Sample records for polya-binding proteins multifunctional

  1. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  2. Evidence that Poly(A) Binding Protein C1 Binds Nuclear Pre-mRNA Poly(A) Tails

    PubMed Central

    Hosoda, Nao; Lejeune, Fabrice; Maquat, Lynne E.

    2006-01-01

    In mammalian cells, poly(A) binding protein C1 (PABP C1) has well-known roles in mRNA translation and decay in the cytoplasm. However, PABPC1 also shuttles in and out of the nucleus, and its nuclear function is unknown. Here, we show that PABPC1, like the major nuclear poly(A) binding protein PABPN1, associates with nuclear pre-mRNAs that are polyadenylated and intron containing. PABPC1 does not bind nonpolyadenylated histone mRNA, indicating that the interaction of PABPC1 with pre-mRNA requires a poly(A) tail. Consistent with this conclusion, UV cross-linking results obtained using intact cells reveal that PABPC1 binds directly to pre-mRNA poly(A) tails in vivo. We also show that PABPC1 immunopurifies with poly(A) polymerase, suggesting that PABPC1 is acquired by polyadenylated transcripts during poly(A) tail synthesis. Our findings demonstrate that PABPC1 associates with polyadenylated transcripts earlier in mammalian mRNA biogenesis than previously thought and offer insights into the mechanism by which PABPC1 is recruited to newly synthesized poly(A). Our results are discussed in the context of pre-mRNA processing and stability and mRNA trafficking and the pioneer round of translation. PMID:16581783

  3. Human mRNA polyadenylate binding protein: evolutionary conservation of a nucleic acid binding motif.

    PubMed Central

    Grange, T; de Sa, C M; Oddos, J; Pictet, R

    1987-01-01

    We have isolated a full length cDNA (cDNA) coding for the human poly(A) binding protein. The cDNA derived 73 kd basic translation product has the same Mr, isoelectric point and peptidic map as the poly(A) binding protein. DNA sequence analysis reveals a 70,244 dalton protein. The N terminal part, highly homologous to the yeast poly(A) binding protein, is sufficient for poly(A) binding activity. This domain consists of a four-fold repeated unit of approximately 80 amino acids present in other nucleic acid binding proteins. In the C terminal part there is, as in the yeast protein, a sequence of approximately 150 amino acids, rich in proline, alanine and glutamine which together account for 48% of the residues. A 2,9 kb mRNA corresponding to this cDNA has been detected in several vertebrate cell types and in Drosophila melanogaster at every developmental stage including oogenesis. Images PMID:2885805

  4. Human La binds mRNAs through contacts to the poly(A) tail.

    PubMed

    Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A

    2018-05-04

    In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3'OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3'OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.

  5. Human La binds mRNAs through contacts to the poly(A) tail

    PubMed Central

    Vinayak, Jyotsna; Marrella, Stefano A; Hussain, Rawaa H; Rozenfeld, Leonid; Solomon, Karine; Bayfield, Mark A

    2018-01-01

    Abstract In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail. PMID:29447394

  6. Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice.

    PubMed

    Barragán-Iglesias, Paulino; Lou, Tzu-Fang; Bhat, Vandita D; Megat, Salim; Burton, Michael D; Price, Theodore J; Campbell, Zachary T

    2018-01-02

    Nociceptors rely on cap-dependent translation to rapidly induce protein synthesis in response to pro-inflammatory signals. Comparatively little is known regarding the role of the regulatory factors bound to the 3' end of mRNA in nociceptor sensitization. Poly(A)-binding protein (PABP) stimulates translation initiation by bridging the Poly(A) tail to the eukaryotic initiation factor 4F complex associated with the mRNA cap. Here, we use unbiased assessment of PABP binding specificity to generate a chemically modified RNA-based competitive inhibitor of PABP. The resulting RNA mimic, which we designated as the Poly(A) SPOT-ON, is more stable than unmodified RNA and binds PABP with high affinity and selectivity in vitro. We show that injection of the Poly(A) SPOT-ON at the site of an injury can attenuate behavioral response to pain. Collectively, these results suggest that PABP is integral for nociceptive plasticity. The general strategy described here provides a broad new source of mechanism-based inhibitors for RNA-binding proteins and is applicable for in vivo studies.

  7. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  8. Poly(A) tail length regulates PABPC1 expression to tune translation in the heart.

    PubMed

    Chorghade, Sandip; Seimetz, Joseph; Emmons, Russell; Yang, Jing; Bresson, Stefan M; Lisio, Michael De; Parise, Gianni; Conrad, Nicholas K; Kalsotra, Auinash

    2017-06-27

    The rate of protein synthesis in the adult heart is one of the lowest in mammalian tissues, but it increases substantially in response to stress and hypertrophic stimuli through largely obscure mechanisms. Here, we demonstrate that regulated expression of cytosolic poly(A)-binding protein 1 (PABPC1) modulates protein synthetic capacity of the mammalian heart. We uncover a poly(A) tail-based regulatory mechanism that dynamically controls PABPC1 protein synthesis in cardiomyocytes and thereby titrates cellular translation in response to developmental and hypertrophic cues. Our findings identify PABPC1 as a direct regulator of cardiac hypertrophy and define a new paradigm of gene regulation in the heart, where controlled changes in poly(A) tail length influence mRNA translation.

  9. Fluorescence in-situ hybridization method reveals that carboxyl-terminal fragments of transactive response DNA-binding protein-43 truncated at the amino acid residue 218 reduce poly(A)+ RNA expression.

    PubMed

    Higashi, Shinji; Watanabe, Ryohei; Arai, Tetsuaki

    2018-07-04

    Transactive response (TAR) DNA-binding protein 43 (TDP-43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the association of TDP-43 with complex RNA processing in disease pathogenesis, we performed fluorescence in-situ hybridization using HeLa cells transfected with a series of deleted TDP-43 constructs and investigated the effect of truncation of TDP-43 on the expression of poly(A) RNA. Endogenous and overexpressed full-length TDP-43 localized to the perichromatin region and interchromatin space adjacent to poly(A) RNA. Deleted variants of TDP-43 containing RNA recognition motif 1 and truncating N-terminal region induced cytoplasmic inclusions in which poly(A) RNA was recruited. Carboxyl-terminal TDP-43 truncated at residue 202 or 218 was distributed in the cytoplasm as punctate structures. Carboxyl-terminal TDP-43 truncated at residue 218, but not at 202, significantly decreased poly(A) RNA expression by ∼24% compared with the level in control cells. Our results suggest that the disturbance of RNA metabolism induced by pathogenic fragments plays central roles in the pathogenesis of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

  10. SR proteins SRp20 and 9G8 contribute to efficient export of herpes simplex virus 1 mRNAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero-Paunetto, Laurimar; Li Ling; Hernandez, Felicia P.

    2010-06-05

    Herpes simplex virus 1 (HSV-1) mRNAs are exported to the cytoplasm through the export receptor TAP/NFX1. HSV-1 multifunctional protein ICP27 interacts with TAP/NXF1, binds viral RNAs, and is required for efficient viral RNA export. In ICP27 mutant infections, viral RNA export is reduced but not ablated, indicating that other export adaptors can aid in viral RNA export. Export adaptor protein Aly/REF is recruited to viral replication compartments, however, Aly/REF knockdown has little effect on viral RNA export. SR proteins SRp20 and 9G8 interact with TAP/NXF1 and mediate export of some cellular RNAs. We report that siRNA knockdown of SRp20 ormore » 9G8 resulted in about a 10 fold decrease in virus yields and in nuclear accumulation of poly(A+) RNA. In infected cells depleted of SRp20, newly transcribed Bromouridine-labeled RNA also accumulated in the nucleus. We conclude that SRp20 and 9G8 contribute to HSV-1 RNA export.« less

  11. PAPERCLIP identifies microRNA targets and a role of CstF64/64tau in promoting non-canonical poly(A) site usage

    PubMed Central

    Hwang, Hun-Way; Park, Christopher Y.; Goodarzi, Hani; Fak, John J.; Mele, Aldo; Moore, Michael J.; Saito, Yuhki; Darnell, Robert B.

    2016-01-01

    Accurate and precise annotation of the 3′ untranslated regions (3′ UTRs) is critical in understanding how mRNAs are regulated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). Here we describe a method, PAPERCLIP (Poly(A) binding Protein-mediated mRNA 3′ End Retrieval by CrossLinking ImmunoPrecipitation), which shows high specificity for the mRNA 3′ ends and compares favorably to existing 3′ end mapping methods. PAPERCLIP uncovers a previously unrecognized role of CstF64/64tau in promoting the usage of a selected group of non-canonical poly(A) sites, the majority of them containing a downstream GUKKU motif. Furthermore, in mouse brain, PAPERCLIP discovers extended 3′ UTR sequences harboring functional miRNA binding sites and reveals developmentally regulated APA shifts including one in Atp2b2 that is evolutionarily conserved in human and results in a gain of a functional binding site of miR-137. PAPERCLIP provides a powerful tool to decipher post-transcriptional regulation of mRNAs through APA in vivo. PMID:27050522

  12. Endoplasmic reticulum stress in vasopressin neurons of familial diabetes insipidus model mice: aggregate formation and mRNA poly(A) tail shortening.

    PubMed

    Arima, Hiroshi; Morishita, Yoshiaki; Hagiwara, Daisuke; Hayashi, Masayuki; Oiso, Yutaka

    2014-01-01

    The immunoglobulin heavy chain binding protein (BiP) is an endoplasmic reticulum (ER) chaperone, which binds to newly synthesized secretory and transmembrane proteins to facilitate protein folding. BiP mRNA is expressed in the arginine vasopressin (AVP) neurons in the supraoptic nucleus of wild-type mice even in basal conditions, and the expression levels increase in response to dehydration. These data suggest that AVP neurons are subjected to ER stress. Familial neurohypophysial diabetes insipidus (FNDI) is caused by mutations in the gene locus of AVP. The mutant proteins could accumulate in the ER and possibly increase ER stress in the AVP neurons. We bred mice possessing a mutation causing FNDI, which manifested progressive polyuria, as do the patients with FNDI. Electron microscopic analyses demonstrated that aggregates accumulated in the ER of AVP neurons in FNDI mice. Despite polyuria, which could potentially induce dehydration, AVP mRNA expression was decreased in the supraoptic nucleus, and the AVP mRNA poly(A) tail length was shortened in FNDI mice compared with wild-type mice. Incubation of hypothalamic explants of wild-type mice with ER stressors caused shortening of the poly(A) tail length of AVP mRNA, accompanied by decreases in the expression. These data revealed a mechanism by which ER stress decreases poly(A) tail length of AVP mRNA, and this reduces the load of unfolded proteins that form the aggregates in ER of the AVP neurons in FNDI mice.

  13. The Apc5 Subunit of the Anaphase-Promoting Complex/Cyclosome Interacts with Poly(A) Binding Protein and Represses Internal Ribosome Entry Site-Mediated Translation

    PubMed Central

    Koloteva-Levine, Nadejda; Pinchasi, Dalia; Pereman, Idan; Zur, Amit; Brandeis, Michael; Elroy-Stein, Orna

    2004-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that mediates the proteolysis of cell cycle proteins in mitosis and G1. We used a yeast three-hybrid screen to identify proteins that interact with the internal ribosome entry site (IRES) of platelet-derived growth factor 2 mRNA. Surprisingly, this screen identified Apc5, although it does not harbor a classical RNA binding domain. We found that Apc5 binds the poly(A) binding protein (PABP), which directly binds the IRES element. PABP was found to enhance IRES-mediated translation, whereas Apc5 overexpression counteracted this effect. In addition to its association with the APC/C complex, Apc5 binds much heavier complexes and cosediments with the ribosomal fraction. In contrast to Apc3, which is associated only with the APC/C and remains intact during differentiation, Apc5 is degraded upon megakaryocytic differentiation in correlation with IRES activation. Expression of Apc5 in differentiated cells abolished IRES activation. This is the first report implying an additional role for an APC/C subunit, apart from its being part of the APC/C complex. PMID:15082755

  14. αCP Poly(C) Binding Proteins Act as Global Regulators of Alternative Polyadenylation

    PubMed Central

    Ji, Xinjun; Wan, Ji; Vishnu, Melanie

    2013-01-01

    We have previously demonstrated that the KH-domain protein αCP binds to a 3′ untranslated region (3′UTR) C-rich motif of the nascent human alpha-globin (hα-globin) transcript and enhances the efficiency of 3′ processing. Here we assess the genome-wide impact of αCP RNA-protein (RNP) complexes on 3′ processing with a specific focus on its role in alternative polyadenylation (APA) site utilization. The major isoforms of αCP were acutely depleted from a human hematopoietic cell line, and the impact on mRNA representation and poly(A) site utilization was determined by direct RNA sequencing (DRS). Bioinformatic analysis revealed 357 significant alterations in poly(A) site utilization that could be specifically linked to the αCP depletion. These APA events correlated strongly with the presence of C-rich sequences in close proximity to the impacted poly(A) addition sites. The most significant linkage was the presence of a C-rich motif within a window 30 to 40 bases 5′ to poly(A) signals (AAUAAA) that were repressed upon αCP depletion. This linkage is consistent with a general role for αCPs as enhancers of 3′ processing. These findings predict a role for αCPs in posttranscriptional control pathways that can alter the coding potential and/or levels of expression of subsets of mRNAs in the mammalian transcriptome. PMID:23629627

  15. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.

    PubMed

    Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter

    2004-02-11

    In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.

  16. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase

    PubMed Central

    Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter

    2004-01-01

    In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity. PMID:14749727

  17. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation

    PubMed Central

    Zhang, Yong; Gu, Lianfeng; Hou, Yifeng; Wang, Lulu; Deng, Xian; Hang, Runlai; Chen, Dong; Zhang, Xiansheng; Zhang, Yi; Liu, Chunyan; Cao, Xiaofeng

    2015-01-01

    Alternative polyadenylation (APA) is a widespread mechanism for gene regulation and has been implicated in flowering, but the molecular basis governing the choice of a specific poly(A) site during the vegetative-to-reproductive growth transition remains unclear. Here we characterize HLP1, an hnRNP A/B protein as a novel regulator for pre-mRNA 3′-end processing in Arabidopsis. Genetic analysis reveals that HLP1 suppresses Flowering Locus C (FLC), a key repressor of flowering in Arabidopsis. Genome-wide mapping of HLP1-RNA interactions indicates that HLP1 binds preferentially to A-rich and U-rich elements around cleavage and polyadenylation sites, implicating its role in 3′-end formation. We show HLP1 is significantly enriched at transcripts involved in RNA metabolism and flowering. Comprehensive profiling of the poly(A) site usage reveals that HLP1 mutations cause thousands of poly(A) site shifts. A distal-to-proximal poly(A) site shift in the flowering regulator FCA, a direct target of HLP1, leads to upregulation of FLC and delayed flowering. Our results elucidate that HLP1 is a novel factor involved in 3′-end processing and controls reproductive timing via targeting APA. PMID:26099751

  18. Poly(A) polymerase contains multiple functional domains.

    PubMed Central

    Raabe, T; Murthy, K G; Manley, J L

    1994-01-01

    Poly(A) polymerase (PAP) contains regions of similarity with several known protein domains. Through site-directed mutagenesis, we provide evidence that PAP contains a functional ribonucleoprotein-type RNA binding domain (RBD) that is responsible for primer binding, making it the only known polymerase to contain such a domain. The RBD is adjacent to, and probably overlaps with, an apparent catalytic region responsible for polymerization. Despite the presence of sequence similarities, this catalytic domain appears to be distinct from the conserved polymerase module found in a large number of RNA-dependent polymerases. PAP contains two nuclear localization signals (NLSs) in its C terminus, each by itself similar to the consensus bipartite NLS found in many nuclear proteins. Mutagenesis experiments indicate that both signals, which are separated by nearly 140 residues, play important roles in directing PAP exclusively to the nucleus. Surprisingly, basic amino acids in the N-terminal-most NLS are also essential for AAUAAA-dependent polyadenylation but not for nonspecific poly(A) synthesis, suggesting that this region of PAP is involved in interactions both with nuclear targeting proteins and with nuclear polyadenylation factors. The serine/threonine-rich C terminus is multiply phosphorylated, including at sites affected by mutations in either NLS. Images PMID:8164653

  19. PABP is not essential for microRNA-mediated translational repression and deadenylation in vitro

    PubMed Central

    Fukaya, Takashi; Tomari, Yukihide

    2011-01-01

    MicroRNAs silence their complementary target genes via formation of the RNA-induced silencing complex (RISC) that contains an Argonaute (Ago) protein at its core. It was previously proposed that GW182, an Ago-associating protein, directly binds to poly(A)-binding protein (PABP) and interferes with its function, leading to silencing of the target mRNAs. Here we show that Drosophila Ago1-RISC induces silencing via two independent pathways: shortening of the poly(A) tail and pure repression of translation. Our data suggest that although PABP generally modulates poly(A) length and translation efficiency, neither PABP function nor GW182–PABP interaction is a prerequisite for these two silencing pathways. Instead, we propose that each of the multiple functional domains within GW182 has a potential for silencing, and yet they need to act together in the context of full-length GW182 to exert maximal silencing. PMID:22117217

  20. Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction.

    PubMed

    Ray, Swagat; Anderson, Emma C

    2016-03-03

    The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.

  1. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusionmore » of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.« less

  2. The poly(rC)-binding protein αCP2 is a noncanonical factor in X. laevis cytoplasmic polyadenylation

    PubMed Central

    Vishnu, Melanie R.; Sumaroka, Marina; Klein, Peter S.; Liebhaber, Stephen A.

    2011-01-01

    Post-transcriptional control of mRNA stability and translation is central to multiple developmental pathways. This control can be linked to cytoplasmic polyadenylation in certain settings. In maturing Xenopus oocytes, specific mRNAs are targeted for polyadenylation via recruitment of the Cytoplasmic Polyadenylation Element (CPE) binding protein (CPEB) to CPE(s) within the 3′ UTR. Cytoplasmic polyadenylation is also critical to early embryonic events, although corresponding determinants are less defined. Here, we demonstrate that the Xenopus ortholog of the poly(rC) binding protein αCP2 can recruit cytoplasmic poly(A) polymerase activity to mRNAs in Xenopus post-fertilization embryos, and that this recruitment relies on cis sequences recognized by αCP2. We find that the hα-globin 3′ UTR, a validated mammalian αCP2 target, constitutes an effective target for cytoplasmic polyadenylation in Xenopus embryos, but not during Xenopus oocyte maturation. We further demonstrate that the cytoplasmic polyadenylation activity is dependent on the action of the C-rich αCP-binding site in conjunction with the adjacent AAUAAA. Consistent with its ability to target mRNA for poly(A) addition, we find that XαCP2 associates with core components of the Xenopus cytoplasmic polyadenylation complex, including the cytoplasmic poly(A) polymerase XGLD2. Furthermore, we observe that the C-rich αCP-binding site can robustly enhance the activity of a weak canonical oocyte maturation CPE in early embryos, possibly via a direct interaction between XαCP2 and CPEB1. These studies establish XαCP2 as a novel cytoplasmic polyadenylation trans factor, indicate that C-rich sequences can function as noncanonical cytoplasmic polyadenylation elements, and expand our understanding of the complexities underlying cytoplasmic polyadenylation in specific developmental settings. PMID:21444632

  3. RNA binding and replication by the poliovirus RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to {sup 32}P-labeled ribohomopolymeric RNAs wasmore » examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K{sub a} for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 {times} 10{sup 9} M{sup {minus}1}. The polymerase binds to a subgenomic RNAs which contain the 3{prime} end of the genome with a K{sub a} similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3{prime} noncoding region.« less

  4. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  5. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  6. Rrp6p controls mRNA polyA tail length and its decoration with polyA binding proteins

    PubMed Central

    Schmid, Manfred; Poulsen, Mathias Bach; Olszewski, Pawel; Pelechano, Vicent; Saguez, Cyril; Gupta, Ishaan; Steinmetz, Lars M.; Moore, Claire; Jensen, Torben Heick

    2012-01-01

    PolyA (pA) tail binding proteins (PABPs) control mRNA polyadenylation, stability and translation. In a purified system, S. cerevisiae PABPs, Pab1p and Nab2p, are individually sufficient to provide normal pA tail length. However, it is unknown how this occurs in more complex environments. Here we find that the nuclear exosome subunit Rrp6p counteracts the in vitro and in vivo extension of mature pA tails by the non-canonical pA polymerase Trf4p. Moreover, PABP loading onto nascent pA tails is controlled by Rrp6p; while Pab1p is the major PABP, Nab2p only associates in the absence of Rrp6p. This is because Rrp6p can interact with Nab2p and displace it from pA tails, potentially leading to RNA turnover as evidenced for certain pre-mRNAs. We suggest that a nuclear mRNP surveillance step involves targeting of Rrp6p by Nab2p-bound pA-tailed RNPs and that pre-mRNA abundance is regulated at this level. PMID:22683267

  7. Expression of eukaryotic polypeptides in chloroplasts

    DOEpatents

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  8. Interaction of phenazinium dyes with double-stranded poly(A): Spectroscopy and isothermal titration calorimetry studies

    NASA Astrophysics Data System (ADS)

    Khan, Asma Yasmeen; Saha, Baishakhi; Kumar, Gopinatha Suresh

    2014-10-01

    A comprehensive study on the binding of phenazinium dyes viz. janus green B, indoine blue, safranine O and phenosafranine with double stranded poly(A) using various spectroscopic and calorimetric techniques is presented. A higher binding of janus green B and indoine blue over safranine O and phenosafranine to poly(A) was observed from all experiments. Intercalative mode of binding of the dyes was inferred from fluorescence polarization anisotropy, iodide quenching and viscosity experiments. Circular dichroism study revealed significant perturbation of the secondary structure of poly(A) on binding of these dyes. Results from isothermal titration calorimetry experiments suggested that the binding was predominantly entropy driven with a minor contribution of enthalpy to the standard molar Gibbs energy. The results presented here may open new opportunities in the application of these dyes as RNA targeted therapeutic agents.

  9. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs

    PubMed Central

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-01-01

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNALys(UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC. PMID:28685749

  10. The E3 ubiquitin ligase and RNA-binding protein ZNF598 orchestrates ribosome quality control of premature polyadenylated mRNAs.

    PubMed

    Garzia, Aitor; Jafarnejad, Seyed Mehdi; Meyer, Cindy; Chapat, Clément; Gogakos, Tasos; Morozov, Pavel; Amiri, Mehdi; Shapiro, Maayan; Molina, Henrik; Tuschl, Thomas; Sonenberg, Nahum

    2017-07-07

    Cryptic polyadenylation within coding sequences (CDS) triggers ribosome-associated quality control (RQC), followed by degradation of the aberrant mRNA and polypeptide, ribosome disassembly and recycling. Although ribosomal subunit dissociation and nascent peptide degradation are well-understood, the molecular sensors of aberrant mRNAs and their mechanism of action remain unknown. We studied the Zinc Finger Protein 598 (ZNF598) using PAR-CLIP and revealed that it cross-links to tRNAs, mRNAs and rRNAs, thereby placing the protein on translating ribosomes. Cross-linked reads originating from AAA-decoding tRNA Lys (UUU) were 10-fold enriched over its cellular abundance, and poly-lysine encoded by poly(AAA) induced RQC in a ZNF598-dependent manner. Encounter with translated polyA segments by ZNF598 triggered ubiquitination of several ribosomal proteins, requiring the E2 ubiquitin ligase UBE2D3 to initiate RQC. Considering that human CDS are devoid of >4 consecutive AAA codons, sensing of prematurely placed polyA tails by a specialized RNA-binding protein is a novel nucleic-acid-based surveillance mechanism of RQC.

  11. Construction of plasmid, bacterial expression, purification, and assay of dengue virus type 2 NS5 methyltransferase.

    PubMed

    Boonyasuppayakorn, Siwaporn; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).

  12. mRNA interactome capture in mammalian cells.

    PubMed

    Kastelic, Nicolai; Landthaler, Markus

    2017-08-15

    Throughout their entire life cycle, mRNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions. Their interplay is one key to control gene regulatory mechanisms from mRNA synthesis to decay. To assay the global scope of RNA-protein interactions, we and others have published a method combining crosslinking with highly stringent oligo(dT) affinity purification to enrich proteins associated with polyadenylated RNA (poly(A)+ RNA). Identification of the poly(A)+ RNA-bound proteome (also: mRNA interactome capture) has by now been applied to a diversity of cell lines and model organisms, uncovering comprehensive repertoires of RBPs and hundreds of novel RBP candidates. In addition to determining the RBP catalog in a given biological system, mRNA interactome capture allows the examination of changes in protein-mRNA interactions in response to internal and external stimuli, altered cellular programs and disease. Copyright © 2017. Published by Elsevier Inc.

  13. A deadenylase assay by size-exclusion chromatography.

    PubMed

    He, Guang-Jun; Yan, Yong-Bin

    2012-01-01

    The shortening of the 3'-end poly(A) tail, also called deadenylation, is crucial to the regulation of mRNA processing, transportation, translation and degradation. The deadenylation process is achieved by deadenylases, which specifically catalyze the removal of the poly(A) tail at the 3'-end of eukaryotic mRNAs and release 5'-AMP as the product. To achieve their physiological functions, all deadenylases have numerous binding partners that may regulate their catalytic properties or recruit them into various protein complexes. To study the effects of various partners, it is important to develop new deadenylase assay that can be applied either in vivo or in vitro. In this research, we developed the deadenylase assay by the size-exclusion chromatography (SEC) method. The SEC analysis indicated that the poly(A) or oligo(A) substrate and the product AMP could be successfully separated and quantified. The enzymatic parameters of deadenylase could be obtained by quantifying the AMP generation. When using the commercial poly(A) as the substrate, a biphasic catalytic process was observed, which might correlate to the two distinct states of poly(A) in the commercial samples. Different lots of commercial poly(A) had dissimilar size distributions and were dissimilar in response to the degradation of deadenylase. The deadenylation pattern, processive or distributive, could also be investigated using the SEC assay by monitoring the status of the substrate and the generation kinetics of AMP and A2. The SEC assay was applicable to both simple samples using the purified enzyme and complex enzyme reaction conditions such as using protein mixtures or crude cell extracts as samples. The influence of solutes with absorption at 254 nm could be successfully eliminated by constructing the different SEC profiles.

  14. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing

    PubMed Central

    Yang, Qin; Gilmartin, Gregory M.; Doublié, Sylvie

    2010-01-01

    Human Cleavage Factor Im (CFIm) is an essential component of the pre-mRNA 3′ processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFIm25) of the CFIm complex possesses a characteristic α/β/α Nudix fold, CFIm25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFIm25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFIm25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson–Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap4A (diadenosine tetraphosphate) by CFIm25 suggests a potential role for small molecules in the regulation of mRNA 3′ processing. PMID:20479262

  15. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing.

    PubMed

    Yang, Qin; Gilmartin, Gregory M; Doublié, Sylvie

    2010-06-01

    Human Cleavage Factor Im (CFI(m)) is an essential component of the pre-mRNA 3' processing complex that functions in the regulation of poly(A) site selection through the recognition of UGUA sequences upstream of the poly(A) site. Although the highly conserved 25 kDa subunit (CFI(m)25) of the CFI(m) complex possesses a characteristic alpha/beta/alpha Nudix fold, CFI(m)25 has no detectable hydrolase activity. Here we report the crystal structures of the human CFI(m)25 homodimer in complex with UGUAAA and UUGUAU RNA sequences. CFI(m)25 is the first Nudix protein to be reported to bind RNA in a sequence-specific manner. The UGUA sequence contributes to binding specificity through an intramolecular G:A Watson-Crick/sugar-edge base interaction, an unusual pairing previously found to be involved in the binding specificity of the SAM-III riboswitch. The structures, together with mutational data, suggest a novel mechanism for the simultaneous sequence-specific recognition of two UGUA elements within the pre-mRNA. Furthermore, the mutually exclusive binding of RNA and the signaling molecule Ap(4)A (diadenosine tetraphosphate) by CFI(m)25 suggests a potential role for small molecules in the regulation of mRNA 3' processing.

  16. Effective Design of Multifunctional Peptides by Combining Compatible Functions

    PubMed Central

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-01-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600

  17. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin β

    PubMed Central

    Sato, Hanae; Maquat, Lynne E.

    2009-01-01

    Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)–protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)–CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon–exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin β (IMPβ): Inhibiting the binding of IMPβ to the complex of CBC–IMPα at an mRNA cap using the IMPα IBB (IMPβ-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPβ and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured. PMID:19884259

  18. A comprehensive analysis of 3′ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation

    PubMed Central

    Gruber, Andreas J.; Schmidt, Ralf; Gruber, Andreas R.; Martin, Georges; Ghosh, Souvik; Belmadani, Manuel; Keller, Walter

    2016-01-01

    Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mammals, which has been recently linked to proliferative states and cancer. Different 3′ untranslated region (3′ UTR) isoforms interact with different RNA-binding proteins (RBPs), which modify the stability, translation, and subcellular localization of the corresponding transcripts. Although the heterogeneity of pre-mRNA 3′ end processing has been established with high-throughput approaches, the mechanisms that underlie systematic changes in 3′ UTR lengths remain to be characterized. Through a uniform analysis of a large number of 3′ end sequencing data sets, we have uncovered 18 signals, six of which are novel, whose positioning with respect to pre-mRNA cleavage sites indicates a role in pre-mRNA 3′ end processing in both mouse and human. With 3′ end sequencing we have demonstrated that the heterogeneous ribonucleoprotein C (HNRNPC), which binds the poly(U) motif whose frequency also peaks in the vicinity of polyadenylation (poly(A)) sites, has a genome-wide effect on poly(A) site usage. HNRNPC-regulated 3′ UTRs are enriched in ELAV-like RBP 1 (ELAVL1) binding sites and include those of the CD47 gene, which participate in the recently discovered mechanism of 3′ UTR–dependent protein localization (UDPL). Our study thus establishes an up-to-date, high-confidence catalog of 3′ end processing sites and poly(A) signals, and it uncovers an important role of HNRNPC in regulating 3′ end processing. It further suggests that U-rich elements mediate interactions with multiple RBPs that regulate different stages in a transcript's life cycle. PMID:27382025

  19. Multifunctional cellulase and hemicellulase

    DOEpatents

    Fox, Brian G.; Takasuka, Taichi; Bianchetti, Christopher M.

    2015-09-29

    A multifunctional polypeptide capable of hydrolyzing cellulosic materials, xylan, and mannan is disclosed. The polypeptide includes the catalytic core (cc) of Clostridium thermocellum Cthe_0797 (CelE), the cellulose-specific carbohydrate-binding module CBM3 of the cellulosome anchoring protein cohesion region (CipA) of Clostridium thermocellum (CBM3a), and a linker region interposed between the catalytic core and the cellulose-specific carbohydrate binding module. Methods of using the multifunctional polypeptide are also disclosed.

  20. hnRNP L controls HPV16 RNA polyadenylation and splicing in an Akt kinase-dependent manner

    PubMed Central

    Kajitani, Naoko; Glahder, Jacob; Wu, Chengjun; Yu, Haoran; Nilsson, Kersti

    2017-01-01

    Abstract Inhibition of the Akt kinase activates HPV16 late gene expression by reducing HPV16 early polyadenylation and by activating HPV16 late L1 mRNA splicing. We identified ‘hot spots’ for RNA binding proteins at the early polyA signal and at splice sites on HPV16 late mRNAs. We observed that hnRNP L was associated with sequences at all HPV16 late splice sites and at the early polyA signal. Akt kinase inhibition resulted in hnRNP L dephosphorylation and reduced association of hnRNP L with HPV16 mRNAs. This was accompanied by an increased binding of U2AF65 and Sam68 to HPV16 mRNAs. Furthermore, siRNA knock-down of hnRNP L or Akt induced HPV16 gene expression. Treatment of HPV16 immortalized keratinocytes with Akt kinase inhibitor reduced hnRNP L binding to HPV16 mRNAs and induced HPV16 L1 mRNA production. Finally, deletion of the hnRNP L binding sites in HPV16 subgenomic expression plasmids resulted in activation of HPV16 late gene expression. In conclusion, the Akt kinase inhibits HPV16 late gene expression at the level of RNA processing by controlling the RNA-binding protein hnRNP L. We speculate that Akt kinase activity upholds an intracellular milieu that favours HPV16 early gene expression and suppresses HPV16 late gene expression. PMID:28934469

  1. HuR binding to cytoplasmic mRNA is perturbed by heat shock

    PubMed Central

    Gallouzi, Imed-Eddine; Brennan, Christopher M.; Stenberg, Myrna G.; Swanson, Maurice S.; Eversole, Ashley; Maizels, Nancy; Steitz, Joan A.

    2000-01-01

    AU-rich elements (AREs) located in the 3′ untranslated region target the mRNAs encoding many protooncoproteins, cytokines, and lymphokines for rapid degradation. HuR, a ubiquitously expressed member of the embryonic lethal abnormal vision (ELAV) family of RNA-binding proteins, binds ARE sequences and selectively stabilizes ARE-containing reporter mRNAs when overexpressed in transiently transfected cells. HuR appears predominantly nucleoplasmic but has been shown to shuttle between the nucleus and cytoplasm via a novel shuttling sequence HNS. We report generation of a mouse monoclonal antibody 3A2 that both immunoblots and immunoprecipitates HuR protein; it recognizes an epitope located in the first of HuR's three RNA recognition motifs. This antibody was used to probe HuR interactions with mRNA before and after heat shock, a condition that has been reported to stabilize ARE-containing mRNAs. At 37°C, approximately one-third of the cytoplasmic HuR appears polysome associated, and in vivo UV crosslinking reveals that HuR interactions with poly(A)+ RNA are predominantly cytoplasmic rather than nuclear. This comprises evidence that HuR directly interacts with mRNA in vivo. After heat shock, 12–15% of HuR accumulates in discrete foci in the cytoplasm, but surprisingly the majority of HuR crosslinks instead to nuclear poly(A)+ RNA, whose levels are dramatically increased in the stressed cells. This behavior of HuR differs from that of another ARE-binding protein, hnRNP D, which has been implicated as an effector of mRNA decay rather than mRNA stabilization and of the general pre-RNA-binding protein hnRNP A1. We interpret these differences to mean that the temporal association of HuR with ARE-containing mRNAs is different from that of these other two proteins. PMID:10737787

  2. Poly(A)-binding proteins and mRNA localization: who rules the roost?

    PubMed

    Gray, Nicola K; Hrabálková, Lenka; Scanlon, Jessica P; Smith, Richard W P

    2015-12-01

    RNA-binding proteins are often multifunctional, interact with a variety of protein partners and display complex localizations within cells. Mammalian cytoplasmic poly(A)-binding proteins (PABPs) are multifunctional RNA-binding proteins that regulate multiple aspects of mRNA translation and stability. Although predominantly diffusely cytoplasmic at steady state, they shuttle through the nucleus and can be localized to a variety of cytoplasmic foci, including those associated with mRNA storage and localized translation. Intriguingly, PABP sub-cellular distribution can alter dramatically in response to cellular stress or viral infection, becoming predominantly nuclear and/or being enriched in induced cytoplasmic foci. However, relatively little is known about the mechanisms that govern this distribution/relocalization and in many cases PABP functions within specific sites remain unclear. Here we discuss the emerging evidence with respect to these questions in mammals. © 2015 Authors; published by Portland Press Limited.

  3. Behavior of adsorbed Poly-A onto sodium montmorillonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palomino-Aquino, Nayeli; Negrón-Mendoza, Alicia, E-mail: negron@nucleares.unam.mx

    2015-07-23

    The adsorption of Poly-A (a polynucleotide consisting of adenine, ribose and a phosphate group), onto a clay mineral, was studied to investigate the extent of adsorption, the site of binding, and the capacity of the clay to protect Poly-A, while it is adsorbed onto the clay, from external sources of energy. The results showed that Poly-A presented a high percentage of adsorption at the edges of the clay and that the survival of the polynucleotide was superior to irradiating the polymer in the absence of the clay.

  4. New insight into multifunctional role of peroxiredoxin family protein: Determination of DNA protection properties of bacterioferritin comigratory protein under hyperthermal and oxidative stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangmin, E-mail: taeinlee2011@kangwon.ac.kr; Chung, Jeong Min; Yun, Hyung Joong

    Bacterioferritin comigratory protein (BCP) is a monomeric conformer acting as a putative thiol-dependent bacterial peroxidase, however molecular basis of DNA-protection via DNA-binding has not been clearly understood. In this study, we characterized the DNA binding properties of BCP using various lengths and differently shaped architectures of DNA. An electrophoretic mobility shift assay and electron microscopy analysis showed that recombinant TkBCP bound to DNA of a circular shape (double-stranded DNA and single-stranded DNA) and a linear shape (16–1000 bp) as well as various architectures of DNA. In addition, DNA protection experiments indicated that TkBCP can protect DNA against hyperthermal and oxidative stressmore » by removing highly reactive oxygen species (ROS) or by protecting DNA from thermal degradation. Based on these results, we suggest that TkBCP is a multi-functional DNA-binding protein which has DNA chaperon and antioxidant functions. - Highlights: • Bacterioferritin comigratory protein (BCP) protects DNA from oxidative stress by reducing ROS. • TkBCP does not only scavenge ROS, but also protect DNA from hyperthermal stress. • BCP potentially adopts the multi-functional role in DNA binding activities and anti-oxidant functions.« less

  5. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein

    PubMed Central

    Zhang, Chongxu; Nielsen, Maria E. O.; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J.; Andersen, Jens S.; Yao, Gang

    2013-01-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1’s defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made. PMID:22836166

  6. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    PubMed

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  7. Binding of Phenazinium Dye Safranin T to Polyriboadenylic Acid: Spectroscopic and Thermodynamic Study

    PubMed Central

    Roy, Snigdha; Das, Suman

    2014-01-01

    Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na+] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure. PMID:24498422

  8. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    PubMed

    Pradhan, Ankur Bikash; Haque, Lucy; Roy, Snigdha; Das, Suman

    2014-01-01

    Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  9. RNA-binding proteins in plants: the tip of an iceberg?

    NASA Technical Reports Server (NTRS)

    Fedoroff, Nina V.; Federoff, N. V. (Principal Investigator)

    2002-01-01

    RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.

  10. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export.

    PubMed

    Port, Sarah A; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H

    2016-10-28

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A) + RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A) + RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The Oncogenic Fusion Proteins SET-Nup214 and Sequestosome-1 (SQSTM1)-Nup214 Form Dynamic Nuclear Bodies and Differentially Affect Nuclear Protein and Poly(A)+ RNA Export*

    PubMed Central

    Port, Sarah A.; Mendes, Adélia; Valkova, Christina; Spillner, Christiane; Fahrenkrog, Birthe; Kaether, Christoph; Kehlenbach, Ralph H.

    2016-01-01

    Genetic rearrangements are a hallmark of several forms of leukemia and can lead to oncogenic fusion proteins. One example of an affected chromosomal region is the gene coding for Nup214, a nucleoporin that localizes to the cytoplasmic side of the nuclear pore complex (NPC). We investigated two such fusion proteins, SET-Nup214 and SQSTM1 (sequestosome)-Nup214, both containing C-terminal portions of Nup214. SET-Nup214 nuclear bodies containing the nuclear export receptor CRM1 were observed in the leukemia cell lines LOUCY and MEGAL. Overexpression of SET-Nup214 in HeLa cells leads to the formation of similar nuclear bodies that recruit CRM1, export cargo proteins, and certain nucleoporins and concomitantly affect nuclear protein and poly(A)+ RNA export. SQSTM1-Nup214, although mostly cytoplasmic, also forms nuclear bodies and inhibits nuclear protein but not poly(A)+ RNA export. The interaction of the fusion proteins with CRM1 is RanGTP-dependent, as shown in co-immunoprecipitation experiments and binding assays. Further analysis revealed that the Nup214 parts mediate the inhibition of nuclear export, whereas the SET or SQSTM1 part determines the localization of the fusion protein and therefore the extent of the effect. SET-Nup214 nuclear bodies are highly mobile structures, which are in equilibrium with the nucleoplasm in interphase and disassemble during mitosis or upon treatment of cells with the CRM1-inhibitor leptomycin B. Strikingly, we found that nucleoporins can be released from nuclear bodies and reintegrated into existing NPC. Our results point to nuclear bodies as a means of preventing the formation of potentially insoluble and harmful protein aggregates that also may serve as storage compartments for nuclear transport factors. PMID:27613868

  12. Musashi Protein-directed Translational Activation of Target mRNAs Is Mediated by the Poly(A) Polymerase, Germ Line Development Defective-2*

    PubMed Central

    Cragle, Chad; MacNicol, Angus M.

    2014-01-01

    The mRNA-binding protein, Musashi, has been shown to regulate translation of select mRNAs and to control cellular identity in both stem cells and cancer cells. Within the mammalian cells, Musashi has traditionally been characterized as a repressor of translation. However, we have demonstrated that Musashi is an activator of translation in progesterone-stimulated oocytes of the frog Xenopus laevis, and recent evidence has revealed Musashi's capability to function as an activator of translation in mammalian systems. The molecular mechanism by which Musashi directs activation of target mRNAs has not been elucidated. Here, we report a specific association of Musashi with the noncanonical poly(A) polymerase germ line development defective-2 (GLD2) and map the association domain to 31 amino acids within the C-terminal domain of Musashi. We show that loss of GLD2 interaction through deletion of the binding domain or treatment with antisense oligonucleotides compromises Musashi function. Additionally, we demonstrate that overexpression of both Musashi and GLD2 significantly enhances Musashi function. Finally, we report a similar co-association also occurs between murine Musashi and GLD2 orthologs, suggesting that coupling of Musashi to the polyadenylation apparatus is a conserved mechanism to promote target mRNA translation. PMID:24644291

  13. Back to basics: the untreated rabbit reticulocyte lysate as a competitive system to recapitulate cap/poly(A) synergy and the selective advantage of IRES-driven translation.

    PubMed

    Soto Rifo, Ricardo; Ricci, Emiliano P; Décimo, Didier; Moncorgé, Olivier; Ohlmann, Théophile

    2007-01-01

    Translation of most eukaryotic mRNAs involves the synergistic action between the 5' cap structure and the 3' poly(A) tail at the initiation step. The poly(A) tail has also been shown to stimulate translation of picornavirus internal ribosome entry sites (IRES)-directed translation. These effects have been attributed principally to interactions between eIF4G and poly(A)-binding protein (PABP) but also to the participation of PABP in other steps during translation initiation. As the rabbit reticulocyte lysate (RRL) does not recapitulate this cap/poly(A) synergy, several systems based on cellular cell-free extracts have been developed to study the effects of poly(A) tail in vitro but they generally exhibit low translational efficiency. Here, we describe that the non-nuclease-treated RRL (untreated RRL) is able to recapitulate the effects of poly(A) tail on translation in vitro. In this system, translation of a capped/polyadenylated RNA was specifically inhibited by either Paip2 or poly(rA), whereas translation directed by HCV IRES remained unaffected. Moreover, cleavage of eIF4G by FMDV L protease strongly stimulated translation directed by the EMCV IRES, thus recapitulating the competitive advantage that the proteolytic processing of eIF4G confers to IRES-driven RNAs.

  14. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metrick, Claire M.; Heldwein, Ekaterina E.; Sandri-Goldin, R. M.

    Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed fourmore » regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCEDue to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure of UL21C and the observation of its RNA-binding ability are the latest additions to the navigational chart that can guide the exploration of the multiple functions of UL21.« less

  15. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  16. Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.

    PubMed

    Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P

    2001-08-17

    Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.

  17. Characterization of Rous sarcoma virus polyadenylation site use in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciolek, Nicole L.; McNally, Mark T.

    2008-05-10

    Polyadenylation of Rous sarcoma virus (RSV) RNA is inefficient, as approximately 15% of RSV RNAs represent read-through transcripts that use a downstream cellular polyadenylation site (poly(A) site). Read-through transcription has implications for the virus and the host since it is associated with oncogene capture and tumor induction. To explore the basis of inefficient RSV RNA 3'-end formation, we characterized RSV polyadenylation in vitro using HeLa cell nuclear extracts and HEK293 whole cell extracts. RSV polyadenylation substrates composed of the natural 3' end of viral RNA and various lengths of upstream sequence showed little or no polyadenylation, indicating that the RSVmore » poly(A) site is suboptimal. Efficiently used poly(A) sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal. The sequences upstream and downstream of the RSV poly(A) site deviate from those found in efficiently used poly(A) sites, which may explain inefficient RSV polyadenylation. To assess the quality of the RSV USEs and DSEs, the well-characterized SV40 late USEs and/or DSEs were substituted for the RSV elements and vice versa, which showed that the USEs and DSEs from RSV are suboptimal but functional. CstF interacted poorly with the RSV polyadenylation substrate, and the inactivity of the RSV poly(A) site was at least in part due to poor CstF binding since tethering CstF to the RSV substrate activated polyadenylation. Our data are consistent with poor polyadenylation factor binding sites in both the USE and DSE as the basis for inefficient use of the RSV poly(A) site and point to the importance of additional elements within RSV RNA in promoting 3' end formation.« less

  18. Extended HSR/CARD domain mediates AIRE binding to DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslovskaja, Julia, E-mail: julia.maslovskaja@ut.ee; Saare, Mario; Liiv, Ingrid

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved inmore » AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.« less

  19. Poly(A) RNA a new component of Cajal bodies.

    PubMed

    Kołowerzo, Agnieszka; Smoliński, Dariusz Jan; Bednarska, Elzbieta

    2009-07-01

    In European larch microsporocytes, spherical structures 0.5 to 6 microm in diameter are present in which poly(A) RNA accumulates. There were one to several bodies per cell and they were often present in the vicinity of the nucleolus. No nascent transcripts were observed within them. Splicing factors of the SR family, including protein SC35, which participates in bringing the 3' and 5' sites closer in the splicing reaction, were also not observed. The absence of the above-mentioned elements within bodies containing poly(A) RNA disqualifies them as sites of synthesis and preliminary stages of primary transcript maturation. However, they contained abundant elements of the splicing machinery commonly occurring in Cajal bodies, i.e., Sm proteins or small nuclear RNA (snRNA). The molecular composition as well as the characteristic ultrastructure of bodies containing poly(A) RNA proves that these were Cajal bodies. This is the first report of such poly(A) RNA localization.

  20. Tissue-specific autoregulation of Drosophila suppressor of forked by alternative poly(A) site utilization leads to accumulation of the suppressor of forked protein in mitotically active cells.

    PubMed Central

    Juge, F; Audibert, A; Benoit, B; Simonelig, M

    2000-01-01

    The Suppressor of forked protein is the Drosophila homolog of the 77K subunit of human cleavage stimulation factor, a complex required for the first step of the mRNA 3'-end-processing reaction. We have shown previously that wild-type su(f) function is required for the accumulation of a truncated su(f) transcript polyadenylated in intron 4 of the gene. This led us to propose a model in which the Su(f) protein would negatively regulate its own accumulation by stimulating 3'-end formation of this truncated su(f) RNA. In this article, we demonstrate this model and show that su(f) autoregulation is tissue specific. The Su(f) protein accumulates at a high level in dividing tissues, but not in nondividing tissues. We show that this distribution of the Su(f) protein results from stimulation by Su(f) of the tissue-specific utilization of the su(f) intronic poly(A) site, leading to the accumulation of the truncated su(f) transcript in nondividing tissues. Utilization of this intronic poly(A) site is affected in a su(f) mutant and restored in the mutant with a transgene encoding wild-type Su(f) protein. These data provide an in vivo example of cell-type-specific regulation of a protein level by poly(A) site choice, and confirm the role of Su(f) in regulation of poly(A) site utilization. PMID:11105753

  1. Expression, crystallization and preliminary crystallographic analysis of RNA-binding protein Hfq (YmaH) from Bacillus subtilis in complex with an RNA aptamer.

    PubMed

    Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi

    2010-05-01

    The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq-RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq-RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 A, while the type 2 Hfq-RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 A. Diffraction data were collected to a resolution of 2.20 A from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis.

  2. In silico analysis of candidate proteins sharing homology with Streptococcus agalactiae proteins and their role in male infertility.

    PubMed

    Parida, Rajeshwari; Samanta, Luna

    2017-02-01

    Leukocytospermia is a physiologic condition defined as human semen with a leukocyte count of >1 x 10 6 cells/ml that is often correlated with male infertility. Moreover, bacteriospermia has been associated with leukocytospermia ultimately leading to male infertility. We have found that semen samples with >1 x 10 6 /ml leukocytes and/or bacteriospermia have oxidative predominance as evidenced by augmented protein carbonyl and lipid peroxidation status of the semen which is implicated in sperm dysfunction. It has been reported that Streptococcus agalactiae is present in bacteriospermic samples. Previous research has shown that human leukocyte antigen beta chain paralog (HLA-DRB) alleles interact best with the infected sperm cells rather than the non-infected cells. Little is known about the interaction of major histocompatibility complex (MHC) present on leukocytes with the sperm upon bacterial infection and how it induces an immunological response which we have addressed by epitope mapping. Therefore, we examined MHC class II derived bacterial peptides which might have human sperm-related functional aspects. Twenty-two S. agalactiae proteins were obtained from PUBMED protein database for our study. Protein sequences with more than two accession numbers were aligned using CLUSTAL Omega to check their conservation pattern. Each protein sequence was then analyzed for T-cell epitope prediction against HLA-DRB alleles using the immune epitope database (IEDB) analysis tool. Out of a plethora of peptides obtained from this analysis, peptides corresponding to proteins of interest such as DNA binding response regulator, hyaluronate lyase and laminin binding protein were screened against the human proteome using Blastp. Interestingly, we have found bacterial peptides sharing homology with human peptides deciphering some of the important sperm functions. Antibodies raised against these probable bacterial antigens of fertility will not only help us understand the mechanism of leukocytospermia/bacteriospermia induced male factor infertility but also open new avenues for immunocontraception. AA: amino acid; ASA: antisperm antibodies; GBS: group B streptococcus; HLA: human leukocyte antigen; HAS3: hyaluronan synthase 3: IEDB: immune epitope database; MAPO2: O 6 -methylguanine-induced apoptosis 2; MHC: major histocompatibility complex; ROS: reactive oxygen species; Rosbin1: round spermatid basic protein 1; S. agalactiae: Streptococcus agalactiae;SA: sperm antigen; SPATA17: spermatogenesis associated protein17; SPNR: spermatid perinuclear RNA binding protein; TEX15: testis-expressed sequence 15 protein; TOPAZ: testis- and ovary-specific PAZ domain-containing protein; TPABP: testis-specific poly-A binding protein; TPAP: testis-specific poly(A) polymerase; WHO: World Health Organization.

  3. Optimized Assembly of a Multifunctional RNA-Protein Nanostructure in a Cell-Free Gene Expression System.

    PubMed

    Schwarz-Schilling, Matthaeus; Dupin, Aurore; Chizzolini, Fabio; Krishnan, Swati; Mansy, Sheref S; Simmel, Friedrich C

    2018-04-11

    Molecular complexes composed of RNA molecules and proteins are promising multifunctional nanostructures for a wide variety of applications in biological cells or in artificial cellular systems. In this study, we systematically address some of the challenges associated with the expression and assembly of such hybrid structures using cell-free gene expression systems. As a model structure, we investigated a pRNA-derived RNA scaffold functionalized with four distinct aptamers, three of which bind to proteins, streptavidin and two fluorescent proteins, while one binds the small molecule dye malachite green (MG). Using MG fluorescence and Förster resonance energy transfer (FRET) between the RNA-scaffolded proteins, we assess critical assembly parameters such as chemical stability, binding efficiency, and also resource sharing effects within the reaction compartment. We then optimize simultaneous expression and coassembly of the RNA-protein nanostructure within a single-compartment cell-free gene expression system. We demonstrate expression and assembly of the multicomponent nanostructures inside of emulsion droplets and their aptamer-mediated localization onto streptavidin-coated substrates, plus the successful assembly of the hybrid structures inside of bacterial cells.

  4. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation

    PubMed Central

    Shen, Yingjia; Ji, Guoli; Haas, Brian J.; Wu, Xiaohui; Zheng, Jianti; Reese, Greg J.; Li, Qingshun Quinn

    2008-01-01

    The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites. PMID:18411206

  5. PABPN1-Dependent mRNA Processing Induces Muscle Wasting

    PubMed Central

    Raz, Yotam; van Putten, Maaike; Paniagua-Soriano, Guillem; Krom, Yvonne D.; Florea, Bogdan I.; Raz, Vered

    2016-01-01

    Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting. PMID:27152426

  6. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  7. Microgravity

    NASA Image and Video Library

    1989-02-03

    (PCG) Protein Crystal Growth Human Serum Albumin. Contributes to many transport and regulatory processes and has multifunctional binding properties which range from various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator on STS-26 was Larry DeLucas.

  8. Expression, crystallization and preliminary crystallographic analysis of RNA-binding protein Hfq (YmaH) from Bacillus subtilis in complex with an RNA aptamer

    PubMed Central

    Baba, Seiki; Someya, Tatsuhiko; Kawai, Gota; Nakamura, Kouji; Kumasaka, Takashi

    2010-01-01

    The Hfq protein is a hexameric RNA-binding protein which regulates gene expression by binding to RNA under the influence of diverse environmental stresses. Its ring structure binds various types of RNA, including mRNA and sRNA. RNA-bound structures of Hfq from Escherichia coli and Staphylococcus aureus have been revealed to have poly(A) RNA at the distal site and U-rich RNA at the proximal site, respectively. Here, crystals of a complex of the Bacillus subtilis Hfq protein with an A/G-repeat 7-mer RNA (Hfq–RNA) that were prepared using the hanging-drop vapour-diffusion technique are reported. The type 1 Hfq–RNA crystals belonged to space group I422, with unit-cell parameters a = b = 123.70, c = 119.13 Å, while the type 2 Hfq–RNA crystals belonged to space group F222, with unit-cell parameters a = 91.92, b = 92.50, c = 114.92 Å. Diffraction data were collected to a resolution of 2.20 Å from both crystal forms. The hexameric structure of the Hfq protein was clearly shown by self-rotation analysis. PMID:20445260

  9. Identification of a new EF-hand superfamily member from Trypanosoma brucei

    NASA Technical Reports Server (NTRS)

    Wong, S.; Kretsinger, R. H.; Campbell, D. A.

    1992-01-01

    We identified several open reading frames between the regions encoding calmodulin and ubiquitin-EP52/1 in the genome of Trypanosoma brucei. One of these, EFH5, encodes a protein 192 amino acids long. The EFH5 transcript is present in poly(A)+ mRNA and is present at similar levels in the mammalian bloodstream form and the insect procyclic form. EFH5 contains four EF-hand homolog domains, two of which are inferred to bind Ca2+ ions. We expressed EFH5 as a fusion protein in Escherichia coli and demonstrated calcium-binding activity of the fusion protein using the 45Ca-overlay technique. The function of EFH5 remains unknown; however, as the fourth EF-hand homolog identified in trypanosomes, it attests to the broad range of functions assumed by calcium functioning as a second messenger. EFH5, which is most closely related to LAV1-2 from Physarum, represents a distinct subfamily among the EF-hand-containing proteins.

  10. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    PubMed

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Mechanisms and consequences of alternative polyadenylation

    PubMed Central

    Di Giammartino, Dafne Campigli; Nishida, Kensei; Manley, James L.

    2011-01-01

    Summary Alternative polyadenylation (APA) is emerging as a widespread mechanism used to control gene expression. Like alternative splicing, usage of alternative poly(A) sites allows a single gene to encode multiple mRNA transcripts. In some cases, this changes the mRNA coding potential; in other cases, the code remains unchanged but the 3’UTR length is altered, influencing the fate of mRNAs in several ways, for example, by altering the availability of RNA binding protein sites and microRNA binding sites. The mechansims governing both global and gene-specific APA are only starting to be deciphered. Here we review what is known about these mechanisms and the functional consequences of alternative polyadenlyation. PMID:21925375

  12. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    PubMed

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  13. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity

    PubMed Central

    Heraud-Farlow, Jacki E.; Kiebler, Michael A.

    2014-01-01

    Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions. PMID:25012293

  14. Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease

    PubMed Central

    Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.

    2002-01-01

    Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384

  15. The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells

    PubMed Central

    2005-01-01

    Background The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol. Results We demonstrate that MFP is an authentic microtubule-binding protein, as it localized to the cortical microtubule array in vivo, in addition to its expected targeting to the peroxisome matrix. MFP does not, however, interact with the three mitotic microtubule arrays. Microtubule co-sedimentation assays of truncated versions of MFP revealed that multiple microtubule-binding domains are present on the MFP polypeptide. This indicates that these regions function together to achieve high-affinity binding of the full-length protein. Real-time imaging of a transiently expressed green fluorescent protein-MFP chimera in living plant cells illustrated that a dynamic, spatial interaction exits between peroxisomes and cortical microtubules as peroxisomes move along actin filaments or oscillate at fixed locations. Conclusion Plant MFP is associated with the cortical microtubule array, in addition to its expected localization in the peroxisome. This observation, coupled with apparent interactions that frequently occur between microtubules and peroxisomes in the cell cortex, supports the hypothesis that MFP is concentrated on microtubules in order to facilitate the regulated import of MFP into peroxisomes. PMID:16313672

  16. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    PubMed

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features.

    PubMed

    Di, Chao; Yuan, Jiapei; Wu, Yue; Li, Jingrui; Lin, Huixin; Hu, Long; Zhang, Ting; Qi, Yijun; Gerstein, Mark B; Guo, Yan; Lu, Zhi John

    2014-12-01

    Recently, in addition to poly(A)+ long non-coding RNAs (lncRNAs), many lncRNAs without poly(A) tails, have been characterized in mammals. However, the non-polyA lncRNAs and their conserved motifs, especially those associated with environmental stresses, have not been fully investigated in plant genomes. We performed poly(A)- RNA-seq for seedlings of Arabidopsis thaliana under four stress conditions, and predicted lncRNA transcripts. We classified the lncRNAs into three confidence levels according to their expression patterns, epigenetic signatures and RNA secondary structures. Then, we further classified the lncRNAs to poly(A)+ and poly(A)- transcripts. Compared with poly(A)+ lncRNAs and coding genes, we found that poly(A)- lncRNAs tend to have shorter transcripts and lower expression levels, and they show significant expression specificity in response to stresses. In addition, their differential expression is significantly enriched in drought condition and depleted in heat condition. Overall, we identified 245 poly(A)+ and 58 poly(A)- lncRNAs that are differentially expressed under various stress stimuli. The differential expression was validated by qRT-PCR, and the signaling pathways involved were supported by specific binding of transcription factors (TFs), phytochrome-interacting factor 4 (PIF4) and PIF5. Moreover, we found many conserved sequence and structural motifs of lncRNAs from different functional groups (e.g. a UUC motif responding to salt and a AU-rich stem-loop responding to cold), indicated that the conserved elements might be responsible for the stress-responsive functions of lncRNAs. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus.

    PubMed

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.

  19. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.

    PubMed

    Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling

    2015-11-21

    Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties.

  20. Microgravity

    NASA Image and Video Library

    1992-03-12

    Contributes to many transport and regulatory processes and has multifunctional binding properties which range form various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream. Principal Investigator was Larry DeLucas.

  1. Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.

    PubMed

    Castello, Alfredo; Horos, Rastislav; Strein, Claudia; Fischer, Bernd; Eichelbaum, Katrin; Steinmetz, Lars M; Krijgsveld, Jeroen; Hentze, Matthias W

    2016-01-01

    RNA associates with RNA-binding proteins (RBPs) from synthesis to decay, forming dynamic ribonucleoproteins (RNPs). In spite of the preeminent role of RBPs regulating RNA fate, the scope of cellular RBPs has remained largely unknown. We have recently developed a novel and comprehensive method to identify the repertoire of active RBPs of cultured cells, called RNA interactome capture. Using in vivo UV cross-linking on cultured cells, proteins are covalently bound to RNA if the contact between the two is direct ("zero distance"). Protein-RNA complexes are purified by poly(A) tail-dependent oligo(dT) capture and analyzed by quantitative mass spectrometry. Because UV irradiation is applied to living cells and purification is performed using highly stringent washes, RNA interactome capture identifies physiologic and direct protein-RNA interactions. Applied to HeLa cells, this protocol revealed the near-complete repertoire of RBPs, including hundreds of novel RNA binders. Apart from its RBP discovery capacity, quantitative and comparative RNA interactome capture can also be used to study the responses of the RBP repertoire to different physiological cues and processes, including metabolic stress, differentiation, development, or the response to drugs.

