanian, M.

    2014-01-01

    The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT). Therefore, poly(methyl vinyl ether maleic acid) [P(MVEMA)] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1), iv solution of sCT (5 μg·kg−1), and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA) nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly. PMID:24701588

  7. Extraordinarily large swelling energy of iodine-treated poly(vinyl alcohol) demonstrated by jump of a film

    PubMed Central

    Takamura, Tatsuro; Nozawa, Kazuya; Sugimoto, Yoshiki; Shioya, Masatoshi

    2014-01-01

    Organic material characteristics of volume change and stress generation have attracted the attention of many researchers aiming to develop chemomechanical systems such as artificial muscles and polymer engines having the advantages of high energy density and silent operation. Although polymer gels offer a relatively large actuator stroke, their mechanical properties are relatively poor and the working temperature is relatively low, often limited by the evaporation of liquid if contained. We have developed an iodine-treated poly(vinyl alcohol) having extraordinarily large vapor-induced deswelling stress reaching 59 MPa, which is one to two orders of magnitude greater than those of ordinary polymer gels. Furthermore, this material has extremely large volumetric and gravimetric energy densities reaching 1.3 × 106 J m−3 and 9.6 × 102 J kg−1, respectively, and an elastic modulus of a few GPa and is heat-resistant to at least 200 °C. The high performance of this material can be demonstrated by a jump of a film. © 2014 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 1357–1365 PMID:25678738

  8. The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts.

    PubMed

    Lou, Pei-Jen; Chiu, Ming-Yi; Chou, Chi-Chun; Liao, Bor-Wu; Young, Tai-Horng

    2010-03-01

    It is well known that biomaterials play an important role in the regulation of adhesion and growth of a variety of cultured cell types. However, whether biomaterials are associated with the senescence of cultured cells is not known. The present work shows that the decrease of the hydrophobic property of poly (ethylene-co-vinyl alcohol) (EVAL) from 44 mole% to 27 mole% ethylene could induce characteristic senescence-associated phenotypic changes such as larger cell shape, re-organized actin cytoskeleton, lower proliferation capacity, higher levels of senescence-associated beta-galactosidase (SA beta-gal) activity, and upregulation of the cell-cycle inhibitor p53 and its transcriptional target p21 in the cultured human diploid fibroblasts (HDFs). Furthermore, it was found that the cultured cells recovered their ability to grow when the substrate was reused every passage. It seemed that the extracellular matrix (ECM) proteins adsorbed onto the EVAL surface might have a protective role in the cellular aging process. Therefore, whether a biomaterial strongly influences cellular aging process must be considered in the selection of a biomaterial for the biomedical application.

  9. Effect of photografting 2-hydroxyethyl acrylate on the hemocompatibility of electrospun poly(ethylene-co-vinyl alcohol) fibroporous mats.

    PubMed

    Mayuri, P V; Bhatt, Anugya; Joseph, Roy; Ramesh, P

    2016-03-01

    Poly(ethylene-co-vinyl alcohol) (EVAL) has been recommended as a material suitable for blood contacting applications. Effect of ethylene content and associated hydrophobicity of EVAL on the blood-material interactions have been documented in the literature. In this work, surface chemistry of EVAL substrate was altered by photografting a hydrophilic monomer, 2-hydroxyethyl acrylate (HEA) with the aid of a photoinitiator, benzophenone (BP), and the effect of surface modification on the blood-material interactions was investigated. Since the modified material was intended to be used as leukodepletion filters, a solution containing EVAL, HEA and BP was electrospun into fibroporous mats and UV treated to induce grafting. Degree of grafting, bonding between fibers and fiber diameter increased with increase in UV exposure time whereas mechanical properties showed a decreasing trend. Decreased water contact angle indicated improved wetting characteristics. In vitro hemocompatibility tests revealed that the modified EVAL surface exhibited significantly lower hemolytic activity, protein adsorption and platelet adhesion than neat EVAL. The modification did not have any substantial effect on the activation of the complement system and coagulation parameters. Photografting led to significant reduction in the adhesion of red blood cells (RBC) whereas white blood cell (WBC) consumption remained above 90%. The results implied that photografting HEA on EVAL substantially improves hemocompatibility of EVAL and when it is used as a filter, it selectively removes leukocytes and allows easy passage of other blood components. PMID:26706502

  10. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers. PMID:26900879

  11. Recycled Poly(vinyl alcohol) Sponge for Carbon Encapsulation of Size-Tunable Tin Dioxide Nanocrystalline Composites.

    PubMed

    Ma, Yue; Tai, Cheuk-Wai; Gustafsson, Torbjörn; Edström, Kristina

    2015-06-22

    The recycling of industrial materials could reduce their environmental impact and waste haulage fees and result in sustainable manufacturing. In this work, commercial poly(vinyl alcohol) (PVA) sponges are recycled into a macroporous carbon matrix to encapsulate size-tunable SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) through a scalable, flash-combustion method. The hydroxyl groups present copiously in the recycled PVA sponges guarantee a uniform chemical coupling with a tin(IV) citrate complex through intermolecular hydrogen bonds. Then, a scalable, ultrafast combustion process (30 s) carbonizes the PVA sponge into a 3D carbon matrix. This PVA-sponge-derived carbon could not only buffer the volume fluctuations upon the Li-Sn alloying and dealloying processes but also afford a mixed conductive network, that is, a continuous carbon framework for electrical transport and macropores for facile electrolyte percolation. The best-performing electrode based on this composite delivers a rate performance up to 9.72 C (4 A g(-1) ) and long-term cyclability (500 cycles) for Li(+) ion storage. Moreover, cyclic voltammograms demonstrate the coexistence of alloying and dealloying processes and non-diffusion-controlled pseudocapacitive behavior, which collectively contribute to the high-rate Li(+) ion storage.

  12. Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO2 Fixing

    DOE PAGES

    Barkakaty, Balaka; Browning, Katie L.; Sumpter, Bobby; Uhrig, David; Karpisova, Ivana; Harman, Kevin W.; Ivanov, Ilia; Hensley, Dale K.; Messman, Jamie M.; Kilbey, S. Michael; et al

    2016-02-12

    Development of novel polymeric materials capable of efficient CO2 capture and separation under ambient conditions is crucial for cost-effective and practical industrial applications. Here we report the facile synthesis of a new CO2-responsive polymer through post-polymerization modification of poly(2 vinyl-4,4-dimethylazlactone) (PVDMA). The reactive pendant azlactone groups of PVDMA are easily modified with 4-(N-methyltetrahydropyrimidine) benzyl alcohol (PBA) without any by-product formation. FTIR and TGA experiments show the new PBA functionalized polymer powder can reversibly capture CO2 at room temperature and under atmospheric pressure. CO2 capture was selective, showing a high fixing efficiency even with a mixed gas system (20% CO2, 80%more » N2) similar to flue gas. CO2 release occurred at room temperature and release profiles were investigated as a function of temperature. Density Functional Theory (DFT) calculations coupled with modeling and simulation reveal the presence of two CO2 binding sites in the PBA functionalized polymer resulting in a two-step CO2 release at room temperature. Finally, we find that the ease of material preparation, high fixing efficiency, and robust release characteristics suggest that post-polymerization modification may be a useful route to designing new materials for CO2 capture.« less

  13. Pressure-Induced Reentrant Phase Behavior in the Poly(N- vinyl-2-pyrrolidone)-Water System

    NASA Astrophysics Data System (ADS)

    Sun, T.; King, H. E., Jr.

    1996-03-01

    Water is an unusual solvent, and the role of hydrogen bonding in solvation has been explored for years through use of chemical denaturation agents. Pressure denaturation can be even more informative. One significant advantage is its reversibility. Non-ionic polymers in water, similar to protein molecules, reflect the hydrogen bonding through changes in conformation under the influence of changing pressure. We explore this through phase separation and dynamic light scattering experiments performed on aqueous solutions of poly(N-vinyl-2-pyrrolidone). A re-entrant phase behavior was discovered, in which phase separation occurs both at high and low T at any given pressure. Through light scattering experiments we show that this unusual behavior arises from a pressure-induced decline in solvation as pressure is increased up to a critical pressure. Further evidence for the importance of hydrogen bonding is seen at high concentrations, where polymer-polymer interactions are important. Inter-chain hydrogen bonding produces aggregation, and pressure denaturation causes a completely reversible suppression of these aggregates.

  14. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering.

    PubMed

    Wiria, Florencia Edith; Chua, Chee Kai; Leong, Kah Fai; Quah, Zai Yan; Chandrasekaran, Margam; Lee, Mun Wai

    2008-03-01

    In scaffold guided tissue engineering (TE), temporary three-dimensional scaffolds are essential to guide and support cell proliferation. Selective Laser Sintering (SLS) is studied for the development of such scaffolds by eliminating pore spatial control problems faced in conventional scaffolds fabrication methods. SLS offers good user control over the scaffold's microstructures by adjusting its main processing parameters, namely the laser power, scan speed and part bed temperature. This research focuses on the improvements in the fabrication of TE scaffolds using SLS with powder biomaterials, namely hydroxyapatite (HA) and poly(vinyl alcohol) (PVA). Grinding of as-received PVA powder to varying particle sizes and two methods of mixing are investigated as the preparation process to determine a better mixing method that would enhance the mixture homogeneity. Suitable sintering conditions for the improved biocomposite are then achieved by varying the important process parameters such as laser power, scan speed and part bed temperature.SLS fabricated samples are characterized using Fourier Transform Infrared Spectrometer (FTIR) and Scanning Electron Microscope (SEM). FTIR results show that the grinding and sintering processes neither compromise the chemical composition of the PVA nor cause undue degradation. Visual analysis of the grinding, powder mixing and sintering effect are carried out with SEM. The SEM observations show improvements in the sintering effects. The favorable outcome ascertains PVA/HA biocomposite as a suitable material to be processed by SLS for TE scaffolds. PMID:17665112

  15. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    PubMed

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. PMID:27561532

  16. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers.

    PubMed

    Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I

    2015-09-14

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes. PMID:26258729

  17. A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride).

    PubMed

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen

    2016-09-01

    In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu2O, CuO, and SnO2 were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu(0)→Cu(+)→Cu(2+)) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu(+) and Cu(2+). After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs. PMID:27179704

  18. Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly(vinyl alcohol) Films

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Saleem, Salwan A.

    2016-11-01

    Polymer nanocomposite films based on poly(vinyl alcohol) (PVA) containing copper sulfide nanoparticles (CuS) were prepared using in situ chemical reduction and casting techniques. The synthesized nanocomposites were analyzed using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope, and ultraviolet-visible spectroscopy. The XRD pattern reveals that the CuS nanoparticles incorporated in the PVA showed a crystalline nature. The observed FTIR band shifts indicate the intermolecular interaction between the CuS nanoparticles and the PVA matrix. The absorbance of nanocomposite samples increased with increasing CuS concentration. The optical band gap energy was estimated using Tauc's formula and it decreased with increasing dopant concentration. The conductivity and dielectric behavior of the samples were studied over the frequency range of 300 Hz to 1 MHz in the temperature range of 30-110°C. The ac conductivity was found to increase with the increase of dopant concentration as well as frequency. Moreover, the variation of frequency exponent ( s) indicated that the conduction mechanism was the correlated barrier hopping model. The experimental results reveal that the optical and electrical performance of PVA can be enhanced dramatically by the addition of a small amount of CuS nanoparticles. This improved properties of the PVA/CuS nanocomposite suggest uses in optoelectronic devices.

  19. Electrical Conductivity Study of Polymer Electrolyte Magnetic Nanocomposite Based Poly(Vinyl) Alcohol (PVA) Doping Lithium and Nickel Salt

    NASA Astrophysics Data System (ADS)

    Aji, Mahardika Prasetya; Rahmawati, Silvia, Bijaksana, Satria; Khairurrijal, Abdullah, Mikrajuddin

    2010-10-01

    Composite polymer electrolyte magnetic systems composed of poly(vinyl) alcohol (PVA) as the host polymer, lithium and nickel salt as dopant were studied. The effect upon addition of lithium ions in polimer PVA had been enhanced conductivity with the increase of lithium concentration. The conductivity values were 1.19x10-6, 1.25x10-5, 4.89x-5, 1.88x10-4, and 1.33x10-3 Sṡcm-1 for pure PVA and 1%, 3%, 5% and 7% LiOH complexed PVA, respectively. Meanwhile, the addition nickel salt into polymer electrolyte PVA-LiOH does not significantly change of conductivity value, on order 10-3 Sṡcm-1. The ionic transport is dominantly regarded by Li+ ions present in polymer electrolyte magnetic because the atomic mass Li+ is smaller than Ni2+. The absence of external magnetic field in polimer electrolyte magnetic causes the existence Ni2+ ions not significantly affected of conductivity.

  20. A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly (vinyl benzyl chloride) composite membrane for intermediate temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Cao, Yuan-Cheng; Xu, Chenxi; Zou, Linling; Scott, Keith; Liu, Jiyan

    2015-10-01

    A composite material for phosphoric acid (PA) loaded membrane was prepared using a porous polytetrafluoroethylene (PTFE) thin film. N, N-Dimethylhexadecylamine partially quaternized poly (vinyl benzyl chloride) (qPVBzCl-) was synthesized as the substrate for the phosphoric acid loaded polymer membrane. SEM observation indicated that the pores were filled with the qPVBzCl-. The maximum PA loading level was calculated to be 4.67-5.12 per repeat unit on average. TGA results showed that resultant composite membrane was stable in the intermediate temperature from 100 °C to 200 °C. The composite membrane tensile stress was 56.23 MPa, and the Young's Modulus was 0.25 GPa, and the fractured elongation was 23%. The conductivity of the composite membrane after the PA addition (H3PO4@PTFE/qPVBzCl-) increased from 0.085 S cm-1 to 0.11 S cm-1 from 105 °C to 180 °C. The peak power density of the H2/O2 at 175 °C under low humidity condition (<1%) for H3PO4@PTFE/qPVBzCl- membranes was 360 mW cm-2.

  1. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  2. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends

    NASA Astrophysics Data System (ADS)

    Kowalonek, Jolanta; Kaczmarek, Halina; Dąbrowska, Aldona

    2010-10-01

    Poly(vinyl alcohol), pectin and their blends with different components ratio were exposed to low-temperature air plasma or high energy UV-irradiation ( λ = 254 nm) for the purpose of surface modification. The physico-chemical changes in surface properties have been studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. Surface free energy of polymeric films, its polar and dispersive components have been calculated by Owens-Wendt method. Moreover, the work of adhesion was estimated and the recovery of hydrophobic properties of modified films after storage have been also studied. The few seconds air-plasma treatment caused more effective surface modification than 5-6 h UV-irradiation. The observed changes were partially reversible, contrary to these caused by photo-modification. It was found that pectin/PVA (50:50) blend was characterised by larger susceptibility to plasma modification compared to pure pectin and pure PVA, whereas the photosensitivity to radiation of 254 nm wavelength was the lowest for this specimen in comparison to other studied samples.

  3. In situ fabricated platinum—poly(vinyl alcohol) nanocomposite thin film: a highly reusable ‘dip catalyst’ for hydrogenation

    NASA Astrophysics Data System (ADS)

    Divya Madhuri, U.; Kesava Rao, V.; Hariprasad, E.; Radhakrishnan, T. P.

    2016-04-01

    A simple protocol for the in situ generation of platinum nanoparticles in a poly(vinyl alcohol) (PVA) thin film is developed. Chloroplatinic acid as well as potassium platinum(II) chloride are used as precursors and the film is fabricated by spin coating followed by mild thermal annealing. The chemical process occurring inside the film, wherein the polymer itself acts as the reducing agent, is explored through different spectroscopy and microscopy techniques. The Pt–PVA film, <100 nm thick and containing ∼1 nm size Pt nanoparticles, is shown to be a highly efficient catalyst for the reduction of methylene blue using sodium borohydride. The ease of retrieval and reuse of the thin film is highlighted by the term ‘dip catalyst’. The reaction yield, kinetics and rate are reproducible through several reuses of the same catalyst film. Turnover number (TON = number of mols of product/number of mols of catalyst) and turnover frequency (TOF = TON/reaction time) are significantly higher than those reported earlier for this reaction using metal nanocatalysts. Utility of Pt–PVA film as an efficient catalyst for other hydrogenation reactions is demonstrated.

  4. In vitro investigation of the effect of plasticizers on the blood compatibility of medical grade plasticized poly (vinyl chloride).

    PubMed

    Zhong, Rui; Wang, Hong; Wu, Xia; Cao, Ye; He, Zeng; He, Yuliang; Liu, Jiaxin

    2013-08-01

    This paper reports the results of an in vitro investigation into the blood response of medical grade poly (vinyl chloride) (PVC), and two types of plasticized PVC in tubing or sheet form, with di-(2-ethylhexyl)phthalate (DEHP) and di(isononyl) cyclohexane-1,2-dicarboxylate (HEXAMOLL(®) DINCH) as plasticizer, were selected for assessment of complement activation, coagulation system and platelet activation. The results of the study show that not only the plasticizers at PVC surface have an influence on complement activation, but also the incubation condition such as incubation time and the diameter of PVC tubing. Under static status, C3a, C5a and SC5b-9 concentration in the blood were higher after contacting with PVC plasticized with DEHP (PVC1) than after contacting with PVC plasticized with DINCH (PVC2). However, under dynamic circulation, the results were totally converse, which may be due to smaller diameter and higher shear rate of PVC2. In addition, there was a significant increase of activated partial thrombin time (APTT) and decrease of FIX concentration after plasma contacting with the PVC tubing, which indicated that the intrinsic pathway may be impacted when blood contacted with PVC tubing. However, there was no significant difference of APTT, FIX concentration and CD62p expression rate between the two materials. Moreover, the migration in the DINCH system was considerably lower than for DEHP, which indicates that DINCH could be a promising alterative plasticizer of DEHP. PMID:23686353

  5. Effect of Copper Sulfide Nanoparticles on the Optical and Electrical Behavior of Poly(vinyl alcohol) Films

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Saleem, Salwan A.

    2016-07-01

    Polymer nanocomposite films based on poly(vinyl alcohol) (PVA) containing copper sulfide nanoparticles (CuS) were prepared using in situ chemical reduction and casting techniques. The synthesized nanocomposites were analyzed using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope, and ultraviolet-visible spectroscopy. The XRD pattern reveals that the CuS nanoparticles incorporated in the PVA showed a crystalline nature. The observed FTIR band shifts indicate the intermolecular interaction between the CuS nanoparticles and the PVA matrix. The absorbance of nanocomposite samples increased with increasing CuS concentration. The optical band gap energy was estimated using Tauc's formula and it decreased with increasing dopant concentration. The conductivity and dielectric behavior of the samples were studied over the frequency range of 300 Hz to 1 MHz in the temperature range of 30-110°C. The ac conductivity was found to increase with the increase of dopant concentration as well as frequency. Moreover, the variation of frequency exponent (s) indicated that the conduction mechanism was the correlated barrier hopping model. The experimental results reveal that the optical and electrical performance of PVA can be enhanced dramatically by the addition of a small amount of CuS nanoparticles. This improved properties of the PVA/CuS nanocomposite suggest uses in optoelectronic devices.

  6. Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)-A review

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Slawomir

    2014-09-01

    Nanogels are nanometer-scale two-component systems consisting of a permanent three-dimensional network of linked polymer chains, and molecules of a solvent filling the pores of this network. A number of synthetic routes have been developed for nanogels. One of them is based on intramolecular cross-linking of individual polymer chains and ionizing radiation is a suitable tool for initiation of this process. Poly(N-vinyl-2-pyrrolidone)-PVP-was one of the first polymers used to obtain intramolecularly cross-linked macromolecules using this method called preparative pulse radiolysis. This review summarizes radiation-based techniques used for synthesis of PVP-derived nanogels starting from preparative pulse radiolysis, through irradiation of thermally collapsed PVP and cross-linking in microemulsion up to formation of PVP based interpolymer complexes. In addition, possible practical applications of PVP-based nanogels have been presented mainly in the biomedical field. Nanogels functionalized with (3-N-aminopropyl)methacrylamide hydrochloride may serve for bioconjugation and drug transportation into the cells. Nanogels of interpolymer complexes are expected to be mucoadhesive and be able to bind cationic drugs electrostatically and non-polar drugs via solubilization in the hydrophobic cores.

  7. In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing.

    PubMed

    Sirousazar, Mohammad; Kokabi, Mehrdad; Hassan, Zuhair Muhammad

    2011-01-01

    In the present work, a nanocomposite hydrogel wound dressing was prepared on the basis of poly(vinyl alcohol) using organically-modified montmorillonite as nanoclay by the freezing-thawing cyclic method. In vivo assays were performed to evaluate its performance as an applicable wound dressing on animals. It showed an improved healing process for wounds covered by the prepared nanocomposite hydrogel compared with control wounds covered by sterile gauze. Significant improvements, such as better creation of moist surfaces on the wound with less scar formation, shorter duration of healing operation and better closing of the wound edges with enhanced tensile properties of the healed wound, i.e., tensile strength and elongation-at-break, were observed using the prepared nanocomposite hydrogel in comparison to the sterile gauze. An in vitro cytotoxic assay was also utilized to determine the biocompatibility of the prepared nanocomposite hydrogel. It showed that the prepared nanocomposite hydrogel is non-toxic and can be used as a biocompatible wound dressing in practical wound management. PMID:20566071

  8. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    PubMed

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  9. Consequences of poly(vinyl chloride) presence on the thermochemical process of lignocellulosic biomass in CO₂ by thermogravimetric analysis.

    PubMed

    He, Yao; Ma, Xiaoqian; Zeng, Guangbo

    2015-02-01

    The thermochemical processes of lignocellulosic biomass and its mixtures with poly(vinyl chloride) (PVC) fractions were investigated by thermogravimetric analysis in CO2 atmosphere. Superposition property was assumed to examine whether and/or to what extent interactions occurred during the mixture decomposition. Results showed that interactions existed, of which the intensities changed with reaction stage, heating rate and PVC quantity, and they actively behaved toward the decomposition in most cases. With PVC presence, lignocellulosic biomass turned from three-stage to four-stage decomposition process where the reactions occurred at lower temperatures with heightened intensity, especially in the first stage. The measured activation energies calculated by Ozawa-Flynn-Wall and Vyazovkin methods were of minor difference <5 kJ/mol, and comparing them between materials in each stage confirmed the results of interaction impact. This work provides a theoretical basis bringing about the possibilities of recycling CO2 into a reaction medium of thermo-treatment of lignocellulosic material with PVC contaminants.

  10. Research on a novel poly (vinyl alcohol)/lysine/vanillin wound dressing: Biocompatibility, bioactivity and antimicrobial activity.

    PubMed

    Zhou, Gang; A, Ruhan; Ge, Heng; Wang, Lin; Liu, Meili; Wang, Binbin; Su, Haisheng; Yan, Ming; Xi, Yuan; Fan, Yubo

    2014-12-01

    Burn wound dressings have played significant roles in daily clinical practice. An "ideal" burn wound dressing is non-adhesion, absorbency and antimicrobial activity. However, such a dressing is currently not available. A novel composite hydrogel was based on poly (vinyl alcohol) (PVA) containing lysine (Lys) and vanillin (V) using freezing-thawing method. The properties of this hydrogel were characterized by environmental scanning electron microscope (ESEM), attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR), tensile testing, differential scanning calorimetry (DSC) and water vapour transmission rate (WVTR). Then the antibacterial activity of PVA/Lys/V composite hydrogel was examined by bacteriolytic plate. In vivo experiment, a burn rat model was used to evaluate the histological analysis of this hydrogel. In results, the Schiff base formed in the three-phase system. It improved the tensile strength and crystallization of the PVA/Lys/V composite hydrogel. Meanwhile, this hydrogel showed excellent bactericidal activities to both gram-negative bacteria (E. coli) and gram-positive bacteria (S. aureus) due to the Schiff base. And the antibacterial activity toward gram-negative bacteria was better than another. On Day 7, 95-100% of the surface areas of PVA/Lys/V composite treated burns were covered with regenerating epidermis. And the new tissue and capillary vessel formed around the wounds after treatment. Therefore, it is suggested that treatment with PVA/Lys/V composite hydrogel will be effective also in patients with burns and other skin wounds. PMID:24953436

  11. Structure, corrosion behavior and mechanical property of a novel poly(vinyl alcohol) composite in simulated body fluid.

    PubMed

    Li, Juan; Suo, Jinping; Zou, Peng; Jia, Lintao; Wang, Shifang

    2010-01-01

    The data for long-term drug-delivery systems are scarce compared to the short-term systems because the required research efforts are more time-consuming. In this study, we report a novel cross-linked composite based on poly(vinyl alcohol) (PVA) containing cupric ions for long-term delivery, which is helpful for contraception and trace element balance in the human body. The composition, corrosion products, crystal structure, chemical structure and mechanical stability of the composite, after being immersed in simulated body fluid (SBF) for one year, were studied by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR) and mechanical testing. The results show that no other new elements, such as P, Cl and Ca, appear on the surface of the composite and no Cu(2)O was formed after immersion in SBF for one year. The effectiveness of copper can be greatly improved and the side-effects caused by these compounds might also be eliminated. Furthermore, this novel composite exhibits long-term mechanical stability in SBF. The present in vitro long-term data suggest that this novel copper-containing composite may serve as a substitute for conventional materials of copper-containing intrauterine devices (Cu-IUDs) and as a carrier for controlled-release material in a variety of other applications.

  12. A novel reutilization method for waste printed circuit boards as flame retardant and smoke suppressant for poly (vinyl chloride).