  2. Modified nucleoside dependent Watson-Crick and wobble codon binding by tRNALysUUU species.

    PubMed

    Yarian, C; Marszalek, M; Sochacka, E; Malkiewicz, A; Guenther, R; Miskiewicz, A; Agris, P F

    2000-11-07

    Nucleoside modifications are important to the structure of all tRNAs and are critical to the function of some tRNA species. The transcript of human tRNA(Lys3)(UUU) with a UUU anticodon, and the corresponding anticodon stem and loop domain (ASL(Lys3)(UUU)), are unable to bind to poly-A programmed ribosomes. To determine if specific anticodon domain modified nucleosides of tRNA(Lys) species would restore ribosomal binding and also affect thermal stability, we chemically synthesized ASL(Lys) heptadecamers and site-specifically incorporated the anticodon domain modified nucleosides pseudouridine (Psi(39)), 5-methylaminomethyluridine (mnm(5)U(34)) and N6-threonylcarbamoyl-adenosine (t(6)A(37)). Incorporation of t(6)A(37) and mnm(5)U(34) contributed structure to the anticodon loop, apparent by increases in DeltaS, and significantly enhanced the ability of ASL(Lys3)(UUU) to bind poly-A programmed ribosomes. Neither ASL(Lys3)(UUU)-t(6)A(37) nor ASL(Lys3)(UUU)-mnm(5)U(34) bound AAG programmed ribosomes. Only the presence of both t(6)A(37) and mnm(5)U(34) enabled ASL(Lys3)(UUU) to bind AAG programmed ribosomes, as well as increased its affinity for poly-A programmed ribosomes to the level of native Escherichia coli tRNA(Lys). The completely unmodified anticodon stem and loop of human tRNA(Lys1,2)(CUU) with a wobble position-34 C bound AAG, but did not wobble to AAA, even when the ASL was modified with t(6)A(37). The data suggest that tRNA(Lys)(UUU) species require anticodon domain modifications in the loop to impart an ordered structure to the anticodon for ribosomal binding to AAA and require a combination of modified nucleosides to bind AAG.

  3. Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro.

    PubMed

    Guo, Deyin; Spetz, Carl; Saarma, Mart; Valkonen, Jari P T

    2003-05-01

    Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions.

  4. The multifunctional Staufen proteins: conserved roles from neurogenesis to synaptic plasticity.

    PubMed

    Heraud-Farlow, Jacki E; Kiebler, Michael A

    2014-09-01

    Staufen (Stau) proteins belong to a family of RNA-binding proteins (RBPs) that are important for RNA localisation in many organisms. In this review we discuss recent findings on the conserved role played by Stau during both the early differentiation of neurons and in the synaptic plasticity of mature neurons. Recent molecular data suggest mechanisms for how Stau2 regulates mRNA localisation, mRNA stability, translation, and ribonucleoprotein (RNP) assembly. We offer a perspective on how this multifunctional RBP has been adopted to regulate mRNA localisation under several different cellular and developmental conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus

    PubMed Central

    Masutani, Hiroshi; Yoshihara, Eiji; Masaki, So; Chen, Zhe; Yodoi, Junji

    2012-01-01

    Thioredoxin binding protein −2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein −2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein −2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein −2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein −2 in metabolic control. Enhancement of thioredoxin binding protein −2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein −2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein −2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β2-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus. PMID:22247597

  6. Computer Model of Aspirin bound to Human Serum Albumin

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Contributes to many transport and regulatory processes and has multifunctional binding properties which range form various metals, to fatty acids, hormones, and a wide spectrum of therapeutic drugs. The most abundant protein of the circulatory system. It binds and transports an incredible variety of biological and pharmaceutical ligands throughout the blood stream.

  7. Microscopy basics and the study of actin-actin-binding protein interactions.

    PubMed

    Thomasson, Maggie S; Macnaughtan, Megan A

    2013-12-15

    Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins.

    PubMed

    Norman, Michael; Rivers, Caroline; Lee, Youn-Bok; Idris, Jalilah; Uney, James

    2016-12-01

    RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein-protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins. © 2016 The Author(s).

  9. Major proteins of boar seminal plasma as a tool for biotechnological preservation of spermatozoa.

    PubMed

    Caballero, I; Vazquez, J M; García, E M; Parrilla, I; Roca, J; Calvete, J J; Sanz, L; Martínez, E A

    2008-11-01

    Boar seminal plasma is a complex mixture of secretions from the testes, epididymides, and the male accessory reproductive organs which bathe the spermatozoa at ejaculation. The seminal plasma contains factors, mostly proteins, which influence the spermatozoa, the female genital tract, and the ovum. In boars, most of the proteins belong to the spermadhesin family and bind to the sperm surface. Spermadhesins are multifunctional proteins with a wide range of ligand-binding abilities to heparin, phospholipids, protease inhibitors and carbohydrates; the family can be roughly divided into heparin-binding (AQN-1, AQN-3, AWN) and non-heparin-binding spermadhesins (PSP-I/PSP-II heterodimer). These proteins have various effects promoting or inhibiting sperm functions including motility, oviduct binding, zona binding/penetration, and ultimately fertilization. The complexity of the environmental signals that influence these actions have implications for the uses of these proteins in vivo and in vitro, and may lead to uses in improving sperm storage.

  10. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    PubMed

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  11. Arsenic Induces Polyadenylation of Canonical Histone mRNA by Down-regulating Stem-Loop-binding Protein Gene Expression*

    PubMed Central

    Brocato, Jason; Fang, Lei; Chervona, Yana; Chen, Danqi; Kiok, Kathrin; Sun, Hong; Tseng, Hsiang-Chi; Xu, Dazhong; Shamy, Magdy; Jin, Chunyuan; Costa, Max

    2014-01-01

    The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3′-end. Instead, the histone mRNAs display a stem-loop structure at their 3′-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis. PMID:25266719

  12. Histone-poly(A) hybrid molecules as tools to block nuclear pores.

    PubMed

    Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D

    1995-04-01

    Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.

  13. Cellulosome-based, Clostridium-derived multi-functional enzyme complexes for advanced biotechnology tool development: advances and applications.

    PubMed

    Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok

    2013-11-01

    The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Lineage-specific roles of the cytoplasmic polyadenylation factor CPEB4 in the regulation of melanoma drivers

    PubMed Central

    Pérez-Guijarro, Eva; Karras, Panagiotis; Cifdaloz, Metehan; Martínez-Herranz, Raúl; Cañón, Estela; Graña, Osvaldo; Horcajada-Reales, Celia; Alonso-Curbelo, Direna; Calvo, Tonantzin G.; Gómez-López, Gonzalo; Bellora, Nicolas; Riveiro-Falkenbach, Erica; Ortiz-Romero, Pablo L.; Rodríguez-Peralto, José L.; Maestre, Lorena; Roncador, Giovanna; de Agustín Asensio, Juan C.; Goding, Colin R.; Eyras, Eduardo; Megías, Diego; Méndez, Raúl; Soengas, María S.

    2016-01-01

    Nuclear 3'-end-polyadenylation is essential for the transport, stability and translation of virtually all eukaryotic mRNAs. Poly(A) tail extension can also occur in the cytoplasm, but the transcripts involved are incompletely understood, particularly in cancer. Here we identify a lineage-specific requirement of the cytoplasmic polyadenylation binding protein 4 (CPEB4) in malignant melanoma. CPEB4 is upregulated early in melanoma progression, as defined by computational and histological analyses. Melanoma cells are distinct from other tumour cell types in their dependency on CPEB4, not only to prevent mitotic aberrations, but to progress through G1/S cell cycle checkpoints. RNA immunoprecipitation, sequencing of bound transcripts and poly(A) length tests link the melanoma-specific functions of CPEB4 to signalling hubs specifically enriched in this disease. Essential in these CPEB4-controlled networks are the melanoma drivers MITF and RAB7A, a feature validated in clinical biopsies. These results provide new mechanistic links between cytoplasmic polyadenylation and lineage specification in melanoma. PMID:27857118

  15. Analysis of the interactions between host factor Sam68 and viral elements during foot-and-mouth disease virus infection

    USDA-ARS?s Scientific Manuscript database

    The nuclear protein Src-associated protein of 68 kDa in mitosis (Sam68) is known to bind RNA and be involved in cellular processes triggered in response to environmental stresses, including virus infection. Interestingly, Sam68, is a multi-functional protein implicated in the life cycle of retroviru...

  16. DREAM/Calsenilin/KChIP3 Modulates Strategy Selection and Estradiol-Dependent Learning and Memory

    ERIC Educational Resources Information Center

    Tunur, Tumay; Stelly, Claire E.; Schrader, Laura Ann

    2013-01-01

    Downstream regulatory element antagonist modulator (DREAM)/calsenilin(C)/K+ channel interacting protein 3 (KChIP3) is a multifunctional Ca[superscript 2+]-binding protein highly expressed in the hippocampus that inhibits hippocampus-sensitive memory and synaptic plasticity in male mice. Initial studies in our lab suggested opposing effects of…

  17. Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides

    PubMed Central

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe

    2012-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628

  18. Chemical functionalization of bioceramics to enhance endothelial cells adhesion for tissue engineering.

    PubMed

    Borcard, Françoise; Staedler, Davide; Comas, Horacio; Juillerat, Franziska Krauss; Sturzenegger, Philip N; Heuberger, Roman; Gonzenbach, Urs T; Juillerat-Jeanneret, Lucienne; Gerber-Lemaire, Sandrine

    2012-09-27

    To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.

  19. LARP4 Is Regulated by Tumor Necrosis Factor Alpha in a Tristetraprolin-Dependent Manner

    PubMed Central

    Mattijssen, Sandy

    2015-01-01

    LARP4 is a protein with unknown function that independently binds to poly(A) RNA, RACK1, and the poly(A)-binding protein (PABPC1). Here, we report on its regulation. We found a conserved AU-rich element (ARE) in the human LARP4 mRNA 3′ untranslated region (UTR). This ARE, but not its antisense version or a point-mutated version, significantly decreased the stability of β-globin reporter mRNA. We found that overexpression of tristetraprolin (TTP), but not its RNA binding mutant or the other ARE-binding proteins tested, decreased cellular LARP4 levels. RNA coimmunoprecipitation showed that TTP specifically associated with LARP4 mRNA in vivo. Consistent with this, mouse LARP4 accumulated to higher levels in TTP gene knockout (KO) cells than in control cells. Stimulation of WT cells with tumor necrosis factor alpha (TNF-α), which rapidly induces TTP, robustly decreased LARP4 with a coincident time course but had no such effect on LARP4B or La protein or on LARP4 in the TTP KO cells. The TNF-α-induced TTP pulse was followed by a transient decrease in LARP4 mRNA that was quickly followed by a subsequent transient decrease in LARP4 protein. Involvement of LARP4 as a target of TNF-α–TTP regulation provides a clue as to how its functional activity may be used in a physiologic pathway. PMID:26644407

  20. Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest

    PubMed Central

    Khaperskyy, Denys A.; Emara, Mohamed M.; Johnston, Benjamin P.; Anderson, Paul; Hatchette, Todd F.; McCormick, Craig

    2014-01-01

    Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication. PMID:25010204

  1. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA.

    PubMed

    Chen, Xin Jie; Wang, Xiaowen; Butow, Ronald A

    2007-08-21

    Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.

  2. FbpA, a novel multifunctional Listeria monocytogenes virulence factor.

    PubMed

    Dramsi, S; Bourdichon, F; Cabanes, D; Lecuit, M; Fsihi, H; Cossart, P

    2004-07-01

    Listeria monocytogenes is a Gram-positive intracellular bacterium responsible for severe opportunistic infections in humans and animals. Signature-tagged mutagenesis (STM) was used to identify a gene named fbpA, required for efficient liver colonization of mice inoculated intravenously. FbpA was also shown to be required for intestinal and liver colonization after oral infection of transgenic mice expressing human E-cadherin. fbpA encodes a 570-amino-acid polypeptide that has strong homologies to atypical fibronectin-binding proteins. FbpA binds to immobilized human fibronectin in a dose-dependent and saturable manner and increases adherence of wild-type L. monocytogenes to HEp-2 cells in the presence of exogenous fibronectin. Despite the lack of conventional secretion/anchoring signals, FbpA is detected using an antibody generated against the recombinant FbpA protein on the bacterial surface by immunofluorescence, and in the membrane compartment by Western blot analysis of cell extracts. Strikingly, FbpA expression affects the protein levels of two virulence factors, listeriolysin O (LLO) and InlB, but not that of InlA or ActA. FbpA co-immunoprecipitates with LLO and InlB, but not with InlA or ActA. Thus, FbpA, in addition to being a fibronectin-binding protein, behaves as a chaperone or an escort protein for two important virulence factors and appears as a novel multifunctional virulence factor of L. monocytogenes.

  3. Nuclear poly(A)-binding protein aggregates misplace a pre-mRNA outside of SC35 speckle causing its abnormal splicing

    PubMed Central

    Klein, Pierre; Oloko, Martine; Roth, Fanny; Montel, Valérie; Malerba, Alberto; Jarmin, Susan; Gidaro, Teresa; Popplewell, Linda; Perie, Sophie; Lacau St Guily, Jean; de la Grange, Pierre; Antoniou, Michael N.; Dickson, George; Butler-Browne, Gillian; Bastide, Bruno; Mouly, Vincent; Trollet, Capucine

    2016-01-01

    A short abnormal polyalanine expansion in the polyadenylate-binding protein nuclear-1 (PABPN1) protein causes oculopharyngeal muscular dystrophy (OPMD). Mutated PABPN1 proteins accumulate as insoluble intranuclear aggregates in muscles of OPMD patients. While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice have been established, the molecular mechanisms which trigger pathological defects in OPMD and the role of aggregates remain to be determined. Using exon array, for the first time we have identified several splicing defects in OPMD. In particular, we have demonstrated a defect in the splicing regulation of the muscle-specific Troponin T3 (TNNT3) mutually exclusive exons 16 and 17 in OPMD samples compared to controls. This splicing defect is directly linked to the SC35 (SRSF2) splicing factor and to the presence of nuclear aggregates. As reported here, PABPN1 aggregates are able to trap TNNT3 pre-mRNA, driving it outside nuclear speckles, leading to an altered SC35-mediated splicing. This results in a decreased calcium sensitivity of muscle fibers, which could in turn plays a role in muscle pathology. We thus report a novel mechanism of alternative splicing deregulation that may play a role in various other diseases with nuclear inclusions or foci containing an RNA binding protein. PMID:27507886

  4. Behind the scenes of vitamin D binding protein: more than vitamin D binding.

    PubMed

    Delanghe, Joris R; Speeckaert, Reinhart; Speeckaert, Marijn M

    2015-10-01

    Although being discovered in 1959, the number of published papers in recent years reveals that vitamin D binding protein (DBP), a member of the albuminoid superfamily, is a hot research topic. Besides the three major phenotypes (DBP1F, DBP1S and DBP2), more than 120 unique variants have been described of this polymorphic protein. The presence of DBP has been demonstrated in different body fluids (serum, urine, breast milk, ascitic fluid, cerebrospinal fluid, saliva and seminal fluid) and organs (brain, heart, lungs, kidneys, placenta, spleen, testes and uterus). Although the major function is binding, solubilization and transport of vitamin D and its metabolites, the name of this glycoprotein hides numerous other important biological functions. In this review, we will focus on the analytical aspects of the determination of DBP and discuss in detail the multifunctional capacity [actin scavenging, binding of fatty acids, chemotaxis, binding of endotoxins, influence on T cell response and influence of vitamin D binding protein-macrophage activating factor (DBP-MAF) on bone metabolism and cancer] of this abundant plasma protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. PlantAPA: A Portal for Visualization and Analysis of Alternative Polyadenylation in Plants

    PubMed Central

    Wu, Xiaohui; Zhang, Yumin; Li, Qingshun Q.

    2016-01-01

    Alternative polyadenylation (APA) is an important layer of gene regulation that produces mRNAs that have different 3′ ends and/or encode diverse protein isoforms. Up to 70% of annotated genes in plants undergo APA. Increasing numbers of poly(A) sites collected in various plant species demand new methods and tools to access and mine these data. We have created an open-access web service called PlantAPA (http://bmi.xmu.edu.cn/plantapa) to visualize and analyze genome-wide poly(A) sites in plants. PlantAPA provides various interactive and dynamic graphics and seamlessly integrates a genome browser that can profile heterogeneous cleavage sites and quantify expression patterns of poly(A) sites across different conditions. Particularly, through PlantAPA, users can analyze poly(A) sites in extended 3′ UTR regions, intergenic regions, and ambiguous regions owing to alternative transcription or RNA processing. In addition, it also provides tools for analyzing poly(A) site selections, 3′ UTR lengthening or shortening, non-canonical APA site switching, and differential gene expression between conditions, making it more powerful for the study of APA-mediated gene expression regulation. More importantly, PlantAPA offers a bioinformatics pipeline that allows users to upload their own short reads or ESTs for poly(A) site extraction, enabling users to further explore poly(A) site selection using stored PlantAPA poly(A) sites together with their own poly(A) site datasets. To date, PlantAPA hosts the largest database of APA sites in plants, including Oryza sativa, Arabidopsis thaliana, Medicago truncatula, and Chlamydomonas reinhardtii. As a user-friendly web service, PlantAPA will be a valuable addition to the community of biologists studying APA mechanisms and gene expression regulation in plants. PMID:27446120

  6. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  7. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology.

    PubMed

    Vest, Katherine E; Phillips, Brittany L; Banerjee, Ayan; Apponi, Luciano H; Dammer, Eric B; Xu, Weiting; Zheng, Dinghai; Yu, Julia; Tian, Bin; Pavlath, Grace K; Corbett, Anita H

    2017-09-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Position-dependent and neuron-specific splicing regulation by the CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans

    PubMed Central

    Kuroyanagi, Hidehito; Watanabe, Yohei; Suzuki, Yutaka; Hagiwara, Masatoshi

    2013-01-01

    A large fraction of protein-coding genes in metazoans undergo alternative pre-mRNA splicing in tissue- or cell-type-specific manners. Recent genome-wide approaches have identified many putative-binding sites for some of tissue-specific trans-acting splicing regulators. However, the mechanisms of splicing regulation in vivo remain largely unknown. To elucidate the modes of splicing regulation by the neuron-specific CELF family RNA-binding protein UNC-75 in Caenorhabditis elegans, we performed deep sequencing of poly(A)+ RNAs from the unc-75(+)- and unc-75-mutant worms and identified more than 20 cassette and mutually exclusive exons repressed or activated by UNC-75. Motif searches revealed that (G/U)UGUUGUG stretches are enriched in the upstream and downstream introns of the UNC-75-repressed and -activated exons, respectively. Recombinant UNC-75 protein specifically binds to RNA fragments carrying the (G/U)UGUUGUG stretches in vitro. Bi-chromatic fluorescence alternative splicing reporters revealed that the UNC-75-target exons are regulated in tissue-specific and (G/U)UGUUGUG element-dependent manners in vivo. The unc-75 mutation affected the splicing reporter expression specifically in the nervous system. These results indicate that UNC-75 regulates alternative splicing of its target exons in neuron-specific and position-dependent manners through the (G/U)UGUUGUG elements in C. elegans. This study thus reveals the repertoire of target events for the CELF family in the living organism. PMID:23416545

  9. The conserved, disease-associated RNA binding protein dNab2 interacts with the Fragile-X protein ortholog in Drosophila neurons

    PubMed Central

    Bienkowski, Rick S.; Banerjee, Ayan; Rounds, J. Christopher; Rha, Jennifer; Omotade, Omotola F.; Gross, Christina; Morris, Kevin J.; Leung, Sara W.; Pak, ChangHui; Jones, Stephanie K.; Santoro, Michael R.; Warren, Stephen T.; Zheng, James Q.; Bassell, Gary J.; Corbett, Anita H.; Moberg, Kenneth H.

    2017-01-01

    Summary The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A) RNA-binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with and the Fragile-X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII but not futsch mRNA, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A)-tail length similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. In sum these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14. PMID:28793261

  10. Characterization of binding preference of polyhydroxyalkanoate biosynthesis-related multifunctional protein PhaM from Ralstonia eutropha.

    PubMed

    Ushimaru, Kazunori; Tsuge, Takeharu

    2016-05-01

    The binding preference of a polyhydroxyalkanoate (PHA) biosynthesis-related multifunctional protein from Ralstonia eutropha (PhaMRe) was characterized. In vitro activity assay showed that PHA synthase from R. eutropha (PhaCRe) was activated by the presence of PhaMRe but PHA synthase from Aeromonas caviae (PhaCAc) was not. Additionally, in vitro assays of protein-protein interactions demonstrated that PhaMRe interacted with PhaCRe directly, but did not interact with PhaCAc. These results suggest that the protein-protein interaction is important for the activation of PhaC by PhaMRe. Further analyses indicated that PhaMRe has little or no direct interaction with the PHA polymer chain. Subsequently, PHA biosynthesis genes (phaA Re, phaB Re, and phaC Re/phaC Ac) and the phaM Re gene were introduced into recombinant Escherichia coli and cultivated for PHA accumulation. Contrary to our expectations, the expression of PhaMRe decreased PHA accumulation and changed the morphology of PHA granules to be microscopically obscure shape in PhaCRe-expressing E. coli. No change in the amount of P(3HB) or the morphology of granules by PhaMRe expression was observed in PhaCAc-expressing E. coli. These observations suggest that PhaMRe affects cellular physiology through the PhaM-PhaC interaction.

  11. Crystal Structure of the 25 kDa Subunit of Human Cleavage Factor I{m}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coseno,M.; Martin, G.; Berger, C.

    Cleavage factor Im is an essential component of the pre-messenger RNA 3'-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein-protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic {alpha}/{beta}/{alpha} fold and a conserved catalytic sequence or Nudix box. We present heremore » the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Angstroms, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3'-end processing.« less

  12. Association of CAD, a multifunctional protein involved in pyrimidine synthesis, with mLST8, a component of the mTOR complexes

    PubMed Central

    2013-01-01

    Background mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. Results CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. Conclusion The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8. PMID:23594158

  13. Multifunctional receptor model for dioxin and related compound toxic action: possible thyroid hormone-responsive effector-linked site.

    PubMed Central

    McKinney, J D

    1989-01-01

    Molecular/theoretical modeling studies have revealed that thyroid hormones and toxic chlorinated aromatic hydrocarbons of environmental significance (for which dioxin or TCDD is the prototype) have similar structural properties that could be important in molecular recognition in biochemical systems. These molecular properties include a somewhat rigid, sterically accessible and polarizable aromatic ring and size-limited, hydrophobic lateral substituents, usually contained in opposite adjoining rings of a diphenyl compound. These molecular properties define the primary binding groups thought to be important in molecular recognition of both types of structures in biochemical systems. Similar molecular reactivities are supported by the demonstration of effective specific binding of thyroid hormones and chlorinated aromatic hydrocarbons with four different proteins, enzymes, or receptor preparations that are known or suspected to be involved in the expression of thyroid hormone activity. These binding interactions represent both aromatic-aromatic (stacking) and molecular cleft-type recognition processes. A multiple protein or multifunctional receptor-ligand binding mechanism model is proposed as a way of visualizing the details and possible role of both the stacking and cleft type molecular recognition factors in the expression of biological activity. The model suggests a means by which hormone-responsive effector-linked sites (possible protein-protein-DNA complexes) can maintain highly structurally specific control of hormone action. Finally, the model also provides a theoretical basis for the design and conduct of further biological experimentation on the molecular mechanism(s) of action of toxic chlorinated aromatic hydrocarbons and thyroid hormones. Images FIGURE 3. A FIGURE 3. B FIGURE 3. C FIGURE 3. D PMID:2551666

  14. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing.

    PubMed

    Banerjee, Ayan; Vest, Katherine E; Pavlath, Grace K; Corbett, Anita H

    2017-10-13

    The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing

    PubMed Central

    Banerjee, Ayan; Vest, Katherine E.

    2017-01-01

    Abstract The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD. PMID:28977530

  16. Extreme heterogeneity of polyadenylation sites in mRNAs encoding chloroplast RNA-binding proteins in Nicotiana plumbaginifolia.

    PubMed

    Klahre, U; Hemmings-Mieszczak, M; Filipowicz, W

    1995-06-01

    We have previously characterized nuclear cDNA clones encoding two RNA binding proteins, CP-RBP30 and CP-RBP-31, which are targeted to chloroplasts in Nicotiana plumbaginifolia. In this report we describe the analysis of the 3'-untranslated regions (3'-UTRs) in 22 CP-RBP30 and 8 CP-RBP31 clones which reveals that mRNAs encoding both proteins have a very complex polyadenylation pattern. Fourteen distinct poly(A) sites were identified among CP-RBP30 clones and four sites among the CP-RBP31 clones. The authenticity of the sites was confirmed by RNase A/T1 mapping of N. plumbaginifolia RNA. CP-RBP30 provides an extreme example of the heterogeneity known to be a feature of mRNA polyadenylation in higher plants. Using PCR we have demonstrated that CP-RBP genes in N. plumbaginifolia and N. sylvestris, in addition to the previously described introns interrupting the coding region, contain an intron located in the 3' non-coding part of the gene. In the case of the CP-RBP31, we have identified one polyadenylation event occurring in this intron.

  17. Identification and heterologous expression of the cytochrome P450 oxidoreductase from the white-rot basidiomycete Coriolus versicolor.

    PubMed

    Ichinose, H; Wariishi, H; Tanaka, H

    2002-09-01

    A cDNA encoding cytochrome P450 oxidoreductase (CPR) from the lignin-degrading basidiomycete Coriolus versicolor was identified using RT-PCR. The full-length cDNA consisted of 2,484 nucleotides with a poly(A) tail, and contained an open reading frame. The G+C content of the cDNA isolated was 60%. A deduced protein contained 730 amino acid residues with a calculated molecular weight of 80.7 kDa. The conserved amino acid residues involved in functional domains such as FAD-, FMN-, and NADPH-binding domains, were all found in the deduced protein. A phylogenetic analysis demonstrated that C. versicolor CPR is significantly similar to CPR of the basidiomycete Phanerochaete chrysosporium and that they share the same major branch in the fungal cluster. A recombinant CPR protein was expressed using a pET/ Escherichia coli system. The recombinant CPR protein migrated at 81 kDa on SDS polyacrylamide gel electrophoresis. It exhibited an NADPH-dependent cytochrome c reducing activity.

  18. Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    PubMed Central

    Wong, Li Chin; Schedl, Paul

    2011-01-01

    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation. PMID:22164257

  19. Crystal structure of the 25 kDa subunit of human cleavage factor Im

    PubMed Central

    Coseno, Molly; Martin, Georges; Berger, Christopher; Gilmartin, Gregory; Keller, Walter; Doublié, Sylvie

    2008-01-01

    Cleavage factor Im is an essential component of the pre-messenger RNA 3′-end processing machinery in higher eukaryotes, participating in both the polyadenylation and cleavage steps. Cleavage factor Im is an oligomer composed of a small 25 kDa subunit (CF Im25) and a variable larger subunit of either 59, 68 or 72 kDa. The small subunit also interacts with RNA, poly(A) polymerase, and the nuclear poly(A)-binding protein. These protein–protein interactions are thought to be facilitated by the Nudix domain of CF Im25, a hydrolase motif with a characteristic α/β/α fold and a conserved catalytic sequence or Nudix box. We present here the crystal structures of human CF Im25 in its free and diadenosine tetraphosphate (Ap4A) bound forms at 1.85 and 1.80 Å, respectively. CF Im25 crystallizes as a dimer and presents the classical Nudix fold. Results from crystallographic and biochemical experiments suggest that CF Im25 makes use of its Nudix fold to bind but not hydrolyze ATP and Ap4A. The complex and apo protein structures provide insight into the active oligomeric state of CF Im and suggest a possible role of nucleotide binding in either the polyadenylation and/or cleavage steps of pre-messenger RNA 3′-end processing. PMID:18445629

  20. Biallelic insertion of a transcriptional terminator via the CRISPR/Cas9 system efficiently silences expression of protein-coding and non-coding RNA genes.

    PubMed

    Liu, Yangyang; Han, Xiao; Yuan, Junting; Geng, Tuoyu; Chen, Shihao; Hu, Xuming; Cui, Isabelle H; Cui, Hengmi

    2017-04-07

    The type II bacterial CRISPR/Cas9 system is a simple, convenient, and powerful tool for targeted gene editing. Here, we describe a CRISPR/Cas9-based approach for inserting a poly(A) transcriptional terminator into both alleles of a targeted gene to silence protein-coding and non-protein-coding genes, which often play key roles in gene regulation but are difficult to silence via insertion or deletion of short DNA fragments. The integration of 225 bp of bovine growth hormone poly(A) signals into either the first intron or the first exon or behind the promoter of target genes caused efficient termination of expression of PPP1R12C , NSUN2 (protein-coding genes), and MALAT1 (non-protein-coding gene). Both NeoR and PuroR were used as markers in the selection of clonal cell lines with biallelic integration of a poly(A) signal. Genotyping analysis indicated that the cell lines displayed the desired biallelic silencing after a brief selection period. These combined results indicate that this CRISPR/Cas9-based approach offers an easy, convenient, and efficient novel technique for gene silencing in cell lines, especially for those in which gene integration is difficult because of a low efficiency of homology-directed repair. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Wanderings in Biochemistry

    PubMed Central

    Lengyel, Peter

    2014-01-01

    My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins. PMID:24867946

  2. The DEAD-box Protein Dbp2 Functions with the RNA-binding Protein Yra1 to Promote mRNP Assembly

    PubMed Central

    Ma, Wai Kit; Cloutier, Sara C.; Tran, Elizabeth J.

    2013-01-01

    Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2 and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby mRNP assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus. PMID:23721653

  3. PI(4,5)P2-binding effector proteins for vesicle exocytosis

    PubMed Central

    Martin, Thomas F. J.

    2014-01-01

    PI(4,5)P2 participates directly in priming and possibly fusion steps of Ca2+-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P2 reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P2 domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P2 directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P2-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P2 effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P2, which promotes clustering, but an activating role for PI(4,5)P2 in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P2-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P2-binding proteins. PMID:25280637

  4. Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site

    PubMed Central

    Rico-Lastres, Palma; Pérez-Cañadillas, José Manuel

    2011-01-01

    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role. PMID:21931728

  5. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    PubMed

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Hfq variant with altered RNA binding functions

    PubMed Central

    Ziolkowska, Katarzyna; Derreumaux, Philippe; Folichon, Marc; Pellegrini, Olivier; Régnier, Philippe; Boni, Irina V.; Hajnsdorf, Eliane

    2006-01-01

    The interaction between Hfq and RNA is central to multiple regulatory processes. Using site-directed mutagenesis, we have found a missense mutation in Hfq (V43R) which strongly affects2 the RNA binding capacity of the Hfq protein and its ability to stimulate poly(A) tail elongation by poly(A)-polymerase in vitro. In vivo, overexpression of this Hfq variant fails to stimulate rpoS–lacZ expression and does not restore a normal growth rate in hfq null mutant. Cells in which the wild-type gene has been replaced by the hfqV43R allele exhibit a phenotype intermediate between those of the wild-type and of the hfq minus or null strains. This missense mutation derepresses Hfq synthesis. However, not all Hfq functions are affected by this mutation. For example, HfqV43R represses OppA synthesis as strongly as the wild-type protein. The dominant negative effect of the V43R mutation over the wild-type allele suggests that hexamers containing variant and genuine subunits are presumably not functional. Finally, molecular dynamics studies indicate that the V43R substitution mainly changes the position of the K56 and Y55 side chains involved in the Hfq–RNA interaction but has probably no effect on the folding and the oligomerization of the protein. PMID:16449205

  7. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes

    PubMed Central

    Zhan, Xuanzhi; Gimenez, Luis E.; Gurevich, Vsevolod V.; Spiller, Benjamin W.

    2011-01-01

    Arrestins are multi-functional proteins that regulate signaling and trafficking of the majority of G protein-coupled receptors (GPCRs), as well as sub-cellular localization and activity of many other signaling proteins. Here we report the first crystal structure of arrestin-3, solved at 3.0Å. Arrestin-3 is an elongated two-domain molecule with the overall fold and key inter-domain interactions that hold free protein in the basal conformation similar to the other subtypes. Arrestin-3 is the least selective member of the family, binding wide variety of GPCRs with high affinity and demonstrating lower preference for active phosphorylated forms of the receptors. In contrast to the other three arrestins, part of the receptor-binding surface in the arrestin-3 C-domain does not form a contiguous β-sheet, consistent with increased flexibility. By swapping the corresponding elements between arrestin-2 and -3 we show that the presence of this loose structure correlates with reduced arrestin selectivity for activated receptor, consistent with a conformational change in this β-sheet upon receptor binding. PMID:21215759

  8. When galectins recognize glycans: from biochemistry to physiology and back again.

    PubMed

    Di Lella, Santiago; Sundblad, Victoria; Cerliani, Juan P; Guardia, Carlos M; Estrin, Dario A; Vasta, Gerardo R; Rabinovich, Gabriel A

    2011-09-20

    In the past decade, increasing efforts have been devoted to the study of galectins, a family of evolutionarily conserved glycan-binding proteins with multifunctional properties. Galectins function, either intracellularly or extracellularly, as key biological mediators capable of monitoring changes occurring on the cell surface during fundamental biological processes such as cellular communication, inflammation, development, and differentiation. Their highly conserved structures, exquisite carbohydrate specificity, and ability to modulate a broad spectrum of biological processes have captivated a wide range of scientists from a wide spectrum of disciplines, including biochemistry, biophysics, cell biology, and physiology. However, in spite of enormous efforts to dissect the functions and properties of these glycan-binding proteins, limited information about how structural and biochemical aspects of these proteins can influence biological functions is available. In this review, we aim to integrate structural, biochemical, and functional aspects of this bewildering and ancient family of glycan-binding proteins and discuss their implications in physiologic and pathologic settings. © 2011 American Chemical Society

  9. Structural basis for ribosome protein S1 interaction with RNA in trans-translation of Mycobacterium tuberculosis.

    PubMed

    Fan, Yi; Dai, Yazhuang; Hou, Meijing; Wang, Huilin; Yao, Hongwei; Guo, Chenyun; Lin, Donghai; Liao, Xinli

    2017-05-27

    Ribosomal protein S1 (RpsA), the largest 30S protein in ribosome, plays a significant role in translation and trans-translation. In Mycobacterium tuberculosis, the C-terminus of RpsA is known as tuberculosis drug target of pyrazinoic acid, which inhibits the interaction between MtRpsA and tmRNA in trans-translation. However, the molecular mechanism underlying the interaction of MtRpsA with tmRNA remains unknown. We herein analyzed the interaction of the C-terminal domain of MtRpsA with three RNA fragments poly(A), sMLD and pre-sMLD. NMR titration analysis revealed that the RNA binding sites on MtRpsA CTD are mainly located in the β2, β3 and β5 strands and the adjacent L3 loop of the S1 domain. Fluorescence experiments determined the MtRpsA CTD binding to RNAs are in the micromolar affinity range. Sequence analysis also revealed conserved residues in the mapped RNA binding region. Residues L304, V305, G308, F310, H322, I323, R357 and I358 were verified to be the key residues influencing the interaction between MtRpsA CTD and pre-sMLD. Molecular docking further confirmed that the poly(A)-like sequence and sMLD of tmRNA are all involved in the protein-RNA interaction, through charged interaction and hydrogen bonds. The results will be beneficial for designing new anti-tuberculosis drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The 5'-poly(A) leader of poxvirus mRNA confers a translational advantage that can be achieved in cells with impaired cap-dependent translation

    PubMed Central

    Dhungel, Pragyesh; Cao, Shuai

    2017-01-01

    The poly(A) leader at the 5’-untranslated region (5’-UTR) is an unusually striking feature of all poxvirus mRNAs transcribed after viral DNA replication (post-replicative mRNAs). These poly(A) leaders are non-templated and of heterogeneous lengths; and their function during poxvirus infection remains a long-standing question. Here, we discovered that a 5’-poly(A) leader conferred a selective translational advantage to mRNA in poxvirus-infected cells. A constitutive and uninterrupted 5’-poly(A) leader with 12 residues was optimal. Because the most frequent lengths of the 5’-poly(A) leaders are 8–12 residues, the result suggests that the poly(A) leader has been evolutionarily optimized to boost poxvirus protein production. A 5’-poly(A) leader also could increase protein production in the bacteriophage T7 promoter-based expression system of vaccinia virus, the prototypic member of poxviruses. Interestingly, although vaccinia virus post-replicative mRNAs do have 5’- methylated guanosine caps and can use cap-dependent translation, in vaccinia virus-infected cells, mRNA with a 5’-poly(A) leader could also be efficiently translated in cells with impaired cap-dependent translation. However, the translation was not mediated through an internal ribosome entry site (IRES). These results point to a fundamental mechanism poxvirus uses to efficiently translate its post-replicative mRNAs. PMID:28854224

  11. Calcium-dependent interaction of monomeric S100P protein with serum albumin.

    PubMed

    Kazakov, Alexei S; Shevelyova, Marina P; Ismailov, Ramis G; Permyakova, Maria E; Litus, Ekaterina A; Permyakov, Eugene A; Permyakov, Sergei E

    2018-03-01

    S100 proteins are multifunctional (intra/extra)cellular mostly dimeric calcium-binding proteins engaged into numerous diseases. We have found that monomeric recombinant human S100P protein interacts with intact human serum albumin (HSA) in excess of calcium ions with equilibrium dissociation constant of 25-50nM, as evidenced by surface plasmon resonance spectroscopy and fluorescent titration by HSA of S100P labelled by fluorescein isothiocyanate. Calcium removal or S100P dimerization abolish the S100P-HSA interaction. The interaction is selective, since S100P does not bind bovine serum albumin and monomeric human S100B lacks interaction with HSA. In vitro glycation of HSA disables its binding to S100P. The revealed selective and highly specific conformation-dependent interaction between S100P and HSA shows that functional properties of monomeric and dimeric forms of S100 proteins are different, and raises concerns on validity of cell-based assays and animal models used for studies of (patho)physiological roles of extracellular S100 proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Intracellular targeting of CD44+ cells with self-assembling, protein only nanoparticles.

    PubMed

    Pesarrodona, Mireia; Ferrer-Miralles, Neus; Unzueta, Ugutz; Gener, Petra; Tatkiewicz, Witold; Abasolo, Ibane; Ratera, Imma; Veciana, Jaume; Schwartz, Simó; Villaverde, Antonio; Vazquez, Esther

    2014-10-01

    CD44 is a multifunctional cell surface protein involved in proliferation and differentiation, angiogenesis and signaling. The expression of CD44 is up-regulated in several types of human tumors and particularly in cancer stem cells, representing an appealing target for drug delivery in the treatment of cancer. We have explored here several protein ligands of CD44 for the construction of self-assembling modular proteins designed to bind and internalize target cells. Among five tested ligands, two of them (A5G27 and FNI/II/V) drive the formation of protein-only, ring-shaped nanoparticles of about 14 nm that efficiently bind and penetrate CD44(+) cells by an endosomal route. The potential of these newly designed nanoparticles is evaluated regarding the need of biocompatible nanostructured materials for drug delivery in CD44-linked conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells.

    PubMed

    Philpott, Caroline C; Ryu, Moon-Suhn; Frey, Avery; Patel, Sarju

    2017-08-04

    Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites

    PubMed Central

    Song, Xiufeng; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2008-01-01

    Arrestins are multi-functional regulators of G protein-coupled receptors. Receptor-bound arrestins interact with >30 remarkably diverse proteins and redirect the signaling to G protein-independent pathways. The functions of free arrestins are poorly understood, and the interaction sites of the non-receptor arrestin partners are largely unknown. In this study, we show that cone arrestin, the least studied member of the family, binds c-Jun N-terminal kinase (JNK3) and Mdm2 and regulates their subcellular distribution. Using arrestin mutants with increased or reduced structural flexibility, we demonstrate that arrestin in all conformations binds JNK3 comparably, whereas Mdm2 preferentially binds cone arrestin ‘frozen’ in the basal state. To localize the interaction sites, we expressed separate N- and C-domains of cone and rod arrestins and found that individual domains bind JNK3 and remove it from the nucleus as efficiently as full-length proteins. Thus, the arrestin binding site for JNK3 includes elements in both domains with the affinity of partial sites on individual domains sufficient for JNK3 relocalization. N-domain of rod arrestin binds Mdm2, which localizes its main interaction site to this region. Comparable binding of JNK3 and Mdm2 to four arrestin subtypes allowed us to identify conserved residues likely involved in these interactions. PMID:17680991

  15. Thermodynamic analysis of the disorder-to-α-helical transition of 18.5-kDa myelin basic protein reveals an equilibrium intermediate representing the most compact conformation.

    PubMed

    Vassall, Kenrick A; Jenkins, Andrew D; Bamm, Vladimir V; Harauz, George

    2015-05-22

    The intrinsically disordered, 18.5-kDa isoform of myelin basic protein (MBP) is a peripheral membrane protein that is essential to proper myelin formation in the central nervous system. MBP acts in oligodendrocytes both to adjoin membrane leaflets to each other in forming myelin and as a hub in numerous protein-protein and protein-membrane interaction networks. Like many intrinsically disordered proteins (IDPs), MBP multifunctionality arises from its high conformational plasticity and its ability to undergo reversible disorder-to-order transitions. One such transition is the disorder-to-α-helical conformational change that is induced upon MBP-membrane binding. Here, we have investigated the disorder-to-α-helical transition of MBP-derived α-peptides and the full-length 18.5-kDa protein. This transition was induced through titration of the membrane-mimetic solvent trifluoroethanol into both protein and peptide solutions, and conformational change was monitored using circular dichroism spectroscopy, 1-anilinonaphthalene-8-sulfonic acid binding, tryptophan fluorescence quenching, and Förster (fluorescence) resonance energy transfer measurements. The data suggest that the disorder-to-α-helical transition of MBP follows a 3-state model: disordered↔intermediate↔α-helical, with each of the identified equilibrium states likely representing a conformational ensemble. The disordered state is characterized by slight compaction with little regular secondary structure, whereas the intermediate is also disordered but globally more compact. Surprisingly, the α-helical conformation is less compact than the intermediate. This study suggests that multifunctionality in MBP could arise from differences in the population of energetically distinct ensembles under different conditions and also provides an example of an IDP that undergoes cooperative global conformation change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function.

    PubMed

    Drané, Pascal; Brault, Marie-Eve; Cui, Gaofeng; Meghani, Khyati; Chaubey, Shweta; Detappe, Alexandre; Parnandi, Nishita; He, Yizhou; Zheng, Xiao-Feng; Botuyan, Maria Victoria; Kalousi, Alkmini; Yewdell, William T; Münch, Christian; Harper, J Wade; Chaudhuri, Jayanta; Soutoglou, Evi; Mer, Georges; Chowdhury, Dipanjan

    2017-03-09

    P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.

  17. Wanderings in biochemistry.

    PubMed

    Lengyel, Peter

    2014-07-11

    My Ph.D. thesis in the laboratory of Severo Ochoa at New York University School of Medicine in 1962 included the determination of the nucleotide compositions of codons specifying amino acids. The experiments were based on the use of random copolyribonucleotides (synthesized by polynucleotide phosphorylase) as messenger RNA in a cell-free protein-synthesizing system. At Yale University, where I joined the faculty, my co-workers and I first studied the mechanisms of protein synthesis. Thereafter, we explored the interferons (IFNs), which were discovered as antiviral defense agents but were revealed to be components of a highly complex multifunctional system. We isolated pure IFNs and characterized IFN-activated genes, the proteins they encode, and their functions. We concentrated on a cluster of IFN-activated genes, the p200 cluster, which arose by repeated gene duplications and which encodes a large family of highly multifunctional proteins. For example, the murine protein p204 can be activated in numerous tissues by distinct transcription factors. It modulates cell proliferation and the differentiation of a variety of tissues by binding to many proteins. p204 also inhibits the activities of wild-type Ras proteins and Ras oncoproteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. SARS-unique fold in the Rousettus bat coronavirus HKU9.

    PubMed

    Hammond, Robert G; Tan, Xuan; Johnson, Margaret A

    2017-09-01

    The coronavirus nonstructural protein 3 (nsp3) is a multifunctional protein that comprises multiple structural domains. This protein assists viral polyprotein cleavage, host immune interference, and may play other roles in genome replication or transcription. Here, we report the solution NMR structure of a protein from the "SARS-unique region" of the bat coronavirus HKU9. The protein contains a frataxin fold or double-wing motif, which is an α + β fold that is associated with protein/protein interactions, DNA binding, and metal ion binding. High structural similarity to the human severe acute respiratory syndrome (SARS) coronavirus nsp3 is present. A possible functional site that is conserved among some betacoronaviruses has been identified using bioinformatics and biochemical analyses. This structure provides strong experimental support for the recent proposal advanced by us and others that the "SARS-unique" region is not unique to the human SARS virus, but is conserved among several different phylogenetic groups of coronaviruses and provides essential functions. © 2017 The Protein Society.

  19. A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic boechera species.

    PubMed

    Corral, José M; Vogel, Heiko; Aliyu, Olawale M; Hensel, Götz; Thiel, Thomas; Kumlehn, Jochen; Sharbel, Timothy F

    2013-12-01

    Apomixis (asexual seed production) is characterized by meiotically unreduced egg cell production (apomeiosis) followed by its parthenogenetic development into offspring that are genetic clones of the mother plant. Fertilization (i.e. pseudogamy) of the central cell is important for the production of a functional endosperm with a balanced 2:1 maternal:paternal genome ratio. Here, we present the APOLLO (for apomixis-linked locus) gene, an Aspartate Glutamate Aspartate Aspartate histidine exonuclease whose transcripts are down-regulated in sexual ovules entering meiosis while being up-regulated in apomeiotic ovules at the same stage of development in plants of the genus Boechera. APOLLO has both "apoalleles," which are characterized by a set of linked apomixis-specific polymorphisms, and "sexalleles." All apomictic Boechera spp. accessions proved to be heterozygous for the APOLLO gene (having at least one apoallele and one sexallele), while all sexual genotypes were homozygous for sexalleles. Apoalleles contained a 20-nucleotide polymorphism present in the 5' untranslated region that contains specific transcription factor-binding sites for ARABIDOPSIS THALIANA HOMEOBOX PROTEIN5, LIM1 (for LINEAGE ABNORMAL11, INSULIN1, MECHANOSENSORY PROTEIN3), SORLIP1AT (for SEQUENCES OVERREPRESENTED IN LIGHT-INDUCED PROMOTERS IN ARABIDOPSIS THALIANA1), SORLIP2AT, and POLYA SIGNAL1. In the same region, sexalleles contain transcription factor-binding sites for DNA BINDING WITH ONE FINGER2, DNA BINDING WITH ONE FINGER3, and PROLAMIN BOX-BINDING FACTOR. Our results suggest that the expression of a single deregulated allele could induce the cascade of events leading to asexual female gamete formation in an apomictic plant.

  20. [Interaction of trivaline with single-stranded polyribonucleotides].

    PubMed

    Strel'tsov, S A; Lysov, Iu P; Semenov, T E; Vengerov, Iu Iu; Khorlin, A A; Surovaia, A N; Gurskiĭ, G V

    1991-01-01

    Binding of tripeptide H-Val3-(NH)2-Dns (TVP) to polyribonucleotides was studied by fluorescence methods, circular and flow linear dichroism, equilibrium dialysis and electron microscopy. It was found that TVP binds to poly(U) in monomer, dimer and tetramer forms with binding constants of about 10(3), 40, 18.10(4) M, respectively. The cooperativity parameter for peptide dimer binding is 2000. The peptide forms tetramer complexes with poly(A), poly(C), poly(G) also. The formation of a complex between the peptide tetramer and nucleic acid is accompanied by a significant increase in the fluorescence intensity. The cooperative binding of TVP dimers to poly(U), poly(A), poly(C) is accompanied by a dramatic decrease in the flexibility of polynucleotide chains. However, it has a small effect (if any) on the flexibility of the poly(G) chain. The observed similarity of thermodynamic, optical and hydrodynamic++ properties of TVP complexes with single-stranded and double-stranded nucleic acids may reflect a similarity in the geometries of peptide complexes with nucleic acids. Electron microscopy studies show that peptide binding to poly(U) and dsDNA leads to compactization of the nucleic acids caused by interaction between the peptide tetramers bound to a nucleic acid. At the first stage of the compactization process the well-organized rod-like particles are formed, each consisting of one or more single-stranded polynucleotide fibers. Increasing the peptide concentration stimulates a side-by-side association and folding of the rods with the formation of macromolecular "leech-like" structures with the thickness of 20-50 nm.

  1. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells

    PubMed Central

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Changyaleket, Benjarat; Whitlon, Donna S.; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca2+-resistant fashion, bound actin monomer via a WASP homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53 and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5- bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in a variety of mechanosensory and chemosensory cells. PMID:15190118

  2. Gene activity during germination of spores of the fern, Onoclea sensibilis: RNA and protein synthesis and the role of stored mRNA

    NASA Technical Reports Server (NTRS)

    Raghavan, V.

    1991-01-01

    Pattern of 3H-uridine incorporation into RNA of spores of Onoclea sensibilis imbibed in complete darkness (non-germinating conditions) and induced to germinate in red light was followed by oligo-dT cellulose chromatography, gel electrophoresis coupled with fluorography and autoradiography. In dark-imbibed spores, RNA synthesis was initiated about 24 h after sowing, with most of the label accumulating in the high mol. wt. poly(A) -RNA fraction. There was no incorporation of the label into poly(A) +RNA until 48 h after sowing. In contrast, photo-induced spores began to synthesize all fractions of RNA within 12 h after sowing and by 24 h, incorporation of 3H-uridine into RNA of irradiated spores was nearly 70-fold higher than that into dark-imbibed spores. Protein synthesis, as monitored by 3H-arginine incorporation into the acid-insoluble fraction and by autoradiography, was initiated in spores within 1-2 h after sowing under both conditions. Autoradiographic experiments also showed that onset of protein synthesis in the cytoplasm of the germinating spore is independent of the transport of newly synthesized nuclear RNA. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis of 35S-methionine-labelled proteins revealed a good correspondence between proteins synthesized in a cell-free translation system directed by poly(A) +RNA of dormant spores and those synthesized in vivo by dark-imbibed and photo-induced spores. These results indicate that stored mRNAs of O. sensibilis spores are functionally competent and provide templates for the synthesis of proteins during dark-imbibition and germination.

  3. Molecular dynamics and binding selectivity of nucleotides and polynucleotide substrates with EIF2C2/Ago2 PAZ domain.

    PubMed

    Kandeel, Mahmoud; Kitade, Yukio

    2018-02-01

    RNA interference (RNAi) constitutes a major target in drug discovery. Recently, we reported that the Argonaute protein 2 (Ago2) PAZ domain selectively binds with all ribonucleotides except adenine and poorly recognizes deoxyribonucleotides. The binding properties of the PAZ domain with polynucleotides and the molecular mechanisms of substrates' selectivity remains unclear. In this study, the binding potencies of polynucleotides and the associated conformational and dynamic changes in PAZ domain are investigated. Coinciding with nucleotides' binding profile with the PAZ domain, polyuridylate (PolyU) and polycytidylate (PolyC) were potent binders. However, K dPolyU and K dPolyC were 15.8 and 9.3μM, respectively. In contrast, polyadenylate (PolyA) binding was not detectable. Molecular dynamics (MD) simulation revealed the highest change in root mean square deviation (RMSD) with ApoPAZ or PAZ domain bound with experimentally approved, low affinity substrates, whereas stronger binding substrates such as UMP or PolyU showed minimal RMSD changes. The loop between α3 and β5 in the β-hairpin subdomain showed the most responsive change in RMSD, being highly movable in the ApoPAZ and PAZ-AMP complex. Favorable substrate recognition was associate with moderate change in secondary structure content. In conclusion, the PAZ domain retains differential substrate selectivity associated with corresponding dynamic and structural changes upon binding. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Target proteins of ganoderic acid DM provides clues to various pharmacological mechanisms

    PubMed Central

    Liu, Jie; Shimizu, Kuniyoshi; Tanaka, Akinobu; Shinobu, Wakako; Ohnuki, Koichiro; Nakamura, Takanori; Kondo, Ryuichiro

    2012-01-01

    Ganoderma fungus (Ganodermataceae) is a multifunctional medicinal mushroom and has been traditionally used for the treatment of various types of disease. Ganoderic acid DM (1) is a representative triterpenoid isolated from G. lingzhi and exhibits various biological activities. However, a universal starting point that triggers multiple signaling pathways and results in multifunctionality of 1 is unknown. Here we demonstrate the important clues regarding the mechanisms underlying multi-medicinal action of 1. We examined structure–activity relationships between 1 and its analogs and found that the carbonyl group at C-3 was essential for cytotoxicity. Subsequently, we used 1-conjugated magnetic beads as a probe and identified tubulin as a specific 1-binding protein. Furthermore, 1 showed a similar Kd to that of vinblastine and also affected assembly of tubulin polymers. This study revealed multiple biological activities of 1 and may contribute to the design and development of new tubulin-inhibiting agents. PMID:23205267

  5. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    PubMed Central

    Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva

    2016-01-01

    The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantalainen, Kimmo I.; Christensen, Peter A.; Hafren, Anders

    The viral genome-linked protein (VPg) of Potato virus A (PVA) is a multifunctional protein that belongs to a class of intrinsically disordered proteins. Typically, this type of protein gains a more stable structure upon interactions or posttranslational modifications. In a membrane lipid strip overlay binding assay, PVA VPg was found to bind phosphatidylserine (PS), but not phosphatidylcholine (PC). According to circular dichroism spectroscopy, the secondary structure of PVA VPg was stabilized upon interactions with PS and phosphatidylglycerol (PG), but not with PC vesicles. It is possible that this stabilization favored the formation of alpha-helical structures. Limited tryptic digestion showed thatmore » the interaction with anionic vesicles protected certain, otherwise accessible, trypsin cleavage sites. An electron microscopy study revealed that interaction with VPg substantially increased the vesicle diameter and caused the formation of pore or plaque-like electron dense spots on the vesicle surface, which gradually led to disruption of the vesicles.« less

  7. Molecular cloning and functional analysis of the fatty acid-binding protein (Sp-FABP) gene in the mud crab (Scylla paramamosain).

    PubMed

    Zeng, Xianglan; Ye, Haihui; Yang, Ya'nan; Wang, Guizhong; Huang, Huiyang

    2013-03-01

    Intracellular fatty acid-binding proteins (FABPs) are multifunctional cytosolic lipid-binding proteins found in vertebrates and invertebrates. In this work, we used RACE to obtain a full-length cDNA of Sp-FABP from the mud crab Scylla paramamosain. The open reading frame of the full length cDNA (886 bp) encoded a 136 amino acid polypeptide that showed high homology with related genes from other species. Real-time quantitative PCR identified variable levels of Sp-FABP transcripts in epidermis, eyestalk, gill, heart, hemocytes, hepatopancreas, muscle, ovary, stomach and thoracic ganglia. In ovaries, Sp-FABP expression increased gradually from stage I to stage IV of development and decreased in stage V. Sp-FABP transcripts in the hepatopancreas and hemocytes were up-regulated after a bacterial challenge with Vibrio alginnolyficus. These results suggest that Sp-FABP may be involved in the growth, reproduction and immunity of the mud crab.

  8. NF90 isoforms, a new family of cellular proteins involved in viral replication?

    PubMed

    Patiño, Claudia; Haenni, Anne-Lise; Urcuqui-Inchima, Silvio

    2015-01-01

    The Nuclear Factor 90 (NF90) and its isoforms constitute a family of proteins that can interact with double-stranded (ds) RNA, through its dsRNA binding motifs. Due to various potential translational events such as alternative splicing, the human Interleukin enhancer binding factor 3 (ilf3) gene codes for multifunctional proteins that are NF90 and its isoforms, involved in transcription, translation, mRNA export and microRNA biogenesis. These proteins can act as cellular partners affecting viral replication and they are also implicated in host defense. As a result of these numerous functions, these protein isoforms have been given various names over the years, leading to confusion in determining their specific functions. In this review we focus on the role of the human NF90 protein isoforms in DNA and RNA virus replication. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  9. Functional implications from the Cid1 poly(U) polymerase crystal structure.

    PubMed

    Munoz-Tello, Paola; Gabus, Caroline; Thore, Stéphane

    2012-06-06

    In eukaryotes, mRNA degradation begins with poly(A) tail removal, followed by decapping, and the mRNA body is degraded by exonucleases. In recent years, the major influence of 3'-end uridylation as a regulatory step within several RNA degradation pathways has generated significant attention toward the responsible enzymes, which are called poly(U) polymerases (PUPs). We determined the atomic structure of the Cid1 protein, the founding member of the PUP family, in its UTP-bound form, allowing unambiguous positioning of the UTP molecule. Our data also suggest that the RNA substrate accommodation and product translocation by the Cid1 protein rely on local and global movements of the enzyme. Supplemented by point mutations, the atomic model is used to propose a catalytic cycle. Our study underlines the Cid1 RNA binding properties, a feature with critical implications for miRNAs, histone mRNAs, and, more generally, cellular RNA degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. UV-VIS extinction spectra of gold particle coated by oligonucleotide shell

    NASA Astrophysics Data System (ADS)

    Bogatyrev, Vladimir A.; Vrublevsky, Stanislav A.; Trachuk, Lyubov A.; Khlebtsov, Nikolai G.

    2005-06-01

    We describe synthesis process of an oligonucleotide-functionalized colloidal gold marker CG-l5-T28, its optical properties and interaction with poly(A) in solution and on a solid-phase substrate. The marker is a complex of 15 nm diameter colloidal gold nanoparticles with covalently attached 5'-thiolated 28-base oligothymidine macromolecules. A positive hybridization reaction of the marker with poly(A) is observed by solid-phase analysis on hanging a spot color (from red to blue ) or on appearance of a red dye in dot-blot test as compared to control experiments with poly(U) target. The principles of spectrophotometric monitoring all stages of the marker preparation and application of spectrophotometry to detection of the polynucleotide hybridization in vitro are described. Experimental data were compared with theoretical calculations based on Mie theory for 2-layer model of gold core in polymeric shell with imaginary part of refractive index that typical for the real absorption spectra of NA. To explain the aggregation of CG-15-T28 caused by interaction with poly(A) in solution, we suggest a new model differing from a standard model of cross-linker binding.

  11. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation.

    PubMed

    Coffa, Sergio; Breitman, Maya; Hanson, Susan M; Callaway, Kari; Kook, Seunghyi; Dalby, Kevin N; Gurevich, Vsevolod V

    2011-01-01

    Arrestins are multifunctional signaling adaptors originally discovered as proteins that "arrest" G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β(2)-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the "constitutively inactive" arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not.

  12. The Effect of Arrestin Conformation on the Recruitment of c-Raf1, MEK1, and ERK1/2 Activation

    PubMed Central

    Coffa, Sergio; Breitman, Maya; Hanson, Susan M.; Callaway, Kari; Kook, Seunghyi; Dalby, Kevin N.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins are multifunctional signaling adaptors originally discovered as proteins that “arrest” G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β2-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the “constitutively inactive” arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not. PMID:22174878

  13. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb.

    PubMed

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-08-12

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mechanisms of Host-Pathogen Protein Complex Formation and Bacterial Immune Evasion of Streptococcus suis Protein Fhb*

    PubMed Central

    Li, Xueqin; Liu, Peng; Gan, Shuzhen; Zhang, Chunmao; Zheng, Yuling; Jiang, Yongqiang; Yuan, Yuan

    2016-01-01

    Streptococcus suis serotype 2 (S. suis 2)-induced sepsis and meningitis are often accompanied by bacteremia. The evasion of polymorphonuclear leukocyte-mediated phagocytic clearance is central to the establishment of bacteremia caused by S. suis 2 and is facilitated by the ability of factor H (FH)-binding protein (Fhb) to bind FH on the bacterial surface, thereby impeding alternative pathway complement activation and phagocytic clearance. Here, C3b/C3d was found to bind to Fhb, along with FH, forming a large immune complex. The formation of this immune complex was mediated by domain II of Fhb via electrostatic and hydrophobic interactions, which, to our knowledge, is a new type of interaction. Interestingly, Fhb was found to be associated with the cell envelope and also present in the culture supernatant, where secreted Fhb inhibited complement activation via interactions with domain II, thereby enhancing antiphagocytic clearance by polymorphonuclear leukocytes. Thus, Fhb is a multifunctional bacterial protein, which binds host complement component C3 as well as FH and interferes with innate immune recognition in a secret protein manner. S. suis 2 therefore appears to have developed a new strategy to combat host innate immunity and enhance survival in host blood. PMID:27342778

  15. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins

    PubMed Central

    Majorek, Karolina A.; Porebski, Przemyslaw J.; Dayal, Arjun; Zimmerman, Matthew D.; Jablonska, Kamila; Stewart, Alan J.; Chruszcz, Maksymilian; Minor, Wladek

    2012-01-01

    Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) serums. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions. PMID:22677715

  16. Highly selective isolation and purification of heme proteins in biological samples using multifunctional magnetic nanospheres.

    PubMed

    Liu, Yating; Li, Yan; Wei, Yun

    2014-12-01

    Magnetic particles with suitable surface modification are capable of binding proteins selectively, and magnetic separations have advantages of rapidity, convenience, and high selectivity. In this paper, new magnetic nanoparticles modified with imidazolium ionic liquid (Fe3O4 @SiO2 @ILs) were successfully fabricated. N-Methylimidazolium was immobilized onto silica-coated magnetic nanoparticles via γ-chloropropyl modification as a magnetic nanoadsorbent for heme protein separation. The particle size was about 90 nm without significant aggregation during the preparation process. Hemoglobin as one of heme proteins used in this experiment was compared with other nonheme proteins. It has been found that the magnetic nanoparticles can be used for more rapid, efficient, and specific adsorption of hemoglobin with a binding capacity as high as 5.78 mg/mg. In comparison with other adsorption materials of proteins in the previous reports, Fe3 O4 @SiO2 @ILs magnetic nanoparticles exhibit the excellent performance in isolation of heme proteins with higher binding capacity and selectivity. In addition, a short separation time makes the functionalized nanoparticles suitable for purifying unstable proteins, as well as having other potential applications in a variety of biomedical fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A Conserved Apomixis-Specific Polymorphism Is Correlated with Exclusive Exonuclease Expression in Premeiotic Ovules of Apomictic Boechera Species1[W][OPEN

    PubMed Central

    Corral, José M.; Vogel, Heiko; Aliyu, Olawale M.; Hensel, Götz; Thiel, Thomas; Kumlehn, Jochen; Sharbel, Timothy F.

    2013-01-01

    Apomixis (asexual seed production) is characterized by meiotically unreduced egg cell production (apomeiosis) followed by its parthenogenetic development into offspring that are genetic clones of the mother plant. Fertilization (i.e. pseudogamy) of the central cell is important for the production of a functional endosperm with a balanced 2:1 maternal:paternal genome ratio. Here, we present the APOLLO (for apomixis-linked locus) gene, an Aspartate Glutamate Aspartate Aspartate histidine exonuclease whose transcripts are down-regulated in sexual ovules entering meiosis while being up-regulated in apomeiotic ovules at the same stage of development in plants of the genus Boechera. APOLLO has both “apoalleles,” which are characterized by a set of linked apomixis-specific polymorphisms, and “sexalleles.” All apomictic Boechera spp. accessions proved to be heterozygous for the APOLLO gene (having at least one apoallele and one sexallele), while all sexual genotypes were homozygous for sexalleles. Apoalleles contained a 20-nucleotide polymorphism present in the 5′ untranslated region that contains specific transcription factor-binding sites for ARABIDOPSIS THALIANA HOMEOBOX PROTEIN5, LIM1 (for LINEAGE ABNORMAL11, INSULIN1, MECHANOSENSORY PROTEIN3), SORLIP1AT (for SEQUENCES OVERREPRESENTED IN LIGHT-INDUCED PROMOTERS IN ARABIDOPSIS THALIANA1), SORLIP2AT, and POLYA SIGNAL1. In the same region, sexalleles contain transcription factor-binding sites for DNA BINDING WITH ONE FINGER2, DNA BINDING WITH ONE FINGER3, and PROLAMIN BOX-BINDING FACTOR. Our results suggest that the expression of a single deregulated allele could induce the cascade of events leading to asexual female gamete formation in an apomictic plant. PMID:24163323

  18. Microarray Meta-Analysis of RNA-Binding Protein Functions in Alternative Polyadenylation

    PubMed Central

    Hu, Wenchao; Liu, Yuting; Yan, Jun

    2014-01-01

    Alternative polyadenylation (APA) is a post-transcriptional mechanism to generate diverse mRNA transcripts with different 3′UTRs from the same gene. In this study, we systematically searched for the APA events with differential expression in public mouse microarray data. Hundreds of genes with over-represented differential APA events and the corresponding experiments were identified. We further revealed that global APA differential expression occurred prevalently in tissues such as brain comparing to peripheral tissues, and biological processes such as development, differentiation and immune responses. Interestingly, we also observed widespread differential APA events in RNA-binding protein (RBP) genes such as Rbm3, Eif4e2 and Elavl1. Given the fact that RBPs are considered as the main regulators of differential APA expression, we constructed a co-expression network between APAs and RBPs using the microarray data. Further incorporation of CLIP-seq data of selected RBPs showed that Nova2 represses and Mbnl1 promotes the polyadenylation of closest poly(A) sites respectively. Altogether, our study is the first microarray meta-analysis in a mammal on the regulation of APA by RBPs that integrated massive mRNA expression data under a wide-range of biological conditions. Finally, we present our results as a comprehensive resource in an online website for the research community. PMID:24622240

  19. Benchmark data for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-09-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.

  20. A member of the polymerase beta nucleotidyltransferase superfamily is required for RNA interference in C. elegans.

    PubMed

    Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C

    2005-02-22

    RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.

  1. Analysis of RNA Processing Reactions Using Cell Free Systems: 3' End Cleavage of Pre-mRNA Substrates in vitro

    PubMed Central

    Jablonski, Joseph; Clementz, Mark; Ryan, Kevin; Valente, Susana T.

    2014-01-01

    The 3’ end of mammalian mRNAs is not formed by abrupt termination of transcription by RNA polymerase II (RNPII). Instead, RNPII synthesizes precursor mRNA beyond the end of mature RNAs, and an active process of endonuclease activity is required at a specific site. Cleavage of the precursor RNA normally occurs 10-30 nt downstream from the consensus polyA site (AAUAAA) after the CA dinucleotides. Proteins from the cleavage complex, a multifactorial protein complex of approximately 800 kDa, accomplish this specific nuclease activity. Specific RNA sequences upstream and downstream of the polyA site control the recruitment of the cleavage complex. Immediately after cleavage, pre-mRNAs are polyadenylated by the polyA polymerase (PAP) to produce mature stable RNA messages. Processing of the 3’ end of an RNA transcript may be studied using cellular nuclear extracts with specific radiolabeled RNA substrates. In sum, a long 32P-labeled uncleaved precursor RNA is incubated with nuclear extracts in vitro, and cleavage is assessed by gel electrophoresis and autoradiography. When proper cleavage occurs, a shorter 5’ cleaved product is detected and quantified. Here, we describe the cleavage assay in detail using, as an example, the 3’ end processing of HIV-1 mRNAs. PMID:24835792

  2. The asparagine residue in the FRNK box of potyviral helper-component protease is critical for its small RNA binding and subcellular localization.

    PubMed

    Sahana, Nandita; Kaur, Harpreet; Jain, R K; Palukaitis, Peter; Canto, Tomas; Praveen, Shelly

    2014-05-01

    The multifunctional potyviral helper-component protease (HcPro) contains variable regions with some functionally conserved domains, such as the FRNK box. Natural variants occur at the FRNK box, a conserved central domain, known for its role in RNA binding and RNAi suppression activities, although no dominant natural variants for the N(182) residue are known to occur. Here, a mutant at HcPro(N182L) was developed to investigate its role in natural populations. Using in vitro studies, we found an increase in the small RNA (sRNA) binding potential of HcPro(N182L) without affecting its protein-protein interaction properties, suggesting that the presence of N(182) is critical to maintain threshold levels of sRNAs, but does not interfere in the self-interaction of HcPro. Furthermore, we found that expression of HcPro(N182L) in Nicotiana benthamiana affected plant growth. Transient expression of HcPro(N182L) induced reporter gene expression in 16c GFP transgenic plants more than HcPro did, suggesting that replacement of asparagine in the FRNK box favours RNA silencing suppression. HcPro was found to be distributed in the nucleus and cytoplasm, whereas HcPro(N182L) was observed only in cytoplasmic inclusion bodies in N. benthamiana leaves, when fused to a GFP tag and expressed by agro-infiltration, suggesting mutation favours oligomerization of HcPro. These findings suggest that amino acid N(182) of the conserved FRNK box may regulate RNA silencing mechanisms, and is required for maintenance of the subcellular localization of the protein for its multi-functionality. Hence, the N(182) residue of the FRNK box seems to be indispensable for potyvirus infection during evolution.

  3. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts.

    PubMed

    Morris, Kevin J; Corbett, Anita H

    2018-06-15

    The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.

  4. The RNA Hydrolysis and the Cytokinin Binding Activities of PR-10 Proteins Are Differently Performed by Two Isoforms of the Pru p 1 Peach Major Allergen and Are Possibly Functionally Related[W

    PubMed Central

    Zubini, Paola; Zambelli, Barbara; Musiani, Francesco; Ciurli, Stefano; Bertolini, Paolo; Baraldi, Elena

    2009-01-01

    PR-10 proteins are a family of pathogenesis-related (PR) allergenic proteins playing multifunctional roles. The peach (Prunus persica) major allergen, Pru p 1.01, and its isoform, Pru p 1.06D, were found highly expressed in the fruit skin at the pit hardening stage, when fruits transiently lose their susceptibility to the fungal pathogen Monilinia spp. To investigate the possible role of the two Pru p 1 isoforms in plant defense, the recombinant proteins were expressed in Escherichia coli and purified. Light scattering experiments and circular dichroism spectroscopy showed that both proteins are monomers in solution with secondary structures typical of PR-10 proteins. Even though the proteins do not display direct antimicrobial activity, they both act as RNases, a function possibly related to defense. The RNase activity is different for the two proteins, and only that of Pru p 1.01 is affected in the presence of the cytokinin zeatin, suggesting a physiological correlation between Pru p 1.01 ligand binding and enzymatic activity. The binding of zeatin to Pru p 1.01 was evaluated using isothermal titration calorimetry, which provided information on the stoichiometry and on the thermodynamic parameters of the interaction. The structural architecture of Pru p 1.01 and Pru p 1.06D was obtained by homology modeling, and the differences in the binding pockets, possibly accounting for the observed difference in binding activity, were evaluated. PMID:19474212

  5. The Role of Y-Box Binding Protein 1 in Kidney Injury: Friend or Foe?

    PubMed

    Ke, Ben; Fan, Chuqiao; Tu, Weiping; Fang, Xiangdong

    2018-01-01

    Y-box-binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes via the transcriptional and translational regulation of target gene expression. YB-1 promotes acute or chronic kidney injury through multiple molecular pathways; however, accumulating evidence suggests that significantly increased YB-1 levels are of great importance in renoprotection. In addition, YB-1 may contribute to obesity-related kidney disease by promoting adipogenesis. Thus, the role of YB-1 in kidney injury is complicated, and no comprehensive review is currently available. In this review, we summarise recent progress in our understanding of the function of YB-1 in kidney injury and provide an overview of the dual role of YB-1 in kidney disease. Moreover, we propose that YB-1 is a potential therapeutic target to restrict kidney disease. © 2018 The Author(s). Published by S. Karger AG, Basel.

  6. Role of BAG3 in cancer progression: A therapeutic opportunity.

    PubMed

    De Marco, Margot; Basile, Anna; Iorio, Vittoria; Festa, Michelina; Falco, Antonia; Ranieri, Bianca; Pascale, Maria; Sala, Gianluca; Remondelli, Paolo; Capunzo, Mario; Firpo, Matthew A; Pezzilli, Raffaele; Marzullo, Liberato; Cavallo, Pierpaolo; De Laurenzi, Vincenzo; Turco, Maria Caterina; Rosati, Alessandra

    2018-06-01

    BAG3 is a multifunctional protein that can bind to heat shock proteins (Hsp) 70 through its BAG domain and to other partners through its WW domain, proline-rich (PXXP) repeat and IPV (Ile-Pro-Val) motifs. Its intracellular expression can be induced by stressful stimuli, while is constitutive in skeletal muscle, cardiac myocytes and several tumour types. BAG3 can modulate the levels, localisation or activity of its partner proteins, thereby regulating major cell pathways and functions, including apoptosis, autophagy, mechanotransduction, cytoskeleton organisation, motility. A secreted form of BAG3 has been identified in studies on pancreatic ductal adenocarcinoma (PDAC). Secreted BAG3 can bind to a specific receptor, IFITM2, expressed on macrophages, and induce the release of factors that sustain tumour growth and the metastatic process. BAG3 neutralisation therefore appears to constitute a novel potential strategy in the therapy of PDAC and, possibly, other tumours. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Taxonomic distribution, repeats, and functions of the S1 domain-containing proteins as members of the OB-fold family.

    PubMed

    Deryusheva, Evgeniia I; Machulin, Andrey V; Selivanova, Olga M; Galzitskaya, Oxana V

    2017-04-01

    Proteins of the nucleic acid-binding proteins superfamily perform such functions as processing, transport, storage, stretching, translation, and degradation of RNA. It is one of the 16 superfamilies containing the OB-fold in protein structures. Here, we have analyzed the superfamily of nucleic acid-binding proteins (the number of sequences exceeds 200,000) and obtained that this superfamily prevalently consists of proteins containing the cold shock DNA-binding domain (ca. 131,000 protein sequences). Proteins containing the S1 domain compose 57% from the cold shock DNA-binding domain family. Furthermore, we have found that the S1 domain was identified mainly in the bacterial proteins (ca. 83%) compared to the eukaryotic and archaeal proteins, which are available in the UniProt database. We have found that the number of multiple repeats of S1 domain in the S1 domain-containing proteins depends on the taxonomic affiliation. All archaeal proteins contain one copy of the S1 domain, while the number of repeats in the eukaryotic proteins varies between 1 and 15 and correlates with the protein size. In the bacterial proteins, the number of repeats is no more than 6, regardless of the protein size. The large variation of the repeat number of S1 domain as one of the structural variants of the OB-fold is a distinctive feature of S1 domain-containing proteins. Proteins from the other families and superfamilies have either one OB-fold or change slightly the repeat numbers. On the whole, it can be supposed that the repeat number is a vital for multifunctional activity of the S1 domain-containing proteins. Proteins 2017; 85:602-613. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Multi-functional norrin is a ligand for the LGR4 receptor

    PubMed Central

    Deng, Cheng; Reddy, Pradeep; Cheng, Yuan; Luo, Ching-Wei; Hsiao, Chih-Lun; Hsueh, Aaron J. W.

    2013-01-01

    Summary Mammalian LGR4, 5 and 6 are seven-transmembrane receptors that are important for diverse physiological processes. These receptors are orthologous to DLGR2, a Drosophila receptor activated by the burs/pburs heterodimer important for morphogenesis. Although recent studies indicated that four R-spondin proteins are cognate ligands for LGR4, 5 and 6 receptors, several BMP antagonists in vertebrates have been postulated to be orthologous to burs and pburs. Using newly available genome sequences, we showed that norrin is a vertebrate ortholog for insect burs and pburs and stimulates Wnt signaling mediated by LGR4, but not by LGR5 and 6, in mammalian cells. Although norrin could only activate LGR4, binding studies suggested interactions between norrin and LGR4, 5 and 6. Norrin, the Norrie disease gene product, is also capable of activating Wnt signaling mediated by the Frizzled4 receptor and serves as a BMP antagonist. Mutagenesis studies indicated that different norrin mutations found in patients with Norrie disease can be categorized into subgroups according to defects for signaling through the three distinct binding proteins. Thus, norrin is a rare ligand capable of binding three receptors/binding proteins that are important for BMP and Wnt signaling pathways. PMID:23444378

  9. Multi-functional norrin is a ligand for the LGR4 receptor.

    PubMed

    Deng, Cheng; Reddy, Pradeep; Cheng, Yuan; Luo, Ching-Wei; Hsiao, Chih-Lun; Hsueh, Aaron J W

    2013-05-01

    Mammalian LGR4, 5 and 6 are seven-transmembrane receptors that are important for diverse physiological processes. These receptors are orthologous to DLGR2, a Drosophila receptor activated by the burs/pburs heterodimer important for morphogenesis. Although recent studies indicated that four R-spondin proteins are cognate ligands for LGR4, 5 and 6 receptors, several BMP antagonists in vertebrates have been postulated to be orthologous to burs and pburs. Using newly available genome sequences, we showed that norrin is a vertebrate ortholog for insect burs and pburs and stimulates Wnt signaling mediated by LGR4, but not by LGR5 and 6, in mammalian cells. Although norrin could only activate LGR4, binding studies suggested interactions between norrin and LGR4, 5 and 6. Norrin, the Norrie disease gene product, is also capable of activating Wnt signaling mediated by the Frizzled4 receptor and serves as a BMP antagonist. Mutagenesis studies indicated that different norrin mutations found in patients with Norrie disease can be categorized into subgroups according to defects for signaling through the three distinct binding proteins. Thus, norrin is a rare ligand capable of binding three receptors/binding proteins that are important for BMP and Wnt signaling pathways.

  10. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  11. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  12. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    PubMed Central

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs. PMID:28054562

  13. Supramolecular chemistry at interfaces: host-guest interactions for fabricating multifunctional biointerfaces.

    PubMed

    Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A

    2014-07-15

    CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments. We begin by reviewing the current state of stimuli-responsive supramolecular assemblies formed by host-guest interactions, discussing how to transfer host-guest chemistry from solution onto surfaces required for fabricating multifunctional biosurfaces and biointerfaces. Then, we present different stimuli-responsive biosurfaces and biointerfaces, which have been prepared through a combination of cyclodextrin- or cucurbituril-based host-guest chemistry and various surface technologies such as self-assembled monolayers or layer-by-layer assembly. Moreover, we discuss the applications of these biointerfaces and biosurfaces in the fields of drug release, reversible adsorption and release of some organic molecules, peptides, proteins, and cells, and photoswitchable bioelectrocatalysis. In addition, we summarize the merits and current limitations of these methods for fabricating multifunctional stimuli-responsive biointerfaces in a dynamic noncovalent manner. Finally, we present possible strategies for future designs of stimuli-responsive multifunctional biointerfaces and biosurfaces by combining host-guest chemistry with surface science, which will lead to further critical development of supramolecular chemistry at interfaces.

  14. Rheb Protein Binds CAD (Carbamoyl-phosphate Synthetase 2, Aspartate Transcarbamoylase, and Dihydroorotase) Protein in a GTP- and Effector Domain-dependent Manner and Influences Its Cellular Localization and Carbamoyl-phosphate Synthetase (CPSase) Activity*

    PubMed Central

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J.; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-01

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. PMID:25422319

  15. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity.

    PubMed

    Sato, Tatsuhiro; Akasu, Hitomi; Shimono, Wataru; Matsu, Chisa; Fujiwara, Yuki; Shibagaki, Yoshio; Heard, Jeffrey J; Tamanoi, Fuyuhiko; Hattori, Seisuke

    2015-01-09

    Rheb small GTPases, which consist of Rheb1 and Rheb2 (also known as RhebL1) in mammalian cells, are unique members of the Ras superfamily and play central roles in regulating protein synthesis and cell growth by activating mTOR. To gain further insight into the function of Rheb, we carried out a search for Rheb-binding proteins and found that Rheb binds to CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), a multifunctional enzyme required for the de novo synthesis of pyrimidine nucleotides. CAD binding is more pronounced with Rheb2 than with Rheb1. Rheb binds CAD in a GTP- and effector domain-dependent manner. The region of CAD where Rheb binds is located at the C-terminal region of the carbamoyl-phosphate synthetase domain and not in the dihydroorotase and aspartate transcarbamoylase domains. Rheb stimulated carbamoyl-phosphate synthetase activity of CAD in vitro. In addition, an elevated level of intracellular UTP pyrimidine nucleotide was observed in Tsc2-deficient cells, which was attenuated by knocking down of Rheb. Immunostaining analysis showed that expression of Rheb leads to increased accumulation of CAD on lysosomes. Both a farnesyltransferase inhibitor that blocks membrane association of Rheb and knockdown of Rheb mislocalized CAD. These results establish CAD as a downstream effector of Rheb and suggest a possible role of Rheb in regulating de novo pyrimidine nucleotide synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Changes in Gene Expression during Tomato Fruit Ripening 1

    PubMed Central

    Biggs, M. Scott; Harriman, Robert W.; Handa, Avtar K.

    1986-01-01

    Total proteins from pericarp tissue of different chronological ages from normally ripening tomato (Lycopersicon esculentum Mill. cv Rutgers) fruits and from fruits of the isogenic ripening-impaired mutants rin, nor, and Nr were extracted and separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Analysis of the stained bands revealed increases in 5 polypeptides (94, 44, 34, 20, and 12 kilodaltons), decreases in 12 polypeptides (106, 98, 88, 76, 64, 52, 48, 45, 36, 28, 25, and 15 kilodaltons), and fluctuations in 5 polypeptides (85, 60, 26, 21, and 16 kilodaltons) as normal ripening proceeded. Several polypeptides present in ripening normal pericarp exhibited very low or undetectable levels in developing mutant pericarp. Total RNAs extracted from various stages of Rutgers pericarp and from 60 to 65 days old rin, nor, and Nr pericarp were fractionated into poly(A)+ and poly(A)− RNAs. Peak levels of total RNA, poly(A)+ RNA, and poly(A)+ RNA as percent of total RNA occurred between the mature green to breaker stages of normal pericarp. In vitro translation of poly(A)+ RNAs from normal pericarp in rabbit reticulocyte lysates revealed increases in mRNAs for 9 polypeptides (116, 89, 70, 42, 38, 33, 31, 29, and 26 kilodaltons), decreases in mRNAs for 2 polypeptides (41 and 35 kilodaltons), and fluctuations in mRNAs for 5 polypeptides (156, 53, 39, 30, and 14 kilodaltons) during normal ripening. Analysis of two-dimensional separation of in vitro translated polypeptides from poly(A)+ RNAs isolated from different developmental stages revealed even more extensive changes in mRNA populations during ripening. In addition, a polygalacturonase precursor (54 kilodaltons) was immunoprecipitated from breaker, turning, red ripe, and 65 days old Nr in vitro translation products. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:16664828

  17. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms.

    PubMed

    Kahvejian, Avak; Svitkin, Yuri V; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.

  18. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms

    PubMed Central

    Kahvejian, Avak; Svitkin, Yuri V.; Sukarieh, Rami; M'Boutchou, Marie-Noël; Sonenberg, Nahum

    2005-01-01

    Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5′-end of the mRNA to promote the recruitment of the ribosome. Although the 3′ poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (∼65% vs. ∼35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5′-end of mRNA. PMID:15630022

  19. Antimicrobial Lactoferrin Peptides: The Hidden Players in the Protective Function of a Multifunctional Protein

    PubMed Central

    Sinha, Mau; Kaushik, Sanket; Kaur, Punit; Singh, Tej P.

    2013-01-01

    Lactoferrin is a multifunctional, iron-binding glycoprotein which displays a wide array of modes of action to execute its primary antimicrobial function. It contains various antimicrobial peptides which are released upon its hydrolysis by proteases. These peptides display a similarity with the antimicrobial cationic peptides found in nature. In the current scenario of increasing resistance to antibiotics, there is a need for the discovery of novel antimicrobial drugs. In this context, the structural and functional perspectives on some of the antimicrobial peptides found in N-lobe of lactoferrin have been reviewed. This paper provides the comparison of lactoferrin peptides with other antimicrobial peptides found in nature as well as interspecies comparison of the structural properties of these peptides within the native lactoferrin. PMID:23554820

  20. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    PubMed

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  1. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin

    PubMed Central

    Wafer, Lucas N; Tzul, Franco O; Pandharipande, Pranav P; McCallum, Scott A; Makhatadze, George I

    2014-01-01

    Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins. PMID:24947426

  2. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  3. Electrostatics effects on Ca(2+) binding and conformational changes in EF-hand domains: Functional implications for EF-hand proteins.

    PubMed

    Ababou, Abdessamad; Zaleska, Mariola

    2015-12-01

    Mutations of Gln41 and Lys75 with nonpolar residues in the N-terminal domain of calmodulin (N-Cam) revealed the importance of solvation energetics in conformational change of Ca(2+) sensor EF-hand domains. While in general these domains have polar residues at these corresponding positions yet the extent of their conformational response to Ca(2+) binding and their Ca(2+) binding affinity can be different from N-Cam. Consequently, here we address the charge state of the polar residues at these positions. The results show that the charge state of these polar residues can affect substantially the conformational change and the Ca(2+) binding affinity of our N-Cam variants. Since all the variants kept their conformational activity in the presence of Ca(2+) suggests that the differences observed among them mainly originate from the difference in their molecular dynamics. Hence we propose that the molecular dynamics of Ca(2+) sensor EF-hand domains is a key factor in the multifunctional aspect of EF-hand proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation

    PubMed Central

    Moura, Danielle MN; Reis, Christian RS; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  5. Separate RNA-binding surfaces on the multifunctional La protein mediate distinguishable activities in tRNA maturation.

    PubMed

    Huang, Ying; Bayfield, Mark A; Intine, Robert V; Maraia, Richard J

    2006-07-01

    By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.

  6. The role of spartin and its novel ubiquitin binding region in DALIS occurrence

    PubMed Central

    Karlsson, Amelia B.; Washington, Jacqueline; Dimitrova, Valentina; Hooper, Christopher; Shekhtman, Alexander; Bakowska, Joanna C.

    2014-01-01

    Troyer syndrome is an autosomal recessive hereditary spastic paraplegia (HSP) caused by frameshift mutations in the SPG20 gene that results in a lack of expression of the truncated protein. Spartin is a multifunctional protein, yet only two conserved domains—a microtubule-interacting and trafficking domain and a plant-related senescence domain involved in cytokinesis and mitochondrial physiology, respectively—have been defined. We have shown that overexpressed spartin binds to the Ile44 hydrophobic pocket of ubiquitin, suggesting spartin might contain a ubiquitin-binding domain. In the present study, we demonstrate that spartin contributes to the formation of dendritic aggresome-like induced structures (DALIS) through a unique ubiquitin-binding region (UBR). Using short hairpin RNA, we knocked down spartin in RAW264.7 cells and found that DALIS frequency decreased; conversely, overexpression of spartin increased the percentage of cells containing DALIS. Using nuclear magnetic resonance spectroscopy, we characterized spartin's UBR and defined the UBR's amino acids that are key for ubiquitin binding. We also found that spartin, via the UBR, binds Lys-63–linked ubiquitin chains but does not bind Lys-48–linked ubiquitin chains. Finally, we demonstrate that spartin's role in DALIS formation depends on key residues within its UBR. PMID:24523286

  7. Some Biochemical Properties of an Acido-Thermophilic Archae-Bacterium Sulfolobus Acidocaldarius

    NASA Astrophysics Data System (ADS)

    Oshima, Tairo; Ohba, Masayuki; Wagaki, Takayoshi

    1984-12-01

    To elucidate the phylogenic status of archaebacteria, some basic cellular components of an acido-thermophilic archaebacterium,Sulfolobus acidocaldarius, were studied. Poly(A) containing RNA was present in the cells, and performed the role of mRNA in a cell-free extract of reticulocyte or the archaebacteria. Poly(A) containing RNA was also found in other archaebacterial cells. The absence of cap structure was suggested in these RNAs. The cell-free protein synthesis using the archaebacterial extract was inhibited by anisomycin, a specific inhibitor for eukaryotic ribosomes. Two unique membrane-bound ATPases were detected. Based on resistance to H+-ATPase inhibitors, these enzymes seemed not to be F0F1-ATPase.

  8. Deciphering the Binding between Nupr1 and MSL1 and Their DNA-Repairing Activity

    PubMed Central

    Doménech, Rosa; Pantoja-Uceda, David; Gironella, Meritxell; Santoro, Jorge; Velázquez-Campoy, Adrián; Neira, José L.; Iovanna, Juan L.

    2013-01-01

    The stress protein Nupr1 is a highly basic, multifunctional, intrinsically disordered protein (IDP). MSL1 is a histone acetyl transferase-associated protein, known to intervene in the dosage compensation complex (DCC). In this work, we show that both Nupr1 and MSL1 proteins were recruited and formed a complex into the nucleus in response to DNA-damage, which was essential for cell survival in reply to cisplatin damage. We studied the interaction of Nupr1 and MSL1, and their binding affinities to DNA by spectroscopic and biophysical methods. The MSL1 bound to Nupr1, with a moderate affinity (2.8 µM) in an entropically-driven process. MSL1 did not bind to non-damaged DNA, but it bound to chemically-damaged-DNA with a moderate affinity (1.2 µM) also in an entropically-driven process. The Nupr1 protein bound to chemically-damaged-DNA with a slightly larger affinity (0.4 µM), but in an enthalpically-driven process. Nupr1 showed different interacting regions in the formed complexes with Nupr1 or DNA; however, they were always disordered (“fuzzy”), as shown by NMR. These results underline a stochastic description of the functionality of the Nupr1 and its other interacting partners. PMID:24205110

  9. Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus.

    PubMed

    Liu, Yu; Wu, Na; Dong, Jie; Gao, Yaping; Zhang, Xin; Mu, Chunhua; Shao, Ningsheng; Yang, Guang

    2010-09-29

    The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.

  10. Versatile function of the circadian protein CIPC as a regulator of Erk activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsunaga, Ryota; Nishino, Tasuku; Yokoyama, Atsushi

    2016-01-15

    The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase,more » and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins. - Highlights: • CIPC is a cell cycle dependent nuclear-cytoplasmic shuttling protein. • K186 and 187are the essential amino acid residues within the NLS of CIPC. • CAD was identified as a novel CIPC-binding protein. • CIPC might regulate the activity and translocation of CAD in the cells.« less

  11. Structure and Mutagenesis of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Stalk Domain Reveals a Four-Helix Bundle and the Role of the Stalk in Fusion Promotion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Sayantan; Welch, Brett D.; Kors, Christopher A.

    2014-10-02

    Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalkmore » domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 {angstrom}, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion.« less

  12. Structure and Mutagenesis of the Parainfluenza Virus 5 Hemagglutinin-Neuraminidase Stalk Domain Reveals a Four-Helix Bundle and the Role of the Stalk in Fusion Promotion▿

    PubMed Central

    Bose, Sayantan; Welch, Brett D.; Kors, Christopher A.; Yuan, Ping; Jardetzky, Theodore S.; Lamb, Robert A.

    2011-01-01

    Paramyxovirus entry into cells requires the fusion protein (F) and a receptor binding protein (hemagglutinin-neuraminidase [HN], H, or G). The multifunctional HN protein of some paramyxoviruses, besides functioning as the receptor (sialic acid) binding protein (hemagglutinin activity) and the receptor-destroying protein (neuraminidase activity), enhances F activity, presumably by lowering the activation energy required for F to mediate fusion of viral and cellular membranes. Before or upon receptor binding by the HN globular head, F is believed to interact with the HN stalk. Unfortunately, until recently none of the receptor binding protein crystal structures have shown electron density for the stalk domain. Parainfluenza virus 5 (PIV5) HN exists as a noncovalent dimer-of-dimers on the surface of cells, linked by a single disulfide bond in the stalk. Here we present the crystal structure of the PIV5-HN stalk domain at a resolution of 2.65 Å, revealing a four-helix bundle (4HB) with an upper (N-terminal) straight region and a lower (C-terminal) supercoiled part. The hydrophobic core residues are a mix of an 11-mer repeat and a 3- to 4-heptad repeat. To functionally characterize the role of the HN stalk in F interactions and fusion, we designed mutants along the PIV5-HN stalk that are N-glycosylated to physically disrupt F-HN interactions. By extensive study of receptor binding, neuraminidase activity, oligomerization, and fusion-promoting functions of the mutant proteins, we found a correlation between the position of the N-glycosylation mutants on the stalk structure and their neuraminidase activities as well as their abilities to promote fusion. PMID:21994464

  13. Protein Multifunctionality: Principles and Mechanisms

    PubMed Central

    Zaretsky, Joseph Z.; Wreschner, Daniel H.

    2008-01-01

    In the review, the nature of protein multifunctionality is analyzed. In the first part of the review the principles of structural/functional organization of protein are discussed. In the second part, the main mechanisms involved in development of multiple functions on a single gene product(s) are analyzed. The last part represents a number of examples showing that multifunctionality is a basic feature of biologically active proteins. PMID:21566747

  14. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins.

    PubMed

    Lorenzatto, Karina Rodrigues; Monteiro, Karina Mariante; Paredes, Rodolfo; Paludo, Gabriela Prado; da Fonsêca, Marbella Maria; Galanti, Norbel; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2012-09-10

    Glycolytic enzymes, such as fructose-bisphosphate aldolase (FBA) and enolase, have been described as complex multifunctional proteins that may perform non-glycolytic moonlighting functions, but little is known about such functions, especially in parasites. We have carried out in silico genomic searches in order to identify FBA and enolase coding sequences in Echinococcus granulosus, the causative agent of cystic hydatid disease. Four FBA genes and 3 enolase genes were found, and their sequences and exon-intron structures were characterized and compared to those of their orthologs in Echinococcus multilocularis, the causative agent of alveolar hydatid disease. To gather evidence of possible non-glycolytic functions, the expression profile of FBA and enolase isoforms detected in the E. granulosus pathogenic larval form (hydatid cyst) (EgFBA1 and EgEno1) was assessed. Using specific antibodies, EgFBA1 and EgEno1 were detected in protoscolex and germinal layer cells, as expected, but they were also found in the hydatid fluid, which contains parasite's excretory-secretory (ES) products. Besides, both proteins were found in protoscolex tegument and in vitro ES products, further suggesting possible non-glycolytic functions in the host-parasite interface. EgFBA1 modeled 3D structure predicted a F-actin binding site, and the ability of EgFBA1 to bind actin was confirmed experimentally, which was taken as an additional evidence of FBA multifunctionality in E. granulosus. Overall, our results represent the first experimental evidences of alternative functions performed by glycolytic enzymes in E. granulosus and provide relevant information for the understanding of their roles in host-parasite interplay. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules

    DOE PAGES

    Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai; ...

    2015-12-21

    Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less

  16. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression

    PubMed Central

    Sullivan, Eileen; Santiago, Carlos; Parker, Emily D.; Dominski, Zbigniew; Yang, Xiaocui; Lanzotti, David J.; Ingledue, Tom C.; Marzluff, William F.; Duronio, Robert J.

    2001-01-01

    Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem–loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3′ end. Stem–loop–binding protein (SLBP) binds to the histone mRNA 3′ end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3′ ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3′ end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle. PMID:11157774

  17. Polyadenylation proteins CstF-64 and τCstF-64 exhibit differential binding affinities for RNA polymers

    PubMed Central

    Monarez, Roberto R.; Macdonald, Clinton C.; Dass, Brinda

    2006-01-01

    CstF-64 (cleavage stimulation factor-64), a major regulatory protein of polyadenylation, is absent during male meiosis. Therefore a paralogous variant, τCstF-64 is expressed in male germ cells to maintain normal spermatogenesis. Based on sequence differences between τCstF-64 and CstF-64, and on the high incidence of alternative polyadenylation in testes, we hypothesized that the RBDs (RNA-binding domains) of τCstF-64 and CstF-64 have different affinities for RNA elements. We quantified Kd values of CstF-64 and τCstF-64 RBDs for various ribopolymers using an RNA cross-linking assay. The two RBDs had similar affinities for poly(G)18, poly(A)18 or poly(C)18, with affinity for poly(C)18 being the lowest. However, CstF-64 had a higher affinity for poly(U)18 than τCstF-64, whereas it had a lower affinity for poly(GU)9. Changing Pro-41 to a serine residue in the CstF-64 RBD did not affect its affinity for poly(U)18, but changes in amino acids downstream of the C-terminal α-helical region decreased affinity towards poly(U)18. Thus we show that the two CstF-64 paralogues differ in their affinities for specific RNA sequences, and that the region C-terminal to the RBD is important in RNA sequence recognition. This supports the hypothesis that τCstF-64 promotes germ-cell-specific patterns of polyadenylation by binding to different downstream sequence elements. PMID:17029590

  18. Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B

    PubMed Central

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Pey, Ángel L.; Soubeyran, Philippe; Vidal, Miguel; Urrutia, Raúl; Iovanna, Juan L.; Neira, José L.

    2017-01-01

    Intrinsically disordered proteins (IDPs) are ubiquitous in eukaryotes, and they are often associated with diseases in humans. The protein NUPR1 is a multifunctional IDP involved in chromatin remodeling and in the development and progression of pancreatic cancer; however, the details of such functions are unknown. Polycomb proteins are involved in specific transcriptional cascades and gene silencing. One of the proteins of the Polycomb complex is the Ring finger protein 1 (RING1). RING1 is related to aggressive tumor features in multiple cancer types. In this work we characterized the interaction between NUPR1 and the paralogue RING1B in vitro, in silico, and in cellulo. The interaction occurred through the C-terminal region of RING1B (C-RING1B), with an affinity in the low micromolar range (∼10 μM). The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch at the 30s region of its sequence, as pinpointed by computational results and site-directed mutagenesis at Ala33. The association between C-RING1B and wild-type NUPR1 also occurred in cellulo as tested by protein ligation assays; this interaction is inhibited by trifluoperazine, a drug known to hamper binding of wild-type NUPR1 with other proteins. Furthermore, the Thr68Gln and Ala33Gln/Thr68Gln mutants had a reduction in the binding toward C-RING1B as shown by in vitro, in silico, and in cellulo studies. This is an example of a well-folded partner of NUPR1, because its other interacting proteins are also unfolded. We hypothesize that NUPR1 plays an active role in chromatin remodeling and carcinogenesis, together with Polycomb proteins. PMID:28720707

  19. Biodegradable "Smart" Polyphosphazenes with Intrinsic Multifunctionality as Intracellular Protein Delivery Vehicles.

    PubMed

    Martinez, Andre P; Qamar, Bareera; Fuerst, Thomas R; Muro, Silvia; Andrianov, Alexander K

    2017-06-12

    A series of biodegradable drug delivery polymers with intrinsic multifunctionality have been designed and synthesized utilizing a polyphosphazene macromolecular engineering approach. Novel water-soluble polymers, which contain carboxylic acid and pyrrolidone moieties attached to an inorganic phosphorus-nitrogen backbone, were characterized by a suite of physicochemical methods to confirm their structure, composition, and molecular sizes. All synthesized polyphosphazenes displayed composition-dependent hydrolytic degradability in aqueous solutions at neutral pH. Their formulations were stable at lower temperatures, potentially indicating adequate shelf life, but were characterized by accelerated degradation kinetics at elevated temperatures, including 37 °C. It was found that synthesized polyphosphazenes are capable of environmentally triggered self-assembly to produce nanoparticles with narrow polydispersity in the size range of 150-700 nm. Protein loading capacity of copolymers has been validated via their ability to noncovalently bind avidin without altering biological functionality. Acid-induced membrane-disruptive activity of polyphosphazenes has been established with an onset corresponding to the endosomal pH range and being dependent on polymer composition. The synthesized polyphosphazenes facilitated cell-surface interactions followed by time-dependent, vesicular-mediated, and saturable internalization of a model protein cargo into cancer cells, demonstrating the potential for intracellular delivery.

  20. Potential of the Lectin/Inhibitor Isolated from Crataeva tapia Bark (CrataBL) for Controlling Callosobruchus maculatus Larva Development.

    PubMed

    Nunes, Natalia N S; Ferreira, Rodrigo S; Silva-Lucca, Rosemeire A; de Sá, Leonardo F R; de Oliveira, Antônia Elenir A; Correia, Maria Tereza dos S; Paiva, Patrícia Maria G; Wlodawer, Alexander; Oliva, Maria Luiza V

    2015-12-09

    Callosobruchus maculatus is an important predator of cowpeas. Due to infestation during storage, this insect affects the quality of seed and crop yield. This study aimed to investigate the effects of CrataBL, a multifunction protein isolated from Crataeva tapia bark, on C. maculatus larva development. The protein, which is stable even in extreme pH conditions, showed toxic activity, reducing the larval mass 45 and 70% at concentrations of 0.25 and 1.0% (w/w), respectively. Acting as an inhibitor, CrataBL decreased by 39% the activity of cysteine proteinases from larval gut. Conversely, the activity of serine proteinases was increased about 8-fold. The toxic properties of CrataBL may also be attributed to its capacity of binding to glycoproteins or glycosaminoglycans. Such binding interferes with larval metabolism, because CrataBL-FITC was found in the fat body, Malpighian tubules, and feces of larvae. These results demonstrate the potential of this protein for controlling larva development.

  1. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1.

    PubMed

    DeMille, Desiree; Badal, Bryan D; Evans, J Brady; Mathis, Andrew D; Anderson, Joseph F; Grose, Julianne H

    2015-02-01

    We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low. © 2015 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Dye-induced aggregation of single stranded RNA: a mechanistic approach.

    PubMed

    Biver, Tarita; Ciatto, Carlo; Secco, Fernando; Venturini, Marcella

    2006-08-15

    The binding of proflavine (D) to single stranded poly(A) (P) was investigated at pH 7.0 and 25 degrees C using T-jump, stopped-flow and spectrophotometric methods. Equilibrium measurements show that an external complex PD(I) and an internal complex PD(II) form upon reaction between P and D and that their concentrations depend on the polymer/dye concentration ratio (C(P)/C(D)). For C(P)/C(D)<2.5, cooperative formation of stacks external to polymer strands prevails (PD(I)). Equilibria and T-jump experiments, performed at I=0.1M and analyzed according to the Schwarz theory for cooperative binding, provide the values of site size (g=1), equilibrium constant for the nucleation step (K( *)=(1.4+/-0.6)x10(3)M(-1)), equilibrium constant for the growth step (K=(1.2+/-0.6)x10(5)M(-1)), cooperativity parameter (q=85) and rate constants for the growth step (k(r)=1.2x10(7)M(-1)s(-1), k(d)=1.1 x 10(2)s(-1)). Stopped-flow experiments, performed at low ionic strength (I=0.01 M), indicate that aggregation of stacked poly(A) strands do occur provided that C(P)/C(D)<2.5.

  3. Control of storage-protein synthesis during seed development in pea (Pisum sativum L.).

    PubMed Central

    Gatehouse, J A; Evans, I M; Bown, D; Croy, R R; Boulter, D

    1982-01-01

    The tissue-specific syntheses of seed storage proteins in the cotyledons of developing pea (Pisum sativum L.) seeds have been demonstrated by estimates of their qualitative and quantitative accumulation by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and rocket immunoelectrophoresis respectively. Vicilin-fraction proteins initially accumulated faster than legumin, but whereas legumin was accumulated throughout development, different components of the vicilin fraction had their predominant periods of synthesis at different stages of development. The translation products in vitro of polysomes isolated from cotyledons at different stages of development reflected the synthesis in vivo of storage-protein polypeptides at corresponding times. The levels of storage-protein mRNA species during development were estimated by 'Northern' hybridization using cloned complementary-DNA probes. This technique showed that the levels of legumin and vicilin (47000-Mr precursors) mRNA species increased and decreased in agreement with estimated rates of synthesis of the respective polypeptides. The relative amounts of these messages, estimated by kinetic hybridization were also consistent. Legumin mRNA was present in leaf poly(A)+ RNA at less than one-thousandth of the level in cotyledon poly(A)+ (polyadenylated) RNA, demonstrating tissue-specific expression. Evidence is presented that storage-protein mRNA species are relatively long-lived, and it is suggested that storage-protein synthesis is regulated primarily at the transcriptional level. Images Fig. 2. Fig. 3. PMID:6897609

  4. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    PubMed Central

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of viral RNA in vivo and host ribosomal RNAs in vitro. PMID:22496660

  5. Superresolution imaging of transcription units on newt lampbrush chromosomes

    PubMed Central

    Kaufmann, Rainer; Cremer, Christoph; Gall, Joseph G.

    2013-01-01

    We have examined transcription loops on lampbrush chromosomes of the newt Notophthalmus by superresolution microscopy. Because of the favorable, essentially two-dimensional morphology of these loops, an average optical resolution in the x-y plane of about 50 nm was achieved. We analyzed the distribution of the multifunctional RNA-binding protein CELF1 on specific loops. CELF1 distribution is consistent with a model in which individual transcripts are tightly folded and hence closely packed against the loop axis. PMID:22892678

  6. Characterization and copper binding properties of human COMMD1 (MURR1).

    PubMed

    Narindrasorasak, Suree; Kulkarni, Prasad; Deschamps, Patrick; She, Yi-Min; Sarkar, Bibudhendra

    2007-03-20

    COMMD1 (copper metabolism gene MURR1 (mouse U2af1-rs1 region1) domain) belongs to a family of multifunctional proteins that inhibit nuclear factor NF-kappaB. COMMD1 was implicated as a regulator of copper metabolism by the discovery that a deletion of exon 2 of COMMD1 causes copper toxicosis in Bedlington terriers. Here, we report the detailed characterization and specific copper binding properties of purified recombinant human COMMD1 as well as that of the exon 2 product, COMMD(61-154). By using various techniques including native-PAGE, EPR, UV-visible electronic absorption, intrinsic fluorescence spectroscopies as well as DEPC modification of histidines, we demonstrate that COMMD1 specifically binds copper as Cu(II) in 1:1 stoichiometry and does not bind other divalent metals. Moreover, the exon 2 product, COMMD(61-154), alone was able to bind Cu(II) as well as the wild type protein, with a stoichiometry of 1 mol of Cu(II) per protein monomer. The protection of DEPC modification of COMMD1 by Cu(II) implied that Cu(II) binding involves His residues. Further investigation by DEPC modification of COMMD(61-154) and subsequent MALDI MS mapping and MS/MS sequencing identified the protection of His101 and His134 residues in the presence of Cu(II). Fluorescence studies of single point mutants of the full-length protein revealed the involvement of M110 in addition to H134 in direct Cu(II) binding. Taken together, the data provide insight into the function of COMMD1 and especially COMMD(61-154), a product of exon 2 that is deleted in terriers affected by copper toxicosis, as a regulator of copper homeostasis.

  7. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans.

    PubMed

    Choy, Henry A; Kelley, Melissa M; Croda, Julio; Matsunaga, James; Babbitt, Jane T; Ko, Albert I; Picardeau, Mathieu; Haake, David A

    2011-02-09

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9-11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats.

  8. The Multifunctional LigB Adhesin Binds Homeostatic Proteins with Potential Roles in Cutaneous Infection by Pathogenic Leptospira interrogans

    PubMed Central

    Choy, Henry A.; Kelley, Melissa M.; Croda, Julio; Matsunaga, James; Babbitt, Jane T.; Ko, Albert I.; Picardeau, Mathieu; Haake, David A.

    2011-01-01

    Leptospirosis is a potentially fatal zoonotic disease in humans and animals caused by pathogenic spirochetes, such as Leptospira interrogans. The mode of transmission is commonly limited to the exposure of mucous membrane or damaged skin to water contaminated by leptospires shed in the urine of carriers, such as rats. Infection occurs during seasonal flooding of impoverished tropical urban habitats with large rat populations, but also during recreational activity in open water, suggesting it is very efficient. LigA and LigB are surface localized proteins in pathogenic Leptospira strains with properties that could facilitate the infection of damaged skin. Their expression is rapidly induced by the increase in osmolarity encountered by leptospires upon transition from water to host. In addition, the immunoglobulin-like repeats of the Lig proteins bind proteins that mediate attachment to host tissue, such as fibronectin, fibrinogen, collagens, laminin, and elastin, some of which are important in cutaneous wound healing and repair. Hemostasis is critical in a fresh injury, where fibrinogen from damaged vasculature mediates coagulation. We show that fibrinogen binding by recombinant LigB inhibits fibrin formation, which could aid leptospiral entry into the circulation, dissemination, and further infection by impairing healing. LigB also binds fibroblast fibronectin and type III collagen, two proteins prevalent in wound repair, thus potentially enhancing leptospiral adhesion to skin openings. LigA or LigB expression by transformation of a nonpathogenic saprophyte, L. biflexa, enhances bacterial adhesion to fibrinogen. Our results suggest that by binding homeostatic proteins found in cutaneous wounds, LigB could facilitate leptospirosis transmission. Both fibronectin and fibrinogen binding have been mapped to an overlapping domain in LigB comprising repeats 9–11, with repeat 11 possibly enhancing binding by a conformational effect. Leptospirosis patient antibodies react with the LigB domain, suggesting applications in diagnosis and vaccines that are currently limited by the strain-specific leptospiral lipopolysaccharide coats. PMID:21347378

  9. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion.

    PubMed

    Castiblanco-Valencia, Mónica Marcela; Fraga, Tatiana Rodrigues; Pagotto, Ana Helena; Serrano, Solange Maria de Toledo; Abreu, Patricia Antonia Estima; Barbosa, Angela Silva; Isaac, Lourdes

    2016-05-01

    Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host. Copyright © 2016. Published by Elsevier GmbH.

  10. Monitoring autophagic flux using Ref(2)P, the Drosophila p62 ortholog.

    PubMed

    DeVorkin, Lindsay; Gorski, Sharon M

    2014-09-02

    Human p62, also known as Sequestome-1 (SQSTM1), is a multifunctional scaffold protein that contains many domains, including a Phox/Bem1P (PB1) multimerization domain, an ubiquitin-associated (UBA) domain, and a light chain 3 (LC3) recognition sequence. p62 binds ubiquitinated proteins and targets them for degradation by the proteasome. In addition, p62 directly binds LC3; this may serve as a mechanism to deliver ubiquitinated proteins for degradation by autophagy. During this process, p62 itself is degraded. The inhibition of autophagy leads to the accumulation of p62, indicating that it can be used as a marker of autophagic flux. Ref(2)P (refractory to sigma P), the Drosophila ortholog of p62, is also required for the formation of ubiquitinated protein aggregates. Ref(2)P contains a putative LC3-interacting region, and genetic inhibition of autophagy in Drosophila leads to the accumulation of Ref(2)P protein levels. Thus, like p62, Ref(2)P may serve as a marker of autophagic flux. Here we provide two procedures to examine Ref(2)P protein levels in Drosophila ovaries. © 2014 Cold Spring Harbor Laboratory Press.

  11. Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW.

    PubMed

    Henning, Lisa Maria; Bhatia, Sumati; Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer; Freund, Christian

    2015-01-01

    The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein-protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1-WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome.

  12. Molecular basis of Williams-Beuren syndrome: TFII-I regulated targets involved in craniofacial development.

    PubMed

    Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg

    2011-01-01

    The aim of this study is to identify gene targets of TFII-I transcription factors involved in craniofacial development. Recent findings in individuals with Williams-Beuren syndrome who show facial dysmorphism and cognitive defects have pointed to TFII-I genes (GTF2I and GTF2IRD1) as the prime candidates responsible for these clinical features. However, TFII-I proteins are multifunctional transcriptional factors regulating a number of genes during development, and how their haploinsufficiency leads to the Williams-Beuren syndrome phenotype is currently unknown. Here we report the identification of three genes with a well-established relevance to craniofacial development as direct TFII-I targets. These genes, craniofacial development protein 1 (Cfdp1), Sec23 homolog A (Sec23a), and nuclear receptor binding SET domain protein 1 (Nsd1), contain consensus TFII-I binding sites in their proximal promoters; the chromatin immunoprecipitation analysis showed that TFII-I transcription factors are recruited to these sites in vivo. The results suggest that transcriptional regulation of these genes by TFII-I proteins could provide a possible genotype-phenotype link in Williams-Beuren syndrome.

  13. Recent advances in MeCP2 structure and function1

    PubMed Central

    Hite, Kristopher C.; Adams, Valerie H.; Hansen, Jeffrey C.

    2010-01-01

    Mutations in methyl DNA binding protein 2 (MeCP2) cause the neurodevelopmental disorder Rett syndrome (RTT). The mechanism(s) by which the native MeCP2 protein operates in the cell are not well understood. Historically, MeCP2 has been characterized as a proximal gene silencer with 2 functional domains: a methyl DNA binding domain and a transcription repression domain. However, several lines of new data indicate that MeCP2 structure and function relationships are more complex. In this review, we first discuss recent studies that have advanced understanding of the basic structural biochemistry of MeCP2. This is followed by an analysis of cell-based experiments suggesting MeCP2 is a regulator, rather than a strict silencer, of transcription. The new data establish MeCP2 as a multifunctional nuclear protein, with potentially important roles in chromatin architecture, regulation of RNA splicing, and active transcription. We conclude by discussing clinical correlations between domain-specific mutations and RTT pathology to stress that all structural domains of MeCP2 are required to properly mediate cellular function of the intact protein. PMID:19234536

  14. Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A).

    PubMed Central

    Barbieri, L; Valbonesi, P; Gorini, P; Pession, A; Stirpe, F

    1996-01-01

    The ribosome-inactivating proteins (RIPs) are a family of plant enzymes for which a unique activity has been determined: rRNA N-glycosidase, which removes adenine at a specific universally conserved position (A4324 in the case of rat ribosomes). Here we report that saporin-L1, a RIP from the leaves of Saponaria officinalis, recognizes other substrates, including RNAs from different sources, DNA and poly(A). Saporin-L1 depurinated DNA extensively and released adenine from all adenine-containing polynucleotides tested. Adenine was the only base released from DNA or artificial polynucleotides. The characteristics of the reactions catalysed by saporin-L1 have been determined: optimal pH and temperature, ionic requirements, and the kinetic parameters Km and kcat. The reaction proceeded without cofactors, at low ionic strength, in the absence of Mg2+ and K+. Saporin-L1 had no activity towards various adenine-containing non-polynucleotide compounds (cytokinins, cofactors, nucleotides). This plant protein may now be classified as a polynucleotide: adenosine glycosidase. PMID:8912688

  15. Genome-wide RNA-binding analysis of the trypanosome U1 snRNP proteins U1C and U1-70K reveals cis/trans-spliceosomal network

    PubMed Central

    Preußer, Christian; Rossbach, Oliver; Hung, Lee-Hsueh; Li, Dan; Bindereif, Albrecht

    2014-01-01

    Trans-splicing in trypanosomes adds a 39-nucleotide mini-exon from the spliced leader (SL) RNA to the 5′ end of each protein-coding sequence. On the other hand, cis-splicing of the few intron-containing genes requires the U1 small nuclear ribonucleoprotein (snRNP) particle. To search for potential new functions of the U1 snRNP in Trypanosoma brucei, we applied genome-wide individual-nucleotide resolution crosslinking-immunoprecipitation (iCLIP), focusing on the U1 snRNP-specific proteins U1C and U1-70K. Surprisingly, U1C and U1-70K interact not only with the U1, but also with U6 and SL RNAs. In addition, mapping of crosslinks to the cis-spliced PAP [poly(A) polymerase] pre-mRNA indicate an active role of these proteins in 5′ splice site recognition. In sum, our results demonstrate that the iCLIP approach provides insight into stable and transient RNA–protein contacts within the spliceosomal network. We propose that the U1 snRNP may represent an evolutionary link between the cis- and trans-splicing machineries, playing a dual role in 5′ splice site recognition on the trans-spliceosomal SL RNP as well as on pre-mRNA cis-introns. PMID:24748659

  16. Multifunctional thin film surface

    DOEpatents

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  17. Modular Evolution of DNA-Binding Preference of a Tbrain Transcription Factor Provides a Mechanism for Modifying Gene Regulatory Networks

    PubMed Central

    Cheatle Jarvela, Alys M.; Brubaker, Lisa; Vedenko, Anastasia; Gupta, Anisha; Armitage, Bruce A.; Bulyk, Martha L.; Hinman, Veronica F.

    2014-01-01

    Gene regulatory networks (GRNs) describe the progression of transcriptional states that take a single-celled zygote to a multicellular organism. It is well documented that GRNs can evolve extensively through mutations to cis-regulatory modules (CRMs). Transcription factor proteins that bind these CRMs may also evolve to produce novelty. Coding changes are considered to be rarer, however, because transcription factors are multifunctional and hence are more constrained to evolve in ways that will not produce widespread detrimental effects. Recent technological advances have unearthed a surprising variation in DNA-binding abilities, such that individual transcription factors may recognize both a preferred primary motif and an additional secondary motif. This provides a source of modularity in function. Here, we demonstrate that orthologous transcription factors can also evolve a changed preference for a secondary binding motif, thereby offering an unexplored mechanism for GRN evolution. Using protein-binding microarray, surface plasmon resonance, and in vivo reporter assays, we demonstrate an important difference in DNA-binding preference between Tbrain protein orthologs in two species of echinoderms, the sea star, Patiria miniata, and the sea urchin, Strongylocentrotus purpuratus. Although both orthologs recognize the same primary motif, only the sea star Tbr also has a secondary binding motif. Our in vivo assays demonstrate that this difference may allow for greater evolutionary change in timing of regulatory control. This uncovers a layer of transcription factor binding divergence that could exist for many pairs of orthologs. We hypothesize that this divergence provides modularity that allows orthologous transcription factors to evolve novel roles in GRNs through modification of binding to secondary sites. PMID:25016582

  18. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1.

    PubMed

    Gabus, C; Derrington, E; Leblanc, P; Chnaiderman, J; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W K; Marc, D; Nandi, P; Darlix, J L

    2001-06-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism.

  19. Novel transcripts of the estrogen receptor α gene in channel catfish

    USGS Publications Warehouse

    Patino, Reynaldo; Xia, Zhenfang; Gale, William L.; Wu, Chunfa; Maule, Alec G.; Chang, Xiaotian

    2000-01-01

    Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERα cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERα variants of different sizes. Relative to the catfish ERα (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERα (36 residues longer) and Short-ERα (389 residues shorter). The 5′-end of Long-ERα cDNA is identical to that of Medium-ERα but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERα binds estrogen with high affinity (Kd = 3.4 nM), similar to that previously reported for Medium-ERα but lower than reported for catfish ERβ. Short-ERα cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERα RNAs that include the size range of the ERα cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERα cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERα antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERα antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERα mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ERα or related proteins that modulate ERα or ERβ activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.

  20. Structure of the C-terminal effector-binding domain of AhrC bound to its corepressor l-arginine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, James A.; Baumberg, Simon; Stockley, Peter G.

    2007-11-01

    The crystal structure of the C-terminal domain hexameric core of AhrC, with bound corepressor (l-arginine), has been solved at 1.95 Å resolution. Binding of l-arginine results in a rotation between the two trimers of the hexamer, leading to the activation of the DNA-binding state. The arginine repressor/activator protein (AhrC) from Bacillus subtilis belongs to a large family of multifunctional transcription factors that are involved in the regulation of bacterial arginine metabolism. AhrC interacts with operator sites in the promoters of arginine biosynthetic and catabolic operons, acting as a transcriptional repressor at biosynthetic sites and an activator of transcription at catabolicmore » sites. AhrC is a hexamer of identical subunits, each having two domains. The C-terminal domains form the core of the protein and are involved in oligomerization and l-arginine binding. The N-terminal domains lie on the outside of the compact core and play a role in binding to 18 bp DNA operators called ARG boxes. The C-terminal domain of AhrC has been expressed, purified and characterized, and also crystallized as a hexamer with the bound corepressor l-arginine. Here, the crystal structure refined to 1.95 Å is presented.« less

  1. Structural features and ligand binding properties of tandem WW domains from YAP and TAZ, nuclear effectors of the Hippo pathway.