    PubMed

    Xiu, Fu-Rong; Weng, Huiwei; Qi, Yingying; Yu, Gending; Zhang, Zhigang; Zhang, Fu-Shen

    2016-09-01

    In this study, a novel reutilization method for waste printed circuit boards (PCBs) as flame retardant and smoke suppressant for poly (vinyl chloride) (PVC) was successfully testified. A supercritical water oxidation (SCWO) process was applied to treat waste PCBs before they could be used as flame retardants of PVC. The results indicated that SCWO conditions had a significant effect on the flame retarding and smoke suppressing properties of waste PCBs for PVC. Cu2O, CuO, and SnO2 were the main active ingredients in waste PCBs-derived flame retardants. A conversion of Cu elements (Cu(0)→Cu(+)→Cu(2+)) during SCWO process with the increase of reaction temperature was found to be the key influence factor for the flame retarding properties of SCWO-treated PCBs. The experiment results also showed that there was a synergistic effect of flame retardancy between Cu(+) and Cu(2+). After the optimized SCWO treatment, SCWO-treated PCBs significantly improved the flame retardancy and smoke suppression of PVC. Limiting oxygen index (LOI) and char yield (CY) increased with increasing SCWO-treated PCBs content in PVC, while smoke density rating (SDR) and maximum smoke density (MSD) decreased markedly. The mechanical properties of PVC samples were influenced in different degree by adding different content SCWO-treated PCBs.

  13. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.

    PubMed

    Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei

    2015-05-01

    Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness.

  14. Borax mediated layer-by-layer self-assembly of neutral poly(vinyl alcohol) and chitosan.

    PubMed

    Manna, Uttam; Patil, Satish

    2009-07-01

    We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be cross-linked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance, scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film on flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 microm) to quantify the process for the preparation of hollow microcapsules. Removal of the core in 0.1 N HCl results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH values to highlight the drug delivery potential of this system.

  15. Photostabilizing Efficiency of Poly(vinyl chloride) in the Presence of Organotin(IV) Complexes as Photostabilizers.

    PubMed

    Ali, Mustafa M; El-Hiti, Gamal A; Yousif, Emad

    2016-01-01

    Three organotin complexes containing furosemide as a ligand (L), Ph₃SnL, Me₂SnL₂ and Bu₂SnL₂, were synthesized and characterized. Octahedral geometry was proposed for the Me₂SnL₂ and Bu₂SnL₂, while the Ph₃SnL complex has trigonal bipyramid geometry. The synthesized organotin complexes (0.5% by weight) were used as additives to improve the photostability of poly(vinyl chloride), PVC, (40 μm thickness) upon irradiation. The changes imposed on functional groups, weight loss and viscosity average molecular weight of PVC films were monitored. The experimental results show that the rate of photodegradation was reduced in the presence of the organotin additives. The quantum yield of the chain scission was found to be low (9.8 × 10(-7)) when Ph₃SnL was used as a PVC photostabilizer compared to controlled PVC (5.18 × 10(-6)). In addition, the atomic force microscope images for the PVC films containing Ph₃SnL₂ after irradiation shows a smooth surface compared to the controlled films. The rate of PVC photostabilization was found to be highest for Ph₃SnL followed by Bu₂SnL₂ and Me₂SnL₂. It has been suggested that the organotin complexes could act as hydrogen chloride scavengers, ultraviolet absorbers, peroxide decomposers and/or radical scavengers. PMID:27589707

  16. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  17. Improvement of bioethanol productivity of immobilized Saccharomyces bayanus with using sodium alginate-graft-poly(N-vinyl-2-pyrrolidone) matrix.

    PubMed

    İnal, Murat; Yiğitoğlu, Mustafa

    2012-09-01

    In this study, immobilization conditions and bioethanol production characteristics of immobilized Saccharomyces bayanus were investigated into sodium alginate-graft-poly(N-vinyl-2-pyrrolidone; NaAlg-g-PVP) matrix. The matrix that crosslinked with calcium clorid was used for immobilization of S. bayanus. Bioethanol productivity of the NaAlg-g-PVP matrix was found to increase from 4.21 to 4.84 gL(-1) h(-1) when compared with the convential sodium alginate matrix. The production of bioethanol was affected by initial glucose concentration and percentage of immobilized cell beads in fermentation medium. Bioethanol productivity was increased from 3.62 to 4.84 gL(-1) h(-1) while the glucose concentration increasing from 50 to 100 gL(-1). Due to the increase in percentage from 10 to 20 % of immobilized cell beads in the fermentation medium, bioethanol productivity was increased from 4.84 to 8.68 gL(-1) h(-1). The cell immobilized NaAlg-g-PVP beads were protected 92 % of initial activity after six repeated fermentation.

  18. Physical characteristics of poly(vinyl alcohol) and calcium alginate hydrogels for the immobilization of activated sludge.

    PubMed

    Doria-Serrano, M C; Ruiz-Treviño, F A; Rios-Arciga, C; Hernández-Esparza, M; Santiago, P

    2001-01-01

    Hydrogels based on poly(vinyl alcohol), PVA, and calcium alginate were prepared by a freezing and thawing cycle process and characterized, in terms of the role of the polymer mixture percentage and the number of treatment cycles, on their weight swelling ratio, WSR, gel fraction, and activated sludge entrapment and immobilization. The results show that the morphology of these hydrogels is highly dependent on the PVA-Ca alginate ratio of 5 wt % total polymer content in the initial aqueous solution and that the number of entrapped microorganisms which survive the freezing-thawing procedure is independent of this ratio. For 80/20 PVA-Ca alginate hydrogels, results also show that for up to three freezing and thawing cycles, the WSR, which is in average 24, is not severely affected by the number of the cycles. For the hydrogels with three cycles, the calculated gel fraction for the composite hydrogel is 0.99. Immobilized microorganisms from sedimented activated sludge, constituted by bacteria and fungi, die in high numbers during the freezing and thawing treatment. However, with a proper time of incubation with glucose as carbon source, the population of bacteria is recovered and mainly proliferate inside the hydrogel, attached on top of the fibril network formed by the polymers, while fungi are recovered predominantly on the surface of the spheres.

  19. Glutaraldehyde-chitosan and poly (vinyl alcohol) blends, and fluorescence of their nano-silica composite films.

    PubMed

    Hu, Huawen; Xin, John H; Hu, Hong; Chan, Allan; He, Liang

    2013-01-01

    In this study, a commercial chitosan cross-linked with glutaraldehyde (GA-chitosan) having the autofluorescent property was effectively blended with a poly (vinyl alcohol) (PVA) matrix, in the formation of a transparent and fluorescent blend film. The fluorescent efficiency of the film was enhanced with red-shifted emission band by increasing the concentrations of the GA-chitosan and decreasing the PVA crystallinity. It was found that the incorporation of silica nanoparticles could further decrease the PVA crystallinity, enhance the fluorescent efficiency, and largely redshift the emission band, as compared with the neat GA-chitosan-PVA blend film. This fluorescent property could be finely tuned by careful doping of the silica nanoparticles and change of the PVA crystallinity. These phenomena could be reasonably explained by high extent of isolation of the fluorophores, increase of the stiffness of the fluorescent conjugated planar structure, and further decrease of the PVA crystallinity. In addition, the introduction of the nano-silica could improve the water and heat resistances of the GA-chitosan-PVA based silica nanocomposites. PMID:23044137

  20. Mechanism of gas permeation through polymer membranes. Part I. Pure gases. Comprehensive progress report. [Polybutadiene, poly(vinyl acetate), poly(methyl acrylate)

    SciTech Connect

    Stern, S.A.; Kulkarni, S.S.; Mauze, G.R.

    1982-07-01

    The objective of this study is to assess the validity of a free-volume model of gas permeation through nonporous polymer membranes. This model provides a formalism for the prediction of permeability coefficients for pure gaseous penetrants and their mixtures as a function of both pressure and temperature. Such information is of great importance for the development of new, energy-efficient membrane processes for the separation of gas mixtures. Diffusion and solubility coefficients for Ar, CO/sub 2/, CH/sub 4/, C/sub 2/H/sub 4/, C/sub 3/H/sub 8/, and SF/sub 6/ in polyethylene membranes and rods have been measured in the temperature range from 5/sup 0/ to 50/sup 0/C and at pressures up to 40 atm. under isothermal-isobaric conditions. It was found that the dependence of the diffusion and permeability coefficients on penetrant gas pressure and on temperature is satisfactorily represented by Fujita's free-volume model for the transport of small molecules in polymers and by its extension to gas permeation. The free-volume model of gas permeation relates permeability coefficients for gases in polymers to three thermodynamic variables, namely, temperature, pressure, and penetrant concentration, and to three characteristic parameters denoted A/sub d/, B/sub d/, and ..gamma... Semi-empirical correlations were developed for these parameters as a function of physicochemical properties of the penetrant and the polymer. These correlations were obeyed by the gas-polyethylene systems studied in the present work. A generalized correlation was found for B/sub d/ values of penetrants of various molecular sizes in polyethylene, polybutadiene, poly(vinyl acetate), poly(methyl acrylate), silicone rubber, and natural rubber.

  1. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine. PMID:26706517

  2. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine.

  3. Reactive extrusion of epsilon-caprolactone polymers and application of poly(lauryl lactam-b-caprolactone) as a compatibilizing agent in blends containing poly(vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Kim, Byong Jun

    In this dissertation, we investigate the continuous polymerization of epsilon-caprolactone (CL) and copolymerization of CL with epsilon-caprolactam (CA), o-lauryl lactam (LA), and styrene (ST) in a modular intermeshing co-rotating twin screw extruder. We consider the variables of temperature profile, screw speed, monomer feed rate, the ratio of monomer to initiator, and feeding order of co-monomers on reactive extrusion of CL polymers. Associated with the reactive extrusion of CL, we also perform the engineering analysis of molecular weight increase and shear-induced molecular weight reduction after polymerization of CL during the reactive extrusion process. Specially designed block copolymers have played a role as compatibilizing agents in the system of immiscible polymer blends. We apply the LA-CL block copolymer (P(LA-b-CL)) produced by reactive extrusion as a compatibilizing agent in immiscible polymer blend systems: (i) poly(vinyl chloride) (PVC)/polyamide 12(PA12), (ii) PVC/polypropylene (PP), and (iii) PVC/maleic anhydride (MA)-modified ethylene-propylene-non-conjugated diene elastomer (MA-EPDM). We investigate the mechanical and thermal properties of (i) PVC/PA12 blend compatibilized with P(LA-b-CL), (ii) PVC/PP blend compatibilized with P(LA-b-CL)/PA12/MA-PP, and (iii) PVC/MA-EPDM blend compatibilized with P(LA-b-CL)/PA12.

  4. Discoloration of poly(vinyl butyral) in cells exposed to real and simulated solar environments

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Shumka, A.

    1984-01-01

    The discoloration of poly(vinl butyral) (PVB) films used in solar cell modules is described. Transmission absorption, Fourier transformation IR absorption and atomic absorption spectroscopy as well as scanning electron microscopy were used for this study. The discoloration of the PVB has been found to be affected by oxygen, moisture, temperature and light. However, the most severe discoloration observed is clearly associated with the migration of positive silver ions, which can be accelerated in the presence of electric fields. The metallization is the source of the silver, and the data are consistent with an interfacial reaction between the silver and PVB followed by transport into the polymer.

  5. catena-Poly[[[iodidocopper(I)]-{μ-N-[(pyridin-2-yl-κN)methyl-idene]pyridin-3-amine-κ(2)N(3):N(1)}] acetonitrile hemisolvate].

    PubMed

    Mahmoudi, Ali; Dehghanpour, Saeed; Babakhodaverdi, Mojtaba

    2012-10-01

    In the asymmetric unit of the title polymeric complex, {[CuI(C(11)H(9)N(3))]·0.5CH(3)CN}(n), there are two Cu(I) atoms, two N-[(pyridin-2-yl-κN)methyl-idene]pyridin-3-amine (PyPy) ligands and two I atoms. Both Cu(I) atoms have a distorted tetra-hedral geometry, each being coordinated by one I atom, two N atoms of one PyPy ligand and one N atom from an adjacent PyPy ligand. In the crystal, infinite helical chains of [Cu(2)(PyPy)(2)](n) are formed propagating along the b axis. These chains are linked via weak C-H⋯I hydrogen bonds and π-π stacking inter-actions [shortest centroid-centroid distance = 3.2727 (14) Å]. During the refinement, electron-density peaks were located that were believed to be highly disordered solvent mol-ecules (possibly acetonitrile). The SQUEEZE option in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155] indicated there were solvent cavities with a total volume of 196 Å(3) containing approximately 60 electrons per unit cell, which equated to one mol-ecule of acetonitrile per asymmetric unit. PMID:23125600

  6. Effect of poly(vinyl alcohol-co-vinyl acetate) copolymer blockiness on the dynamic interfacial tension and dilational viscoelasticity of polymer-anionic surfactant complex at the water-1-chlorobutane interface.

    PubMed

    Atanase, Leonard Ionut; Bistac, Sophie; Riess, Gérard

    2015-04-01

    Poly(vinyl alcohol-co-vinyl acetate) (PVA) copolymers obtained by partial hydrolysis of poly(vinyl acetate) (PVAc) are of practical importance for many applications, including emulsion and suspension polymerization processes. Their molecular characteristics have a major influence on the colloidal and interfacial properties. The most significant characteristics are represented by the average degree of hydrolysis D̅H̅, average degree of polymerization D̅P̅w̅ but also by the average acetate sequence length n(VAc)(0) which designates the so-called blockiness. Colloidal aggregates were observed in the aqueous PVA solutions having a D̅H̅ value of 73 mol%. The volume fraction of these aggregates at a given D̅H̅ value is directly correlated to the blockiness. Three PVA samples with identical D̅H̅ and D̅P̅w̅ but different blockiness were examined. By pendant drop and oscillating pendant drop techniques it was shown that the PVA sample having the lowest blockiness and thus the lowest volume fraction of colloidal aggregates has lower interfacial tension and elastic modulus E' values. On the contrary, the corresponding values are highest for PVA sample of higher blockiness. In the presence of sodium dodecyl sulfate (SDS), the colloidal aggregates are disaggregated by complex formation due to the hydrophobic-hydrophobic interactions. The PVA-SDS complex acts as a partial polyelectrolyte that induces the stretching of the chains and thus a reduction of the interface thickness. In this case, the interfacial tension and the elastic modulus both increase with increasing SDS concentration for all three PVA samples and the most significant effect was noticed for the most "blocky" copolymer sample.

  7. Synthesis and pharmacokinetic behaviour of ester derivatives of 4-isobutylphenyl-2-propionic acid (Ibuprofen) with end-hydroxylated poly(N-vinyl pyrrolidinone) and poly(N-acryloyl morpholine) oligomers.

    PubMed

    Sartore, L; Peroni, I; Ferruti, P; Latini, R; Bernasconi, R

    1997-01-01

    Four derivatives of 4-isobutylphenyl-2-propionic acid (Ibuprofen), in which the drug was bound by ester linkages to poly(ethylene glycols) (PEG 2000-I), monomethoxy poly(ethylene glycols) (PEG 1900-I), poly(N-vinyl pyrrolidinone) (PVP-I) and poly(N-acryloyl morpholine) (PACM-I), all having approximatively the same number average molecular weight (Mn congruent equal to 2000), were prepared and tested for their pharmacokinetic properties after oral administration. It was found that the two end-hydroxylated amphiphilic oligomers of polyvinylic structure, PACM and PVP, whose physico-chemical properties are comparable to those of PEGs especially as regards solvent affinity, have in principle a similar potential as promoieties for preparing oligomeric prodrugs.

  8. Bioinspired design and macroscopic assembly of poly(vinyl alcohol)-coated graphene into kilometers-long fibers

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Gao, Chao

    2013-05-01

    Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers have a strict ``brick and mortar'' layered structure, with graphene sheet as rigid brick and PVA as soft mortar. The mortar thickness can be precisely tuned from 2.01 to 3.31 nm by the weight feed ratio of PVA to graphene, as demonstrated by both atomic force microscopy and X-ray diffraction measurements. The mechanical strength of the nacre-mimicking fibers increases with increasing the content of PVA, and it rises gradually from 81 MPa for the fiber with 53.1 wt% PVA to 161 MPa for the fiber with 65.8 wt% PVA. The mechanical performance of our fibers was independent of the molecular weight (MW) of PVA in the wide range of 2-100 kDa, indicating that low MW polymers can also be used to make strong nanocomposites. The tensile stress of fibers immersed in PVA 5 wt% solution reached ca. 200 MPa, surpassing the values of nacre and most of other nacre-mimicking materials. The nacre-mimicking fibers are highly electrically conductive (~350 S m-1) after immersing in hydroiodic acid, enabling them to connect a circuit to illuminate an LED lamp.Nacre is characterized by its excellent mechanical performance due to the well-recognized ``brick and mortar'' structure. Many efforts have been applied to make nacre-mimicking materials, but it is still a big challenge to realize their continuous production. Here, we prepared sandwich-like building blocks of poly(vinyl alcohol) (PVA)-coated graphene, and achieved high-nanofiller-content kilometers-long fibers by continuous wet-spinning assembly technology. The fibers

  9. Coated-wire electrodes containing polymer immobilized ionophores blended with poly(vinyl chloride).

    PubMed

    Cross, G G; Fyles, T M; Suresh, V V

    1994-09-01

    Polymers containing covalently attached 18-crown-6 or 2.2.2 cryptand units were incorporated into plasticized PVC membranes and the composite membranes were examined as potassium ion sensor elements. Ionophores were linked to carboxy-PVC and to poly(acrylic acid) via amide linkages to an alkyl spacer unit. Coated-wire electrodes (CWEs) from the immobilized ionophores gave acceptable responses, but conventional ion-selective membrane electrodes (ISEs) prepared by solvent casting were inactive. Dip-cast membranes did give active ISEs. Potassium electrode performance was independent of the loading of the ionophore within the acrylate support polymer, but depended upon the spacer length. Ion selectivity varied with the ionophore loading within the support polymer. Selectivity is a composite of the ionophore selectivity and ion-exchange interactions with the acrylate backbone, giving selectivities akin to carboxylate substituted crown ethers, notably enhanced monovalent/divalent ion discrimination relative to the ionophore in solution. Polymer immobilization extended the lifetime of active electrodes. PMID:18966107

  10. Translucent poly(vinyl alcohol) cryogel dosimeters for simultaneous dose buildup and monitoring during chest wall radiation therapy.

    PubMed

    Eyadeh, Molham M; Weston, Mark A; Juhasz, Janos; Diamond, Kevin R

    2016-01-01

    Chest wall radiation therapy treatment delivery was monitored using a 5 mm thick radiochromic poly(vinyl alcohol) cryogel that also provided buildup material. The cryogels were used to detect positioning errors and measure the impact of shifts for a chest wall treatment that was delivered to a RANDO phantom. The phantom was shifted by ± 2, ± 3, and ± 5 mm from the planned position in the anterior/posterior (A/P) direction; these shifts represent setup errors and the uncertainty associated with lung filling during breath-hold. The two-dimensional absolute dose distributions measured in the cryogel at the planned position were compared with the distributions at all shifts from this position using gamma analysis (3%/3 mm, 10% threshold). For shifts of ± 2, ± 3, and ± 5 mm the passing rates ranged from 94.3% to 95.6%, 74.0% to 78.8%, and 17.5% to 22.5%, respectively. These results are consistent with the same gamma analysis performed on dose planes calculated in the middle of the cryogel and on the phantom surface using our treatment plan-ning system, which ranged from 94.3% to 95.0%, 76.8% to 77.9%, and 23.5% to 24.3%, respectively. The Pinnacle dose planes were then scaled empirically and compared to the cryogel measurements. Using the same gamma metric, the pass rates ranged from 97.0% to 98.4%. The results of this study suggest that cryogels may be used as both a buildup material and to evaluate errors in chest wall treat-ment positioning during deep-inspiration breath-hold delivery. The cryogels are sensitive to A/P chest wall shifts of less than 3 mm, which potentially allows for the detection of clinically relevant errors. PMID:27685110

  11. Morphological, dielectric and electrical conductivity characteristics of clay-containing nanohybrids of poly(N-vinyl carbazole) and polypyrrole.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda; Ray, Suprakas Sinha

    2012-10-01

    Poly(N-vinyl carbazole) (PNVC) and polypyrrole (PPY)-montmorillonite (MMT) clay hybrids were prepared by mechanical grinding of the respective monomers with MMT followed by subsequent standard processing methods. Fourier transform infrared spectroscopic studies confirmed the inclusion of the polymers in the composites. The morphologies of the hybrids were investigated by transmission electron microscopic techniques, which suggested the formation of intercalated structures. X-ray diffraction analyses indicated the enhancement of 'd001' values in MMT implying intercalation of the polymers into the nano-interlamellar spaces of MMT. The dielectric constants of PNVC-MMT hybrids were improved (60-180) relative to the homopolymer (3-6) in the frequency range 0.1-25 kHz. PPY-MMT hybrid also showed significantly higher values of dielectric constant (2000-4000) relative to the corresponding base polymers. These variations were dependent on the MMT/polymer feed ratio in the frequency range (1-25 kHz). This feature could manifest from the characteristic differences in the interfaces between the grains and grain boundaries of the composites, which control the dielectric properties of the system. Relaxation behavior for the composites was explained by considering the Maxwell-Wagner two-layered dielectric models. The ac conductivity was found to be dependent on frequency in the entire frequency range of study (100 Hz to 25 kHz), which indicated that the composites had few free charges for conduction, and frequency dependent conductivity was due to trapped charges in the grain boundary.

  12. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway.

    PubMed

    Li, Chen-wen; Wang, Qing; Li, Jing; Hu, Min; Shi, San-jun; Li, Zi-wei; Wu, Guo-lin; Cui, Huan-huan; Li, Yuan-yuan; Zhang, Qian; Yu, Xiu-heng; Lu, Lai-chun

    2016-01-01

    Wound healing occupies a remarkable place in everyday pathology and remains a challenging clinical problem. In our previous study, we prepared a silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNPs) nanofiber via electrospinning and revealed that it could promote wound healing; however, the healing mechanism remained unknown. Therefore, we aimed to clarify the mechanism underlying the accelerated healing effect of the PVA/COS-AgNPs nanofiber. The TGFβ1/Smad signaling pathway is actively involved in wound healing. Considering the key role of this signaling pathway in wound healing, our preliminary study showed that the TGFβ1 level was significantly increased during the early stage of wound healing. Thus, in this study, hematoxylin-eosin, Masson's trichrome, immunofluorescent staining, hydroxyproline content, quantitative real-time polymerase chain reaction, and Western blot analyses were used to analyze the wound healing in a rat model treated with gauze, the PVA/COS-AgNPs nanofiber, and the nanofiber plus SB431542 (an inhibitor of TGFβ1 receptor kinase). The results showed that the PVA/COS-AgNPs nanofiber promoted wound healing and upregulated the expression levels of cytokines associated with the TGFβ1/Smad signaling pathway such as TGFβ1, TGFβRI, TGFβRII, collagen I, collagen III, pSmad2, and pSmad3. Inhibiting this pathway with SB431542 resulted in prevention of the PVA/COS-AgNPs nanofiber-associated salutary effects on the early stage of wound healing and relative cytokines expression. In conclusion, the wound healing effect of the PVA/COS-AgNPs nanofiber involves activation of the TGFβ1/Smad signaling pathway.

  13. Hydrophobically-modified poly(vinyl pyrrolidone) as a physically-associative, shear-responsive ophthalmic hydrogel.

    PubMed

    Sheikholeslami, Paniz; Muirhead, Ben; Baek, David Sung Hyeon; Wang, Hai; Zhao, Xu; Sivakumaran, Daryl; Boyd, Shelley; Sheardown, Heather; Hoare, Todd

    2015-08-01

    The potential of hydrophobically-modified poly(vinyl pyrrolidone) as a shear-responsive, self-associative hydrogel for ophthalmic applications is demonstrated. Hydrophobic modification was achieved via random copolymerization of N-vinylpyrrolidone with N-vinylformamide, the latter of which can be hydrolyzed to expose a desired degree of reactive amine groups permitting grafting of alkyl chlorides of varying alkyl chain lengths. The resulting materials formed highly shear-responsive physical hydrogels, exhibiting tunable shear thinning over 4-5 decades of viscosity from infinite shear to zero shear conditions that facilitates lubrication upon blinking and/or facile injection or drop-based delivery to the anterior or posterior segments of the eye. Viscosity changes due to self-association over time can also be tuned by changing the length of the hydrophobe, with C18-grafted materials exhibiting prolonged thickening over several weeks to form extremely stiff hydrogels and shorter grafts equilibrating significantly faster but forming weaker gels. The hydrogels remained transparent even at very high polymer concentrations (20 wt%) and are demonstrated to facilitate controlled release of a model drug (doxorubicin). The polymers exhibit minimal cytotoxicity in vitro to human corneal epithelial cells and retinal pigment epithelial cells, particularly when lower molecular weight backbone polymers were used. In vivo assessments in rabbits indicated no significant conjunctival edema or redness, secretion, corneal opacity, or iris involvement upon anterior application. Following intravitreal injection in rat eyes, no opacification of the lens, cornea or vitreous, nor any morphological or functional change to the posterior segment was observed. Examination of wholemount tissues and histology demonstrated no adverse effect from the injection or deposition of material. As such, these shear-thinning materials offer potential for drug delivery in both the anterior and posterior

  14. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway

    PubMed Central

    Li, Chen-wen; Wang, Qing; Li, Jing; Hu, Min; Shi, San-jun; Li, Zi-wei; Wu, Guo-lin; Cui, Huan-huan; Li, Yuan-yuan; Zhang, Qian; Yu, Xiu-heng; Lu, Lai-chun

    2016-01-01

    Wound healing occupies a remarkable place in everyday pathology and remains a challenging clinical problem. In our previous study, we prepared a silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNPs) nanofiber via electrospinning and revealed that it could promote wound healing; however, the healing mechanism remained unknown. Therefore, we aimed to clarify the mechanism underlying the accelerated healing effect of the PVA/COS-AgNPs nanofiber. The TGFβ1/Smad signaling pathway is actively involved in wound healing. Considering the key role of this signaling pathway in wound healing, our preliminary study showed that the TGFβ1 level was significantly increased during the early stage of wound healing. Thus, in this study, hematoxylin–eosin, Masson’s trichrome, immunofluorescent staining, hydroxyproline content, quantitative real-time polymerase chain reaction, and Western blot analyses were used to analyze the wound healing in a rat model treated with gauze, the PVA/COS-AgNPs nanofiber, and the nanofiber plus SB431542 (an inhibitor of TGFβ1 receptor kinase). The results showed that the PVA/COS-AgNPs nanofiber promoted wound healing and upregulated the expression levels of cytokines associated with the TGFβ1/Smad signaling pathway such as TGFβ1, TGFβRI, TGFβRII, collagen I, collagen III, pSmad2, and pSmad3. Inhibiting this pathway with SB431542 resulted in prevention of the PVA/COS-AgNPs nanofiber-associated salutary effects on the early stage of wound healing and relative cytokines expression. In conclusion, the wound healing effect of the PVA/COS-AgNPs nanofiber involves activation of the TGFβ1/Smad signaling pathway. PMID:26855575

  15. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Radosavljević, Aleksandra; Šiljegović, Milorad; Bibić, Nataša; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2012-11-01

    Silver nanoparticles (AgNPs) were synthesized in situ by γ-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of˜6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of ˜10 nm and ˜20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV-vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, Eg, are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules.