    PubMed

    Webb, Claire; Upadhyay, Abhishek; Giuntini, Francesca; Eggleston, Ian; Furutani-Seiki, Makoto; Ishima, Rieko; Bagby, Stefan

    2011-04-26

    The paralogous multifunctional adaptor proteins YAP and TAZ are the nuclear effectors of the Hippo pathway, a central mechanism of organ size control and stem cell self-renewal. WW domains, mediators of protein-protein interactions, are essential for YAP and TAZ function, enabling interactions with PPxY motifs of numerous partner proteins. YAP has single and double WW domain isoforms (YAP1 and YAP2) whereas only a single WW domain isoform of TAZ has been described to date. Here we identify the first example of a double WW domain isoform of TAZ. Using NMR, we have characterized conformational features and peptide binding of YAP and TAZ tandem WW domains (WW1-WW2). The solution structure of YAP WW2 confirms that it has a canonical three-stranded antiparallel β-sheet WW domain fold. While chemical shift-based analysis indicates that the WW domains in the tandem WW pairs retain the characteristic WW domain fold, 15N relaxation data show that, within the respective WW pairs, YAP WW1 and both WW1 and WW2 of TAZ undergo conformational exchange. 15N relaxation data also indicate that the linker between the WW domains is flexible in both YAP and TAZ. Within both YAP and TAZ tandem WW pairs, WW1 and WW2 bind single PPxY-containing peptide ligand concurrently and noncooperatively with sub-mM affinity. YAP and TAZ WW1-WW2 bind a dual PPxY-containing peptide with approximately 6-fold higher affinity. Our results indicate that both WW domains in YAP and TAZ are functional and capable of enhanced affinity binding to multi-PPxY partner proteins such as LATS1, ErbB4, and AMOT.

  2. Treatment with a Novel Chemokine-Binding Protein or Eosinophil Lineage-Ablation Protects Mice from Experimental Colitis

    PubMed Central

    Vieira, Angélica T.; Fagundes, Caio T.; Alessandri, Ana Leticia; Castor, Marina G.M.; Guabiraba, Rodrigo; Borges, Valdinéria O.; Silveira, Kátia Daniella; Vieira, Erica L.M.; Gonçalves, Juliana L.; Silva, Tarcilia A.; Deruaz, Maud; Proudfoot, Amanda E.I.; Sousa, Lirlândia P.; Teixeira, Mauro M.

    2009-01-01

    Eosinophils are multifunctional leukocytes implicated in numerous inflammatory diseases. The present study was conducted to clarify the precise role of eosinophils in the development of colitis by using eosinophil-depleted mice and a novel chemokine-binding protein that neutralizes CCL11 action. Colitis was induced by administration of dextran sodium sulfate (DSS) to wild-type and eosinophil-deficient ΔdblGATA-1 mice. Accumulation of eosinophils in the gut of mice given DSS paralleled worsening of clinical score and weight loss. In response to DSS, ΔdblGATA-1 mice showed virtual absence of eosinophil recruitment, amelioration of clinical score, weight loss, and tissue destruction, and no lethality. There was a decrease in CXCL1 and CCL3 production and decreased neutrophil influx in the intestine of ΔdblGATA-1 mice. Transfer of bone marrow cells from wild-type mice reconstituted disease manifestation in DSS-treated ΔdblGATA-1 mice, and levels of CCL11 were increased after DSS treatment and localized to inflammatory cells. Treatment with the chemokine-binding protein evasin-4 at a dose that prevented the function of CCL11 greatly ameliorated clinical score, weight loss, overall tissue destruction, and death rates. In conclusion, the influx of eosinophils is critical for the induction of colitis by DSS. Treatment with a novel chemokine-binding protein decreased eosinophil influx and greatly ameliorated colitis, suggesting that strategies that interfere with the recruitment of eosinophils may be useful as therapy for colitis. PMID:19893035

  3. Alternative polyadenylation of tumor suppressor genes in small intestinal neuroendocrine tumors.

    PubMed

    Rehfeld, Anders; Plass, Mireya; Døssing, Kristina; Knigge, Ulrich; Kjær, Andreas; Krogh, Anders; Friis-Hansen, Lennart

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3' untranslated regions. Additionally, APA can also produce mRNAs containing different 3'-terminal coding regions. Therefore, APA alters both the repertoire and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3' truncation of mRNA coding regions or 3' untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1, and DACT2. We validated the APA in three out of three cases with quantitative real-time-PCR. Our findings suggest that changes of APA pattern in these 16 genes could be involved in the tumorigenesis of SI-NETs. Furthermore, they also point to APA as a new target for both diagnostic and treatment of SI-NETs. The identified genes with APA specific to the SI-NETs could be further tested as diagnostic markers and drug targets for disease prevention and treatment.

  4. Alternative Polyadenylation of Tumor Suppressor Genes in Small Intestinal Neuroendocrine Tumors

    PubMed Central

    Rehfeld, Anders; Plass, Mireya; Døssing, Kristina; Knigge, Ulrich; Kjær, Andreas; Krogh, Anders; Friis-Hansen, Lennart

    2014-01-01

    The tumorigenesis of small intestinal neuroendocrine tumors (SI-NETs) is poorly understood. Recent studies have associated alternative polyadenylation (APA) with proliferation, cell transformation, and cancer. Polyadenylation is the process in which the pre-messenger RNA is cleaved at a polyA site and a polyA tail is added. Genes with two or more polyA sites can undergo APA. This produces two or more distinct mRNA isoforms with different 3′ untranslated regions. Additionally, APA can also produce mRNAs containing different 3′-terminal coding regions. Therefore, APA alters both the repertoire and the expression level of proteins. Here, we used high-throughput sequencing data to map polyA sites and characterize polyadenylation genome-wide in three SI-NETs and a reference sample. In the tumors, 16 genes showed significant changes of APA pattern, which lead to either the 3′ truncation of mRNA coding regions or 3′ untranslated regions. Among these, 11 genes had been previously associated with cancer, with 4 genes being known tumor suppressors: DCC, PDZD2, MAGI1, and DACT2. We validated the APA in three out of three cases with quantitative real-time-PCR. Our findings suggest that changes of APA pattern in these 16 genes could be involved in the tumorigenesis of SI-NETs. Furthermore, they also point to APA as a new target for both diagnostic and treatment of SI-NETs. The identified genes with APA specific to the SI-NETs could be further tested as diagnostic markers and drug targets for disease prevention and treatment. PMID:24782827

  5. E2F mediates enhanced alternative polyadenylation in proliferation.

    PubMed

    Elkon, Ran; Drost, Jarno; van Haaften, Gijs; Jenal, Mathias; Schrier, Mariette; Oude Vrielink, Joachim A F; Agami, Reuven

    2012-07-02

    The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation.

  6. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

    PubMed

    Bauß, Katharina; Knapp, Barbara; Jores, Pia; Roepman, Ronald; Kremer, Hannie; Wijk, Erwin V; Märker, Tina; Wolfrum, Uwe

    2014-08-01

    The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Analysis of osmotin, a PR protein as metabolic modulator in plants

    PubMed Central

    Abdin, Malik Zainul; Kiran, Usha; Alam, Afshar

    2011-01-01

    Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. Beside its role as osmoregulator, it provides plants protection from pathogens, hence also placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported to confer tolerance against both biotic and abiotic stresses in plants including transgenic tomato and strawberry overexpressing osmotin gene. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin could be regulating these plant responses through its involvement either as transcription factor, cell signal pathway modulator or both in plants. We have therefore, undertaken the present investigation to analyze the osmotin protein as transcription factor using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNAbinding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. However, evidence implicating osmotin in cell signaling were found during the study. With these results, we therefore, concluded that osmotin is not a transcription factor, but regulating plant responses to biotic and abiotic stresses through cell signaling. PMID:21383921

  8. Analysis of osmotin, a PR protein as metabolic modulator in plants.

    PubMed

    Abdin, Malik Zainul; Kiran, Usha; Alam, Afshar

    2011-01-22

    Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. Beside its role as osmoregulator, it provides plants protection from pathogens, hence also placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported to confer tolerance against both biotic and abiotic stresses in plants including transgenic tomato and strawberry overexpressing osmotin gene. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin could be regulating these plant responses through its involvement either as transcription factor, cell signal pathway modulator or both in plants. We have therefore, undertaken the present investigation to analyze the osmotin protein as transcription factor using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNAbinding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. However, evidence implicating osmotin in cell signaling were found during the study. With these results, we therefore, concluded that osmotin is not a transcription factor, but regulating plant responses to biotic and abiotic stresses through cell signaling.

  9. Multiple functions of the leucine-rich repeat protein LrrA of Treponema denticola.

    PubMed

    Ikegami, Akihiko; Honma, Kiyonobu; Sharma, Ashu; Kuramitsu, Howard K

    2004-08-01

    The gene lrrA, encoding a leucine-rich repeat protein, LrrA, that contains eight consensus tandem repeats of 23 amino acid residues, has been identified in Treponema denticola ATCC 35405. A leucine-rich repeat is a generally useful protein-binding motif, and proteins containing this repeat are typically involved in protein-protein interactions. Southern blot analysis demonstrated that T. denticola ATCC 35405 expresses the lrrA gene, but the gene was not identified in T. denticola ATCC 33520. In order to analyze the functions of LrrA in T. denticola, an lrrA-inactivated mutant of strain ATCC 35405 and an lrrA gene expression transformant of strain ATCC 33520 were constructed. Characterization of the mutant and transformant demonstrated that LrrA is associated with the extracytoplasmic fraction of T. denticola and expresses multifunctional properties. It was demonstrated that the attachment of strain ATCC 35405 to HEp-2 cell cultures and coaggregation with Tannerella forsythensis were attenuated by the lrrA mutation. In addition, an in vitro binding assay demonstrated specific binding of LrrA to a portion of the Tannerella forsythensis leucine-rich repeat protein, BspA, which is mediated by the N-terminal region of LrrA. It was also observed that the lrrA mutation caused a reduction of swarming in T. denticola ATCC 35405 and consequently attenuated tissue penetration. These results suggest that the leucine-rich repeat protein LrrA plays a role in the attachment and penetration of human epithelial cells and coaggregation with Tannerella forsythensis. These properties may play important roles in the virulence of T. denticola.

  10. A Targeted Mulifunctional Platform for Imaging and Treatment of Breast Cancer and Its Metastases Based on Adenoviral Vectors and Magnetic Nanoparticles

    DTIC Science & Technology

    2008-02-01

    tu- mor cells. In this regard, herpesvirus samiri (HVS) was de- monstrated to be naturally selectively oncolytic for the pancreatic cancer line PANC-1...the hexon virus. Therefore, Ad can provide a versatile platform for selective binding of AuNPs, resulting in a multifunctional agent capable of...utility remained unaffected. Therefore, Ad can provide a versatile platform for selective binding of nanoparticles, resulting in a multifunctional agent

  11. Microgramma vacciniifolia (Polypodiaceae) fronds contain a multifunctional lectin with immunomodulatory properties on human cells.

    PubMed

    de Siqueira Patriota, Leydianne Leite; Procópio, Thamara Figueiredo; de Santana Brito, Jéssica; Sebag, Virginie; de Oliveira, Ana Patrícia Silva; de Araújo Soares, Ana Karine; Moreira, Leyllane Rafael; de Albuquerque Lima, Thâmarah; Soares, Tatiana; da Silva, Túlio Diego; Paiva, Patrícia Maria Guedes; de Lorena, Virgínia Maria Barros; de Melo, Cristiane Moutinho Lagos; de Albuquerque, Lidiane Pereira; Napoleão, Thiago Henrique

    2017-10-01

    In this study, we report the purification and characterization of a multifunctional lectin (MvFL) from Microgramma vacciniifolia fronds as well as its immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). MvFL (pI 4.51; 54kDa) is a glycoprotein able to inhibit trypsin activity and that has sequence similarities (32% coverage) with a plant RNA-binding protein. Hemagglutinating activity of MvFL was not altered by heating at 100°C for 30min, but was reduced in alkaline pH (8.0 and 9.0). Fluorimetric analyses showed that this lectin did not undergo marked conformational changes when heated. However, the MvFL conformation changed depending on the pH. MvFL at 6.25-25μg/mL was not cytotoxic to lymphocytes present among PBMCs. The PBMCs incubated for 24h with the lectin (12.5μg/mL) showed increased TNF-α, IFN-γ, IL-6, IL-10, and nitric oxide production. MvFL also stimulated T lymphocytes from PBMCs to differentiate into CD8 + cells. The activation (indicated by CD28 expression) of these cells was also stimulated. In conclusion, MvFL is a heat-stable and multifunctional protein, with both lectin and trypsin inhibitor activities, and capable of inducing predominantly a Th1 response in human PBMCs as well as activation and differentiation of T lymphocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The CCR4-NOT complex mediates deadenylation and degradation of stem cell mRNAs and promotes planarian stem cell differentiation.

    PubMed

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology.

  13. The CCR4-NOT Complex Mediates Deadenylation and Degradation of Stem Cell mRNAs and Promotes Planarian Stem Cell Differentiation

    PubMed Central

    Solana, Jordi; Gamberi, Chiara; Mihaylova, Yuliana; Grosswendt, Stefanie; Chen, Chen; Lasko, Paul; Rajewsky, Nikolaus; Aboobaker, A. Aziz

    2013-01-01

    Post-transcriptional regulatory mechanisms are of fundamental importance to form robust genetic networks, but their roles in stem cell pluripotency remain poorly understood. Here, we use freshwater planarians as a model system to investigate this and uncover a role for CCR4-NOT mediated deadenylation of mRNAs in stem cell differentiation. Planarian adult stem cells, the so-called neoblasts, drive the almost unlimited regenerative capabilities of planarians and allow their ongoing homeostatic tissue turnover. While many genes have been demonstrated to be required for these processes, currently almost no mechanistic insight is available into their regulation. We show that knockdown of planarian Not1, the CCR4-NOT deadenylating complex scaffolding subunit, abrogates regeneration and normal homeostasis. This abrogation is primarily due to severe impairment of their differentiation potential. We describe a stem cell specific increase in the mRNA levels of key neoblast genes after Smed-not1 knock down, consistent with a role of the CCR4-NOT complex in degradation of neoblast mRNAs upon the onset of differentiation. We also observe a stem cell specific increase in the frequency of longer poly(A) tails in these same mRNAs, showing that stem cells after Smed-not1 knock down fail to differentiate as they accumulate populations of transcripts with longer poly(A) tails. As other transcripts are unaffected our data hint at a targeted regulation of these key stem cell mRNAs by post-transcriptional regulators such as RNA-binding proteins or microRNAs. Together, our results show that the CCR4-NOT complex is crucial for stem cell differentiation and controls stem cell-specific degradation of mRNAs, thus providing clear mechanistic insight into this aspect of neoblast biology. PMID:24367277

  14. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods

    PubMed Central

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John

    2018-01-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs. PMID:29474390

  15. A Novel Plasmid-Based Microarray Screen Identifies Suppressors of rrp6Δ in Saccharomyces cerevisiae▿†

    PubMed Central

    Abruzzi, Katharine; Denome, Sylvia; Olsen, Jens Raabjerg; Assenholt, Jannie; Haaning, Line Lindegaard; Jensen, Torben Heick; Rosbash, Michael

    2007-01-01

    Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Δ temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Δ strains at 37°C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Δ strains. Microarray analyses of gene expression in rrp6Δ strains and a number of suppressor strains support this hypothesis. PMID:17101774

  16. Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans.

    PubMed

    Takayama, Jun; Faumont, Serge; Kunitomo, Hirofumi; Lockery, Shawn R; Iino, Yuichi

    2010-01-01

    The nervous system is composed of a wide variety of neurons. A description of the transcriptional profiles of each neuron would yield enormous information about the molecular mechanisms that define morphological or functional characteristics. Here we show that RNA isolation from single neurons is feasible by using an optimized mRNA tagging method. This method extracts transcripts in the target cells by co-immunoprecipitation of the complexes of RNA and epitope-tagged poly(A) binding protein expressed specifically in the cells. With this method and genome-wide microarray, we compared the transcriptional profiles of two functionally different neurons in the main C. elegans gustatory neuron class ASE. Eight of the 13 known subtype-specific genes were successfully detected. Additionally, we identified nine novel genes including a receptor guanylyl cyclase, secreted proteins, a TRPC channel and uncharacterized genes conserved among nematodes, suggesting the two neurons are substantially different than previously thought. The expression of these novel genes was controlled by the previously known regulatory network for subtype differentiation. We also describe unique motif organization within individual gene groups classified by the expression patterns in ASE. Our study paves the way to the complete catalog of the expression profiles of individual C. elegans neurons.

  17. Transcriptomes of Trypanosoma brucei rhodesiense from sleeping sickness patients, rodents and culture: Effects of strain, growth conditions and RNA preparation methods.

    PubMed

    Mulindwa, Julius; Leiss, Kevin; Ibberson, David; Kamanyi Marucha, Kevin; Helbig, Claudia; Melo do Nascimento, Larissa; Silvester, Eleanor; Matthews, Keith; Matovu, Enock; Enyaru, John; Clayton, Christine

    2018-02-01

    All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.

  18. Bovine seminal PDC-109 protein: an overview of biochemical and functional properties.

    PubMed

    Srivastava, N; Jerome, A; Srivastava, S K; Ghosh, S K; Kumar, Amit

    2013-04-01

    Although long-term storage of bovine semen is desirable for wider use, successful cryopreservation depends on several factors, including various proteins present in seminal plasma. One such group of proteins, viz. bovine seminal plasma (BSP) proteins represents the major protein fraction in bovine seminal plasma. They constitute three major heparin-binding (HB-) acidic proteins secreted by seminal vesicles, viz. BSP-A1/-A2 (PDC-109), BSP-A3 and BSP-30-kDa. By purification studies it was deduced that PDC-109 is a polypeptide of 109 amino acids and contains two tandem repeating fibronectin type-II (Fn-II) domains, preceded by a 23 residue N-terminal domain. Though BSP-A1 and BSP-A2 are biochemically similar they differ only in glycosylation and their mixture is called PDC-109 or gonadostatins. PDC-109 exists as a polydisperse, multimeric self-associated molecule and possesses multifunctional properties, viz. binding to the surface of plasma membrane of spermatozoa causing conformational change in the sperm surface proteins and enhances motility. Besides binding, PDC-109 protein provokes cholesterol efflux from sperm membrane and promotes sperm reservoir by interacting with oviductal membrane. Interaction of sperm with PDC-109 protein induces sperm capacitation and acrosome reaction. However, prolonged exposure of spermatozoa with free floating PDC-109 protein as during processing for preservation, increases cholesterol efflux from spermatozoa. The efflux of sperm membrane cholesterol and disturbance in cholesterol:phospholipids ratio causes destabilization of plasma membrane thereby inducing cryoinjury to the sperm. In this review, the biochemical, functional properties of PDC-109 protein and its role during semen cryopreservation is summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Polyadenylation state microarray (PASTA) analysis.

    PubMed

    Beilharz, Traude H; Preiss, Thomas

    2011-01-01

    Nearly all eukaryotic mRNAs terminate in a poly(A) tail that serves important roles in mRNA utilization. In the cytoplasm, the poly(A) tail promotes both mRNA stability and translation, and these functions are frequently regulated through changes in tail length. To identify the scope of poly(A) tail length control in a transcriptome, we developed the polyadenylation state microarray (PASTA) method. It involves the purification of mRNA based on poly(A) tail length using thermal elution from poly(U) sepharose, followed by microarray analysis of the resulting fractions. In this chapter we detail our PASTA approach and describe some methods for bulk and mRNA-specific poly(A) tail length measurements of use to monitor the procedure and independently verify the microarray data.

  20. Molecular cloning, expression pattern, and 3D structural prediction of the cold inducible RNA-binding protein (CIRP) in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Gao, Jinning; Ma, Liman; Li, Zan; Wang, Wenji; Wang, Zhongkai; Yu, Haiyang; Qi, Jie; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2015-02-01

    Cold-inducible RNA-binding protein (CIRP) is a kind of RNA binding proteins that plays important roles in many physiological processes. The CIRP has been widely studied in mammals and amphibians since it was first cloned from mammals. On the contrary, there are little reports in teleosts. In this study, the Po CIRP gene of the Japanese flounder was cloned and sequenced. The genomic sequence consists of seven exons and six introns. The putative PoCIRP protein of flounder was 198 amino acid residues long containing the RNA recognition motif (RRM). Phylogenetic analysis showed that the flounder PoCIRP is highly conserved with other teleost CIRPs. The 5' flanking sequence was cloned by genome walking and many transcription factor binding sites were identified. There is a CpGs region located in promoter and exon I region and the methylation state is low. Quantitative real-time PCR analysis uncovered that Po CIRP gene was widely expressed in adult tissues with the highest expression level in the ovary. The mRNA of the Po CIRP was maternally deposited and the expression level of the gene was regulated up during the gastrula and neurula stages. In order to gain the information how the protein interacts with mRNA, we performed the modeling of the 3D structure of the flounder PoCIRP. The results showed a cleft existing the surface of the molecular. Taken together, the results indicate that the CIRP is a multifunctional molecular in teleosts and the findings about the structure provide valuable information for understanding the basis of this protein's function.

  1. Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines

    PubMed Central

    Cheung, Hannah C.; Hai, Tao; Zhu, Wen; Baggerly, Keith A.; Tsavachidis, Spiridon; Krahe, Ralf

    2009-01-01

    Polypyrimidine tract-binding protein 1 (PTBP1) is a multi-functional RNA-binding protein that is aberrantly overexpressed in glioma. PTBP1 and its brain-specific homologue polypyrimidine tract-binding protein 2 (PTBP2) regulate neural precursor cell differentiation. However, the overlapping and non-overlapping target transcripts involved in this process are still unclear. To determine why PTBP1 and not PTBP2 would promote glial cell-derived tumours, both PTBP1 and PTBP2 were knocked down in the human glioma cell lines U251 and LN229 to determine the role of these proteins in cell proliferation, migration, and adhesion. Surprisingly, removal of both PTBP1 and PTBP2 slowed cell proliferation, with the double knockdown having no additive effects. Decreased expression of both proteins individually and in combination inhibited cell migration and increased adhesion of cells to fibronectin and vitronectin. A global survey of differential exon expression was performed following PTBP1 knockdown in U251 cells using the Affymetrix Exon Array to identify PTBP1-specific splicing targets that enhance gliomagenesis. In the PTBP1 knockdown, previously determined targets were unaltered in their splicing patterns. A single gene, RTN4 (Nogo) had significantly enhanced inclusion of exon 3 when PTBP1 was removed. Overexpression of the splice isoform containing exon 3 decreased cell proliferation to a similar degree as the removal of PTBP1. These results provide the first evidence that RNA-binding proteins affect the invasive and rapid growth characteristics of glioma cell lines. Its actions on proliferation appear to be mediated, in part, through alternative splicing of RTN4. PMID:19506066

  2. Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW

    PubMed Central

    Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer

    2015-01-01

    Summary The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein–protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1–WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome. PMID:26124874

  3. Bcl11b: A New Piece to the Complex Puzzle of Amyotrophic Lateral Sclerosis Neuropathogenesis?

    PubMed

    Lennon, Matthew J; Jones, Simon P; Lovelace, Michael D; Guillemin, Gilles J; Brew, Bruce J

    2016-02-01

    Amyotrophic lateral sclerosis (ALS) is an idiopathic, fatal, neurodegenerative disease of the human motor system. The pathogenesis of ALS is a topic of fascinating speculation and experimentation, with theories revolving around intracellular protein inclusions, mitochondrial structural issues, glutamate excitotoxicity and free radical formation. This review explores the rationale for the involvement of a novel protein, B-cell lymphoma/leukaemia 11b (Bcl11b) in ALS. Bcl11b is a multifunctional zinc finger protein transcription factor. It functions as both a transactivator and genetic suppressor, acting both directly, binding to promoter regions, and indirectly, binding to promoter-bound transcription factors. It has essential roles in the differentiation and growth of various cells in the central nervous system, immune system, integumentary system and cardiovascular system, to the extent that Bcl11b knockout mice are incompatible with extra-uterine life. It also has various roles in pathology including the suppression of latent retroviruses, thymic tumourigenesis and neurodegeneration. In particular its functions in neurodevelopment, viral latency and T-cell development suggest potential roles in ALS pathology.

  4. CD44 Promotes intoxication by the clostridial iota-family toxins.

    PubMed

    Wigelsworth, Darran J; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D; Carman, Robert J; Wilkins, Tracy D; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G; Popoff, Michel R; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44(+) melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins.

  5. CD44 Promotes Intoxication by the Clostridial Iota-Family Toxins

    PubMed Central

    Wigelsworth, Darran J.; Ruthel, Gordon; Schnell, Leonie; Herrlich, Peter; Blonder, Josip; Veenstra, Timothy D.; Carman, Robert J.; Wilkins, Tracy D.; Van Nhieu, Guy Tran; Pauillac, Serge; Gibert, Maryse; Sauvonnet, Nathalie; Stiles, Bradley G.; Popoff, Michel R.; Barth, Holger

    2012-01-01

    Various pathogenic clostridia produce binary protein toxins associated with enteric diseases of humans and animals. Separate binding/translocation (B) components bind to a protein receptor on the cell surface, assemble with enzymatic (A) component(s), and mediate endocytosis of the toxin complex. Ultimately there is translocation of A component(s) from acidified endosomes into the cytosol, leading to destruction of the actin cytoskeleton. Our results revealed that CD44, a multifunctional surface protein of mammalian cells, facilitates intoxication by the iota family of clostridial binary toxins. Specific antibody against CD44 inhibited cytotoxicity of the prototypical Clostridium perfringens iota toxin. Versus CD44+ melanoma cells, those lacking CD44 bound less toxin and were dose-dependently resistant to C. perfringens iota, as well as Clostridium difficile and Clostridium spiroforme iota-like, toxins. Purified CD44 specifically interacted in vitro with iota and iota-like, but not related Clostridium botulinum C2, toxins. Furthermore, CD44 knockout mice were resistant to iota toxin lethality. Collective data reveal an important role for CD44 during intoxication by a family of clostridial binary toxins. PMID:23236484

  6. Translocation Pathway-Dependent Assembly of Streptavidin- and Antibody-Binding Filamentous Virus-Like Particles.

    PubMed

    Kim, Eun Joong; Jeon, Chang Su; Hwang, Inseong; Chung, Taek Dong

    2017-02-01

    Compared to well-tolerated p3 fusion, the display of fast-folding proteins fused to the minor capsid p7 and the major capsid p8, as well as in vivo biotinylation of biotin acceptor peptide (AP) fused to p7, are found to be markedly inefficient using the filamentous phage. Here, to overcome such limitations, the effect of translocation pathways, amber mutation, and phage and phagemid display systems on p7 and p8 display of antibody-binding domains are examined, while comparing the level of in vivo biotinylation of AP fused to p7 or p3. Interestingly, the in vivo biotinylation of AP occurs only in p3 fusion and the fast-folding antibody-binding scaffolds fused to p7 and p8 are best displayed via a twin-arginine translocation pathway in TG1 cells. The lower the expression level of the wild-type p8 and the smaller the size of the guest protein, the better the display of Z-domain fused to the recombinant p8. The in vivo biotinylated multifunctional filamentous virus-like particles can be vertically immobilized on streptavidin (SAV)-coated microspheres to resemble cellular microvilli-like structures, which reportedly enhance protein-protein interactions due to dramatically expanded flexible surface area. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The Role of Ionic Interactions in the Adherence of the S. epidermidis Adhesin SdrF to Prosthetic Material

    PubMed Central

    Toba, Faustino A.; Visai, Livia; Trivedi, Sheetal; Lowy, Franklin D.

    2012-01-01

    Staphylococcus epidermidis infections are common complications of prosthetic device implantation. SdrF, a surface protein, appears to play a critical role in the initial colonization step by adhering to type I collagen and Dacron™. The role of ionic interactions in S. epidermidis adherence to prosthetic material was examined. SdrF was cloned and expressed in Lactococcus lactis. The effect of pH, cation concentration and detergents on adherence to different types of plastic surfaces was assessed by crystal violet staining and bacterial cell counting. SdrF, in contrast with controls and other S. epidermidis surface proteins, bound to hydrophobic materials such as polystyrene. Binding was an ionic interaction and was affected by surface charge of the plastic, pH and cation concentration. Adherence of the SdrF construct was increased to positively charged plastics and was reduced by increasing concentrations of Ca2+ and Na+. Binding was optimal at pH 7.4. Kinetic studies demonstrated that the SdrF B domain, as well as one of the B subdomains was sufficient to mediate binding. The SdrF construct also bound more avidly to Goretex™ than the lacotococcal control. SdrF is a multifunctional protein that contributes to prosthetic devices infections by ionic, as well as specific receptor-ligand interactions. PMID:23039791

  8. (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus.

    PubMed

    Aramini, James M; Hamilton, Keith; Ma, Li-Chung; Swapna, G V T; Leonard, Paul G; Ladbury, John E; Krug, Robert M; Montelione, Gaetano T

    2014-04-08

    Nonstructural protein 1 of influenza A virus (NS1A) is a conserved virulence factor comprised of an N-terminal double-stranded RNA (dsRNA)-binding domain and a multifunctional C-terminal effector domain (ED), each of which can independently form symmetric homodimers. Here we apply (19)F NMR to NS1A from influenza A/Udorn/307/1972 virus (H3N2) labeled with 5-fluorotryptophan, and we demonstrate that the (19)F signal of Trp187 is a sensitive, direct monitor of the ED helix:helix dimer interface. (19)F relaxation dispersion data reveal the presence of conformational dynamics within this functionally important protein:protein interface, whose rate is more than three orders of magnitude faster than the kinetics of ED dimerization. (19)F NMR also affords direct spectroscopic evidence that Trp187, which mediates intermolecular ED:ED interactions required for cooperative dsRNA binding, is solvent exposed in full-length NS1A at concentrations below aggregation. These results have important implications for the diverse roles of this NS1A epitope during influenza virus infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The eukaryotic translation initiation factor 3 subunit E binds to classical swine fever virus NS5A and facilitates viral replication.

    PubMed

    Liu, Xiaofeng; Wang, Xiaoyu; Wang, Qian; Luo, Mingyang; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-02-01

    Classical swine fever virus (CSFV) NS5A protein is a multifunctional protein, playing critical roles in viral RNA replication, translation and assembly. To further explore its functions in viral replication, interaction of NS5A with host factors was assayed using a his-tag "pull down" assay coupled with shotgun LC-MS/MS. Host protein translation initiation factor 3 subunit E was identified as a binding partner of NS5A, and confirmed by co-immunoprecipitation and co-localization analysis. Overexpression of eIF3E markedly enhanced CSFV genomic replication, viral protein expression and production of progeny virus, and downregulation of eIF3E by siRNA significantly decreased viral proliferation in PK-15 cells. Luciferase reporter assay showed an enhancement of translational activity of the internal ribosome entry site of CSFV by eIF3E and a decrease in cellular translation by NS5A. These data indicate that eIF3E plays an important role in CSFV replication, thereby identifying it as a potential target for inhibition of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Journey into Problem Solving: A Gift from Polya

    ERIC Educational Resources Information Center

    Lederman, Eric

    2009-01-01

    In "How to Solve It", accomplished mathematician and skilled communicator George Polya describes a four-step universal solving technique designed to help students develop mathematical problem-solving skills. By providing a glimpse at the grace with which experts solve problems, Polya provides definable methods that are not exclusive to…

  11. In vivo analysis of polyadenylation in prokaryotes.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2014-01-01

    Polyadenylation at the 3' ends of mRNAs, tRNAs, rRNAs, and sRNAs plays important roles in RNA metabolism in both prokaryotes and eukaryotes. However, the nature of poly(A) tails in prokaryotes is distinct compared to their eukaryotic counterparts. Specifically, depending on the organism, eukaryotic poly(A) tails average between 50 and >200 nt and can easily be isolated by several techniques involving oligo(dT)-dependent cDNA amplification. In contrast, the bulk of the poly(A) tails present on prokaryotic transcripts is relatively short (<10 nt) and is difficult to characterize using similar techniques. This chapter describes methods that can circumvent these problems. For example, we discuss how to isolate total RNA and characterize its overall polyadenylation status employing a poly(A) sizing assay. Furthermore, we describe a technique involving RNase H treatment of total RNA followed by northern analysis in order to distinguish length of poly(A) tails on various types of transcripts. Finally, we outline a useful procedure to clone the poly(A) tails of specific transcripts using 5'-3' end-ligated RNA, which is independent of oligo(dT)-dependent cDNA amplification. These approaches are particularly helpful in analyzing transcripts with either short or long poly(A) tails both in prokaryotes and eukaryotes.

  12. Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes

    PubMed Central

    Vogl, Thomas; Gharibyan, Anna L.; Morozova-Roche, Ludmilla A.

    2012-01-01

    S100A8 and S100A9 are EF-hand Ca2+ binding proteins belonging to the S100 family. They are abundant in cytosol of phagocytes and play critical roles in numerous cellular processes such as motility and danger signaling by interacting and modulating the activity of target proteins. S100A8 and S100A9 expression levels increased in many types of cancer, neurodegenerative disorders, inflammatory and autoimmune diseases and they are implicated in the numerous disease pathologies. The Ca2+ and Zn2+-binding properties of S100A8/A9 have a pivotal influence on their conformation and oligomerization state, including self-assembly into homo- and heterodimers, tetramers and larger oligomers. Here we review how the unique chemical and conformational properties of individual proteins and their structural plasticity at the quaternary level account for S100A8/A9 functional diversity. Additional functional diversification occurs via non-covalent assembly into oligomeric and fibrillar amyloid complexes discovered in the aging prostate and reproduced in vitro. This process is also regulated by Ca2+and Zn2+-binding and effectively competes with the formation of the native complexes. High intrinsic amyloid-forming capacity of S100A8/A9 proteins may lead to their amyloid depositions in numerous ailments characterized by their elevated expression patterns and have additional pathological significance requiring further thorough investigation. PMID:22489132

  13. Multifunctional Nutrient-Binding Proteins Adapt Human Symbiotic Bacteria for Glycan Competition in the Gut by Separately Promoting Enhanced Sensing and Catalysis

    PubMed Central

    Cameron, Elizabeth A.; Kwiatkowski, Kurt J.; Lee, Byung-Hoo; Hamaker, Bruce R.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT To compete for the dynamic stream of nutrients flowing into their ecosystem, colonic bacteria must respond rapidly to new resources and then catabolize them efficiently once they are detected. The Bacteroides thetaiotaomicron starch utilization system (Sus) is a model for nutrient acquisition by symbiotic gut bacteria, which harbor thousands of related Sus-like systems. Structural investigation of the four Sus outer membrane proteins (SusD, -E, -F, and -G) revealed that they contain a total of eight starch-binding sites that we demonstrated, using genetic and biochemical approaches, to play distinct roles in starch metabolism in vitro and in vivo in gnotobiotic mice. SusD, whose homologs are abundant in the human microbiome, is critical for the initial sensing of available starch, allowing sus transcriptional activation at much lower concentrations than without this function. In contrast, seven additional binding sites across SusE, -F, and -G are dispensable for sus activation. However, they optimize the rate of growth on starch in a manner dependent on the expression of the bacterial polysaccharide capsule, suggesting that they have evolved to offset the diffusion barrier created by this structure. These findings demonstrate how proteins with similar biochemical behavior can serve orthogonal functions during different stages of cellular adaptation to nutrients. Finally, we demonstrated in gnotobiotic mice fed a starch-rich diet that the Sus binding sites confer a competitive advantage to B. thetaiotaomicron in vivo in a manner that is dependent on other colonizing microbes. This study reveals how numerically dominant families of carbohydrate-binding proteins in the human microbiome fulfill separate and sometimes cooperative roles to optimize gut commensal bacteria for nutrient acquisition. PMID:25205092

  14. Novel TDP2-ubiquitin interactions and their importance for the repair of topoisomerase II-mediated DNA damage

    PubMed Central

    Rao, Timsi; Gao, Rui; Takada, Saeko; Al Abo, Muthana; Chen, Xiang; Walters, Kylie J.; Pommier, Yves; Aihara, Hideki

    2016-01-01

    Tyrosyl DNA phosphodiesterase 2 (TDP2) is a multifunctional protein implicated in DNA repair, signal transduction and transcriptional regulation. In its DNA repair role, TDP2 safeguards genome integrity by hydrolyzing 5′-tyrosyl DNA adducts formed by abortive topoisomerase II (Top2) cleavage complexes to allow error-free repair of DNA double-strand breaks, thereby conferring cellular resistance against Top2 poisons. TDP2 consists of a C-terminal catalytic domain responsible for its phosphodiesterase activity, and a functionally uncharacterized N-terminal region. Here, we demonstrate that this N-terminal region contains a ubiquitin (Ub)-associated (UBA) domain capable of binding multiple forms of Ub with distinct modes of interactions and preference for either K48- or K63-linked polyUbs over monoUb. The structure of TDP2 UBA bound to monoUb shows a canonical mode of UBA-Ub interaction. However, the absence of the highly conserved MGF motif and the presence of a fourth α-helix make TDP2 UBA distinct from other known UBAs. Mutations in the TDP2 UBA-Ub binding interface do not affect nuclear import of TDP2, but severely compromise its ability to repair Top2-mediated DNA damage, thus establishing the importance of the TDP2 UBA–Ub interaction in DNA repair. The differential binding to multiple Ub forms could be important for responding to DNA damage signals under different contexts or to support the multi-functionality of TDP2. PMID:27543075

  15. Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function.

    PubMed

    Lee, Jongbo; Kim, Minjong; Itoh, Taichi Q; Lim, Chunghun

    2018-06-05

    Ataxin-2 (ATXN2) is a eukaryotic RNA-binding protein that is conserved from yeast to human. Genetic expansion of a poly-glutamine tract in human ATXN2 has been implicated in several neurodegenerative diseases, likely acting through gain-of-function effects. Emerging evidence, however, suggests that ATXN2 plays more direct roles in neural function via specific molecular and cellular pathways. ATXN2 and its associated protein complex control distinct steps in posttranscriptional gene expression, including poly-A tailing, RNA stabilization, microRNA-dependent gene silencing, and translational activation. Specific RNA substrates have been identified for the functions of ATXN2 in aspects of neural physiology, such as circadian rhythms and olfactory habituation. Genetic models of ATXN2 loss-of-function have further revealed its significance in stress-induced cytoplasmic granules, mechanistic target of rapamycin signaling, and cellular metabolism, all of which are crucial for neural homeostasis. Accordingly, we propose that molecular evolution has been selecting the ATXN2 protein complex as an important trans-acting module for the posttranscriptional control of diverse neural functions. This explains how ATXN2 intimately interacts with various neurodegenerative disease genes, and suggests that loss-of-function effects of ATXN2 could be therapeutic targets for ATXN2-related neurological disorders. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications. © 2018 Wiley Periodicals, Inc.

  16. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress

    PubMed Central

    Topolska-Woś, Agnieszka M.; Shell, Steven M.; Kilańczyk, Ewa; Szczepanowski, Roman H.; Chazin, Walter J.; Filipek, Anna

    2015-01-01

    CacyBP/SIP [calcyclin-binding protein/Siah-1 [seven in absentia homolog 1 (Siah E3 ubiquitin protein ligase 1)] interacting protein] is a multifunctional protein whose activity includes acting as an ERK1/2 phosphatase. We analyzed dimerization of mouse CacyBP/SIP in vitro and in mouse neuroblastoma cell line (NB2a) cells, as well as the structure of a full-length protein. Moreover, we searched for the CacyBP/SIP domain important for dimerization and dephosphorylation of ERK2, and we analyzed the role of dimerization in ERK1/2 signaling in NB2a cells. Cell-based assays showed that CacyBP/SIP forms a homodimer in NB2a cell lysate, and biophysical methods demonstrated that CacyBP/SIP forms a stable dimer in vitro. Data obtained using small-angle X-ray scattering supported a model in which CacyBP/SIP occupies an anti-parallel orientation mediated by the N-terminal dimerization domain. Site-directed mutagenesis established that the N-terminal domain is indispensable for full phosphatase activity of CacyBP/SIP. We also demonstrated that the oligomerization state of CacyBP/SIP as well as the level of post-translational modifications and subcellular distribution of CacyBP/SIP change after activation of the ERK1/2 pathway in NB2a cells due to oxidative stress. Together, our results suggest that dimerization is important for controlling phosphatase activity of CacyBP/SIP and for regulating the ERK1/2 signaling pathway.—Topolska-Woś, A. M., Shell, S. M., Kilańczyk, E., Szczepanowski, R. H., Chazin, W. J., Filipek, A. Dimerization and phosphatase activity of calcyclin-binding protein/Siah-1 interacting protein: the influence of oxidative stress. PMID:25609429

  17. E2F mediates enhanced alternative polyadenylation in proliferation

    PubMed Central

    2012-01-01

    Background The majority of mammalian genes contain multiple poly(A) sites in their 3' UTRs. Alternative cleavage and polyadenylation are emerging as an important layer of gene regulation as they generate transcript isoforms that differ in their 3' UTRs, thereby modulating genes' response to 3' UTR-mediated regulation. Enhanced cleavage at 3' UTR proximal poly(A) sites resulting in global 3' UTR shortening was recently linked to proliferation and cancer. However, mechanisms that regulate this enhanced alternative polyadenylation are unknown. Results Here, we explored, on a transcriptome-wide scale, alternative polyadenylation events associated with cellular proliferation and neoplastic transformation. We applied a deep-sequencing technique for identification and quantification of poly(A) sites to two human cellular models, each examined under proliferative, arrested and transformed states. In both cell systems we observed global 3' UTR shortening associated with proliferation, a link that was markedly stronger than the association with transformation. Furthermore, we found that proliferation is also associated with enhanced cleavage at intronic poly(A) sites. Last, we found that the expression level of the set of genes that encode for 3'-end processing proteins is globally elevated in proliferation, and that E2F transcription factors contribute to this regulation. Conclusions Our results comprehensively identify alternative polyadenylation events associated with cellular proliferation and transformation, and demonstrate that the enhanced alternative polyadenylation in proliferative conditions results not only in global 3' UTR shortening but also in enhanced premature cleavage in introns. Our results also indicate that E2F-mediated co-transcriptional regulation of 3'-end processing genes is one of the mechanisms that links enhanced alternative polyadenylation to proliferation. PMID:22747694

  18. Articles including thin film monolayers and multilayers

    DOEpatents

    Li, DeQuan; Swanson, Basil I.

    1995-01-01

    Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.

  19. Replacement of the yeast TRP4 3' untranslated region by a hammerhead ribozyme results in a stable and efficiently exported mRNA that lacks a poly(A) tail.

    PubMed Central

    Düvel, Katrin; Valerius, Oliver; Mangus, David A; Jacobson, Allan; Braus, Gerhard H

    2002-01-01

    The mRNA poly(A) tail serves different purposes, including the facilitation of nuclear export, mRNA stabilization, efficient translation, and, finally, specific degradation. The posttranscriptional addition of a poly(A) tail depends on sequence motifs in the 3' untranslated region (3' UTR) of the mRNA and a complex trans-acting protein machinery. In this study, we have replaced the 3' UTR of the yeast TRP4 gene with sequences encoding a hammerhead ribozyme that efficiently cleaves itself in vivo. Expression of the TRP4-ribozyme allele resulted in the accumulation of a nonpolyadenylated mRNA. Cells expressing the TRP4-ribozyme mRNA showed a reduced growth rate due to a reduction in Trp4p enzyme activity. The reduction in enzyme activity was not caused by inefficient mRNA export from the nucleus or mRNA destabilization. Rather, analyses of mRNA association with polyribosomes indicate that translation of the ribozyme-containing mRNA is impaired. This translational defect allows sufficient synthesis of Trp4p to support growth of trp4 cells, but is, nevertheless, of such magnitude as to activate the general control network of amino acid biosynthesis. PMID:12003493

  20. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  1. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Hwa; Ha, Ji-Hyang; Kim, Yul

    Highlights: {yields} Identification of a conserved BH3 motif in C-terminal coiled coil region of nCLU. {yields} The nCLU BH3 domain binds to BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. {yields} A conserved binding mechanism of nCLU BH3 and the other pro-apoptotic BH3 peptides with Bcl-X{sub L}. {yields} The absolutely conserved Leu323 and Asp328 of nCLU BH3 domain are critical for binding to Bcl-X{sub L.} {yields} Molecular understanding of the pro-apoptotic function of nCLU as a novel BH3-only protein. -- Abstract: Clusterin (CLU) is a multifunctional glycoprotein that is overexpressed in prostate and breast cancers. Although CLU is knownmore » to be involved in the regulation of apoptosis and cell survival, the precise molecular mechanism underlying the pro-apoptotic function of nuclear CLU (nCLU) remains unclear. In this study, we identified a conserved BH3 motif in C-terminal coiled coil (CC2) region of nCLU by sequence analysis and characterized the molecular interaction of the putative nCLU BH3 domain with anti-apoptotic Bcl-2 family proteins by nuclear magnetic resonance (NMR) spectroscopy. The chemical shift perturbation data demonstrated that the nCLU BH3 domain binds to pro-apoptotic BH3 peptide-binding grooves in both Bcl-X{sub L} and Bcl-2. A structural model of the Bcl-X{sub L}/nCLU BH3 peptide complex reveals that the binding mode is remarkably similar to those of other Bcl-X{sub L}/BH3 peptide complexes. In addition, mutational analysis confirmed that Leu323 and Asp328 of nCLU BH3 domain, absolutely conserved in the BH3 motifs of BH3-only protein family, are critical for binding to Bcl-X{sub L}. Taken altogether, our results suggest a molecular basis for the pro-apoptotic function of nCLU by elucidating the residue specific interactions of the BH3 motif in nCLU with anti-apoptotic Bcl-2 family proteins.« less

  2. Disorder in Milk Proteins: α-Lactalbumin. Part B. A Multifunctional Whey Protein Acting as an Oligomeric Molten Globular "Oil Container" in the Anti-Tumorigenic Drugs, Liprotides.

    PubMed

    Uversky, Vladimir N; Permyakov, Serge E; Breydo, Leonid; Redwan, Elrashdy M; Almehdar, Hussein A; Permyakov, Eugene A

    2016-07-15

    This is a second part of the three-part article from a series of reviews on the abundance and roles of intrinsic disorder in milk proteins. We continue to describe α-lactalbumin, a small globular Ca2+-binding protein, which besides being one of the two components of lactose synthase that catalyzes the final step of the lactose biosynthesis in the lactating mammary gland, possesses a multitude of other functions. In fact, recent studies indicated that some partially folded forms of this protein possess noticeable bactericidal activity and other forms might be related to induction of the apoptosis of tumor cells. In its anti-tumorigenic function, oligomeric α-lactalbumin serves as a founding member of a new family of anticancer drugs termed liprotides (for lipids and partially denatured proteins), where an oligomeric molten globular protein acts as an "oil container" or cargo for the delivery of oleic acid to the cell membranes.

  3. The poly(A) tail length of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of milk.

    PubMed Central

    Kuraishi, T; Sun, Y; Aoki, F; Imakawa, K; Sakai, S

    2000-01-01

    The length of casein mRNA from the lactating mouse mammary gland, as assessed on Northern blots, is shorter after weaning, but is elongated following the removal of milk. In order to investigate this phenomenon, the molecular structures of beta- and gamma-casein mRNAs were analysed. The coding and non-coding regions of the two forms were the same length, but the long form of casein mRNA had a longer poly(A) tail than the short form (P<0.05). In order to examine the stability of casein mRNA under identical conditions, casein mRNAs with the long and short poly(A) tails were incubated in the rabbit reticulocyte lysate (RRL) cell-free translation system. Casein mRNA with the long poly(A) tail had a longer half-life than that with the short tail (P<0.05). The beta- and gamma-casein mRNAs were first degraded into 0.92 and 0.81 kb fragments respectively. With undegraded mRNA, the poly(A) tail shortening by exoribonuclease was not observed until the end of the incubation. Northern blot analysis showed that casein mRNA with the long poly(A) tail was protected efficiently from endoribonucleases. We conclude that the length of the poly(A) tail of casein mRNA in the lactating mammary gland changes depending upon the accumulation and removal of the gland's milk, and we show that the longer poly(A) tail potentially protects the mRNA from degradation by endoribonucleases. PMID:10749689

  4. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer

    PubMed Central

    2012-01-01

    Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors. PMID:22682314

  5. VAAPA: a web platform for visualization and analysis of alternative polyadenylation.

    PubMed

    Guan, Jinting; Fu, Jingyi; Wu, Mingcheng; Chen, Longteng; Ji, Guoli; Quinn Li, Qingshun; Wu, Xiaohui

    2015-02-01

    Polyadenylation [poly(A)] is an essential process during the maturation of most mRNAs in eukaryotes. Alternative polyadenylation (APA) as an important layer of gene expression regulation has been increasingly recognized in various species. Here, a web platform for visualization and analysis of alternative polyadenylation (VAAPA) was developed. This platform can visualize the distribution of poly(A) sites and poly(A) clusters of a gene or a section of a chromosome. It can also highlight genes with switched APA sites among different conditions. VAAPA is an easy-to-use web-based tool that provides functions of poly(A) site query, data uploading, downloading, and APA sites visualization. It was designed in a multi-tier architecture and developed based on Smart GWT (Google Web Toolkit) using Java as the development language. VAAPA will be a valuable addition to the community for the comprehensive study of APA, not only by making the high quality poly(A) site data more accessible, but also by providing users with numerous valuable functions for poly(A) site analysis and visualization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai.

    PubMed

    Nam, Bo-Hye; Moon, Ji Young; Park, Eun Hee; Kong, Hee Jeong; Kim, Young-Ok; Kim, Dong-Gyun; Kim, Woo-Jin; An, Chul Min; Seo, Jung-Kil

    2016-12-14

    Antimicrobial peptides are a pivotal component of the invertebrate innate immune system. In this study, we identified a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) gene from the pacific abalone Haliotis discus hannai (HDH), which is involved in the pattern recognition mechanism and plays avital role in the defense mechanism of invertebrates immune system. The HDH-LGBP cDNA consisted of a 1263-bp open reading frame (ORF) encoding a polypeptide of 420 amino acids, with a 20-amino-acid signal sequence. The molecular mass of the protein portion was 45.5 kDa, and the predicted isoelectric point of the mature protein was 4.93. Characteristic potential polysaccharide binding motif, glucanase motif, and β-glucan recognition motif were identified in the LGBP of HDH. We used its polysaccharide-binding motif sequence to design two novel antimicrobial peptide analogs (HDH-LGBP-A1 and HDH-LGBP-A2). By substituting a positively charged amino acid and amidation at the C -terminus, the pI and net charge of the HDH-LGBP increased, and the proteins formed an α-helical structure. The HDH-LGBP analogs exhibited antibacterial and antifungal activity, with minimal effective concentrations ranging from 0.008 to 2.2 μg/mL. Additionally, both were toxic against human cervix (HeLa), lung (A549), and colon (HCT 116) carcinoma cell lines but not much on human umbilical vein cell (HUVEC). Fluorescence-activated cell sorter (FACS) analysis showed that HDH-LGBP analogs disturb the cancer cell membrane and cause apoptotic cell death. These results suggest the use of HDH-LGBP analogs as multifunctional drugs.

  7. Antimicrobial and Antitumor Activities of Novel Peptides Derived from the Lipopolysaccharide- and β-1,3-Glucan Binding Protein of the Pacific Abalone Haliotis discus hannai

    PubMed Central

    Nam, Bo-Hye; Moon, Ji Young; Park, Eun Hee; Kong, Hee Jeong; Kim, Young-Ok; Kim, Dong-Gyun; Kim, Woo-Jin; An, Chul Min; Seo, Jung-Kil

    2016-01-01

    Antimicrobial peptides are a pivotal component of the invertebrate innate immune system. In this study, we identified a lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) gene from the pacific abalone Haliotis discus hannai (HDH), which is involved in the pattern recognition mechanism and plays avital role in the defense mechanism of invertebrates immune system. The HDH-LGBP cDNA consisted of a 1263-bp open reading frame (ORF) encoding a polypeptide of 420 amino acids, with a 20-amino-acid signal sequence. The molecular mass of the protein portion was 45.5 kDa, and the predicted isoelectric point of the mature protein was 4.93. Characteristic potential polysaccharide binding motif, glucanase motif, and β-glucan recognition motif were identified in the LGBP of HDH. We used its polysaccharide-binding motif sequence to design two novel antimicrobial peptide analogs (HDH-LGBP-A1 and HDH-LGBP-A2). By substituting a positively charged amino acid and amidation at the C-terminus, the pI and net charge of the HDH-LGBP increased, and the proteins formed an α-helical structure. The HDH-LGBP analogs exhibited antibacterial and antifungal activity, with minimal effective concentrations ranging from 0.008 to 2.2 μg/mL. Additionally, both were toxic against human cervix (HeLa), lung (A549), and colon (HCT 116) carcinoma cell lines but not much on human umbilical vein cell (HUVEC). Fluorescence-activated cell sorter (FACS) analysis showed that HDH-LGBP analogs disturb the cancer cell membrane and cause apoptotic cell death. These results suggest the use of HDH-LGBP analogs as multifunctional drugs. PMID:27983632

  8. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins

    PubMed Central

    Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng

    2017-01-01

    Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut. PMID:28281568

  9. The Adhesion of Lactobacillus salivarius REN to a Human Intestinal Epithelial Cell Line Requires S-layer Proteins.

    PubMed

    Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng

    2017-03-10

    Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut.

  10. In vitro labeling strategies for in cellulo fluorescence microscopy of single ribonucleoprotein machines.

    PubMed

    Custer, Thomas C; Walter, Nils G

    2017-07-01

    RNA plays a fundamental, ubiquitous role as either substrate or functional component of many large cellular complexes-"molecular machines"-used to maintain and control the readout of genetic information, a functional landscape that we are only beginning to understand. The cellular mechanisms for the spatiotemporal organization of the plethora of RNAs involved in gene expression are particularly poorly understood. Intracellular single-molecule fluorescence microscopy provides a powerful emerging tool for probing the pertinent mechanistic parameters that govern cellular RNA functions, including those of protein coding messenger RNAs (mRNAs). Progress has been hampered, however, by the scarcity of efficient high-yield methods to fluorescently label RNA molecules without the need to drastically increase their molecular weight through artificial appendages that may result in altered behavior. Herein, we employ T7 RNA polymerase to body label an RNA with a cyanine dye, as well as yeast poly(A) polymerase to strategically place multiple 2'-azido-modifications for subsequent fluorophore labeling either between the body and tail or randomly throughout the tail. Using a combination of biochemical and single-molecule fluorescence microscopy approaches, we demonstrate that both yeast poly(A) polymerase labeling strategies result in fully functional mRNA, whereas protein coding is severely diminished in the case of body labeling. © 2016 The Protein Society.

  11. The nucleoid protein Dps binds genomic DNA of Escherichia coli in a non-random manner

    PubMed Central

    Kondrashov, F. A.; Toshchakov, S. V.; Dominova, I.; Shvyreva, U. S.; Vrublevskaya, V. V.; Morenkov, O. S.; Panyukov, V. V.

    2017-01-01

    Dps is a multifunctional homododecameric protein that oxidizes Fe2+ ions accumulating them in the form of Fe2O3 within its protein cavity, interacts with DNA tightly condensing bacterial nucleoid upon starvation and performs some other functions. During the last two decades from discovery of this protein, its ferroxidase activity became rather well studied, but the mechanism of Dps interaction with DNA still remains enigmatic. The crucial role of lysine residues in the unstructured N-terminal tails led to the conventional point of view that Dps binds DNA without sequence or structural specificity. However, deletion of dps changed the profile of proteins in starved cells, SELEX screen revealed genomic regions preferentially bound in vitro and certain affinity of Dps for artificial branched molecules was detected by atomic force microscopy. Here we report a non-random distribution of Dps binding sites across the bacterial chromosome in exponentially growing cells and show their enrichment with inverted repeats prone to form secondary structures. We found that the Dps-bound regions overlap with sites occupied by other nucleoid proteins, and contain overrepresented motifs typical for their consensus sequences. Of the two types of genomic domains with extensive protein occupancy, which can be highly expressed or transcriptionally silent only those that are enriched with RNA polymerase molecules were preferentially occupied by Dps. In the dps-null mutant we, therefore, observed a differentially altered expression of several targeted genes and found suppressed transcription from the dps promoter. In most cases this can be explained by the relieved interference with Dps for nucleoid proteins exploiting sequence-specific modes of DNA binding. Thus, protecting bacterial cells from different stresses during exponential growth, Dps can modulate transcriptional integrity of the bacterial chromosome hampering RNA biosynthesis from some genes via competition with RNA polymerase or, vice versa, competing with inhibitors to activate transcription. PMID:28800583

  12. [Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes of the insect Tenebrio molitor].

    PubMed

    Bogoliubov, D S; Kiselev, A M; Shabel'nikov, S V; Parfenov, V N

    2012-01-01

    The nucleus ofvitellogenic oocytes of the yellow mealworm, Tenebrio molitor, contains a karyosphere that consists of the condensed chromatin embedded in an extrachromosomal fibrogranular material. Numerous nuclear bodies located freely in the nucleoplasm are also observed. Amongst these bodies, counterparts of nuclear speckles (= interchromatin granule clusters, IGCs) can be identified by the presence of the marker protein SC35. Microinjections of fluorescently tagged methyloligoribonucleotide probes 2'-O-Me(U)22, complementary to poly(A) tails of RNAs, revealed poly(A)+ RNA in the vast majority of IGCs. We found that all T. molitor oocyte IGCs contain heterogeneous ribonucleoprotein (hnRNP) core protein Al that localizes to IGCs in an RNA-dependent manner. The extrachromosomal material of the karyosphere and a part of nucleoplasmic IGCs also contain the adapter protein Aly that is known to provide a link between pre-mRNA splicing and mRNA export. The essential mRNA export factor/receptor NXF1 was observed to colocalize with Aly. In nucleoplasmic IGCs, NXF1 was found to localize in an RNA-dependent manner whereas it is RNA-independently located in the extrachromosomal material of the karyosphere. We believe our data suggest on a role of the nucleoplasmic IGCs in mRNA biogenesis and retention in a road to nuclear export.

  13. Multifunctional centromere binding factor 1 is essential for chromosome segregation in the human pathogenic yeast Candida glabrata.

    PubMed

    Stoyan, T; Gloeckner, G; Diekmann, S; Carbon, J

    2001-08-01

    The CBF1 (centromere binding factor 1) gene of Candida glabrata was cloned by functional complementation of the methionine biosynthesis defect of a Saccharomyces cerevisiae cbf1 deletion mutant. The C. glabrata-coded protein, CgCbf1, contains a basic-helix-loop-helix leucine zipper domain and has features similar to those of other budding yeast Cbf1 proteins. CgCbf1p binds in vitro to the centromere DNA element I (CDEI) sequence GTCACATG with high affinity (0.9 x 10(9) M(-1)). Bandshift experiments revealed a pattern of protein-DNA complexes on CgCEN DNA different from that known for S. cerevisiae. We examined the effect of altering the CDEI binding site on CEN plasmid segregation, using a newly developed colony-sectoring assay. Internal deletion of the CDEI binding site led only to a fivefold increase in rates of plasmid loss, indicating that direct binding of Cbf1p to the centromere DNA is not required for full function. Additional deletion of sequences to the left of CDEI, however, led to a 70-fold increase in plasmid loss rates. Deletion of the CBF1 gene proved to be lethal in C. glabrata. C. glabrata cells containing the CBF1 gene under the influence of a shutdown promoter (tetO-ScHOP) arrested their growth after 5 h of cultivation in the presence of the reactive drug doxycycline. DAPI (4',6'-diamidino-2-phenylindole) staining of the arrested cells revealed a significant increase in the number of large-budded cells with single nuclei, 2C DNA content, and short spindles, indicating a defect in the G(2)/M transition of the cell cycle. Thus, we conclude that Cbf1p is required for chromosome segregation in C. glabrata.