  16. A Quantitative Analysis of the Role Played by Poly(vinyl pyrrolidone) in Seed-mediated Growth of Ag Nanocrystals

    PubMed Central

    Xia, Xiaohu; Zeng, Jie; Oetjen, L. Kyle; Li, Qingge; Xia, Younan

    2012-01-01

    This article presents a quantitative analysis of the role played by poly(vinyl pyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface; and ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm2 for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm2, respectively, when 100-nm Ag cubes were used as the seeds. PMID:22206387

  17. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    PubMed

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ < 2/3) from CS/PVA film could be well described by the Fickian diffusion equation. Owing to the positively charged nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient.

  18. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway.

    PubMed

    Li, Chen-wen; Wang, Qing; Li, Jing; Hu, Min; Shi, San-jun; Li, Zi-wei; Wu, Guo-lin; Cui, Huan-huan; Li, Yuan-yuan; Zhang, Qian; Yu, Xiu-heng; Lu, Lai-chun

    2016-01-01

    Wound healing occupies a remarkable place in everyday pathology and remains a challenging clinical problem. In our previous study, we prepared a silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) (PVA/COS-AgNPs) nanofiber via electrospinning and revealed that it could promote wound healing; however, the healing mechanism remained unknown. Therefore, we aimed to clarify the mechanism underlying the accelerated healing effect of the PVA/COS-AgNPs nanofiber. The TGFβ1/Smad signaling pathway is actively involved in wound healing. Considering the key role of this signaling pathway in wound healing, our preliminary study showed that the TGFβ1 level was significantly increased during the early stage of wound healing. Thus, in this study, hematoxylin-eosin, Masson's trichrome, immunofluorescent staining, hydroxyproline content, quantitative real-time polymerase chain reaction, and Western blot analyses were used to analyze the wound healing in a rat model treated with gauze, the PVA/COS-AgNPs nanofiber, and the nanofiber plus SB431542 (an inhibitor of TGFβ1 receptor kinase). The results showed that the PVA/COS-AgNPs nanofiber promoted wound healing and upregulated the expression levels of cytokines associated with the TGFβ1/Smad signaling pathway such as TGFβ1, TGFβRI, TGFβRII, collagen I, collagen III, pSmad2, and pSmad3. Inhibiting this pathway with SB431542 resulted in prevention of the PVA/COS-AgNPs nanofiber-associated salutary effects on the early stage of wound healing and relative cytokines expression. In conclusion, the wound healing effect of the PVA/COS-AgNPs nanofiber involves activation of the TGFβ1/Smad signaling pathway. PMID:26855575

  19. Time-resolving analysis of cryotropic gelation of water/poly(vinyl alcohol) solutions via small-angle neutron scattering.

    PubMed

    Auriemma, Finizia; De Rosa, Claudio; Ricciardi, Rosa; Lo Celso, Fabrizio; Triolo, Roberto; Pipich, Vitaly

    2008-01-24

    The structural transformations occurring in initially homogeneous aqueous solutions of poly(vinyl alcohol) (PVA) through application of freezing (-13 degrees C) and thawing (20 degrees C) cycles is investigated by time resolving small-angle neutron scattering (SANS). These measurements indicate that formation of gels of complex hierarchical structure arises from occurrence of different elementary processes, involving different length and time scales. The fastest process that could be detected by our measurements during the first cryotropic treatment consists of the crystallization of the solvent. However, solvent crystallization is incomplete, and an unfrozen liquid microphase more concentrated in PVA than the initial solution is also formed. Crystallization of PVA takes place inside the unfrozen liquid microphase and is slowed down because of formation of a microgel fraction. Water crystallization takes place in the early 10 min of the treatment of the solution at subzero temperatures, and although below 0 degrees C the PVA solutions used for preparation of cryogels should be below the spinodal curve, occurrence of liquid-liquid phase separation could not be detected in our experiments. Upon thawing, ice crystals melt, and transparent gels are obtained that become opaque in approximately 200 min, due to a slow and progressive increase of the size of microheterogeneities (dilute and dense regions) imprinted during the fast freezing by the crystallization of water. During the permanence of these gels at room temperature (for hours), the presence of a high content of water (higher than 85% by mass) prevents further crystallization of PVA. Crystallization of PVA, in turn, is resumed by freezing the gels at subzero temperatures, after water crystallization and consequent formation of an unfrozen microphase. The kinetic parameters of PVA crystallization during the permanence of these gels at subzero temperatures are the same shown by PVA during the first freezing step

  20. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  1. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.

    PubMed

    Wang, Jinrong; Qiao, Jinliang; Wang, Jianfeng; Zhu, Ying; Jiang, Lei

    2015-05-01

    Due to hierarchical organization of micro- and nanostructures, natural nacre exhibits extraordinary strength and toughness, and thus provides a superior model for the design and fabrication of high-performance artificial composite materials. Although great progress has been made in constructing layered composites by alternately stacking hard inorganic platelets and soft polymers, the real issue is that the excellent strength of these composites was obtained at the sacrifice of toughness. In this work, inspired by the layered aragonite microplatelets/chitin nanofibers-protein structure of natural nacre, alumina microplatelets-graphene oxide nanosheets-poly(vinyl alcohol) (Al2O3/GO-PVA) artificial nacre is successfully constructed through layer-by-layer bottom-up assembly, in which Al2O3 and GO-PVA act as "bricks" and "mortar", respectively. The artificial nacre has hierarchical "brick-and-mortar" structure and exhibits excellent strength (143 ± 13 MPa) and toughness (9.2 ± 2.7 MJ/m(3)), which are superior to those of natural nacre (80-135 MPa, 1.8 MJ/m(3)). It was demonstrated that the multiscale hierarchical structure of ultrathin GO nanosheets and submicrometer-thick Al2O3 platelets can deal with the conflict between strength and toughness, thus leading to the excellent mechanical properties that cannot be obtained using only one size of platelet. We strongly believe that the work presented here provides a creative strategy for designing and developing new composites with excellent strength and toughness. PMID:25867752

  2. Development of sulfonated poly(vinyl alcohol)/polpyrrole based ionic polymer metal composite (IPMC) actuator and its characterization

    NASA Astrophysics Data System (ADS)

    Inamuddin; Khan, Ajahar; Jain, R. K.; Naushad, Mu

    2015-09-01

    In the present study, a novel sulfonated poly(vinyl alcohol)/polypyrrole polymer membrane sandwiched between platinum (SPVA-Py-Pt) is fabricated for a bending actuator which can be used in microrobotic applications. To examine the suitability of SPVA-Py-Pt based ionic polymer metal composite (IPMC) for microrobotic applications, ion exchange capacity (IEC), water uptake, proton conductivity, water loss, cyclic voltammetry (CV), linear sweep voltammetry (LSV), Fourier transform infrared spectroscopy (FTIR), thermal stability, and tip displacement studies are performed. The water holding capacity of the IPMC membrane is found to be 82.23% at room temperature for 8 h of immersion time. The IEC and proton conductivity of the IPMC membrane is found to be 1.2 meq g-1 and 1.6 × 10-3 S cm-1, respectively. Maximum water loss from IPMC is achieved as 31% at 5 V for a time period of 16 min. Based on electromechanical characterization, the maximum tip displacement of SPVA-Py-Pt IPMC (size 30 mm length, 10 mm width, 0.08 mm thickness) is 18.5 mm at 5.25 V. The major advantages of this new type of IPMC are good film-forming capability, short processing time, low cost of fabrication, good flexibility, high thermo-mechanical stabilities, good ion exchange and water holding capacities and proton conductivity as compared to other types of IPMC actuators. The comparison with other type of IPMC actuators is also summarized. A multi SPVA-Py-Pt IPMC based micro-gripping system is developed that shows the potential of microrobotic applications.

  3. Kinetics and functional effectiveness of nisin loaded antimicrobial packaging film based on chitosan/poly(vinyl alcohol).

    PubMed

    Wang, Hualin; Zhang, Ru; Zhang, Heng; Jiang, Suwei; Liu, Huan; Sun, Min; Jiang, Shaotong

    2015-01-01

    The aim of this study was to evaluate the kinetics and functional effectiveness of Nisin loaded chitosan/poly(vinyl alcohol) (Nisin-CS/PVA) as an antibacterial packaging film. The films were prepared by coating method and Staphylococcus aureus (S. aureus, ATCC6538) was used as test bacterium. The intermolecular hydrogen bonds between CS and PVA molecules were confirmed. The elasticity of films was significantly improved by the incorporation of PVA, and the film could also bear a relative high tensile strength at 26.7 MPa for CS/PVA=1/1. As CS/PVA ratio decreased, the water vapor permeability (WVP) decreased and reached its minimum value 0.983 × 10(-10)gm(-1)s(-1) at CS/PVA=1/1, meanwhile, oxygen permeability (OP) increased but still lower than 0.91 cm(3) μm m(-2)d(-1)kPa(-1) for CS/PVA=1/1 as the CS/PVA ratio was above 1:1. The initial diffusion of nisin (Mt/M ∞ < 2/3) from CS/PVA film could be well described by the Fickian diffusion equation. Owing to the positively charged nisin at pH below isoelectric point (pI, 8.8) and its increasing dissolubility in water as the pH reduced, the diffusion of nisin from the films strongly depended on pH and ionic strength besides CS/PVA ratio and temperature. Moreover, the thermodynamic parameters suggested the spontaneous and endothermic diffusion of nisin from the films. The resulting data can provide some valuable information for the design of film in structure and ingredient. PMID:25965457

  4. Effects of molecular architecture on crystallization behavior of poly(lactic acid) and random ethylene-vinyl acetate copolymers

    NASA Astrophysics Data System (ADS)

    Kalish, Jeffrey P.

    2011-07-01

    The relationship between polymer chain architecture, crystallization behavior, and morphology formation was investigated. The structures formed are highly dependent on chain configuration and crystallization kinetics. Poly(lactic acid) (PLA) and Poly(ethylene-co-vinyl acetate) (EVA) random copolymers were studied. Sample characterization was performed using a variety of techniques, including spectroscopy, scattering, and calorimetry. In PLA, structural differences between alpha' and alpha crystalline phases were analyzed using cryogenic infrared and Raman spectroscopy. Compared to the alpha crystal, the alpha' crystal has slightly looser packing and weaker intermolecular interactions involving carbonyl and methyl functional groups. Simulations in conjunction with Raman scattering analyzed the conformational distortion of the alpha' phase. The conformation of an alpha' chain was determined to have tg't-10/3 conformation with tg't-3/1 units randomly distributed along the chain. Departure of the O-C(alpha); dihedral angle was also confirmed. The structural disorder leads to different thermal properties for alpha' and alpha crystalline forms, which was quantified by measuring the enthalpic change at melting for both crystals (delta H (alpha') = 57 +/- 3 J/g and delta H (alpha) = 96 +/- 3 J/g). The transformation from alpha' to alpha and the mechanism of order formation in PLA were also elucidated. The relationship between chain configuration of EVA random copolymers and crystallization behavior was established. For three different EVA samples, the distribution of methylene sequences was calculated and compared to a distribution of crystallite sizes formed. This comparison revealed that only a small fraction of the total methylene segments present actually crystallized. Cocrystallization with highly mobile oligomers was explored to enhance the crystallization of EVA copolymers. When blended, EVA28 (28 weight percentage) cocrystallizes with C36H74 n-alkane resulting in

  5. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency.

    PubMed

    Zhou, Xue-Hua; Wei, Dai-Xu; Ye, Hai-Mu; Zhang, Xiaocan; Meng, Xiaoyu; Zhou, Qiong

    2016-10-01

    Hydrophilic porous polymer scaffolds have shown great application in drug controlled release, while their mechanical properties and release efficiency still need further improvement. In the current study, the porous scaffolds of polyvinyl alcohol (PVA) prepared by quenching in liquid nitrogen and freeze drying method from different original concentration aqueous solutions were fabricated. Among different PVA scaffolds, the scaffold stemming from 18wt.% PVA aqueous solution exhibited the best mechanical properties, 10.5 and 1.54MPa tensile strengths for the dry and hydrogel states respectively. The inner morphology of such PVA scaffold was unidirectional honeycomb-like structure with average microchannel section of 0.5μm, and the scaffold showed porosity of 71% and rather low ciprofloxacin (Cip) release efficiency of 54.5%. Then poly(ethylene glycol) (PEG) was incorporated to enhance the Cip release efficiency. The release efficiency reached 89.3% after introducing 10wt.% PEG, and the mechanical properties of scaffold decreased slightly. Various characterization methods demonstrated that, adding PEG could help to enlarge the microchannel, create extra holes on the channel walls, weaken the interaction between PVA chains and Cip, and miniaturize the crystal size of Cip. All these effects benefit the dissolution and diffusion of Cip from scaffold, increasing its release capability. Moreover, based on biocompatible material composition, PVA/PEG scaffold is a non-cytotoxicity and have been verified that it can promote cell growth. And PVA/PEG scaffolds loaded with Cip can completely inhibit the growth of microorganism because of Cip sustaining release. The PVA scaffold would have a good potential application in tissue engineering, demanding high strength and well drug release capability.

  6. A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, David; Hill, David J. T.; Rasoul, Firas; Whittaker, Andrew K.

    2011-02-01

    Hydrogels were prepared from poly(acrylic acid-co-N-vinyl pyrrolidone), poly(AA-co-VP) and mixtures of poly(AA-co-VP) and poly(ethylene oxide), PEO, by gamma radiolysis of aqueous solutions of the AA and VP monomers containing ethylene glycol dimethacrylate, EGDMA, as crosslinker and PEO. The AA/VP composition range of the poly(AA-co-VP) was XAA 0.7-0.9. The swelling behaviours of the hydrogels from the dry state were investigated in water (pH 6.5) and 50 mM 4-(2-hydroxyethyl)piperazine-1-ethylsulfonic acid buffer, HEPES buffer, at pH 7.4 and 295 K. The effects of poly(AA-co-VP) composition, crosslinker mole fraction and the presence of PEO on the equilibrium swelling ratio for the gels was examined. The kinetics of the release of a model protein, horseradish peroxidase, HRP, from the hydrogels in water were also studied at 295 K.

  7. Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly(vinyl sulphonate) composite film by cross-linking with glutaraldehyde.

    PubMed

    Colak, Ozlem; Yaşar, Ahmet; Cete, Servet; Arslan, Fatma

    2012-10-01

    In this study, a novel amperometric glucose biosensor was developed by immobilizing glucose oxidase (GOX) by cross-linking via glutaraldehyde on electrochemically polymerized polypyrrole-poly(vinyl sulphonate) (PPy-PVS) films on the surface of a platinum (Pt) electrode. Electropolymerization of pyrrole and poly(vinyl sulphonate) on the Pt surface was carried out with an electrochemical cell containing pyrrole and poly(vinyl sulphonate) by cyclic voltammetry between -1.0 and + 2.0 V (vs.Ag/AgCl) at a scan rate of 50 mV/s upon the Pt electrode. The amperometric determination was based on the electrochemical detection of H(2)O(2) generated in enzymatic reaction of glucose. Determination of glucose was carried out by the oxidation of enzymatically produced H(2)O(2) at 0.4 V vs. Ag/AgCl. The effects of pH and temperature were investigated and optimum parameters were found to be 7.5 and 65°C, respectively. The effect of working potential was investigated and optimum potential was determined to be 0.4 V. The operational stability of the enzyme electrode was also studied. The response of the PPy/PVS-GOX glucose biosensor exhibited good reproducibility with a relative standard deviation (RSD) of 2.48%. The glucose biosensor retained 63% of initial activity after 93 days when stored in 0.1 M phosphate buffer solution of pH 7.5 at 4°C. With the low operating potential, the biosensor demonstrated little interference from the possible interferants.

  8. Propeller-like multicomponent microstructures: Self-assemblies of nanoparticles of poly(vinyl alcohol)-coated Ag and/or Cu2O.

    PubMed

    Wu, Wei-Tai; Wang, Yusong; Shi, Lei; Pang, Wenmin; Zhu, Qingren; Xu, Guoyong; Lu, Fei

    2006-08-01

    Novel propeller-like multicomponent microstructures, which are actually self-assemblies of nanoparticles of poly(vinyl alcohol) (PVA)-coated Ag and/or Cu2O, were synthesized in aqueous solution of amphiphilic polyvinylacetone (PVKA) (ketalization degree D(H) = 0.549), via one-step in situ reduction of Ag+ and Cu2+ under gamma-ray irradiation, utilizing the low hydrolysis rate of PVKA in the dilute acidic solution. Herein, PVA chains are obtained from hydrolyzed PVKA. The reaction mechanism and the formation mechanism are proposed. The room temperature photoluminescence spectrum has also been applied to explore the optical property. PMID:16869576

  9. Novel lectin-modified poly(ethylene-co-vinyl acetate) mucoadhesive nanoparticles of carvedilol: preparation and in vitro optimization using a two-level factorial design.

    PubMed

    Varshosaz, Jaleh; Moazen, Ellaheh

    2014-08-01

    Carvedilol used in cardiovascular diseases has systemic bioavailability of 25-35%. The objective of this study was production of lectin-modified poly(ethylene-co-vinyl acetate) (PEVA) as mucoadhesive nanoparticles to enhance low oral bioavailability of carvedilol. Nanoparticles were prepared by the emulsification-solvent evaporation method using a two-level factorial design. The studied variables included the vinyl acetate content of the polymer, drug and polymer content. Surface modification of PEVA nanoparticles with lectin was carried out by the adsorption method and coupling efficiency was determined using the Bradford assay. Mucoadhesion of nanoparticles was studied on mucin. The particle size, polydispersity index, zeta potential, drug loading and drug release from nanoparticles were studied. The morphology of nanoparticles and crystalline status of the entrapped drug were studied by SEM, DSC and XRD tests, respectively. Results showed the most effective factor on particle size and zeta potential was the interaction of polymer and drug content while, drug loading efficiency and mucoadhesion were more affected by the interaction of polymer type and drug content. Drug concentration was the most effective variable on the drug release rate. The drug was in amorphous state in nanoparticles. The optimum nanoparticles obtained by 45 mg of copolymer contained 12% vinyl acetate/4.3 ml of organic phase and drug concentration of 37.5 wt% of polymer.

  10. Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)

    SciTech Connect

    Zhao, Chunying; Zhang, Aibo; Zheng, Yaping; Luan, Jingfan

    2012-02-15

    Graphical abstract: The Fe{sub 3}O{sub 4}/MWNTs hybrids prepared with PVP achieve a maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs hybrids have better absorption properties in the high-frequency range. Highlight: Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4} decorated MWNTs hybrids were prepared using PVP as dispersant. Black-Right-Pointing-Pointer Many more Fe{sub 3}O{sub 4} particles were attached homogeneously on the surface of MWNTs. Black-Right-Pointing-Pointer The Fe{sub 3}O{sub 4}/MWNTs hybrids achieve a maximum reflection loss of -35.8 dB at 8.56 GHz. Black-Right-Pointing-Pointer A new reflection loss peak occurs at the high-frequency of 14.6 GHz. -- Abstract: The magnetite (Fe{sub 3}O{sub 4}) decorated multiwalled carbon nanotubes (MWNTs) hybrids were prepared by an in situ chemical precipitation method using poly(N-vinyl-2-pyrrolidone) (PVP) as dispersant. The structure and morphology of hybrids are characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron-microscopy (TEM). The TEM investigation shows that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit less entangled structure and many more Fe{sub 3}O{sub 4} particles are attached homogeneously on the surface of MWNTs, which indicated that PVP can indeed help MWNTs to disperse in isolated form. The electromagnetic and absorbing properties were investigated in a frequency of 2-18 GHz. The results show that the Fe{sub 3}O{sub 4}/MWNTs hybrids exhibit a superparamagnetic behavior and possess a saturation magnetization of 22.9 emu/g. The maximum reflection loss is -35.8 dB at 8.56 GHz, and the bandwidth below -10 dB is more than 2.32 GHz. More importantly, a new reflection loss peak occurs at the frequency of 14.6 GHz, which indicates that the Fe{sub 3}O{sub 4}/MWNTs

  11. Radiation crosslinking of poly(vinyl chloride) with trimethylolpropanetrimethacrylate. IV. Effect of diundecyl phthalate: dependence of physical properties on composition. [Electron beam ion sources

    SciTech Connect

    Bowmer, T.N.; Vroom, W.I.

    1983-11-01

    Blends of poly(vinyl chloride)(PVC) with polyfunctional monomers may be crosslinked by ionizing radiation. The physical properties of PVC blended with trimethylolpropanetrimethacrylate (TMPTMA) and diundecyl phthalate (DUP) were studied. The TMPTMA monomer crosslinked the blend by homopolymerization and/or grafting to PVC. The plasticizer, DUP, was chemically inert under irradiation but, by plasticizing the macromolecules and diluting the monomer, changed the kinetics extensively. Characteristics of the glass transitions and the tensile mechanical properties have been correlated with blend composition and radiation dose. Before irradiation, poly(vinyl chloride) was plasticized by both DUP and TMPTMA monomer. The increase in glass transition temperature and mechanical strength following irradiation to 5 Mrad was correlated with the TMPTMA content of the blend. Both the molecular structure of the network and the DUP content of the blend were factors in determining the physical properties of the final crosslinked blend. The molecular structure was determined by the kinetics of the crosslinking reactions, which in turn were determined by the blend composition. A molecular interpretation consistent with the physical properties, chemical kinetics, and mechanism of the crosslinking system has been presented. 24 figures, 2 tables.

  12. Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water.

    PubMed

    Pastorczak, Marcin; Dominguez-Espinosa, Gustavo; Okrasa, Lidia; Pyda, Marek; Kozanecki, Marcin; Kadlubowski, Slawomir; Rosiak, Janusz M; Ulanski, Jacek

    2014-01-01

    Water interacting with a polymer reveals a number of properties very different to bulk water. These interactions lead to the redistribution of hydrogen bonds in water. It results in modification of thermodynamic properties of water and the molecular dynamics of water. That kind of water is particularly well observable at temperatures below the freezing point of water, when the bulk water crystallizes. In this work, we determine the amount of water bound to the polymer and of the so-called pre-melting water in poly(vinyl methyl ether) hydrogels with the use of Raman spectroscopy, dielectric spectroscopy, and calorimetry. This analysis allows us to compare various physical properties of the bulk and the pre-melting water. We also postulate the molecular mechanism responsible for the pre-melting of part of water in poly(vinyl methyl ether) hydrogels. We suggest that above -60 °C, the first segmental motions of the polymer chain are activated, which trigger the process of the pre-melting.

  13. Programmable Laser-Assisted Surface Microfabrication on a Poly(Vinyl Alcohol)-Coated Glass Chip with Self-Changing Cell Adhesivity for Heterotypic Cell Patterning.

    PubMed

    Li, Yi-Chen; Lin, Meng-Wei; Yen, Meng-Hua; Fan, Sabrina Mai-Yi; Wu, June-Tai; Young, Tai-Horng; Cheng, Ji-Yen; Lin, Sung-Jan

    2015-10-14

    Organs are composed of heterotypic cells with patterned architecture that enables intercellular interaction to perform specific functions. In tissue engineering, the ability to pattern heterotypic cells into desired arrangement will allow us to model complex tissues in vitro and to create tissue equivalents for regeneration. This study was aimed at developing a method for fast heterotypic cell patterning with controllable topological manipulation on a glass chip. We found that poly(vinyl alcohol)-coated glass showed a biphasic change in adhesivity to cells in vitro: low adhesivity in the first 24 h and higher adhesivity at later hours due to increased serum protein adsorption. Combining programmable CO2 laser ablation to remove poly(vinyl alcohol) and glass, we were able to create arrays of adhesive microwells of adjustable patterns. We tested whether controllable patterns of epithelial-mesenchymal interaction could be created. When skin dermal papilla cells and fibroblasts were seeded respectively 24 h apart, we were able to pattern these two cells into aggregates of dermal papilla cells in arrays of microwells in a background of fibroblasts sheet. Seeded later, keratinocytes attached to these mesenchymal cells. Keratinocytes contacting dermal papilla cells started to differentiate toward a hair follicle fate, demonstrating patternable epithelial-mesenchymal interaction. This method allows fast adjustable heterotypic cell patterning and surface topology control and can be applied to the investigation of heterotypic cellular interaction and creation of tissue equivalent in vitro. PMID:26393271

  14. Cross-Linked Hydrogels Formed through Diels-Alder Coupling of Furan- and Maleimide-Modified Poly(methyl vinyl ether-alt-maleic acid).

    PubMed

    Stewart, S Alison; Backholm, Matilda; Burke, Nicholas A D; Stöver, Harald D H

    2016-02-23

    The Diels-Alder [4 + 2] cycloaddition between furan- and maleimide-functional polyanions was used to form cross-linked synthetic polymer hydrogels. Poly(methyl vinyl ether-alt-maleic anhydride) was reacted with furfurylamine or N-(2-aminoethyl)maleimide in acetonitrile to form pairs of furan- and maleimide-functionalized poly(methyl vinyl ether-alt-maleic acid)s. Mixtures of these mutually reactive polyanions in water gelled within 15 min to 18 h, depending on degree of functionalization and polymer concentrations. Solution and magic-angle spinning (1)H NMR were used to confirm the formation of the Diels-Alder adduct, to analyze competing hydrolytic side reactions, and demonstrate postgelation functionalization. The effect of the degree of furan and maleimide functionalization, polymer concentration, pH, and calcium ion concentration, on gelation time, gel mechanical properties, and equilibrium swelling, are described. Release of dextran as a model drug was studied using fluorescence spectroscopy, as a function of gel composition and calcium treatment. PMID:26800849

  15. A novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers for the enrichment and determination of polychlorinated biphenyls in fish samples.

    PubMed

    Lin, Saichai; Gan, Ning; Zhang, Jiabin; Chen, Xidong; Cao, Yuting; Li, Tianhua

    2015-06-01

    The novel reductive graphene oxide-based magnetic molecularly imprinted poly(ethylene-co-vinyl alcohol) polymers (rGO@m-MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m-MIPs was prepared by surface molecular imprinting technique. Besides, Fe3 O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3 O4 was in situ synthesis. Different from functional monomer and cross-linker in traditional molecularly imprinted polymer, here, 3,4-dichlorobenzidine was employed as dummy molecular and poly(ethylene-co-vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography-mass spectrometry (GC-MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035-0.0070 µg l(-1) and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. PMID:25736423

  16. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  17. Anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Tsukamoto, Megumi; Sugimoto, Atsuko; Okada, Takashi; Kobayashi, Takanori; Kawashita, Norihito; Takagi, Tatsuya; Ikuta, Kazuyoshi

    2009-01-15

    An anionic magnetic beads-based method was developed for the capture of human influenza A and B viruses from nasal aspirates, allantoic fluid and culture medium. A polymer, poly(methyl vinyl ether-maleic anhydride) [poly(MVE-MA)], was used to endow magnetic beads with a negative charge and bioadhesive properties. After incubation with samples containing human influenza virus, the beads were separated from supernatants by applying a magnetic field. The adsorption [corrected] of the virus by the beads was confirmed by hemagglutinin assay, immunochromatography, Western blotting, egg infection, and cell infection. Successful capture was proved using 5 H1N1 influenza A viruses, 10 H3N2 influenza A viruses, and 6 influenza B viruses. Furthermore, the infectivity in chicken embryonated eggs and Madin-Darby canine kidney (MDCK) cells of the captured human influenza virus was similar to that of the total viral quantity of starting materials. Therefore, this method of capture using magnetic beads coated with poly(MVE-MA) can be broadly used for the recovery of infectious human influenza viruses.

  18. Crystal structure of poly[{μ-N,N'-bis[(pyridin-4-yl)meth-yl]oxalamide}-μ-oxalato-cobalt(II)].

    PubMed

    Zou, Hengye; Qi, Yanjuan

    2014-09-01

    In the polymeric title compound, [Co(C2O4)(C14H14N4O2)] n , the Co(II) atom is six-coordinated by two N atoms from symmetry-related bis-[(pyridin-4-yl)meth-yl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octa-hedral coordination geometry. The Co(II) atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N-H⋯O hydrogen bonds stabilize the crystal packing. PMID:25309173

  19. Reductive electropolymerization of a vinyl-containing poly-pyridyl complex on glassy carbon and fluorine-doped tin oxide electrodes.

    PubMed

    Harrison, Daniel P; Carpenter, Logan S; Hyde, Jacob T

    2015-01-30

    Controllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate. Here, we highlight a procedure for coating electrodes with an inorganic complex by performing reductive electropolymerization of the vinyl-containing poly-pyridyl complex onto glassy carbon and fluorine doped tin oxide coated electrodes. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization but are far less sensitive to oxygen and water.

  20. Reductive electropolymerization of a vinyl-containing poly-pyridyl complex on glassy carbon and fluorine-doped tin oxide electrodes.

    PubMed

    Harrison, Daniel P; Carpenter, Logan S; Hyde, Jacob T

    2015-01-01

    Controllable electrode surface modification is important in a number of fields, especially those with solar fuels applications. Electropolymerization is one surface modification technique that electrodeposits a polymeric film at the surface of an electrode by utilizing an applied potential to initiate the polymerization of substrates in the Helmholtz layer. This useful technique was first established by a Murray-Meyer collaboration at the University of North Carolina at Chapel Hill in the early 1980s and utilized to study numerous physical phenomena of films containing inorganic complexes as the monomeric substrate. Here, we highlight a procedure for coating electrodes with an inorganic complex by performing reductive electropolymerization of the vinyl-containing poly-pyridyl complex onto glassy carbon and fluorine doped tin oxide coated electrodes. Recommendations on electrochemical cell configurations and troubleshooting procedures are included. Although not explicitly described here, oxidative electropolymerization of pyrrole-containing compounds follows similar procedures to vinyl-based reductive electropolymerization but are far less sensitive to oxygen and water. PMID:25741745

  1. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone.

    PubMed

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. PMID:27040205

  2. Use of anionic polymer, poly(methyl vinyl ether-maleic anhydride)-coated beads for capture of respiratory syncytial virus.

    PubMed

    Sakudo, Akikazu; Baba, Koichi; Tsukamoto, Megumi; Ikuta, Kazuyoshi

    2009-08-01

    Respiratory syncytial virus (RSV) is the single most important cause of severe lower respiratory tract infections in infants and young children, and a major public health concern in pediatrics. However, current diagnostic methods for RSV are not sufficiently sensitive. In addition, there is no simple method for enhancing RSV detection. Here, a method for capturing RSV from nasal fluid has been developed using magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydrate). The beads were incubated with RSV-infected nasal fluid, then separated from the supernatant by applying a magnet field and washed. The adsorption [corrected] of RSV by the beads was confirmed by immunochromatography, reverse transcription-polymerase chain reaction, Western blotting and an enzyme-linked immunosorbent assay, which indicated the presence of nucleocapsid protein, fusion protein, and the viral genome of RSV on the incubated beads. Therefore, this capture method will contribute to the improvement of RSV detection.

  3. Magnetic Relaxation Switch Detecting Boric Acid or Borate Ester through One-Pot Synthesized Poly(vinyl alcohol) Functionalized Nanomagnetic Iron Oxide.

    PubMed

    Zhang, Guilong; Lu, Shiyao; Qian, Junchao; Zhong, Kai; Yao, Jianming; Cai, Dongqing; Cheng, Zhiliang; Wu, Zhengyan

    2015-08-01

    We developed a highly efficient magnetic relaxation switch (MRS) system based on poly(vinyl alcohol) functionalized nanomagnetic iron oxide (PVA@NMIO) particles for the detection of boric acid or borate ester (BA/BE). It was found that the addition of BA/BE induced the aggregation of PVA@NMIO particles, resulting in a measurable change in the T2 relaxation time in magnetic resonance measurements. The main mechanism was proposed that the electron-deficient boron atoms of BA/BE caused the aggregation of PVA@NMIO particles through covalent binding to the hydroxyl groups of PVA. This novel detection system displayed excellent selectivity, high sensitivity, and rapid detection for BA/BE. Thus, this system may provide a great application prospect for detection of BA/BE.

  4. The radiation crosslinking of poly(vinyl chloride) with trimethylolpropanetrimethacrylate. III. Effect of diundecyl phthalate: chemical kinetics of a three-component system

    SciTech Connect

    Bowmer, T.N.; Vroom, W.I.; Hellman, M.Y.

    1983-08-01

    The radiation chemistry of poly(vinyl chloride) (PVC) blended with trimethylolpropanetrimethacrylate (TMPTMA) and diundecyl phthalate (DUP) has been examined. This three-component mixture contains a base resin (PVC), a crosslinking sensitizer (TMPTMA), and a physical modifier (DUP). These are the basic components in any radiation-curable coating. The kinetics and mechanism of the crosslinking reactions were studied with reference to the dependence on radiation dose and blend composition. The polyfunctional TMPTMA underwent polymerization incorporating the PVC into a 3-dimensional network. DUP remained chemically inert during the irradiation, not being bound to the network. However, DUP by plasticizing the macromolecules and diluting the monomer, changed the kinetics extensively. DUP enhanced TMPTMA homopolymerization, TMPTMA grafting, and PVC crosslinking reaction rates. The effect of the competition between polymerization, grafting, and degradation reactions was examined in terms of enhanced mobility of the reacting species. The influence of these kinetics considerations in selecting a blend composition for a coating application was discussed.

  5. Surface-Initiated Atom Transfer Radical Polymerization Si-Atrp of Acrylamide from Poly(vinyl Chloride) Film and its Sorption Property Toward Mercury Ion

    NASA Astrophysics Data System (ADS)

    Liu, Peng

    The polyacrylamide surface grafted poly(vinyl chloride) (PAM-PVC) film was successfully prepared via a facile copper-mediated surface-initiated atom transfer radical polymerization (SI-ATRP) of acrylamide (AM) from the surfaces of the PVC thin film with their surface labile chlorines as initiation sites. Graft reaction was first-order kinetic with respect to the polymerizing time in the low monomer conversion stage, this being typical for ATRP. A percentage of grafting (PG) of 32.1% was achieved in 6 h, calculated from the elemental analysis results. The surface morphology of the product was characterized with scanning electron microscopy (SEM). The sorption property of the grafted film toward Hg(II) ion was also preliminarily investigated.

  6. Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil.

    PubMed

    El-Moghazy, A Y; Soliman, E A; Ibrahim, H Z; Marty, J-L; Istamboulie, G; Noguer, T

    2016-08-01

    An ultra-sensitive electrochemical biosensor was successfully developed for rapid detection of pirimiphos-methyl in olive oil, based of genetically-engineered acetylcholinesterase (AChE) immobilization into electrospun chitosan/poly (vinyl alcohol) blend nanofibers. Due to their unique properties such as spatial structure, high porosity, and large surface area, the use of nanofibers allowed improving the biosensor response by two folds. The developed biosensor showed a good performance for detecting pirimiphos-methyl, with a limit of detection of 0.2nM, a concentration much lower than the maximum residue limit allowed set by international regulations (164nM). The biosensor was used for the detection of pirimiphos-methyl in olive oil samples after a simple liquid-liquid extraction, and the recovery rates were close to 100%. PMID:27216682

  7. Biocompatible/Degradable Silk Fibroin:Poly(Vinyl Alcohol)-Blended Dielectric Layer Towards High-Performance Organic Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Zhuang, Xinming; Huang, Wei; Yang, Xin; Han, Shijiao; Li, Lu; Yu, Junsheng

    2016-10-01

    Biocompatible silk fibroin (SF):poly(vinyl alcohol) (PVA) blends were prepared as the dielectric layers of organic field-effect transistors (OFETs). Compared with those with pure SF dielectric layer, an optimal threshold voltage of ~0 V, high on/off ratio of ~104, and enhanced field-effect mobility of 0.22 cm2/Vs of OFETs were obtained by carefully controlling the weight ratio of SF:PVA blends to 7:5. Through the morphology characterization of dielectrics and organic semiconductors by utilizing atom force microscopy and electrical characterization of the devices, the performance improvement of OFETs with SF:PVA hybrid gate dielectric layers were attributed to the smooth and homogeneous morphology of blend dielectrics. Furthermore, due to lower charge carrier trap density, the OFETs based on SF:PVA-blended dielectric exhibited a higher bias stability than those based on pure SF dielectric.

  8. Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters.

    PubMed

    Lai, Yu-Chen; Chang, Yin-Ru; Chen, Man-Li; Lo, Yu-Kuo; Lai, Juin-Yih; Lee, Duu-Jong

    2016-08-01

    Cesium (Cs) removal from contaminated water bodies is an emerging issue after the disaster at the Fukushima Daiichi Nuclear Power Plant. The Prussian blue (PB) is an effective Cs adsorbent but will release hexacyanoferrate fragments from the adsorbent matrix during adsorption. Alginate is an affordable biopolymer for PB particles immobilization. This study synthesized poly(vinyl alcohol) (PVA) and alginate cross-linked matrix for immobilization of PB nano-sized particles and a surface-modified styrene-ethyl styrene divinyl benzene resin and tested their swelling stability and Cs adsorption performance in fresh water and in seawater. The PVA-alginate granules have high structural stability in both fresh water and seawater, with the Cs adsorption capability higher for the former than the latter. The adopted resin effectively remove released PB fragments from the tested granules. The transport and reaction parameters for the granules and for the sand filter bed were estimated. PMID:27132227

  9. Modification of the charge transport properties of the copper phthalocyanine/poly(vinyl alcohol) interface using cationic or anionic surfactant for field-effect transistor performance enhancement

    NASA Astrophysics Data System (ADS)

    Jastrombek, Diana; Nawaz, Ali; Koehler, Marlus; Meruvia, Michelle S.; Hümmelgen, Ivo A.

    2015-08-01

    We report on the performance enhancement of organic field-effect transistors prepared using cross-linked poly(vinyl alcohol) as gate dielectric and copper phthalocyanine as channel semiconductor through gate dielectric surface treatment. The gate dielectric surface was treated using either a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), or an anionic surfactant, sodium dodecyl sulfate (SDS). We determined the charge-carrier field-effect mobility ( μ FET) in these transistors as a function of the effective channel thickness in the channel bottleneck, near to the transistor source. When compared to the untreated devices, in the devices treated with CTAB or SDS, the channel formation occurs at lower gate voltage and the carrier mobility in the thinnest channel region, corresponding to the immediate vicinity of the insulator/semiconductor interface, is significantly higher. The surfactant treatment leads to a tenfold increase in μ FET and significant enhancement in capacitance, on/off current ratio and transconductance of the transistor.

  10. Structural and mechanical properties of "peelable" organoaqueous dispersions with partially hydrolyzed poly(vinyl acetate)-borate networks: applications to cleaning painted surfaces.

    PubMed

    Natali, Irene; Carretti, Emiliano; Angelova, Lora; Baglioni, Piero; Weiss, Richard G; Dei, Luigi

    2011-11-01

    The preparation and structural characterization of a family of viscoelastic dispersions of borate cross-linked, 80% hydrolyzed poly(vinyl acetate) (80PVAc) in aqueous-organic liquids are presented. Correlations between mechanical properties (from rheological measurements) and the degree and nature of cross-linking (from (11)B NMR spectroscopy) are reported, and the results are used to assess their potential as low-impact cleaning agents for the surfaces of paintings. Because the dispersions can be prepared at room temperature by simple procedures from readily available materials and can contain up to 50% (w/w) of an organic liquid, they offer important advantages over previously described cleaning agents that are based on fully hydrolyzed PVAc (i.e., poly(vinyl alcohol). The mechanical properties of the various aqueous-organic dispersions, as determined quantitatively by rheological investigations and qualitatively by their ease of removal from a solid surface (i.e., the so-called "peel-off" ability) have been tuned systematically by varying the amount of organic liquid, its structure, and the concentrations of borax and 80PVAc. The (11)B NMR studies demonstrate that the concentration of borate ions actively participating in cross-linking increases significantly with the amount of organic liquid in the mixture. The degree of cross-linking remains constant when the 80PVAc and borax concentrations are varied, as long as their ratios are kept constant. Some of the 80PVAc-borax dispersions have been tested successfully as cleaning agents on the surface of a 16th-17th century oil-on-wood painting by Lodovico Cardi, "Il Cigoli", that was covered by a brown patina and on the surface of a Renaissance wall painting by Vecchietta in Santa Maria della Scala, Siena, Italy, that had a degraded polyacrylate coating from a previous conservation treatment. PMID:21749078

  11. Sol-gel synthesis and characterization of nanocrystalline (Bi0.5Na0.5)TiO3 powders from the poly vinyl alcohol evaporation route

    NASA Astrophysics Data System (ADS)

    Haitao, Liu; xiaohui, Wang; Longtu, Li

    2009-09-01

    Nanocrystalline pure perovskite phase bismuth sodium titanate (Bi0.5Na0.5)TiO3(BNT) powders have been prepared by a sol-gel method from the poly vinyl alcohol evaporation route, bismuth nitrate [Bi(NO3)3], tetra-butyl titanate [Ti(OC4H9)4] and sodium acetate(CH3COONa) were used as raw materials and poly vinyl alcohol(PVA) as the sol-gel forming solvent. Stoichiometric amounts of the individual raw materials were thoroughly mixed in accordance with the BNT composition to form the stock solution. The pH of the stock was adjusted to 1-3 by adding acetate. Aqueous solution of PVA[10%(w/v)] was then added to the cationic mixture with thorough stirring. The weight ratio of the cationic mixture to the PVA aqueous solution was maintained at 2:1. The resulting viscous liquid was then heated over a hot crucible up to form a fluffy dry gel. The fluffy dry gels were calcined at different temperatures and times and then cooled to room temperature naturally. The X-ray powder diffraction(XRD) patterns of the heat-treated powders were obtained using a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation and nickel filter. Scanning electron microscope (SEM) studies of the NBT powders were performed using a JSM-6700F electron microscope. Phase-pure BNT powders were obtained at 550°C for 2-2.5h which is relatively lower calcination temperature than other reports. The BNT powders consists of phase-pure perovskite nanocrystals with an average size of 100-200nm.

  12. Structural and mechanical properties of "peelable" organoaqueous dispersions with partially hydrolyzed poly(vinyl acetate)-borate networks: applications to cleaning painted surfaces.

    PubMed

    Natali, Irene; Carretti, Emiliano; Angelova, Lora; Baglioni, Piero; Weiss, Richard G; Dei, Luigi

    2011-11-01

    The preparation and structural characterization of a family of viscoelastic dispersions of borate cross-linked, 80% hydrolyzed poly(vinyl acetate) (80PVAc) in aqueous-organic liquids are presented. Correlations between mechanical properties (from rheological measurements) and the degree and nature of cross-linking (from (11)B NMR spectroscopy) are reported, and the results are used to assess their potential as low-impact cleaning agents for the surfaces of paintings. Because the dispersions can be prepared at room temperature by simple procedures from readily available materials and can contain up to 50% (w/w) of an organic liquid, they offer important advantages over previously described cleaning agents that are based on fully hydrolyzed PVAc (i.e., poly(vinyl alcohol). The mechanical properties of the various aqueous-organic dispersions, as determined quantitatively by rheological investigations and qualitatively by their ease of removal from a solid surface (i.e., the so-called "peel-off" ability) have been tuned systematically by varying the amount of organic liquid, its structure, and the concentrations of borax and 80PVAc. The (11)B NMR studies demonstrate that the concentration of borate ions actively participating in cross-linking increases significantly with the amount of organic liquid in the mixture. The degree of cross-linking remains constant when the 80PVAc and borax concentrations are varied, as long as their ratios are kept constant. Some of the 80PVAc-borax dispersions have been tested successfully as cleaning agents on the surface of a 16th-17th century oil-on-wood painting by Lodovico Cardi, "Il Cigoli", that was covered by a brown patina and on the surface of a Renaissance wall painting by Vecchietta in Santa Maria della Scala, Siena, Italy, that had a degraded polyacrylate coating from a previous conservation treatment.

  13. High efficiency preparation and characterization of intact poly(vinyl alcohol) dehydrogenase from Sphingopyxis sp.113P3 in Escherichia coli by inclusion bodies renaturation.

    PubMed

    Jia, Dongxu; Yang, Yu; Peng, Zhengcong; Zhang, Dongxu; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

    2014-03-01

    Poly(vinyl alcohol) dehydrogenase (PVADH, EC 1.1.99.23) is an enzyme which has potential application in textile industry to degrade the poly(vinyl alcohol) (PVA) in waste water. Previously, a 1,965-bp fragment encoding a PVADH from Sphingopyxis sp. 113P3 was synthesized based on the replacement of the rare codons in Escherichia coli (E. coli). In this work, the deduced mature PVADH (mPVADH) gene of 1,887 bp was amplified by polymerase chain reaction (PCR) and inserted into the site between NcoI and HindIII in pET-32a(+). The constructed recombinant plasmid was transformed into E. coli Rosetta (DE3). In shake flask, the fusion protein of thioredoxin (Trx)-mPVADH was expressed precisely; however, Trx-mPVADH was found to accumulate mainly as inclusion bodies. After isolating, dissolving in buffer containing urea, purification, dialysis renaturation, and digesting with recombinant enterokinase/His (rEK/His), the bioactive mPVADH fragments were obtained with protein concentration of 0.56 g/L and enzymatic activity of 194 U/mL. The K m and V max values for PVA 1799 were 2.33 mg/mL and 15.7 nmol/(min·mg protein), respectively. (1)H-NMR and infrared (IR) spectrum demonstrated that its biological function was oxidizing hydroxyl groups of PVA 1799 to form diketone, and PVA 1799 could be degraded completely by successive treatment with mPVADH and oxidized PVA hydrolase (OPH).

  14. MALDI SpiralTOF high‐resolution mass spectrometry and Kendrick mass defect analysis applied to the characterization of poly(ethylene‐co‐vinyl acetate) copolymers

    PubMed Central

    Nakamura, Sayaka

    2016-01-01

    Rationale Poly(ethylene‐co‐vinyl acetate) copolymers – usually referred to as EVA – are first class industrial polymers used for applications ranging from padding to photovoltaics as encapsulant for the silicon solar cells. Various techniques have been used for their characterization but the analysis of intact EVA chains using mass spectrometry (MS) has not been reported so far. Methods Three copolymers containing 18, 25 and 40 wt% vinyl acetate (VA) have been characterized using an off‐line coupling of size‐exclusion chromatography (SEC) and matrix‐assisted laser desorption/ionization (MALDI) spiral‐time‐of‐flight (TOF) high‐resolution mass spectrometry (HRMS). The representativeness of those results for the entire samples has been checked using 13C NMR spectroscopy. Lastly, Kendrick mass defect analysis has been proposed as an alternative and user‐friendly data treatment method. Results The shortest chains isolated by SEC fractionation and mass‐analyzed by HRMS have been thoroughly described in terms of end‐groups (found to be hydrogens) and co‐monomeric composition. The VA content was successfully derived from the peak assignments in MS spectra for the EVA 40 wt% and 25 wt% while it tended to be overestimated for the latest EVA 18 wt% (increasing poly(ethylene) character). Similar results have been found using a faster data treatment method relying on the Kendrick mass defect analysis of the MS data. Conclusions EVA low molecular weight intact oligomers have been extensively characterized by MS for the first time and the structural features confidently extended to the full sample according to NMR data. The Kendrick mass analysis finally constituted an efficient method for a fast evaluation of their VA content with no need for manual assignment. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. PMID:26969940

  15. Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography.

    PubMed

    Jansen, Janine; Melchels, Ferry P W; Grijpma, Dirk W; Feijen, Jan

    2009-02-01

    Polymer networks were prepared by photocross-linking fumaric acid monoethyl ester (FAME) functionalized, three-armed poly(D,L-lactide) oligomers using N-vinyl-2-pyrrolidone (NVP) as diluent and comonomer. The use of NVP together with FAME-functionalized oligomers resulted in copolymerization at high rates, and networks with gel contents in excess of 90% were obtained. The hydrophilicity of the poly(D,L-lactide) networks increases with increasing amounts of NVP, networks containing 50 wt % of NVP absorbed 40% of water. As the amount of NVP was increased from 30 to 50 wt %, the Young's modulus after equilibration in water decreased from 0.8 to 0.2 GPa, as opposed to an increase from 1.5 to 2.1 GPa in the dry state. Mouse preosteoblasts readily adhered and spread onto all prepared networks. Using stereolithography, porous structures with a well-defined gyroid architecture were prepared from these novel materials. This allows the preparation of tissue engineering scaffolds with optimized pore architecture and tunable material properties.

  16. Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate).

    PubMed

    Alhusein, Nour; De Bank, Paul A; Blagbrough, Ian S; Bolhuis, Albert

    2013-12-01

    We report the controlled release of the antibiotic tetracycline (tet) HCl from a triple-layered electrospun matrix consisting of a central layer of poly(ethylene-co-vinyl acetate (PEVA) sandwiched between outer layers of poly-ε-caprolactone (PCL). These micro/nanofibre layers with tet successfully encapsulated (essentially quantitatively at 3 and 5 % w/w) in each layer, efficiently inhibited the growth of a panel of bacteria, including clinical isolates, as shown by a modified Kirby-Bauer disc assay. Furthermore, they demonstrated high biological activity in increasingly complex models of biofilm formation (models that are moving closer to the situation in a wound) by stopping biofilm formation, by killing preformed biofilms and killing mature, dense biofilm colonies of Staphylococcus aureus MRSA252. Tet is clinically useful with potential applications in wound healing and especially in complicated skin and skin-structure infections; electrospinning provides good encapsulation efficiency of tet within PCL/PEVA/PCL polymers in micro/nanofibre layers which display sustained antibiotic release in formulations that are anti-biofilm.