  14. Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin Mac-1.

    PubMed

    Shen, Di; Podolnikova, Nataly P; Yakubenko, Valentin P; Ardell, Christopher L; Balabiyev, Arnat; Ugarova, Tatiana P; Wang, Xu

    2017-11-17

    Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appears to cooperate with cell-surface proteoglycans because both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the α M I domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN the α M I domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the α M I domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prochazkova, Katerina; Shuvalova, Ludmilla A.; Minasov, George

    2009-10-05

    The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP{sub 6}). In this study, we demonstrated that InsP{sub 6} is not simply an allosteric cofactor, but rather binding of InsP{sub 6} stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-{angstrom} crystal structure of thismore » InsP{sub 6}-bound unprocessed form of CPD was determined and revealed the scissile bond Leu{sup 3428}-Ala{sup 3429} captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP{sub 6}, but was reactivated for high affinity binding of InsP{sub 6} by cooperative binding of both a new substrate and InsP{sub 6}. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.« less

  16. In Silico Prediction and In Vitro Characterization of Multifunctional Human RNase3

    PubMed Central

    Kuo, Ping-Hsueh; Chen, Chien-Jung; Chang, Hsiu-Hui; Fang, Shun-lung; Wu, Wei-Shuo; Lai, Yiu-Kay; Pai, Tun-Wen; Chang, Margaret Dah-Tsyr

    2013-01-01

    Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities. In this study, three putative multifunctional regions, 34RWRCK38 (HBR1), 75RSRFR79 (HBR2), and 101RPGRR105 (HBR3), of hRNase3 have been identified employing in silico sequence analysis and validated employing in vitro activity assays. A heparin binding peptide containing HBR1 is characterized to act as a key element associated with HS binding, cellular binding, and lipid binding activities. In this study, we provide novel insights to identify functional regions of hRNase3 that may have implications for all hRNaseA superfamily members. PMID:23484086

  17. Elaborately designed diblock nanoprobes for simultaneous multicolor detection of microRNAs

    NASA Astrophysics Data System (ADS)

    Wang, Chenguang; Zhang, Huan; Zeng, Dongdong; Sun, Wenliang; Zhang, Honglu; Aldalbahi, Ali; Wang, Yunsheng; San, Lili; Fan, Chunhai; Zuo, Xiaolei; Mi, Xianqiang

    2015-09-01

    Simultaneous detection of multiple biomarkers has important prospects in the biomedical field. In this work, we demonstrated a novel strategy for the detection of multiple microRNAs (miRNAs) based on gold nanoparticles (Au NPs) and polyadenine (polyA) mediated nanoscale molecular beacon (MB) probes (denoted p-nanoMBs). Novel fluorescent labeled p-nanoMBs bearing consecutive adenines were designed, of which polyA served as an effective anchoring block binding to the surface of Au NPs, and the appended hairpin block formed an upright conformation that favored the hybridization with targets. Using the co-assembling method and the improved hybridization conformation of the hairpin probes, we achieved high selectivity for specifically distinguishing DNA targets from single-base mismatched DNA targets. We also realized multicolor detection of three different synthetic miRNAs in a wide dynamic range from 0.01 nM to 200 nM with a detection limit of 10 pM. What's more, we even detected miRNAs in a simulated serum environment, which indicated that our method could be used in complex media. Compared with the traditional method, our strategy provides a promising alternative method for the qualitative and quantitative detection of miRNAs.Simultaneous detection of multiple biomarkers has important prospects in the biomedical field. In this work, we demonstrated a novel strategy for the detection of multiple microRNAs (miRNAs) based on gold nanoparticles (Au NPs) and polyadenine (polyA) mediated nanoscale molecular beacon (MB) probes (denoted p-nanoMBs). Novel fluorescent labeled p-nanoMBs bearing consecutive adenines were designed, of which polyA served as an effective anchoring block binding to the surface of Au NPs, and the appended hairpin block formed an upright conformation that favored the hybridization with targets. Using the co-assembling method and the improved hybridization conformation of the hairpin probes, we achieved high selectivity for specifically distinguishing DNA targets from single-base mismatched DNA targets. We also realized multicolor detection of three different synthetic miRNAs in a wide dynamic range from 0.01 nM to 200 nM with a detection limit of 10 pM. What's more, we even detected miRNAs in a simulated serum environment, which indicated that our method could be used in complex media. Compared with the traditional method, our strategy provides a promising alternative method for the qualitative and quantitative detection of miRNAs. Electronic supplementary information (ESI) available: Sequences for oligonucleotides used for this work, dynamic light scattering (DLS) measurements, fluorescent signal intensity with different ratios between p-MBs and A5 oligonucleotides, quantification of the fluorescent p-MB, and UV-Vis spectra for naked AuNPs and the p-nanoMB. See DOI: 10.1039/c5nr04618a

  18. Poly(A)-tag deep sequencing data processing to extract poly(A) sites.

    PubMed

    Wu, Xiaohui; Ji, Guoli; Li, Qingshun Quinn

    2015-01-01

    Polyadenylation [poly(A)] is an essential posttranscriptional processing step in the maturation of eukaryotic mRNA. The advent of next-generation sequencing (NGS) technology has offered feasible means to generate large-scale data and new opportunities for intensive study of polyadenylation, particularly deep sequencing of the transcriptome targeting the junction of 3'-UTR and the poly(A) tail of the transcript. To take advantage of this unprecedented amount of data, we present an automated workflow to identify polyadenylation sites by integrating NGS data cleaning, processing, mapping, normalizing, and clustering. In this pipeline, a series of Perl scripts are seamlessly integrated to iteratively map the single- or paired-end sequences to the reference genome. After mapping, the poly(A) tags (PATs) at the same genome coordinate are grouped into one cleavage site, and the internal priming artifacts removed. Then the ambiguous region is introduced to parse the genome annotation for cleavage site clustering. Finally, cleavage sites within a close range of 24 nucleotides and from different samples can be clustered into poly(A) clusters. This procedure could be used to identify thousands of reliable poly(A) clusters from millions of NGS sequences in different tissues or treatments.

  19. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    NASA Technical Reports Server (NTRS)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  20. Rapid endocytosis of the low density lipoprotein receptor-related protein modulates cell surface distribution and processing of the beta-amyloid precursor protein.

    PubMed

    Cam, Judy A; Zerbinatti, Celina V; Li, Yonghe; Bu, Guojun

    2005-04-15

    The low density lipoprotein receptor-related protein (LRP) is a approximately 600-kDa multifunctional endocytic receptor that is highly expressed in the brain. LRP and its ligands apolipoprotein E, alpha2-macroglobulin, and beta-amyloid precursor protein (APP), are genetically linked to Alzheimer disease and are found in characteristic plaque deposits in brains of patients with Alzheimer disease. To identify which extracellular domains of LRP interact with APP, we used minireceptors of each of the individual LRP ligand binding domains and assessed their ability to bind and degrade a soluble APP fragment. LRP minireceptors containing ligand binding domains II and IV, but not I or III, interacted with APP. To test whether APP trafficking is directly related to the rapid endocytosis of LRP, we generated stable Chinese hamster ovary cell lines expressing either a wild-type LRP minireceptor or its endocytosis mutants. Chinese hamster ovary cells stably expressing wild-type LRP minireceptor had less cell surface APP than pcDNA3 vector-transfected cells, whereas those stably expressing endocytosis-defective LRP minireceptors accumulated APP at the cell surface. We also found that the steady-state levels of the amyloid beta-peptides (Abeta) is dictated by the relative expression levels of APP and LRP, probably reflecting the dual roles of LRP in both Abeta production and clearance. Together, these data establish a relationship between LRP rapid endocytosis and APP trafficking and proteolytic processing to generate Abeta.

  1. Cleavage of Poly(A)-Binding Protein by Enterovirus Proteases Concurrent with Inhibition of Translation In Vitro

    PubMed Central

    Joachims, Michelle; Van Breugel, Pieter C.; Lloyd, Richard E.

    1999-01-01

    Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3′ end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5′-end–3′-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in higher eukaryotes. PMID:9847378

  2. Plasmodium falciparum spliceosomal RNAs: 3' and 5' end processing.

    PubMed

    Eliana, Calvo; Javier, Escobar; Moisés, Wasserman

    2011-02-01

    The major spliceosomal small nuclear ribonucleoproteins (snRNPs) consist of snRNA (U1, U2, U4 or U5) and several proteins which can be unique or common to each snRNP particle. The common proteins are known as Sm proteins; they are crucial for RNP assembly and nuclear import of spliceosomal RNPs. This paper reports detecting the interaction between Plasmodium falciparum snRNAs and Sm proteins, and the usual 5' trimethylated caps on the snRNAs, by immunoprecipitation with specific antibodies. Furthermore, an unusual poly(A) tail was detected on these non-coding RNAs. 2010 Elsevier B.V. All rights reserved.

  3. Direct Interaction between Scaffolding Proteins RACK1 and 14-3-3ζ Regulates Brain-derived Neurotrophic Factor (BDNF) Transcription*

    PubMed Central

    Neasta, Jérémie; Kiely, Patrick A.; He, Dao-Yao; Adams, David R.; O'Connor, Rosemary; Ron, Dorit

    2012-01-01

    RACK1 is a scaffolding protein that spatially and temporally regulates numerous signaling cascades. We previously found that activation of the cAMP signaling pathway induces the translocation of RACK1 to the nucleus. We further showed that nuclear RACK1 is required to promote the transcription of the brain-derived neurotrophic factor (BDNF). Here, we set out to elucidate the mechanism underlying cAMP-dependent RACK1 nuclear translocation and BDNF transcription. We identified the scaffolding protein 14-3-3ζ as a direct binding partner of RACK1. Moreover, we found that 14-3-3ζ was necessary for the cAMP-dependent translocation of RACK1 to the nucleus. We further observed that the disruption of RACK1/14-3-3ζ interaction with a peptide derived from the RACK1/14-3-3ζ binding site or shRNA-mediated 14-3-3ζ knockdown inhibited cAMP induction of BDNF transcription. Together, these data reveal that the function of nuclear RACK1 is mediated through its interaction with 14-3-3ζ. As RACK1 and 14-3-3ζ are two multifunctional scaffolding proteins that coordinate a wide variety of signaling events, their interaction is likely to regulate other essential cellular functions. PMID:22069327

  4. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  5. Distinct regulation of alternative polyadenylation and gene expression by nuclear poly(A) polymerases

    PubMed Central

    Li, Wencheng; Laishram, Rakesh S.; Hoque, Mainul; Ji, Zhe

    2017-01-01

    Abstract Polyadenylation of nascent RNA by poly(A) polymerase (PAP) is important for 3′ end maturation of almost all eukaryotic mRNAs. Most mammalian genes harbor multiple polyadenylation sites (PASs), leading to expression of alternative polyadenylation (APA) isoforms with distinct functions. How poly(A) polymerases may regulate PAS usage and hence gene expression is poorly understood. Here, we show that the nuclear canonical (PAPα and PAPγ) and non-canonical (Star-PAP) PAPs play diverse roles in PAS selection and gene expression. Deficiencies in the PAPs resulted in perturbations of gene expression, with Star-PAP impacting lowly expressed mRNAs and long-noncoding RNAs to the greatest extent. Importantly, different PASs of a gene are distinctly regulated by different PAPs, leading to widespread relative expression changes of APA isoforms. The location and surrounding sequence motifs of a PAS appear to differentiate its regulation by the PAPs. We show Star-PAP-specific PAS usage regulates the expression of the eukaryotic translation initiation factor EIF4A1, the tumor suppressor gene PTEN and the long non-coding RNA NEAT1. The Star-PAP-mediated APA of PTEN is essential for DNA damage-induced increase of PTEN protein levels. Together, our results reveal a PAS-guided and PAP-mediated paradigm for gene expression in response to cellular signaling cues. PMID:28911096

  6. Does CTCF mediate between nuclear organization and gene expression?

    PubMed

    Ohlsson, Rolf; Lobanenkov, Victor; Klenova, Elena

    2010-01-01

    The multifunctional zinc-finger protein CCCTC-binding factor (CTCF) is a very strong candidate for the role of coordinating the expression level of coding sequences with their three-dimensional position in the nucleus, apparently responding to a "code" in the DNA itself. Dynamic interactions between chromatin fibers in the context of nuclear architecture have been implicated in various aspects of genome functions. However, the molecular basis of these interactions still remains elusive and is a subject of intense debate. Here we discuss the nature of CTCF-DNA interactions, the CTCF-binding specificity to its binding sites and the relationship between CTCF and chromatin, and we examine data linking CTCF with gene regulation in the three-dimensional nuclear space. We discuss why these features render CTCF a very strong candidate for the role and propose a unifying model, the "CTCF code," explaining the mechanistic basis of how the information encrypted in DNA may be interpreted by CTCF into diverse nuclear functions.

  7. Analysis of the function of Spire in actin assembly and its synergy with formin and profilin.

    PubMed

    Bosch, Montserrat; Le, Kim Ho Diep; Bugyi, Beata; Correia, John J; Renault, Louis; Carlier, Marie-France

    2007-11-30

    The Spire protein, together with the formin Cappuccino and profilin, plays an important role in actin-based processes that establish oocyte polarity. Spire contains a cluster of four actin-binding WH2 domains. It has been shown to nucleate actin filaments and was proposed to remain bound to their pointed ends. Here we show that the multifunctional character of the WH2 domains allows Spire to sequester four G-actin subunits binding cooperatively in a tight SA(4) complex and to nucleate, sever, and cap filaments at their barbed ends. Binding of Spire to barbed ends does not affect the thermodynamics of actin assembly at barbed ends but blocks barbed end growth from profilin-actin. The resulting Spire-induced increase in profilin-actin concentration enhances processive filament assembly by formin. The synergy between Spire and formin is reconstituted in an in vitro motility assay, which provides a functional basis for the genetic interplay between Spire, formin, and profilin in oogenesis.

  8. Bacterial expression of the phosphodiester-binding site of the cation-independent mannose 6-phosphate receptor for crystallographic and NMR studies

    PubMed Central

    Olson, Linda J.; Jensen, Davin R.; Volkman, Brian F.; Kim, Jung-Ja P.; Peterson, Francis C.; Gundry, Rebekah L.; Dahms, Nancy M.

    2015-01-01

    The cation-independent mannose 6-phosphate receptor (CI-MPR) is a multifunctional protein that interacts with diverse ligands and plays central roles in autophagy, development, and tumor suppression. By delivering newly synthesized phosphomannosyl-containing acid hydrolases from the Golgi to endosomal compartments, CI-MPR is an essential component in the generation of lysosomes that are critical for the maintenance of cellular homeostasis. The ability of CI-MPR to interact with ~60 different acid hydrolases is facilitated by its large extracellular region, with four out of its 15 domains binding phosphomannosyl residues. Although the glycan specificity of CI-MPR has been elucidated, the molecular basis of carbohydrate binding has not been determined for two out of these four carbohydrate recognition domains (CRD). Here we report expression of CI-MPR’s CRD located in domain 5 that preferentially binds phosphodiester-containing glycans. Domain 5 of CI-MPR was expressed in Escherichia coli BL21 (DE3) cells as a fusion protein containing an N-terminal histidine tag and the small ubiquitin-like modifier (SUMO) protein. The His6-SUMO-CRD construct was recovered from inclusion bodies, refolded in buffer to facilitate disulfide bond formation, and subjected to Ni-NTA affinity chromatography and size exclusion chromatography. Surface plasmon resonance analyses demonstrated that the purified protein was active and bound phosphorylated glycans. Characterization by NMR spectroscopy revealed high quality 1H–15N HSQC spectra. Additionally, crystallization conditions were identified and a crystallographic data set of the CRD was collected to 1.8 Å resolution. Together, these studies demonstrate the feasibility of producing CI-MPR’s CRD suitable for three-dimensional structure determination by NMR spectroscopic and X-ray crystallographic approaches. PMID:25863146

  9. The adhesive properties of the Staphylococcus lugdunensis multifunctional autolysin AtlL and its role in biofilm formation and internalization.

    PubMed

    Hussain, Muzaffar; Steinbacher, Tim; Peters, Georg; Heilmann, Christine; Becker, Karsten

    2015-01-01

    Although it belongs to the group of coagulase-negative staphylococci, Staphylococcus lugdunensis has been known to cause aggressive courses of native and prosthetic valve infective endocarditis with high mortality similar to Staphylococcus aureus. In contrast to S. aureus, only little is known about the equipment of S. lugdunensis with virulence factors including adhesins and their role in mediating attachment to extracellular matrix and plasma proteins and host cells. In this study, we show that the multifunctional autolysin/adhesin AtlL of S. lugdunensis binds to the extracellular matrix and plasma proteins fibronectin, fibrinogen, and vitronectin as well as to human EA.hy926 endothelial cells. Furthermore, we demonstrate that AtlL also plays an important role in the internalization of S. lugdunensis by eukaryotic cells: The atlL-deficient mutant Mut17 adheres to and becomes internalized by eukaryotic cells to a lesser extent than the isogenic wild-type strain Sl253 and the complemented mutant Mut17 (pCUatlL) shows an increased internalization level in comparison to Mut17. Thus, surface localized AtlL that exhibits a broad binding spectrum also mediates the internalization of S. lugdunensis by eukaryotic cells. We therefore propose an internalization pathway for S. lugdunensis, in which AtlL plays a major role. Investigating the role of AtlL in biofilm formation of S. lugdunensis, Mut17 shows a significantly reduced ability for biofilm formation, which is restored in the complemented mutant. Thus, our data provide evidence for a significant role for AtlL in adherence and internalization processes as well as in biofilm formation of S. lugdunensis. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection

    PubMed Central

    Quintas, Ana; Pérez-Núñez, Daniel; Sánchez, Elena G.; Nogal, Maria L.; Hentze, Matthias W.; Castelló, Alfredo

    2017-01-01

    ABSTRACT African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro. Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts. IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development. PMID:29021398

  11. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection.

    PubMed

    Quintas, Ana; Pérez-Núñez, Daniel; Sánchez, Elena G; Nogal, Maria L; Hentze, Matthias W; Castelló, Alfredo; Revilla, Yolanda

    2017-12-15

    African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts. IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development. Copyright © 2017 Quintas et al.

  12. Activation of HIV-1 pre-mRNA 3' processing in vitro requires both an upstream element and TAR.

    PubMed Central

    Gilmartin, G M; Fleming, E S; Oetjen, J

    1992-01-01

    The architecture of the human immunodeficiency virus type 1 (HIV-1) genome presents an intriguing dilemma for the 3' processing of viral transcripts--to disregard a canonical 'core' poly(A) site processing signal present at the 5' end of the transcript and yet to utilize efficiently an identical signal that resides at the 3' end of the message. The choice of processing sites in HIV-1 appears to be influenced by two factors: (i) proximity to the cap site, and (ii) sequences upstream of the core poly(A) site. We now demonstrate that an in vivo-defined upstream element that resides within the U3 region, 76 nucleotides upstream of the AAUAAA hexamer, acts specifically to enhance 3' processing at the HIV-1 core poly(A) site in vitro. We furthermore show that efficient in vitro 3' processing requires the RNA stem-loop structure of TAR, which serves to juxtapose spatially the upstream element and the core poly(A) site. An analysis of the stability of 3' processing complexes formed at the HIV-1 poly(A) site in vitro suggests that the upstream element may function by increasing processing complex stability at the core poly(A) site. Images PMID:1425577

  13. Antimicrobial Functions of Lactoferrin Promote Genetic Conflicts in Ancient Primates and Modern Humans.

    PubMed

    Barber, Matthew F; Kronenberg, Zev; Yandell, Mark; Elde, Nels C

    2016-05-01

    Lactoferrin is a multifunctional mammalian immunity protein that limits microbial growth through sequestration of nutrient iron. Additionally, lactoferrin possesses cationic protein domains that directly bind and inhibit diverse microbes. The implications for these dual functions on lactoferrin evolution and genetic conflicts with microbes remain unclear. Here we show that lactoferrin has been subject to recurrent episodes of positive selection during primate divergence predominately at antimicrobial peptide surfaces consistent with long-term antagonism by bacteria. An abundant lactoferrin polymorphism in human populations and Neanderthals also exhibits signatures of positive selection across primates, linking ancient host-microbe conflicts to modern human genetic variation. Rapidly evolving sites in lactoferrin further correspond to molecular interfaces with opportunistic bacterial pathogens causing meningitis, pneumonia, and sepsis. Because microbes actively target lactoferrin to acquire iron, we propose that the emergence of antimicrobial activity provided a pivotal mechanism of adaptation sparking evolutionary conflicts via acquisition of new protein functions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Johnnie A.; Takasuka, Taichi E.; Deng, Kai

    Carbohydrate binding modules (CBMs) bind polysaccharides and help target glycoside hydrolases catalytic domains to their appropriate carbohydrate substrates. To better understand how CBMs can improve cellulolytic enzyme reactivity, representatives from each of the 18 families of CBM found in Ruminoclostridium thermocellum were fused to the multifunctional GH5 catalytic domain of CelE (Cthe_0797, CelEcc), which can hydrolyze numerous types of polysaccharides including cellulose, mannan, and xylan. Since CelE is a cellulosomal enzyme, none of these fusions to a CBM previously existed. CelEcc_CBM fusions were assayed for their ability to hydrolyze cellulose, lichenan, xylan, and mannan. Several CelEcc_CBM fusions showed enhanced hydrolyticmore » activity with different substrates relative to the fusion to CBM3a from the cellulosome scaffoldin, which has high affinity for binding to crystalline cellulose. Additional binding studies and quantitative catalysis studies using nanostructure-initiator mass spectrometry (NIMS) were carried out with the CBM3a, CBM6, CBM30, and CBM44 fusion enzymes. In general, and consistent with observations of others, enhanced enzyme reactivity was correlated with moderate binding affinity of the CBM. Numerical analysis of reaction time courses showed that CelEcc_CBM44, a combination of a multifunctional enzyme domain with a CBM having broad binding specificity, gave the fastest rates for hydrolysis of both the hexose and pentose fractions of ionic-liquid pretreated switchgrass. In conclusion, we have shown that fusions of different CBMs to a single multifunctional GH5 catalytic domain can increase its rate of reaction with different pure polysaccharides and with pretreated biomass. This fusion approach, incorporating domains with broad specificity for binding and catalysis, provides a new avenue to improve reactivity of simple combinations of enzymes within the complexity of plant biomass.« less

  15. Molecular events regulating messenger RNA stability in eukaryotes.

    PubMed

    Saini, K S; Summerhayes, I C; Thomas, P

    1990-07-17

    The regulation of mRNA turnover plays a major role in the overall control of gene expression. Transcriptional control of eukaryotic gene regulation by external and/or internal stimuli has received considerable attention and the purpose of this review is to highlight recent work elucidating the mechanisms underlying the steady-state levels of mRNAs in the cytoplasm. Protection of mRNA from the action of nucleases as it passes from the nucleus to the ribosomes for translation is achieved, at least in part, by its union with mRNA binding proteins and the presence of poly(A) tail. The half-life of a message represents a balance between the transcriptional activity and intracellular degradative processes. These properties can be modulated by the presence of specific nucleotide sequences in a mRNA along with cis- and trans-acting elements and accompanied by post-translational feed back mechanisms. Presently, various regulatory mechanisms involved in the mRNA decay process are ill-defined. The work described here illustrates the complexity of this emerging field of study and outlines its contribution to our understanding of gene regulation in eukaryotes.

  16. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53

    PubMed Central

    Saldaña-Meyer, Ricardo; González-Buendía, Edgar; Guerrero, Georgina; Narendra, Varun; Bonasio, Roberto; Recillas-Targa, Félix; Reinberg, Danny

    2014-01-01

    The multifunctional CCCTC-binding factor (CTCF) protein exhibits a broad range of functions, including that of insulator and higher-order chromatin organizer. We found that CTCF comprises a previously unrecognized region that is necessary and sufficient to bind RNA (RNA-binding region [RBR]) and is distinct from its DNA-binding domain. Depletion of cellular CTCF led to a decrease in not only levels of p53 mRNA, as expected, but also those of Wrap53 RNA, an antisense transcript originated from the p53 locus. PAR-CLIP-seq (photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation [PAR-CLIP] combined with deep sequencing) analyses indicate that CTCF binds a multitude of transcripts genome-wide as well as to Wrap53 RNA. Apart from its established role at the p53 promoter, CTCF regulates p53 expression through its physical interaction with Wrap53 RNA. Cells harboring a CTCF mutant in its RBR exhibit a defective p53 response to DNA damage. Moreover, the RBR facilitates CTCF multimerization in an RNA-dependent manner, which may bear directly on its role in establishing higher-order chromatin structures in vivo. PMID:24696455

  17. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb.

    PubMed

    Lee, Ahn R; Hung, Wayne; Xie, Ning; Liu, Liangliang; He, Leye; Dong, Xuesen

    2017-04-01

    The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Chaperone Hsp27 Modulates AUF1 Proteolysis and AU-Rich Element-Mediated mRNA Degradation▿

    PubMed Central

    Knapinska, Anna M.; Gratacós, Frances M.; Krause, Christopher D.; Hernandez, Kristina; Jensen, Amber G.; Bradley, Jacquelyn J.; Wu, Xiangyue; Pestka, Sidney; Brewer, Gary

    2011-01-01

    AUF1 is an AU-rich element (ARE)-binding protein that recruits translation initiation factors, molecular chaperones, and mRNA degradation enzymes to the ARE for mRNA destruction. We recently found chaperone Hsp27 to be an AUF1-associated ARE-binding protein required for tumor necrosis factor alpha (TNF-α) mRNA degradation in monocytes. Hsp27 is a multifunctional protein that participates in ubiquitination of proteins for their degradation by proteasomes. A variety of extracellular stimuli promote Hsp27 phosphorylation on three serine residues—Ser15, Ser78, and Ser82—by a number of kinases, including the mitogen-activated protein (MAP) pathway kinases p38 and MK2. Activating either kinase stabilizes ARE mRNAs. Likewise, ectopic expression of phosphomimetic mutant forms of Hsp27 stabilizes reporter ARE mRNAs. Here, we continued to examine the contributions of Hsp27 to mRNA degradation. As AUF1 is ubiquitinated and degraded by proteasomes, we addressed the hypothesis that Hsp27 phosphorylation controls AUF1 levels to modulate ARE mRNA degradation. Indeed, selected phosphomimetic mutants of Hsp27 promote proteolysis of AUF1 in a proteasome-dependent fashion and render ARE mRNAs more stable. Our results suggest that the p38 MAP kinase (MAPK)-MK2–Hsp27 signaling axis may target AUF1 destruction by proteasomes, thereby promoting ARE mRNA stabilization. PMID:21245386

  19. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA

    PubMed Central

    Fusco, William G.; Choudhary, Neelima R.; Stewart, Shelley M.; Alam, S. Munir; Sempowski, Gregory D.; Elkins, Christopher

    2015-01-01

    Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrAI) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine. PMID:25897604

  20. Defining Potential Vaccine Targets of Haemophilus ducreyi Trimeric Autotransporter Adhesin DsrA.

    PubMed

    Fusco, William G; Choudhary, Neelima R; Stewart, Shelley M; Alam, S Munir; Sempowski, Gregory D; Elkins, Christopher; Leduc, Isabelle

    2015-04-01

    Haemophilus ducreyi is the causative agent of the sexually transmitted genital ulcer disease chancroid. Strains of H. ducreyi are grouped in two classes (I and II) based on genotypic and phenotypic differences, including those found in DsrA, an outer membrane protein belonging to the family of multifunctional trimeric autotransporter adhesins. DsrA is a key serum resistance factor of H. ducreyi that prevents binding of natural IgM at the bacterial surface and functions as an adhesin to fibronectin, fibrinogen, vitronectin, and human keratinocytes. Monoclonal antibodies (MAbs) were developed to recombinant DsrA (DsrA(I)) from prototypical class I strain 35000HP to define targets for vaccine and/or therapeutics. Two anti-DsrAI MAbs bound monomers and multimers of DsrA from genital and non-genital/cutaneous H. ducreyi strains in a Western blot and reacted to the surface of the genital strains; however, these MAbs did not recognize denatured or native DsrA from class II strains. In a modified extracellular matrix protein binding assay using viable H. ducreyi, one of the MAbs partially inhibited binding of fibronectin, fibrinogen, and vitronectin to class I H. ducreyi strain 35000HP, suggesting a role for anti-DsrA antibodies in preventing binding of H. ducreyi to extracellular matrix proteins. Standard ELISA and surface plasmon resonance using a peptide library representing full-length, mature DsrAI revealed the smallest nominal epitope bound by one of the MAbs to be MEQNTHNINKLS. Taken together, our findings suggest that this epitope is a potential target for an H. ducreyi vaccine.

  1. Cellular Hsp27 interacts with classical swine fever virus NS5A protein and negatively regulates viral replication by the NF-κB signaling pathway.

    PubMed

    Ling, Shifeng; Luo, Mingyang; Jiang, Shengnan; Liu, Jiayu; Ding, Chunying; Zhang, Qinghuan; Guo, Huancheng; Gong, Wenjie; Tu, Changchun; Sun, Jinfu

    2018-05-01

    Classical swine fever virus (CSFV) nonstructural protein NS5A is a multifunctional protein functioning in regulation of viral genome replication, protein translation and assembly by interaction with viral or host proteins. Here, heat shock protein 27 (Hsp27) has been identified as a novel binding partner of NS5A by using His tag "pull down" coupled with shotgun LC-MS/MS, with interaction of both proteins further confirmed by co-immunoprecipitation and laser confocal assays. In PK-15 cells, silencing of Hsp27 expression by siRNA enhanced CSFV replication, and upregulation of Hsp27 inhibited viral proliferation. Additionally, we have shown that overexpression of Hsp27 increased NF-κB signaling induced by TNFα. Blocking NF-κB signaling in PK-15 cells overexpressing Hsp27 by ammonium pyrrolidinedithiocarbamate (PDTC) eliminated the inhibition of CSFV replication by Hsp27. These findings clearly demonstrate that the inhibition of CSFV replication by Hsp27 is mediated via the NF-κB signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Molecular basis for TANK recognition by TRAF1 revealed by the crystal structure of TRAF1/TANK complex.

    PubMed

    Kim, Chang Min; Jeong, Jae-Hee; Son, Young-Jin; Choi, Jun-Hyuk; Kim, Sunghwan; Park, Hyun Ho

    2017-03-01

    Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a multifunctional adaptor protein involved in important processes of cellular signaling, including innate immunity and apoptosis. TRAF family member-associated NF-kappaB activator (TANK) has been identified as a competitive intracellular inhibitor of TRAF2 function. Although TRAF recognition by various receptors has been studied extensively in the field of TRAF-mediated biology, molecular and functional details of TANK recognition and interaction with TRAF1 have not been studied. In this study, we report the crystal structure of the TRAF1/TANK peptide complex. Quantitative interaction experiments showed that TANK peptide interacts with both TRAF1 and TRAF2 with similar affinity in a micromolar range. Our structural study also reveals that TANK binds TRAF1 using a minor minimal consensus motif for TRAF binding, Px(Q/E)xT. Coordinate and structural factor were deposited in the Protein Data Bank under PDB ID code 5H10. © 2017 Federation of European Biochemical Societies.

  3. Dodecamer is required for agglutination of Litopenaeus vannamei hemocyanin with bacterial cells and red blood cells.

    PubMed

    Pan, Jian-yi; Zhang, Yue-ling; Wang, San-ying; Peng, Xuan-xian

    2008-01-01

    Hemocyanins are multi-functional proteins, although they are well known to be respiratory proteins of invertebrate to date. In the present study, the agglutination ability of two oligomers of hemocyanin, hexamer and dodecamer, with pathogenic bacteria and red blood cells (RBCs) is investigated in pacific white shrimp, Litopenaeus vannamei. Hexameric hemocyanin exhibits an extremely high stability even in the absence of Ca(2+) and in alkaline pH. Dodecamer (di-hexamer) is easily dissociated into hexamers in unphysiological conditions. Hexamer and dodecamer are interchanged reciprocally with environmental conditions. Both oligomers can bind to bacteria and RBCs, but agglutination is observed only using dodecamer but not using hexamer in agglutination assay. However, the agglutination is detected when hexamer is utilized in the presence of antiserum against hemocyanin. These results indicate that dodecamer of hemocyanin is required for agglutination with bacteria and RBCs. It can be logically inferred that there is only one carbohydrate-binding site to bacterial cells and RBCs in the hexamer, while at least two sites in the dodecamer. Our finding has provided new insights into structural-functional relationship of hemocyanin.

  4. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Gao, Xiaoli; Michael Garavito, R., E-mail: garavito@msu.edu

    2011-04-22

    Highlights: {yields} Crystal structure of the intracellular domain of (pro)renin receptor (PRR-IC) as MBP fusion protein at 2.0 A (maltose-free) and 2.15 A (maltose-bound). {yields} MBP fusion protein is a dimer in crystals in the presence and absence of maltose. {yields} PRR-IC domain is responsible for the dimerization of the fusion protein. {yields} Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermolecular interactions, suggesting a role for the PRR-IC domain in PRR dimerization. -- Abstract: The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membranemore » protein PRR contains a large extracellular domain ({approx}310 amino acids), a single transmembrane domain ({approx}20 amino acids) and an intracellular domain ({approx}19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain ({approx}30 amino acids), the IC domain is also involved in assembly of V{sub 0} portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 A (maltose-free) and 2.15 A (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.« less

  5. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting.

    PubMed

    Frith, Kelly-Anne; Fogel, Ronen; Goldring, J P Dean; Krause, Robert G E; Khati, Makobetsa; Hoppe, Heinrich; Cromhout, Mary E; Jiwaji, Meesbah; Limson, Janice L

    2018-05-03

    Early detection is crucial for the effective treatment of malaria, particularly in those cases infected with Plasmodium falciparum. There is a need for diagnostic devices with the capacity to distinguish P. falciparum from other strains of malaria. Here, aptamers generated against targeted species-specific epitopes of P. falciparum lactate dehydrogenase (rPfLDH) are described. Two classes of aptamers bearing high binding affinity and specificity for recombinant P. falciparum lactate dehydrogenase (rPfLDH) and P. falciparum-specific lactate dehydrogenase epitopic oligopeptide (LDHp) were separately generated. Structurally-relevant moieties with particular consensus sequences (GGTAG and GGCG) were found in aptamers reported here and previously published, confirming their importance in recognition of the target, while novel moieties particular to this work (ATTAT and poly-A stretches) were identified. Aptamers with diagnostically-supportive functions were synthesized, prime examples of which are the aptamers designated as LDHp 1, LDHp 11 and rLDH 4 and rLDH 15 in work presented herein. Of the sampled aptamers raised against the recombinant protein, rLDH 4 showed the highest binding to the target rPfLDH in the ELONA assay, with both rLDH 4 and rLDH 15 indicating an ability to discriminate between rPfLDH and rPvLDH. LDHp 11 was generated against a peptide selected as a unique P. falciparum LDH peptide. The aptamer, LDHp 11, like antibodies against the same peptide, only detected rPfLDH and discriminated between rPfLDH and rPvLDH. This was supported by affinity binding experiments where only aptamers generated against a unique species-specific epitope showed an ability to preferentially bind to rPfLDH relative to rPvLDH rather than those generated against the whole recombinant protein. In addition, rLDH 4 and LDHp 11 demonstrated in situ binding to P. falciparum cells during confocal microscopy. The utilization and application of LDHp 11, an aptamer generated against a unique species-specific epitope of P. falciparum LDH indicated the ability to discriminate between recombinant P. falciparum and Plasmodium vivax LDH. This aptamer holds promise as a biorecognition element in malaria diagnostic devices for the detection, and differentiation, of P. falciparum and P. vivax malaria infections. This study paves the way to explore aptamer generation against targeted species-specific epitopes of other Plasmodium species.

  6. Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol-ene and SN2 reactions.

    PubMed

    Kottari, Naresh; Chabre, Yoann M; Shiao, Tze Chieh; Rej, Rabindra; Roy, René

    2014-02-25

    An orthogonal coupling strategy was developed by combining thiol-ene and SN2 reactions, which was subsequently applied to the accelerated synthesis of multifunctional dendrimers using carbohydrate building blocks. In surface plasmon resonance (SPR) studies, the β-d-galactopyranoside-coated dendrimer exhibited nM binding affinity with the bacterial LecA lectin extracted from Pseudomonas aeruginosa.

  7. New flavone-cyanoacetamide hybrids with combination of cholinergic, antioxidant, modulation β-amyloid aggregation and neuroprotection properties as innovative multifunctional therapeutic candidates for Alzheimer's disease and unraveling their mechanism of action with acetylcholinesterase.

    PubMed

    Jeelan Basha, Shaik; Mohan, Penumala; Yeggoni, Daniel Pushparaju; Babu, Zinka Raveendra; Kumar, Palaka Bhagath; Dinakara Rao, Ampasala; Subramanyam, Rajagopal; Damu, Amooru Gangaiah

    2018-05-10

    In line with the modern multi target-directed ligand paradigm of Alzheimer's disease (AD), a series of nineteen compounds composed of flavone and cyanoacetamide groups have been synthesized and evaluated as multifunctional agents against AD. Biological evaluation demonstrated that compounds 7j, 7n, 7o, 7r and 7s exhibited excellent inhibitory potency (AChE, IC50 0.271 ± 0.012 to ± 0.075 M) and good selectivity toward acetylcholinesterase, significant antioxidant activity, good modulation effects on self-induced A aggregation, low cytotoxicity and neuroprotection in human neuroblastoma SK-N-SH cells. Further, an inclusive study on the interaction of 7j, 7n, 7o, 7r and 7s with AChE at physiological pH 7.2 using fluorescence, circular dichroism and molecular docking methods suggesting that these derivatives bind strongly to peripheral anionic site of AChE mostly through hydrophobic interactions. Overall, the multifunctional profiles and strong AChE binding affinity highlight these compounds as promising prototypes for further pursuit of innovative multifunctional drugs for AD.

  8. CHIP mediates down-regulation of nucleobindin-1 in preosteoblast cell line models.

    PubMed

    Xue, Fuying; Wu, Yanping; Zhao, Xinghui; Zhao, Taoran; Meng, Ying; Zhao, Zhanzhong; Guo, Junwei; Chen, Wei

    2016-08-01

    Nucleobindin-1 (NUCB1), also known as Calnuc, is a highly conserved, multifunctional protein widely expressed in tissues and cells. It contains two EF-hand motifs which have been shown to play a crucial role in binding Ca(2+) ions. In this study, we applied comparative two-dimensional gel electrophoresis to characterize differentially expressed proteins in HA-CHIP over-expressed and endogenous CHIP depleted MC3T3-E1 stable cell lines, identifying NUCB1 as a novel CHIP/Stub1 targeted protein. NUCB1 interacts with and is down-regulated by CHIP by both proteasomal dependent and independent pathways, suggesting that CHIP-mediated down-regulation of nucleobindin-1 might play a role in osteoblast differentiation. The chaperone protein Hsp70 was found to be important for CHIP and NUCB1 interaction as well as CHIP-mediated NUCB1 down-regulation. Our findings provide new insights into understanding the stability regulation of NUCB1. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins.

    PubMed

    Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T

    1990-01-05

    We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.

  10. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cieplak-Rotowska, Maja K.; Tarnowski, Krzysztof; Rubin, Marcin; Fabian, Marc R.; Sonenberg, Nahum; Dadlez, Michal; Niedzwiecka, Anna

    2018-01-01

    The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. [Figure not available: see fulltext.

  11. A nonradioactive assay for poly(a)-specific ribonuclease activity by methylene blue colorimetry.

    PubMed

    Cheng, Yuan; Liu, Wei-Feng; Yan, Yong-Bin; Zhou, Hai-Meng

    2006-01-01

    A simple nonradioactive assay, which was based on the specific shift of the absorbance maximum of methylene blue induced by its intercalation into poly(A) molecules, was developed for poly(A)-specific ribonuclease (PARN). A good linear relationship was found between the absorbance at 662 nm and the poly(A) concentration. The assay conditions, including the concentration of methylene blue, the incubation temperature and time, and the poly(A) concentration were evaluated and optimized.

  12. APASdb: a database describing alternative poly(A) sites and selection of heterogeneous cleavage sites downstream of poly(A) signals

    PubMed Central

    You, Leiming; Wu, Jiexin; Feng, Yuchao; Fu, Yonggui; Guo, Yanan; Long, Liyuan; Zhang, Hui; Luan, Yijie; Tian, Peng; Chen, Liangfu; Huang, Guangrui; Huang, Shengfeng; Li, Yuxin; Li, Jie; Chen, Chengyong; Zhang, Yaqing; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Increasing amounts of genes have been shown to utilize alternative polyadenylation (APA) 3′-processing sites depending on the cell and tissue type and/or physiological and pathological conditions at the time of processing, and the construction of genome-wide database regarding APA is urgently needed for better understanding poly(A) site selection and APA-directed gene expression regulation for a given biology. Here we present a web-accessible database, named APASdb (http://mosas.sysu.edu.cn/utr), which can visualize the precise map and usage quantification of different APA isoforms for all genes. The datasets are deeply profiled by the sequencing alternative polyadenylation sites (SAPAS) method capable of high-throughput sequencing 3′-ends of polyadenylated transcripts. Thus, APASdb details all the heterogeneous cleavage sites downstream of poly(A) signals, and maintains near complete coverage for APA sites, much better than the previous databases using conventional methods. Furthermore, APASdb provides the quantification of a given APA variant among transcripts with different APA sites by computing their corresponding normalized-reads, making our database more useful. In addition, APASdb supports URL-based retrieval, browsing and display of exon-intron structure, poly(A) signals, poly(A) sites location and usage reads, and 3′-untranslated regions (3′-UTRs). Currently, APASdb involves APA in various biological processes and diseases in human, mouse and zebrafish. PMID:25378337

  13. Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens.

    PubMed

    Finkina, Ekaterina I; Melnikova, Daria N; Bogdanov, Ivan V; Ovchinnikova, Tatiana V

    2017-01-01

    Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2.

    PubMed

    Ruane, Peter T; Gumy, Laura F; Bola, Becky; Anderson, Beverley; Wozniak, Marcin J; Hoogenraad, Casper C; Allan, Victoria J

    2016-06-07

    Microtubules and their associated proteins (MAPs) underpin the polarity of specialised cells. Adenomatous polyposis coli (APC) is one such MAP with a multifunctional agenda that requires precise intracellular localisations. Although APC has been found to associate with kinesin-2 subfamily members, the exact mechanism for the peripheral localization of APC remains unclear. Here we show that the heavy chain of kinesin-1 directly interacts with the APC C-terminus, contributing to the peripheral localisation of APC in fibroblasts. In rat hippocampal neurons the kinesin-1 binding domain of APC is required for its axon tip enrichment. Moreover, we demonstrate that APC requires interactions with both kinesin-2 and kinesin-1 for this localisation. Underlining the importance of the kinesin-1 association, neurons expressing APC lacking kinesin-1-binding domain have shorter axons. The identification of this novel kinesin-1-APC interaction highlights the complexity and significance of APC localisation in neurons.

  15. Short peptides derived from the BAG-1 C-terminus inhibit the interaction between BAG-1 and HSC70 and decrease breast cancer cell growth.

    PubMed

    Sharp, Adam; Cutress, Ramsey I; Johnson, Peter W M; Packham, Graham; Townsend, Paul A

    2009-11-03

    BAG-1, a multifunctional protein, interacts with a plethora of cellular targets where the interaction with HSC70 and HSP70, is considered vital. Structural studies have demonstrated the C-terminal of BAG-1 forms a bundle of three alpha-helices of which helices 2 and 3 are directly involved in binding to the chaperones. Here we found peptides derived from helices 2 and 3 of BAG-1 interfered with BAG-1:HSC70 binding. We confirmed that a 12 amino-acid peptide from helix 2 directly interacted with HSC70 and when introduced into MCF-7 and ZR-75-1 cells, these peptides inhibited their growth. In conclusion, we have identified a small domain within BAG-1 which appears to play a critical role in the interaction with HSC70.

  16. TSAPA: identification of tissue-specific alternative polyadenylation sites in plants.

    PubMed

    Ji, Guoli; Chen, Moliang; Ye, Wenbin; Zhu, Sheng; Ye, Congting; Su, Yaru; Peng, Haonan; Wu, Xiaohui

    2018-06-15

    Alternative polyadenylation (APA) is now emerging as a widespread mechanism modulated tissue-specifically, which highlights the need to define tissue-specific poly(A) sites for profiling APA dynamics across tissues. We have developed an R package called TSAPA based on the machine learning model for identifying tissue-specific poly(A) sites in plants. A feature space including more than 200 features was assembled to specifically characterize poly(A) sites in plants. The classification model in TSAPA can be customized by selecting desirable features or classifiers. TSAPA is also capable of predicting tissue-specific poly(A) sites in unannotated intergenic regions. TSAPA will be a valuable addition to the community for studying dynamics of APA in plants. https://github.com/BMILAB/TSAPA. Supplementary data are available at Bioinformatics online.

  17. Synthesis of fluorescent dye-doped silica nanoparticles for target-cell-specific delivery and intracellular microRNA imaging.

    PubMed

    Li, Henan; Mu, Yawen; Qian, Shanshan; Lu, Jusheng; Wan, Yakun; Fu, Guodong; Liu, Songqin

    2015-01-21

    MicroRNA (miRNA) is found to be up-regulated in many kinds of cancer and therefore is classified as an oncomiR. Herein, we design a multifunctional fluorescent nanoprobe (FSiNP-AS/MB) with the AS1411 aptamer and a molecular beacon (MB) co-immobilized on the surface of the fluorescent dye-doped silica nanoparticles (FSiNPs) for target-cell-specific delivery and intracellular miRNA imaging. The FSiNPs were prepared by a facile reverse microemulsion method from tetraethoxysilane and silane derivatized coumarin that was previously synthesized by click chemistry. The as-prepared FSiNPs possess uniform size distribution, good optical stability and biocompatibility. In addition, there is a remarkable affinity interaction between the AS1411 aptamer and the nucleolin protein on the cancer cell surface. Thus, a target-cell-specific delivery system by the FSiNP-AS/MB is proposed for effectively transferring a MB into the cancer cells to recognize the target miRNA. Using miRNA-21 in MCF-7 cells (a human breast cancer cell line) as a model, the proposed multifunctional nanosystems not only allow target-cell-specific delivery with the binding affinity of AS1411, but also can track simultaneously the transfected cells and detect intracellular miRNA in situ. The proposed multifunctional nanosystems are a promising platform for a highly sensitive luminescent nonviral vector in biomedical and clinical research.

  18. Switch I-dependent allosteric signaling in a G-protein chaperone-B12 enzyme complex.

    PubMed

    Campanello, Gregory C; Lofgren, Michael; Yokom, Adam L; Southworth, Daniel R; Banerjee, Ruma

    2017-10-27

    G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization.

    PubMed Central

    Bozzoni, I; Beccari, E; Luo, Z X; Amaldi, F

    1981-01-01

    Poly-A+ mRNA from Xenopus laevis oocytes, partially enriched for r-protein coding capacity has been used as starting material for preparing a cDNA bank in plasmid pBR322. The clones containing sequences specific for r-proteins have been selected by translation of the complementary mRNAs. Clones for six different r-proteins have been identified and utilized as probes for studying their genomic organization. Two gene copies per haploid genome were found for r-proteins L1, L14, S19, and four-five for protein S1, S8 and L32. Moreover a population polymorphism has been observed for the genomic regions containing sequences for r-protein S1, S8 and L14. Images PMID:6112733

  20. An integrated proteomic and transcriptomic analysis of perivitelline fluid proteins in a freshwater gastropod laying aerial eggs.

    PubMed

    Mu, Huawei; Sun, Jin; Heras, Horacio; Chu, Ka Hou; Qiu, Jian-Wen

    2017-02-23

    Proteins of the egg perivitelline fluid (PVF) that surrounds the embryo are critical for embryonic development in many animals, but little is known about their identities. Using an integrated proteomic and transcriptomic approach, we identified 64 proteins from the PVF of Pomacea maculata, a freshwater snail adopting aerial oviposition. Proteins were classified into eight functional groups: major multifunctional perivitellin subunits, immune response, energy metabolism, protein degradation, oxidation-reduction, signaling and binding, transcription and translation, and others. Comparison of gene expression levels between tissues showed that 22 PVF genes were exclusively expressed in albumen gland, the female organ that secretes PVF. Base substitution analysis of PVF and housekeeping genes between P. maculata and its closely related species Pomacea canaliculata showed that the reproductive proteins had a higher mean evolutionary rate. Predicted 3D structures of selected PVF proteins showed that some nonsynonymous substitutions are located at or near the binding regions that may affect protein function. The proteome and sequence divergence analysis revealed a substantial amount of maternal investment in embryonic nutrition and defense, and higher adaptive selective pressure on PVF protein-coding genes when compared with housekeeping genes, providing insight into the adaptations associated with the unusual reproductive strategy in these mollusks. There has been great interest in studying reproduction-related proteins as such studies may not only answer fundamental questions about speciation and evolution, but also solve practical problems of animal infertility and pest outbreak. Our study has demonstrated the effectiveness of an integrated proteomic and transcriptomic approach in understanding the heavy maternal investment of proteins in the eggs of a non-model snail, and how the reproductive proteins may have evolved during the transition from laying underwater eggs to aerial eggs. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Structural Insights into the Assembly of the Adeno-associated Virus Type 2 Rep68 Protein on the Integration Site AAVS1*

    PubMed Central

    Musayev, Faik N.; Zarate-Perez, Francisco; Bishop, Clayton; Burgner, John W.; Escalante, Carlos R.

    2015-01-01

    Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains. PMID:26370092

  2. GSyellow, a Multifaceted Tag for Functional Protein Analysis in Monocot and Dicot Plants.

    PubMed

    Besbrugge, Nienke; Van Leene, Jelle; Eeckhout, Dominique; Cannoot, Bernard; Kulkarni, Shubhada R; De Winne, Nancy; Persiau, Geert; Van De Slijke, Eveline; Bontinck, Michiel; Aesaert, Stijn; Impens, Francis; Gevaert, Kris; Van Damme, Daniel; Van Lijsebettens, Mieke; Inzé, Dirk; Vandepoele, Klaas; Nelissen, Hilde; De Jaeger, Geert

    2018-06-01

    The ability to tag proteins has boosted the emergence of generic molecular methods for protein functional analysis. Fluorescent protein tags are used to visualize protein localization, and affinity tags enable the mapping of molecular interactions by, for example, tandem affinity purification or chromatin immunoprecipitation. To apply these widely used molecular techniques on a single transgenic plant line, we developed a multifunctional tandem affinity purification tag, named GS yellow , which combines the streptavidin-binding peptide tag with citrine yellow fluorescent protein. We demonstrated the versatility of the GS yellow tag in the dicot Arabidopsis ( Arabidopsis thaliana ) using a set of benchmark proteins. For proof of concept in monocots, we assessed the localization and dynamic interaction profile of the leaf growth regulator ANGUSTIFOLIA3 (AN3), fused to the GS yellow tag, along the growth zone of the maize ( Zea mays ) leaf. To further explore the function of ZmAN3, we mapped its DNA-binding landscape in the growth zone of the maize leaf through chromatin immunoprecipitation sequencing. Comparison with AN3 target genes mapped in the developing maize tassel or in Arabidopsis cell cultures revealed strong conservation of AN3 target genes between different maize tissues and across monocots and dicots, respectively. In conclusion, the GS yellow tag offers a powerful molecular tool for distinct types of protein functional analyses in dicots and monocots. As this approach involves transforming a single construct, it is likely to accelerate both basic and translational plant research. © 2018 American Society of Plant Biologists. All rights reserved.

  3. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    Prasada, Rao T; Lakshmi, Prasanth T; Parvathy, R; Murugavel, S; Karuna, Devi; Paritosh, Joshi

    2017-02-01

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix, interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interactions are limited. Vn-C9 interactions were assessed by employing a goat homologous system and observing Vn binding to C9 in three different assays. Using recombinant fragments, C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second arginine glycine aspartic acid (RGD) sequence (RGD-2) of Vn. Changing R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas changing of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In a competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 was also evaluated in terms of bacterial pathogenesis. Serum dependent inhibition of Escherichia coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum-dependent inhibition of bacterial growth, probably through other serum component(s). © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  4. Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of MicroRNA-Regulation

    PubMed Central

    Thomas, Laurent F.; Sætrom, Pål

    2012-01-01

    Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998

  5. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18

    PubMed Central

    Chi, Binkai; Wang, Ke; Du, Yanhua; Gui, Bin; Chang, Xingya; Wang, Lantian; Fan, Jing; Chen, She; Wu, Xudong; Li, Guohui; Cheng, Hong

    2014-01-01

    Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs. PMID:24782531

  6. Structural Basis of Transcriptional Regulation of the Proline Utilization Regulon by Multifunctional PutA

    PubMed Central

    Zhou, Yuzhen; Larson, John D.; Bottoms, Christopher A.; Arturo, Emilia C.; Henzl, Michael T.; Jenkins, Jermaine L.; Nix, Jay C.; Becker, Donald F.; Tanner, John J.

    2009-01-01

    Summary The multifunctional Escherichia coli PutA flavoprotein functions as both a membrane-associated proline catabolic enzyme and transcriptional repressor of the proline utilization genes putA and putP. To better understand the mechanism of transcriptional regulation by PutA, we have mapped the put regulatory region, determined a crystal structure of the PutA ribbon-helix-helix domain (PutA52) complexed with DNA and examined the thermodynamics of DNA binding to PutA52. Five operator sites, each containing the sequence motif 5′-GTTGCA-3′, were identified using gel-shift analysis. Three of the sites are shown to be critical for repression of putA, whereas the two other sites are important for repression of putP. The 2.25 Å resolution crystal structure of PutA52 bound to one of the operators (operator 2, 21-bp) shows that the protein contacts a 9-bp fragment, corresponding to the GTTGCA consensus motif plus three flanking base pairs. Since the operator sequences differ in flanking bases, the structure implies that PutA may have different affinities for the five operators. This hypothesis was explored using isothermal titration calorimetry. The binding of PutA52 to operator 2 is exothermic with an enthalpy of −1.8 kcal/mol and a dissociation constant of 210 nM. Substitution of the flanking bases of operator 4 into operator 2 results in an unfavorable enthalpy of 0.2 kcal/mol and 15-fold lower affinity, which shows that base pairs outside of the consensus motif impact binding. The structural and thermodynamic data suggest that hydrogen bonds between Lys9 and bases adjacent to the GTTGCA motif contribute to transcriptional regulation by fine-tuning the affinity of PutA for put control operators. PMID:18586269

  7. The length of an internal poly(A) tract of hibiscus latent Singapore virus is crucial for its replication.

    PubMed

    Niu, Shengniao; Cao, Shishu; Huang, Li-Jing; Tan, Kelvin Chee-Leong; Wong, Sek-Man

    2015-01-01

    Hibiscus latent Singapore virus (HLSV) mutants were constructed to study roles of its internal poly(A) tract (IPAT) in viral replication and coat protein (CP) expression. Shortening of the IPAT resulted in reduced HLSV RNA accumulation and its minimal length required for HLSV CP expression in plants was 24 nt. Disruption of a putative long range RNA-RNA interacting structure between 5' and 3' untranslated regions of HLSV-22A and -24A resulted in reduced viral RNA and undetectable CP accumulation in inoculated leaves. Replacement of the IPAT in HLSV with an upstream pseudoknot domain (UPD) of Tobacco mosaic virus (TMV) or insertion of the UPD to the immediate downstream of a 24 nt IPAT in HLSV resulted in drastically reduced viral RNA replication. Plants infected with a TMV mutant by replacement of the UPD with 43 nt IPAT exhibited milder mosaic symptoms without necrosis. We have proposed a model for HLSV replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Integrin-mediated targeting of protein polymer nanoparticles carrying a cytostatic macrolide

    NASA Astrophysics Data System (ADS)

    Shi, Pu

    Cytotoxicity, low water solubility, rapid clearance from circulation, and offtarget side-effects are common drawbacks of conventional small-molecule drugs. To overcome these shortcomings, many multifunctional nanocarriers have been proposed to enhance drug delivery. In concept, multifunctional nanoparticles might carry multiple agents, control release rate, biodegrade, and utilize target-mediated drug delivery; however, the design of these particles presents many challenges at the stage of pharmaceutical development. An emerging solution to improve control over these particles is to turn to genetic engineering. Genetically engineered nanocarriers are precisely controlled in size and structure and can provide specific control over sites for chemical attachment of drugs. Genetically engineered drug carriers that assemble nanostructures including nanoparticles and nanofibers can be polymeric or nonpolymeric. This chapter summarizes the recent development of applications in drug and gene delivery utilizing nanostructures of polymeric genetically engineered drug carriers such as elastin-like polypeptides, silk-like polypeptides, and silk-elastin-like protein polymers, and non-polymeric genetically engineered drug carriers such as vault proteins and viral proteins. This chapter explores an alternative encapsulation strategy based on high-specificity avidity between a small molecule drug and its cognate protein target fused to the corona of protein polymer nanoparticles. With the new strategy, the drug associates tightly to the carrier and releases slowly, which may decrease toxicity and promote tumor accumulation via the enhanced permeability and retention effect. To test this hypothesis, the drug Rapamycin (Rapa) was selected for its potent anti-proliferative properties, which give it immunosuppressant and anti-tumor activity. Despite its potency, Rapa has low solubility, low oral bioavailability, and rapid systemic clearance, which make it an excellent candidate for nanoparticulate drug delivery. To explore this approach, genetically engineered diblock copolymers were constructed from elastin-like polypeptides (ELPs) that assemble small nanoparticles. ELPs are protein polymers of the sequence (Val-Pro-Gly-Xaa-Gly)n, where the identity of Xaa and n determine their assembly properties. Initially, a screening assay for model drug encapsulation in ELP nanoparticles was developed, which showed that Rose Bengal and Rapa have high non-specific encapsulation in the core of ELP nanoparticles with a sequence where Xaa = Ile or Phe. While excellent at entrapping these drugs, their release was relatively fast compared to their intended mean residence time in the human body. Having determined that Rapa can be non-specifically entrapped in the core of ELP nanoparticles, FK506 binding protein 12 (FKBP), which is the cognate protein target of Rapa, was genetically fused to the surface of these nanoparticles (FSI) to enhance their avidity towards Rapa. The fusion of FKBP to these nanoparticles slowed the terminal half-life of drug release to 57.8 h. To determine if this class of drug carriers has potential applications in vivo, FSI/Rapa was administered to mice carrying a human breast cancer model (MDA-MB-468). Compared to free drug, FSI encapsulation significantly decreased gross toxicity and enhanced the anti-cancer activity. In conclusion, protein polymer nanoparticles decorated with the cognate receptor of a high potency, low solubility drug (Rapa) efficiently improved drug loading capacity and its release. This approach has applications to the delivery of Rapa and its analogs; furthermore, this strategy has broader applications in the encapsulation, targeting, and release of other potent small molecules. Elastin-like polypeptides (ELPs) are genetically encoded protein polymers that reversibly phase separate in response to stimuli. They respond sharply to small shifts in temperature and form dense microdomains in the living eukaryotic cytosol. This chapter illustrates how to tune the ELP sequence and architecture for either coassembly or sorting of distinct proteins into microdomains within a living cell. Passive tumor targeting utilizing enhanced permeability and retention (EPR) effect has limited efficiency in targeting non-leaky tumors such as MDA-MB-468 breast tumor; however, an RGD tri-peptide decorated micelle nanoparticle can effectively accumulate in tumor site via integrin-mediated active tumor targeting. Different from inefficient and cytotoxic chemical linkage reactions, an elastin-based multi-functional nanocarrier can be assembled by genetic protein fusion and micelle co-assembly technology. The novel drug carrier contains the cognate Rapamycin (Rapa) receptor -- FK506 binding protein (FKBP) as the high-avidity drug binding domain and an RGD peptide as the active tumor targeting domain. Here we show that by co-assembling FKBP and RGD contained protein polymers into mixed micelle nanoparticles, they not only competently targeted endothelial and tumor cells in cell assays, but specifically delivered the drug with a slow release half-life of 38h. It was demonstrated that the active tumor targeting formulation of Rapa more effectively suppressed tumor growth compared to the passive tumor targeting formulation and free drug in tumor regression studies of mouse MDA-MB-468 xenografts. We believe that the exciting results will provide a new tool for the development of next-generation "smart" multi-functional drug carriers. (Abstract shortened by UMI.).