  17. Release kinetics of bovine serum albumin from pH-sensitive poly(vinyl ether) based hydrogels.

    PubMed

    Gümüşderelioğlu, Menemşe; Kesgin, Didehan

    2005-01-20

    pH-Sensitive amphiphilic hydrogels were synthesized by radiation copolymerization of ethylene glycol vinyl ether (EGVE), butyl vinyl ether (BVE) and acrylic acid (AA) in the presence of crosslinking agent, diethylene glycol divinyl ether (DEGDVE). The results of the swelling experiments indicated that the hydrogel which has 60:40:5 comonomer ratio (mol% of EGVE:BVE:AA in monomeric mixture) is pH-sensitive. While the hydrogel is in a fully hydrated form at pH>6, it extensively dehydrates below pH 6. A two-stage volume phase transition was observed in the range of pH 6.0-7.0 and 7.5-8.0. In addition, the equilibrium water contents of the gels decreased with increasing temperature from 4 to 37 degrees C by following the non-Fickian diffusion mechanism. The utility of pH-sensitive gels in delivery of protein based drugs was investigated. Bovine serum albumin (BSA) loaded gels were prepared and protein release was examined by fluorescence spectroscopy in the range of pH 2-9. While the protein release was very low at pH 2, readily high amount of BSA were released at pH>6. It was concluded that the pH-sensitive EGVE-BVE-AA terpolymers may be suitable for the oral administration of protein based drugs as a carrier through gastrointestinal (GI) tract.

  18. Uses of thermoresponsive and RGD/insulin-modified poly(vinyl ether)-based hydrogels in cell cultures.

    PubMed

    Gümüşderelioğlu, Menemşe; Karakeçili, Ayşe Gönen

    2003-01-01

    Thermoresponsive hydrogels were synthesized by radiation copolymerization of ethylene glycol vinyl ether (1) and butyl vinyl ether (2) in the presence of cross-linking agent diethylene glycol divinyl ether. The comonomer ratio (monomer 1/monomer 2) and the cross-linker concentration were kept constant at 60:40 (mole percentage in the monomeric mixture) and 4% (mole basis), respectively. The hydrogels showed a volume-phase transition in the temperature range 10-25 degrees C and their swelling behaviour was reversible. The gels were modified by a cell adhesion factor, the RGD sequence of fibronectin, and a cell growth factor, insulin. However, they lost their thermoresponsive character after modification. The use of the gels in cell culture was investigated without using a proteolytic enzyme or serum. Cell culture studies realized by human skin fibroblasts (HS An1) showed that the cells can attach and proliferate on the surface of a thermoresponsive polymer. 80% of the cultured cells were readily detached from the polymer surface by lowering the incubation temperature from 37 degrees C to 10 degrees C for 30 min. In the studies carried out with RGD or insulin-modified hydrogels in serum-free cultures, higher values of cell proliferation (9 x 10(5) cells/ml) were obtained on the insulin-modified hydrogels, whereas higher values of cell attachment were obtained on the RGD-immobilized surfaces.

  19. Poly[bis[μ₂-3-(pyridin-4-yl)benzoato-κ³N:O,O']lead(II)].

    PubMed

    Guo, Yi-Ping; Wang, Hui; Li, Guo-Ting

    2013-08-01

    In the title compound, [Pb(C₁₂H₈NO₂)₂]n, the Pb atom sits on a crystallographic C₂ axis and is six-coordinate, ligated by two chelating carboxylate groups from two 3-(pyridin-4-yl)benzoate (L) ligands and by two N atoms from another two ligands. Each ligand bridges two PbII centres, extending the structure into a corrugated two-dimensional (4,4) net. The ligand L is conformationally chiral, with a torsion angle of 27.9 (12)° between the planes of its two rings. The torsion angle has the same sense throughout the structure, so that the extended two-dimensional polymer is homochiral. Investigation of the thermal stability shows that the network is stable up to 613 K. In the absence of any stereoselective factor in the preparation of the compound, the enantiomeric purity of the crystal studied, based only on the torsional conformation of the ligand, implies that the bulk sample is a racemic conglomerate.

  20. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2014-12-26

    In the present study, we have synthesized a biocompatible hybrid carrier of hypromellose (HY) and poly(vinyl alcohol) (PVA) for immobilization of Burkholderia cepacia lipase (BCL). The immobilized biocatalyst HY:PVA:BCL was subjected to determination of half-life time (τ) and deactivation rate constant (K(D)) in various organic solvents. Biocatalyst showed higher τ-value in a nonpolar solvent like cyclohexane (822 h) as compared to that of a polar solvent such as acetone (347 h), which signifies better compatibility of biocatalyst in the nonpolar solvents. Furthermore, the K(D)-value was found to be less in cyclohexane (0.843 × 10(-3)) as compared to acetone (1.997 × 10(-3)), indicating better stability in the nonpolar solvents. Immobilized-BCL (35 mg) was sufficient to achieve 99% conversion of phenethyl butyrate (natural constituent of essential oils and has wide industrial applications) using phenethyl alcohol (2 mmol) and vinyl butyrate (6 mmol) at 44 °C in 3 h. The activation energy (E(a)) was found to be lower for immobilized-BCL than crude-BCL, indicating better catalytic efficiency of immobilized lipase BCL. The immobilized-BCL reported 6-fold superior biocatalytic activity and 8 times recyclability as compared to crude-BCL. Improved catalytic activity of immobilized enzyme in nonpolar media was also supported by thermodynamic activation parameters such as enthalpy (ΔH(⧧)), entropy (ΔS(⧧)) and Gibb's free energy (ΔG(⧧)) study, which showed that phenethyl butyrate synthesis catalyzed by immobilized-BCL was feasible as compared to crude-BCL. The present work explains a thermodynamic investigation and superior biocatalytic activity for phenethyl butyrate synthesis using biocompatible immobilized HY:PVA:BCL in nonaqueous media for the first time. PMID:25474503

  1. Synthesis and characterization of Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer-inorganic hybrid catalyst for the Suzuki-Miyaura cross-coupling reaction

    SciTech Connect

    Kalbasi, Roozbeh Javad; Mosaddegh, Neda

    2011-11-15

    Composite poly(N-vinyl-2-pyrrolidone)/KIT-5 (PVP/KIT-5) was prepared by in situ polymerization method and used as a support for palladium nanoparticles obtained through the reduction of Pd(OAc){sub 2} by hydrazine hydrate. The physical and chemical properties of the catalyst were investigated by XRD, FT-IR, UV-vis, TG, BET, SEM, and TEM techniques. The catalytic performance of this novel heterogeneous catalyst was determined for the Suzuki-Miyaura cross-coupling reaction between aryl halides and phenylboronic acid in the presence of water at room temperature. The stability of the nanocomposite catalyst was excellent and could be reused 8 times without much loss of activity in the Suzuki-Miyaura cross-coupling reaction. - Graphical Abstract: Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as an organic-inorganic hybrid catalyst for the Suzuki-Miyaura reaction. The stability of the catalyst was excellent and could be reused 8 times in the Suzuki-Miyaura reaction. Highlights: > Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 was prepared as a novel nanocomposite. > Nanocomposite was prepared based on a cage-type mesoporous system. > Catalyst showed excellent activity for Suzuki-Miyaura reaction in water. > Stability of the catalyst was excellent and could be reused 8 times.

  2. Role of pyridine in Wyodak-pyridine adducts

    SciTech Connect

    David L. Wertz; Amanda Winters; Tara Craft; Jami Holloway

    2006-02-01

    When pyridine (PYR) is added to powdered Wyodak subbituminous coal (WYO), the sample is converted to a paste, and the molecular-level adduct which is formed is stable for months. After the excess pyridine has evaporated from the WYO-PYR sample, the stoichiometry of the adduct is ca. two pyridine molecules per bilayer of WYO polycyclic units; this adduct exists even after mild vacuum treatment of the sample. The pyridine molecules in this adduct appear to be located between the bilayer lamellae and to be H-bonded to either H-O or H-N moieties attached to the poly-cyclic aromatic units of WYO. An H-bonded N- - -H-X distance of 2.6 {angstrom} has been calculated from a structural model of the WYO-PYR adduct. 37 refs., 12 figs., 4 tabs.

  3. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) Studied Using (13)C Solid-State NMR.

    PubMed

    Yuan, Xiaoda; Xiang, Tian-Xiang; Anderson, Bradley D; Munson, Eric J

    2015-12-01

    Hydrogen bonding interactions in amorphous indomethacin and amorphous solid dispersions of indomethacin with poly(vinylpyrrolidone), or PVP, and poly(vinylpyrrolidone-co-vinyl acetate), or PVP/VA, were investigated quantitatively using solid-state NMR spectroscopy. Indomethacin that was (13)C isotopically labeled at the carboxylic acid carbon was used to selectively analyze the carbonyl region of the spectrum. Deconvolution of the carboxylic acid carbon peak revealed that 59% of amorphous indomethacin molecules were hydrogen bonded through carboxylic acid cyclic dimers, 15% were in disordered carboxylic acid chains, 19% were hydrogen bonded through carboxylic acid and amide interactions, and the remaining 7% were free of hydrogen bonds. The standard dimerization enthalpy and entropy of amorphous indomethacin were estimated to be -38 kJ/mol and -91 J/(mol · K), respectively, using polystyrene as the "solvent". Polymers such as PVP and PVP/VA disrupted indomethacin self-interactions and formed hydrogen bonds with the drug. The carboxylic acid dimers were almost completely disrupted with 50% (wt) of PVP or PVP/VA. The fraction of disordered carboxylic acid chains also decreased as the polymer content increased. The solid-state NMR results were compared with molecular dynamics (MD) simulations from the literature. The present work highlights the potential of (13)C solid-state NMR to detect and quantify various hydrogen bonded species in amorphous solid dispersions as well as to serve as an experimental validation of MD simulations.

  4. Thermo-responsive cell culture carriers based on poly(vinyl methyl ether)—the effect of biomolecular ligands to balance cell adhesion and stimulated detachment

    NASA Astrophysics Data System (ADS)

    Teichmann, Juliane; Nitschke, Mirko; Pette, Dagmar; Valtink, Monika; Gramm, Stefan; Härtel, Frauke V.; Noll, Thomas; Funk, Richard H. W.; Engelmann, Katrin; Werner, Carsten

    2015-08-01

    Two established material systems for thermally stimulated detachment of adherent cells were combined in a cross-linked polymer blend to merge favorable properties. Through this approach poly(N-isopropylacrylamide) (PNiPAAm) with its superior switching characteristic was paired with a poly(vinyl methyl ether)-based composition that allows adjusting physico-chemical and biomolecular properties in a wide range. Beyond pure PNiPAAm, the proposed thermo-responsive coating provides thickness, stiffness and swelling behavior, as well as an apposite density of reactive sites for biomolecular functionalization, as effective tuning parameters to meet specific requirements of a particular cell type regarding initial adhesion and ease of detachment. To illustrate the strength of this approach, the novel cell culture carrier was applied to generate transplantable sheets of human corneal endothelial cells (HCEC). Sheets were grown, detached, and transferred onto planar targets. Cell morphology, viability and functionality were analyzed by immunocytochemistry and determination of transepithelial electrical resistance (TEER) before and after sheet detachment and transfer. HCEC layers showed regular morphology with appropriate TEER. Cells were positive for function-associated marker proteins ZO-1, Na+/K+-ATPase, and paxillin, and extracellular matrix proteins fibronectin, laminin and collagen type IV before and after transfer. Sheet detachment and transfer did not impair cell viability. Subsequently, a potential application in ophthalmology was demonstrated by transplantation onto de-endothelialized porcine corneas in vitro. The novel thermo-responsive cell culture carrier facilitates the generation and transfer of functional HCEC sheets. This paves the way to generate tissue engineered human corneal endothelium as an alternative transplant source for endothelial keratoplasty.

  5. Fabrication and characterization of a novel hydrophobic CaCO3 grafted by hydroxylated poly(vinyl chloride) chains

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Yang, Simei; Luo, Xin; Lei, Jingxin; Cao, Qiue; Wang, Jiliang

    2015-12-01

    The hydroxylated PVC (PVC-OH) was successfully synthesized by a suspension polymerization of vinyl chloride (VC), butyl acrylate (BA) and hydroxyethyl acrylate (HEA). Novel hydrophobic CaCO3 was then prepared by a urethane formation reaction between methylene diphenyl diisocyanate (MDI) and the sbnd OH groups both in the PVC-OH chains and on the surface of pristine CaCO3 particles. The effect of the PVC-OH content on the grafting ratio of treated CaCO3 particles was extensively investigated. Combining the result of Fourier transform infrared (FTIR) with that of water contact angle, it can be concluded that the hydrophobicity of CaCO3 had been efficiently improved by the PVC-OH segments grafted on the surface of CaCO3 particles. X-ray diffraction (XRD), thermal gravity analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM) were also used to study crystalline behaviors, thermal stability and surface morphology of the modified CaCO3 particles, respectively. The change of specific surface area implying surface modification was investigated as well.

  6. The effects of 60Co γ-ray on poly(ethylene-co-vinyl acetate)/carbon black composites

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Yong; Kim, Ki-Yup

    2008-04-01

    Cables used in a nuclear power plant are irradiation suppressing ones. Until now, researches on the irradiation suppressing cables have mainly been focused on insulation materials. Therefore, in this paper, the non-isothermal crystallization behaviors and degradation characteristics of ethylene vinyl acetate-carbon black (EVA-CB), used as a shielding material, were investigated by means of the Differential scanning calorimetry (DSC) and chemiluminescence analyzer (CL). The specimens were cooled after removing thermal history at 150 °C for 5 min by changing the cooling rates to 5, 7.5, 10, 15 and 20 °C/min with DSC. In addition, after maintaining a thermal equilibrium at each temperature of 25, 50, 75, 100, 125, 150 and 175 °C, their thermoluminescence was measured for 20 min with CL equipment. The 60Co γ-ray was used for irradiation. Tc, T0, T∞ and t1/2 in the DSC experiments are found to decrease gradually as radiation dose increases. Secondly, with the CL experiment, the 0.1, 0.25 and 0.5 MGy EVA-CB composites were found to show a much smaller thermoluminescence than the intact EVA-CB composites, while the 0.75 and 1 MGy EVA-CB composites were found to show a much higher thermoluminescence than ones.

  7. Poly[[tetra­aqua­bis­(μ3-pyridine-2,6-dicarboxyl­ato)(μ2-pyridine-2,6-dicarboxyl­ato)dilanthanum(III)] dihydrate

    PubMed Central

    Lush, Shie Fu; Shen, Fwu Ming

    2011-01-01

    There are two independent LaIII cations in the polymeric title compound, {[La2(C7H3NO4)3(H2O)4]·2H2O}n. One is nine-coordinated in an LaN2O7 tricapped trigonal–prismatic geometry formed by three pyridine-2,6-dicarboxyl­ate anions and two water mol­ecules, while the other is ten-coordinated in an LaNO9 bicapped square-anti­prismatic geometry formed by four pyridine-2,6-dicarboxyl­ate anions and two water mol­ecules. The two LaIII cations are separated by a non-bonding distance of 5.026 (3) Å. The pyridine-2,6-dicarboxyl­ate anions bridge the LaIII cations, forming a three-dimensional polymeric complex. The crystal structure contains extensive classical O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O hydrogen bonds. The crystal structure is further consolidated by π–π stacking between pyridine rings, the shortest centroid–centroid distance between parallel pyridine rings being 3.700 (5) Å. PMID:22064837

  8. Simultaneous species-specific PCR detection and viability testing of poly(vinyl alcohol) cryogel-entrapped Rhodococcus spp. after their exposure to petroleum hydrocarbons.

    PubMed

    Kuyukina, Maria S; Ivshina, Irena B; Serebrennikova, Marina K; Rubtsova, Ekaterina V; Krivoruchko, Anastasiya V

    2013-08-01

    A method of simultaneous species-specific PCR detection and viability testing of poly(vinyl alcohol) cryogel-entrapped Rhodococcus spp. was developed that allowed the estimation of immobilized Rhodococcus opacus and Rhodococcus ruber survival after their exposure to petroleum hydrocarbon mixture. Spectrophotometric INT assay revealed high tolerance of gel-immobilized rhodococci to petroleum hydrocarbons, while among two Rhodococcus strains studied, R. ruber tolerated better to hydrocarbons compared to R. opacus. These findings were confirmed by respirometry results that showed increased respiratory activity of gel-immobilized Rhodococcus strains after 10-day incubation with 3% (v/v) petroleum hydrocarbon mixture. Moreover, jointly incubated rhodococcal strains demonstrated higher oxidative activities toward petroleum hydrocarbons than individual strains. Both Rhodococcus species were recovered successfully in cryogel granules using 16S rDNA-targeted PCR, even though the granules were previously stained with INT and extracted with ethanol. The method developed can be used for rapid detection and monitoring of gel-immobilized bacterial inocula in bioreactors or contaminated soil systems.

  9. Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Mahendia, Suman; Heena; Kandhol, Geeta; Deshpande, Uday P.; Kumar, Shyam

    2016-05-01

    In the present work, structural properties of reduced graphene oxide (RGO) synthesized using modified Hummer's method and its composites with Poly(vinyl alcohol) (PVA) fabricated using solution-cast method have been studied. The structural properties of prepared samples have been systematically studied through UV-Visible absorption, Raman, Fourier Transform Infrared (FTIR) and Differential Scanning Calorimeter (DSC) spectroscopy. Infrared spectroscopy indicates the grafting of PVA chains with graphene layer through the formation of H-bonding linkage in the composites. Temperature-dependent FTIR spectra of PVA-RGO composite films were recorded to obtain the glass transition temperature (Tg) and to study its molecular origin. From these spectra the values of Tg were obtained using two-dimensional (2D) mapping of the first derivative of the absorbance intensity with respect to temperature (dA/dT), over the space of wavenumber and temperature. The value of Tg obtained for pure PVA increases from 78 °C to 92 °C after loading 0.5 wt.% of RGO in PVA and can be attributed to the strong H-bonding interaction between polymer chains and grafted solid surface of RGO. These results are in good agreement with those obtained from DSC analysis. This clearly indicates that the thermal behavior of PVA gets modified with loading of RGO.

  10. Solution spinning of a high-? oxide superconductor: the effect of poly(vinyl alcohol) spinning medium on the critical current density of melt-processed ? superconducting filaments

    NASA Astrophysics Data System (ADS)

    Tomita, Hisayo; Sunohara, Makoto; Goto, Tomoko; Takahashi, Kiyohisa

    1996-12-01

    The precursor 0953-2048/9/12/014/img9 filament was prepared by solution spinning through a homogeneous aqueous poly(vinyl alcohol) (PVA) solution of Y, Ba and Cu acetates. The solution spinning was successfully performed using PVA with degrees of polymerization (DP) of 1700 and 2450 and a degree of saponification of 85 mol%. The as-drawn filament was heated to remove volatile components and partially melted to generate a superconducting phase. The effects of the DP of PVA and a content of mixed acetates in the precursor filament on the critical current density 0953-2048/9/12/014/img10 of the melt-processed filament were examined. The higher 0953-2048/9/12/014/img11 was obtained for the filament spun from PVA solution of higher DP and lower acetate content. The highest 0953-2048/9/12/014/img11 value of 0953-2048/9/12/014/img13 at 77 K and 0 T was achieved for the filament spun from the DP 2450 PVA with an acetate to PVA ratio of two.

  11. Photoinduced synthesis of single-digit micrometer-size spheroidal calcite composites in the presence of partially hydrolyzed poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Nishio, Takashi; Naka, Kensuke

    2015-06-01

    Photoinduced crystallization of calcium carbonate (CaCO3), which was based on the photodecarboxylation of ketoprofen (KP, 2-(3-benzoylphyenyl)propionic acid) under alkaline conditions of pH 8.4 and 10 was studied for preparation of CaCO3 composite particles in single-digit micrometer-sizes. In this method, a homogeneous solution comprising KP, calcium chloride, ammonia, and partially hydrolyzed poly(vinyl alcohol) (PVAPS, degree of saponification: 86.5-89.0 mol%) was used as a precursor solution and was exposed to ultraviolet (UV) irradiation for different time periods. After the UV irradiation for 50 min, calcite spheroids in single-digit micrometer-sizes were obtained as major products at pH 8.4. The obtained calcite spheroids contained organic components of about 10 wt%. The comparison of the characteristics of the CaCO3 obtained at pH 8.4 and 10 suggests that the nucleation and crystallization of both vaterite and calcite continuously took place in a moderated supersaturation owing to the CO2 hydration equilibrium as long as the photodecarboxylation of KP continued. Consequently, the aggregation-based crystal growth in the presence of PVAPS seemed to enable the formation of the spheroidal composites of calcite in single-digit micrometer-sizes.

  12. Preparation and characterization of a magneto-polymeric nanocomposite: Fe 3O 4 nanoparticles in a grafted, cross-linked and plasticized poly(vinyl chloride) matrix

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Oliverio S.; Rodríguez-Calzadíaz, C. A.; Yáñez-Flores, Isaura G.; Montemayor, Sagrario M.

    In this work two kind of materials: (1) grafted, cross-linked and plasticized poly(vinyl chloride) (PVC) "plastic films" and (2) magnetic plastic films "magneto-polymeric nanocomposites" were prepared. Precursor solutions or "plastisols" used to obtain the plastic films were obtained by mixing PVC (emulsion grade) as polymeric matrix, di(2-ethylhexyl)phthalate (DOP) as plasticizer, a thermal stabilizer based in Ca/Zn salts, and a cross-linking agent, 3-mercaptopropyltrimethoxysilane (MTMS) or 3-aminopropyltriethoxysilane (ATES), at several concentrations. Flexible films were obtained from the plastisols using static casting. The stress-strain behavior and the gel content (determined by Soxhlet extraction with boiling THF) of the flexible films were measured in order to evaluate the effect of the cross-linking agent and their content on the degree of cross-linking. The magneto-polymeric nanocomposites were obtained by mixing the optimum composition of the plastisols (analyzed previously) with magnetite (Fe 3O 4)-based ferrofluid and DOP. Later, flexible films were obtained by static casting of the plastisol/ferrofluid systems. The magnetic films were characterized by the above-mentioned techniques and X-ray diffraction, vibrating sample magnetometry and thermogravimetrical analysis.

  13. Compression Effects on the Phase Behaviour of Miconazole-Poly (1-Vinylpyrrolidone-Co-Vinyl Acetate) Solid Dispersions-Role of Pressure, Dwell Time, and Preparation Method.

    PubMed

    Singh, Abhishek; De Bisschop, Cathérine; Schut, Henk; Van Humbeeck, Jan; Van Den Mooter, Guy

    2015-10-01

    Compression of miconazole-poly (1-vinylpyrrolidone-co-vinyl acetate) (PVPVA64) solid dispersions prepared by spray drying and hot-melt extrusion was performed to gain insights into effect of compression pressure, dwell time, and preparation method on compression-dependent phase behavior. The solid dispersions prepared by spray drying were initially phase-separated showing two glass transition temperature (Tg), whereas the extruded samples showed one single Tg indicating better mixing. Compression caused mixing of spray-dried solid dispersions at high compression pressures and especially high dwell times. The extruded systems showed no statistically significant differences. However, physical mixtures made up from extruded samples containing 20% and 40% of active pharmaceutical ingredient underwent mixing upon compression. Coincidence Doppler measurements were performed to quantify the free volume of PVPVA64 which is a major contributor to the free volume in the solid dispersion matrix. A small but significant difference was found between the open free volume of the pure polymer subjected to varied manufacturing processes. Compression-induced plastic deformation and plastic flow enhances molecular mobility leading to mixing of different domains in solid dispersions. Different manufacturing methods may result in products with similar free volume, thereby showing similar molecular mobility. PMID:26351161

  14. Role of single-walled carbon nanotubes on ester hydrolysis and topography of electrospun bovine serum albumin/poly(vinyl alcohol) membranes.

    PubMed

    Ford, Ericka N J; Suthiwangcharoen, Nisaraporn; D'Angelo, Paola A; Nagarajan, Ramanathan

    2014-07-23

    Electrospun membranes were studied for the chemical deactivation of threat agents by means of enzymatic proteins. Protein loading and the surface chemistry of hybrid nanofibers influenced the efficacy by which embedded enzymes could digest the substrate of interest. Bovine serum albumin (BSA), selected as a model protein, was electrospun into biologically active fibers of poly(vinyl alcohol), PVA. Single-walled carbon nanotubes (SWNTs) were blended within these mixtures to promote protein assembly during the process of electrospinning and subsequently the ester hydrolysis of the substrates. The SWNT incorporation was shown to influence the topography of PVA/BSA nanofibers and enzymatic activity against paraoxon, a simulant for organophosphate agents and a phosphorus analogue of p-nitrophenyl acetate (PNA). The esterase activity of BSA against PNA was uncompromised upon its inclusion within nanofibrous membranes because similar amounts of PNA were hydrolyzed by BSA in solution and the electrospun BSA. However, the availability of BSA along the fiber surface was shown to affect the ester hydrolysis of paraoxon. Atomic force microscopy images of nanofibers implicated the surface migration of BSA during the electrospinning of SWNT filled dispersions, especially as greater weight fractions of protein were added to the spinning mixtures. In turn, the PVA/SWNT/BSA nanofibers outperformed the nanotube free PVA/BSA membranes in terms of paraoxon digestion. The results support the development of electrospun polymer nanofiber platforms, modulated by SWNTs for enzyme catalytic applications relevant to soldier protective ensembles. PMID:25007411

  15. Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.

    2016-01-01

    An innovative method has been used to reduce the bandgap of poly(vinyl alcohol) (PVA) polymer by addition of a nontoxic, inexpensive, and environmentally friendly material. The resulting materials are small-bandgap polymers, hence opening new frontiers in green chemistry. The doped PVA films showed a wide range of light absorption of the solar spectrum from 200 nm to above 800 nm. Nonsharp absorption behavior versus wavelength was observed for the samples. The refractive index exhibited a wide range of dispersion. Shift of the absorption edge from 6.2 eV to 1.5 eV was observed. The energy bandgap of PVA was diminished to 1.85 eV upon addition of black tea extract solution, lying in the range of small-bandgap polymers. Increase of the optical dielectric constant was observed with increasing tea solution addition. The results indicate that small-bandgap PVA with good film-forming ability could be useful in terms of cost-performance tradeoff, solving problems of short lifetime, cost, and flexibility associated with conjugated polymers. The decrease of the Urbach energy upon addition of black tea extract solution indicates modification of PVA from a disordered to ordered material. X-ray diffraction results confirm an increase of the crystalline fraction in the doped samples.

  16. Preparation of a Nanoscaled Poly(vinyl alcohol)/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery.

    PubMed

    Kimura, Tsuyoshi; Nibe, Yoichi; Funamoto, Seiichi; Okada, Masahiro; Furuzono, Tsutomu; Ono, Tsutomu; Yoshizawa, Hidekazu; Fujisato, Toshiya; Nam, Kwangwoo; Kishida, Akio

    2011-01-01

    Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.

  17. Photoinduced conformational changes in DNA by poly(vinyl alcohol) carrying a malachite green moiety for protecting DNA against attack by nuclease.

    PubMed

    Uda, Ryoko M; Matsui, Takashi

    2015-11-14

    Light is a highly advantageous means of specific cell targeting. Though targeted gene delivery is an important characteristic of an ideal delivery vehicle, there has been little effort to develop a photoresponsive vector. Among nonviral vectors, cationic substances interact effectively with negatively charged DNA. With this property in mind, we designed copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG) with different molecular weights. Though PVAMG has no affinity for DNA in the absence of light, it undergoes photoionization in the presence of light to afford cationic DNA binding sites. The DNA-PVAMG complex was investigated with respect to DNA conformational changes and its protective nature, which are important properties for nonviral vectors. PVAMG irradiation promoted DNA conformational transitions from coils to partial globules to compacted globules. The complex had a protective effect against DNase I after PVAMG irradiation, while DNA was degraded under dark conditions. The effect on DNA transition and the protective nature were sensitive to the molecular weight of PVAMG. The data regarding binding constants and binding mode provided insight into the structure of the DNA-PVAMG complex. To withstand DNase I attacks, complexation results in the compaction of DNA, which is further covered with PVAMG.

  18. Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions.

    PubMed

    Khan, Mansoor; Yilmaz, Erkan; Sevinc, Basak; Sahmetlioglu, Ertugrul; Shah, Jasmin; Jan, Muhammad Rasul; Soylak, Mustafa

    2016-01-01

    Magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) (MGO-DVB-VA) was synthesized and used for magnetic solid phase extraction of Pb(II), Cd(II), Cu(II), Ni(II) and Co(II) prior to their determination by flame atomic absorption spectroscopy. The adsorbent surface functional group was characterized by using FT-IR and Raman spectroscopy. XRD pattern was used to determine the layers of GO. Surface morphology and elemental composition of the adsorbent were evaluated by using SEM and EDX analysis. Various parameters, effecting adsorption efficiency like initial solution pH, adsorbent dose, type and volume of eluent, volume of sample and diverse ions effects were optimized. The preconcentration factor (PF) is 40 for all the metals and the limits of detection for Pb, Cd, Cu, Ni and Co are in the range of 0.37-2.39 µg L(-1) and relative standard deviation below 3.1%. The method was validated by using the method for certified reference materials (Tobacco Leaves (INCT-OBTL-5), Tomato Leaves (1573a), Certified Water (SPS-ww2) and Certified Water (TMDA 64-2)). The method was successfully applied for natural water and food samples.

  19. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride).

    PubMed

    Gao, Tingting; Chen, Laicheng; Li, Zhiwei; Yu, Laigui; Wu, Zhishen; Zhang, Zhijun

    2016-12-01

    A novel flame retardant, zinc hydroxystannate-decorated graphene oxide (ZHS/GO) nanohybrid, was successfully prepared and well characterized. Herein, the ZHS nanoparticles could not only enhance the flame retardancy of GO with the synergistic flame-retardant effect of ZHS but also prevent the restack of GO to improve the mechanical properties of poly (vinyl chloride) (PVC) matrix. The structure characterization showed ZHS nanoparticles were bonded onto the surface of GO nanosheets and the ZHS nanoparticles were well distributed on the surface of GO. Subsequently, resulting ZHS/GO was introduced into flexible PVC and fire hazards and mechanical properties of PVC nanocomposites were investigated. Compared to neat PVC, thermogravimetric analysis exhibited that the addition of ZHS/GO into PVC matrix led to an improvement of the charring amount and thermal stability of char residue. Moreover, the incorporation of 5 wt.% ZHS/GO imparted excellent flame retardancy to flexible PVC, as shown by increased limiting oxygen index, reduced peak heat release rate, and total heat release tested by an oxygen index meter and a cone calorimeter, respectively. In addition, the addition of ZHS/GO nanohybrids decreased the smoke products and increased the tensile strength of PVC. Above-excellent flame-retardant properties are generally attributed to the synergistic effect of GO and ZHS, containing good dispersion of ZHS/GO in PVC matrix, the physical barrier of GO, and the catalytic char function of ZHS. PMID:27071679

  20. Preparation and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrystals/ZnO-Ag multifunctional nanosized filler

    PubMed Central

    Azizi, Susan; Ahmad, Mansor Bin; Hussein, Mohd Zobir; Ibrahim, Nor Azowa; Namvar, Farideh

    2014-01-01

    A series of novel bionanocomposites were cast using different contents of zinc oxide-silver nanoparticles (ZnO-AgNPs) stabilized by cellulose nanocrystals (CNC) as multifunctional nanosized fillers in poly(vinyl alcohol)/chitosan (PVA/Cs) matrices. The morphological structure, mechanical properties, ultraviolet-visible absorption, and antimicrobial properties of the prepared films were investigated as a function of their CNC/ZnO-AgNP content and compared with PVA/chitosan/CNC bionanocomposite films. X-ray diffraction and field emission scanning electron microscopic analyses showed that the CNC/ZnO-AgNPs were homogeneously dispersed in the PVA/Cs matrix and the crystallinity increased with increasing nanosized filler content. Compared with pure PVA/Cs, the tensile strength and modulus in the films increased from 0.055 to 0.205 GPa and from 0.395 to 1.20 GPa, respectively. Ultraviolet and visible light can be efficiently absorbed by incorporating ZnO-AgNPs into a PVA/Cs matrix, suggesting that these bionanocomposite films show good visibility and ultraviolet-shielding effects. The bionanocomposite films had excellent antimicrobial properties, killing both Gram-negative Salmonella choleraesuis and Gram-positive Staphylococcus aureus. The enhanced physical properties achieved by incorporating CNC/ZnO-AgNPs could be beneficial in various applications. PMID:24790433

  1. Synthesis and viscoelastic characterization of novel hydrogels generated via photopolymerization of 1,2-epoxy-5-hexene modified poly(vinyl alcohol) for use in tissue replacement.

    PubMed

    Bader, Rebecca A

    2008-07-01

    Hydrogels have been proposed as candidates for tissue replacement; however, current systems are often highly susceptible to hydrolytic degradation and have not been shown to mimic the viscoelastic behavior of the native tissue when subjected to dynamic loading conditions. In the present work, 1,2-epoxy-5-hexene modified poly(vinyl alcohol) was crosslinked via photopolymerization to generate non-degradable hydrogels with mechanical properties and network characteristics that could be modulated through variation in the type and percentage of a monomeric additive. Complex shear moduli obtained from dynamic frequency sweeps in torsional shear were used to exemplify the differences in the viscoelastic behavior of the materials, and the corresponding changes in crosslink density were determined by rubber elasticity theory. Hydrolysis resistance was assessed by monitoring variations in the moduli of hydrogels submerged in Hank's balanced salt solution for progressively longer periods of time. Over the time-frame of the experiment, no change in the viscoelastic behavior was observed. Direct contact assays and elution tests were used to demonstrate that the system was non-cytotoxic. This study represents a successful attempt to generate a non-degradable hydrogel system with viscoelastic behavior that can be readily modulated to match that of soft biological tissues for use in tissue replacement. PMID:18359671

  2. Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Bahrami, S Hajir; Joghataei, M T

    2013-12-01

    Gum tragacanth (GT) is one of the most widely used natural gums which has found applications in many areas because of its attractive features such as biodegradability, nontoxic nature, natural availability, higher resistance to microbial attacks and long shelf-life properties. GT and poly(vinyl alcohol) (PVA) were dissolved in deionized water in different ratios i.e., 0/100, 30/70, 60/40, 50/50, 40/60, 70/30, 0/100 mass ratio of GT/PVA. Nanofibers were produced from these solutions using electrospinning technique. The effect of different electrospinning parameters such as extrusion rate of polymer solutions, solution concentration, electrode spacing distance and applied voltage on the morphology of nanofibers was examined. The antibacterial activity of nanofibers and GT solution against Staphylococcus aureus and Pseudomonas aeruginosa was examined and these nanofibers showed good antibacterial property against Gram-negative bacteria. FTIR data showed that these two polymers may be having hydrogen bonding interactions. DSC data revealed that the exothermic peak at about 194°C for PVA shifted to a lower temperature in GT/PVA blend. Human fibroblast cells adhered and proliferated well on the GT/PVA nanofiber scaffolds. MTT assay was carried out on the GT/PVA nanofiber to investigate the proliferation rate of fibroblast cells on the scaffolds.

  3. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    NASA Astrophysics Data System (ADS)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian; Wang, Wei

    2016-04-01

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (Von) and severe degradation of the memory window (ΔVon) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of Von at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔVon of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  4. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione.

    PubMed

    Kopylovich, Maximilian N; Mahmudov, Kamran T; Pombeiro, Armando J L

    2011-02-28

    1-Phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione (H(2)L) was used as an effective ionophore for copper-selective poly(vinyl) chloride (PVC) membrane electrodes. Optimization of the composition of the membrane and of the conditions of the analysis was performed, and under the optimized conditions the electrode has a detection limit of 6.30×10(-7) M Cu(II) at pH 4.0 with response time 10s and displays a linear EMF versus log[Cu(2+)] response over the concentration range 2.0×10(-6) to 5.0×10(-3) M Cu(II) with a Nernstian slope of 28.80±0.11 mV/decade over the pH range of 3.0-8.0. The sensor is stable for 9 weeks and exhibits good selectivity with respect to alkali, alkali earth and transition metal ions (e.g. Na(+), K(+), Ba(2+), Ca(2+), Zn(2+), Cd(2+), Co(2+), Mn(2+), Ni(2+), Fe(2+), Al(3+)) in the 3.0-8.0 pH range. It was successfully applied for the direct determination of copper(II) in zinc, aluminum and nickel based alloys, in soils polluted by oil, and as an indicator electrode for potentiometric titration of copper ions with EDTA. PMID:21177026

  5. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  6. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application.

    PubMed

    Fu, Ruoqiu; Li, Chenwen; Yu, Caiping; Xie, Hong; Shi, Sanjun; Li, Zhuoheng; Wang, Qing; Lu, Laichun

    2016-01-01

    This study reports on the performance of sodium alginate (SA)/poly(vinyl alcohol) (PVA)/moxifloxacin hydrochloride (MH) nanofibrous membranes (NFM) capable of providing antibacterial agent delivery for wound-dressing applications. The aim of this work was to prepare antibacterial NFM with good permeability properties by employing PVA and SA as carriers. A group of 12% PVA/2% SA solutions blended in various ratios (8:2, 7:3, 6:4, 5:5 and 4:6, v/v) and containing 0.5, 1, 2 or 4 wt% MH were studied for electrospinning into nanoscale fibermats. The optimum ratio found to form smooth fibers with uniform fibrous features was 6:4. The drug release behavior of the electrospun, the antibacterial effects on Pseudomonas aeruginosa and Staphylococcus aureus and the animal wound dressing capabilities were also investigated. As much as 80% of the MH was released from the electrospun after 10 h of incubation at 37 °C. In addition, the NFM with 0.5 MH exhibited less activity, whereas those with higher concentrations of MH exhibited greater antibacterial effect. Furthermore, the MH-loaded electrospun accelerated the rate of wound dressing compared to other groups. The results of the in vitro and in vivo experiments suggest that MH/PVA/SA nanofibers might be an interesting bioactive wound dressing for clinical applications.

  7. Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions.

    PubMed

    Xiong, Yujie; Washio, Isao; Chen, Jingyi; Cai, Honggang; Li, Zhi-Yuan; Xia, Younan

    2006-09-26

    Poly(vinyl pyrrolidone) (PVP) has been extensively used in the solution-phase synthesis of many types of colloidal particles, where it is mainly considered as a steric stabilizer or capping agent with a major role to protect the product from agglomeration. In a recent study, we discovered that the hydroxyl end groups of PVP could also serve as a very mild reductant for kinetically controlled synthesis of Ag nanoplates with yields as high as 75%. Here we further demonstrate that hydroxyl-terminated PVP is also a well-suited reductant for the aqueous synthesis of circular, triangular, and hexagonal nanoplates made of other noble metals including Pd, Au, and Pt. The reduction kinetics of a metal salt by the hydroxyl end groups of PVP can be maneuvered in at least two different ways to facilitate the evolution of plate morphology: (i) by adjusting the molar ratio of PVP to the salt precursor and (ii) by altering the molecular weight of PVP. Unlike previously reported studies of Ag and Au thin plates, light was found to have a negligible role in the present synthesis. PMID:16981776

  8. Rapid, noninvasive quantitative determination of acyclovir in pharmaceutical solid dosage forms through their poly(vinyl chloride) blister package by solid-state Fourier transform Raman spectroscopy.

    PubMed

    Skoulika, Stavroula G; Georgiou, Constantinos A

    2003-04-01

    Fourier transform (FT) Raman spectroscopy based on band intensity or band area measurements was used for the quantitative determination of acyclovir in pharmaceutical solid dosage forms through their poly(vinyl chloride) blister package. Univariate calibration using the bands observed at 1690, 1630, 1574, 1482, 1181, 578, and 508 cm(-1) was found to be sufficient for the analysis. Calibration curves were linear, the correlation coefficients being 0.997-0.9993 and 0.996-0.9991 for band intensity and band area measurements, respectively. Results obtained compare well, as indicated by the t-test, with those obtained by the current United States Pharmacopoeia (USP 24) and National Formulary (NF 19) method. Precision ranged from 0.7-4.5 and 0.4-4.0% RSD (n = 3) for band intensity and band area measurements, respectively. The developed nondestructive FT-Raman method is rapid, simple, and can be used for the on-line, real-time monitoring of acyclovir formulation production lines.

  9. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface.

  10. Cellulose Nanocrystals/ZnO as a Bifunctional Reinforcing Nanocomposite for Poly(vinyl alcohol)/Chitosan Blend Films: Fabrication, Characterization and Properties

    PubMed Central

    Azizi, Susan; Ahmad, Mansor B.; Ibrahim, Nor Azowa; Hussein, Mohd Zobir; Namvar, Farideh

    2014-01-01

    In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses. PMID:24945313

  11. A simple green route to obtain poly(vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs.

    PubMed

    López-Córdoba, Alex; Castro, Guillermo R; Goyanes, Silvia

    2016-12-01

    Poly(vinyl alcohol) (PVA) is a hydrophilic, biocompatible and nontoxic polymer. However, because of its low water-resistance, some applications for PVA-based materials are limited (e.g., drug delivery systems and wound dressings). In the current work, PVA mats containing tetracycline hydrochloride (TC) were successfully developed by electrospinning. In order to improve the water stability of the systems, the cross-linking of the PVA matrix was induced by citric acid (CA) addition together with heating treatments (150°C or 190°C for 3min). TC presence led to a strong increase in the electrical conductivity of the blends and as a result, fibers with about 44% lower diameter (270nm) than that of the corresponding unloaded mats (485nm) were obtained. Laser scanning confocal microscopy images indicated that TC was well distributed along the PVA nanofibers. The mats were evaluated by FTIR, which revealed chemical interactions between PVA hydroxyl groups and CA carboxylic ones. The treatment at 150°C for 3min proved to be the more suitable for the preparation of TC-containing mats with improved water resistance, maintaining the TC antimicrobial activity against both Escherichia coli and Staphylococcus aureus almost unaltered. These mats showed a burst release of TC, giving around 95% of the drug within the first hour of immersion in water. PMID:27612766

  12. Hemocompatibility of Poly(vinyl alcohol)-Gelatin Core-Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation.

    PubMed

    Merkle, Valerie M; Martin, Daniel; Hutchinson, Marcus; Tran, Phat L; Behrens, Alana; Hossainy, Samir; Sheriff, Jawaad; Bluestein, Danny; Wu, Xiaoyi; Slepian, Marvin J

    2015-04-22

    In this study, we evaluate coaxial electrospun nanofibers with gelatin in the shell and poly(vinyl alcohol) (PVA) in the core as a potential vascular material by determining fiber surface roughness, as well as human platelet deposition and activation under varying conditions. PVA scaffolds had the highest surface roughness (Ra=65.5±6.8 nm) but the lowest platelet deposition (34.2±5.8 platelets) in comparison to gelatin nanofibers (Ra=36.8±3.0 nm and 168.9±29.8 platelets) and coaxial nanofibers (1 Gel:1 PVA coaxial, Ra=24.0±1.5 nm and 150.2±17.4 platelets. 3 Gel:1 PVA coaxial, Ra=37.1±2.8 nm and 167.8±15.4 platelets). Therefore, the chemical structure of the gelatin nanofibers dominated surface roughness in platelet deposition. Due to their increased stiffness, the coaxial nanofibers had the highest platelet activation rate, rate of thrombin formation, in comparison to gelatin and PVA fibers. Our studies indicate that mechanical stiffness is a dominating factor for platelet deposition and activation, followed by biochemical signals, and lastly surface roughness. Overall, these coaxial nanofibers are an appealing material for vascular applications by supporting cellular growth while minimizing platelet deposition and activation. PMID:25815434

  13. Cross-linked poly (vinyl alcohol)/sulfosuccinic acid polymer as an electrolyte/electrode material for H2-O2 proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Ebenezer, D.; Deshpande, Abhijit P.; Haridoss, Prathap

    2016-02-01

    Proton exchange membrane fuel cell (PEMFC) performance with a cross-linked poly (vinyl alcohol)/sulfosuccinic acid (PVA/SSA) polymer is compared with Nafion® N-115 polymer. In this study, PVA/SSA (≈5 wt. % SSA) polymer membranes are synthesized by a solution casting technique. These cross-linked PVA/SSA polymers and Nafion are used as electrolytes and ionomers in catalyst layers, to fabricate different membrane electrode assemblies (MEAs) for PEMFCs. Properties of each MEA are evaluated using scanning electron microscopy, contact angle measurements, impedance spectroscopy and hydrogen pumping technique. I-V characteristics of each cell are evaluated in a H2-O2 fuel cell testing fixture under different operating conditions. PVA/SSA ionomer causes only an additional ≈4% loss in the anode performance compared to Nafion ionomer. The maximum power density obtained from PVA/SSA based cells range from 99 to 117.4 mW cm-2 with current density range of 247 to 293.4 mA cm-2. Ionic conductivity of PVA/SSA based cells is more sensitive to state of hydration of MEA, while maximum power density obtained is less sensitive to state of hydration of MEA. Maximum power density of cross-linked PVA/SSA membrane based cell is about 35% that of Nafion® N-115 based cell. From these results, cross-linked PVA/SSA polymer is identified as potential candidate for PEMFCs.

  14. Cyclic voltammetric determination of free and total sulfite in muscle foods using an acetylferrocene-carbon black-poly(vinyl butyral) modified glassy carbon electrode.

    PubMed

    Wang, Li; Xu, Lei

    2014-10-22

    A novel method for the selective extraction of free (pH 8.4) and total sulfite (pH 11.0) from muscle foods and the following determination by a voltammetric sensor was reported. The proposed method was based on the eletrocatalytic oxidation of sulfite at modified glassy carbon electrode (GCE) fabricated by immobilizing 9 μg of acetylferrocene on the surface of GCE along with 35 μg of carbon black to improve the electron transfer within poly(vinyl butyral) membrane matrix. The external standard calibration curve was linear in the range of 0.03-4.0 mmol L(-1) with a detection limit of 15 μmol L(-1). This method had been applied to the determination of free and total sulfite in shrimp muscle fortified samples and compared with an ion chromatography method. The proposed electrode and analysis methods were proven to be sensitive, accurate, and rapid and exhibited very good reproducibility and stability under the used conditions.

  15. A wall-less poly(vinyl alcohol) cryogel flow phantom with accurate scattering properties for transcranial Doppler ultrasound propagation channels analysis.

    PubMed

    Weir, Alexander J; Sayer, Robin; Cheng-Xiang Wang; Parks, Stuart

    2015-08-01

    Medical phantoms are frequently required to verify image and signal processing systems, and are often used to support algorithm development for a wide range of imaging and blood flow assessments. A phantom with accurate scattering properties is a crucial requirement when assessing the effects of multi-path propagation channels during the development of complex signal processing techniques for Transcranial Doppler (TCD) ultrasound. The simulation of physiological blood flow in a phantom with tissue and blood equivalence can be achieved using a variety of techniques. In this paper, poly (vinyl alcohol) cryogel (PVA-C) tissue mimicking material (TMM) is evaluated in conjunction with a number of potential scattering agents. The acoustic properties of the TMMs are assessed and an acoustic velocity of 1524ms(-1), an attenuation coefficient of (0:49) × 10(-4)fdBm(1)Hz(-1), a characteristic impedance of (1.72) × 10(6)Kgm(-2)s(-1) and a backscatter coefficient of (1.12) × 10(-28)f(4)m(-1)Hz(-4)sr(-1) were achieved using 4 freeze-thaw cycles and an aluminium oxide (Al(2)O(3)) scattering agent. This TMM was used to make an anatomically realistic wall-less flow phantom for studying the effects of multipath propagation in TCD ultrasound.

  16. Chitosan/poly(vinyl alcohol)/bovine bone powder biocomposites: A potential biomaterial for the treatment of atopic dermatitis-like skin lesions.

    PubMed

    Alves, Nátali O; da Silva, Gabriela T; Weber, Douglas M; Luchese, Cristiane; Wilhelm, Ethel A; Fajardo, André R

    2016-09-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects a large percent of the world́s population. This long-lasting skin disease has been treated by different approaches according to its causative agent and severity. Nonetheless, the use of advanced biomaterials to treat AD is poorly explored. The present study assessed the protective effectiveness of biocomposites films based on chitosan (Cs), poly(vinyl alcohol) (PVA) and bovine bone powder (BBP) on AD-like skin lesions. These original biocomposites were fully characterized and in vivo biological assays concerning the AD treatment were performed using a mouse model induced by 2,4-dinitrochlorobenzene (DNCB). The dorsal skin and ear of Balb/c female mice were challenging cutaneously with DNCB. Our findings demonstrate BBP-based biocomposite attenuated and treated considerably the DNCB-induced skin lesions in an AD-like model. In this sense, this study suggests that this original biocomposite may be applied as an active biomaterial for AD treatment. PMID:27185122

  17. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface. PMID:26686158

  18. Preparation and characterization of mucoadhesive nanoparticles of poly (methyl vinyl ether-co-maleic anhydride) containing glycyrrhizic acid intended for vaginal administration.

    PubMed

    Aguilar-Rosas, Irene; Alcalá-Alcalá, Sergio; Llera-Rojas, Viridiana; Ganem-Rondero, Adriana

    2015-01-01

    Traditional vaginal preparations reside in the vaginal cavity for relatively a short period of time, requiring multiple doses in order to attain the desired therapeutic effect. Therefore, mucoadhesive systems appear to be appropriate to prolong the residence time in the vaginal cavity. In the current study, mucoadhesive nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride) (PVM/MA) intended for vaginal delivery of glycyrrhizic acid (GA) (a drug with well-known antiviral properties) were prepared and characterized. Nanoparticles were generated by a solvent displacement method. Incorporation of GA was performed during nanoprecipitation, followed by adsorption of drug once nanoparticles were formed. The prepared nanoparticles were characterized in terms of size, Z-potential, morphology, drug loading, interaction of GA with PVM/MA (by differential scanning calorimetry) and the in vitro interaction of nanoparticles with pig mucin (at two pH values, 3.6 and 5; with and without GA adsorbed). The preparation method led to nanoparticles of a mean diameter of 198.5 ± 24.3 nm, zeta potential of -44.8 ± 2.8 mV and drug loading of 15.07 ± 0.86 µg/mg polymer. The highest mucin interaction resulted at pH 3.6 for nanoparticles without GA adsorbed. The data obtained suggest the promise of using mucoadhesive nanoparticles of PVM/MA for intravaginal delivery of GA.

  19. Poly(vinyl pyrrolidone)-assisted hydrothermal synthesis and enhanced visible-light photocatalytic performance of oxygen-rich bismuth oxychlorides.