  9. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mencinger, M.; Panagopoulos, I.; Andreasson, P.

    1997-05-01

    Homology searches in the Expressed Sequence Tag Database were performed using SPYGQ-rich regions as query sequences to find genes encoding protein regions similar to the N-terminal parts of the sarcoma-associated EWS and FUS proteins. Clone 22911 (T74973), encoding a SPYGQ-rich region in its 5{prime} end, and several other clones that overlapped 22911 were selected. The combined data made it possible to assemble a full-length cDNA sequence. This cDNA sequence is 1677 bp, containing an initiation codon ATG, an open reading frame of 400 amino acids, a poly(A) signal, and a poly(A) tail. We found 100% identity between the 5{prime} partmore » of the consensus sequence and the 598-bp-long sequence named TFG. The TFG sequence is fused to the 3{prime} end of NTRK1, generating the TRK-T3 fusion transcript found in papillary thyroid carcinoma. The cDNA therefore represents the full-length transcript of the TFG gene. TFG was localized to 3q11-q12 by fluorescence in situ hybridization. The 3{prime} and the 5{prime} ends of the TFG cDNA probe hybridized to a 2.2-kb band on Northern blot filters in all tissues examined. 28 refs., 5 figs., 1 tab.« less

  10. A Multifunctional ATP-Binding Cassette Transporter System from Vibrio cholerae Transports Vibriobactin and Enterobactin

    PubMed Central

    Wyckoff, Elizabeth E.; Valle, Ana-Maria; Smith, Stacey L.; Payne, Shelley M.

    1999-01-01

    Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [3H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores. PMID:10601218

  11. Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA.

    PubMed

    Hyde, Eva I; Callow, Philip; Rajasekar, Karthik V; Timmins, Peter; Patel, Trushar R; Siligardi, Giuliano; Hussain, Rohanah; White, Scott A; Thomas, Christopher M; Scott, David J

    2017-08-30

    The ParB protein, KorB, from the RK2 plasmid is required for DNA partitioning and transcriptional repression. It acts co-operatively with other proteins, including the repressor KorA. Like many multifunctional proteins, KorB contains regions of intrinsically disordered structure, existing in a large ensemble of interconverting conformations. Using NMR spectroscopy, circular dichroism and small-angle neutron scattering, we studied KorB selectively within its binary complexes with KorA and DNA, and within the ternary KorA/KorB/DNA complex. The bound KorB protein remains disordered with a mobile C-terminal domain and no changes in the secondary structure, but increases in the radius of gyration on complex formation. Comparison of wild-type KorB with an N-terminal deletion mutant allows a model of the ensemble average distances between the domains when bound to DNA. We propose that the positive co-operativity between KorB, KorA and DNA results from conformational restriction of KorB on binding each partner, while maintaining disorder. © 2017 The Author(s).

  12. Crystal Structure of the Marburg Virus Nucleoprotein Core Domain Chaperoned by a VP35 Peptide Reveals a Conserved Drug Target for Filovirus.

    PubMed

    Zhu, Tengfei; Song, Hao; Peng, Ruchao; Shi, Yi; Qi, Jianxun; Gao, George F

    2017-09-15

    Filovirus nucleoprotein (NP), viral protein 35 (VP35), and polymerase L are essential for viral replication and nucleocapsid formation. Here, we identify a 28-residue peptide (NP binding peptide [NPBP]) from Marburg virus (MARV) VP35 through sequence alignment with previously identified Ebola virus (EBOV) NPBP, which bound to the core region (residues 18 to 344) of the N-terminal portion of MARV NP with high affinity. The crystal structure of the MARV NP core/NPBP complex at a resolution of 2.6 Å revealed that NPBP binds to the C-terminal region of the NP core via electrostatic and nonpolar interactions. Further structural analysis revealed that the MARV and EBOV NP cores hold a conserved binding pocket for NPBP, and this pocket could serve as a promising target for the design of universal drugs against filovirus infection. In addition, cross-binding assays confirmed that the NP core of MARV or EBOV can bind the NPBP from the other virus, although with moderately reduced binding affinities that result from termini that are distinct between the MARV and EBOV NPBPs. IMPORTANCE Historically, Marburg virus (MARV) has caused severe disease with up to 90% lethality. Among the viral proteins produced by MARV, NP and VP35 are both multifunctional proteins that are essential for viral replication. In its relative, Ebola virus (EBOV), an N-terminal peptide from VP35 binds to the NP N-terminal region with high affinity. Whether this is a common mechanism among filoviruses is an unsolved question. Here, we present the crystal structure of a complex that consists of the core domain of MARV NP and the NPBP peptide from VP35. As we compared MARV NPBP with EBOV NPBP, several different features at the termini were identified. Although these differences reduce the affinity of the NP core for NPBPs across genera, a conserved pocket in the C-terminal region of the NP core makes cross-species binding possible. Our results expand our knowledge of filovirus NP-VP35 interactions and provide more details for therapeutic intervention. Copyright © 2017 American Society for Microbiology.

  13. "Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions"

    PubMed Central

    2012-01-01

    Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro. PMID:22463075

  14. dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35.

    PubMed

    Zinzula, Luca; Esposito, Francesca; Pala, Daniela; Tramontano, Enzo

    2012-03-01

    The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)-dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC(50) value of 50μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased K(d) values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35-dsRNA binding functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts.

    PubMed

    Xu, Yongjie; Li, Rui; Zhang, Kaili; Wu, Wei; Wang, Suying; Zhang, Pengpeng; Xu, Haixia

    2018-06-14

    HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcrip-tion, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired prolif-eration phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly in-creased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, my-osin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentia-tion and may be an essential regulator of myoblast function.

  16. Genome-Wide Detection and Analysis of Multifunctional Genes

    PubMed Central

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  17. The centrosomin CM2 domain is a multi-functional binding domain with distinct cell cycle roles.

    PubMed

    Citron, Y Rose; Fagerstrom, Carey J; Keszthelyi, Bettina; Huang, Bo; Rusan, Nasser M; Kelly, Mark J S; Agard, David A

    2018-01-01

    The centrosome serves as the main microtubule-organizing center in metazoan cells, yet despite its functional importance, little is known mechanistically about the structure and organizational principles that dictate protein organization in the centrosome. In particular, the protein-protein interactions that allow for the massive structural transition between the tightly organized interphase centrosome and the highly expanded matrix-like arrangement of the mitotic centrosome have been largely uncharacterized. Among the proteins that undergo a major transition is the Drosophila melanogaster protein centrosomin that contains a conserved carboxyl terminus motif, CM2. Recent crystal structures have shown this motif to be dimeric and capable of forming an intramolecular interaction with a central region of centrosomin. Here we use a combination of in-cell microscopy and in vitro oligomer assessment to show that dimerization is not necessary for CM2 recruitment to the centrosome and that CM2 alone undergoes significant cell cycle dependent rearrangement. We use NMR binding assays to confirm this intramolecular interaction and show that residues involved in solution are consistent with the published crystal structure and identify L1137 as critical for binding. Additionally, we show for the first time an in vitro interaction of CM2 with the Drosophila pericentrin-like-protein that exploits the same set of residues as the intramolecular interaction. Furthermore, NMR experiments reveal a calcium sensitive interaction between CM2 and calmodulin. Although unexpected because of sequence divergence, this suggests that centrosomin-mediated assemblies, like the mammalian pericentrin, may be calcium regulated. From these results, we suggest an expanded model where during interphase CM2 interacts with pericentrin-like-protein to form a layer of centrosomin around the centriole wall and that at the onset of mitosis this population acts as a nucleation site of intramolecular centrosomin interactions that support the expansion into the metaphase matrix.

  18. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-01-30

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  19. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2007-02-13

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein. including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  20. Multifunctional recombinant phycobiliprotein-based fluorescent constructs and phycobilisome display

    DOEpatents

    Glazer, Alexander N.; Cai, Yuping

    2003-11-18

    The invention provides multifunctional fusion constructs which are rapidly incorporated into a macromolecular structure such as a phycobilisome such that the fusion proteins are separated from one another and unable to self-associate. The invention provides methods and compositions for displaying a functional polypeptide domain on an oligomeric phycobiliprotein, including fusion proteins comprising a functional displayed domain and a functional phycobiliprotein domain incorporated in a functional oligomeric phycobiliprotein. The fusion proteins provide novel specific labeling reagents.

  1. A pause site for RNA polymerase II is associated with termination of transcription.

    PubMed Central

    Enriquez-Harris, P; Levitt, N; Briggs, D; Proudfoot, N J

    1991-01-01

    Termination of transcription by RNA polymerase II has been postulated to involve a pausing process. We have identified such a pause signal, 350 bp into the 3' flanking region of the human alpha 2 globin gene at a position where termination is thought to occur. We show that this pause signal enhances the utilization of an upstream poly(A) site which is otherwise out-competed by a stronger downstream poly(A) site. We also demonstrate that the pause site rescues a poly(A) site that is inactive due to its location within an intron. Using nuclear run-on analysis we show that elongating RNA polymerase II molecules accumulate over this pause signal. Furthermore we show that when the pause site is positioned immediately downstream of a strong poly(A) signal, significant levels of transcription termination take place. Images PMID:2050120

  2. Proteins with neomorphic moonlighting functions in disease.

    PubMed

    Jeffery, Constance J

    2011-07-01

    One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown. Copyright © 2011 Wiley Periodicals, Inc.

  3. Influence of nucleotide modifications at the C2’ position on the Hoogsteen base-paired parallel-stranded duplex of poly(A) RNA

    PubMed Central

    Copp, William; Denisov, Alexey Y.; Xie, Jingwei; Noronha, Anne M.; Liczner, Christopher; Safaee, Nozhat

    2017-01-01

    Abstract Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2′-deoxyribose, 2′-O-methyl-ribose, 2′-deoxy-2′-fluoro-ribose, arabinose and 2′-deoxy-2′-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2’ modifications gave a variety of effects. Arabinose and 2′-deoxy-2′-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2′-O-methyl and 2′-deoxy-2′-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability. PMID:28973475

  4. Influence of nucleotide modifications at the C2' position on the Hoogsteen base-paired parallel-stranded duplex of poly(A) RNA.

    PubMed

    Copp, William; Denisov, Alexey Y; Xie, Jingwei; Noronha, Anne M; Liczner, Christopher; Safaee, Nozhat; Wilds, Christopher J; Gehring, Kalle

    2017-09-29

    Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2'-deoxyribose, 2'-O-methyl-ribose, 2'-deoxy-2'-fluoro-ribose, arabinose and 2'-deoxy-2'-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2' modifications gave a variety of effects. Arabinose and 2'-deoxy-2'-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2'-O-methyl and 2'-deoxy-2'-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Proteins bound to polyribosomal mRNA of the embryonic axis of kidney bean seeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushkarev, V.M.; Galkin, A.P.

    The protein composition of polyribosome-bound mRNAs from the embryonic axis of germinating kidney bean seeds, isolated by an improved procedure including treatment with EDTA, low concentrations of RNase T/sub 1/, and centrifugation in a linear 15-40% sucrose concentration gradient, was investigated. Electrophoretic analysis of the proteins of purified fragments of mRNP obtained by the method described showed the presence of two to three major polypeptides (molecular weights 50, 38, 32 kilodaltons) and a number of minor ones. It was established that one of the major proteins is associated with the poly(A) sequences of mRNA (50 kilodaltons). The similarity of themore » protein compositions of polyribosomal mRNAs of kidney bean embryos and other objects studied is discussed.« less

  6. Reflections on the history of pre-mRNA processing and highlights of current knowledge: A unified picture

    PubMed Central

    Darnell, James E.

    2013-01-01

    Several strong conclusions emerge concerning pre-mRNA processing from both old and newer experiments. The RNAPII complex is involved with pre-mRNA processing through binding of processing proteins to the CTD (carboxyl terminal domain) of the largest RNAPII subunit. These interactions are necessary for efficient processing, but whether factor binding to the CTD and delivery to splicing sites is obligatory or facilitatory is unsettled. Capping, addition of an m7Gppp residue (cap) to the initial transcribed residue of a pre-mRNA, occurs within seconds. Splicing of pre-mRNA by spliceosomes at particular sites is most likely committed during transcription by the binding of initiating processing factors and ∼50% of the time is completed in mammalian cells before completion of the primary transcript. This fact has led to an outpouring in the literature about “cotranscriptional splicing.” However splicing requires several minutes for completion and can take longer. The RNAPII complex moves through very long introns and also through regions dense with alternating exons and introns at an average rate of ∼3 kb per min and is, therefore, not likely detained at each splice site for more than a few seconds, if at all. Cleavage of the primary transcript at the 3′ end and polyadenylation occurs within 30 sec or less at recognized polyA sites, and the majority of newly polyadenylated pre-mRNA molecules are much larger than the average mRNA. Finally, it seems quite likely that the nascent RNA most often remains associated with the chromosomal locus being transcribed until processing is complete, possibly acquiring factors related to the transport of the new mRNA to the cytoplasm. PMID:23440351

  7. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity.

    PubMed

    Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan

    2016-06-01

    Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.

  8. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation.

    PubMed

    Buratti, Emanuele; Baralle, Francisco Ernesto

    2010-01-01

    Heterogeneous ribonucleoproteins (hnRNPs) are multifunctional RNA-binding proteins (RBPs) involved in many cellular processes. They participate in most gene expression pathways, from DNA replication and repair to mRNA translation. Among this class of proteins, TDP-43 (and more recently FUS/TLS) have received considerable attention due to their involvement in several neurodegenerative diseases. This finding has prompted many research groups to focus on the gene expression pathways that are regulated by these proteins. The results have uncovered a considerable complexity of TDP-43 and FUS/TLS functions due to the many independent mechanisms by which they may act to influence various cellular processes (such as DNA transcription, pre-mRNA splicing, mRNA export/import). The aim of this chapter will be to review especially some of the novel functions that have been uncovered, such as role in miRNA synthesis, regulation of transcript levels, and potential autoregulatory mechanisms in order to provide the basis for further investigations.

  9. Molecular architecture of the Spire-actin nucleus and its implication for actin filament assembly.

    PubMed

    Sitar, Tomasz; Gallinger, Julia; Ducka, Anna M; Ikonen, Teemu P; Wohlhoefler, Michael; Schmoller, Kurt M; Bausch, Andreas R; Joel, Peteranne; Trybus, Kathleen M; Noegel, Angelika A; Schleicher, Michael; Huber, Robert; Holak, Tad A

    2011-12-06

    The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott-Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire-actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire-actin module. In addition, we find that preformed, isolated Spire-actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs--even a single WH2 repeat--sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem.

  10. Assembly and intracellular delivery of quantum dot-fluorescent protein bioconjugates

    NASA Astrophysics Data System (ADS)

    Medintz, Igor L.; Pons, Thomas; Delehanty, James B.; Susumu, Kimihiro; Dawson, Philip E.; Mattoussi, Hedi

    2008-02-01

    We have previously assembled semiconductor quantum dot (QD)-based fluorescence resonance energy transfer (FRET) sensors that can specifically detect nutrients, explosives or enzymatic activity. These sensors utilized the inherent benefits of QDs as FRET donors to optimize signal transduction. In this report we functionalize QDs with the multi-subunit multi-chromophore b-phycoerythrin (b-PE) light harvesting complex using biotin-Streptavidin binding. FRET and gel electrophoretic analyses were used to characterize and confirm the QD-b-PE self-assembly. We found that immobilizing additional cell-penetrating peptides on the nanocrystal surface along with the b-PE was the key factor allowing the mixed surface QD-cargos to undergo endocytosis and intracellular delivery. Our findings on the intracellular uptake promoted by CPP were compared to those collected using microinjection technique, where QD-assemblies were delivered directly into the cytoplasm; this strategy allows bypassing of the endocytic uptake pathway. Intracellular delivery of multifunctional QD-fluorescent protein assemblies has potential applications for use in protein tracking, sensing and diagnostics.

  11. Quaternary structure of human, Drosophila melanogaster and Caenorhabditis elegans MFE-2 in solution from synchrotron small-angle X-ray scattering.

    PubMed

    Mehtälä, Maija L; Haataja, Tatu J K; Blanchet, Clément E; Hiltunen, J Kalervo; Svergun, Dmitri I; Glumoff, Tuomo

    2013-02-14

    Multifunctional enzyme type 2 (MFE-2) forms part of the fatty acid β-oxidation pathway in peroxisomes. MFE-2s from various species reveal proteins with structurally homologous functional domains assembled in different compilations. Crystal structures of all domain types are known. SAXS data from human, fruit fly and Caenorhabditiselegans MFE-2s and their constituent domains were collected, and both ab initio and rigid body models constructed. Location of the putative substrate binding helper domain SCP-2L (sterol carrier protein 2-like), which is not part of MFE-2 protein in every species and not seen as part of any previous MFE-2 structures, was determined. The obtained models of human and C. elegans MFE-2 lend a direct structural support to the idea of the biological role of SCP-2L. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    PubMed

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  13. Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in Human Protein Disulfide Isomerase.

    PubMed

    Karamzadeh, Razieh; Karimi-Jafari, Mohammad Hossein; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Salekdeh, Ghasem Hosseini; Moosavi-Movahedi, Ali Akbar

    2017-06-16

    The human protein disulfide isomerase (hPDI), is an essential four-domain multifunctional enzyme. As a result of disulfide shuffling in its terminal domains, hPDI exists in two oxidation states with different conformational preferences which are important for substrate binding and functional activities. Here, we address the redox-dependent conformational dynamics of hPDI through molecular dynamics (MD) simulations. Collective domain motions are identified by the principal component analysis of MD trajectories and redox-dependent opening-closing structure variations are highlighted on projected free energy landscapes. Then, important structural features that exhibit considerable differences in dynamics of redox states are extracted by statistical machine learning methods. Mapping the structural variations to time series of residue interaction networks also provides a holistic representation of the dynamical redox differences. With emphasizing on persistent long-lasting interactions, an approach is proposed that compiled these time series networks to a single dynamic residue interaction network (DRIN). Differential comparison of DRIN in oxidized and reduced states reveals chains of residue interactions that represent potential allosteric paths between catalytic and ligand binding sites of hPDI.

  14. Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species.

    PubMed

    Morphew, Russell M; Wilkinson, Toby J; Mackintosh, Neil; Jahndel, Veronika; Paterson, Steve; McVeigh, Paul; Abbas Abidi, Syed M; Saifullah, Khalid; Raman, Muthusamy; Ravikumar, Gopalakrishnan; LaCourse, James; Maule, Aaron; Brophy, Peter M

    2016-09-02

    The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a foodborne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on triclabendazole (TCBZ), and overuse has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty-acid-binding protein (FABP) superfamily has proposed multifunctional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterized FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome, and EST data mining with proteomics and phylogenetics to reveal a liver fluke FABP superfamily of seven clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analyzed using bioinformatics and cloned from both liver flukes. The extended FABP data set will provide new study tools to research the role of FABPs in parasite biology and as therapy targets.

  15. Pyruvate dehydrogenase subunit β of Lactobacillus plantarum is a collagen adhesin involved in biofilm formation.

    PubMed

    Salzillo, Marzia; Vastano, Valeria; Capri, Ugo; Muscariello, Lidia; Marasco, Rosangela

    2017-04-01

    Multi-functional surface proteins have been observed in a variety of pathogenic bacteria, where they mediate host cell adhesion and invasion, as well as in commensal bacterial species, were they mediate positive interaction with the host. Among these proteins, some glycolytic enzymes, expressed on the bacterial cell surface, can bind human extracellular matrix components (ECM). A major target for them is collagen, an abundant glycoprotein of connective tissues. We have previously shown that the enolase EnoA1 of Lactobacillus plantarum, one of the most predominant species in the gut microbiota of healthy individuals, is involved in binding with collagen type I (CnI). In this study, we found that PDHB, a component of the pyruvate dehydrogenase complex, contributes to the L. plantarum LM3 adhesion to CnI. By a cellular adhesion assay to immobilized CnI, we show that LM3-B1 cells, carrying a null mutation in the pdhB gene, bind to CnI - coated surfaces less efficiently than wild-type cells. Moreover, we show that the PDHB-CnI interaction requires a native state for PDHB. We also analyzed the ability to develop biofilm in wild-type and mutant strains and we found that the lack of the PDHB on cell surface generates cells partially impaired in biofilm development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Krüppel-like Factor 3 (KLF3/BKLF) Is Required for Widespread Repression of the Inflammatory Modulator Galectin-3 (Lgals3)*

    PubMed Central

    Knights, Alexander J.; Yik, Jinfen J.; Mat Jusoh, Hanapi; Norton, Laura J.; Funnell, Alister P. W.; Pearson, Richard C. M.; Bell-Anderson, Kim S.; Crossley, Merlin; Quinlan, Kate G. R.

    2016-01-01

    The Lgals3 gene encodes a multifunctional β-galactoside-binding protein, galectin-3. Galectin-3 has been implicated in a broad range of biological processes from chemotaxis and inflammation to fibrosis and apoptosis. The role of galectin-3 as a modulator of inflammation has been studied intensively, and recent evidence suggests that it may serve as a protective factor in obesity and other metabolic disorders. Despite considerable interest in galectin-3, little is known about its physiological regulation at the transcriptional level. Here, using knockout mice, chromatin immunoprecipitations, and cellular and molecular analyses, we show that the zinc finger transcription factor Krüppel-like factor 3 (KLF3) directly represses galectin-3 transcription. We find that galectin-3 is broadly up-regulated in KLF3-deficient mouse tissues, that KLF3 occupies regulatory regions of the Lgals3 gene, and that KLF3 directly binds its cognate elements (CACCC boxes) in the galectin-3 promoter and represses its activation in cellular assays. We also provide mechanistic insights into the regulation of Lgals3, demonstrating that C-terminal binding protein (CtBP) is required to drive optimal KLF3-mediated silencing. These findings help to enhance our understanding of how expression of the inflammatory modulator galectin-3 is controlled, opening up avenues for potential therapeutic interventions in the future. PMID:27226561

  17. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.

    PubMed

    Sautner, Viktor; Friedrich, Mascha Miriam; Lehwess-Litzmann, Anja; Tittmann, Kai

    2015-07-28

    Transaldolase (TAL) and fructose-6-phosphate aldolase (FSA) both belong to the class I aldolase family and share a high degree of structural similarity and sequence identity. The molecular basis of the different reaction specificities (transferase vs aldolase) has remained enigmatic. A notable difference between the active sites is the presence of either a TAL-specific Glu (Gln in FSA) or a FSA-specific Tyr (Phe in TAL). Both residues seem to have analoguous multifunctional catalytic roles but are positioned at different faces of the substrate locale. We have engineered a TAL double variant (Glu to Gln and Phe to Tyr) with an active site resembling that of FSA. This variant indeed exhibits aldolase activity as its main activity with a catalytic efficiency even larger than that of authentic FSA, while TAL activity is greatly impaired. Structural analysis of this variant in complex with the dihydroxyacetone Schiff base formed upon substrate cleavage identifies the introduced Tyr (genuine in FSA) to catalyze protonation of the central carbanion-enamine intermediate as a key determinant of the aldolase reaction. Our studies pinpoint that the Glu in TAL and the Tyr in FSA, although located at different positions at the active site, similarly act as bona fide acid-base catalysts in numerous catalytic steps, including substrate binding, dehydration of the carbinolamine, and substrate cleavage. We propose that the different spatial positions of the multifunctional Glu in TAL and of the corresponding multifunctional Tyr in FSA relative to the substrate locale are critically controlling reaction specificity through either unfavorable (TAL) or favorable (FSA) geometry of proton transfer onto the common carbanion-enamine intermediate. The presence of both potential acid-base residues, Glu and Tyr, in the active site of TAL has deleterious effects on substrate binding and cleavage, most likely resulting from a differently organized H-bonding network. Large-scale motions of the protein associated with opening and closing of the active site that seem to bear relevance for catalysis are observed as covalent intermediates are exclusively observed in the "closed" conformation of the active site. Pre-steady-state kinetics are used to monitor catalytic processes and structural transitions and to refine the kinetic framework of TAL catalysis.

  18. Proteome-wide inference of human endophilin 1-binding peptides.

    PubMed

    Wu, Gang; Zhang, Zeng-Li; Fu, Chun-Jiang; Lv, Feng-Lin; Tian, Fei-Fei

    2012-10-01

    Human endophilin 1 (hEndo1) is a multifunctional protein that was found to bind a wide spectrum of prolinerich endocytic proteins through its Src homology 3 (SH3) domain. In order to elucidate the unknown biological functions of hEndo1, it is essential to find out the cytoplasmic components that hEndo1 recognizes and binds. However, it is too time-consuming and expensive to synthesize all peptide candidates found in the human proteome and to perform hEndo1 SH3-peptide affinity assay to identify the hEndo1-binding partners. In the present work, we describe a structure/ sequence-hybrid approach to perform proteome-wide inference of human hEndo1-binding peptides using the information gained from both the primary sequence of affinity-known peptides and the interaction profile involved in hEndo1 SH3-peptide complex three-dimensional structures. Modeling results show that (i) different residue positions contribute distinctly to peptide affinity and specificity; P-1, P2 and P4 are most important, P1 and P3 are also effective, and P-3, P-2, P0, P5 and P6 are relatively insignificant, (ii) the consensus core PXXP motif is necessary but not sufficient for determining high affinity of peptides, and some other positions must be also essential in the hEndo1 SH3-peptide binding, and (iii) the alternating arrangement of polar and nonpolar amino acids along peptide sequence is critical for the high specificity of peptide recognition by hEndo1 SH3 domain. In addition, we also find that the residue type at a specific position of hEndo1-binding peptides is not stringently invariable; amino acids that possess similar polarity could replace each other without substantial influence on peptide affinity. In this way, hEndo1 presents a broad specificity in the peptide ligands that it binds.

  19. The Rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax.

    PubMed

    Ilkow, Carolina S; Goping, Ing Swie; Hobman, Tom C

    2011-02-01

    Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.

  20. Non-structural protein 1 from avian influenza virus H9N2 is an efficient RNA silencing suppressor with characteristics that differ from those of Tomato bushy stunt virus p19.

    PubMed

    Yu, Ru; Jing, Xiuli; Li, Wenjing; Xu, Jie; Xu, Yang; Geng, Liwei; Zhu, Changxiang; Liu, Hongmei

    2018-06-01

    Non-structural protein 1 (NS1) of influenza A virus is a multifunctional dimeric protein that contains a conserved N-terminal RNA binding domain. Studies have shown that NS1 suppresses RNA silencing and the NS1 proteins encoded by different influenza A virus strains exhibit differential RNA silencing suppression activities. In this study, we showed that the NS1 protein from avian influenza virus (AIV) H9N2 suppressed systemic RNA silencing induced by sense RNA or dsRNA. It resulted in more severe Potato virus X symptom, but could not reverse established systemic green fluorescent protein silencing in Nicotiana benthamiana. In addition, its systemic silencing suppression activity was much weaker than that of p19. The local silencing suppression activity of AIV H9N2 NS1 was most powerful at 7 dpi and was even stronger than that of p19. And the inhibition ability to RNA silencing of NS1 is stronger than that of p19 in human cells. Collectively, these results indicate that AIV H9N2 NS1 is an effective RNA silencing suppressor that likely targets downstream step(s) of dsRNA formation at an early stage in RNA silencing. Although NS1 and p19 both bind siRNA, their suppression mechanisms seem to differ because of differences in their suppression activities at various times post-infiltration and because p19 can reverse established systemic RNA silencing, but NS1 cannot.

  1. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.

    PubMed

    Hämmerle, Hermann; Beich-Frandsen, Mads; Večerek, Branislav; Rajkowitsch, Lukas; Carugo, Oliviero; Djinović-Carugo, Kristina; Bläsi, Udo

    2012-01-01

    In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)(15) and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq(65)) in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions.

  2. Cloning, expression and phylogenetic analysis of Hemolin, from the Chinese oak silkmoth, Antheraea pernyi.

    PubMed

    Li, Wenli; Terenius, Olle; Hirai, Makoto; Nilsson, Anders S; Faye, Ingrid

    2005-01-01

    The Chinese oak silk moth Antheraea pernyi is an important silk producer. To understand microbial resistance of this moth, we cloned Hemolin, encoding a multifunctional immune protein belonging to the immunoglobulin superfamily, and examined the expression in gonads and fat body. The ApHemolin amino acid sequence was compared to other Hemolin sequences in order to predict functional sites. Several sites were conserved; among them a phosphate binding site, which according to 3D structure modelling does not appear in neuroglian, the phylogenetically closest related protein. In addition, two conserved KDG sequences in the C-C' loop of immunoglobulin domains 1 and 3, give rise to gamma-turns, which is a common motif in the C'-C'' loop of the hypervariable region L2 in vertebrate immunoglobulins. The comparisons also show variable regions of specific interest for future studies of hemolin and its interaction with microbial entities.

  3. Star-PAP Control of BIK Expression and Apoptosis Is Regulated by Nuclear PIPKIα and PKCδ Signaling

    PubMed Central

    Li, Weimin; Laishram, Rakesh S.; Ji, Zhe; Barlow, Christy A.; Tian, Bin; Anderson, Richard A.

    2012-01-01

    SUMMARY BIK protein is an initiator of mitochondrial apoptosis and BIK expression is induced by pro-apoptotic signals including DNA damage. Here we demonstrate that 3′-end processing and expression of BIK mRNA are controlled by the nuclear PI4,5P2-regulated poly(A) polymerase Star-PAP downstream of DNA damage. Nuclear PKCδ is a key mediator of apoptosis and DNA damage stimulates PKCδ association with the Star-PAP complex where PKCδ is required for Star-PAP-dependent BIK expression. PKCδ binds the PI4,5P2-generating enzyme PIPKIα, which is essential for PKCδ interaction with the Star-PAP complex and PKCδ activity is directly stimulated by PI4,5P2. Features in the BIK 3′-UTR uniquely define Star-PAP specificity and may block canonical PAP activity toward BIK mRNA. This reveals a nuclear phosphoinositide signaling nexus where PIPKIα, PI4,5P2 and PKCδ regulate Star-PAP control of BIK expression and induction of apoptosis. This pathway is distinct from the Star-PAP-mediated oxidative stress pathway indicating signal-specific regulation of mRNA 3′-end processing. PMID:22244330

  4. Identification and characterization of novel IGFBP5 interacting protein: evidence IGFBP5-IP is a potential regulator of osteoblast cell proliferation

    PubMed Central

    Amaar, Yousef G.; Tapia, Blanca; Chen, Shin-Tai; Baylink, David J.; Mohan, Subburaman

    2010-01-01

    Insulin-like growth factor binding protein-5 (IGFBP5) is a multifunctional protein, which acts not only as a traditional binding protein, but also functions as a growth factor independent of IGFs to stimulate bone formation. It has been predicted that the intrinsic growth factor action of IGFBP5 involves binding of IGFBP5 to a putative receptor to induce downstream signaling pathways and/or nuclear translocation of IGFBP5 to influence transcription of genes involved in osteoblast cell proliferation/differentiation. Our study indentified proteins that bound to IGFBP5 using IGFBP5 as bait in a yeast two-hybrid screen of the U2 human osteosarcoma cell cDNA library. One of the clones that interacted strongly with the bait under high-stringency conditions corresponded to a novel IGFBP5 interacting protein (IGFBP5-IP) encoded by a gene that resides in mouse chromosome 10. The interaction between IGFBP5-IP and IGFBP5 is confirmed by in vitro coimmunoprecipitation studies that used pFlag and IGFBP5 polyclonal antibody, and cell lysates overexpressing both IGFBP5-IP and IGFBP5. Northern blot and RT-PCR analysis showed that the IGFBP-IP is expressed in both untransformed normal human osteoblasts and in osteosarcoma cell lines, which are known to produce IGFBP5. To determine the roles of IGFBP5-IP, we evaluated the effect of blocking the expression of IGFBP5-IP on osteoblast proliferation. We found that using a IGFBP5-IP-specific small interfering-hairpin plasmid resulted in a decrease in both basal and IGFBP5-induced osteoblast cell proliferation. On the basis of these findings, we predict that IGFBP5-IP may act as intracellular mediator of growth promoting actions of IGFBP5 and perhaps other osteoregulatory agents in bone cells. PMID:16269403

  5. Baculovirus-expressed vitamin D-binding protein-macrophage activating factor (DBP-maf) activates osteoclasts and binding of 25-hydroxyvitamin D(3) does not influence this activity.

    PubMed

    Swamy, N; Ghosh, S; Schneider, G B; Ray, R

    2001-01-01

    Vitamin D-binding protein (DBP) is a multi-functional serum protein that is converted to vitamin D-binding protein-macrophage activating factor (DBP-maf) by post-translational modification. DBP-maf is a new cytokine that mediates bone resorption by activating osteoclasts, which are responsible for resorption of bone. Defective osteoclast activation leads to disorders like osteopetrosis, characterized by excessive accumulation of bone mass. Previous studies demonstrated that two nonallelic mutations in the rat with osteopetrosis have independent defects in the cascade involved in the conversion of DBP to DBP-maf. The skeletal defects associated with osteopetrosis are corrected in these mutants with in vivo DBP-maf treatment. This study evaluates the effects of various forms of DBP-maf (native, recombinant, and 25-hydroxyvitamin D(3) bound) on osteoclast function in vitro in order to determine some of the structural requirements of this protein that relate to bone resorbing activities. Osteoclast activity was determined by evaluating pit formation using osteoclasts, isolated from the long bones of newborn rats, incubated on calcium phosphate coated, thin film, Ostologic MultiTest Slides. Incubation of osteoclasts with ex vivo generated native DBP-maf resulted in a dose dependent, statistically significant, activation of the osteoclasts. The activation was similar whether or not the vitamin D binding site of the DBP-maf was occupied. The level of activity in response to DBP-maf was greater than that elicited by optimal doses of other known stimulators (PTH and 1,25(OH(2)D(3)) of osteoclast function. Furthermore, another potent macrophage activating factor, interferon--gamma, had no effect on osteoclast activity. The activated form of a full length recombinant DBP, expressed in E. coli showed no activity in the in vitro assay. Contrary to this finding, baculovirus-expressed recombinant DBP-maf demonstrated significant osteoclast activating activity. The normal conversion of DBP to DBP-maf requires the selective removal of galactose and sialic acid from the third domain of the protein. Hence, the differential effects of the two recombinant forms of DBP-maf is most likely related to glycosylation; E. coli expressed recombinant DBP is non-glycosylated, whereas the baculovirus expressed form is glycosylated. These data support the essential role of glycosylation for the osteoclast activating property of DBP-maf. Copyright 2001 Wiley-Liss, Inc.

  6. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    PubMed

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  7. Comparative Life Cycle Transcriptomics Revises Leishmania mexicana Genome Annotation and Links a Chromosome Duplication with Parasitism of Vertebrates

    PubMed Central

    Fiebig, Michael; Kelly, Steven; Gluenz, Eva

    2015-01-01

    Leishmania spp. are protozoan parasites that have two principal life cycle stages: the motile promastigote forms that live in the alimentary tract of the sandfly and the amastigote forms, which are adapted to survive and replicate in the harsh conditions of the phagolysosome of mammalian macrophages. Here, we used Illumina sequencing of poly-A selected RNA to characterise and compare the transcriptomes of L. mexicana promastigotes, axenic amastigotes and intracellular amastigotes. These data allowed the production of the first transcriptome evidence-based annotation of gene models for this species, including genome-wide mapping of trans-splice sites and poly-A addition sites. The revised genome annotation encompassed 9,169 protein-coding genes including 936 novel genes as well as modifications to previously existing gene models. Comparative analysis of gene expression across promastigote and amastigote forms revealed that 3,832 genes are differentially expressed between promastigotes and intracellular amastigotes. A large proportion of genes that were downregulated during differentiation to amastigotes were associated with the function of the motile flagellum. In contrast, those genes that were upregulated included cell surface proteins, transporters, peptidases and many uncharacterized genes, including 293 of the 936 novel genes. Genome-wide distribution analysis of the differentially expressed genes revealed that the tetraploid chromosome 30 is highly enriched for genes that were upregulated in amastigotes, providing the first evidence of a link between this whole chromosome duplication event and adaptation to the vertebrate host in this group. Peptide evidence for 42 proteins encoded by novel transcripts supports the idea of an as yet uncharacterised set of small proteins in Leishmania spp. with possible implications for host-pathogen interactions. PMID:26452044

  8. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing,more » and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.« less

  9. Protein-Based Nanofabrics for Multifunctional Air Filtering

    NASA Astrophysics Data System (ADS)

    Souzandeh, Hamid

    With the fast development of economics and population, air pollution is getting worse and becomes a great concern worldwide. The release of chemicals, particulates and biological materials into air can lead to various diseases or discomfort to humans and other living organisms, alongside other serious impacts on the environment. Therefore, improving indoor air quality using various air filters is in critical need because people stay inside buildings most time of the day. However, current air filters using traditional polymers can only remove particles from the polluted air and disposing the huge amount of used air filters can cause serious secondary environmental pollution. Therefore, development of multi-functional air filter materials with environmental friendliness is significant. For this purpose, we developed "green" protein-based multifunctional air-filtering materials. The outstanding performance of the green materials in removal of multiple species of pollutants, including particulate matter, toxic chemicals, and biological hazards, simultaneously, will greatly facilitate the development of the next-generation air-filtration systems. First and foremost, we developed high-performance protein-based nanofabric air-filter mats. It was found that the protein-nanofabrics possess high-efficiency multifunctional air-filtering properties for both particles and various species of chemical gases. Then, the high-performance natural protein-based nanofabrics were promoted both mechanically and functionally by a textured cellulose paper towel. It is interestingly discovered that the textured cellulose paper towel not only can act as a flexible mechanical support, but also a type of airflow regulator which can improve the pollutant-nanofilter interactions. Furthermore, the protein-based nanofabrics were crosslinked in order to enhance the environmental-stability of the filters. It was found that the crosslinked protein-nanofabrics can significantly improve the structure stability against different moisture levels and temperatures, while maintain the multifunctional filtration performance. Moreover, it was demonstrated that the crosslinked protein-nanomaterials also possess antibacterial properties against the selected gram-negative and gram-positive bacteria. This provides a cost-effective solution for advanced "green" nanomaterials with excellent performance in both filtration functions and structure stability under varying environment. This work indicates that protein-based air-filters are promising "green" air-filtering materials for next-generation air-filtration systems.

  10. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide

    NASA Astrophysics Data System (ADS)

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul

    2013-10-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT cytotoxicity data for endocytic inhibitors, size and morphology characterizations of hydrogel PAA nanocarriers, and optimization data for nanocarrier surface functionalization with PEG molecules and F3 peptides. See DOI: 10.1039/c3nr00908d

  11. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids

    PubMed Central

    Campanacci, Valérie; Bishop, Russell E.; Blangy, Stéphanie; Tegoni, Mariella; Cambillau, Christian

    2016-01-01

    Lipocalins, a widespread multifunctional family of small proteins (15–25 kDa) have been first described in eukaryotes and more recently in Gram-negative bacteria. Bacterial lipocalins belonging to class I are outer membrane lipoproteins, among which Blc from E. coli is the better studied. Blc is expressed under conditions of starvation and high osmolarity, conditions known to exert stress on the cell envelope. The structure of Blc that we have previously solved (V. Campanacci, D. Nurizzo, S. Spinelli, C. Valencia, M. Tegoni, C. Cambillau, FEBS Lett. 562 (2004) 183–188.) suggested its possible role in binding fatty acids or phospholipids. Both physiological and structural data on Blc, therefore, point to a role in storage or transport of lipids necessary for membrane maintenance. In order to further document this hypothesis for Blc function, we have performed binding studies using fluorescence quenching experiments. Our results indicate that dimeric Blc binds fatty acids and phospholipids in a micromolar Kd range. The crystal structure of Blc with vaccenic acid, an unsaturated C18 fatty acid, reveals that the binding site spans across the Blc dimer, opposite to its membrane anchored face. An exposed unfilled pocket seemingly suited to bind a polar group attached to the fatty acid prompted us to investigate lyso-phospholipids, which were found to bind in a nanomolar Kd range. We discuss these findings in terms of a potential role for Blc in the metabolism of lysophospholipids generated in the bacterial outer membrane. PMID:16920109

  12. Simulation studies of DNA at the nanoscale: Interactions with proteins, polycations, and surfaces

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.

    Understanding the nanoscale interactions of DNA, a multifunctional biopolymer with sequence-dependent properties, with other biological and synthetic substrates and molecules is essential to advancing these technologies. This doctoral thesis research is aimed at understanding the thermodynamics and molecular-level structure when DNA interacts with proteins, polycations, and functionalized surfaces. First, we investigate the ability of a DNA damage recognition protein (HMGB1a) to bind to anti-cancer drug-induced DNA damage, seeking to explain how HMGB1a differentiates between the drugs in vivo. Using atomistic molecular dynamics simulations, we show that the structure of the drug-DNA molecule exhibits drug- and base sequence-dependence that explains some of the experimentally observed differential recognition of the drugs in various sequence contexts. Then, we show how steric hindrance from the drug decreases the deformability of the drug-DNA molecule, which decreases recognition by the protein, a concept that can be applied to rational drug design. Second, we study how polycation architecture and chemistry affect polycation-DNA binding so as to design optimal polycations for high efficiency gene (DNA) delivery. Using a multiscale computational approach involving atomistic and coarse-grained simulations, we examine how rearranging polylysine from a linear to a grafted architecture, and several aspects of the grafted architecture, affect polycation-DNA binding and the structure of polycation-DNA complexes. Next, going beyond lysine we examine how oligopeptide chemistry and sequence in the grafted architecture affects polycation-DNA binding and find that strategic placement of hydrophobic peptides might be used to tailor binding strength. Third, we study the adsorption and conformations of single-stranded DNA (an amphiphilic biopolymer) on model hydrophilic and hydrophobic surfaces. Short ssDNA oligomers adsorb to both surfaces with similar strength, with the strength of adsorption to the hydrophobic surface depending on the composition of the DNA strands, i.e. purine or pyrimidine bases. Additionally, DNA-surface and DNA-water interactions near the surfaces govern the adsorption. For longer ssDNA oligomers, the effects of surface chemistry and temperature on ssDNA conformations are rather small, but either the hydrophilic surface or increased temperature favor slightly more compact conformations due to energetic and entropic effects, respectively.

  13. Hsp-90 and the biology of nematodes

    PubMed Central

    Him, Nik AIIN; Gillan, Victoria; Emes, Richard D; Maitland, Kirsty; Devaney, Eileen

    2009-01-01

    Background Hsp-90 from the free-living nematode Caenorhabditis elegans is unique in that it fails to bind to the specific Hsp-90 inhibitor, geldanamycin (GA). Here we surveyed 24 different free-living or parasitic nematodes with the aim of determining whether C. elegans Hsp-90 was the exception or the norm amongst the nematodes. We combined these data with codon evolution models in an attempt to identify whether hsp-90 from GA-binding and non-binding species has evolved under different evolutionary constraints. Results We show that GA-binding is associated with life history: free-living nematodes and those parasitic species with free-living larval stages failed to bind GA. In contrast, obligate parasites and those worms in which the free-living stage in the environment is enclosed within a resistant egg, possess a GA-binding Hsp-90. We analysed Hsp-90 sequences from fifteen nematode species to determine whether nematode hsp-90s have undergone adaptive evolution that influences GA-binding. Our data provide evidence of rapid diversifying selection in the evolution of the hsp-90 gene along three separate lineages, and identified a number of residues showing significant evidence of adaptive evolution. However, we were unable to prove that the selection observed is correlated with the ability to bind geldanamycin or not. Conclusion Hsp-90 is a multi-functional protein and the rapid evolution of the hsp-90 gene presumably correlates with other key cellular functions. Factors other than primary amino acid sequence may influence the ability of Hsp-90 to bind to geldanamycin. PMID:19849843

  14. E6-associated protein is required for human papillomavirus type 16 E6 to cause cervical cancer in mice.

    PubMed

    Shai, Anny; Pitot, Henry C; Lambert, Paul F

    2010-06-15

    High-risk human papillomaviruses (HPV) cause certain anogenital and head and neck cancers. E6, one of three potent HPV oncogenes that contribute to the development of these malignancies, is a multifunctional protein with many biochemical activities. Among these activities are its ability to bind and inactivate the cellular tumor suppressor p53, induce expression of telomerase, and bind to various other proteins, including Bak, E6BP1, and E6TP1, and proteins that contain PDZ domains, such as hScrib and hDlg. Many of these activities are thought to contribute to the role of E6 in carcinogenesis. The interaction of E6 with many of these cellular proteins, including p53, leads to their destabilization. This property is mediated at least in part through the ability of E6 to recruit the ubiquitin ligase E6-associated protein (E6AP) into complexes with these cellular proteins, resulting in their ubiquitin-mediated degradation by the proteasome. In this study, we address the requirement for E6AP in mediating acute and oncogenic phenotypes of E6, including induction of epithelial hyperplasia, abrogation of DNA damage response, and induction of cervical cancer. Loss of E6AP had no discernible effect on the ability of E6 to induce hyperplasia or abrogate DNA damage responses, akin to what we had earlier observed in the mouse epidermis. Nevertheless, in cervical carcinogenesis studies, there was a complete loss of the oncogenic potential of E6 in mice nulligenic for E6AP. Thus, E6AP is absolutely required for E6 to cause cervical cancer.

  15. Amphipathic helical peptides hamper protein-protein interactions of the intrinsically disordered chromatin nuclear protein 1 (NUPR1).

    PubMed

    Santofimia-Castaño, Patricia; Rizzuti, Bruno; Abián, Olga; Velázquez-Campoy, Adrián; Iovanna, Juan L; Neira, José L

    2018-06-01

    NUPR1 is a multifunctional intrinsically disordered protein (IDP) involved, among other functions, in chromatin remodelling, and development of pancreatic ductal adenocarcinoma (PDAC). It interacts with several biomolecules through hydrophobic patches around residues Ala33 and Thr68. The drug trifluoperazine (TFP), which hampers PDAC development in xenografted mice, also binds to those regions. Because of the large size of the hot-spot interface of NUPR1, small molecules could not be adequate to modulate its functions. We explored how amphipathic helical-designed peptides were capable of interacting with wild-type NUPR1 and the Thr68Gln mutant, inhibiting the interaction with NUPR1 protein partners. We used in vitro biophysical techniques (fluorescence, circular dichroism (CD), nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC)), in silico studies (docking and molecular dynamics (MD)), and in cellulo protein ligation assays (PLAs) to study the interaction. Peptide dissociation constants towards wild-type NUPR1 were ~ 3 μM, whereas no interaction was observed with the Thr68Gln mutant. Peptides interacted with wild-type NUPR1 residues around Ala33 and residues at the C terminus, as shown by NMR. The computational results clarified the main determinants of the interactions, providing a mechanism for the ligand-capture that explains why peptide binding was not observed for Thr68Gln mutant. Finally, the in cellulo assays indicated that two out of four peptides inhibited the interaction of NUPR1 with the C-terminal region of the Polycomb RING protein 1 (C-RING1B). Designed peptides can be used as lead compounds to inhibit NUPR1 interactions. Peptides may be exploited as drugs to target IDPs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. DNA binding of the p21 repressor ZBTB2 is inhibited by cytosine hydroxymethylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafaye, Céline; Barbier, Ewa; Miscioscia, Audrey

    2014-03-28

    Highlights: • 5-hmC epigenetic modification is measurable in HeLa, SH-SY5Y and UT7-MPL cell lines. • ZBTB2 binds to DNA probes containing 5-mC but not to sequences containing 5-hmC. • This differential binding is verified with DNA sequences involved in p21 regulation. - Abstract: Recent studies have demonstrated that the modified base 5-hydroxymethylcytosine (5-hmC) is detectable at various rates in DNA extracted from human tissues. This oxidative product of 5-methylcytosine (5-mC) constitutes a new and important actor of epigenetic mechanisms. We designed a DNA pull down assay to trap and identify nuclear proteins bound to 5-hmC and/or 5-mC. We applied thismore » strategy to three cancerous cell lines (HeLa, SH-SY5Y and UT7-MPL) in which we also measured 5-mC and 5-hmC levels by HPLC-MS/MS. We found that the putative oncoprotein Zinc finger and BTB domain-containing protein 2 (ZBTB2) is associated with methylated DNA sequences and that this interaction is inhibited by the presence of 5-hmC replacing 5-mC. As published data mention ZBTB2 recognition of p21 regulating sequences, we verified that this sequence specific binding was also alleviated by 5-hmC. ZBTB2 being considered as a multifunctional cell proliferation activator, notably through p21 repression, this work points out new epigenetic processes potentially involved in carcinogenesis.« less

  17. Cell Shape Change by Drebrin.

    PubMed

    Hayashi, Kensuke

    2017-01-01

    Drebrin is localized in actin-rich regions of neuronal and non-neuronal cells. In mature neurons, its localization is strictly restricted to the postsynaptic sites. In order to understand the function of drebrin in cells, many studies have been performed to examine the effect of overexpression or knocking down of drebrin in various cell types, including neurons, myoblasts, kidney cells, and intestinal epithelial cells. In most cases alteration of cell shape and impairment or facilitation of actin-based activities of these cells were observed. Interestingly, overexpression of drebrin in matured neurons results in the alteration in dendritic spine morphology. Further studies have shown alteration in the localization of postsynaptic receptors and even changes in synaptic transmission caused by drebrin overexpression or depletion in neurons. These drebrin's effects are thought to come from drebrin's actin-cross-linking activity or competitive binding to actin against tropomyosin, fascin, and α-actinin. Furthermore, drebrin binds to various molecules, such as homer, EB3, and cell-cell junctional proteins, indicating that drebrin is a multifunctional cytoskeletal regulator.

  18. Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2

    PubMed Central

    Ruane, Peter T.; Gumy, Laura F.; Bola, Becky; Anderson, Beverley; Wozniak, Marcin J.; Hoogenraad, Casper C.; Allan, Victoria J.

    2016-01-01

    Microtubules and their associated proteins (MAPs) underpin the polarity of specialised cells. Adenomatous polyposis coli (APC) is one such MAP with a multifunctional agenda that requires precise intracellular localisations. Although APC has been found to associate with kinesin-2 subfamily members, the exact mechanism for the peripheral localization of APC remains unclear. Here we show that the heavy chain of kinesin-1 directly interacts with the APC C-terminus, contributing to the peripheral localisation of APC in fibroblasts. In rat hippocampal neurons the kinesin-1 binding domain of APC is required for its axon tip enrichment. Moreover, we demonstrate that APC requires interactions with both kinesin-2 and kinesin-1 for this localisation. Underlining the importance of the kinesin-1 association, neurons expressing APC lacking kinesin-1-binding domain have shorter axons. The identification of this novel kinesin-1-APC interaction highlights the complexity and significance of APC localisation in neurons. PMID:27272132

  19. Cellular localization of CoPK12, a Ca(2+)/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea, is regulated by N-myristoylation.

    PubMed

    Kaneko, Keisuke; Tabuchi, Mitsuaki; Sueyoshi, Noriyuki; Ishida, Atsuhiko; Utsumi, Toshihiko; Kameshita, Isamu

    2014-07-01

    Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) have been extensively studied in mammals, whereas fungus CaMKs still remain largely uncharacterized. We previously obtained CaMK homolog in Coprinopsis cinerea, designated CoPK12, and revealed its unique catalytic properties in comparison with the mammalian CaMKs. To further clarify the regulatory mechanisms of CoPK12, we investigated post-translational modification and subcellular localization of CoPK12 in this study. In C. cinerea, full-length CoPK12 (65 kDa) was fractionated in the membrane fraction, while the catalytically active fragment (46 kDa) of CoPK12 was solely detected in the soluble fraction by differential centrifugation. Expressed CoPK12-GFP was localized on the cytoplasmic and vacuolar membranes as visualized by green fluorescence in yeast cells. In vitro N-myristoylation assay revealed that CoPK12 is N-myristoylated at Gly-2 in the N-terminal position. Furthermore, calmodulin could bind not only to CaM-binding domain but also to the N-terminal myristoyl moiety of CoPK12. These results, taken together, suggest that the cellular localization and function of CoPK12 are regulated by protein N-myristoylation and limited proteolysis. © The Authors 2014. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  20. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    PubMed

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves.

  1. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    PubMed Central

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-01-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  2. Vitamin D binding protein as a serum biomarker of Alzheimer's disease.

    PubMed

    Bishnoi, Ram J; Palmer, Raymond F; Royall, Donald R

    2015-01-01

    Vitamin D binding protein (VDBP), a multifunctional protein, has been found to be elevated in the cerebrospinal fluid (CSF) of neurodegenerative disorder cases, implicating it in the pathogenesis of Alzheimer's disease (AD). However, the contribution of VDBP to AD has not been fully explored. We used a Multiple Indicators Multiple Causes (MIMIC) approach to examine the relationship between serum VDBP levels and cognitive performance in a well characterized AD cohort, the Texas Alzheimer's Research and Care Consortium (TARCC). Instead of categorical diagnoses, we used a latent dementia phenotype (d), which has been validated in several prior studies using this dataset. We found that serum VDBP levels are significantly positively associated with d scores, which in turn are inversely related to cognitive performance. This suggests that d mediates the adverse effects of serum VDB on cognition and therefore that its effects are specifically dementing. d scores are also specifically related to default mode network (DMN) structure. VDBP acts as an amyloid-β (Aβ) scavenger, and Aβ deposition in the DMN is seen in the pre-clinical stages of AD. We speculate then that serum effects of VDBP are mediated through changes in DMN structure or function, most probably via Aβ. Aβ affects the DMN early in the course of AD. Therefore, raised serum VDBP levels may be a useful indicator of future dementia and/or dementia conversion. This might be confirmed through longitudinal analysis of TARCC data.

  3. Equivalent Colorings with "Maple"

    ERIC Educational Resources Information Center

    Cecil, David R.; Wang, Rongdong

    2005-01-01

    Many counting problems can be modeled as "colorings" and solved by considering symmetries and Polya's cycle index polynomial. This paper presents a "Maple 7" program link http://users.tamuk.edu/kfdrc00/ that, given Polya's cycle index polynomial, determines all possible associated colorings and their partitioning into equivalence classes. These…

  4. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16.

    PubMed

    Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter

    2011-11-01

    A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1. © 2011 Blackwell Publishing Ltd.

  5. Distinct solvent- and temperature-dependent packing arrangements of anti-parallel β-sheet polyalanines studied with solid-state 13C NMR and MD simulation.

    PubMed

    Kametani, Shunsuke; Tasei, Yugo; Nishimura, Akio; Asakura, Tetsuo

    2017-08-09

    Polyalanine (polyA) sequences are well known as the simplest sequence that naturally forms anti-parallel β-sheets and constitute a key element in the structure of spider and wild silkworm silk fibers. We have carried out a systematic analysis of the packing of anti-parallel β-sheets for (Ala) n , n = 5, 6, 7 and 12, using primarily 13 C solid-state NMR and MD simulation. HFIP and TFA are frequently used as the dope solvents for recombinant silks, and polyA was solidified from both HFIP and TFA solutions by drying. An analysis of Ala Cβ peaks in the 13 C CP/MAS NMR spectra indicated that polyA from HFIP was mainly rectangular but polyA from TFA was mainly staggered. The transition from the rectangular to the staggered arrangement in (Ala) 6 was observed for the first time from the change in the Ala Cβ peak through heat treatment at 200 °C for 4 h. The removal of the bound water was confirmed by thermal analysis. This transition could be reproduced by MD simulation of (Ala) 6 molecules at 200 °C after removal of the bound water molecules. In this way, the origin of the stability of the different packing arrangements of polyA was clarified.

  6. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+ selection versus rRNA depletion.

    PubMed

    Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David

    2018-03-19

    To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.

  7. Identification of the cAMP response element that controls transcriptional activation of the insulin-like growth factor-I gene by prostaglandin E2 in osteoblasts

    NASA Technical Reports Server (NTRS)

    Thomas, M. J.; Umayahara, Y.; Shu, H.; Centrella, M.; Rotwein, P.; McCarthy, T. L.

    1996-01-01

    Insulin-like growth factor-I (IGF-I), a multifunctional growth factor, plays a key role in skeletal growth and can enhance bone cell replication and differentiation. We previously showed that prostaglandin E2 (PGE2) and other agents that increase cAMP activated IGF-I gene transcription in primary rat osteoblast cultures through promoter 1 (P1), the major IGF-I promoter, and found that transcriptional induction was mediated by protein kinase A. We now have identified a short segment of P1 that is essential for full hormonal regulation and have characterized inducible DNA-protein interactions involving this site. Transient transfections of IGF-I P1 reporter genes into primary rat osteoblasts showed that the 328-base pair untranslated region of exon 1 was required for a full 5.3-fold response to PGE2; mutation in a previously footprinted site, HS3D (base pairs +193 to +215), reduced induction by 65%. PGE2 stimulated nuclear protein binding to HS3D. Binding, as determined by gel mobility shift assay, was not seen in nuclear extracts from untreated osteoblast cultures, was detected within 2 h of PGE2 treatment, and was maximal by 4 h. This DNA-protein interaction was not observed in cytoplasmic extracts from PGE2-treated cultures, indicating nuclear localization of the protein kinase A-activated factor(s). Activation of this factor was not blocked by cycloheximide (Chx), and Chx did not impair stimulation of IGF-I gene expression by PGE2. In contrast, binding to a consensus cAMP response element (CRE; 5'-TGACGTCA-3') from the rat somatostatin gene was not modulated by PGE2 or Chx. Competition gel mobility shift analysis using mutated DNA probes identified 5'-CGCAATCG-3' as the minimal sequence needed for inducible binding. All modified IGF-I P1 promoterreporter genes with mutations within this CRE sequence also showed a diminished functional response to PGE2. These results identify the CRE within the 5'-untranslated region of IGF-I exon 1 that is required for hormonal activation of IGF-I gene transcription by cAMP in osteoblasts.

  8. Teaching and Learning. A Problem-Solving Focus.

    ERIC Educational Resources Information Center

    Curcio, Frances R., Ed.

    This book is dedicated to George Polya, who focused on problem solving as the means for teaching and learning mathematics. The first chapter is a reprint of his article "On Learning, Teaching, and Learning Teaching." Then, G. L. Alexanderson paints a portrait of "George Polya, Teacher," including some anecdotes that exemplify…

  9. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding

    PubMed Central

    Wu, Dan; Peng, Xuan; Liu, Xu; Zhang, Jiaojiao; Zhao, Junfeng; Chen, Kunming; Zhao, Liqun

    2016-01-01

    Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals. PMID:27684709

  10. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of RNA-Binding Protein FXR1.

    PubMed

    Chu, Miensheng; Novak, Stefanie Mares; Cover, Cathleen; Wang, Anne A; Chinyere, Ikeotunye Royal; Juneman, Elizabeth B; Zarnescu, Daniela C; Wong, Pak Kin; Gregorio, Carol C

    2018-02-06

    Gap junction remodeling is well established as a consistent feature of human heart disease involving spontaneous ventricular arrhythmia. The mechanisms responsible for gap junction remodeling that include alterations in the distribution of, and protein expression within, gap junctions are still debated. Studies reveal that multiple transcriptional and posttranscriptional regulatory pathways are triggered in response to cardiac disease, such as those involving RNA-binding proteins. The expression levels of FXR1 (fragile X mental retardation autosomal homolog 1), an RNA-binding protein, are critical to maintain proper cardiac muscle function; however, the connection between FXR1 and disease is not clear. To identify the mechanisms regulating gap junction remodeling in cardiac disease, we sought to identify the functional properties of FXR1 expression, direct targets of FXR1 in human left ventricle dilated cardiomyopathy (DCM) biopsy samples and mouse models of DCM through BioID proximity assay and RNA immunoprecipitation, how FXR1 regulates its targets through RNA stability and luciferase assays, and functional consequences of altering the levels of this important RNA-binding protein through the analysis of cardiac-specific FXR1 knockout mice and mice injected with 3xMyc-FXR1 adeno-associated virus. FXR1 expression is significantly increased in tissue samples from human and mouse models of DCM via Western blot analysis. FXR1 associates with intercalated discs, and integral gap junction proteins Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA targets of FXR1 by using a BioID proximity assay and RNA immunoprecipitation. Our findings show that FXR1 is a multifunctional protein involved in translational regulation and stabilization of its mRNA targets in heart muscle. In addition, introduction of 3xMyc-FXR1 via adeno-associated virus into mice leads to the redistribution of gap junctions and promotes ventricular tachycardia, showing the functional significance of FXR1 upregulation observed in DCM. In DCM, increased FXR1 expression appears to play an important role in disease progression by regulating gap junction remodeling. Together this study provides a novel function of FXR1, namely, that it directly regulates major gap junction components, contributing to proper cell-cell communication in the heart. © 2017 American Heart Association, Inc.