    PubMed

    Chang, Fei; Luo, Jieru; Wang, Xiaofang; Xie, Yunchao; Deng, Baoqing; Hu, Xuefeng

    2015-12-01

    A series of novel oxygen-rich bismuth oxychloride (Bi12O17Cl2) were synthesized through a facile poly(vinyl pyrrolidone) (PVP)-assisted hydrothermal route. These obtained Bi12O17Cl2 samples were characterized by various physicochemical techniques. It was found that a proper addition amount of PVP could promote the transformation of Bi12O17Cl2 morphology from irregular clusters to three-dimensional hierarchical flower-like microspheres that were nominated as sample BP2. As-synthesized samples were subjected to a photocatalytic degradation of dye Rhodamine B (RhB) or 2,4-dichlorophenol (2,4-DCP) under visible light. Among all candidates, the sample BP2 with a hierarchical flower-like morphology showed the best degradation efficiency for RhB and 2,4-DCP. The apparent rate constant of sample BP2 in terms of degradation of RhB was nearly 5.7 and 45 times that of unmodified BP0 and N-TiO2. The enhanced photocatalytic performance could be ascribed to synergetic effects including unique hierarchical morphologies, large specific surface area, small particle size, good crystallinity, and suitable band structures. A possible mechanism of catalytic degradation was finally proposed basing upon the active species trapping experiments.

  20. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  1. Photoinduced conformational changes in DNA by poly(vinyl alcohol) carrying a malachite green moiety for protecting DNA against attack by nuclease.

    PubMed

    Uda, Ryoko M; Matsui, Takashi

    2015-11-14

    Light is a highly advantageous means of specific cell targeting. Though targeted gene delivery is an important characteristic of an ideal delivery vehicle, there has been little effort to develop a photoresponsive vector. Among nonviral vectors, cationic substances interact effectively with negatively charged DNA. With this property in mind, we designed copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG) with different molecular weights. Though PVAMG has no affinity for DNA in the absence of light, it undergoes photoionization in the presence of light to afford cationic DNA binding sites. The DNA-PVAMG complex was investigated with respect to DNA conformational changes and its protective nature, which are important properties for nonviral vectors. PVAMG irradiation promoted DNA conformational transitions from coils to partial globules to compacted globules. The complex had a protective effect against DNase I after PVAMG irradiation, while DNA was degraded under dark conditions. The effect on DNA transition and the protective nature were sensitive to the molecular weight of PVAMG. The data regarding binding constants and binding mode provided insight into the structure of the DNA-PVAMG complex. To withstand DNase I attacks, complexation results in the compaction of DNA, which is further covered with PVAMG. PMID:26339777

  2. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering.

    PubMed

    Garnica-Palafox, I M; Sánchez-Arévalo, F M; Velasquillo, C; García-Carvajal, Z Y; García-López, J; Ortega-Sánchez, C; Ibarra, C; Luna-Bárcenas, G; Solís-Arrieta, L

    2014-01-01

    The development and characterization of a hybrid hydrogel based on chitosan (CS) and poly(vinyl alcohol) (PVA) chemically cross-linked with epichlorohydrin (ECH) is presented. The mechanical response of these hydrogels was evaluated by uniaxial tensile tests; in addition, their structural properties such as average molecular weight between cross-link points (Mcrl), mesh size (DN), and volume fraction (v(s)) were determined. This was done using the equivalent polymer network theory in combination with the obtained results from tensile and swelling tests. The films showed Young's modulus values of 11 ± 2 MPa and 9 ± 1 MPa for none irradiated and ultraviolet (UV) irradiated hydrogels, respectively. The cell viability was assessed using Calcein AM and Ethidium homodimer-1 assay and environmental scanning electron microscopy. The 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan thiazolyl blue formazan (MTT Formazan assay) results did not show cytotoxic effects; this was in good agreement with nuclear magnetic resonance and fourier transform infrared spectroscopies; their results did not show traces of ECH. This indicated that after the crosslinking process, there was no free ECH; furthermore, any possibility of ECH release in the construct during cell culture was discarded. The CS-PVA-ECH hybrid hydrogel allowed cell growth and extracellular matrix formation and showed adequate mechanical, structural, and biological properties for potential use in tissue engineering applications.

  3. Determination of butyltin and octyltin stabilizers in poly(vinyl chloride) products by headspace solid-phase microextraction and gas chromatography with flame-photometric detection.

    PubMed

    Ou, Qin-Ren; Whang, Chen-Wen

    2006-09-01

    Headspace solid-phase microextraction (HS-SPME) and gas chromatography with flame photometric detection (GC-FPD) have been investigated for determination of butyltin and octyltin stabilizers in poly(vinyl chloride) (PVC) products. The organotin stabilizers were first released from the plastic matrix by dissolving the PVC sample in tetrahydrofuran (THF). The stabilizers were then hydrolyzed to the chloride forms, by treatment with 6 mol L(-1) HCl, then derivatized with sodium tetraethylborate (NaBEt4) in 0.2 mol L(-1) sodium acetate buffer (pH 4.5) at 50 degrees C. HS-SPME was performed with a fused-silica fiber coated with a 100-microm film of polydimethylsiloxane (PDMS). The collected organotin compounds were then desorbed in the GC injector at 280 degrees C and analyzed by GC-FPD. Linearity (r > or =0.994) over a concentration of approximately two orders of magnitude was usually obtained. Limits of quantitation (LOQ) of the four organotin compounds studied, viz., monobutyltin (MBT), dibutyltin (DBT), monooctyltin (MOT), and dioctyltin (DOT), were in the range 0.3-1.0 ng Sn mL(-1). Recovery was >90% for butyltins and >80% for octyltins. The method was validated by analyzing two reference standard PVC sheets with known organotin content. The applicability of the method to analysis of organotin stabilizers in commercial PVC products was also demonstrated. PMID:16896617

  4. Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes

    NASA Astrophysics Data System (ADS)

    Şahin, Alpay; Ar, İrfan

    2015-08-01

    The aim of this study is to synthesize a composite membrane having high proton conductivity, ion exchange capacity and chemical stability. In order to achieve this aim, poly(vinyl alcohol) (PVA) based composite membranes are synthesized by using classic sol-gel method. Boric acid (H3BO3) and boron phosphate (BPO4) are added to the membrane matrix in different ratios in order to enhance the membrane properties. Characterization tests, i.e; FT-IR analysis, mechanical strength tests, water hold-up capacities, swelling properties, ion exchange capacities, proton conductivities and fuel cell performance tests of synthesized membranes are carried out. As a result of performance experiments highest performance values are obtained for the membrane containing 15% boron phosphate at 0.6 V and 750 mA/cm2. Water hold-up capacity, swelling ratio, ion exchange capacity and proton conductivity of this membrane are found as 56%, 8%, 1.36 meq/g and 0.37 S/cm, respectively. These values are close to the values obtained ones for perfluorosulphonic acid membranes. Therefore this membrane can be regarded as a promising candidate for usage in fuel cells.

  5. A selective optical sensor for beryllium determination based on incorporating of 1,8-dihydroxyanthrone in a poly (vinyl chloride) membrane.

    PubMed

    Beiraghi, Assadollah; Babaee, Saeed; Roshdi, Mina

    2011-06-15

    A new optical sensor was fabricated for determination of beryllium ions. The optode membrane was prepared by incorporation of 1,8-dihydroxyanthrone and sodium tetraphenylborate (NaTPB) in a plasticized poly (vinyl chloride) membrane containing ortho-nitrophenyl octyl ether (o-NPOE) as a plasticizer. Color of the sensing membrane in contact with Be(2+) ions at pH 10.5, was changed from orange to red. The different variables affecting uptake efficiency were evaluated and optimized. Under the optimum conditions (i.e. 28.0% PVC, 60.0% o-NPOE, 8.0% 1,8-dihydroxyanthrone, 4.0% NaTPB and response time of 6 min), the proposed sensor displayed a linear range of 0.1-5 μg mL(-1) with a detection limit of 0.03 μg mL(-1). Also the precision (RSD%) was better than 2.9% for 7 replicate determinations of 1 μg mL(-1) Be in various membranes. The selectivity of the probe was studied for some cations and anions. Experimental results showed that the sensor was high selective in the presence of ethylenediaminetetraacetic acid (EDTA) as a masking agent and could be used as an effective tool in analyzing the beryllium content of water samples.

  6. Significant effects of sodium acetate, an impurity present in poly(vinyl alcohol) solution on the radiolytic formation of silver nanoparticle

    NASA Astrophysics Data System (ADS)

    Shin, Junhwa; Kim, Yunhye; Lee, Kiwon; Lim, Youn Mook; Nho, Young Chang

    2008-07-01

    A silver nanoparticle (AgNPs) stabilizer, polyvinyl alcohol (PVA) generally contains a relatively large amount of sodium acetate (NaOAc) as an impurity (up to several weight percentages) as a result of a base-catalyzed hydrolysis of poly(vinyl acetate) (PVAc). In this study, the effects of NaOAc on the radiolytic formation of AgNPs in PVA solutions were studied by using UV/vis spectroscopy. Several AgNPs were prepared by γ-ray irradiation using 60Co source at various doses in the presence of various amounts of NaOAc. The UV data of the AgNPs observed at around 410 nm show that more AgNPs are generally produced as the NaOAc concentration in the PVA solution increases. Furthermore, no significant absorption band of the AgNPs was observed when the purified PVA containing a very small amount of NaOAc (less than 3×10 -4 M) was applied with 1×10 -3 M AgNO 3 up to 10 kGy. These results reveal that NaOAc present as an impurity in PVA, plays an important role in the radiolytic formation of AgNPs.

  7. Preparation of ferric ion crosslinked acrylamide grafted poly (vinyl alcohol)/sodium alginate microspheres and application in controlled release of anticancer drug 5-fluorouracil.

    PubMed

    Şanlı, Oya; Olukman, Merve

    2014-05-01

    Ionically crosslinked microspheres of acrylamide (AAm) grafted poly (vinyl alcohol) (PVA)/sodium alginate (NaAlg) were prepared by crosslinking with FeCl3 and 5-fluorouracil (5-FU), which is an anticancer drug and was successfully encapsulated into the microspheres. The graft copolymer (PVA-g-PAAm) was characterized by using Fourier transform infrared spectroscopy (FTIR) and elemental analysis. The prepared microspheres were characterized by FTIR and scanning electron microscopy (SEM). Microspheres were also characterized by particle diameter, equilibrium swelling values and release profiles. The release studies were carried out at three pH values 1.2, 6.8 and 7.4, respectively, each for 2 h. The effects of preparation conditions as PVA-g-PAAm/NaAlg ratio, drug/polymer ratio, crosslinker concentration and exposure time to FeCl3 on the release of 5-FU were investigated for 6 h at 37 °C. The highest 5-FU release was found to be as 99.57% (w/w) at the end of 6 h for PVA-g-PAAm/NaAlg ratio of 1:4 (w/w), drug/polymer ratio of 1:8 (w/w), crosslinker concentration of 0.05 M and exposure time of 10 min. The release results were also supported by the swelling measurements of the microspheres. Release kinetics was described by Fickian and non-Fickian approaches.

  8. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride)

    NASA Astrophysics Data System (ADS)

    Gao, Tingting; Chen, Laicheng; Li, Zhiwei; Yu, Laigui; Wu, Zhishen; Zhang, Zhijun

    2016-04-01

    A novel flame retardant, zinc hydroxystannate-decorated graphene oxide (ZHS/GO) nanohybrid, was successfully prepared and well characterized. Herein, the ZHS nanoparticles could not only enhance the flame retardancy of GO with the synergistic flame-retardant effect of ZHS but also prevent the restack of GO to improve the mechanical properties of poly (vinyl chloride) (PVC) matrix. The structure characterization showed ZHS nanoparticles were bonded onto the surface of GO nanosheets and the ZHS nanoparticles were well distributed on the surface of GO. Subsequently, resulting ZHS/GO was introduced into flexible PVC and fire hazards and mechanical properties of PVC nanocomposites were investigated. Compared to neat PVC, thermogravimetric analysis exhibited that the addition of ZHS/GO into PVC matrix led to an improvement of the charring amount and thermal stability of char residue. Moreover, the incorporation of 5 wt.% ZHS/GO imparted excellent flame retardancy to flexible PVC, as shown by increased limiting oxygen index, reduced peak heat release rate, and total heat release tested by an oxygen index meter and a cone calorimeter, respectively. In addition, the addition of ZHS/GO nanohybrids decreased the smoke products and increased the tensile strength of PVC. Above-excellent flame-retardant properties are generally attributed to the synergistic effect of GO and ZHS, containing good dispersion of ZHS/GO in PVC matrix, the physical barrier of GO, and the catalytic char function of ZHS.

  9. Simple and non-toxic fabrication of poly(vinyl alcohol)-patterned polymer surface for the formation of cell patterns

    NASA Astrophysics Data System (ADS)

    Hwang, In-Tae; Jin, Yu-Ran; Oh, Min-Suk; Jung, Chan-Hee; Choi, Jae-Hak

    2014-10-01

    In this study, a facile and non-toxic method for the formation of cell-adhesive poly(vinyl alcohol) (PVA) patterns on the surface of a non-biological polystyrene substrate (NPS) is developed to control cellular micro-organization. PVA thin films spin-coated onto the NPS are selectively irradiated with 150 keV H+ ions through a pattern mask and developed with deionized water to form negative-type PVA patterns. Well-defined stripe patterns of PVA with a width of 100 μm are created on the NPS at a higher fluence than 5 × 1015 ions/cm2, and their surface chemical compositions are changed by ion irradiation without any significant morphological change. Based on the results of the protein adsorption test and in vitro cell culture, cancer cells are preferentially adhered and proliferated onto the more hydrophilic PVA regions of the PVA-patterned NPS, resulting in well-defined cell patterns.

  10. Design of photoresists with reduced environmental impact. 1: Water-soluble resists based on photo-cross-linking of poly(vinyl alcohol)

    SciTech Connect

    Havard, J.M.; Shim, S.Y.; Frechet, J.M.J.; Lin, Q.; Medeiros, D.R.; Willson, C.G.; Byers, J.D.

    1999-03-01

    Various approaches to environmentally improved photoresist materials have been reported in the literature. The feasibility of a chemically amplified fully water-soluble negative-tone resist based upon the cross-linking of a poly(vinyl alcohol) (PVA) matrix resin has been demonstrated. Two-component resists incorporating PVA and (2,4-dihydroxyphenyl)dimethylsulfonium triflate as a water-soluble photoacid generator were formulated in deionized water and spin-coated onto bare silicon wafers. Negative-tone images were obtained upon irradiation at 254 nm, postbaking, and subsequent development in pure water. The two-component resist suffered from swelling during development, but improved performance was obtained through the addition of a cross-linking agent, hexamethoxymethylmelamine (HMMM). The resulting three-component, water-soluble resist was able to resolve micron-sized images using a 248 nm stepper, at a dose of ca. 200 mJ/cm{sup 2}. Model studies conducted using {sup 13}C NMR monitoring with 2,4-pentanediol as a model for PVA showed that under acidic catalysis HMMM reacts to form active electrophilic species that add to the diol, affording ether linkages with concomitant liberation of methanol.

  11. Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Zhu, H.-Y.; Chen, H.-H.; Yao, J.; Fu, Y.-Q.; Zhang, Z.-Y.; Xu, Y.-M.

    2014-11-01

    Mesoporous titania spheres were prepared by modified sol-gel method using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Effects of calcination temperature on physical parameters were investigated by X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform infrared (FT-IR) spectra, thermogravimetry and differential thermal analyses (TG-DTA), high-resolution transmission electron microscope (HRTEM) and scanning electron microscopy (SEM). The photocatalytic activity of mesoporous titania spheres prepared was also evaluated by photocatalytic degradation of phenol as a model molecule under UV irradiation. With increasing calcination temperature, average crystallite size and pore size increased. In contrast, Brunauer-Emmett-Teller (BET) specific surface areas, porosity and pore volumes steadily decreased. Results of characterization proved that prepared titania spheres with highly organized pores were mesoporous structure. The photocatalytic activity of mesoporous titania spheres calcined at 500 °C was more effective than those calcined at other temperatures, which were attributed to the porous structure, large BET surface area, crystalline, and smaller crystallite size. This work may provide new insights into the preparation of novel mesoporous titania spheres and further practical applications in the treatment of wastewater.

  12. The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-12-01

    Nanoparticles of CoFe2O4 were synthesized by hydrothermal process at 190 °C with and without poly vinyl alcohol (PVA) addition using treatment durations of 1.5-6 h. The synthesized powders were characterized with X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), Field emission scanning electron microscope (FESEM) and vibration sample magnetometer (VSM) techniques. XRD results show presence of CoFe2O4 as the main phase and Co3O4 as the lateral phase in some samples. The results show that in the samples synthesized without PVA addition considerable amount of lateral phase is present after 3 h of hydrothermal treatment while with PVA addition this phase is undetectable in the XRD patterns of the sample synthesized at the same conditions. Microstructural studies represent increasing of particle size with increasing of hydrothermal duration and formation of coarser particles with PVA addition. The highest maximum magnetization (Mmax) values in both of the samples that were synthesized with and without PVA addition are about 59 emu/g that were obtained after 4.5 h of hydrothermal treatment. Intrinsic coercive field (iHc) value of the sample without PVA addition increases from 210 to 430 Oe. While with PVA addition the iHc value changes from 83 Oe to 493 Oe. The mechanism of changes in Mmax and iHc values has been explained.

  13. Hydrogenation induced deviation of temperature and concentration dependences of polymer-solvent interactions in poly(vinyl chloride) and a new eco-friendly plasticizer

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Chen, Wei; Shen, Jianyi; Xue, Gi

    2015-06-01

    As a substitute for di-2-ethylhexyl phthalate (DOP), a new eco-friendly plasticizer, di(2-ethylhexyl) cyclohexane-1,2-dicarboxylate (DEHHP), was systematically studied in this work, mainly focusing on its interaction with poly(vinyl chloride) (PVC). The temperature and concentration dependences of polymer-solvent interactions in PVC/DEHHP were systematically investigated by rheology, low-field NMR and molecular dynamics simulations, and the results were quite different from those in PVC/DOP. With temperature increasing or PVC concentration decreasing, rheology experiments revealed that polymer-solvent interactions in PVC/DEHHP were weaker than that in PVC/DOP. Low-field 1H NMR results showed that the number of polymer-solvent complexes decreased as temperature increased. A faster decreasing rate of this number made the polymer-solvent interactions weaker in PVC/DEHHP than in PVC/DOP. Molecular dynamics simulations were further performed to study the role of polymer-solvent hydrogen bonding interactions in the systems. The radial distribution function showed that heating and dilution both resulted in faster molecular motions, and disassociation of the hydrogen bonds in the simplex hydrogen bonding system. Therefore, heating and dilution had an equivalent effect on the polymer-solvent interactions.

  14. Biodegradable and biocompatible epoxidized vegetable oil modified thermostable poly(vinyl chloride): thermal and performance characteristics post biodegradation with Pseudomonas aeruginosa and Achromobacter sp.

    PubMed

    Das, Gautam; Bordoloi, Naba K; Rai, Sudhir K; Mukherjee, Ashis K; Karak, Niranjan

    2012-03-30

    The increased production of municipal solid waste by the disposal of plastic materials heightens the urgency to develop biodegradable materials for daily use. In vitro-biodegradation study on poly(vinyl chloride) (PVC) plasticized by epoxidized Mesua ferrea L. seed oil at three different weight percentages (PVC/ENO ratio of 75/25, 50/50 and 25/75) was conducted by using Pseudomonas aeruginosa and Achromobacter sp. bacteria. The test bacterial species were able to grow on the polymer matrix by using it as a source of energy; however the pristine PVC did not support the microbial growth. The PVC/ENO material of 25/75 ratio showed the highest percent (%) of biodegradation compared to other tested systems. The bacterial count and the dry biomass post 180 days of inoculation in 25/75 plasticized PVC suggested bacterial growth at the expense of degradation of the system. The tensile strength of 25/75 PVC/ENO system, post 180 days of inoculation by Pseudomonas aeruginosa and Achromobacter sp. decreased by about 53% and 43% respectively. Further, surface erosion phenomenon and structural change of the matrix after bacterial growth, as studied by FTIR and SEM analysis of PVC/ENO of 25/75 ratio exhibited noticeable deterioration post 180 days of inoculation.

  15. Dielectric and conductivity characteristics of CuCl2 doped poly(N-vinyl carbazole) and its hybrid nanocomposite with Fe3O4.

    PubMed

    Haldar, Ipsita; Biswas, Mukul; Nayak, Arabinda

    2014-08-01

    Copper(II) chloride (CuCl2) doped poly(N-vinyl carbazole) (PNVC)-ferric oxide (Fe3O4) hybrid composites have been prepared and characterized by Fourier transform infrared spectroscopic studies, UV-Vis spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray diffraction analyses and evaluated in regard to dielectric response and ac/dc conductivity characteristics. HRTEM images for CuCl2-(PNVC-Fe3O4) composite indicate the co-existence of both the CuCl2 and Fe3O4 nanoparticles in the composite and characteristic lattice fringes are clearly observed which endorse the formation of thin layer interfaces between Fe3O4 and CuCl2 nanoparticles. The dielectric constants of the CuCl2 doped PNVC and PNVC-Fe3O4 composites increase substantially relative to the corresponding values of the polymer and the polymer composite respectively. Likewise, the conductivities (ac and dc) are also improved substantially after doping with CuCl2. The dependence of these functional properties on the extent of metal salt loading has been evaluated and a quantitative estimation of the contribution of the grain boundary and resistance parameters has been attempted in terms of Maxwell-Wagner two-layered model. PMID:25936001

  16. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Liau, Jiun-Jia

    2013-10-15

    The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4×10(-2) MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30-60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold. PMID:23987384

  17. A simple green route to obtain poly(vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs.

    PubMed

    López-Córdoba, Alex; Castro, Guillermo R; Goyanes, Silvia

    2016-12-01

    Poly(vinyl alcohol) (PVA) is a hydrophilic, biocompatible and nontoxic polymer. However, because of its low water-resistance, some applications for PVA-based materials are limited (e.g., drug delivery systems and wound dressings). In the current work, PVA mats containing tetracycline hydrochloride (TC) were successfully developed by electrospinning. In order to improve the water stability of the systems, the cross-linking of the PVA matrix was induced by citric acid (CA) addition together with heating treatments (150°C or 190°C for 3min). TC presence led to a strong increase in the electrical conductivity of the blends and as a result, fibers with about 44% lower diameter (270nm) than that of the corresponding unloaded mats (485nm) were obtained. Laser scanning confocal microscopy images indicated that TC was well distributed along the PVA nanofibers. The mats were evaluated by FTIR, which revealed chemical interactions between PVA hydroxyl groups and CA carboxylic ones. The treatment at 150°C for 3min proved to be the more suitable for the preparation of TC-containing mats with improved water resistance, maintaining the TC antimicrobial activity against both Escherichia coli and Staphylococcus aureus almost unaltered. These mats showed a burst release of TC, giving around 95% of the drug within the first hour of immersion in water.

  18. Preparation of zinc hydroxystannate-decorated graphene oxide nanohybrids and their synergistic reinforcement on reducing fire hazards of flexible poly (vinyl chloride).

    PubMed

    Gao, Tingting; Chen, Laicheng; Li, Zhiwei; Yu, Laigui; Wu, Zhishen; Zhang, Zhijun

    2016-12-01

    A novel flame retardant, zinc hydroxystannate-decorated graphene oxide (ZHS/GO) nanohybrid, was successfully prepared and well characterized. Herein, the ZHS nanoparticles could not only enhance the flame retardancy of GO with the synergistic flame-retardant effect of ZHS but also prevent the restack of GO to improve the mechanical properties of poly (vinyl chloride) (PVC) matrix. The structure characterization showed ZHS nanoparticles were bonded onto the surface of GO nanosheets and the ZHS nanoparticles were well distributed on the surface of GO. Subsequently, resulting ZHS/GO was introduced into flexible PVC and fire hazards and mechanical properties of PVC nanocomposites were investigated. Compared to neat PVC, thermogravimetric analysis exhibited that the addition of ZHS/GO into PVC matrix led to an improvement of the charring amount and thermal stability of char residue. Moreover, the incorporation of 5 wt.% ZHS/GO imparted excellent flame retardancy to flexible PVC, as shown by increased limiting oxygen index, reduced peak heat release rate, and total heat release tested by an oxygen index meter and a cone calorimeter, respectively. In addition, the addition of ZHS/GO nanohybrids decreased the smoke products and increased the tensile strength of PVC. Above-excellent flame-retardant properties are generally attributed to the synergistic effect of GO and ZHS, containing good dispersion of ZHS/GO in PVC matrix, the physical barrier of GO, and the catalytic char function of ZHS.

  19. Solvent dewaxing waxy hydrocarbon distillate oils using a combination wax-naphthalene condensate and poly-dialkylfumarate/vinyl acetate copolymer dewaxing aid

    SciTech Connect

    Briens, C.L.; Sankey, B.M.

    1984-07-24

    This invention relates to solvent dewaxing processes for dewaxing waxy hydrocarbon oil distillates employing a dewaxing aid which dewaxing aid is a mixture of (a) a poly-dialkylfumarate/vinyl acetate copolymer and (b) a wax-naphthalene condensation product. Component (a) has pendent alkyl side chain groups of from 16 to 30 carbon atoms in length (excluding branching) with an average pendent side chain carbon length of predominantly (>50%) C/sub 22/. Component (a) has a number average molecular weight of from about 1,000 to 100,000 preferably greater than about 5,000. Component (b) has a number average molecular weight of at least about 1,000. The combination (a) and (b) may be employed in a weight ratio (A)/(B) within the range from about 1/10 to 20/1 preferably about 1/3 to 6/1 most preferably about 3/1 and at an aid dose level ranging from about 0.005 to 2.0 wt. % preferably 0.01 to 0.2 wt. % active ingredient.