  11. SOS response in bacteria: Inhibitory activity of lichen secondary metabolites against Escherichia coli RecA protein.

    PubMed

    Bellio, Pierangelo; Di Pietro, Letizia; Mancini, Alisia; Piovano, Marisa; Nicoletti, Marcello; Brisdelli, Fabrizia; Tondi, Donatella; Cendron, Laura; Franceschini, Nicola; Amicosante, Gianfranco; Perilli, Mariagrazia; Celenza, Giuseppe

    2017-06-15

    RecA is a bacterial multifunctional protein essential to genetic recombination, error-prone replicative bypass of DNA damages and regulation of SOS response. The activation of bacterial SOS response is directly related to the development of intrinsic and/or acquired resistance to antimicrobials. Although recent studies directed towards RecA inactivation via ATP binding inhibition described a variety of micromolar affinity ligands, inhibitors of the DNA binding site are still unknown. Twenty-seven secondary metabolites classified as anthraquinones, depsides, depsidones, dibenzofurans, diphenyl-butenolides, paraconic acids, pseudo-depsidones, triterpenes and xanthones, were investigated for their ability to inhibit RecA from Escherichia coli. They were isolated in various Chilean regions from 14 families and 19 genera of lichens. The ATP hydrolytic activity of RecA was quantified detecting the generation of free phosphate in solution. The percentage of inhibition was calculated fixing at 100µM the concentration of the compounds. Deeper investigations were reserved to those compounds showing an inhibition higher than 80%. To clarify the mechanism of inhibition, the semi-log plot of the percentage of inhibition vs. ATP and vs. ssDNA, was evaluated. Only nine compounds showed a percentage of RecA inhibition higher than 80% (divaricatic, perlatolic, alpha-collatolic, lobaric, lichesterinic, protolichesterinic, epiphorellic acids, sphaerophorin and tumidulin). The half-inhibitory concentrations (IC 50 ) calculated for these compounds were ranging from 14.2µM for protolichesterinic acid to 42.6µM for sphaerophorin. Investigations on the mechanism of inhibition showed that all compounds behaved as uncompetitive inhibitors for ATP binding site, with the exception of epiphorellic acid which clearly acted as non-competitive inhibitor of the ATP site. Further investigations demonstrated that epiphorellic acid competitively binds the ssDNA binding site. Kinetic data were confirmed by molecular modelling binding predictions which shows that epiphorellic acid is expected to bind the ssDNA site into the L2 loop of RecA protein. In this paper the first RecA ssDNA binding site ligand is described. Our study sets epiphorellic acid as a promising hit for the development of more effective RecA inhibitors. In our drug discovery approach, natural products in general and lichen in particular, represent a successful source of active ligands and structural diversity. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Molecular Investigations of the Structure and Function of the Protein Phosphatase 1:Spinophilin:Inhibitor-2 Heterotrimeric Complex

    PubMed Central

    Dancheck, Barbara; Ragusa, Michael J.; Allaire, Marc; Nairn, Angus C.; Page, Rebecca; Peti, Wolfgang

    2011-01-01

    Regulation of the major ser/thr phosphatase Protein Phosphatase 1 (PP1) is controlled by a diverse array of targeting and inhibitor proteins. Though many PP1 regulatory proteins share at least one PP1 binding motif, usually the RVxF motif, it was recently discovered that certain pairs of targeting and inhibitor proteins bind PP1 simultaneously to form PP1 heterotrimeric complexes. To date, structural information for these heterotrimeric complexes, and, in turn, how they direct PP1 activity is entirely lacking. Using a combination of NMR spectroscopy, biochemistry and small angle X-ray scattering (SAXS), we show that major structural rearrangements in both spinophilin (targeting) and Inhibitor-2 (I-2, inhibitor) are essential for the formation of the heterotrimeric PP1:spinophilin:I-2 (PSI) complex. The RVxF motif of I-2 is released from PP1 during the formation of PSI, making the less prevalent SILK motif of I-2 essential for complex stability. The release of the I-2 RVxF motif allows for enhanced flexibility of both I-2 and spinophilin in the heterotrimeric complex. In addition, we used inductively coupled plasma atomic emission spectroscopy to show that PP1 contains two metals in both heterodimeric complexes (PP1:spinophilin and PP1:I2) and PSI, demonstrating that PSI retains the biochemical characteristics of the PP1:I2 holoenzyme. Finally, we combined the NMR and biochemical data with SAXS and molecular dynamics simulations to generate a structural model of the full heterotrimeric PSI complex. Collectively, these data reveal the molecular events that enable PP1 heterotrimeric complexes to exploit both the targeting and inhibitory features of the PP1-regulatory proteins to form multi-functional PP1 holoenzymes. PMID:21218781

  13. Statins Increase Plasminogen Activator Inhibitor Type 1 Gene Transcription through a Pregnane X Receptor Regulated Element

    PubMed Central

    Stanley, Frederick M.; Linder, Kathryn M.; Cardozo, Timothy J.

    2015-01-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a multifunctional protein that has important roles in inflammation and wound healing. Its aberrant regulation may contribute to many disease processes such as heart disease. The PAI-1 promoter is responsive to multiple inputs including cytokines, growth factors, steroids and oxidative stress. The statin drugs, atorvastatin, mevastatin and rosuvastatin, increased basal and stimulated expression of the PAI-1 promoter 3-fold. A statin-responsive, nuclear hormone response element was previously identified in the PAI-1 promoter, but it was incompletely characterized. We characterized this direct repeat (DR) of AGGTCA with a 3-nucleotide spacer at -269/-255 using deletion and directed mutagenesis. Deletion or mutation of this element increased basal transcription from the promoter suggesting that it repressed PAI-1 transcription in the unliganded state. The half-site spacing and the ligand specificity suggested that this might be a pregnane X receptor (PXR) responsive element. Computational molecular docking showed that atorvastatin, mevastatin and rosuvastatin were structurally compatible with the PXR ligand-binding pocket in its agonist conformation. Experiments with Gal4 DNA binding domain fusion proteins showed that Gal4-PXR was activated by statins while other DR + 3 binding nuclear receptor fusions were not. Overexpression of PXR further enhanced PAI-1 transcription in response to statins. Finally, ChIP experiments using Halo-tagged PXR and RXR demonstrated that both components of the PXR-RXR heterodimer bound to this region of the PAI-1 promoter. PMID:26379245

  14. Multifunctional G-Rich and RRM-Containing Domains of TbRGG2 Perform Separate yet Essential Functions in Trypanosome RNA Editing

    PubMed Central

    Foda, Bardees M.; Downey, Kurtis M.; Fisk, John C.

    2012-01-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3′-to-5′ progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain. PMID:22798390

  15. The Rhinovirus Subviral A-Particle Exposes 3′-Terminal Sequences of Its Genomic RNA

    PubMed Central

    Harutyunyan, Shushan; Kowalski, Heinrich

    2014-01-01

    ABSTRACT Enteroviruses, which represent a large genus within the family Picornaviridae, undergo important conformational modifications during infection of the host cell. Once internalized by receptor-mediated endocytosis, receptor binding and/or the acidic endosomal environment triggers the native virion to expand and convert into the subviral (altered) A-particle. The A-particle is lacking the internal capsid protein VP4 and exposes N-terminal amphipathic sequences of VP1, allowing for its direct interaction with a lipid bilayer. The genomic single-stranded (+)RNA then exits through a hole close to a 2-fold axis of icosahedral symmetry and passes through a pore in the endosomal membrane into the cytosol, leaving behind the empty shell. We demonstrate that in vitro acidification of a prototype of the minor receptor group of common cold viruses, human rhinovirus A2 (HRV-A2), also results in egress of the poly(A) tail of the RNA from the A-particle, along with adjacent nucleotides totaling ∼700 bases. However, even after hours of incubation at pH 5.2, 5′-proximal sequences remain inside the capsid. In contrast, the entire RNA genome is released within minutes of exposure to the acidic endosomal environment in vivo. This finding suggests that the exposed 3′-poly(A) tail facilitates the positioning of the RNA exit site onto the putative channel in the lipid bilayer, thereby preventing the egress of viral RNA into the endosomal lumen, where it may be degraded. IMPORTANCE For host cell infection, a virus transfers its genome from within the protective capsid into the cytosol; this requires modifications of the viral shell. In common cold viruses, exit of the RNA genome is prepared by the acidic environment in endosomes converting the native virion into the subviral A-particle. We demonstrate that acidification in vitro results in RNA exit starting from the 3′-terminal poly(A). However, the process halts as soon as about 700 bases have left the viral shell. Conversely, inside the cell, RNA egress completes in about 2 min. This suggests the existence of cellular uncoating facilitators. PMID:24672023

  16. Structural and Biochemical Studies on ATP Binding and Hydrolysis by the Escherichia coli RNA Chaperone Hfq

    PubMed Central

    Večerek, Branislav; Rajkowitsch, Lukas; Carugo, Oliviero; Djinović-Carugo, Kristina; Bläsi, Udo

    2012-01-01

    In Escherichia coli the RNA chaperone Hfq is involved in riboregulation by assisting base-pairing between small regulatory RNAs (sRNAs) and mRNA targets. Several structural and biochemical studies revealed RNA binding sites on either surface of the donut shaped Hfq-hexamer. Whereas sRNAs are believed to contact preferentially the YKH motifs present on the proximal site, poly(A)15 and ADP were shown to bind to tripartite binding motifs (ARE) circularly positioned on the distal site. Hfq has been reported to bind and to hydrolyze ATP. Here, we present the crystal structure of a C-terminally truncated variant of E. coli Hfq (Hfq65) in complex with ATP, showing that it binds to the distal R-sites. In addition, we revisited the reported ATPase activity of full length Hfq purified to homogeneity. At variance with previous reports, no ATPase activity was observed for Hfq. In addition, FRET assays neither indicated an impact of ATP on annealing of two model oligoribonucleotides nor did the presence of ATP induce strand displacement. Moreover, ATP did not lead to destabilization of binary and ternary Hfq-RNA complexes, unless a vast stoichiometric excess of ATP was used. Taken together, these studies strongly suggest that ATP is dispensable for and does not interfere with Hfq-mediated RNA transactions. PMID:23226421

  17. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2011-12-01

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging αvβ3 integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c1nr11132a

  18. HTLV-1 Tax Oncoprotein Inhibits the Estrogen-Induced-ER α-Mediated BRCA1 Expression by Interaction with CBP/p300 Cofactors

    PubMed Central

    Shukrun, Meital; Jabareen, Azhar; Abou-Kandil, Ammar; Chamias, Rachel; Aboud, Mordechai; Huleihel, Mahmoud

    2014-01-01

    BRCA1 is a multifunctional tumor suppressor, whose expression is activated by the estrogen (E2)-liganded ERα receptor and regulated by certain recruited transcriptional co-activators. Interference with BRCA1 expression and/or functions leads to high risk of breast or/and ovarian cancer. Another multifunctional protein, HTLV-1Tax oncoprotein, is widely regarded as crucial for developing adult T-cell leukemia and other clinical disorders. Tax profile reveals that it can antagonize BRCA1 expression and/or functionality. Therefore, we hypothesize that Tax expression in breast cells can sensitize them to malignant transformation by environmental carcinogens. Here we examined Tax effect on BRCA1 expression by testing its influence on E2-induced expression of BRCA1 promoter-driven luciferase reporter (BRCA1-Luc). We found that E2 strongly stimulated this reporter expression by liganding to ERα, which consequently associated with BRCA1 promoter, while ERα concomitantly recruited CBP/p300 to this complex for co-operative enhancement of BRCA1 expression. Introducing Tax into these cells strongly blocked this E2-ERα-mediated activation of BRCA1 expression. We noted, also, that Tax exerted this inhibition by binding to CBP/p300 without releasing them from their complex with ERα. Chip assay revealed that the binding of Tax to the CBP/p300-ERα complex, prevented its link to AP1 site. Interestingly, we noted that elevating the intracellular pool of CBP or p300 to excessive levels dramatically reduced the Tax-mediated inhibition of BRCA1 expression. Exploring the mechanism of this reduction revealed that the excessive co-factors were sufficient to bind separately the free Tax molecules, thus lowering their amount in the CBP/p300-ERα complex and relieving, thereby, the inhibition of BRCA1 expression. PMID:24586743

  19. Reviving Polya's "Look Back" in a Singapore School

    ERIC Educational Resources Information Center

    Leong, Yew Hoong; Tay, Eng Guan; Toh, Tin Lam; Quek, Khiok Seng; Dindyal, Jaguthsing

    2011-01-01

    This study is based on the stance that Polya's "Look Back," though understudied, remains relevant to Mathematics curricula that place emphasis on problem solving. Although the Singapore Mathematics curriculum adopts the goal of teaching Look Back, research about how it is carried out in actual classroom practice is rare. In our project,…

  20. An Appropriate Prompts System Based on the Polya Method for Mathematical Problem-Solving

    ERIC Educational Resources Information Center

    Lee, Chien I.

    2017-01-01

    Current mathematics education emphasizes techniques, formulas, and procedures, neglecting the importance of understanding, presentation, and reasoning. This turns students into passive listeners that are well-practiced only in using formulas that they do not understand. We therefore adopted the Polya problem-solving method to provide students with…

  1. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade

    PubMed Central

    Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini; Mulenga, Albert

    2014-01-01

    In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it’s plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it’s current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation aggregation. We discuss our findings in the context of tick feeding physiology. PMID:25454607

  2. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids

    PubMed Central

    Liénard, Marjorie A.; Araripe, Luciana O.; Hartl, Daniel L.

    2016-01-01

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1. Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1. Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation. PMID:27357670

  3. Increased Expression of PcG Protein YY1 Negatively Regulates B Cell Development while Allowing Accumulation of Myeloid Cells and LT-HSC Cells

    PubMed Central

    Pan, Xuan; Jones, Morgan; Jiang, Jie; Zaprazna, Kristina; Yu, Duonan; Pear, Warren; Maillard, Ivan; Atchison, Michael L.

    2012-01-01

    Ying Yang 1 (YY1) is a multifunctional Polycomb Group (PcG) transcription factor that binds to multiple enhancer binding sites in the immunoglobulin (Ig) loci and plays vital roles in early B cell development. PcG proteins have important functions in hematopoietic stem cell renewal and YY1 is the only mammalian PcG protein with DNA binding specificity. Conditional knock-out of YY1 in the mouse B cell lineage results in arrest at the pro-B cell stage, and dosage effects have been observed at various YY1 expression levels. To investigate the impact of elevated YY1 expression on hematopoetic development, we utilized a mouse in vivo bone marrow reconstitution system. We found that mouse bone marrow cells expressing elevated levels of YY1 exhibited a selective disadvantage as they progressed from hematopoietic stem/progenitor cells to pro-B, pre-B, immature B and re-circulating B cell stages, but no disadvantage of YY1 over-expression was observed in myeloid lineage cells. Furthermore, mouse bone marrow cells expressing elevated levels of YY1 displayed enrichment for cells with surface markers characteristic of long-term hematopoietic stem cells (HSC). YY1 expression induced apoptosis in mouse B cell lines in vitro, and resulted in down-regulated expression of anti-apoptotic genes Bcl-xl and NFκB2, while no impact was observed in a mouse myeloid line. B cell apoptosis and LT-HSC enrichment induced by YY1 suggest that novel strategies to induce YY1 expression could have beneficial effects in the treatment of B lineage malignancies while preserving normal HSCs. PMID:22292011

  4. The human myelin oligodendrocyte glycoprotein (MOG) gene: Complete nucleotide sequence and structural characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paule Roth, M.; Malfroy, L.; Offer, C.

    1995-07-20

    Human myelin oligodendrocyte glycoprotein (MOG), a myelin component of the central nervous system, is a candidate target antigen for autoimmune-mediated demyelination. We have isolated and sequenced part of a cosmid clone that contains the entire human MOG gene. The primary nuclear transcript, extending from the putative start of transcription to the site of poly(A) addition, is 15,561 nucleotides in length. The human MOG gene contains 8 exons, separated by 7 introns; canonical intron/exon boundary sites are observed at each junction. The introns vary in size from 242 to 6484 bp and contain numerous repetitive DNA elements, including 14 Alu sequencesmore » within 3 introns. Another Alu element is located in the 3{prime}-untranslated region of the gene. Alu sequences were classified with respect to subfamily assignment. Seven hundred sixty-three nucleotides 5{prime} of the transcription start and 1214 nucleotides 3{prime} of the poly(A) addition sites were also sequenced. The 5{prime}-flanking region revealed the presence of several consensus sequences that could be relevant in the transcription of the MOG gene, in particular binding sites in common with other myelin gene promoters. Two polymorphic intragenic dinucleotide (CA){sub n} and tetranucleotide (TAAA){sub n} repeats were identified and may provide genetic marker tools for association and linkage studies. 50 refs., 3 figs., 3 tabs.« less

  5. APAtrap: identification and quantification of alternative polyadenylation sites from RNA-seq data.

    PubMed

    Ye, Congting; Long, Yuqi; Ji, Guoli; Li, Qingshun Quinn; Wu, Xiaohui

    2018-06-01

    Alternative polyadenylation (APA) has been increasingly recognized as a crucial mechanism that contributes to transcriptome diversity and gene expression regulation. As RNA-seq has become a routine protocol for transcriptome analysis, it is of great interest to leverage such unprecedented collection of RNA-seq data by new computational methods to extract and quantify APA dynamics in these transcriptomes. However, research progress in this area has been relatively limited. Conventional methods rely on either transcript assembly to determine transcript 3' ends or annotated poly(A) sites. Moreover, they can neither identify more than two poly(A) sites in a gene nor detect dynamic APA site usage considering more than two poly(A) sites. We developed an approach called APAtrap based on the mean squared error model to identify and quantify APA sites from RNA-seq data. APAtrap is capable of identifying novel 3' UTRs and 3' UTR extensions, which contributes to locating potential poly(A) sites in previously overlooked regions and improving genome annotations. APAtrap also aims to tally all potential poly(A) sites and detect genes with differential APA site usages between conditions. Extensive comparisons of APAtrap with two other latest methods, ChangePoint and DaPars, using various RNA-seq datasets from simulation studies, human and Arabidopsis demonstrate the efficacy and flexibility of APAtrap for any organisms with an annotated genome. Freely available for download at https://apatrap.sourceforge.io. liqq@xmu.edu.cn or xhuister@xmu.edu.cn. Supplementary data are available at Bioinformatics online.

  6. Nuclear YB-1 expression as a negative prognostic marker in nonsmall cell lung cancer.

    PubMed

    Gessner, C; Woischwill, C; Schumacher, A; Liebers, U; Kuhn, H; Stiehl, P; Jürchott, K; Royer, H D; Witt, C; Wolff, G

    2004-01-01

    The human Y-box binding protein, YB-1, is a multifunctional protein that regulates gene expression. Nuclear expression of YB-1 has been associated with chemoresistance and poor prognosis of tumour patients. Representative samples from autopsied material of primary tumours from 77 patients with NSCLC were investigated by immunohistochemistry for subcellular distribution of YB-1 and p53, in order to evaluate the prognostic role of nuclear expression of YB-1. Cytoplasmic YB-1 expression was found in all tumour samples, whereas nuclear expression was only observed in 48%. There was no correlation with histological classification, clinical parameters or tumour size, stage and metastasis status. However, patients with positive nuclear YB-1 expression in tumours showed reduced survival times when compared with patients without nuclear expression. Including information about the histology and mutational status for p53 increased the prognostic value of nuclear YB-1. Patients with nuclear YB-1 expression and p53 mutations had the worst prognosis (median survival 3 months), while best outcome was found in patients with no nuclear YB-1 and wildtype p53 (median survival 15 months). This suggests that the combined analysis of both markers allows a better identification of subgroups with varying prognosis. Nuclear expression of Y-box binding protien seems to be an independent prognostic marker.

  7. Molecular and Biochemical Characterization of Opisthorchis viverrini Calreticulin.

    PubMed

    Chaibangyang, Wanlapa; Geadkaew-Krenc, Amornrat; Vichasri-Grams, Suksiri; Tesana, Smarn; Grams, Rudi

    2017-12-01

    Calreticulin (CALR), a multifunctional protein thoroughly researched in mammals, comprises N-, P-, and C-domain and has roles in calcium homeostasis, chaperoning, clearance of apoptotic cells, cell adhesion, and also angiogenesis. In this study, the spatial and temporal expression patterns of the Opisthorchis viverrini CALR gene were analyzed, and calcium-binding and chaperoning properties of recombinant O. viverrini CALR (OvCALR) investigated. OvCALR mRNA was detected from the newly excysted juvenile to the mature parasite by RT-PCR while specific antibodies showed a wide distribution of the protein. OvCALR was localized in tegumental cell bodies, testes, ovary, eggs, Mehlis' gland, prostate gland, and vitelline cells of the mature parasite. Recombinant OvCALR showed an in vitro suppressive effect on the thermal aggregation of citrate synthase. The recombinant OvCALR C-domain showed a mobility shift in native gel electrophoresis in the presence of calcium. The results imply that OvCALR has comparable function to the mammalian homolog as a calcium-binding molecular chaperone. Inferred from the observed strong immunostaining of the reproductive tissues, OvCALR should be important for reproduction and might be an interesting target to disrupt parasite fecundity. Transacetylase activity of OvCALR as reported for calreticulin of Haemonchus contortus could not be observed.

  8. The Sharpin interactome reveals a role for Sharpin in lamellipodium formation via the Arp2/3 complex.

    PubMed

    Khan, Meraj H; Salomaa, Siiri I; Jacquemet, Guillaume; Butt, Umar; Miihkinen, Mitro; Deguchi, Takahiro; Kremneva, Elena; Lappalainen, Pekka; Humphries, Martin J; Pouwels, Jeroen

    2017-09-15

    Sharpin, a multifunctional adaptor protein, regulates several signalling pathways. For example, Sharpin enhances signal-induced NF-κB signalling as part of the linear ubiquitin assembly complex (LUBAC) and inhibits integrins, the T cell receptor, caspase 1 and PTEN. However, despite recent insights into Sharpin and LUBAC function, a systematic approach to identify the signalling pathways regulated by Sharpin has not been reported. Here, we present the first 'Sharpin interactome', which identifies a large number of novel potential Sharpin interactors in addition to several known ones. These data suggest that Sharpin and LUBAC might regulate a larger number of biological processes than previously identified, such as endosomal trafficking, RNA processing, metabolism and cytoskeleton regulation. Importantly, using the Sharpin interactome, we have identified a novel role for Sharpin in lamellipodium formation. We demonstrate that Sharpin interacts with Arp2/3, a protein complex that catalyses actin filament branching. We have identified the Arp2/3-binding site in Sharpin and demonstrate using a specific Arp2/3-binding deficient mutant that the Sharpin-Arp2/3 interaction promotes lamellipodium formation in a LUBAC-independent fashion.This article has an associated First Person interview with the first author of the paper. © 2017. Published by The Company of Biologists Ltd.

  9. DREAM (Downstream Regulatory Element Antagonist Modulator) contributes to synaptic depression and contextual fear memory

    PubMed Central

    2010-01-01

    The downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM), we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD) but not long-term potentiation (LTP), was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory. PMID:20205763

  10. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  11. Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanarsdall, Adam L.; Mikhailov, Victor S.; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808

    2007-08-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes two proteins that possess properties typical of single-stranded DNA-binding proteins (SSBs), late expression factor-3 (LEF-3), and a protein referred to as DNA-binding protein (DBP). Whereas LEF-3 is a multi-functional protein essential for viral DNA replication, transporting helicase into the nucleus, and forms a stable complex with the baculovirus alkaline nuclease, the role for DBP in baculovirus replication remains unclear. Therefore, to better understand the functional role of DBP in viral replication, a DBP knockout virus was generated from an AcMNPV bacmid and analyzed. The results of a growth curve analysis indicated that the dbpmore » knockout construct was unable to produce budded virus indicating that dbp is essential. The lack of DBP does not cause a general shutdown of the expression of viral genes, as was revealed by accumulation of early (LEF-3), late (VP39), and very late (P10) proteins in cells transfected with the dbp knockout construct. To investigate the role of DBP in DNA replication, a real-time PCR-based assay was employed and showed that, although viral DNA synthesis occurred in cells transfected with the dbp knockout, the levels were less than that of the control virus suggesting that DBP is required for normal levels of DNA synthesis or for stability of nascent viral DNA. In addition, analysis of the viral DNA replicated by the dbp knockout by using field inversion gel electrophoresis failed to detect the presence of genome-length DNA. Furthermore, analysis of DBP from infected cells indicated that similar to LEF-3, DBP was tightly bound to viral chromatin. Assessment of the cellular localization of DBP relative to replicated viral DNA by immunoelectron microscopy indicated that, at 24 h post-infection, DBP co-localized with nascent DNA at distinct electron-dense regions within the nucleus. Finally, immunoelectron microscopic analysis of cells transfected with the dbp knockout revealed that DBP is required for the production of normal-appearing nucleocapsids and for the generation of the virogenic stroma.« less

  12. Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII.

    PubMed

    Inturi, Raviteja; Mun, Kwangchol; Singethan, Katrin; Schreiner, Sabrina; Punga, Tanel

    2018-02-01

    Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections. IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and MKRN1 proteins may prime MKRN1 for proteasomal degradation, because the MKRN1 protein is efficiently degraded during the late phase of HAdV-C5 infection. Since MKRN1 protein accumulation is also reduced in measles virus- and vesicular stomatitis virus-infected cells, our results signify the general strategy of viruses to target MKRN1. Copyright © 2018 American Society for Microbiology.

  13. Evidence for a Complex Class of Nonadenylated mRNA in Drosophila

    PubMed Central

    Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.

    1980-01-01

    The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246

  14. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.

    PubMed

    Shaw, Kirsty J; Thain, Lauren; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-10-12

    DNA extraction was carried out on silica-based monoliths within a microfluidic device. Solid-phase DNA extraction methodology was applied in which the DNA binds to silica in the presence of a chaotropic salt, such as guanidine hydrochloride, and is eluted in a low ionic strength solution, such as water. The addition of poly-A carrier RNA to the chaotropic salt solution resulted in a marked increase in the effective amount of DNA that could be recovered (25ng) compared to the absence of RNA (5ng) using the silica-based monolith. These findings confirm that techniques utilising nucleic acid carrier molecules can enhance DNA extraction methodologies in microfluidic applications.

  15. The human endonuclease III enzyme is a relevant target to potentiate cisplatin cytotoxicity in Y-box-binding protein-1 overexpressing tumor cells.

    PubMed

    Guay, David; Garand, Chantal; Reddy, Shanti; Schmutte, Chris; Lebel, Michel

    2008-04-01

    Y-box-binding protein-1 (YB-1) is a multifunctional protein involved in the regulation of transcription, translation, and mRNA splicing. In recent years, several laboratories have demonstrated that YB-1 is directly involved in the cellular response to genotoxic stress. Importantly, YB-1 is increased in tumor cell lines resistant to cisplatin, and the level of nuclear expression of YB-1 is predictive of drug resistance and patient outcome in breast tumors, ovarian cancers, and synovial sarcomas. YB-1 binds to several DNA repair enzymes in vitro including human endonuclease III (hNTH1). Human NTH1 is a bifunctional DNA glycosylase/apurinic/apyrimidinic lyase involved in base excision repair. In this study, we show that YB-1 binds specifically to the auto-inhibitory domain of hNTH1, providing a mechanism by which YB-1 stimulates hNTH1 activity. Indeed, YB-1 strongly stimulates in vitro the activity of hNTH1 toward DNA duplex probes containing oxidized bases, lesions prone to be present in cisplatin treated cells. We also observed an increase in YB-1/hNTH1 complex formation in the mammary adenocarcinoma MCF7 cell line treated with UV light and cisplatin. Such an increase was not observed with mitomycin C or the topoisomerase I inhibitor camptothecin. Accordingly, antisense RNAs against either YB-1 or hNTH1 increased cellular sensitivity to UV and cisplatin but not to mitomycin C. An antisense RNA against YB-1 increased camptothecin sensitivity. In contrast, an antisense against hNTH1 did not. Finally, siRNA against hNTH1 re-established cytotoxicity in otherwise cisplatin-resistant YB-1 overexpressing MCF7 cells. These data indicate that hNTH1 is a relevant target to potentiate cisplatin cytotoxicity in YB-1 overexpressing tumor cells.

  16. Nuclear localisation of calreticulin in vivo is enhanced by its interaction with glucocorticoid receptors.

    PubMed

    Roderick, H L; Campbell, A K; Llewellyn, D H

    1997-03-24

    The multi-functional protein calreticulin (CRT) is normally found within the lumen of the endoplasmic reticulum (ER). However, some of its proposed functions require it to be located within the nucleus, where its presence is contentious. We have investigated this in live COS7, HeLa and LM(TK-) cells using green fluorescent protein (GFP)-fusion proteins. GFP-CRT, and GFP, with an ER signal peptide and a KDEL sequence (ER-GFP), were localised to the ER. In addition, GFP-CRT was located in the nucleus of all the cell types at low levels. The higher levels of nuclear fluorescence in LM(TK-) and HeLa cells suggested that glucocorticoid receptors might enhance nuclear localisation of calreticulin. Dexamethasone treatment of LM(TK-) cells doubled the amount of nuclear GFP-CRT, but did not affect the localisation of a GFP-CRT fusion in which the glucocorticoid receptor-binding N-domain of calreticulin had been deleted. Thus, despite ER targeting and retention signals, calreticulin is also located within the nucleus where its presence increases due to its interaction with glucocorticoid receptors.

  17. Knockdown of mortalin within the medial prefrontal cortex impairs normal sensorimotor gating.

    PubMed

    Gabriele, Nicole; Pontoriero, Giuseppe F; Thomas, Nancy; Shethwala, Shazli K; Pristupa, Zdenek B; Gabriele, Joseph P

    2010-11-01

    The 70-kDa mitochondrial heat shock protein, mortalin, is a ubiquitously expressed, multifunctional protein that is capable of binding the neurotransmitter, dopamine, within the brain. Dopamine dysregulation has been implicated in many of the abnormal neurological behaviors. Although studies have indicated that mortalin is differentially regulated in response to dopaminergic modulation, research has yet to elucidate the role of mortalin in the regulation of dopaminergic activity. This study seeks to investigate the role of mortalin in the regulation of dopamine-dependent behavior, specifically as it pertains to schizophrenia (SCZ). Mortalin expression was knocked down through the infusion of antisense oligodeoxynucleotide molecules into the medial prefrontal cortex (mPFC). Rats infused with mortalin antisense oligodeoxynucleotide molecules exhibited significant prepulse inhibition deficits, suggestive of defects in normal sensorimotor gating. Furthermore, mortalin misexpression within the mPFC was coupled to a significant increase in mortalin protein expression within the nucleus accumbens at the molecular level. These findings demonstrate that mortalin plays an essential role in the regulation of dopamine-dependent behavior and plays an even greater role in the pathogenesis of SCZ.

  18. Molecular architecture of the Spire–actin nucleus and its implication for actin filament assembly

    PubMed Central

    Sitar, Tomasz; Gallinger, Julia; Ducka, Anna M.; Ikonen, Teemu P.; Wohlhoefler, Michael; Schmoller, Kurt M.; Bausch, Andreas R.; Joel, Peteranne; Trybus, Kathleen M.; Noegel, Angelika A.; Schleicher, Michael; Huber, Robert; Holak, Tad A.

    2011-01-01

    The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire–actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire–actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott–Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire–actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire–actin module. In addition, we find that preformed, isolated Spire–actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs—even a single WH2 repeat—sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem. PMID:22106272

  19. Mass spectroscopic phosphoprotein mapping of Ral Binding protein 1 (RalBP1/Rip1/RLIP76)

    PubMed Central

    Herlevsen, Mikael C; Theodorescu, Dan

    2009-01-01

    RalBP1, a multifunctional protein implicated in cancer cell proliferation, radiation and chemoresistance and ligand dependent receptor internalization, is upregulated in bladder cancer and is a downstream effector of RalB, a GTPase associated with metastasis. RalBP1 can be regulated by phosphorylation by protein kinase C (PKC). No studies have comprehensively mapped RalBP1 phosphorylation sites or whether RalB affects these. We identified fourteen phosphorylation sites of RalBP1 in human bladder carcinoma UMUC-3 and embryonic kidney derived 293T cells. The phosphorylated residues are concentrated at the N-terminus. Ten of the first 100 amino acids of the primary structure were phosphorylated. Nine were serine residues, and one a threonine. We evaluated the effect of RalB overexpression on RalBP1 phosphorylation and found the largest change in phosphorylation status at S463 and S645. Further characterization of these sites will provide novel insights on RalBP1 biology, its functional relationship to RalB and possible avenues for therapeutic intervention. PMID:17706599

  20. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  1. Glycosylated linkers in multimodular lignocellulose-degrading enzymes dynamically bind to cellulose

    PubMed Central

    Payne, Christina M.; Resch, Michael G.; Chen, Liqun; Crowley, Michael F.; Himmel, Michael E.; Taylor, Larry E.; Sandgren, Mats; Ståhlberg, Jerry; Stals, Ingeborg; Tan, Zhongping; Beckham, Gregg T.

    2013-01-01

    Plant cell-wall polysaccharides represent a vast source of food in nature. To depolymerize polysaccharides to soluble sugars, many organisms use multifunctional enzyme mixtures consisting of glycoside hydrolases, lytic polysaccharide mono-oxygenases, polysaccharide lyases, and carbohydrate esterases, as well as accessory, redox-active enzymes for lignin depolymerization. Many of these enzymes that degrade lignocellulose are multimodular with carbohydrate-binding modules (CBMs) and catalytic domains connected by flexible, glycosylated linkers. These linkers have long been thought to simply serve as a tether between structured domains or to act in an inchworm-like fashion during catalytic action. To examine linker function, we performed molecular dynamics (MD) simulations of the Trichoderma reesei Family 6 and Family 7 cellobiohydrolases (TrCel6A and TrCel7A, respectively) bound to cellulose. During these simulations, the glycosylated linkers bind directly to cellulose, suggesting a previously unknown role in enzyme action. The prediction from the MD simulations was examined experimentally by measuring the binding affinity of the Cel7A CBM and the natively glycosylated Cel7A CBM-linker. On crystalline cellulose, the glycosylated linker enhances the binding affinity over the CBM alone by an order of magnitude. The MD simulations before and after binding of the linker also suggest that the bound linker may affect enzyme action due to significant damping in the enzyme fluctuations. Together, these results suggest that glycosylated linkers in carbohydrate-active enzymes, which are intrinsically disordered proteins in solution, aid in dynamic binding during the enzymatic deconstruction of plant cell walls. PMID:23959893

  2. A survey of the interactome of Kaposi's sarcoma-associated herpesvirus ORF45 revealed its binding to viral ORF33 and cellular USP7, resulting in stabilization of ORF33 that is required for production of progeny viruses.

    PubMed

    Gillen, Joseph; Li, Wenwei; Liang, Qiming; Avey, Denis; Wu, Jianjun; Wu, Fayi; Myoung, JinJong; Zhu, Fanxiu

    2015-05-01

    The ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus-specific immediate-early tegument protein. Our previous studies have revealed its crucial roles in both early and late stages of KSHV infection. In this study, we surveyed the interactome of ORF45 using a panel of monoclonal antibodies. In addition to the previously identified extracellular regulated kinase (ERK) and p90 ribosomal S6 kinase (RSK) proteins, we found several other copurified proteins, including prominent ones of ∼38 kDa and ∼130 kDa. Mass spectrometry revealed that the 38-kDa protein is viral ORF33 and the 130-kDa protein is cellular USP7 (ubiquitin-specific protease 7). We mapped the ORF33-binding domain to the highly conserved carboxyl-terminal 19 amino acids (aa) of ORF45 and the USP7-binding domain to the reported consensus motif in the central region of ORF45. Using immunofluorescence staining, we observed colocalization of ORF45 with ORF33 or USP7 both under transfected conditions and in KSHV-infected cells. Moreover, we noticed ORF45-dependent relocalization of a portion of ORF33/USP7 from the nucleus to the cytoplasm. We found that ORF45 caused an increase in ORF33 protein accumulation that was abolished if either the ORF33- or USP7-binding domain in ORF45 was deleted. Furthermore, deletion of the conserved carboxyl terminus of ORF45 in the KSHV genome drastically reduced the level of ORF33 protein in KSHV-infected cells and abolished production of progeny virions. Collectively, our results not only reveal new components of the ORF45 interactome, but also demonstrate that the interactions among these proteins are crucial for KSHV lytic replication. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of several human cancers. KSHV ORF45 is a multifunctional protein that is required for KSHV lytic replication, but the exact mechanisms by which ORF45 performs its critical functions are unclear. Our previous studies revealed that all ORF45 protein in cells exists in high-molecular-weight complexes. We therefore sought to characterize the interactome of ORF45 to provide insights into its roles during lytic replication. Using a panel of monoclonal antibodies, we surveyed the ORF45 interactome in KSHV-infected cells. We identified two new binding partners of ORF45: the viral protein ORF33 and cellular ubiquitin-specific protease 7 (USP7). We further demonstrate that the interaction between ORF45 and ORF33 is crucial for the efficient production of KSHV viral particles, suggesting that the targeted interference with this interaction may represent a novel strategy to inhibit KSHV lytic replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Characteristics and significance of intergenic polyadenylated RNA transcription in Arabidopsis.

    PubMed

    Moghe, Gaurav D; Lehti-Shiu, Melissa D; Seddon, Alex E; Yin, Shan; Chen, Yani; Juntawong, Piyada; Brandizzi, Federica; Bailey-Serres, Julia; Shiu, Shin-Han

    2013-01-01

    The Arabidopsis (Arabidopsis thaliana) genome is the most well-annotated plant genome. However, transcriptome sequencing in Arabidopsis continues to suggest the presence of polyadenylated (polyA) transcripts originating from presumed intergenic regions. It is not clear whether these transcripts represent novel noncoding or protein-coding genes. To understand the nature of intergenic polyA transcription, we first assessed its abundance using multiple messenger RNA sequencing data sets. We found 6,545 intergenic transcribed fragments (ITFs) occupying 3.6% of Arabidopsis intergenic space. In contrast to transcribed fragments that map to protein-coding and RNA genes, most ITFs are significantly shorter, are expressed at significantly lower levels, and tend to be more data set specific. A surprisingly large number of ITFs (32.1%) may be protein coding based on evidence of translation. However, our results indicate that these "translated" ITFs tend to be close to and are likely associated with known genes. To investigate if ITFs are under selection and are functional, we assessed ITF conservation through cross-species as well as within-species comparisons. Our analysis reveals that 237 ITFs, including 49 with translation evidence, are under strong selective constraint and relatively distant from annotated features. These ITFs are likely parts of novel genes. However, the selective pressure imposed on most ITFs is similar to that of randomly selected, untranscribed intergenic sequences. Our findings indicate that despite the prevalence of ITFs, apart from the possibility of genomic contamination, many may be background or noisy transcripts derived from "junk" DNA, whose production may be inherent to the process of transcription and which, on rare occasions, may act as catalysts for the creation of novel genes.

  4. Aberrant termination of reproduction-related TMEM30C transcripts in the hominoids.

    PubMed

    Osada, Naoki; Hashimoto, Katsuyuki; Hirai, Momoki; Kusuda, Jun

    2007-05-01

    Finding genetic novelties that may contribute to human-specific physiology and diseases is a key issue of current biomedical studies. TMEM30C is a gene containing two transmembrane (TM) domains and homologous to the yeast CDC50 family, which is related to polarized cell division. It is conserved among mammals along with two other paralogs, TMEM30A and TMEM30B. We found that TMEM30C is expressed specifically in the testis of mammals, in contrast to the relatively wide expression distributions of the other paralogs. While macaques expressed two alternative splicing isoforms which include one or two TM domains, humans and chimpanzees predominantly expressed truncated transcripts because of the mutations in the splicing and/or poly(A) signal sites. The major transcript in humans harbored non-stop ORF (open reading frame) while the chimpanzee counterpart encoded a protein with one TM domain. The difference was due to the 1-bp indel upstream of the poly(A) signal site. In addition, both the hominoids expressed minor transcripts encoding short proteins with one TM domain. Phylogenetic analysis has showed the acceleration of amino acid substitution after the human and chimpanzee divergence, which may have been caused by a recent relaxation in functional constraints or positive selection on TMEM30C. Elucidating the precise reproductive function of TMEM30C in mammals will be important to the foundation of divergence in higher primates at a molecular level.

  5. Relooking "Look Back": A Student's Attempt at Problem Solving Using Polya's Model

    ERIC Educational Resources Information Center

    Leong, Yew Hoong; Toh, Tin Lam; Tay, Eng Guan; Quek, Khiok Seng; Dindyal, Jaguthsing

    2012-01-01

    Against the backdrop of half a century of research in mathematics problem solving, Polya's last stage is especially conspicuous--by the scarcity of research on it! Much of the research focused on the first three stages (J.M. Francisco and C.A. Maher, "Conditions for promoting reasoning in problem solving: Insights from a longitudinal…

  6. Mathematics in the Making: Mapping Verbal Discourse in Polya's "Let Us Teach Guessing" Lesson

    ERIC Educational Resources Information Center

    Truxaw, Mary P.; DeFranco, Thomas C.

    2007-01-01

    This paper describes a detailed analysis of verbal discourse within an exemplary mathematics lesson--that is, George Polya teaching in the Mathematics Association of America [MAA] video classic, "Let Us Teach Guessing" (1966). The results of the analysis reveal an inductive model of teaching that represents recursive cycles rather than linear…

  7. Effect of Polya Problem-Solving Model on Senior Secondary School Students' Performance in Current Electricity

    ERIC Educational Resources Information Center

    Olaniyan, Ademola Olatide; Omosewo, Esther O.; Nwankwo, Levi I.

    2015-01-01

    This study was designed to investigate the Effect of Polya Problem-Solving Model on Senior School Students' Performance in Current Electricity. It was a quasi experimental study of non- randomized, non equivalent pre-test post-test control group design. Three research questions were answered and corresponding three research hypotheses were tested…

  8. The Effects of Polya's Heuristic and Diary Writing on Children's Problem Solving

    ERIC Educational Resources Information Center

    Hensberry, Karina K. R.; Jacobbe, Tim

    2012-01-01

    This paper presents the results of a study that aimed at increasing students' problem-solving skills. Polya's (1985) heuristic for problem solving was used and students were required to articulate their thought processes through the use of a structured diary. The diary prompted students to answer questions designed to engage them in the phases of…

  9. An Improved Estimation Using Polya-Gamma Augmentation for Bayesian Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S.

    2018-01-01

    Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…

  10. A host YB-1 ribonucleoprotein complex is hijacked by hepatitis C virus for the control of NS3-dependent particle production.

    PubMed

    Chatel-Chaix, Laurent; Germain, Marie-Anne; Motorina, Alena; Bonneil, Éric; Thibault, Pierre; Baril, Martin; Lamarre, Daniel

    2013-11-01

    Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production.

  11. A Host YB-1 Ribonucleoprotein Complex Is Hijacked by Hepatitis C Virus for the Control of NS3-Dependent Particle Production

    PubMed Central

    Chatel-Chaix, Laurent; Germain, Marie-Anne; Motorina, Alena; Bonneil, Éric; Thibault, Pierre; Baril, Martin

    2013-01-01

    Hepatitis C virus (HCV) orchestrates the different stages of its life cycle in time and space through the sequential participation of HCV proteins and cellular machineries; hence, these represent tractable molecular host targets for HCV elimination by combination therapies. We recently identified multifunctional Y-box-binding protein 1 (YB-1 or YBX1) as an interacting partner of NS3/4A protein and HCV genomic RNA that negatively regulates the equilibrium between viral translation/replication and particle production. To identify novel host factors that regulate the production of infectious particles, we elucidated the YB-1 interactome in human hepatoma cells by a quantitative mass spectrometry approach. We identified 71 YB-1-associated proteins that included previously reported HCV regulators DDX3, heterogeneous nuclear RNP A1, and ILF2. Of the potential YB-1 interactors, 26 proteins significantly modulated HCV replication in a gene-silencing screening. Following extensive interaction and functional validation, we identified three YB-1 partners, C1QBP, LARP-1, and IGF2BP2, that redistribute to the surface of core-containing lipid droplets in HCV JFH-1-expressing cells, similarly to YB-1 and DDX6. Importantly, knockdown of these proteins stimulated the release and/or egress of HCV particles without affecting virus assembly, suggesting a functional YB-1 protein complex that negatively regulates virus production. Furthermore, a JFH-1 strain with the NS3 Q221L mutation, which promotes virus production, was less sensitive to this negative regulation, suggesting that this HCV-specific YB-1 protein complex modulates an NS3-dependent step in virus production. Overall, our data support a model in which HCV hijacks host cell machinery containing numerous RNA-binding proteins to control the equilibrium between viral RNA replication and NS3-dependent late steps in particle production. PMID:23986595

  12. Selective detection of target proteins by peptide-enabled graphene biosensor.

    PubMed

    Khatayevich, Dmitriy; Page, Tamon; Gresswell, Carolyn; Hayamizu, Yuhei; Grady, William; Sarikaya, Mehmet

    2014-04-24

    Direct molecular detection of biomarkers is a promising approach for diagnosis and monitoring of numerous diseases, as well as a cornerstone of modern molecular medicine and drug discovery. Currently, clinical applications of biomarkers are limited by the sensitivity, complexity and low selectivity of available indirect detection methods. Electronic 1D and 2D nano-materials such as carbon nanotubes and graphene, respectively, offer unique advantages as sensing substrates for simple, fast and ultrasensitive detection of biomolecular binding. Versatile methods, however, have yet to be developed for simultaneous functionalization and passivation of the sensor surface to allow for enhanced detection and selectivity of the device. Herein, we demonstrate selective detection of a model protein against a background of serum protein using a graphene sensor functionalized via self-assembling multifunctional short peptides. The two peptides are engineered to bind to graphene and undergo co-assembly in the form of an ordered monomolecular film on the substrate. While the probe peptide displays the bioactive molecule, the passivating peptide prevents non-specific protein adsorption onto the device surface, ensuring target selectivity. In particular, we demonstrate a graphene field effect transistor (gFET) biosensor which can detect streptavidin against a background of serum bovine albumin at less than 50 ng/ml. Our nano-sensor design, allows us to restore the graphene surface and utilize each sensor in multiple experiments. The peptide-enabled gFET device has great potential to address a variety of bio-sensing problems, such as studying ligand-receptor interactions, or detection of biomarkers in a clinical setting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Intracellular Activation of Interferon Regulatory Factor-1 by Nanobodies to the Multifunctional (Mf1) Domain*

    PubMed Central

    Möller, Angeli; Pion, Emmanuelle; Narayan, Vikram; Ball, Kathryn L.

    2010-01-01

    IRF-1 is a tumor suppressor protein that activates gene expression from a range of promoters in response to stimuli spanning viral infection to DNA damage. Studies on the post-translational regulation of IRF-1 have been hampered by a lack of suitable biochemical tools capable of targeting the endogenous protein. In this study, phage display technology was used to develop a monoclonal nanobody targeting the C-terminal Mf1 domain (residues 301–325) of IRF-1. Intracellular expression of the nanobody demonstrated that the transcriptional activity of IRF-1 is constrained by the Mf1 domain as nanobody binding gave an increase in expression from IRF-1-responsive promoters of up to 8-fold. Furthermore, Mf1-directed nanobodies have revealed an unexpected function for this domain in limiting the rate at which the IRF-1 protein is degraded. Thus, the increase in IRF-1 transcriptional activity observed on nanobody binding is accompanied by a significant reduction in the half-life of the protein. In support of the data obtained using nanobodies, a single point mutation (P325A) involving the C-terminal residue of IRF-1 has been identified, which results in greater transcriptional activity and a significant increase in the rate of degradation. The results presented here support a role for the Mf1 domain in limiting both IRF-1-dependent transcription and the rate of IRF-1 turnover. In addition, the data highlight a route for activation of downstream genes in the IRF-1 tumor suppressor pathway using biologics. PMID:20817723

  14. Negative regulation of multifunctional Ca2+/calmodulin-dependent protein kinases: physiological and pharmacological significance of protein phosphatases

    PubMed Central

    Ishida, A; Sueyoshi, N; Shigeri, Y; Kameshita, I

    2008-01-01

    Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in intracellular Ca2+ signaling pathways. There is growing evidence that CaMKs are involved in the pathogenic mechanisms underlying various human diseases. In this review, we begin by briefly summarizing our knowledge of the involvement of CaMKs in the pathogenesis of various diseases suggested to be caused by the dysfunction/dysregulation or aberrant expression of CaMKs. It is widely known that the activities of CaMKs are strictly regulated by protein phosphorylation/dephosphorylation of specific phosphorylation sites. Since phosphorylation status is balanced by protein kinases and protein phosphatases, the mechanism of dephosphorylation/deactivation of CaMKs, corresponding to their ‘switching off', is extremely important, as is the mechanism of phosphorylation/activation corresponding to their ‘switching on'. Therefore, we focus on the regulation of multifunctional CaMKs by protein phosphatases. We summarize the current understanding of negative regulation of CaMKs by protein phosphatases. We also discuss the biochemical properties and physiological significance of a protein phosphatase that we designated as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), and those of its homologue CaMKP-N. Pharmacological applications of CaMKP inhibitors are also discussed. These compounds may be useful not only for exploring the physiological functions of CaMKP/CaMKP-N, but also as novel chemotherapies for various diseases. PMID:18454172

  15. Interaction of 4.1G and cGMP-gated channels in rod photoreceptor outer segments.

    PubMed

    Cheng, Christiana L; Molday, Robert S

    2013-12-15

    In photoreceptors, the assembly of signaling molecules into macromolecular complexes is important for phototransduction and maintaining the structural integrity of rod outer segments (ROSs). However, the molecular composition and formation of these complexes are poorly understood. Using immunoprecipitation and mass spectrometry, 4.1G was identified as a new interacting partner for the cyclic-nucleotide gated (CNG) channels in ROSs. 4.1G is a widely expressed multifunctional protein that plays a role in the assembly and stability of membrane protein complexes. Multiple splice variants of 4.1G were cloned from bovine retina. A smaller splice variant of 4.1G selectively interacted with CNG channels not associated with peripherin-2-CNG channel complex. A combination of truncation studies and domain-binding assays demonstrated that CNG channels selectively interacted with 4.1G through their FERM and CTD domains. Using immunofluorescence, labeling of 4.1G was seen to be punctate and partially colocalized with CNG channels in the ROS. Our studies indicate that 4.1G interacts with a subset of CNG channels in the ROS and implicate this protein-protein interaction in organizing the spatial arrangement of CNG channels in the plasma membrane of outer segments.

  16. E6AP is Required for Human Papillomavirus type 16 E6 to Cause Cervical Cancer in Mice

    PubMed Central

    Shai, Anny; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    High-risk human papillomaviruses cause certain anogenital and head and neck cancers. E6, one of three potent HPV oncogenes that contribute to the development of these malignancies, is a multifunctional protein with many biochemical activities. Among these activities are its ability to bind and inactivate the cellular tumor suppressor p53, induce expression of telomerase, and bind to various other proteins including Bak, E6BP1, E6TP1, and proteins that contain PDZ domains such as hScrib and hDlg. Many of these activities are thought to contribute to E6’s role in carcinogenesis. E6’s interaction with many of these cellular proteins, including p53, leads to their destabilization. This property is mediated at least in part through E6’s ability to recruit the ubiquitin ligase, E6AP into complexes with these cellular proteins resulting in their ubiquitin–mediated degradation by the proteasome. In this study, we address the requirement for E6AP in mediating E6's acute and oncogenic phenotypes, including induction of epithelial hyperplasia, abrogation of DNA damage response and induction of cervical cancer. Loss of E6AP had no discernable effect on E6's ability to induce hyperplasia or abrogate DNA damage responses, akin to what we had earlier observed in the mouse epidermis. Nevertheless, in cervical carcinogenesis studies, there was a complete loss of E6’s oncogenic potential in mice nulligenic for E6AP. Thus, E6AP is absolutely required for E6 to cause cervical cancer. PMID:20530688

  17. Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.

    PubMed

    McGrew, L L; Richter, J D

    1990-11-01

    The expression of certain maternal mRNAs during oocyte maturation is regulated by cytoplasmic polyadenylation. To understand this process, we have focused on a maternal mRNA from Xenopus termed G10. This mRNA is stored in the cytoplasm of stage 6 oocytes until maturation when the process of poly(A) elongation stimulates its translation. Deletion analysis of the 3' untranslated region of G10 RNA has revealed that two sequence elements, UUUUUUAU and AAUAAA were both necessary and sufficient for polyadenylation and polysomal recruitment. In this communication, we have defined the U-rich region that is optimal for polyadenylation as UUUUUUAUAAAG, henceforth referred to as the cytoplasmic polyadenylation element (CPE). We have also identified unique sequence requirements in the 3' terminus of the RNA that can modulate polyadenylation even in the presence of wild-type cis elements. A time course of cytoplasmic polyadenylation in vivo shows that it is an early event of maturation and that it requires protein synthesis within the first 15 min of exposure to progesterone. MPF and cyclin can both induce polyadenylation but, at least with respect to MPF, cannot obviate the requirement for protein synthesis. To identify factors that may be responsible for maturation-specific polyadenylation, we employed extracts from oocytes and unfertilized eggs, the latter of which correctly polyadenylates exogenously added RNA. UV crosslinking demonstrated that an 82 kd protein binds to the U-rich CPE in egg, but not oocyte, extracts. The data suggest that progesterone, either in addition to or through MPF/cyclin, induces the synthesis of a factor during very early maturation that stimulates polyadenylation.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains

    PubMed Central

    Ulianov, Sergey V.; Khrameeva, Ekaterina E.; Gavrilov, Alexey A.; Flyamer, Ilya M.; Kos, Pavel; Mikhaleva, Elena A.; Penin, Aleksey A.; Logacheva, Maria D.; Imakaev, Maxim V.; Chertovich, Alexander; Gelfand, Mikhail S.; Shevelyov, Yuri Y.; Razin, Sergey V.

    2016-01-01

    Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)+ RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin. PMID:26518482

  19. Molecular characterization of enolase gene from Taenia multiceps.

    PubMed

    Li, W H; Qu, Z G; Zhang, N Z; Yue, L; Jia, W Z; Luo, J X; Yin, H; Fu, B Q

    2015-10-01

    Taenia multiceps is a cestode parasite with its larval stage, known as Coenurus cerebralis, mainly encysts in the central nervous system of sheep and other livestocks. Enolase is a key glycolytic enzyme and represents multifunction in most organisms. In the present study, a 1617bp full-length cDNA encoding enolase was cloned from T. multiceps and designated as TmENO. A putative encoded protein of 433 amino acid residues that exhibited high similarity to helminth parasites. The recombinant TmENO protein (rTmENO) showed the catalytic and plasminogen-binding characteristics after the TmENO was subcloned and expressed in the pET30a(+) vector. The TmENO gene was transcribed during the adult and larval stages and was also identified in both cyst fluid and as a component of the adult worms and the metacestode by western blot analysis. Taken together, our results will facilitate further structural characterization for TmENO and new potential control strategies for T. multiceps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.

    PubMed

    Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S

    2017-07-01

    Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Orthogonal use of a human tRNA synthetase active site to achieve multifunctionality.

    PubMed

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A; Schimmel, Paul; Yang, Xiang-Lei

    2010-01-01

    Protein multifunctionality is an emerging explanation for the complexity of higher organisms. In this regard, aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, but some also act in pathways for inflammation, angiogenesis and apoptosis. It is unclear how these multiple functions evolved and how they relate to the active site. Here structural modeling analysis, mutagenesis and cell-based functional studies show that the potent angiostatic, natural fragment of human tryptophanyl-tRNA synthetase (TrpRS) associates via tryptophan side chains that protrude from its cognate cellular receptor vascular endothelial cadherin (VE-cadherin). VE-cadherin's tryptophan side chains fit into the tryptophan-specific active site of the synthetase. Thus, specific side chains of the receptor mimic amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multifunctionality of human tRNA synthetases and other proteins.

  2. Integrin-associated protein (CD47) is a putative mediator for soluble fibrinogen interaction with human red blood cells membrane.

    PubMed

    De Oliveira, S; Vitorino de Almeida, V; Calado, A; Rosário, H S; Saldanha, C

    2012-03-01

    Fibrinogen is a multifunctional plasma protein that plays a crucial role in several biological processes. Elevated fibrinogen induces erythrocyte hyperaggregation, suggesting an interaction between this protein and red blood cells (RBCs). Several studies support the concept that fibrinogen interacts with RBC membrane and this binding, due to specific and non-specific mechanisms, may be a trigger to RBC hyperaggregation in inflammation. The main goals of our work were to prove that human RBCs are able to specifically bind soluble fibrinogen, and identify membrane molecular targets that could be involved in this process. RBCs were first isolated from blood of healthy individuals and then separated in different age fractions by discontinuous Percoll gradients. After isolation RBC samples were incubated with human soluble fibrinogen and/or with a blocking antibody against CD47 followed by fluorescence confocal microscopy, flow cytometry acquisitions and zeta potential measurements. Our data show that soluble fibrinogen interacts with the human RBC membrane in an age-dependent manner, with younger RBCs interacting more with soluble fibrinogen than the older cells. Importantly, this interaction is abrogated in the presence of a specific antibody against CD47. Our results support a specific and age-dependent interaction of soluble fibrinogen with human RBC membrane; additionally we present CD47 as a putative mediator in this process. This interaction may contribute to RBC hyperaggregation in inflammation. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma–associated herpesvirus ORF57 protein is required for RNA splicing

    PubMed Central

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan

    2014-01-01

    Kaposi sarcoma–associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3–RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. PMID:25234929

  4. Attenuation of the suppressive activity of cellular splicing factor SRSF3 by Kaposi sarcoma-associated herpesvirus ORF57 protein is required for RNA splicing.

    PubMed

    Majerciak, Vladimir; Lu, Mathew; Li, Xiaofan; Zheng, Zhi-Ming

    2014-11-01

    Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 is a multifunctional post-transcriptional regulator essential for viral gene expression during KSHV lytic infection. ORF57 requires interactions with various cellular proteins for its function. Here, we identified serine/arginine-rich splicing factor 3 (SRSF3, formerly known as SRp20) as a cellular cofactor involved in ORF57-mediated splicing of KSHV K8β RNA. In the absence of ORF57, SRSF3 binds to a suboptimal K8β intron and inhibits K8β splicing. Knockdown of SRSF3 promotes K8β splicing, mimicking the effect of ORF57. The N-terminal half of ORF57 binds to the RNA recognition motif of SRSF3, which prevents SRSF3 from associating with the K8β intron RNA and therefore attenuates the suppressive effect of SRSF3 on K8β splicing. ORF57 also promotes splicing of heterologous non-KSHV transcripts that are negatively regulated by SRSF3, indicating that the effect of ORF57 on SRSF3 activity is independent of RNA target. SPEN proteins, previously identified as ORF57-interacting partners, suppress ORF57 splicing activity by displacing ORF57 from SRSF3-RNA complexes. In summary, we have identified modulation of SRSF3 activity as the molecular mechanism by which ORF57 promotes RNA splicing. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  5. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    PubMed

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  6. Complexes of mismatched and complementary DNA with minor groove binders. Structures at nucleotide resolution via an improved hydroxyl radical cleavage methodology

    PubMed Central

    Bialonska, Dobroslawa; Song, Kenneth; Bolton, Philip H.