  20. Luteinizing hormone-releasing hormone targeted poly(methyl vinyl ether maleic acid) nanoparticles for doxorubicin delivery to MCF-7 breast cancer cells.

    PubMed

    Varshosaz, Jaleh; Jahanian-Najafabadi, Ali; Ghazzavi, Jila

    2016-08-01

    The purpose of this study was to design a targeted anti-cancer drug delivery system for breast cancer. Therefore, doxorubicin (DOX) loaded poly(methyl vinyl ether maleic acid) nanoparticles (NPs) were prepared by ionic cross-linking method using Zn(2+) ions. To optimise the effect of DOX/polymer ratio, Zn/polymer ratio, and stirrer rate a full factorial design was used and their effects on particle size, zeta potential, loading efficiency (LE, %), and release efficiency in 72 h (RE72, %) were studied. Targeted NPs were prepared by chemical coating of tiptorelin/polyallylamin conjugate on the surface of NPs by using 1-ethyl-3-(3-dimethylaminopropyl) carboiimid HCl as cross-linking agent. Conjugation efficiency was measured by Bradford assay. Conjugated triptorelin and targeted NPs were studied by Fourier-transform infrared spectroscopy (FTIR). The cytotoxicity of DOX loaded in targeted NPs and non-targeted ones were studied on MCF-7 cells which overexpress luteinizing hormone-releasing hormone (LHRH) receptors and SKOV3 cells as negative LHRH receptors using Thiazolyl blue tetrazolium bromide assay. The best results obtained from NPs prepared by DOX/polymer ratio of 5%, Zn/polymer ratio of 50%, and stirrer rate of 960 rpm. FTIR spectrum confirmed successful conjugation of triptorelin to NPs. The conjugation efficiency was about 70%. The targeted NPs showed significantly less IC50 for MCF-7 cells compared to free DOX and non-targeted NPs. PMID:27463791

  1. Quality control of fruit juices by using organic acids determined by capillary zone electrophoresis with poly(vinyl alcohol)-coated bubble cell capillaries.

    PubMed

    Navarro-Pascual-Ahuir, María; Lerma-García, María Jesús; Simó-Alfonso, Ernesto F; Herrero-Martínez, José Manuel

    2015-12-01

    An enhanced method for the determination of organic acids in several fruit juices by capillary zone electrophoresis (CZE) with direct UV-Vis detection has been developed in this work. First, a study with simulated real juice samples was done to find the best separation conditions. Next, several commercial fruit juices were analyzed, and the organic acid contents were quantified in less than 12 min using a poly(vinyl alcohol)-coated fused-silica 'bubble cell' capillary. The present method is reliable, fast and provides detection limits comprised between 0.1 and 2.5 μg mL(-1). Moreover, different chemometric techniques, based on CZE data, were examined. Linear discriminant analysis allowed the differentiation of fruit juices according to the fruit type, whereas multiple linear regression models predicted the percentages of orange and pineapple juices in binary blends with grape. Thus, the present methodology is of utmost interest for routine and quality control purposes in food industries. PMID:26041236

  2. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings.

    PubMed

    Andersen, Thomas E; Palarasah, Yaseelan; Skjødt, Mikkel-Ole; Ogaki, Ryosuke; Benter, Maike; Alei, Mojagan; Kolmos, Hans J; Koch, Claus; Kingshott, Peter

    2011-07-01

    In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are both potent activators of the complement system, measured both as activated, deposited C3b and quantifying fluid-phase release of the cleavage fragment C3c. The ppVP coated silicone exhibits approximately 90% reduced complement activation compared to untreated silicone. Quartz crystal microbalance with dissipation (QCM-D) measurements show relatively strong adsorption of blood proteins including native C3 to the ppVP surface, indicating that reduction of complement activation on ppVP is neither a result of low protein adsorption nor lower direct C3-binding, and is therefore possibly a consequence of differences in the adsorbed protein layer composition. The alternative and classical complement pathways are barely detectable on ppVP while the lectin pathway through MBL/ficolin-2 deposition remains active on ppVP suggesting this pathway is responsible for the remaining subtle activation on the ppVP coated surface. The ppVP surface is furthermore characterized physically and chemically using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR), which indicates preservation of chemical functionality by the applied plasma process. Overall, the ppVP coating shows a potential for increasing complement-compatibility of blood-contacting devices.

  3. Rheological Analysis of Polymer Interactions and Ageing of Poly(Methylvinylether-Co-Maleic Anhydride)/Poly(Vinyl Alcohol) Binary Networks and Their Effects on Mucoadhesion.

    PubMed

    Andrews, Gavin P; Laverty, Thomas P; Jones, David S

    2015-12-01

    Polymer blends of poly(vinylalcohol, PVA) and poly(methylvinylether-co-maleic anhydride, PMVE/MA) were formulated and their viscoelastic and mucoadhesive properties characterised. The viscoelastic and mucoadhesive properties were dependent on polymer concentration, molecular weight of PVA and PVA:PMVE/MA ratio. Alteration of these properties allowed platforms to be designed to offer defined rheological and mucoadhesive properties, properties that could not be achieved using monopolymeric platforms. A strong correlation was noted between the modulus of the polymeric blends and mucoadhesion. After storage, the polymeric blends underwent rheological structuring (ageing) with an attendant enhancement of mucoadhesion. In certain blends containing the highest molecular weight of PVA (146-186 kDa), storage ultimately resulted in an increase and then a significant decrease in the rheological and mucoadhesive properties, the latter phenomenon being accredited to polymer recrystallisation. Ageing of the rheological and mucoadhesive properties was modelled using an exponential growth model, allowing predictions of the storage period associated with the maxima in viscoelastic and mucoadhesive properties. These observations highlight the possible implications whenever interactive polymeric blends are employed in drug delivery. Caution is therefore urged whenever a formulation strategy based on interactive polymer blends is employed to ensure that ageing is fully understood and mathematically characterised. PMID:26502109

  4. catena-Poly[[[di-aqua-bis-[1,2-bis-(pyridin-4-yl)diazene]copper(II)]-μ-1,2-bis-(pyridin-4-yl)diazene] bis-(perchlorate)].

    PubMed

    Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego

    2013-06-01

    In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2} n , the coordination environment of the cationic Cu(II) atom is distorted octa-hedral, formed by pairs of symmetry-equivalent 1,2-bis-(pyridin-4-yl)diazene ligands, bridging 1,2-bis-(pyridin-4-yl)diazene ligands and two non-equivalent water mol-ecules. The 1,2-bis-(pyridin-4-yl)diazene mol-ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the Cu(II) atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium-strong O-H⋯O hydrogen bonds with graph set R 4 (4)(12). The water mol-ecules, which are coordinated to the Cu(II) atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π-π inter-action [centroid-centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C-H⋯O inter-actions also occur. PMID:23794983

  5. catena-Poly[[[di­aqua­bis­[1,2-bis­(pyridin-4-yl)diazene]copper(II)]-μ-1,2-bis­(pyridin-4-yl)diazene] bis­(perchlorate)

    PubMed Central

    Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego

    2013-01-01

    In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2}n, the coordination environment of the cationic CuII atom is distorted octa­hedral, formed by pairs of symmetry-equivalent 1,2-bis­(pyridin-4-yl)diazene ligands, bridging 1,2-bis­(pyridin-4-yl)diazene ligands and two non-equivalent water mol­ecules. The 1,2-bis­(pyridin-4-yl)diazene mol­ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the CuII atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium–strong O—H⋯O hydrogen bonds with graph set R 4 4(12). The water mol­ecules, which are coordinated to the CuII atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π–π inter­action [centroid–centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C—H⋯O inter­actions also occur. PMID:23794983

  6. Performance improvement of gel- and solid-state dye-sensitized solar cells by utilization the blending effect of poly (vinylidene fluoride-co-hexafluropropylene) and poly (acrylonitrile-co-vinyl acetate) co-polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Obadja, Nesia; Chang, Ting-Wei; Chen, Li-Tung; Lee, Yuh-Lang

    2014-12-01

    Poly (vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) and poly (acrylonitrile-co-vinyl acetate) (PAN-VA) are used as gelator to prepare gel- and solid-state polymer electrolytes for dye sensitized solar cells (DSSCs) applications. The electrolytes prepared using PVDF-HFP have higher conductivities than those prepared using PAN-VA. In blended polymers, the conductivities of the electrolytes increase with increasing composition of PVDF-HFP; at 75% PVDF-HFP, conductivity of the blended polymer surpassed that of pure polymers. It is also found that the viscosity of the electrolyte prepared by PAN-VA (1.2 kPaS) is much lower than that by PVDF-HFP (11 kPaS). Therefore, increasing PAN-VA composition can decrease the viscosity of the electrolyte, improving the penetration of electrolytes in the TiO2 matrix. By controlling the ratio of PVDF-HFP/PAN-VA, the conductivity and viscosity of the electrolyte can be regulated and an optimal ratio based on the conversion efficiency of the gel- and solid state DSSCs is obtained at the ratio of 3/1. The highest efficiency achieved by the gel- and solid-state cells using the blending polymers are 6.3% and 4.88%, respectively, which are higher than those prepared using pure polymers (5.53% and 4.56%, respectively). The introduction of TiO2 fillers to the solid electrolyte can further increase the cell efficiency to 5.34%.

  7. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate.

    PubMed

    Wang, Yu-Tao; Liao, Shi-Fu; Shang, Ke; Chen, Ming-Jun; Huang, Jian-Qian; Wang, Yu-Zhong; Schiraldi, David A

    2015-01-28

    Ammonium polyphosphates (APP) modified with piperazine (PA-APP) was used to improve the flame retardancy of poly(vinyl alcohol) (PVA)/montmorillonite (MMT) aerogels, which were prepared via an environmentally friendly freeze-drying method. The thermal stabilities of the samples were evaluated by thermogravimetric analysis (TG); the flammability behaviors of samples were investigated by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter (CC) tests. TG test results showed that the 5% weight loss temperature (T5%) of PVA/MMT/PA-APP was 10 °C higher than that of PVA/MMT/APP. In combustion testing, all of PVA/MMT/PA-APP aerogels achieved V-0 ratings and have a higher LOI values than the unmodified PVA/MMT aerogel. Moreover, the aerogel with 1% PA-APP5, which means that the content of piperazine is 5% in PA-APP, decreased the cone calorimetry THR value to 5.71 MJ/m(2), and increased the char residue to 52%. The compressive modulus of PVA/MMT/PA-APP was increased by 93.4% compared with PVA/MMT/APP because of the increase in interfacial adhesion between matrix and PA-APP fillers. The densities of the PVA/MMT/PA-APP samples were slightly lower than those of the unmodified aerogels because of reduced shrinkage in the presence of PA-APP. All the tests results indicated that the incorporation of PA-APP not only improved the thermal stability and flame retardancy of aerogels but also maintained their mechanical properties. PMID:25588129

  8. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms. PMID:26418515

  9. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  10. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: poly(vinyl chloride)-based sensor for acetate.

    PubMed

    Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A

    2008-08-15

    A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.

  11. Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms.

    PubMed

    Wonoputri, Vita; Gunawan, Cindy; Liu, Sanly; Barraud, Nicolas; Yee, Lachlan H; Lim, May; Amal, Rose

    2015-10-14

    In this study, catalytic generation of nitric oxide by a copper(II) complex embedded within a poly(vinyl chloride) matrix in the presence of nitrite (source of nitric oxide) and ascorbic acid (reducing agent) was shown to effectively control the formation and dispersion of nitrifying bacteria biofilms. Amperometric measurements indicated increased and prolonged generation of nitric oxide with the addition of the copper complex when compared to that with nitrite and ascorbic acid alone. The effectiveness of the copper complex-nitrite-ascorbic acid system for biofilm control was quantified using protein analysis, which showed enhanced biofilm suppression when the copper complex was used in comparison to that with nitrite and ascorbic acid treatment alone. Confocal laser scanning microscopy (CLSM) and LIVE/DEAD staining revealed a reduction in cell surface coverage without a loss of viability with the copper complex and up to 5 mM of nitrite and ascorbic acid, suggesting that the nitric oxide generated from the system inhibits proliferation of the cells on surfaces. Induction of nitric oxide production by the copper complex system also triggered the dispersal of pre-established biofilms. However, the addition of a high concentration of nitrite and ascorbic acid to a pre-established biofilm induced bacterial membrane damage and strongly decreased the metabolic activity of planktonic and biofilm cells, as revealed by CLSM with LIVE/DEAD staining and intracellular adenosine triphosphate measurements, respectively. This study highlights the utility of the catalytic generation of nitric oxide for the long-term suppression and removal of nitrifying bacterial biofilms.

  12. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).

    PubMed

    Chirizzi, Daniela; Guascito, Maria Rachele; Filippo, Emanuela; Tepore, Antonio

    2016-01-15

    A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5μm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis.

  13. Influence of surface concentration on poly(vinyl alcohol) behavior at the water-vacuum interface: a molecular dynamics simulation study.

    PubMed

    Tesei, Giulio; Paradossi, Gaio; Chiessi, Ester

    2014-06-19

    Poly(vinyl alcohol) (PVA) is an amphiphilic macromolecule with surfactant activity. The peculiar behavior of this polymer at the water-air interface is at the basis of its use as material for hydrated microdevices, films, and nanofibers. This work aims to investigate the behavior of PVA and water within the surface domain of highly diluted aqueous solutions by means of atomistic molecular dynamics simulations. Monodisperse atactic oligomers of 30 residues were distributed within water slabs in a vacuum box and allowed to diffuse toward the surface. After equilibration, structural features and dynamical properties of polymer chains and water in the interfacial domains were analyzed as a function of PVA surface concentration at 293 K. Surface pressure values obtained from simulations are in agreement with experimental values at corresponding polymer specific surface areas. In the explored concentration range of 6-34 μmol of residues/m(2), the chains display a transition between two states. At lower surface concentrations, elongated, quite rigid structures are adsorbed on the surface, whereas partially submerged globular aggregates, locally covered by thin water layers, are formed at higher surface concentrations. At PVA concentrations higher than about 20 μmol of residues/m(2), the percolation of chain aggregates over the interface plane produces a surface-confined polymer network with stable pores filled by water molecules. A substantial slowing of polymer and water dynamics in the interfacial domains is highlighted by the mean squared displacement time behavior of terminal residues and the interaction time of PVA-water hydrogen bonding. The diffusion coefficient of water and lifetime of hydrogen bonds between solvent molecules are halved and doubled, respectively, at the interface with the highest polymer concentration. The attenuation of water and polymer mobility concur to stabilize PVA hydrated networks in contact with air.

  14. Novel pipette-tip graphene/poly (vinyl alcohol) cryogel composite extractor for the analysis of carbofuran and carbaryl in water.

    PubMed

    Charoenpornpukdee, Kanokrat; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-01-01

    A novel pipette-tip extractor of a graphene/poly (vinyl alcohol) cryogel (graphene/PVA) composite sorbent was prepared to preconcentrate carbamate pesticides in environmental water samples before analysis with a gas chromatograph-flame ionization detector (GC-FID). This novel pipette-tip extractor with the graphene/PVA sorbent exhibited a high porosity when observed through a scanning electron micrograph (SEM). Under optimal conditions, using only 1.0 mL of sample and 0.75 mL of eluting solvent, the developed method provided a wide linear range of 10-700 ng mL(-1) and 10-500 ng mL(-1) with limit of detection (LOD) of 6.40 ± 0.18 and 9.17 ± 0.34 ng mL(-1) for carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) and carbaryl (1-naphthyl methylcarbamate), respectively. The pipette-tip extractor provided high extraction efficiency with high accuracy indicated, by good recoveries in the range of 74.5 ± 4.8% to 119.7 ± 1.6% and 76 ± 15% to 114 ± 19% for carbofuran and carbaryl, respectively. In addition, the fabrication procedure showed a good pipette-tip extractor-to-pipette-tip extractor reproducibility with a relative standard deviation of 1.3-9.8% (n = 5). When the developed pipette-tip extractor was applied for the extraction of carbofuran and carbaryl in surface water samples near vegetable plantation areas, 25.9 ± 8.2 ng mL(-1) of carbofuran was found, and carbaryl was also detected in concentrations that ranged from 45.0 ± 4.0 to 191 ± 13 ng mL(-1).

  15. Evaluation of poly(ethylene-co-vinyl acetate-co-carbon monoxide) and polydimethylsiloxane for equilibrium sampling of polar organic contaminants in water.

    PubMed

    Magnér, Jörgen A; Alsberg, Tomas E; Broman, Dag

    2009-09-01

    The aim of the present study was to develop a passive absorptive equilibrium sampler that would enable the determination of the concentrations of polar organic compound (POC) in water more efficiently than existing techniques. To this end, a novel plastic material, poly(ethylene-co-vinyl acetate-co-carbon monoxide) (PEVAC), was evaluated and the results were compared with an existing silicone-based passive absorptive equilibrium device. Seven compounds (imidacloprid, carbendazim, metoprolol, atrazin, carbamazepine, diazinon, and chlorpyrifos), a mixture of pharmaceuticals, and pesticides with a logarithmic octanol-water partition coefficient ranging from 0.2 to 4.77 were selected as model substances for the experiments. The results showed that six of the seven selected POCs reached distribution equilibrium within 4 d in the two materials tested. A linear relation with a regression coefficient of more than 0.8906 between the established logarithmic absorbent-water partition coefficient and the calculated logarithmic dissociation partition coefficient of the selected compounds in the two polymers was observed. The correlation between these two coefficients was within one order of magnitude for the compounds that reached equilibrium in the two polymers, which demonstrates that both materials are suitable for mimicking biological uptake of POCs. The PEVAC material showed an enhanced sorption for all selected compounds compared to the silicone material and up to five times higher enrichment for the most polar compound. Fluorescence analysis of the sampler cross-section, following the uptake of fluoranthene, and proof that the sorption was independent of surface area variations demonstrated that the PEVAC polymer possessed absorptive rather than adsorptive enrichment of organic compounds. PMID:19938334

  16. Preparation of sol-gel polyethylene glycol-polydimethylsiloxane-poly(vinyl alcohol)-coated sorptive bar for the determination of organic sulfur compounds in water.

    PubMed

    Yu, Chunhe; Li, Xuan; Hu, Bin

    2008-08-15

    A novel headspace sorptive extraction (HSSE) using a glass bar coated with carbowax (polyethylene glycol)-polydimethylsiloxane-poly(vinyl alcohol) (CW/PDMS/PVA) prepared by sol-gel technology method was proposed for the determination of volatile organic sulfur compounds (VOSs) in water. After the extraction, the sorptive bar was desorbed with 60 microL of ethanol and 30 microL of the extract was analysed by large volume injection (LVI) into a gas chromatography-flame photometric detector (GC-FPD). The parameters affecting the headspace sorptive extraction of VOSs such as extraction and desorption time, extraction temperature, stirring speed, desorption solvent, headspace phase ratio, salt and pH were carefully investigated and the optimized experimental conditions were established. The limits of detection (LODs) for the studied VOSs ranged from 0.04 to 4.8 microg/L with the relative standard deviations (RSDs) ranging from 4.5 to 10.2% (n=6). The reproducibility for the preparation of CW/PDMS/PVA-coated sorptive bar ranged from 3.2 to 9.2% in one batch, and from 2.8 to 18.5% in batch-to-batch, and more than 50 extractions can be achieved without apparent loss. The proposed method was compared with polydimethylsiloxane-HSSE and carboxen/PDMS-headspace-solid phase microextraction (CAR/PDMS-HS-SPME) under their optimum conditions, CW/PDMS/PVA-HSSE shows the highest adsorption capacity (larger surface area and more active sites), the highest sensitivity (about 10 times) and the best polarity matching for VOSs. PMID:18603256

  17. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol).

    PubMed

    Chirizzi, Daniela; Guascito, Maria Rachele; Filippo, Emanuela; Tepore, Antonio

    2016-01-15

    A new, very simple, rapid and inexpensive nonenzymatic amperometric sensor for hydrogen peroxide (H2O2) detection is proposed. It is based on the immobilization of cupric/cuprous oxide core shell nanowires (CuO@Cu2O-NWs) in a poly(vinyl alcohol) (PVA) matrix directly drop casted on a glassy carbon electrode surface to make a CuO@Cu2O core shell like NWs PVA embedded (CuO@Cu2O-NWs/PVA) sensor. CuO nanowires with mean diameters of 120-170nm and length in the range 2-5μm were grown by a simple catalyst-free thermal oxidation process based on resistive heating of pure copper wires at ambient conditions. The oxidation process of the copper wire surface led to the formation of a three layered structure: a thick Cu2O bottom layer, a CuO thin intermediate layer and CuO nanowires. CuO nanowires were carefully scratched from Cu2O layer with a sharp knife, dispersed into ethanol and sonicated. Then, the NWs were embedded in PVA matrix. The morphological and spectroscopic characterization of synthesized CuO-NWs and CuO@Cu2O-NWs/PVA were performed by transmission electron microscopy (TEM), selected area diffraction pattern (SAD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analysis. Moreover a complete electrochemical characterization of these new CuO@Cu2O-NWs/PVA modified glassy carbon electrodes was performed by Cyclic Voltammetry (CV) and Cronoamperometry (CA) in phosphate buffer (pH=7; I=0.2) to investigate the sensing properties of this material against H2O2. The electrochemical performances of proposed sensors as high sensitivity, fast response, reproducibility and selectivity make them suitable for the quantitative determination of hydrogen peroxide substrate in batch analysis. PMID:26592586

  18. Novel pipette-tip graphene/poly (vinyl alcohol) cryogel composite extractor for the analysis of carbofuran and carbaryl in water.

    PubMed

    Charoenpornpukdee, Kanokrat; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya

    2014-01-01

    A novel pipette-tip extractor of a graphene/poly (vinyl alcohol) cryogel (graphene/PVA) composite sorbent was prepared to preconcentrate carbamate pesticides in environmental water samples before analysis with a gas chromatograph-flame ionization detector (GC-FID). This novel pipette-tip extractor with the graphene/PVA sorbent exhibited a high porosity when observed through a scanning electron micrograph (SEM). Under optimal conditions, using only 1.0 mL of sample and 0.75 mL of eluting solvent, the developed method provided a wide linear range of 10-700 ng mL(-1) and 10-500 ng mL(-1) with limit of detection (LOD) of 6.40 ± 0.18 and 9.17 ± 0.34 ng mL(-1) for carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) and carbaryl (1-naphthyl methylcarbamate), respectively. The pipette-tip extractor provided high extraction efficiency with high accuracy indicated, by good recoveries in the range of 74.5 ± 4.8% to 119.7 ± 1.6% and 76 ± 15% to 114 ± 19% for carbofuran and carbaryl, respectively. In addition, the fabrication procedure showed a good pipette-tip extractor-to-pipette-tip extractor reproducibility with a relative standard deviation of 1.3-9.8% (n = 5). When the developed pipette-tip extractor was applied for the extraction of carbofuran and carbaryl in surface water samples near vegetable plantation areas, 25.9 ± 8.2 ng mL(-1) of carbofuran was found, and carbaryl was also detected in concentrations that ranged from 45.0 ± 4.0 to 191 ± 13 ng mL(-1). PMID:25065822

  19. Heterogeneous dynamics of poly(vinyl acetate) far above Tg: A combined study by dielectric spectroscopy and quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Tyagi, Madhusudan; Alegría, Angel; Colmenero, Juan

    2005-06-01

    We have investigated the dynamics of poly(vinly acetate) using broadband dielectric spectroscopy (DS) covering over 14 decades in frequency up to 20GHz and high-resolution quasielastic neutron-scattering (QENS) technique. The dielectric results have been interpreted in terms of the phenomenological Kohlrausch-Williams-Watts [G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970); F. Alvarez, A. Alegría, and J. Colmenero, Phys. Rev. B 47, 125 (1993)] description. Because of the wide frequency range covered by DS, it provides a precise determination of dynamics over a wide temperature range and it revealed a crossover in polymer dynamics at 387K through different dielectric parameters, viz., characteristic times, asymmetric shape parameter, and dielectric strength. Moreover, shape parameter is found to be higher in comparison to other typical polymeric systems. The characteristic relaxation times observed by QENS displayed an anomalous dependence of momentum transfer, indicating the possible existence of heterogeneities in the system even at the high temperatures. In addition, spin-lattice relaxation times, T1, were found to be decoupled from dielectric characteristic times. Based on these results, a model was proposed to account for heterogeneities where we consider coexistence of different regions with standard polymeric behavior but with different characteristic times, leading to a distribution of relaxation times. The model is found to account for the anomalous behavior and an inherent shape parameter is found to account for the shape of α relaxation. This model is also found to predict the T variation of T1 characteristic time scales at all temperatures. The origin of the heterogeneous domains is believed to lie in the microstructure of polymer chains.

  20. Molecular engineering of liquid crystal polymers by living polymerization. Part 11: Synthesis and characterization of poly(11-((4-cyano 4'trans-a-cyanostilbene)oxy)undecanyl vinyl ether)

    NASA Astrophysics Data System (ADS)

    Percec, Virgil; Gomes, A. S.; Lee, M.

    1991-04-01

    A convenient method for the synthesis of 11 (4-cyano-4' trans-alpha cyanostibene) oxyundecanyl vinyl ether (6) which is the first member of a new class of mesogenic monomers is described. The polymerization of 6 initiated with CF3SO3H/S(CH3)2 in methylene chloride proceeds through a living cationic mechanism leading to polymers with controllable molecular weights and polydispersities narrower than 1.10. The mesomorphic behavior of both 6 and poly(6)s with various molecular weights was determined by using a combination of thermal optical polarized microscopy and differential scanning calorimetry. Six is only crystalline. Poly(6)s with degrees of polymerization from 4 to 30 exhibit an enantiotropic smectic A mesophase and side chain crystallization.