    2011-01-01

    Tumor cell lines can replicate faster than normal cells and many also have defective DNA repair pathways. This has lead to the investigation of the inhibition of DNA repair proteins as a means of therapeutic intervention. An alternative approach is to hide or mask damaged DNA from the repair systems. We have developed a protocol to investigate the structures of the complexes of damaged DNA with drug like molecules. Nucleotide resolution structural information can be obtained using an improved hydroxyl radical cleavage protocol. The use of a dTn tail increases the length of the smallest fragments of interest and allows efficient co-precipitation of the fragments with poly(A). The use of a fluorescent label, on the 5′ end of the dTn tail, in conjunction with modified cleavage reaction conditions, avoids the lifetime and other problems with 32P labeling. The structures of duplex DNAs containing AC and CC mismatches in the presence and absence of minor groove binders have been investigated as have those of the fully complementary DNA. The results indicate that the structural perturbations of the mismatches are localized, are sequence dependent and that the presence of a mismatch can alter the binding of drug like molecules. PMID:21893212

  7. The Role of Galectins in Cervical Cancer Biology and Progression.

    PubMed

    Wang, Lufang; Zhao, Yanyan; Wang, Yanshi; Wu, Xin

    2018-01-01

    Cervical cancer is one of the malignant tumors with high incidence and high mortality among women in developing countries. The main factors affecting the prognosis of cervical cancer are the late recurrence and metastasis and the effective adjuvant treatment, which is radiation and chemotherapy or combination therapy. Galectins, a family containing many carbohydrate binding proteins, are closely involved in the occurrence and development of tumor. They are involved in tumor cells transformation, angiogenesis, metastasis, immune escape, and sensitivity against radiation and chemotherapy. Therefore, galectins are deemed as the targets of multifunctional cancer treatment. In this review, we mainly focus on the role of galectins, especially galectin-1, galectin-3, galectin-7, and galectin-9 in cervical cancer, and provide theoretical basis for potential targeted treatment of cervical cancer.

  8. Structural properties of fracture haematoma: current status and future clinical implications.

    PubMed

    Wang, Xin; Friis, Thor; Glatt, Vaida; Crawford, Ross; Xiao, Yin

    2017-10-01

    Blood clots (haematomas) that form immediately following a bone fracture have been shown to be vital for the subsequent healing process. During the clotting process, a number of factors can influence the fibrin clot structure, such as fibrin polymerization, growth factor binding, cellular infiltration (including platelet retraction), protein concentrations and cytokines. The modulation of the fibrin clot structure within the fracture site has important clinical implications and could result in the development of multifunctional scaffolds that mimic the natural structure of a haematoma. Artificial haematoma structures such as these can be created from the patient's own blood and can therefore act as an ideal bone defect filling material for potential clinical application to accelerate bone regeneration. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of SET/TAF-Iß δN from Homo sapiens.

    PubMed

    Xu, Zhen; Yang, Weili; Shi, Nuo; Gao, Yongxiang; Teng, Maikun; Niu, Liwen

    2010-08-01

    The histone chaperone SET encoded by the SET gene, which is also known as template-activating factor Iß (TAF-Iß), is a multifunctional molecule that is involved in many biological phenomena such as histone binding, nucleosome assembly, chromatin remodelling, replication, transcription and apoptosis. A truncated SET/TAF-Iß ΔN protein that lacked the first 22 residues of the N-terminus but contained the C-terminal acidic domain and an additional His6 tag at the C-terminus was overexpressed in Escherichia coli and crystallized by the hanging-drop vapour-diffusion method using sodium acetate as precipitant at 283 K. The crystals diffracted to 2.7 A resolution and belonged to space group P4(3)2(1)2.

  10. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors*

    PubMed Central

    Smith, Jeffrey S.; Rajagopal, Sudarshan

    2016-01-01

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. PMID:26984408

  11. Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Basu, Sankar; Söderquist, Fredrik; Wallner, Björn

    2017-05-01

    The focus of the computational structural biology community has taken a dramatic shift over the past one-and-a-half decades from the classical protein structure prediction problem to the possible understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder (IDPR). The current interest lies in the unraveling of a disorder-to-order transitioning code embedded in the amino acid sequences of IDPs/IDPRs. Disordered proteins are characterized by an enormous amount of structural plasticity which makes them promiscuous in binding to different partners, multi-functional in cellular activity and atypical in folding energy landscapes resembling partially folded molten globules. Also, their involvement in several deadly human diseases (e.g. cancer, cardiovascular and neurodegenerative diseases) makes them attractive drug targets, and important for a biochemical understanding of the disease(s). The study of the structural ensemble of IDPs is rather difficult, in particular for transient interactions. When bound to a structured partner, an IDPR adapts an ordered conformation in the complex. The residues that undergo this disorder-to-order transition are called protean residues, generally found in short contiguous stretches and the first step in understanding the modus operandi of an IDP/IDPR would be to predict these residues. There are a few available methods which predict these protean segments from their amino acid sequences; however, their performance reported in the literature leaves clear room for improvement. With this background, the current study presents `Proteus', a random forest classifier that predicts the likelihood of a residue undergoing a disorder-to-order transition upon binding to a potential partner protein. The prediction is based on features that can be calculated using the amino acid sequence alone. Proteus compares favorably with existing methods predicting twice as many true positives as the second best method (55 vs. 27%) with a much higher precision on an independent data set. The current study also sheds some light on a possible `disorder-to-order' transitioning consensus, untangled, yet embedded in the amino acid sequence of IDPs. Some guidelines have also been suggested for proceeding with a real-life structural modeling involving an IDPR using Proteus.

  12. On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink.

    PubMed

    Bog, Uwe; Laue, Thomas; Grossmann, Tobias; Beck, Torsten; Wienhold, Tobias; Richter, Benjamin; Hirtz, Michael; Fuchs, Harald; Kalt, Heinz; Mappes, Timo

    2013-07-21

    We report on a novel approach to realize on-chip microlasers, by applying highly localized and material-saving surface functionalization of passive photonic whispering gallery mode microresonators. We apply dip-pen nanolithography on a true three-dimensional structure. We coat solely the light-guiding circumference of pre-fabricated poly(methyl methacrylate) resonators with a multifunctional molecular ink. The functionalization is performed in one single fabrication step and simultaneously provides optical gain as well as molecular binding selectivity. This allows for a direct and flexible realization of on-chip microlasers, which can be utilized as biosensors in optofluidic lab-on-a-chip applications. In a proof-of-concept we show how this highly localized molecule deposition suffices for low-threshold lasing in air and water, and demonstrate the capability of the ink-lasers as biosensors in a biotin-streptavidin binding experiment.

  13. Symbolic and Verbal Representation Process of Student in Solving Mathematics Problem Based Polya's Stages

    ERIC Educational Resources Information Center

    Anwar, Rahmad Bustanul; Rahmawati, Dwi

    2017-01-01

    The purpose of this research was to reveal how the construction process of symbolic representation and verbal representation made by students in problem solving. The construction process in this study referred to the problem-solving stage by Polya covering; 1) understanding the problem, 2) devising a plan, 3) carrying out the plan, and 4) looking…

  14. Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain

    PubMed Central

    Müller, Mischa R.; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O’Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P.; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J.

    2012-01-01

    Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies. PMID:23676205

  15. Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain.

    PubMed

    Müller, Mischa R; Saunders, Kenneth; Grace, Christopher; Jin, Macy; Piche-Nicholas, Nicole; Steven, John; O'Dwyer, Ronan; Wu, Leeying; Khetemenee, Lam; Vugmeyster, Yulia; Hickling, Timothy P; Tchistiakova, Lioudmila; Olland, Stephane; Gill, Davinder; Jensen, Allan; Barelle, Caroline J

    2012-01-01

    Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.

  16. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation

    PubMed Central

    Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng

    2016-01-01

    mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026

  17. Interaction of anti-cancer drug-cisplatin with major proteinase inhibitor-alpha-2-macroglobulin: Biophysical and thermodynamic analysis.

    PubMed

    Zia, Mohammad Khalid; Siddiqui, Tooba; Ali, Syed Saqib; Ahsan, Haseeb; Khan, Fahim Halim

    2018-05-09

    Alpha-2-macroglobulin is a multifunctional, highly abundant, plasma protein which reacts with a wide variety of molecules and drugs including cisplatin. Cisplatin is commonly used anticancer drug widely used for treatment of testicular, bladder, ovarian, head and neck, lung and cervical cancers. This study is designed to examine the interaction of cisplatin with human alpha-2-macroglobulin through various biophysical techniques and drug binding through molecular modeling. Cisplatin alters the function of alpha-2-macroglobulin and the thiolesters are most likely the reactive sites for cisplatin. Our result suggests that cisplatin decreases the antiproteolytic potential and causes structural and functional change in human alpha-2-macroglobulin as evident by absorption and fluorescence spectroscopy. Change in secondary structure of alpha-2-macroglobulin was confirmed by CD and FTIR. Thermodynamics parameters such as entropy (ΔS), enthalpy (ΔH) and Gibb's free energy changes (ΔG) along with number of binding sites (N) of alpha-2-macroglobulin-cisplatin binding in solutions were determined by isothermal titration calorimetry (ITC). It was found that binding of cisplatin with alpha-2-macroglobulin was exothermic in nature. The interaction of drug with alpha-2-macroglobulin in the plasma could lead to structural alterations in the conformational status of alpha-2-macroglobulin resulting in its functional inactivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms.

    PubMed

    Wu, Wei; Sankhala, Rajeshwer S; Florio, Tyler J; Zhou, Lixin; Nguyen, Nhan L T; Lokareddy, Ravi K; Cingolani, Gino; Panté, Nelly

    2017-09-12

    The influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection. Atomic structures of importin α bound to two variants of NLS2 revealed NLS2 primarily binds the major-NLS binding site of importin α, unlike NLS1 that associates with the minor NLS-pocket. Though peptides corresponding to NLS1 and NLS2 bind weakly to importin α, the two NLSs synergize in the context of the full length NP to confer high avidity for importin α7, explaining why the virus efficiently replicates in the respiratory tract that exhibits high levels of this isoform. This study, the first to functionally characterize NLS2, demonstrates NLS2 plays an important and unexpected role in influenza A virus infection. We propose NLS1 and NLS2 form a bipartite NLS in trans, which ensures high avidity for importin α7 while preventing non-specific binding to viral RNA.

  19. Interaction of the Transcription Start Site Core Region and Transcription Factor YY1 Determine Ascorbate Transporter SVCT2 Exon 1a Promoter Activity

    PubMed Central

    Qiao, Huan; May, James M.

    2012-01-01

    Transcription of the ascorbate transporter, SVCT2, is driven by two distinct promoters in exon 1 of the transporter sequence. The exon 1a promoter lacks a classical transcription start site and little is known about regulation of promoter activity in the transcription start site core (TSSC) region. Here we present evidence that the TSSC binds the multifunctional initiator-binding protein YY1. Electrophoresis shift assays using YY1 antibody showed that YY1 is present as one of two major complexes that specifically bind to the TSSC. The other complex contains the transcription factor NF-Y. Mutations in the TSSC that decreased YY1 binding also impaired the exon 1a promoter activity despite the presence of an upstream activating NF-Y/USF complex, suggesting that YY1 is involved in the regulation of the exon 1a transcription. Furthermore, YY1 interaction with NF-Y and/or USF synergistically enhanced the exon 1a promoter activity in transient transfections and co-activator p300 enhanced their synergistic activation. We propose that the TSSC plays a vital role in the exon 1a transcription and that this function is partially carried out by the transcription factor YY1. Moreover, co-activator p300 might be able to synergistically enhance the TSSC function via a “bridge” mechanism with upstream sequences. PMID:22532872

  20. A preliminary approach to creating an overview of lactoferrin multi-functionality utilizing a text mining method.

    PubMed

    Shimazaki, Kei-ichi; Kushida, Tatsuya

    2010-06-01

    Lactoferrin is a multi-functional metal-binding glycoprotein that exhibits many biological functions of interest to many researchers from the fields of clinical medicine, dentistry, pharmacology, veterinary medicine, nutrition and milk science. To date, a number of academic reports concerning the biological activities of lactoferrin have been published and are easily accessible through public data repositories. However, as the literature is expanding daily, this presents challenges in understanding the larger picture of lactoferrin function and mechanisms. In order to overcome the "analysis paralysis" associated with lactoferrin information, we attempted to apply a text mining method to the accumulated lactoferrin literature. To this end, we used the information extraction system GENPAC (provided by Nalapro Technologies Inc., Tokyo). This information extraction system uses natural language processing and text mining technology. This system analyzes the sentences and titles from abstracts stored in the PubMed database, and can automatically extract binary relations that consist of interactions between genes/proteins, chemicals and diseases/functions. We expect that such information visualization analysis will be useful in determining novel relationships among a multitude of lactoferrin functions and mechanisms. We have demonstrated the utilization of this method to find pathways of lactoferrin participation in neovascularization, Helicobacter pylori attack on gastric mucosa, atopic dermatitis and lipid metabolism.

  1. Oligomeric Properties of Adeno-Associated Virus Rep68 Reflect Its Multifunctionality

    PubMed Central

    Zarate-Perez, Francisco; Mansilla-Soto, Jorge; Bardelli, Martino; Burgner, John W.; Villamil-Jarauta, Maria; Kekilli, Demet; Samso, Monserrat

    2013-01-01

    The adeno-associated virus (AAV) encodes four regulatory proteins called Rep. The large AAV Rep proteins Rep68 and Rep78 are essential factors required in almost every step of the viral life cycle. Structurally, they share two domains: a modified version of the AAA+ domain that characterizes the SF3 family of helicases and an N-terminal domain that binds DNA specifically. The combination of these two domains imparts extraordinary multifunctionality to work as initiators of DNA replication and regulators of transcription, in addition to their essential role during site-specific integration. Although most members of the SF3 family form hexameric rings in vitro, the oligomeric nature of Rep68 is unclear due to its propensity to aggregate in solution. We report here a comprehensive study to determine the oligomeric character of Rep68 using a combination of methods that includes sedimentation velocity ultracentrifugation, electron microscopy, and hydrodynamic modeling. We have determined that residue Cys151 induces Rep68 to aggregate in vitro. We show that Rep68 displays a concentration-dependent dynamic oligomeric behavior characterized by the presence of two populations: one with monomers and dimers in slow equilibrium and a second one consisting of a mixture of multiple-ring structures of seven and eight members. The presence of either ATP or ADP induces formation of larger complexes formed by the stacking of multiple rings. Taken together, our results support the idea of a Rep68 molecule that exhibits the flexible oligomeric behavior needed to perform the wide range of functions occurring during the AAV life cycle. PMID:23152528

  2. Fusion of nacre, mussel, and lotus leaf: bio-inspired graphene composite paper with multifunctional integration

    NASA Astrophysics Data System (ADS)

    Zhong, Da; Yang, Qinglin; Guo, Lin; Dou, Shixue; Liu, Kesong; Jiang, Lei

    2013-06-01

    Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater.Multifunctional integration is an inherent characteristic for biological materials with multiscale structures. Learning from nature is an effective approach for scientists and engineers to construct multifunctional materials. In nature, mollusks (abalone), mussels, and the lotus have evolved different and optimized solutions to survive. Here, bio-inspired multifunctional graphene composite paper was fabricated in situ through the fusion of the different biological solutions from nacre (brick-and-mortar structure), mussel adhesive protein (adhesive property and reducing character), and the lotus leaf (self-cleaning effect). Owing to the special properties (self-polymerization, reduction, and adhesion), dopamine could be simultaneously used as a reducing agent for graphene oxide and as an adhesive, similar to the mortar in nacre, to crosslink the adjacent graphene. The resultant nacre-like graphene paper exhibited stable superhydrophobicity, self-cleaning, anti-corrosion, and remarkable mechanical properties underwater. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33632h

  3. Novel dicistrovirus from bat guano.

    PubMed

    Reuter, Gábor; Pankovics, Péter; Gyöngyi, Zoltán; Delwart, Eric; Boros, Akos

    2014-12-01

    A novel dicistrovirus (strain NB-1/2011/HUN, KJ802403) genome was detected from guano collected from an insectivorous bat (species Pipistrellus pipistrellus) in Hungary, using viral metagenomics. The complete genome of NB-1 is 9136 nt in length, excluding the poly(A) tail. NB-1 has a genome organization typical of a dicistrovirus with multiple 3B(VPg) and a cripavirus-like intergenic region (IGR)-IRES. NB-1 shares only 41 % average amino acid sequence identity with capsid proteins of Himetobi P virus, indicating a potential novel species in the genus Cripavirus, family Dicistroviridae.

  4. Structure of the Ebola VP35 interferon inhibitory domain.

    PubMed

    Leung, Daisy W; Ginder, Nathaniel D; Fulton, D Bruce; Nix, Jay; Basler, Christopher F; Honzatko, Richard B; Amarasinghe, Gaya K

    2009-01-13

    Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral hemorrhagic fever in humans, and approved treatments for these infections are currently lacking. The Ebola VP35 protein is multifunctional, acting as a component of the viral RNA polymerase complex, a viral assembly factor, and an inhibitor of host interferon (IFN) production. Mutation of select basic residues within the C-terminal half of VP35 abrogates its dsRNA-binding activity, impairs VP35-mediated IFN antagonism, and attenuates EBOV growth in vitro and in vivo. Because VP35 contributes to viral escape from host innate immunity and is required for EBOV virulence, understanding the structural basis for VP35 dsRNA binding, which correlates with suppression of IFN activity, is of high importance. Here, we report the structure of the C-terminal VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 A and show that VP35 IID forms a unique fold. In the structure, we identify 2 basic residue clusters, one of which is important for dsRNA binding. The dsRNA binding cluster is centered on Arg-312, a highly conserved residue required for IFN inhibition. Mutation of residues within this cluster significantly changes the surface electrostatic potential and diminishes dsRNA binding activity. The high-resolution structure and the identification of the conserved dsRNA binding residue cluster provide opportunities for antiviral therapeutic design. Our results suggest a structure-based model for dsRNA-mediated innate immune antagonism by Ebola VP35 and other similarly constructed viral antagonists.

  5. Label-free quantitative proteomics for the extremely thermophilic bacterium Caldicellulosiruptor obsidiansis reveal distinct abundance patterns upon growth on cellobiose, crystalline cellulose, and switchgrass.

    PubMed

    Lochner, Adriane; Giannone, Richard J; Keller, Martin; Antranikian, Garabed; Graham, David E; Hettich, Robert L

    2011-12-02

    Mass spectrometric analysis of Caldicellulosiruptor obsidiansis cultures grown on four different carbon sources identified 65% of the cells' predicted proteins in cell lysates and supernatants. Biological and technical replication together with sophisticated statistical analysis were used to reliably quantify protein abundances and their changes as a function of carbon source. Extracellular, multifunctional glycosidases were significantly more abundant on cellobiose than on the crystalline cellulose substrates Avicel and filter paper, indicating either disaccharide induction or constitutive protein expression. Highly abundant flagellar, chemotaxis, and pilus proteins were detected during growth on insoluble substrates, suggesting motility or specific substrate attachment. The highly abundant extracellular binding protein COB47_0549 together with the COB47_1616 ATPase might comprise the primary ABC-transport system for cellooligosaccharides, while COB47_0096 and COB47_0097 could facilitate monosaccharide uptake. Oligosaccharide degradation can occur either via extracellular hydrolysis by a GH1 β-glycosidase or by intracellular phosphorolysis using two GH94 enzymes. When C. obsidiansis was grown on switchgrass, the abundance of hemicellulases (including GH3, GH5, GH51, and GH67 enzymes) and certain sugar transporters increased significantly. Cultivation on biomass also caused a concerted increase in cytosolic enzymes for xylose and arabinose fermentation.

  6. Tumor Necrosis Factor Receptor-Associated Factor 5 Interacts with the NS3 Protein and Promotes Classical Swine Fever Virus Replication.

    PubMed

    Lv, Huifang; Dong, Wang; Guo, Kangkang; Jin, Mingxing; Li, Xiaomeng; Li, Cunfa; Zhang, Yanming

    2018-06-05

    Classical swine fever, caused by classical swine fever virus (CSFV), is a highly contagious and high-mortality viral disease, causing huge economic losses in the swine industry worldwide. CSFV non-structural protein 3 (NS3), a multifunctional protein, plays crucial roles in viral replication. However, how NS3 exactly exerts these functions is currently unknown. Here, we identified tumor necrosis factor receptor-associated factor 5 (TRAF5) as a novel binding partner of the NS3 protein via yeast two-hybrid, co-immunoprecipitation and glutathione S -transferase pull-down assays. Furthermore, we observed that TRAF5 promoted CSFV replication in porcine alveolar macrophages (PAMs). Additionally, CSFV infection or NS3 expression upregulated TRAF5 expression, implying that CSFV may exploit TRAF5 via NS3 for better growth. Moreover, CSFV infection and TRAF5 expression activated p38 mitogen activated protein kinase (MAPK) activity, and inhibition of p38 MAPK activation by the SB203580 inhibitor suppressed CSFV replication. Notably, TRAF5 overexpression did not promote CSFV replication following inhibition of p38 MAPK activation. Our findings reveal that TRAF5 promotes CSFV replication via p38 MAPK activation. This work provides a novel insight into the role of TRAF5 in CSFV replication capacity.

  7. Multifunctional ferritin cage nanostructures for fluorescence and MR imaging of tumor cells.

    PubMed

    Li, Ke; Zhang, Zhi-Ping; Luo, Ming; Yu, Xiang; Han, Yu; Wei, Hong-Ping; Cui, Zong-Qiang; Zhang, Xian-En

    2012-01-07

    Bionanoparticles and nanostructures have attracted increasing interest as versatile and promising tools in many applications including biosensing and bioimaging. In this study, to image and detect tumor cells, ferritin cage-based multifunctional hybrid nanostructures were constructed that: (i) displayed both the green fluorescent protein and an Arg-Gly-Asp peptide on the exterior surface of the ferritin cages; and (ii) incorporated ferrimagnetic iron oxide nanoparticles into the ferritin interior cavity. The overall architecture of ferritin cages did not change after being integrated with fusion proteins and ferrimagnetic iron oxide nanoparticles. These multifunctional nanostructures were successfully used as a fluorescent imaging probe and an MRI contrast agent for specifically probing and imaging α(v)β(3) integrin upregulated tumor cells. The work provides a promising strategy for tumor cell detection by simultaneous fluorescence and MR imaging.

  8. A Novel Cryptic Binding Motif, LRSKSRSFQVSDEQY, in the C-Terminal Fragment of MMP-3/7-Cleaved Osteopontin as a Novel Ligand for α9β1 Integrin Is Involved in the Anti-Type II Collagen Antibody-Induced Arthritis

    PubMed Central

    Kon, Shigeyuki; Nakayama, Yosuke; Matsumoto, Naoki; Ito, Koyu; Kanayama, Masashi; Kimura, Chiemi; Kouro, Hitomi; Ashitomi, Dai; Matsuda, Tadashi; Uede, Toshimitsu

    2014-01-01

    Osteopontin (OPN) is a multifunctional protein that has been linked to various intractable inflammatory diseases. One way by which OPN induces inflammation is the production of various functional fragments by enzyme cleavage. It has been well appreciated that OPN is cleaved by thrombin, and/or matrix metalloproteinase-3 and -7 (MMP-3/7). Although the function of thrombin-cleaved OPN is well characterized, little is known about the function of MMP-3/7-cleaved OPN. In this study, we found a novel motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved mouse OPN binds to α9β1 integrin. Importantly, this novel motif is involved in the development of anti-type II collagen antibody-induced arthritis (CAIA). This study provides the first in vitro and in vivo evidence that OPN cleavage by MMP-3/7 is an important regulatory mechanism for CAIA. PMID:25545242

  9. The nuclear DEK interactome supports multi-functionality.

    PubMed

    Smith, Eric A; Krumpelbeck, Eric F; Jegga, Anil G; Prell, Malte; Matrka, Marie M; Kappes, Ferdinand; Greis, Kenneth D; Ali, Abdullah M; Meetei, Amom R; Wells, Susanne I

    2018-01-01

    DEK is an oncoprotein that is overexpressed in many forms of cancer and participates in numerous cellular pathways. Of these different pathways, relevant interacting partners and functions of DEK are well described in regard to the regulation of chromatin structure, epigenetic marks, and transcription. Most of this understanding was derived by investigating DNA-binding and chromatin processing capabilities of the oncoprotein. To facilitate the generation of mechanism-driven hypotheses regarding DEK activities in underexplored areas, we have developed the first DEK interactome model using tandem-affinity purification and mass spectrometry. With this approach, we identify IMPDH2, DDX21, and RPL7a as novel DEK binding partners, hinting at new roles for the oncogene in de novo nucleotide biosynthesis and ribosome formation. Additionally, a hydroxyurea-specific interaction with replication protein A (RPA) was observed, suggesting that a DEK-RPA complex may form in response to DNA replication fork stalling. Taken together, these findings highlight diverse activities for DEK across cellular pathways and support a model wherein this molecule performs a plethora of functions. © 2017 Wiley Periodicals, Inc.

  10. Alpha-2-Macroglobulin Is Acutely Sensitive to Freezing and Lyophilization: Implications for Structural and Functional Studies

    PubMed Central

    Wyatt, Amy R.; Kumita, Janet R.; Farrawell, Natalie E.; Dobson, Christopher M.; Wilson, Mark R.

    2015-01-01

    Alpha-2-macroglobulin is an abundant secreted protein that is of particular interest because of its diverse ligand binding profile and multifunctional nature, which includes roles as a protease inhibitor and as a molecular chaperone. The activities of alpha-2-macroglobulin are typically dependent on whether its conformation is native or transformed (i.e. adopts a more compact conformation after interactions with proteases or small nucleophiles), and are also influenced by dissociation of the native alpha-2-macroglobulin tetramer into stable dimers. Alpha-2-macroglobulin is predominately present as the native tetramer in vivo; once purified from human blood plasma, however, alpha-2-macroglobulin can undergo a number of conformational changes during storage, including transformation, aggregation or dissociation. We demonstrate that, particularly in the presence of sodium chloride or amine containing compounds, freezing and/or lyophilization of alpha-2-macroglobulin induces conformational changes with functional consequences. These conformational changes in alpha-2-macroglobulin are not always detected by standard native polyacrylamide gel electrophoresis, but can be measured using bisANS fluorescence assays. Increased surface hydrophobicity of alpha-2-macroglobulin, as assessed by bisANS fluorescence measurements, is accompanied by (i) reduced trypsin binding activity, (ii) increased chaperone activity, and (iii) increased binding to the surfaces of SH-SY5Y neurons, in part, via lipoprotein receptors. We show that sucrose (but not glycine) effectively protects native alpha-2-macroglobulin from denaturation during freezing and/or lyophilization, thereby providing a reproducible method for the handling and long-term storage of this protein. PMID:26103636

  11. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry.

    PubMed

    Basharat, Zarrin; Yasmin, Azra

    2015-08-01

    Ebola is a highly pathogenic enveloped virus responsible for deadly outbreaks of severe hemorrhagic fever. It enters human cells by binding a multifunctional cholesterol transporter Niemann-Pick C1 (NPC1) protein. Post translational modification (PTM) information for NPC1 is crucial to understand Ebola virus (EBOV) entry and action due to changes in phosphorylation or glycosylation at the binding site. It is difficult and costly to experimentally assess this type of interaction, so in silico strategy was employed. Identification of phosphorylation sites, including conserved residues that could be possible targets for 21 predicted kinases was followed by interplay study between phosphorylation and O-β-GlcNAc modification of NPC1. Results revealed that only 4 out of 48 predicted phosphosites exhibited O-β-GlcNAc activity. Predicted outcomes were integrated with residue conservation and 3D structural information. Three Yin Yang sites were located in the α-helix regions and were conserved in studied vertebrate and mammalian species. Only one modification site S425 was found in β-turn region located near the N-terminus of NPC1 and was found to differ in pig, mouse, cobra and humans. The predictions suggest that Yin Yang sites may not be important for virus attachment to NPC1, whereas phosphosite 473 may be important for binding and hence entry of Ebola virus. This information could be useful in addressing further experimental studies and therapeutic strategies targeting PTM events in EBOV entry. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Molecular cloning and characterization of a C-type lectin in roughskin sculpin (Trachidermus fasciatus).

    PubMed

    Yu, Shanshan; Yang, Hui; Chai, Yingmei; Liu, Yingying; Zhang, Qiuxia; Ding, Xinbiao; Zhu, Qian

    2013-02-01

    C-type lectins, as the members of pattern-recognition receptors (PRRs), play significant roles in innate immunity responses through binding to the pathogen-associated molecular patterns (PAMPs) presented on surfaces of microorganisms. In our study, a C-type lectin gene (TfCTL1) was cloned from the roughskin sculpin using expression sequence tag (EST) and rapid amplification of cDNA ends (RACE) techniques. The full-length of TfCTL1 was 696 bp, consisting of a 95 bp 5' untranslated region (UTR), a 498 bp open reading frame (ORF) encoding a 165 amino acid protein, and a 103 bp 3' UTR with a polyadenylation signal sequence AATAAA and a poly(A) tail. The deduced amino acid sequence of TfCTL1 contained a signal peptide and a single carbohydrate recognition domain (CRD) which had four conserved disulfide-bonded cysteine residues (Cys(61)-Cys(158), Cys(134)-Cys(150)) and a Ca(2+)/carbohydrate-binding site (QPD motif). Results from the qRT-PCR indicated that TfCTL1 mRNA was predominately expressed in the liver. The temporal expression of TfCTL1 was obviously up-regulated in the skin, blood, spleen and heart in time dependent manners by lipopolysaccharide (LPS) challenge, whereas in the liver, TfCTL1 was initially down-regulated from 2 h to 48 h followed by an abrupt up-regulation at 72 h. Recombinant TfCTL1 CRD purified from Escherichia coli BL21 was able to agglutinate some Gram-positive bacteria, Gram-negative bacteria and a yeast in a Ca(2+)-dependent manner. Further analysis showed that TfCTL1 can bind to several kinds of microorganisms selectively in a Ca(2+)-independent manner. These results suggested that TfCTL1 might be involved in the innate response as a PRR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. On-Demand Targeting: Investigating Biology with Proximity-Directed Chemistry.

    PubMed

    Long, Marcus J C; Poganik, Jesse R; Aye, Yimon

    2016-03-23

    Proximity enhancement is a central chemical tenet underpinning an exciting suite of small-molecule toolsets that have allowed us to unravel many biological complexities. The leitmotif of this opus is "tethering"-a strategy in which a multifunctional small molecule serves as a template to bring proteins/biomolecules together. Scaffolding approaches have been powerfully applied to control diverse biological outcomes such as protein-protein association, protein stability, activity, and improve imaging capabilities. A new twist on this strategy has recently appeared, in which the small-molecule probe is engineered to unleash controlled amounts of reactive chemical signals within the microenvironment of a target protein. Modification of a specific target elicits a precisely timed and spatially controlled gain-of-function (or dominant loss-of-function) signaling response. Presented herein is a unique personal outlook conceptualizing the powerful proximity-enhanced chemical biology toolsets into two paradigms: "multifunctional scaffolding" versus "on-demand targeting". By addressing the latest advances and challenges in the established yet constantly evolving multifunctional scaffolding strategies as well as in the emerging on-demand precision targeting (and related) systems, this Perspective is aimed at choosing when it is best to employ each of the two strategies, with an emphasis toward further promoting novel applications and discoveries stemming from these innovative chemical biology platforms.

  14. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.

    PubMed

    Hamula, Camille L A; Peng, Hanyong; Wang, Zhixin; Tyrrell, Gregory J; Li, Xing-Fang; Le, X Chris

    2016-03-15

    Streptococcus pyogenes is a clinically important pathogen consisting of various serotypes determined by different M proteins expressed on the cell surface. The M type is therefore a useful marker to monitor the spread of invasive S. pyogenes in a population. Serotyping and nucleic acid amplification/sequencing methods for the identification of M types are laborious, inconsistent, and usually confined to reference laboratories. The primary objective of this work is to develop a technique that enables generation of aptamers binding to specific M-types of S. pyogenes. We describe here an in vitro technique that directly used live bacterial cells and the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) strategy. Live S. pyogenes cells were incubated with DNA libraries consisting of 40-nucleotides randomized sequences. Those sequences that bound to the cells were separated, amplified using polymerase chain reaction (PCR), purified using gel electrophoresis, and served as the input DNA pool for the next round of SELEX selection. A specially designed forward primer containing extended polyA20/5Sp9 facilitated gel electrophoresis purification of ssDNA after PCR amplification. A counter-selection step using non-target cells was introduced to improve selectivity. DNA libraries of different starting sequence diversity (10(16) and 10(14)) were compared. Aptamer pools from each round of selection were tested for their binding to the target and non-target cells using flow cytometry. Selected aptamer pools were then cloned and sequenced. Individual aptamer sequences were screened on the basis of their binding to the 10 M-types that were used as targets. Aptamer pools obtained from SELEX rounds 5-8 showed high affinity to the target S. pyogenes cells. Tests against non-target Streptococcus bovis, Streptococcus pneumoniae, and Enterococcus species demonstrated selectivity of these aptamers for binding to S. pyogenes. Several aptamer sequences were found to bind preferentially to the M11 M-type of S. pyogenes. Estimated binding dissociation constants (Kd) were in the low nanomolar range for the M11 specific sequences; for example, sequence E-CA20 had a Kd of 7±1 nM. These affinities are comparable to those of a monoclonal antibody. The improved bacterial cell-SELEX technique is successful in generating aptamers selective for S. pyogenes and some of its M-types. These aptamers are potentially useful for detecting S. pyogenes, achieving binding profiles of the various M-types, and developing new M-typing technologies for non-specialized laboratories or point-of-care testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya

    ERIC Educational Resources Information Center

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel

    2016-01-01

    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  16. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  17. Myelin management by the 18.5–kDa and 21.5–kDa classic myelin basic protein isoforms

    PubMed Central

    Harauz, George; Boggs, Joan M.

    2013-01-01

    The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP’s protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation. PMID:23398367

  18. Selection of a novel peptide aptamer with high affinity for TiO2-nanoparticle through a direct electroporation with TiO2-binding phage complexes.

    PubMed

    Inoue, Ippei; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro; Yasueda, Hisashi

    2016-11-01

    We have developed an easy and rapid screening method of peptide aptamers with high affinity for a target material TiO 2 using M13 phage-display and panning procedure. In a selection step, the phage-substrate complexes and Escherichia coli cells were directly applied by electric pulse for electroporation, without separating the objective phages from the TiO 2 nanoparticles. Using this simple and rapid method, we obtained a novel peptide aptamer (named ST-1 with the sequence AYPQKFNNNFMS) with highly strong binding activity for TiO 2 . A cage-shaped protein fused with both ST-1 and an available carbon nanotube-affinity peptide was designed and produced in E. coli. The multi-functional supraprotein could efficiently mineralize a titanium-compound around the surface of single-wall carbon nanotubes (SWNTs), indicating that the ST-1 is valuable in the fabrication of nano-composite materials with titanium-compounds. The structural analysis of ST-1 variants indicated the importance of the N-terminal region (as a motif of AXPQKX 6 S) of the aptamer in the TiO 2 -binding activity. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. The Novel Poly(A) Polymerase Star-PAP is a Signal-Regulated Switch at the 3′-end of mRNAs

    PubMed Central

    Li, Weimin; Laishram, Rakesh S.; Anderson, Richard A.

    2013-01-01

    The mRNA 3′-untranslated region (3′-UTR) modulates message stability, transport, intracellular location and translation. We have discovered a novel nuclear poly(A) polymerase termed Star-PAP (nuclear speckle targeted PIPKIα regulated-poly(A) polymerase) that couples with the transcriptional machinery and is regulated by the phosphoinositide lipid messenger phosphatidylinositol-4,5-bisphosphate (PI4,5P2), the central lipid in phosphoinositide signaling. PI4,5P2 is generated primarily by type I phosphatidylinositol phosphate kinases (PIPKI). Phosphoinositides are present in the nucleus including at nuclear speckles compartments separate from known membrane structures. PIPKs regulate cellular functions by interacting with PI4,5P2 effectors where PIPKs generate PI4,5P2 that then modulates the activity of the associated effectors. Nuclear PIPKIα interacts with and regulates Star-PAP, and PI4,5P2 specifically activates Star-PAP in a gene- and signaling-dependent manner. Importantly, other select signaling molecules integrated into the Star-PAP complex seem to regulate Star-PAP activities and processivities toward RNA substrates, and unique sequence elements around the Star-PAP binding sites within the 3′-UTR of target genes contribute to Star-PAP specificity for processing. Therefore, Star-PAP and its regulatory molecules form a signaling nexus at the 3′-end of target mRNAs to control the expression of select group of genes including the ones involved in stress responses. PMID:23306079

  20. The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan

    2016-04-22

    The β-arrestins (βarrs) are versatile, multifunctional adapter proteins that are best known for their ability to desensitize G protein-coupled receptors (GPCRs), but also regulate a diverse array of cellular functions. To signal in such a complex fashion, βarrs adopt multiple conformations and are regulated at multiple levels to differentially activate downstream pathways. Recent structural studies have demonstrated that βarrs have a conserved structure and activation mechanism, with plasticity of their structural fold, allowing them to adopt a wide array of conformations. Novel roles for βarrs continue to be identified, demonstrating the importance of these dynamic regulators of cellular signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Sequence-specific inhibition of Dicer measured with a force-based microarray for RNA ligands.

    PubMed

    Limmer, Katja; Aschenbrenner, Daniela; Gaub, Hermann E

    2013-04-01

    Malfunction of protein translation causes many severe diseases, and suitable correction strategies may become the basis of effective therapies. One major regulatory element of protein translation is the nuclease Dicer that cuts double-stranded RNA independently of the sequence into pieces of 19-22 base pairs starting the RNA interference pathway and activating miRNAs. Inhibiting Dicer is not desirable owing to its multifunctional influence on the cell's gene regulation. Blocking specific RNA sequences by small-molecule binding, however, is a promising approach to affect the cell's condition in a controlled manner. A label-free assay for the screening of site-specific interference of small molecules with Dicer activity is thus needed. We used the Molecular Force Assay (MFA), recently developed in our lab, to measure the activity of Dicer. As a model system, we used an RNA sequence that forms an aptamer-binding site for paromomycin, a 615-dalton aminoglycoside. We show that Dicer activity is modulated as a function of concentration and incubation time: the addition of paromomycin leads to a decrease of Dicer activity according to the amount of ligand. The measured dissociation constant of paromomycin to its aptamer was found to agree well with literature values. The parallel format of the MFA allows a large-scale search and analysis for ligands for any RNA sequence.

  2. Abl Tyrosine Kinase Phosphorylates Nonmuscle Myosin Light Chain Kinase to Regulate Endothelial Barrier Function

    PubMed Central

    Dudek, Steven M.; Chiang, Eddie T.; Camp, Sara M.; Guo, Yurong; Zhao, Jing; Brown, Mary E.; Singleton, Patrick A.; Wang, Lichun; Desai, Anjali; Arce, Fernando T.; Lal, Ratnesh; Van Eyk, Jennifer E.; Imam, Syed Z.

    2010-01-01

    Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement. PMID:20861316

  3. Polyethyleneimine grafted short halloysite nanotubes for gene delivery.

    PubMed

    Long, Zheru; Zhang, Jun; Shen, Yan; Zhou, Changren; Liu, Mingxian

    2017-12-01

    Inorganic nanoparticles have attracted much attentions in gene delivery because of their desirable characteristics including low toxicity, well-controlled characteristics, high gene delivery efficiency, and multi-functionalities. Here, natural occurred halloysite nanotubes (HNTs) were developed as a novel non-viral gene vector. To increase the efficiency of endocytosis, HNTs were firstly shortened into an appropriate size (~200nm). Then polyethyleneimine (PEI) was grafted onto HNTs to bind green fluorescence protein (GFP) labeled pDNA. The structure and physical-chemical properties of PEI grafted HNTs (PEI-g-HNTs) were characterized by various methods. PEI-g-HNTs show lower cytotoxicity than PEI. PEI-g-HNTs are positively charged and can bind DNA tightly at designed N/P ratio from 5:1 to 40:1. PEI-g-HNTs/pDNA complexes show much higher transfection efficiency towards both 293T and HeLa cells compared with PEI/pDNA complexes at the equivalent N/P ratio. The transfection efficiencies of PEI-g-HNTs/pDNA complex towards HeLa cell can reach to 44.4% at N/P ratio of 20. PEI-g-HNTs/pDNA complexes possess a higher GFP protein expression than PEI/pDNA from simple western immunoblots. So, PEI-g-HNTs are potential gene vectors with good biocompatibility and high transfection efficiency, which have promising applications in cancer gene therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enzymes Involved in Post-transcriptional RNA Metabolism in Gram-negative bacteria

    PubMed Central

    Mohanty, Bijoy K.

    2018-01-01

    Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this chapter we discuss the various enzymes that control transcription, translation and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5′ and 3′ termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript, are matured to individual 16S, 23S and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and non-translated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase as well as proteins that regulate the catalytic activity of particular ribonucleases. Under certain stress conditions an additional group of specialized endonucleases facilitate the cell’s ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I participate in multiple RNA processing and decay pathways. PMID:29676246

  5. Genome-wide dynamics of alternative polyadenylation in rice

    PubMed Central

    Fu, Haihui; Yang, Dewei; Su, Wenyue; Ma, Liuyin; Shen, Yingjia; Ji, Guoli; Ye, Xinfu; Wu, Xiaohui

    2016-01-01

    Alternative polyadenylation (APA), in which a transcript uses one of the poly(A) sites to define its 3′-end, is a common regulatory mechanism in eukaryotic gene expression. However, the potential of APA in determining crop agronomic traits remains elusive. This study systematically tallied poly(A) sites of 14 different rice tissues and developmental stages using the poly(A) tag sequencing (PAT-seq) approach. The results indicate significant involvement of APA in developmental and quantitative trait loci (QTL) gene expression. About 48% of all expressed genes use APA to generate transcriptomic and proteomic diversity. Some genes switch APA sites, allowing differentially expressed genes to use alternate 3′ UTRs. Interestingly, APA in mature pollen is distinct where differential expression levels of a set of poly(A) factors and different distributions of APA sites are found, indicating a unique mRNA 3′-end formation regulation during gametophyte development. Equally interesting, statistical analyses showed that QTL tends to use APA for regulation of gene expression of many agronomic traits, suggesting a potential important role of APA in rice production. These results provide thus far the most comprehensive and high-resolution resource for advanced analysis of APA in crops and shed light on how APA is associated with trait formation in eukaryotes. PMID:27733415

  6. Orthogonal use of a human tRNA synthetase active site to achieve multi-functionality

    PubMed Central

    Zhou, Quansheng; Kapoor, Mili; Guo, Min; Belani, Rajesh; Xu, Xiaoling; Kiosses, William B.; Hanan, Melanie; Park, Chulho; Armour, Eva; Do, Minh-Ha; Nangle, Leslie A.; Schimmel, Paul; Yang, Xiang-Lei

    2011-01-01

    Protein multi-functionality is an emerging explanation for the complexity of higher organisms. In this regard, while aminoacyl tRNA synthetases catalyze amino acid activation for protein synthesis, some also act in pathways for inflammation, angiogenesis, and apoptosis. How multiple functions evolved and their relationship to the active site is not clear. Here structural modeling analysis, mutagenesis, and cell-based functional studies show that the potent angiostatic, natural fragment of human TrpRS associates via Trp side chains that protrude from the cognate cellular receptor VE-cadherin. Modeling indicates that (I prefer the way it was because the conclusion was reached not only by modeling, but more so by experimental studies.)VE-cadherin Trp side chains fit into the Trp-specific active site of the synthetase. Thus, specific side chains of the receptor mimic (?) amino acid substrates and expand the functionality of the active site of the synthetase. We propose that orthogonal use of the same active site may be a general way to develop multi-functionality of human tRNA synthetases and other proteins. PMID:20010843

  7. Distribution dynamics and functional importance of NHERF1 in regulation of Mrp-2 trafficking in hepatocytes.

    PubMed

    Karvar, Serhan; Suda, Jo; Zhu, Lixin; Rockey, Don C

    2014-10-15

    Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) is a multifunctional scaffolding protein that interacts with receptors and ion transporters in its PDZ domains and with the ezrin-radixin-moesin (ERM) family of proteins in its COOH terminus. The role of NHERF1 in hepatocyte function remains largely unknown. We examine the distribution and physiological significance of NHERF1 and multidrug resistance-associated protein 2 (Mrp-2) in hepatocytes. A WT radixin binding site mutant (F355R) and NHERF1 PDZ1 and PDZ2 domain adenoviral mutant constructs were tagged with yellow fluorescent protein and expressed in polarized hepatocytes to study localization and function of NHERF1. Cellular distribution of NHERF1 and radixin was visualized by fluorescence microscopy. A 5-chloromethylfluorescein diacetate (CMFDA) assay was used to characterize Mrp-2 function. Similar to Mrp-2, WT NHERF1 and the NHERF1 PDZ2 deletion mutant were localized to the canalicular membrane. In contrast, the radixin binding site mutant (F355R) and the NHERF1 PDZ1 deletion mutant, which interacts poorly with Mrp-2, were rarely associated with the canalicular membrane. Knockdown of NHERF1 led to dramatically impaired CMFDA secretory response. Use of CMFDA showed that the NHERF1 PDZ1 and F355R mutants were devoid of a secretory response, while WT NHERF1-infected cells exhibited increased secretion of glutathione-methylfluorescein. The data indicate that NHERF1 interacts with Mrp-2 via the PDZ1 domain of NHERF1 and, furthermore, that NHERF1 is essential for maintaining the localization and function of Mrp-2. Copyright © 2014 the American Physiological Society.

  8. Inhibition of Human MCF-7 Breast Cancer Cells and HT-29 Colon Cancer Cells by Rice-Produced Recombinant Human Insulin-Like Growth Binding Protein-3 (rhIGFBP-3)

    PubMed Central

    Liu, Lizhong; Liu, Qiaoquan; Lan, Linlin; Tong, Peter C. Y.; Sun, Samuel S. M.

    2013-01-01

    Background Insulin-like growth factor binding protein-3 (IGFBP-3) is a multifunctional molecule which is closely related to cell growth, apoptosis, angiogenesis, metabolism and senescence. It combines with insulin-like growth factor-I (IGF-I) to form a complex (IGF-I/IGFBP-3) that can treat growth hormone insensitivity syndrome (GHIS) and reduce insulin requirement in patients with diabetes. IGFBP-3 alone has been shown to have anti-proliferation effect on numerous cancer cells. Methodology/Principal Findings We reported here an expression method to produce functional recombinant human IGFBP-3 (rhIGFBP-3) in transgenic rice grains. Protein sorting sequences, signal peptide and endoplasmic reticulum retention tetrapeptide (KDEL) were included in constructs for enhancing rhIGFBP-3 expression. Western blot analysis showed that only the constructs with signal peptide were successfully expressed in transgenic rice grains. Both rhIGFBP-3 proteins, with or without KDEL sorting sequence inhibited the growth of MCF-7 human breast cancer cells (65.76 ± 1.72% vs 45.00 ± 0.86%, p < 0.05; 50.84 ± 1.97% vs 45.00 ± 0.86%, p < 0.01 respectively) and HT-29 colon cancer cells (65.14 ±3.84% vs 18.01 ± 13.81%, p < 0.05 and 54.7 ± 9.44% vs 18.01 ± 13.81%, p < 0.05 respectively) when compared with wild type rice. Conclusion/Significance These findings demonstrated the feasibility of producing biological active rhIGFBP-3 in rice using a transgenic approach, which will definitely encourage more research on the therapeutic use of hIGFBP-3 in future. PMID:24143239

  9. A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis.

    PubMed

    Olson, Heather E; Jean-Marçais, Nolwenn; Yang, Edward; Heron, Delphine; Tatton-Brown, Katrina; van der Zwaag, Paul A; Bijlsma, Emilia K; Krock, Bryan L; Backer, E; Kamsteeg, Erik-Jan; Sinnema, Margje; Reijnders, Margot R F; Bearden, David; Begtrup, Amber; Telegrafi, Aida; Lunsing, Roelineke J; Burglen, Lydie; Lesca, Gaetan; Cho, Megan T; Smith, Lacey A; Sheidley, Beth R; Moufawad El Achkar, Christelle; Pearl, Phillip L; Poduri, Annapurna; Skraban, Cara M; Tarpinian, Jennifer; Nesbitt, Addie I; Fransen van de Putte, Dietje E; Ruivenkamp, Claudia A L; Rump, Patrick; Chatron, Nicolas; Sabatier, Isabelle; De Bellescize, Julitta; Guibaud, Laurent; Sweetser, David A; Waxler, Jessica L; Wierenga, Klaas J; Donadieu, Jean; Narayanan, Vinodh; Ramsey, Keri M; Nava, Caroline; Rivière, Jean-Baptiste; Vitobello, Antonio; Tran Mau-Them, Frédéric; Philippe, Christophe; Bruel, Ange-Line; Duffourd, Yannis; Thomas, Laurel; Lelieveld, Stefan H; Schuurs-Hoeijmakers, Janneke; Brunner, Han G; Keren, Boris; Thevenon, Julien; Faivre, Laurence; Thomas, Gary; Thauvin-Robinet, Christel

    2018-05-03

    Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  10. The human mu opioid receptor: modulation of functional desensitization by calcium/calmodulin-dependent protein kinase and protein kinase C.

    PubMed

    Mestek, A; Hurley, J H; Bye, L S; Campbell, A D; Chen, Y; Tian, M; Liu, J; Schulman, H; Yu, L

    1995-03-01

    Opioids are some of the most efficacious analgesics used in humans. Prolonged administration of opioids, however, often causes the development of drug tolerance, thus limiting their effectiveness. To explore the molecular basis of those mechanisms that may contribute to opioid tolerance, we have isolated a cDNA for the human mu opioid receptor, the target of such opioid narcotics as morphine, codeine, methadone, and fentanyl. The receptor encoded by this cDNA is 400 amino acids long with 94% sequence similarity to the rat mu opioid receptor. Transient expression of this cDNA in COS-7 cells produced high-affinity binding sites to mu-selective agonists and antagonists. This receptor displays functional coupling to a recently cloned G-protein-activated K+ channel. When both proteins were expressed in Xenopus oocytes, functional desensitization developed upon repeated stimulation of the mu opioid receptor, as observed by a reduction in K+ current induced by the second mu receptor activation relative to that induced by the first. The extent of desensitization was potentiated by both the multifunctional calcium/calmodulin-dependent protein kinase and protein kinase C. These results demonstrate that kinase modulation is a molecular mechanism by which the desensitization of mu receptor signaling may be regulated at the cellular level, suggesting that this cellular mechanism may contribute to opioid tolerance in humans.

  11. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  12. Probing ligand recognition of the opioid pan antagonist AT-076 at nociceptin, kappa, mu, and delta opioid receptors through structure-activity relationships.

    PubMed

    Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T

    2017-10-16

    Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.

  13. Multifunctional and multispectral biosensor devices and methods of use

    DOEpatents

    Vo-Dinh, Tuan

    2004-06-01

    An integrated biosensor system for the simultaneously detection of a plurality of different types of targets includes at least one sampling platform, the sampling platform including a plurality of receptors for binding to the targets. The plurality of receptors include at least one protein receptor and at least one nucleic acid receptor. At least one excitation source of electromagnetic radiation at a first frequency is provided for irradiating the receptors, wherein electromagnetic radiation at a second frequency different from the first frequency is emitted in response to irradiating when at least one of the different types of targets are bound to the receptor probes. An integrated circuit detector system having a plurality of detection channels is also provided for detecting electromagnetic radiation at said second frequency, the detection channels each including at least one detector.

  14. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer's disease.

    PubMed

    Xie, Sai-Sai; Wang, Xiao-Bing; Li, Jiang-Yan; Yang, Lei; Kong, Ling-Yi

    2013-06-01

    A series of tacrine-coumarin hybrids (8a-t) were designed, synthesized and evaluated as multifunctional cholinesterase (ChE) inhibitors against Alzheimer's disease (AD). The screening results showed that most of them exhibited a significant ability to inhibit ChE and self-induced β-amyloid (Aβ) aggregation, and to act as metal chelators. Especially, 8f displayed the greatest ability to inhibit acetylcholinesterase (AChE, IC50 = 0.092 μM) and Aβ aggregation (67.8%, 20 μM). It was also a good butyrylcholinesterase inhibitor (BuChE, IC50 = 0.234 μM) and metal chelator. Besides, kinetic and molecular modeling studies indicated that 8f was a mixed-type inhibitor, binding simultaneously to active, peripheral and mid-gorge sites of AChE. These results suggested that 8f might be an excellent multifunctional agent for AD treatment. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  15. Evolved Minimal Frustration in Multifunctional Biomolecules.

    PubMed

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  16. Proteomic characterization of Withaferin A-targeted protein networks for the treatment of monoclonal myeloma gammopathies.

    PubMed

    Dom, Martin; Offner, Fritz; Vanden Berghe, Wim; Van Ostade, Xaveer

    2018-05-15

    Withaferin A (WA), a natural steroid lactone from the plant Withania somnifera, is often studied because of its antitumor properties. Although many in vitro and in vivo studies have been performed, the identification of Withaferin A protein targets and its mechanism of antitumor action remain incomplete. We used quantitative chemoproteomics and differential protein expression analysis to characterize the WA antitumor effects on a multiple myeloma cell model. Identified relevant targets were further validated by Ingenuity Pathway Analysis and Western blot and indicate that WA targets protein networks that are specific for monoclonal gammopathy of undetermined significance (MGUS) and other closely related disorders, such as multiple myeloma (MM) and Waldenström macroglobulinemia (WM). By blocking the PSMB10 proteasome subunit, downregulation of ANXA4, potential association with HDAC6 and upregulation of HMOX1, WA puts a massive blockage on both proteotoxic and oxidative stress responses pathways, leaving cancer cells defenseless against WA induced stresses. These results indicate that WA mediated apoptosis is preceded by simultaneous targeting of cellular stress response pathways like proteasome degradation, autophagy and unfolded protein stress response and thus suggests that WA can be used as an effective treatment for MGUS and other closely related disorders. Multifunctional antitumor compounds are of great potential since they reduce the risk of multidrug resistance in chemotherapy. Unfortunately, characterization of all protein targets of a multifunctional compound is lacking. Therefore, we optimized an SILAC quantitative chemoproteomics workflow to identify the potential protein targets of Withaferin A (WA), a natural multifunctional compound with promising antitumor properties. To further understand the antitumor mechanisms of WA, we performed a differential protein expression analysis and combined the altered expression data with chemoproteome WA target data in the highly curated Ingenuity Pathway database. We provide a first global overview on how WA kills multiple myeloma cancer cells and serve as a starting point for further in depth experiments. Furthermore, the combined approach can be used for other types of cancer and/or other promising multifunctional compounds, thereby increasing the potential development of new antitumor therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Apolipoprotein J (clusterin) and Alzheimer's disease.

    PubMed

    Calero, M; Rostagno, A; Matsubara, E; Zlokovic, B; Frangione, B; Ghiso, J

    2000-08-15

    Apolipoprotein J (clusterin) is a ubiquitous multifunctional glycoprotein capable of interacting with a broad spectrum of molecules. In pathological conditions, it is an amyloid associated protein, co-localizing with fibrillar deposits in systemic and localized amyloid disorders. In Alzheimer's disease, the most frequent form of amyloidosis in humans and the major cause of dementia in the elderly, apoJ is present in amyloid plaques and cerebrovascular deposits but is rarely seen in NFT-containing neurons. ApoJ expression is up-regulated in a wide variety of insults and may represent a defense response against local damage to neurons. Four different mechanisms of action could be postulated to explain the role of apoJ as a neuroprotectant during cellular stress: (1) function as an anti-apoptotic signal, (2) protection against oxidative stress, (3) inhibition of the membrane attack complex of complement proteins locally activated as a result of inflammation, and (4) binding to hydrophobic regions of partially unfolded, stressed proteins, and therefore avoiding aggregation in a chaperone-like manner. This review focuses on the association of apoJ in biological fluids with Alzheimer's soluble Abeta. This interaction prevents Abeta aggregation and fibrillization and modulates its blood-brain barrier transport at the cerebrovascular endothelium. Copyright 2000 Wiley-Liss, Inc.

  18. Pax6 interacts with Iba1 and shows age-associated alterations in brain of aging mice.

    PubMed

    Maurya, Shashank Kumar; Mishra, Rajnikant

    2017-07-01

    The Pax6, a transcriptional regulator and multifunctional protein, has been found critical for neurogenesis, neuro-degeneration, mental retardation, neuroendocrine tumors, glioblastoma and astrocytomas. The age-associated alteration in the expression of Pax6 in neuron and glia has also been observed in the immunologically privileged brain. Therefore, it is presumed that Pax6 may modulate brain immunity by activation of microglia either directly interacting with genes or proteins of microglia or indirectly though inflammation associated with neurodegeneration. This report describes evaluation of expression, co-localization and interactions of Pax6 with Ionized binding protein1 (Iba1) in brain of aging mice by Immunohistochemistry, Chromatin Immuno-precipitation (ChIP) and Co-immunoprecipitation (Co-IP), respectively. The co-localization of Pax6 with Iba1 was observed in the cerebellum, cerebral cortex, hippocampus, midbrain and olfactory lobe. The Pax6 and Iba1 also interact physically. The age-dependent alteration in their expression and co-localization were also observed in mice. Results indicate Pax6-dependent activities of Iba1 in the remodelling of microglia during immunological surveillance of the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. KH-type splicing regulatory protein is involved in esophageal squamous cell carcinoma progression.

    PubMed

    Fujita, Yuji; Masuda, Kiyoshi; Hamada, Junichi; Shoda, Katsutoshi; Naruto, Takuya; Hamada, Satoshi; Miyakami, Yuko; Kohmoto, Tomohiro; Watanabe, Miki; Takahashi, Rizu; Tange, Shoichiro; Saito, Masako; Kudo, Yasusei; Fujiwara, Hitoshi; Ichikawa, Daisuke; Tangoku, Akira; Otsuji, Eigo; Imoto, Issei

    2017-11-24

    KH-type splicing regulatory protein (KHSRP) is a multifunctional RNA-binding protein, which is involved in several post-transcriptional aspects of RNA metabolism, including microRNA (miRNA) biogenesis. It affects distinct cell functions in different tissues and can have an impact on various pathological conditions. In the present study, we investigated the oncogenic functions of KHSRP and their underlying mechanisms in the pathogenesis of esophageal squamous cell carcinoma (ESCC). KHSRP expression levels were elevated in ESCC tumors when compared with those in non-tumorous tissues by immunohistochemistry, and cytoplasmic KHSRP overexpression was found to be an independent prognosticator for worse overall survival in a cohort of 104 patients with ESCC. KHSRP knockdown inhibited growth, migration, and invasion of ESCC cells. KHSRP knockdown also inhibited the maturation of cancer-associated miRNAs, such as miR-21, miR-130b, and miR-301, and induced the expression of their target mRNAs, such as BMP6, PDCD4, and TIMP3, resulting in the inhibition of epithelial-to-mesenchymal transition. Our findings uncover a novel oncogenic function of KHSRP in esophageal tumorigenesis and implicate its use as a marker for prognostic evaluation and as a putative therapeutic target in ESCC.

  20. Burkholderia cenocepacia K56-2 trimeric autotransporter adhesin BcaA binds TNFR1 and contributes to induce airway inflammation.

    PubMed

    Mil-Homens, Dalila; Pinto, Sandra N; Matos, Rute G; Arraiano, Cecília; Fialho, Arsenio M

    2017-04-01

    Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence. © 2016 John Wiley & Sons Ltd.

Top